1
|
Wang Y, Li Y, Zhou H, Huang T, Wang Y, Fan M, Guo L, Fu M, Sun L, Hao F. Comprehensive analysis of amino acid/auxin permease family genes reveal the positive role of GhAAAP128 in cotton tolerance to cold stress. Int J Biol Macromol 2025; 290:138882. [PMID: 39706393 DOI: 10.1016/j.ijbiomac.2024.138882] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/30/2024] [Accepted: 12/16/2024] [Indexed: 12/23/2024]
Abstract
Amino acid/auxin permeases (AAAPs) play crucial roles in plant development and response to environmental stimuli. They have been characterized at genome-wide levels in several plant species. However, little is known about the AAAP genes in Gossypium. Here, we identified 149, 141, 73, and 70 AAAPs from G. hirsutum, G. barbadense, G. arboreum, and G. raimondii, respectively. All the AAAPs were categorized into eight subfamilies (Groups I-VIII). Moreover, we found that 182 and 179 AAAP paralogous gene pairs existed within G. hirsutum and G. barbadense genomes, respectively, and whole genome duplication (WGD) or segmental duplication contributed to the expansion of these AAAPs during evolution. Additionally, many cis-elements related to abiotic stress responses were detected in the promoter regions of GhAAAPs and GbAAAPs. Consistently, the expression of multiple AAAPs was significantly induced by NaCl, polyethylene glycol 6000, and especially cold stress. Among these GhAAAPs, GhAAAP128 had clearly positive roles in cotton and Arabidopsis seedling tolerance to cold stress. It may improve plant cold tolerance by up-regulating the expression of some anthocyanin synthesis genes rather than CBF (C-repeat binding factor) signaling genes. Our findings provide important information for further functional analysis of GhAAAPs in response to stressful cues, particularly cold stress in cotton plants.
Collapse
Affiliation(s)
- Yibin Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Yunxiang Li
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Huimin Zhou
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Tianyi Huang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Yihan Wang
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Mengmeng Fan
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Liqin Guo
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Mengru Fu
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China
| | - Lirong Sun
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| | - Fushun Hao
- National Key Laboratory of Cotton Bio-breeding and Integrated Utilization, School of Life Sciences, College of Agriculture, Henan University, Kaifeng 475004, China.
| |
Collapse
|
2
|
Zhao Y, Xu J, Xu X, Liu H, Chang Q, Xu L, Liang Z. Genome-Wide Identification of CONSTANS- like ( COL) Gene Family and the Potential Function of ApCOL08 Under Salt Stress in Andrographis paniculata. Int J Mol Sci 2025; 26:724. [PMID: 39859441 PMCID: PMC11765704 DOI: 10.3390/ijms26020724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Revised: 01/05/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Andrographis paniculata is an important medicinal herb known as a "natural antibiotic", which has been used in Southeast Asia for thousands of years. The CONSTANS-like (COL) gene is an important regulatory factor for plant photoperiod flowering and stress response. However, there is currently no detailed research on the COL genes of A. paniculata. In our study, we performed a genome-wide analysis of A. paniculata COL (ApCOL) family members using bioinformatics tools and identified nine ApCOL genes. Based on phylogenetic analysis, ApCOLs were categorized into three groups, with members of the same group having similar structures. Gene duplication events indicated that only one pair of duplicated genes was identified, possibly caused by segmental duplication. In terms of evolutionary relationships, the COL proteins of A. paniculata and Sesamum indicum were closely related, showing that they are highly similar in the phylogenetic tree. In addition, ApCOL genes showed tissue specificity and were specifically highly expressed mainly in leaves and flowers. Based on the cis-regulatory element prediction results, we examined the expression levels of ApCOLs under hormone and salt stress, and ApCOL08 was significantly induced. With subcellular localization results consistent with the prediction, we transformed ApCOL08 into yeast and showed significant resistance to salt stress. Our study suggests that ApCOL genes have important roles in response to abiotic stress and plant development and initially identifies key genes for future molecular regulation studies.
Collapse
Affiliation(s)
- Yizhu Zhao
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Jiahao Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Xinyi Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Hui Liu
- The UWA Institute of Agriculture, UWA School of Agriculture and Environment, Faculty of Science, The University of Western Australia, Crawley, WA 6009, Australia
| | - Qinxiang Chang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Ling Xu
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| | - Zongsuo Liang
- Zhejiang Province Key Laboratory of Plant Secondary Metabolism and Regulation, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China; (Y.Z.)
| |
Collapse
|
3
|
Heidari P, Rezaee S, Hosseini Pouya HS, Mora-Poblete F. Insights into the Heat Shock Protein 70 (Hsp70) Family in Camelina sativa and Its Roles in Response to Salt Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3410. [PMID: 39683203 DOI: 10.3390/plants13233410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Revised: 12/01/2024] [Accepted: 12/03/2024] [Indexed: 12/18/2024]
Abstract
Hsp70s, a group of heat shock proteins, are ancient proteins that play a crucial part in maintaining the stability of cells when faced with various internal and external stresses. In this research, there are 72 CsHSP70 genes present and verified in Camelina sativa, all of which exhibit a wide range of physicochemical characteristics. Through evolutionary analysis, the Hsp70 family was categorized into five primary groups, and numerous segmental duplications were anticipated among the CsHSP70 genes. The GO enrichment analysis of co-expression network elements revealed a significant association between key signaling terms, such as phosphorelay signal transduction, and MAPK cascade with the function of CsHsp70. An analysis of transcriptome data exposed to cold, drought, salinity, and cadmium stress demonstrated the varied expression profiles of CsHsp70 genes. The expression levels of CsHSP70 genes varied across various organs and stages of development in camelina, although some of them illustrated tissue-specific expression. qRT-PCR analysis further disclosed that CsHsp70-60, -52, and -13 were up-regulated and CsHsp70-03, -58, and -09 showed down-regulation in response to salinity. Furthermore, CsHsp70 genes are categorized as late-responsive elements to salinity stress. Through docking analysis, the current research revealed that CsHsp70 proteins interacted with ABA, BR, and MeJA.
Collapse
Affiliation(s)
- Parviz Heidari
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | - Sadra Rezaee
- Faculty of Agriculture, Shahrood University of Technology, Shahrood 3619995161, Iran
| | | | - Freddy Mora-Poblete
- Institute of Biological Sciences, University of Talca, 1 Poniente 1141, Talca 3460000, Chile
| |
Collapse
|
4
|
Bi Z, Dekomah SD, Wang Y, Pu Z, Wang X, Dormatey R, Sun C, Liu Y, Liu Z, Bai J, Yao P. Overexpression of StCDPK13 in Potato Enhances Tolerance to Drought Stress. Int J Mol Sci 2024; 25:12620. [PMID: 39684333 DOI: 10.3390/ijms252312620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/21/2024] [Accepted: 11/22/2024] [Indexed: 12/18/2024] Open
Abstract
Calcium-dependent protein kinases (CDPKs), which are activated by transient changes in the Ca2+ concentration in plants, are important for various biological processes, such as growth, development, defense against biotic and abiotic stresses, and others. Mannitol is commonly used as an osmotic regulatory substance in culture medium or nutrient solutions to create water-deficit conditions. Here, we cloned the potato (Solanum tuberosum L.) StCDPK13 gene and generated stable transgenic StCDPK13-overexpression potato plants. To investigate the potential functions of StCDPK13 in response to drought stress, overexpression-transgenic (OE1, OE2, and OE7) and wild-type (WT) potato seedlings were cultured on MS solid media without or with mannitol, representing the control or drought stress, for 20 days; the elevated mannitol concentrations (150 and 200 mM) were the drought stress conditions. The StCDPK13 gene was consistently expressed in different tissues and was induced by drought stress in both OE and WT plants. The phenotypic traits and an analysis of physiological indicators revealed that the transgenic plants exhibited more tolerance to drought stress than the WT plants. The overexpression lines showed an increased plant height, number of leaves, dry shoot weight, root length, root number, root volume, number of root tips, fresh root weight, and dry root weight under drought stress. In addition, the activities of antioxidant enzymes (CAT, SOD, and POD) and the accumulation of proline and neutral sugars were significantly increased, whereas the levels of malondialdehyde (MDA) and reactive oxygen species (ROS), including hydrogen peroxide (H2O2) and O2•-, were significantly reduced in the OE lines compared to WT plants under drought stress. Moreover, the stomatal aperture of the leaves and the water loss rate in the leaves of the OE lines were significantly reduced under drought stress compared to the WT plants. In addition, the overexpression of StCDPK13 upregulated the expression levels of stress-related genes under drought stress. Collectively, these results indicate that the StCDPK13 gene plays a positive role in drought tolerance by reducing the stomatal aperture, promoting ROS scavenging, and alleviating oxidative damage under drought stress in potatoes.
Collapse
Affiliation(s)
- Zhenzhen Bi
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Simon Dontoro Dekomah
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yihao Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhuanfang Pu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Xiangdong Wang
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Richard Dormatey
- CSIR-Crop Research Institute, P.O. Box 3785, Kumasi 00233, Ghana
| | - Chao Sun
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Yuhui Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Zhen Liu
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Jiangping Bai
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| | - Panfeng Yao
- State Key Laboratory of Aridland Crop Science, College of Agronomy, Gansu Agricultural University, Lanzhou 730070, China
| |
Collapse
|
5
|
Xue M, You Y, Zhang L, Cao J, Xu M, Chen S. ZmHsp18 screened from the ZmHsp20 gene family confers thermotolerance in maize. BMC PLANT BIOLOGY 2024; 24:1048. [PMID: 39506700 PMCID: PMC11539784 DOI: 10.1186/s12870-024-05763-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 10/30/2024] [Indexed: 11/08/2024]
Abstract
Heat stress has become one of the abiotic stresses that pose an increasing threat to maize production due to global warming. The Hsp20 gene family confers tolerance to various abiotic stresses in plants. However, very few Hsp20s have been identified in relation to maize thermotolerance. In this study, we conducted a comprehensive study of Hsp20s involved in thermotolerance in maize. A total of 33 maize Hsp20 genes (ZmHsp20s) were identified through scanning for a conserved α-crystalline domain (ACD), and they were categorized into 14 subfamilies based on phylogenetic analysis. These genes are distributed across all maize chromosomes and nine of them are in regions previously identified as heat-tolerance quantitative trait loci (hrQTL). These hrQTL-associated ZmHsp20s show variation in tissue-specific expression profiles under normal conditions, and seven of them possess 1-5 heat stress elements in their promoters. The integration of RNA-seq data with real-time RT-PCR analysis indicated that ZmHsp23.4, ZmHsp22.8B and ZmHsp18 were dramatically induced under heat stress. Additionally, these genes exhibited co-expression patterns with key ZmHsfs, which are crucial in the heat tolerance pathway. When a null mutant carrying a frame-shifted ZmHsp18 gene was subjected to heat stress, its survival rate decreased significantly, indicating a critical role of ZmHsp18 in maize thermotolerance. Our study lays the groundwork for further research into the roles of ZmHsp20s in enhancing maize's thermotolerance.
Collapse
Affiliation(s)
- Ming Xue
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China
| | - Yiwen You
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Luyao Zhang
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Jinming Cao
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
| | - Mingliang Xu
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China
- State Key Laboratory of Plant Physiology and Biochemistry, College of Agronomy and Biotechnology/National Maize Improvement Center/Center for Crop Functional Genomics and Molecular Breeding, China Agricultural University, 2 West Yuanmingyuan Road, Beijing, 100193, People's Republic of China
| | - Saihua Chen
- Jiangsu Key Laboratory of Crop Genomics and Molecular Breeding/Key Laboratory of Plant Functional Genomics of the Ministry of Education/ Jiangsu Key Laboratory of Crop Genetics and Physiology, Agricultural College of Yangzhou University, Yangzhou, 225009, China.
- Jiangsu Co-Innovation Center for Modern Production Technology of Grain Crops, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
6
|
Wang H, Charagh S, Dong N, Lu F, Wang Y, Cao R, Ma L, Wang S, Jiao G, Xie L, Shao G, Sheng Z, Hu S, Zhao F, Tang S, Chen L, Hu P, Wei X. Genome-Wide Analysis of Heat Shock Protein Family and Identification of Their Functions in Rice Quality and Yield. Int J Mol Sci 2024; 25:11931. [PMID: 39596001 PMCID: PMC11593806 DOI: 10.3390/ijms252211931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/25/2024] [Accepted: 11/01/2024] [Indexed: 11/28/2024] Open
Abstract
Heat shock proteins (Hsps), acting as molecular chaperones, play a pivotal role in plant responses to environmental stress. In this study, we found a total of 192 genes encoding Hsps, which are distributed across all 12 chromosomes, with higher concentrations on chromosomes 1, 2, 3, and 5. These Hsps can be divided into six subfamilies (sHsp, Hsp40, Hsp60, Hsp70, Hsp90, and Hsp100) based on molecular weight and homology. Expression pattern data indicated that these Hsp genes can be categorized into three groups: generally high expression in almost all tissues, high tissue-specific expression, and low expression in all tissues. Further analysis of 15 representative genes found that the expression of 14 Hsp genes was upregulated by high temperatures. Subcellular localization analysis revealed seven proteins localized to the endoplasmic reticulum, while others localized to the mitochondria, chloroplasts, and nucleus. We successfully obtained the knockout mutants of above 15 Hsps by the CRISPR/Cas9 gene editing system. Under natural high-temperature conditions, the mutants of eight Hsps showed reduced yield mainly due to the seed setting rate or grain weight. Moreover, the rice quality of most of these mutants also changed, including increased grain chalkiness, decreased amylose content, and elevated total protein content, and the expressions of starch metabolism-related genes in the endosperm of these mutants were disturbed compared to the wild type under natural high-temperature conditions. In conclusion, our study provided new insights into the HSP gene family and found that it plays an important role in the formation of rice quality and yield.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | - Peisong Hu
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| | - Xiangjin Wei
- State Key Laboratory of Rice Biology, China National Center for Rice Improvement, China National Rice Research Institute, Hangzhou 311400, China; (H.W.); (S.C.); (N.D.); (F.L.); (Y.W.); (R.C.); (L.M.); (S.W.); (G.J.); (L.X.); (G.S.); (Z.S.); (S.H.); (F.Z.); (S.T.); (L.C.)
| |
Collapse
|
7
|
Song L, Wen C, He Z, Zha X, Cheng Q, Xu W. Overexpression of SlATG8f gene enhanced autophagy and pollen protection in tomato under heat stress. Sci Rep 2024; 14:26892. [PMID: 39505980 PMCID: PMC11541915 DOI: 10.1038/s41598-024-77491-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Accepted: 10/22/2024] [Indexed: 11/08/2024] Open
Abstract
Autophagy is a mechanism for the degradation of cellular components in eukaryotes and plays a critical role in plant responses to abiotic stress. As a core member of the autophagy process, ATG8's role in how plants respond to heat stress remains unclear. To investigate the response of the tomato autophagy core member ATG8f to heat stress, we studied the key gene ATG8f and generated tomato lines overexpressing SlATG8f using the recombinant expression vector pBWA(V)HS. We observed that under heat stress, SlATG8f overexpression (OE) plants exhibited decreased heat tolerance compared to wild-type (WT) plants. Specifically, OE plants showed increased relative electrolyte leakage, reduced soluble solid content, elevated chlorophyll content, and higher autophagosome numbers, with less damage to chloroplasts and mitochondria. Additionally, expression of some ATG8 family genes and heat shock protein-related genes was upregulated. Moreover, SlATG8f overexpressing plants had higher pollen vitality and more intact pollen morphology. These results suggest that while SlATG8f overexpression renders plants more sensitive to heat, it helps mitigate high-temperature damage to tomato pollen by maintaining chloroplast integrity and interacting with heat shock proteins to respond to heat stress.
Collapse
Affiliation(s)
- Liu Song
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Cen Wen
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Zhuo He
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Xingxue Zha
- College of Agriculture, Guizhou University, Guiyang, 550025, China
- Institute of Edible Fungi Industry Technology Research, Guizhou University, Guiyang, 550025, China
| | - Qunmei Cheng
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Wen Xu
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
- Engineering Research Center for Protected Vegetable Crops in Higher Learning Institutions of Guizhou Province, Guiyang, 550025, China.
| |
Collapse
|
8
|
Yan H, Du M, Ding J, Song D, Ma W, Li Y. Pan-Genome-Wide Investigation and Co-Expression Network Analysis of HSP20 Gene Family in Maize. Int J Mol Sci 2024; 25:11550. [PMID: 39519102 PMCID: PMC11546149 DOI: 10.3390/ijms252111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/18/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Heat shock protein 20 (HSP20) is a diverse and functionally important protein family that plays a crucial role in plants' tolerance to various abiotic stresses. In this study, we systematically analyzed the structural and functional characteristics of the HSP20 gene family within the Zea pan-genome. By identifying 56 HSP20 pan-genes, we revealed the variation in the number of these genes across different maize inbreds or relatives. Among those 56 genes, only 31 are present in more than 52 inbreds or relatives. Further phylogenetic analysis classified these genes into four major groups (Class A, B, C, D) and explored their diversity in subcellular localization, physicochemical properties, and the terminal structures of those HSP20s. Through collinearity analysis and Ka/Ks ratio calculations, we found that most HSP20 genes underwent purifying selection during maize domestication, although a few genes showed signs of positive selection pressure. Additionally, expression analysis showed that several HSP20 genes were significantly upregulated under high temperatures, particularly in tassels and leaves. Co-expression network analysis revealed that HSP20 genes were significantly enriched in GO terms related to environmental stress responses, suggesting that HSP20 genes not only play key roles in heat stress but may also be involved in regulating various other biological processes, such as secondary metabolism and developmental processes. These findings expand our understanding of the functions of the maize HSP20 family and provide new insights for further research into maize's response mechanisms to environmental stresses.
Collapse
Affiliation(s)
| | | | | | | | | | - Yubin Li
- College of Agronomy, Qingdao Agricultural University, Qingdao 266000, China
| |
Collapse
|
9
|
Wang H, Zhong H, Zhang F, Zhang C, Zhang S, Zhou X, Wu X, Yadav V. Identification of Grape Laccase Genes and Their Potential Role in Secondary Metabolite Synthesis. Int J Mol Sci 2024; 25:10574. [PMID: 39408902 PMCID: PMC11476532 DOI: 10.3390/ijms251910574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/19/2024] Open
Abstract
Laccase, a copper-containing oxidoreductase, has close links with secondary metabolite biosynthesis in plants. Its activity can affect the synthesis and accumulation of secondary metabolites, thereby influencing plant growth, development, and stress resistance. This study aims to identify the grape laccases (VviLAC) gene family members in grape (Vitis vinifera L.) and explore the transcriptional regulatory network in berry development. Here, 115 VviLACs were identified and divided into seven (Type I-VII) classes. These were distributed on 17 chromosomes and out of 47 VviLACs on chromosome 18, 34 (72.34%) were involved in tandem duplication events. VviLAC1, VviLAC2, VviLAC3, and VviLAC62 were highly expressed before fruit color development, while VviLAC4, VviLAC12, VviLAC16, VviLAC18, VviLAC20, VviLAC53, VviLAC60 and VviLAC105 were highly expressed after fruit color transformation. Notably, VviLAC105 showed a significant positive correlation with important metabolites including resveratrol, resveratrol dimer, and peonidin-3-glucoside. Analysis of the transcriptional regulatory network predicted that the 12 different transcription factors target VviLACs genes. Specifically, WRKY and ERF were identified as potential transcriptional regulatory factors for VviLAC105, while Dof and MYB were identified as potential transcriptional regulatory factors for VviLAC51. This study identifies and provides basic information on the grape LAC gene family members and, in combination with transcriptome and metabolome data, predicts the upstream transcriptional regulatory network of VviLACs.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Xinyu Wu
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.W.); (H.Z.); (F.Z.); (C.Z.)
| | - Vivek Yadav
- The State Key Laboratory of Genetic Improvement and Germplasm Innovation of Crop Resistance in Arid Desert Regions, Key Laboratory of Genome Research and Genetic Improvement of Xinjiang Characteristic Fruits and Vegetables, Institute of Horticultural Crops, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (H.W.); (H.Z.); (F.Z.); (C.Z.)
| |
Collapse
|
10
|
Yang H, Wei X, Lei W, Su H, Zhao Y, Yuan Y, Zhang X, Li X. Genome-Wide Identification, Expression, and Protein Analysis of CKX and IPT Gene Families in Radish ( Raphanus sativus L.) Reveal Their Involvement in Clubroot Resistance. Int J Mol Sci 2024; 25:8974. [PMID: 39201660 PMCID: PMC11354997 DOI: 10.3390/ijms25168974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 08/07/2024] [Accepted: 08/13/2024] [Indexed: 09/02/2024] Open
Abstract
Cytokinins (CKs) are a group of phytohormones that are involved in plant growth, development, and disease resistance. The isopentenyl transferase (IPT) and cytokinin oxidase/dehydrogenase (CKX) families comprise key enzymes controlling CK biosynthesis and degradation. However, an integrated analysis of these two gene families in radish has not yet been explored. In this study, 13 RsIPT and 12 RsCKX genes were identified and characterized, most of which had four copies in Brassica napus and two copies in radish and other diploid Brassica species. Promoter analysis indicated that the genes contained at least one phytohormone or defense and stress responsiveness cis-acting element. RsIPTs and RsCKXs were expanded through segmental duplication. Moreover, strong purifying selection drove the evolution of the two gene families. The expression of the RsIPT and RsCKX genes distinctly showed diversity in different tissues and developmental stages of the root. Expression profiling showed that RsCKX1-1/1-2/1-3 was significantly upregulated in club-resistant materials during primary infection, suggesting their vital function in clubroot resistance. The interaction network of CKX proteins with similar 3D structures also reflected the important role of RsCKX genes in disease resistance. This study provides a foundation for further functional study on the IPT and CKX genes for clubroot resistance improvement in Raphanus.
Collapse
Affiliation(s)
- Haohui Yang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| | - Xiaochun Wei
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Weiwei Lei
- Station for Popularizing Agricultural Technique of Changping District, Beijing 102200, China
| | - Henan Su
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yanyan Zhao
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Yuxiang Yuan
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xiaowei Zhang
- Institute of Vegetables, Henan Academy of Agricultural Sciences, Zhengzhou 450002, China; (H.Y.); (X.W.); (H.S.); (Y.Z.); (Y.Y.)
| | - Xixiang Li
- State Key Laboratory of Vegetable Biobreeding, Key Laboratory of Biology and Genetic Improvement of Horticultural Crops, Ministry of Agriculture and Rural Affairs, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China
| |
Collapse
|
11
|
Zhang Q, Dai B, Fan M, Yang L, Li C, Hou G, Wang X, Gao H, Li J. Genome-wide profile analysis of the Hsp20 family in lettuce and identification of its response to drought stress. FRONTIERS IN PLANT SCIENCE 2024; 15:1426719. [PMID: 39070912 PMCID: PMC11272627 DOI: 10.3389/fpls.2024.1426719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2024] [Accepted: 06/24/2024] [Indexed: 07/30/2024]
Abstract
Heat shock protein 20 (Hsp20) plays a very important role in response to abiotic stressors such as drought; however, in lettuce (Lactuca sativa L.), this gene family is poorly understood. This study used bioinformatics methods to identify 36 members of the lettuce Hsp20 family, which were named LsHsp20-1~LsHsp20-36. Subcellular localization results revealed that 26 members of the LsHsp20 protein family localized to the cytoplasm and nucleus. Additionally, 15 conserved domains were identified in the LsHsp20 protein family, with the number of amino acids ranging from 8 to 50. Gene structure analysis revealed that 15 genes (41.7%) had no introns, and 20 genes (55.5%) had one intron. The proportion of the LsHsp20 secondary structure was random coil > alpha helix > extended strand > beta turn. Chromosome positioning analysis indicated that 36 genes were unevenly distributed on nine chromosomes, and four pairs of genes were collinear. The Ka/Ks ratio of the collinear genes was less than 1, indicating that purifying selection dominated during L. sativa evolution. Thirteen pairs of genes were collinear in lettuce and Arabidopsis, and 14 pairs of genes were collinear in lettuce and tomato. A total of 36 LsHsp20 proteins were divided into 12 subgroups based on phylogenetic analysis. Three types of cis-acting elements, namely, abiotic and biotic stress-responsive, plant hormone-responsive, and plant development-related elements, were identified in the lettuce LsHsp20 family. qRT-PCR was used to analyze the expression levels of 23 LsHsp20 genes that were significantly upregulated on the 7th or 14th day of drought treatment, and the expression levels of two genes (LsHsp20-12 and LsHsp20-26) were significantly increased by 153-fold and 273-fold on the 14th and 7th days of drought treatment, respectively. The results of this study provide comprehensive information for research on the LsHsp20 gene family in lettuce and lay a solid foundation for further elucidation of Hsp20 biological functions, providing valuable information on the regulatory mechanisms of the LsHsp20 family in lettuce drought resistance.
Collapse
Affiliation(s)
- Qinqin Zhang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Bowen Dai
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Mi Fan
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Liling Yang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Chang Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Guangguang Hou
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Xiaofang Wang
- College of Horticulture, Hebei Agricultural University, Baoding, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, China
| | - Jingrui Li
- College of Horticulture, Hebei Agricultural University, Baoding, China
- Key Laboratory of North China Water-saving Irrigation Engineering, Hebei Agricultural University, Baoding, China
- Ministry of Education of China-Hebei Province Joint Innovation Center for Efficient Green Vegetable Industry, Baoding, China
| |
Collapse
|
12
|
Hao X, Gong Y, Chen S, Ma C, Duanmu H. Genome-Wide Identification of GRAS Transcription Factors and Their Functional Analysis in Salt Stress Response in Sugar Beet. Int J Mol Sci 2024; 25:7132. [PMID: 39000240 PMCID: PMC11241673 DOI: 10.3390/ijms25137132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 06/08/2024] [Accepted: 06/25/2024] [Indexed: 07/16/2024] Open
Abstract
GAI-RGA-and-SCR (GRAS) transcription factors can regulate many biological processes such as plant growth and development and stress defense, but there are few related studies in sugar beet. Salt stress can seriously affect the yield and quality of sugar beet (Beta vulgaris). Therefore, this study used bioinformatics methods to identify GRAS transcription factors in sugar beet and analyzed their structural characteristics, evolutionary relationships, regulatory networks and salt stress response patterns. A total of 28 BvGRAS genes were identified in the whole genome of sugar beet, and the sequence composition was relatively conservative. According to the topology of the phylogenetic tree, BvGRAS can be divided into nine subfamilies: LISCL, SHR, PAT1, SCR, SCL3, LAS, SCL4/7, HAM and DELLA. Synteny analysis showed that there were two pairs of fragment replication genes in the BvGRAS gene, indicating that gene replication was not the main source of BvGRAS family members. Regulatory network analysis showed that BvGRAS could participate in the regulation of protein interaction, material transport, redox balance, ion homeostasis, osmotic substance accumulation and plant morphological structure to affect the tolerance of sugar beet to salt stress. Under salt stress, BvGRAS and its target genes showed an up-regulated expression trend. Among them, BvGRAS-15, BvGRAS-19, BvGRAS-20, BvGRAS-21, LOC104892636 and LOC104893770 may be the key genes for sugar beet's salt stress response. In this study, the structural characteristics and biological functions of BvGRAS transcription factors were analyzed, which provided data for the further study of the molecular mechanisms of salt stress and molecular breeding of sugar beet.
Collapse
Affiliation(s)
- Xiaolin Hao
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Yongyong Gong
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Sixue Chen
- Department of Biology, University of Mississippi, Oxford, MS 38677, USA;
| | - Chunquan Ma
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Plant Genetic Engineering and Biological Fermentation Engineering for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| | - Huizi Duanmu
- Engineering Research Center of Agricultural Microbiology Technology, Ministry of Education, Heilongjiang University, Harbin 150080, China; (X.H.); (Y.G.); (C.M.)
- Heilongjiang Provincial Key Laboratory of Ecological Restoration and Resource Utilization for Cold Region, School of Life Sciences, Heilongjiang University, Harbin 150080, China
| |
Collapse
|
13
|
Xu H, Li M, Ma D, Gao J, Tao J, Meng J. Identification of key genes for triacylglycerol biosynthesis and storage in herbaceous peony (Paeonia lactifolra Pall.) seeds based on full-length transcriptome. BMC Genomics 2024; 25:601. [PMID: 38877407 PMCID: PMC11179206 DOI: 10.1186/s12864-024-10513-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 06/10/2024] [Indexed: 06/16/2024] Open
Abstract
BACKGROUND The herbaceous peony (Paeonia lactiflora Pall.) is extensively cultivated in China due to its root being used as a traditional Chinese medicine known as 'Radix Paeoniae Alba'. In recent years, it has been discovered that its seeds incorporate abundant unsaturated fatty acids, thereby presenting a potential new oilseed plant. Surprisingly, little is known about the full-length transcriptome sequencing of Paeonia lactiflora, limiting research into its gene function and molecular mechanisms. RESULTS A total of 484,931 Reads of Inserts (ROI) sequences and 1,455,771 full-Length non-chimeric reads (FLNC) sequences were obtained for CDS prediction, TF analysis, SSR analysis and lncRNA identification. In addition, gene function annotation and gene structure analysis were performed. A total of 4905 transcripts were related to lipid metabolism biosynthesis pathway, belonging to 28 enzymes. We use these data to identify 10 oleosin (OLE) and 5 diacylglycerol acyltransferase (DGAT) gene members after de-redundancy. The analysis of physicochemical properties and secondary structure showed them similarity in gene family respectively. The phylogenetic analysis showed that the distribution of OLE and DGAT family members was roughly the same as that of Arabidopsis. Quantitative real-time polymerase chain reaction (qRT-PCR) analyses revealed expression changes in different seed development stages, and showed a trend of increasing and then decreasing. CONCLUSION In summary, these results provide new insights into the molecular mechanism of triacylglycerol (TAG) biosynthesis and storage during the seedling stage in Paeonia lactiflora. It provides theoretical references for selecting and breeding oil varieties and understanding the functions of oil storage as well as lipid synthesis related genes in Paeonia lactiflora.
Collapse
Affiliation(s)
- Huajie Xu
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Miao Li
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Di Ma
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jiajun Gao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
| | - Jun Tao
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China
| | - Jiasong Meng
- College of Horticulture and Landscape Architecture, Yangzhou University, Yangzhou, 225009, China.
- Joint International Research Laboratory of Agriculture and Agri-Product Safety, the Ministry of Education of China, Yangzhou University, Yangzhou, 225009, China.
| |
Collapse
|
14
|
Wei X, Tao K, Liu Z, Qin B, Su J, Luo Y, Zhao C, Liao J, Zhang J. The PPO family in Nicotiana tabacum is an important regulator to participate in pollination. BMC PLANT BIOLOGY 2024; 24:102. [PMID: 38331761 PMCID: PMC10854075 DOI: 10.1186/s12870-024-04769-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/25/2024] [Indexed: 02/10/2024]
Abstract
Polyphenol oxidases (PPOs) are type-3 copper enzymes and are involved in many biological processes. However, the potential functions of PPOs in pollination are not fully understood. In this work, we have screened 13 PPO members in Nicotiana. tabacum (named NtPPO1-13, NtPPOs) to explore their characteristics and functions in pollination. The results show that NtPPOs are closely related to PPOs in Solanaceae and share conserved domains except NtPPO4. Generally, NtPPOs are diversely expressed in different tissues and are distributed in pistil and male gametes. Specifically, NtPPO9 and NtPPO10 are highly expressed in the pistil and mature anther. In addition, the expression levels and enzyme activities of NtPPOs are increased after N. tabacum self-pollination. Knockdown of NtPPOs would affect pollen growth after pollination, and the purines and flavonoid compounds are accumulated in self-pollinated pistil. Altogether, our findings demonstrate that NtPPOs potentially play a role in the pollen tube growth after pollination through purines and flavonoid compounds, and will provide new insights into the role of PPOs in plant reproduction.
Collapse
Affiliation(s)
- Xuemei Wei
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Keliang Tao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Zhengmei Liu
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Boyuan Qin
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jie Su
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China
| | - Yanbi Luo
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Chunwen Zhao
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China
| | - Jugou Liao
- School of Life Science, Biocontrol Engineering Research Center of Plant Diseases & Pests, Biocontrol Engineering Research Center of Crop Diseases & Pests, Yunnan University, Kunming, 650091, Yunnan Province, China.
| | - Junpeng Zhang
- School of Engineering, Dali University, Dali, 671000, Yunnan Province, China.
| |
Collapse
|
15
|
Wang L, Lin M, Zou L, Zhang S, Lan Y, Yan H, Xiang Y. Comprehensive investigation of BZR gene family in four dicots and the function of PtBZR9 and PtBZR12 under drought stress. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 207:108360. [PMID: 38266559 DOI: 10.1016/j.plaphy.2024.108360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 01/05/2024] [Accepted: 01/10/2024] [Indexed: 01/26/2024]
Abstract
Brassinazole-resistant (BZR) transcription factor plays an important role in plant growth and stress resistance through brassinosteroid (BR) signal transduction. However, systematic analysis of the BZR family in dicots remains limited. In this study, we conducted a genome-wide study of four typical dicots: Arabidopsis thaliana, Carica papaya, Vitis vinifera and Populus trichocarpa. Thirty-four BZR gene family members were identified and classified them into three subfamilies. Analysis of promoter and expression patterns revealed crucial role of a pair of homologous BZR genes, PtBZR9 and PtBZR12, in poplar may play a critical role under abiotic stress. PtBZR9 and PtBZR12 were localised in the nucleus and exhibited mutual interactions. Moreover, transient overexpression (OE) of PtBZR9 and PtBZR12 in poplar enhanced tolerance to drought stress. The phenotypic and physiological characteristics of PtBZR9 and PtBZR12 OE in Arabidopsis mirrored those of transient OE in the poplar. Additionally, PtBZR9 and PtBZR12 can bind to the E-box element. Under exogenous BR treatment, transgenic lines displayed a greater decrease in root length than the wild type. Thus, these findings provide a solid foundation for future research on the complex regulatory mechanisms of BZR genes.
Collapse
Affiliation(s)
- Linna Wang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Miao Lin
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Lina Zou
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Shunran Zhang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yangang Lan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Hanwei Yan
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China
| | - Yan Xiang
- Anhui Provincial Key Laboratory of Forest Resources and Silviculture, Anhui Agricultural University, Hefei, 230036, China.
| |
Collapse
|
16
|
Wang P, Zhang T, Li Y, Zhao X, Liu W, Hu Y, Wang J, Zhou Y. Comprehensive analysis of Dendrobium catenatum HSP20 family genes and functional characterization of DcHSP20-12 in response to temperature stress. Int J Biol Macromol 2024; 258:129001. [PMID: 38158058 DOI: 10.1016/j.ijbiomac.2023.129001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/19/2023] [Accepted: 12/21/2023] [Indexed: 01/03/2024]
Abstract
Heat shock proteins (HSPs) are a class of protective proteins in response to abiotic stress in plants, and HSP20 plays an essential role in response to temperature stress. However, there are few studies on HSP20 in Dendrobium catenatum. In this study, 18 DcHSP20 genes were identified from the D. catenatum genome. Phylogenetic analysis showed that DcHSP20s could be classified into six subgroups, each member of which has similar conserved motifs and gene structures. Gene expression analysis of 18 DcHSP20 genes revealed that they exhibited variable expression patterns in different plant tissues. Meanwhile, all 18 DcHSP20 genes were induced to be up-regulated under high temperature, while six genes (DcHSP20-2/9/10/12/16/17) were significantly up-regulated under low temperature. Moreover, combining gene expression under high and low temperature stress, the DcHSP20-12 gene was cloned for functional analysis. The germination ratios, fresh weights, root lengths of two DcHSP20-12-overexpressing transgenic Arabidopsis thaliana lines were significantly higher, but MDA contents were lower than that of wild-type (WT) plants under heat and cold stresses, displayed enhanced thermotolerance and cold-resistance. These results lay a foundation for the functional characterization of DcHSP20s and provide a candidate gene, DcHSP20-12, for improving the tolerance of D. catenatum to temperature stress in the future.
Collapse
Affiliation(s)
- Peng Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Tingting Zhang
- Xiangyang Academy of Agricultural Sciences, Xiangyang 441057, Hubei, China
| | - Yuxin Li
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Xi Zhao
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Wen Liu
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yanping Hu
- Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China; Key Laboratory of Vegetable Biology of Hainan Province, Hainan Vegetable Breeding Engineering Technology Research Center, The Institute of Vegetables, Hainan Academy of Agricultural Sciences, Haikou 571199, Hainan, China
| | - Jian Wang
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China
| | - Yang Zhou
- Sanya Institute of Breeding and Multiplication, Hainan University, Sanya 572025, Hainan, China; Key Laboratory for Quality Regulation of Tropical Horticultural Crops of Hainan Province, School of Tropical Agriculture and Forestry (School of Agricultural and Rural Affairs, School of Rural Revitalization), Hainan University, Haikou 570228, Hainan, China.
| |
Collapse
|
17
|
Abasi F, Raja NI, Mashwani ZUR, Ehsan M, Ali H, Shahbaz M. Heat and Wheat: Adaptation strategies with respect to heat shock proteins and antioxidant potential; an era of climate change. Int J Biol Macromol 2024; 256:128379. [PMID: 38000583 DOI: 10.1016/j.ijbiomac.2023.128379] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 11/21/2023] [Accepted: 11/21/2023] [Indexed: 11/26/2023]
Abstract
Extreme changes in weather including heat-wave and high-temperature fluctuations are predicted to increase in intensity and duration due to climate change. Wheat being a major staple crop is under severe threat of heat stress especially during the grain-filling stage. Widespread food insecurity underscores the critical need to comprehend crop responses to forthcoming climatic shifts, pivotal for devising adaptive strategies ensuring sustainable crop productivity. This review addresses insights concerning antioxidant, physiological, molecular impacts, tolerance mechanisms, and nanotechnology-based strategies and how wheat copes with heat stress at the reproductive stage. In this study stress resilience strategies were documented for sustainable grain production under heat stress at reproductive stage. Additionally, the mechanisms of heat resilience including gene expression, nanomaterials that trigger transcription factors, (HSPs) during stress, and physiological and antioxidant traits were explored. The most reliable method to improve plant resilience to heat stress must include nano-biotechnology-based strategies, such as the adoption of nano-fertilizers in climate-smart practices and the use of advanced molecular approaches. Notably, the novel resistance genes through advanced molecular approach and nanomaterials exhibit promise for incorporation into wheat cultivars, conferring resilience against imminent adverse environmental conditions. This review will help scientific communities in thermo-tolerance wheat cultivars and new emerging strategies to mitigate the deleterious impact of heat stress.
Collapse
Affiliation(s)
- Fozia Abasi
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | - Naveed Iqbal Raja
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan.
| | | | - Maria Ehsan
- Department of Botany, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Habib Ali
- Department of Agronomy, PMAS-Arid Agriculture University, Rawalpindi 46300, Pakistan
| | - Muhammad Shahbaz
- Institute for Tropical Biology and Conservation (ITBC), Universiti Malaysia Sabah, 88400 Kota Kinabalu, Malaysia
| |
Collapse
|
18
|
Li JL, Li H, Zhao JJ, Yang P, Xiang X, Wei SY, Wang T, Shi YJ, Huang J, He F. Genome-wide identification and characterization of the RZFP gene family and analysis of its expression pattern under stress in Populus trichocarpa. Int J Biol Macromol 2024; 255:128108. [PMID: 37979769 DOI: 10.1016/j.ijbiomac.2023.128108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 11/11/2023] [Accepted: 11/13/2023] [Indexed: 11/20/2023]
Abstract
Forest trees face many abiotic stressors during their lifetime, including drought, heavy metals, high salinity, and chills, affecting their quality and yield. The RING-type ubiquitin ligase E3 is an invaluable component of the ubiquitin-proteasome system (UPS) and participates in plant growth and environmental interactions. Interestingly, only a few studies have explored the RING ZINC FINGER PROTEIN (RZFP) gene family. This study identified eight PtrRZFPs genes in the Populus genome, and their molecular features were analyzed. Gene structure analysis revealed that all PtrRZFPs genes contained >10 introns. Evolutionarily, the RZFPs were separated into four categories, and segmental replication events facilitated their amplification. Notably, many stress-related elements have been identified in the promoters of PtrRZFPs using Cis-acting element analysis. Moreover, some PtrRZFPs were significantly induced by drought and sorbitol, revealing their potential roles in regulating stress responses. Particularly, overexpression of the PtrRZFP1 gene in poplars conferred excellent drought tolerance; however, PtrRZFP1 knockdown plants were drought-sensitive. We identified the potential upstream transcription factors of PtrRZFPs and revealed the possible biological functions of RZFP1/4/7 in resisting osmotic and salt stress, laying the foundation for subsequent biological function studies and providing genetic resources for genetic engineering breeding for drought resistance in forest trees. This study offers crucial information for the further exploration of the functions of RZFPs in poplars.
Collapse
Affiliation(s)
- Jun-Lin Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Hao Li
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jiu-Jiu Zhao
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Peng Yang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Xiang Xiang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Shu-Ying Wei
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Ting Wang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Yu-Jie Shi
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Jinliang Huang
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China
| | - Fang He
- National Forestry and Grassland Administration Key Laboratory of Forest Resources Conservation and Ecological Safety on the Upper Reaches of the Yangtze River & Forestry Ecological Engineering in the Upper Reaches of the Yangtze River Key Laboratory of Sichuan Province, College of Forestry, Sichuan Agricultural University, Chengdu 611130, China.
| |
Collapse
|
19
|
Zhang C, Zhang Y, Su Z, Shen Z, Song H, Cai Z, Xu J, Guo L, Zhang Y, Guo S, Sun M, Li S, Yu M. Integrated analysis of HSP20 genes in the developing flesh of peach: identification, expression profiling, and subcellular localization. BMC PLANT BIOLOGY 2023; 23:663. [PMID: 38129812 PMCID: PMC10740231 DOI: 10.1186/s12870-023-04621-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 11/20/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Plant HSP20s are not only synthesized in response to heat stress but are also involved in plant biotic and abiotic stress resistance, normal metabolism, development, differentiation, survival, ripening, and death. Thus, HSP20 family genes play very important and diverse roles in plants. To our knowledge, HSP20 family genes in peach have not yet been characterized in detail, and little is known about their possible function in the development of red flesh in peach. RESULTS In total, 44 PpHSP20 members were identified in the peach genome in this study. Forty-four PpHSP20s were classified into 10 subfamilies, CI, CII, CIII, CV, CVI, CVII, MII, CP, ER, and Po, containing 18, 2, 2, 10, 5, 1, 1, 2, 1, and 2 proteins, respectively. Among the 44 PpHSP20 genes, 6, 4, 4, 3, 7, 11, 5, and 4 PpHSP20 genes were located on chromosomes 1 to 8, respectively. In particular, approximately 15 PpHSP20 genes were located at both termini or one terminus of each chromosome. A total of 15 tandem PpHSP20 genes were found in the peach genome, which belonged to five tandemly duplicated groups. Overall, among the three cultivars, the number of PpHSP20 genes with higher expression levels in red flesh was greater than that in yellow or white flesh. The expression profiling for most of the PpHSP20 genes in the red-fleshed 'BJ' was higher overall at the S3 stage than at the S2, S4-1, and S4-2 stages, with the S3 stage being a very important period of transformation from a white color to the gradual anthocyanin accumulation in the flesh of this cultivar. The subcellular localizations of 16 out of 19 selected PpHSP20 proteins were in accordance with the corresponding subfamily classification and naming. Additionally, to our knowledge, Prupe.3G034800.1 is the first HSP20 found in plants that has the dual targets of both the endoplasmic reticulum and nucleus. CONCLUSIONS This study provides a comprehensive understanding of PpHSP20s, lays a foundation for future analyses of the unknown function of PpHSP20 family genes in red-fleshed peach fruit and advances our understanding of plant HSP20 genes.
Collapse
Affiliation(s)
- Chunhua Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yanping Zhang
- Suzhou Polytechnic Institute of Agriculture, Suzhou, Jiangsu Province, China
| | - Ziwen Su
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhijun Shen
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Hongfeng Song
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Zhixiang Cai
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Jianlan Xu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Lei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Yuanyuan Zhang
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shaolei Guo
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Meng Sun
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Shenge Li
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China
| | - Mingliang Yu
- Institute of Pomology, Jiangsu Academy of Agricultural Sciences/Jiangsu Key Laboratory for Horticultural Crop Genetic Improvement, Nanjing, Jiangsu Province, China.
| |
Collapse
|
20
|
Wang S, Wang C, Lv F, Chu P, Jin H. Genome-wide identification of the OMT gene family in Cucumis melo L. and expression analysis under abiotic and biotic stress. PeerJ 2023; 11:e16483. [PMID: 38107581 PMCID: PMC10725674 DOI: 10.7717/peerj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/27/2023] [Indexed: 12/19/2023] Open
Abstract
Background O-methyltransferase (OMT)-mediated O-methylation is a frequent modification that occurs during natural product biosynthesis, and it increases the diversity and stability of secondary metabolites. However, detailed genome-wide identification and expression analyses of OMT gene family members have not been performed in melons. In this study, we aimed to perform the genome-wide identification of OMT gene family members in melon to identify and clarify their actions during stress. Methods Genome-wide identification of OMT gene family members was performed using data from the melon genome database. The Cucumis melo OMT genes (CmOMTs) were then compared with the genes from two representative monocotyledons and three representative dicotyledons. The basic information, cis-regulatory elements in the promoter, predicted 3-D-structures, and GO enrichment results of the 21 CmOMTs were analyzed. Results In our study, 21 CmOMTs (named CmOMT1-21) were obtained by analyzing the melon genome. These genes were located on six chromosomes and divided into three groups composed of nine, six, and six CmOMTs based on phylogenetic analysis. Gene structure and motif descriptions were similar within the same classes. Each CmOMT gene contains at least one cis-acting element associated with hormone transport regulation. Analysis of cis-acting elements illustrated the potential role of CmOMTs in developmental regulation and adaptations to various abiotic and biotic stresses. The RNA-seq and quantitative real-time PCR (qRT-PCR) results indicated that NaCl stress significantly induced CmOMT6/9/14/18 and chilling and high temperature and humidity (HTH) stresses significantly upregulated CmOMT14/18. Furthermore, the expression pattern of CmOMT18 may be associated with Fusarium oxysporum f. sp. melonis race 1.2 (FOM1.2) and powdery mildew resistance. Our study tentatively explored the biological functions of CmOMT genes in various stress regulation pathways and provided a conceptual basis for further detailed studies of the molecular mechanisms.
Collapse
Affiliation(s)
| | - Chuang Wang
- Liaocheng Vocational & Technical College, Liaocheng, China
| | - Futang Lv
- Liaocheng University, Liaocheng, China
| | | | - Han Jin
- Liaocheng University, Liaocheng, China
| |
Collapse
|
21
|
Wi J, Park EJ, Hwang MS, Choi DW. A subfamily of the small heat shock proteins of the marine red alga Neopyropia yezoensis localizes in the chloroplast. Cell Stress Chaperones 2023; 28:835-846. [PMID: 37632625 PMCID: PMC10746837 DOI: 10.1007/s12192-023-01375-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 12/21/2022] [Accepted: 08/21/2023] [Indexed: 08/28/2023] Open
Abstract
Small heat shock proteins (sHSPs) play a crucial role under abiotic stress and are present in all organisms, from eukaryotes to prokaryotes. However, studies on the sHSP gene family in red alga are limited. In this study, we aimed to identify and characterize NysHSP genes from the genome of N. yezoensis, a marine red alga adapted to the stressful intertidal zone. We identified seven NysHSP genes distributed on all three chromosomes. Expression analysis revealed that all NysHSP genes responded to H2O2 and heat stress in the gametophytic thalli, but these genes responded only to heat stress in the sporophytic conchocelis. NysHSP20.3, which has an acidic isoelectric point (pI) and short N-terminal region, was localized as granules in the cytosol. Fluorescence imaging of the NysHSP25.8-GFP and NysHSP28.4-GFP fusion proteins revealed that these proteins were located in the chloroplast. Based on their characteristics and cellular localization, the NysHSPs are divided into two subfamilies. Subfamily I includes four sHSP genes that strongly respond to heat stress and encode a protein localized in the cytosol. The NysHSP gene of subfamily II encodes a polypeptide with a long N-terminal region located in the chloroplast. This study provides insights into the evolution and function of the sHSP gene family of the marine red alga N. yezoensis and how it adapts to the stressful intertidal zone.
Collapse
Affiliation(s)
- Jiwoong Wi
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Republic of Korea
| | - Eun-Jeong Park
- Aquatic Plant Variety Center, National Institute of Fisheries Science, Mokpo, 59002, Republic of Korea
| | - Mi-Sook Hwang
- Fisheries Seed and Breeding Research Institute, National Institute of Fisheries Science, Haenam, 58746, Republic of Korea
| | - Dong-Woog Choi
- Department of Biology Education and Kumho Life Science Laboratory, Chonnam National University, Gwangju, 61186, Republic of Korea.
| |
Collapse
|
22
|
Yan W, Liu X, Wang X. The heat shock protein 20 gene family in large yellow croaker (Larimichthys crocea): Identification, phylogenetic relationships, expression analyses. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2023; 264:106700. [PMID: 37837866 DOI: 10.1016/j.aquatox.2023.106700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2023] [Revised: 09/14/2023] [Accepted: 09/17/2023] [Indexed: 10/16/2023]
Abstract
Large yellow croaker (Larimichthys crocea) is an economically important fish in China, but its aquaculture industry has been threatened by both biotic and abiotic stressors such as hypoxia and pathogens. In the current study, hsp20 genes were identified and analyzed systematically for the first time from the genome of large yellow croaker, and their roles in hypoxia response and Aeromonas hydrophila, Pseudomonas plecoglossicida infection were investigated. Herein, 11 hsp20 genes were identified and annotated, phylogenetic analysis and selection pressure analysis showed that the hsp20 genes were evolutionarily-constrained and their function was conserved among fishes. Besides, we observed the expression patterns of the hsp20 genes under hypoxia and two pathogens' stress. In brief, seven, four, seven genes responded to hypoxia stress, A. hydrophila infection and P. plecoglossicida challenge, respectively, which indicated that they were involved in hypoxia and disease responses. Furthermore, pathogen- and time-specific pattern was observed after A. hydrophila and P. plecoglossicida infection whereas tissue-specific pattern was observed after hypoxia exposure, revealing that hsp20 genes showed differential functions in response to hypoxia and immune stress. Taken together, these results provided preliminary information for future analysis of the roles of hsp20 genes in both biotic and abiotic stress response in fish.
Collapse
Affiliation(s)
- Weijie Yan
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China; University of Chinese Academy of Sciences, Chinese Academy of Sciences, Beijing, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, China
| | - Xubo Wang
- Key Laboratory of Aquacultural Biotechnology (Ningbo University), Ministry of Education, Ningbo, Zhejiang, China; National Engineering Research Laboratory of marine biotechnology and Engineering, Ningbo University, China.
| |
Collapse
|
23
|
Zhang Y, Zhang X, Zhu L, Wang L, Zhang H, Zhang X, Xu S, Xue J. Identification of the Maize LEA Gene Family and Its Relationship with Kernel Dehydration. PLANTS (BASEL, SWITZERLAND) 2023; 12:3674. [PMID: 37960031 PMCID: PMC10647770 DOI: 10.3390/plants12213674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/21/2023] [Accepted: 10/22/2023] [Indexed: 11/15/2023]
Abstract
Maize, the most widely planted and highest yielding of the three major crops in the world, requires the development and breeding of new varieties to accommodate the shift towards mechanized harvesting. However, the moisture content of kernels during harvest poses a significant challenge to mechanized harvesting, leading to seed breakage and increased storage costs. Previous studies highlighted the importance of LEA (Late Embryogenesis Abundant) members in regulating kernel dehydration. In this study, we aimed to gain a better understanding of the relationship between the LEA family and grain dehydration in maize. Through expression pattern analysis of maize, we identified 52 LEA genes (ZmLEAs) distributed across 10 chromosomes, organized into seven subgroups based on phylogenetic analysis, gene structure, and conserved motifs. Evolutionary and selective pressure analysis revealed that the amplification of ZmLEA genes primarily resulted from whole-genome or fragment replication events, with strong purifying selection effects during evolution. Furthermore, the transcriptome data of kernels of two maize inbred lines with varying dehydration rates at different developmental stages showed that 14 ZmLEA genes were expressed differentially in the two inbreds. This suggested that the ZmLEA genes might participate in regulating the kernel dehydration rate (KDR) in maize. Overall, this study enhances our understanding of the ZmLEA family and provides a foundation for further research into its role in regulating genes associated with grain dehydration in maize.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Shutu Xu
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| | - Jiquan Xue
- Key Laboratory of Biology and Genetic Improvement of Maize in Arid Area of Northwest Region, College of Agronomy, Northwest A&F University, Yangling 712100, China; (Y.Z.); (X.Z.); (L.Z.); (L.W.); (H.Z.); (X.Z.)
| |
Collapse
|
24
|
Mao J, Lu J, Liu S, Liu Y, Lin Z, Xue Q. Genome-Wide Analysis of Family I84 Protease Inhibitor Genes in Three Bivalves Reveals Important Information About the Protein Family's Evolution. MARINE BIOTECHNOLOGY (NEW YORK, N.Y.) 2023; 25:729-748. [PMID: 37578572 DOI: 10.1007/s10126-023-10236-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/27/2023] [Indexed: 08/15/2023]
Abstract
Family I84 serine protease inhibitors are believed to be mollusk specific proteins involved in host defense. The molecular evolution of the family, however, remains to be understood. In this study, the genes of Family I84 protease inhibitors in 3 bivalves, Crassostrea gigas, Crassostrea virginica and Tegillarca granosa, were analyzed at the genomic level. A total of 66 Family I84 genes (22 in C. gigas, 28 in C. virginica and 16 in T. granosa) were identified from the 3 species. They distributed unevenly in the genomes involving 4 chromosomes in C. gigas and 5 chromosomes in C. virginica and T. granosa and some genes were tandemly duplicated. Most genes had 3 exons with 12 genes having 4 exons and 1 gene having 2 exons. All genes but 1 from C. gigas and 1 from T. granosa encoded peptides with a signal sequence at the N-terminus, and the properties of the predicted mature molecules were similar. Four conserved motifs were identified in the 66 amino acid sequences. Collinear analysis revealed higher collinearity between the 2 oyster species in general genes and in Family I84 genes. Phylogenetic analysis of the 66 genes with those previously reported from 3 other bivalves and 1 gastropod showed that Family I84 protease inhibitor genes from the same species tended to be grouped together in terminal branches of the constructed Maximum likelihood tree, but most internal nodes were poorly supported by the bootstrap values. In addition, differences in expression patterns between the genes of a same species were observed in the developmental stages and tissues of C. gigas and T. granosa. Moreover, the co-expression of genes within Family I84 and Family I84 genes with non-Family I84 were also detected in C. gigas and T. granosa. These results suggested that Family I84 protease inhibitor genes evolved by active duplications and structural and functional diversifications after the speciation of related mollusks, and the diversified protease inhibitor family was likely multifunctional.
Collapse
Affiliation(s)
- Jinxia Mao
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Jiali Lu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- National Demonstration Center for Experimental Fisheries Science Education, Shanghai Ocean University, Shanghai, 201306, China
| | - Sheng Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Youli Liu
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Zhihua Lin
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China
| | - Qinggang Xue
- Zhejiang Key Laboratory of Aquatic Germplasm Resource, College of Biological & Environmental Sciences, Zhejiang Wanli University, Ningbo, Zhejiang Province, 315100, China.
- Ninghai Institute of Mariculture Breeding and Seed Industry , Zhejiang Wanli University, Ninghai, Zhejiang Province, 315604, China.
| |
Collapse
|
25
|
Alsamman AM, El Allali A, Mokhtar MM, Al-Sham’aa K, Nassar AE, Mousa KH, Kehel Z. AlignStatPlot: An R package and online tool for robust sequence alignment statistics and innovative visualization of big data. PLoS One 2023; 18:e0291204. [PMID: 37729135 PMCID: PMC10511070 DOI: 10.1371/journal.pone.0291204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
Multiple sequence alignment (MSA) is essential for understanding genetic variations controlling phenotypic traits in all living organisms. The post-analysis of MSA results is a difficult step for researchers who do not have programming skills. Especially those working with large scale data and looking for potential variations or variable sample groups. Generating bi-allelic data and the comparison of wild and alternative gene forms are important steps in population genetics. Customising MSA visualisation for a single page view is difficult, making viewing potential indels and variations challenging. There are currently no bioinformatics tools that permit post-MSA analysis, in which data on gene and single nucleotide scales could be combined with gene annotations and used for cluster analysis. We introduce "AlignStatPlot," a new R package and online tool that is well-documented and easy-to use for MSA and post-MSA analysis. This tool performs both traditional and cutting-edge analyses on sequencing data and generates new visualisation methods for MSA results. When compared to currently available tools, AlignStatPlot provides a robust ability to handle and visualise diversity data, while the online version will save time and encourage researchers to focus on explaining their findings. It is a simple tool that can be used in conjunction with population genetics software.
Collapse
Affiliation(s)
| | - Achraf El Allali
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Morad M. Mokhtar
- Agricultural Genetic Engineering Research Institute, Giza, Egypt
- African Genome Center, Mohammed VI Polytechnic University, Ben Guerir, Morocco
| | - Khaled Al-Sham’aa
- International Center for Agriculture Research in the Dry Areas, Giza, Egypt
| | - Ahmed E. Nassar
- Agricultural Genetic Engineering Research Institute, Giza, Egypt
- International Center for Agriculture Research in the Dry Areas, Giza, Egypt
| | - Khaled H. Mousa
- Agricultural Genetic Engineering Research Institute, Giza, Egypt
- International Center for Agriculture Research in the Dry Areas, Giza, Egypt
| | - Zakaria Kehel
- International Center for Agriculture Research in the Dry Areas, Giza, Egypt
| |
Collapse
|
26
|
Ren W, Chen L. Integrated Transcriptome and Metabolome Analysis of Salinity Tolerance in Response to Foliar Application of β-Alanine in Cotton Seedlings. Genes (Basel) 2023; 14:1825. [PMID: 37761965 PMCID: PMC10531431 DOI: 10.3390/genes14091825] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/17/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023] Open
Abstract
Salinity is amongst the serious abiotic stresses cotton plants face, impairing crop productivity. Foliar application of β-alanine is employed to improve salt tolerance in various crops, but the exact mechanism behind it is not yet completely understood. An advanced line SDS-01 of upland cotton Gossypium hirsutum L. was utilized to determine its salt tolerance. Foliar treatment with the β-alanine solution at different concentrations was applied to the seedlings stressed with 0.8% NaCl solution. On the 10th day of treatment, samples were collected for transcriptome and metabolome analyses. β-alanine solution at a concentration of 25 mM was found to be the best treatment with the lowest mortality rate and highest plant height and above-ground biomass under salt stress. Both differentially expressed genes and accumulated metabolites analyses showed improved tolerance of treated seedlings. The photosynthetic efficiency improved in seedlings due to higher expression of photosynthesis-antenna proteins and activation of hormones signal transduction after treatment with β-alanine. Highly expressed transcription factors observed were MYB, HD-ZIP, ARF, MYC, EREB, DELLA, ABF, H2A, H4, WRKY, and HK involved in the positive regulation of salinity tolerance in β-alanine-treated seedlings. Furthermore, compared to the control, the high accumulation of polyamines, coumarins, organic acids, and phenolic compounds in the β-alanine-treated seedlings helped regulate cellular antioxidant (glutathione and L-Cysteine) production. Hence, to improve salt tolerance and productivity in cotton, foliar application of β-alanine at the seedling stage can be a valuable management practice.
Collapse
Affiliation(s)
- Wei Ren
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| | - Li Chen
- State Key Laboratory of Desert and Oasis Ecology, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi 830011, China;
- Fukang Station of Desert Ecology, Chinese Academy of Sciences, Fukang 831505, China
| |
Collapse
|
27
|
Yang Y, Pian Y, Li J, Xu L, Lu Z, Dai Y, Li Q. Integrative analysis of genome and transcriptome reveal the genetic basis of high temperature tolerance in pleurotus giganteus (Berk. Karun & Hyde). BMC Genomics 2023; 24:552. [PMID: 37723428 PMCID: PMC10506213 DOI: 10.1186/s12864-023-09669-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023] Open
Abstract
BACKGROUND Pleurotus giganteus is a commonly cultivated mushroom with notable high temperature resistance, making it significant for the growth of the edible fungi industry in the tropics. Despite its practical importance,, the genetic mechanisms underlying its ability to withstand high temperature tolerance remain elusive. RESULTS In this study, we performed high-quality genome sequencing of a monokaryon isolated from a thermotolerant strain of P. giganteus. The genome size was found to be 40.11 Mb, comprising 17 contigs and 13,054 protein-coding genes. Notably, some genes related to abiotic stress were identified in genome, such as genes regulating heat shock protein, protein kinase activity and signal transduction. These findings provide valuable insights into the genetic basis of P. giganteus' high temperature resistance. Furthermore, the phylogenetic tree showed that P. giganteus was more closely related to P. citrinopileatus than other Pleurotus species. The divergence time between Pleurotus and Lentinus was estimated as 153.9 Mya, and they have a divergence time with Panus at 168.3 Mya, which proved the taxonomic status of P. giganteus at the genome level. Additionally, a comparative transcriptome analysis was conducted between mycelia treated with 40 °C heat shock for 18 h (HS) and an untreated control group (CK). Among the 2,614 differentially expressed genes (DEGs), 1,303 genes were up-regulated and 1,311 were down-regulated in the HS group. The enrichment analysis showed that several genes related to abiotic stress, including heat shock protein, DnaJ protein homologue, ubiquitin protease, transcription factors, DNA mismatch repair proteins, and zinc finger proteins, were significantly up-regulated in the HS group. These genes may play important roles in the high temperature adaptation of P. giganteus. Six DEGs were selected according to fourfold expression changes and were validated by qRT-PCR, laying a good foundation for further gene function analysis. CONCLUSION Our study successfully reported a high-quality genome of P. giganteus and identified genes associated with high-temperature tolerance through an integrative analysis of the genome and transcriptome. This study lays a crucial foundation for understanding the high-temperature tolerance mechanism of P. giganteus, providing valuable insights for genetic modification of P. giganteus strains and the development of high-temperature strains for the edible fungus industry, particularly in tropical regions.
Collapse
Affiliation(s)
- Yang Yang
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
| | - Yongru Pian
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Jingyi Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Lin Xu
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China
| | - Zhu Lu
- Jilin Academy of Vegetables and Flowers Sciences, Changchun, China
| | - Yueting Dai
- Engineering Research Center of Chinese Ministry of Education for Edible and Medicinal Fungi, Jilin Agricultural University, Changchun, China.
| | - Qinfen Li
- Environment and Plant Protection Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, China.
- Key Laboratory of Low Carbon Green Agriculture in Tropical China, Ministry of Agriculture and Rural Affairs, Haikou, P. R. China.
- National Agricultural Experimental Station for Agricultural Environment, Danzhou, China.
| |
Collapse
|
28
|
Unel NM, Baloglu MC, Altunoglu YÇ. Comprehensive investigation of cucumber heat shock proteins under abiotic stress conditions: A multi-omics survey. J Biotechnol 2023; 374:49-69. [PMID: 37517677 DOI: 10.1016/j.jbiotec.2023.07.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 06/20/2023] [Accepted: 07/26/2023] [Indexed: 08/01/2023]
Abstract
Heat-shock proteins (Hsps) are a family of proteins essential in preserving the vitality and functionality of proteins under stress conditions. Cucumber (Cucumis sativus) is a widely grown plant with high nutritional value and is used as a model organism in many studies. This study employed a genomics, transcriptomics, and metabolomics approach to investigate cucumbers' Hsps against abiotic stress conditions. Bioinformatics methods were used to identify six Hsp families in the cucumber genome and to characterize family members. Transcriptomics data from the Sequence Read Archive (SRA) database was also conducted to select CsHsp genes for further study. Real-time PCR was used to evaluate gene expression levels under different stress conditions, revealing that CssHsp-08 was a vital gene for resistance to stress conditions; including drought, salinity, cold, heat stresses, and ABA application. Gas Chromatography-Mass Spectrometry (GC-MS) analysis of plant extracts revealed that amino acids accumulate in leaves under high temperatures and roots under drought, while sucrose accumulates in both tissues under applied most stress factors. The study provides valuable insights into the structure, organization, evolution, and expression profiles of the Hsp family and contributes to a better understanding of plant stress mechanisms. These findings have important implications for developing crops that can withstand environmental stress conditions better.
Collapse
Affiliation(s)
- Necdet Mehmet Unel
- Research and Application Center, Kastamonu University, Kastamonu, Turkey; Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| | - Mehmet Cengiz Baloglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey; Sabancı University Nanotechnology Research and Application Center (SUNUM), Sabancı University, Turkey.
| | - Yasemin Çelik Altunoglu
- Plantomics Research Laboratory, Department of Genetics and Bioengineering, Faculty of Engineering and Architecture, Kastamonu University, Kastamonu, Turkey
| |
Collapse
|
29
|
Han X, Jin S, Shou C, Han Z. Hsp70 Gene Family in Sebastiscus marmoratus: The Genome-Wide Identification and Transcriptome Analysis under Thermal Stress. Genes (Basel) 2023; 14:1779. [PMID: 37761919 PMCID: PMC10531354 DOI: 10.3390/genes14091779] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 09/02/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Heat shock protein 70 kDa (Hsp70) is a highly conserved heat stress protein that is important in biotic processes and responses to abiotic stress. Hsp70 genes may be important in Sebastiscus marmoratus, for it is a kind of nearshore reef fish, and habitat temperature change is more drastic during development. However, genome-wide identification and expression analysis in the Hsp70 gene family of S. marmoratus are still lacking. Here, a total of 15 Hsp70 genes in the genome of S. marmoratus are identified, and their expression patterns were investigated using transcriptomic data from thermal stress experiments. The expansion and gene duplication events of Hsp70 genes from the Hspa4, Hspa8, and Hspa12a subfamilies in S. marmoratus are revealed by phylogenetic analysis. qRT-PCR expression patterns demonstrated that seven Hsp70 genes were significantly up-regulated and none were significantly down-regulated after heat treatment. Only the hsp70 gene was significantly up-regulated after cold treatment. The selection test further showed a purifying selection on the duplicated gene pairs, suggesting that these genes underwent subfunctionalization. Our results add novel insight to aquaculture and biological research on S. marmoratus, providing important information on how Hsp70 genes are regulated in Scorpaeniformes under thermal stress.
Collapse
Affiliation(s)
| | | | | | - Zhiqiang Han
- Fishery College, Zhejiang Ocean University, Zhoushan 316002, China
| |
Collapse
|
30
|
Hua Y, Liu Q, Zhai Y, Zhao L, Zhu J, Zhang X, Jia Q, Liang Z, Wang D. Genome-wide analysis of the HSP20 gene family and its response to heat and drought stress in Coix (Coix lacryma-jobi L.). BMC Genomics 2023; 24:478. [PMID: 37612625 PMCID: PMC10464217 DOI: 10.1186/s12864-023-09580-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 08/12/2023] [Indexed: 08/25/2023] Open
Abstract
BACKGROUND Heat shock protein 20 (HSP20) is a member of the heat stress-related protein family, which plays critical roles in plant growth, development, and response to abiotic stresses. Although many HSP20 genes have been associated with heat stress in numerous types of plants, little is known about the details of the HSP20 gene family in Coix. To investigate the mechanisms of the ClHSP20 response to heat and drought stresses, the ClHSP20 gene family in Coix was identified and characterized based on genome-wide analysis. RESULTS A total of 32 putative ClHSP20 genes were identified and characterized in Coix. Phylogenetic analysis indicated that ClHSP20s were grouped into 11 subfamilies. The duplicated event analysis demonstrated that tandem duplication and segment duplication events played crucial roles in promoting the expansion of the ClHSP20 gene family. Synteny analysis showed that Coix shared the highest homology in 36 HSP20 gene pairs with wheat, followed by 22, 19, 15, and 15 homologous gene pairs with maize, sorghum, barley, and rice, respectively. The expression profile analysis showed that almost all ClHSP20 genes had different expression levels in at least one tissue. Furthermore, 22 of the 32 ClHSP20 genes responded to heat stress, with 11 ClHSP20 genes being significantly upregulated and 11 ClHSP20 genes being significantly downregulated. Furthermore, 13 of the 32 ClHSP20 genes responded to drought stress, with 6 ClHSP20 genes being significantly upregulated and 5 ClHSP20 genes being significantly downregulated. CONCLUSIONS Thirty-two ClHSP20 genes were identified and characterized in the genome of Coix. Tandem and segmental duplication were identified as having caused the expansion of the ClHSP20 gene family. The expression patterns of the ClHSP20 genes suggested that they play a critical role in growth, development, and response to heat and drought stress. The current study provides a theoretical basis for further research on ClHSP20s and will facilitate the functional characterization of ClHSP20 genes.
Collapse
Affiliation(s)
- Yangguang Hua
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Qiao Liu
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Yufeng Zhai
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Limin Zhao
- Jinyun County Agriculture and Rural Bureau, Jinhua, 321400, People's Republic of China
| | - Jinjian Zhu
- Jinyun County Agriculture and Rural Bureau, Jinhua, 321400, People's Republic of China
| | - Xiaodan Zhang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
- State Key Laboratory of Dao-Di Herbs, 100700, Beijng, People's Republic of China
| | - Qiaojun Jia
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
| | - Zongsuo Liang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China
- State Key Laboratory of Dao-Di Herbs, 100700, Beijng, People's Republic of China
| | - Dekai Wang
- Key Laboratory of Plant Secondary Metabolism Regulation in Zhejiang Province, College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, Zhejiang, People's Republic of China.
| |
Collapse
|
31
|
Pompili V, Mazzocchi E, Moglia A, Acquadro A, Comino C, Rotino GL, Lanteri S. Structural and expression analysis of polyphenol oxidases potentially involved in globe artichoke (C. cardunculus var. scolymus L.) tissue browning. Sci Rep 2023; 13:12288. [PMID: 37516733 PMCID: PMC10387078 DOI: 10.1038/s41598-023-38874-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Accepted: 07/16/2023] [Indexed: 07/31/2023] Open
Abstract
Globe artichoke capitula are susceptible to browning due to oxidation of phenols caused by the activity of polyphenol oxidases (PPOs), this reduces their suitability for fresh or processed uses. A genome-wide analysis of the globe artichoke PPO gene family was performed. Bioinformatics analyses identified eleven PPOs and their genomic and amino acidic features were annotated. Cis-acting element analysis identified a gene regulatory and functional profile associated to plant growth and development as well as stress response. For some PPOs, phylogenetic analyses revealed a structural and functional conservation with different Asteraceae PPOs, while the allelic variants of the eleven PPOs investigated across four globe artichoke varietal types identified several SNP/Indel variants, some of which having impact on gene translation. By RTqPCR were assessed the expression patterns of PPOs in plant tissues and in vitro calli characterized by different morphologies. Heterogeneous PPO expression profiles were observed and three of them (PPO6, 7 and 11) showed a significant increase of transcripts in capitula tissues after cutting. Analogously, the same three PPOs were significantly up-regulated in calli showing a brown phenotype due to oxidation of phenols. Our results lay the foundations for a future application of gene editing aimed at disabling the three PPOs putatively involved in capitula browning.
Collapse
Affiliation(s)
- Valerio Pompili
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| | - Elena Mazzocchi
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Andrea Moglia
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Alberto Acquadro
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | - Cinzia Comino
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy
| | | | - Sergio Lanteri
- Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Università degli Studi di Torino, Largo Paolo Braccini 2, 10095, Grugliasco, Torino, Italy.
| |
Collapse
|
32
|
Zhu X, Duan H, Zhang G, Jin H, Xu C, Chen S, Zhou C, Chen Z, Tang J, Zhang Y. StMAPK1 functions as a thermos-tolerant gene in regulating heat stress tolerance in potato ( Solanum tuberosum). FRONTIERS IN PLANT SCIENCE 2023; 14:1218962. [PMID: 37409298 PMCID: PMC10319062 DOI: 10.3389/fpls.2023.1218962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Accepted: 06/06/2023] [Indexed: 07/07/2023]
Abstract
Background and aims Mitogen-activated protein kinases (MAPKs) have been reported to respond to various stimuli including heat stress. This research aimed to investigate whether StMAPK1 is implicated in the transduction of the heat stress signal to adapt heat stress as a thermos-tolerant gene. Materials and methods Potato plants were cultivated under mild (30°C) and acute (35°C) heat stress conditions to analyze mRNA expression of StMAPKs and physiological indicators. StMAPK1 was up-regulated and down-regulated by transfection. Subcellular localization of StMAPK1 protein was observed by fluorescence microscope. The transgenic potato plants were assayed for physiological indexes, photosynthesis, cellular membrane integrity, and heat stress response gene expression. Results Heat stress altered the expression prolife of StMAPKs. StMAPK1 overexpression changed the physiological characteristics and phenotypes of potato plants under heat stresses. StMAPK1 mediates photosynthesis and maintains membrane integrity of potato plants in response to heat stress. Stress response genes (StP5CS, StCAT, StSOD, and StPOD) in potato plants were altered by StMAPK1 dysregulation. mRNA expression of heat stress genes (StHSP90, StHSP70, StHSP20, and StHSFA3) was affected by StMAPK1. Conclusions StMAPK1 overexpression increases the heat-tolerant capacity of potato plants at the morphological, physiological, molecular, and genetic levels.
Collapse
Affiliation(s)
- Xi Zhu
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
- National Key Laboratory for Tropical Crop Breeding, Sanya Research Institute, Chinese Academy of Tropical Agricultural Sciences, Sanya, China
| | - Huimin Duan
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Guodong Zhang
- Department of Biology, Xinzhou Normal University, Xinzhou, China
| | - Hui Jin
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chao Xu
- Institute of Horticultural Sciences, Jiangxi Academy of Agricultural Sciences, Nanchang, China
| | - Shu Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Chuanmeng Zhou
- Grain Crop Research Institute, Yulin Academy of Agricultural Sciences, Yulin, China
| | - Zhuo Chen
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Jinghua Tang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| | - Yu Zhang
- Key Laboratory of Tropical Fruit Biology, Ministry of Agriculture and Rural Affairs of China/Key Laboratory of Hainan Province for Postharvest Physiology and Technology of Tropical Horticultural Products, South Subtropical Crops Research Institute, Chinese Academy of Tropical Agricultural Sciences, Zhanjiang, China
| |
Collapse
|
33
|
Cai H, Wang H, Zhou L, Li B, Zhang S, He Y, Guo Y, You A, Jiao C, Xu Y. Time-Series Transcriptomic Analysis of Contrasting Rice Materials under Heat Stress Reveals a Faster Response in the Tolerant Cultivar. Int J Mol Sci 2023; 24:9408. [PMID: 37298358 PMCID: PMC10253628 DOI: 10.3390/ijms24119408] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/13/2023] [Accepted: 05/25/2023] [Indexed: 06/12/2023] Open
Abstract
Short-term heat stress can affect the growth of rice (Oryza sativa L.) seedlings, subsequently decreasing yields. Determining the dynamic response of rice seedlings to short-term heat stress is highly important for accelerating research on rice heat tolerance. Here, we observed the seedling characteristics of two contrasting cultivars (T11: heat-tolerant and T15: heat-sensitive) after different durations of 42 °C heat stress. The dynamic transcriptomic changes of the two cultivars were monitored after 0 min, 10 min, 30 min, 1 h, 4 h, and 10 h of stress. The results indicate that several pathways were rapidly responding to heat stress, such as protein processing in the endoplasmic reticulum, glycerophospholipid metabolism, and plant hormone signal transduction. Functional annotation and cluster analysis of differentially expressed genes at different stress times indicate that the tolerant cultivar responded more rapidly and intensively to heat stress compared to the sensitive cultivar. The MAPK signaling pathway was found to be the specific early-response pathway of the tolerant cultivar. Moreover, by combining data from a GWAS and RNA-seq analysis, we identified 27 candidate genes. The reliability of the transcriptome data was verified using RT-qPCR on 10 candidate genes and 20 genes with different expression patterns. This study provides valuable information for short-term thermotolerance response mechanisms active at the rice seedling stage and lays a foundation for breeding thermotolerant varieties via molecular breeding.
Collapse
Affiliation(s)
- Haiya Cai
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Hongpan Wang
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (H.W.); (B.L.)
| | - Lei Zhou
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
| | - Bo Li
- College of Agriculture, Yangtze University, Jingzhou 434025, China; (H.W.); (B.L.)
| | - Shuo Zhang
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Yonggang He
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Ying Guo
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Aiqing You
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
| | - Chunhai Jiao
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| | - Yanhao Xu
- Hubei Key Laboratory of Food Crop Germplasm and Genetic Improvement, Key Laboratory of Crop Molecular Breeding, Ministry of Agriculture and Rural Affairs, Food Crops Institute, Hubei Academy of Agricultural Sciences, Wuhan 430064, China; (H.C.); (L.Z.); (S.Z.); (Y.H.); (Y.G.); (A.Y.)
- Scientific Observation and Experiment Station for Crop Gene Resources and Germplasm Enhancement in Hubei, Ministry of Agriculture and Rural Affairs, Wuhan 430064, China
| |
Collapse
|
34
|
Feng CH, Niu MX, Liu X, Bao Y, Liu S, Liu M, He F, Han S, Liu C, Wang HL, Yin W, Su Y, Xia X. Genome-Wide Analysis of the FBA Subfamily of the Poplar F-Box Gene Family and Its Role under Drought Stress. Int J Mol Sci 2023; 24:4823. [PMID: 36902250 PMCID: PMC10002531 DOI: 10.3390/ijms24054823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 02/17/2023] [Accepted: 02/28/2023] [Indexed: 03/06/2023] Open
Abstract
F-box proteins are important components of eukaryotic SCF E3 ubiquitin ligase complexes, which specifically determine protein substrate proteasomal degradation during plant growth and development, as well as biotic and abiotic stress. It has been found that the FBA (F-box associated) protein family is one of the largest subgroups of the widely prevalent F-box family and plays significant roles in plant development and stress response. However, the FBA gene family in poplar has not been systematically studied to date. In this study, a total of 337 F-box candidate genes were discovered based on the fourth-generation genome resequencing of P. trichocarpa. The domain analysis and classification of candidate genes revealed that 74 of these candidate genes belong to the FBA protein family. The poplar F-box genes have undergone multiple gene replication events, particularly in the FBA subfamily, and their evolution can be attributed to genome-wide duplication (WGD) and tandem duplication (TD). In addition, we investigated the P. trichocarpa FBA subfamily using the PlantGenIE database and quantitative real-time PCR (qRT-PCR); the results showed that they are expressed in the cambium, phloem and mature tissues, but rarely expressed in young leaves and flowers. Moreover, they are also widely involved in the drought stress response. At last, we selected and cloned PtrFBA60 for physiological function analysis and found that it played an important role in coping with drought stress. Taken together, the family analysis of FBA genes in P. trichocarpa provides a new opportunity for the identification of P. trichocarpa candidate FBA genes and elucidation of their functions in growth, development and stress response, thus demonstrating their utility in the improvement of P. trichocarpa.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | - Yanyan Su
- Correspondence: (Y.S.); (X.X.); Tel.: +86-10-62336400 (X.X.)
| | - Xinli Xia
- National Engineering Laboratory for Tree Breeding, College of Biological Sciences and Technology, Beijing Forestry University, Beijing 100083, China
| |
Collapse
|
35
|
Yang S, Ge Q, Wan S, Sun Z, Chen Y, Li Y, Liu Q, Gong J, Xiao X, Lu Q, Shi Y, Peng R, Shang H, Chen G, Li P. Genome-Wide Identification and Characterization of the PPO Gene Family in Cotton ( Gossypium) and Their Expression Variations Responding to Verticillium Wilt Infection. Genes (Basel) 2023; 14:477. [PMID: 36833403 PMCID: PMC9957175 DOI: 10.3390/genes14020477] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 02/01/2023] [Accepted: 02/09/2023] [Indexed: 02/16/2023] Open
Abstract
Polyphenol oxidases (PPOs) are copper-binding metalloproteinases encoded by nuclear genes, ubiquitously existing in the plastids of microorganisms, plants, and animals. As one of the important defense enzymes, PPOs have been reported to participate in the resistant processes that respond to diseases and insect pests in multiple plant species. However, PPO gene identification and characterization in cotton and their expression patterns under Verticillium wilt (VW) treatment have not been clearly studied. In this study, 7, 8, 14, and 16 PPO genes were separately identified from Gossypium arboreum, G. raimondii, G. hirsutum, and G. barbadense, respectively, which were distributed within 23 chromosomes, though mainly gathered in chromosome 6. The phylogenetic tree manifested that all the PPOs from four cotton species and 14 other plants were divided into seven groups, and the analyses of the conserved motifs and nucleotide sequences showed highly similar characteristics of the gene structure and domains in the cotton PPO genes. The dramatically expressed differences were observed among the different organs at various stages of growth and development or under the diverse stresses referred to in the published RNA-seq data. Quantitative real-time PCR (qRT-PCR) experiments were also performed on the GhPPO genes in the roots, stems, and leaves of VW-resistant MBI8255 and VW-susceptible CCRI36 infected with Verticillium dahliae V991, proving the strong correlation between PPO activity and VW resistance. A comprehensive analysis conducted on cotton PPO genes contributes to the screening of the candidate genes for subsequent biological function studies, which is also of great significance for the in-depth understanding of the molecular genetic basis of cotton resistance to VW.
Collapse
Affiliation(s)
- Shuhan Yang
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qun Ge
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Sumei Wan
- College of Agriculture, Tarim University, Alar 843300, China
| | - Zhihao Sun
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yu Chen
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yanfang Li
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Qiankun Liu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Juwu Gong
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Xianghui Xiao
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Quanwei Lu
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Yuzhen Shi
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Renhai Peng
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| | - Haihong Shang
- State Key Laboratory of Cotton Biology, Key Laboratory of Biological and Genetic Breeding of Cotton, The Ministry of Agriculture, Institute of Cotton Research, Chinese Academy of Agricultural Sciences, Anyang 455000, China
| | - Guodong Chen
- College of Agriculture, Tarim University, Alar 843300, China
| | - Pengtao Li
- College of Agriculture, Tarim University, Alar 843300, China
- School of Biotechnology and Food Engineering, Anyang Institute of Technology, Anyang 455000, China
| |
Collapse
|
36
|
Cheng Y, Ning K, Chen Y, Hou C, Yu H, Yu H, Chen S, Guo X, Dong L. Identification of histone acetyltransferase genes responsible for cannabinoid synthesis in hemp. Chin Med 2023; 18:16. [PMID: 36782242 PMCID: PMC9926835 DOI: 10.1186/s13020-023-00720-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Accepted: 01/31/2023] [Indexed: 02/15/2023] Open
Abstract
BACKGROUND Histone acetyltransferases (HATs) play an important role in plant growth and development, stress response, and regulation of secondary metabolite biosynthesis. Hemp (Cannabis sativa L.) is famous for its high industrial, nutritional, and medicinal value. It contains non-psychoactive cannabinoid cannabidiol (CBD) and cannabinol (CBG), which play important roles as anti-inflammatory and anti-anxiety. At present, the involvement of HATs in the regulation of cannabinoid CBD and CBG synthesis has not been clarified. METHODS The members of HAT genes family in hemp were systematically analyzed by bioinformatics analysis. In addition, the expression level of HATs and the level of histone acetylation modification were analyzed based on transcriptome data and protein modification data. Real-time quantitative PCR was used to verify the changes in gene expression levels after inhibitor treatment. The changes of CBD and CBG contents after inhibitor treatment were verified by HPLC-MS analysis. RESULTS Here, 11 HAT genes were identified in the hemp genome. Phylogenetic analysis showed that hemp HAT family genes can be divided into six groups. Cannabinoid synthesis genes exhibited spatiotemporal specificity, and histones were acetylated in different inflorescence developmental stages. The expression of cannabinoid synthesis genes was inhibited and the content of CBD and CBG declined by 10% to 55% in the samples treated by HAT inhibitor (PU139). Results indicated that CsHAT genes may regulate cannabinoid synthesis through altering histone acetylation. CONCLUSIONS Our study provides genetic information of HATs responsible for cannabinoid synthesis, and offers a new approach for increasing the content of cannabinoid in hemp.
Collapse
Affiliation(s)
- Yufei Cheng
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China ,grid.443651.10000 0000 9456 5774College of Agronomy, Ludong University, Yantai, 264000 China
| | - Kang Ning
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Yongzhong Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Cong Hou
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Haibin Yu
- Yunnan Hemp Industrial Investment CO.LTD, Kunming, 650217 China
| | - Huatao Yu
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Shilin Chen
- grid.410318.f0000 0004 0632 3409Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700 China
| | - Xiaotong Guo
- College of Agronomy, Ludong University, Yantai, 264000, China.
| | - Linlin Dong
- Key Laboratory of Beijing for Identification and Safety Evaluation of Chinese Medicine, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, China.
| |
Collapse
|
37
|
Ke Y, Xu M, Hwarari D, Chen J, Yang L. Genomic Survey of Heat Shock Proteins in Liriodendron chinense Provides Insight into Evolution, Characterization, and Functional Diversities. Int J Mol Sci 2022; 23:ijms232315051. [PMID: 36499378 PMCID: PMC9739435 DOI: 10.3390/ijms232315051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Revised: 11/25/2022] [Accepted: 11/28/2022] [Indexed: 12/03/2022] Open
Abstract
Heat shock proteins (HSPs) are conserved molecular chaperones whose main role is to facilitate the regulation of plant growth and stress responses. The HSP gene family has been characterized in most plants and elucidated as generally stress-induced, essential for their cytoprotective roles in cells. However, the HSP gene family has not yet been analyzed in the Liriodendron chinense genome. In current study, 60 HSP genes were identified in the L. chinense genome, including 7 LchiHSP90s, 23 LchiHSP70s, and 30 LchiHSP20s. We investigated the phylogenetic relationships, gene structure and arrangement, gene duplication events, cis-acting elements, 3D-protein structures, protein-protein interaction networks, and temperature stress responses in the identified L. chinense HSP genes. The results of the comparative phylogenetic analysis of HSP families in 32 plant species showed that LchiHSPs are closely related to the Cinnamomum kanehirae HSP gene family. Duplication events analysis showed seven segmental and six tandem duplication events that occurred in the LchiHSP gene family, which we speculated to have played an important role in the LchiHSP gene expansion and evolution. Furthermore, the Ka/Ks analysis indicated that these genes underwent a purifying selection. Analysis in the promoter region evidenced that the promoter region LchiHSPs carry many stress-responsive and hormone-related cis-elements. Investigations in the gene expression patterns of the LchiHSPs using transcriptome data and the qRT-PCR technique indicated that most LchiHSPs were responsive to cold and heat stress. In total, our results provide new insights into understanding the LchiHSP gene family function and their regulatory mechanisms in response to abiotic stresses.
Collapse
Affiliation(s)
- Yongchao Ke
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Mingyue Xu
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Delight Hwarari
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Jinhui Chen
- Key Laboratory of Forest Genetics and Biotechnology of Ministry of Education of China, Co-Innovation Center for Sustainable Forestry in Southern China, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| | - Liming Yang
- College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
- Correspondence: (J.C.); (L.Y.)
| |
Collapse
|
38
|
Qi X, Di Z, Li Y, Zhang Z, Guo M, Tong B, Lu Y, Zhang Y, Zheng J. Genome-Wide Identification and Expression Profiling of Heat Shock Protein 20 Gene Family in Sorbus pohuashanensis (Hance) Hedl under Abiotic Stress. Genes (Basel) 2022; 13:genes13122241. [PMID: 36553508 PMCID: PMC9778606 DOI: 10.3390/genes13122241] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 11/23/2022] [Accepted: 11/23/2022] [Indexed: 12/03/2022] Open
Abstract
Small heat shock proteins (HSP20s) are a significant factor in plant growth and development in response to abiotic stress. In this study, we investigated the role of HSP20s' response to the heat stress of Sorbus pohuashanensis introduced into low-altitude areas. The HSP20 gene family was identified based on the genome-wide data of S. pohuashanensis, and the expression patterns of tissue specificity and the response to abiotic stresses were evaluated. Finally, we identified 38 HSP20 genes that were distributed on 16 chromosomes. Phylogenetic analysis of HSP20s showed that the closest genetic relationship to S. pohuashanensis (SpHSP20s) is Malus domestica, followed by Populus trichocarpa and Arabidopsis thaliana. According to phylogenetic analysis and subcellular localization prediction, the 38 SpHSP20s belonged to 10 subfamilies. Analysis of the gene structure and conserved motifs indicated that HSP20 gene family members are relatively conserved. Synteny analysis showed that the expansion of the SpHSP20 gene family was mainly caused by segmental duplication. In addition, many cis-acting elements connected with growth and development, hormones, and stress responsiveness were found in the SpHSP20 promoter region. Analysis of expression patterns showed that these genes were closely related to high temperature, drought, salt, growth, and developmental processes. These results provide information and a theoretical basis for the exploration of HSP20 gene family resources, as well as the domestication and genetic improvement of S. pohuashanensis.
Collapse
Affiliation(s)
- Xiangyu Qi
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zexin Di
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Yuyan Li
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Zeren Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Miaomiao Guo
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Boqiang Tong
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yizeng Lu
- Shandong Provincial Center of Forest and Grass Germplasm Resources, Jinan 250102, China
| | - Yan Zhang
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
| | - Jian Zheng
- School of Landscape Architecture, Beijing University of Agriculture, Beijing 102206, China
- Correspondence:
| |
Collapse
|
39
|
Lal MK, Tiwari RK, Kumar A, Dey A, Kumar R, Kumar D, Jaiswal A, Changan SS, Raigond P, Dutt S, Luthra SK, Mandal S, Singh MP, Paul V, Singh B. Mechanistic Concept of Physiological, Biochemical, and Molecular Responses of the Potato Crop to Heat and Drought Stress. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11212857. [PMID: 36365310 PMCID: PMC9654185 DOI: 10.3390/plants11212857] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 10/21/2022] [Accepted: 10/23/2022] [Indexed: 05/14/2023]
Abstract
Most cultivated potatoes are tetraploid, and the tuber is the main economic part that is consumed due to its calorific and nutritional values. Recent trends in climate change led to the frequent occurrence of heat and drought stress in major potato-growing regions worldwide. The optimum temperature for tuber production is 15-20 °C. High-temperature and water-deficient conditions during the growing season result in several morphological, physiological, biochemical, and molecular alterations. The morphological changes under stress conditions may affect the process of stolon formation, tuberization, and bulking, ultimately affecting the tuber yield. This condition also affects the physiological responses, including an imbalance in the allocation of photoassimilates, respiration, water use efficiency, transpiration, carbon partitioning, and the source-sink relationship. The biochemical responses under stress conditions involve maintaining ionic homeostasis, synthesizing heat shock proteins, achieving osmolyte balance, and generating reactive oxygen species, ultimately affecting various biochemical pathways. Different networks that include both gene regulation and transcription factors are involved at the molecular level due to the combination of hot and water-deficient conditions. This article attempts to present an integrative content of physio-biochemical and molecular responses under the combined effects of heat and drought, prominent factors in climate change. Taking into account all of these aspects and responses, there is an immediate need for comprehensive screening of germplasm and the application of appropriate approaches and tactics to produce potato cultivars that perform well under drought and in heat-affected areas.
Collapse
Affiliation(s)
- Milan Kumar Lal
- ICAR-Central Potato Research Institute, Shimla 171001, India
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (M.K.L.); (R.K.T.); Tel.: +91-9718815448 (M.K.L.)
| | - Rahul Kumar Tiwari
- ICAR-Central Potato Research Institute, Shimla 171001, India
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
- Correspondence: (M.K.L.); (R.K.T.); Tel.: +91-9718815448 (M.K.L.)
| | - Awadhesh Kumar
- ICAR-National Rice Research Institute, Cuttack 753006, India
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, India
| | - Ravinder Kumar
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Arvind Jaiswal
- ICAR-Central Potato Research Institute Campus, Jalandhar 144026, India
| | | | - Pinky Raigond
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | - Som Dutt
- ICAR-Central Potato Research Institute, Shimla 171001, India
| | | | - Sayanti Mandal
- Department of Biotechnology, D. Y. Patil Arts, Commerce and Science College, Sant Tukaram Nagar, Pimpri, Pune 411018, India
| | - Madan Pal Singh
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Vijay Paul
- ICAR-Indian Agricultural Research Institute, New Delhi 110012, India
| | - Brajesh Singh
- ICAR-Central Potato Research Institute, Shimla 171001, India
| |
Collapse
|
40
|
Hou Z, Li A, Huang C. Genome-wide identification, characterization and expression of HSP 20 gene family in dove. Front Genet 2022; 13:1011676. [PMID: 36267407 PMCID: PMC9576933 DOI: 10.3389/fgene.2022.1011676] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 09/15/2022] [Indexed: 11/26/2022] Open
Abstract
Davidia involucrata is a significant living fossil with high abiotic stress tolerance. Although heat shock protein 20 (HSP20) has already been linked to heat stress, nothing is known about HSP20 family protein activities in D. involucrata. The functional dynamics of the D. involucrata HSP20 (DiHSP20) gene family were identified and characterized using a thorough genome-wide investigation. From the genome of D. involucrata, a total of 42 HSP20 genes were identified, which are distributed across 16 chromosomes. The DiHSP20 proteins were grouped into seven separate subfamilies by our phylogenetic analysis, which was validated by the conserved motif composition and gene structure studies. Segmental duplication events were shown to play a crucial role in the expansion of the DiHSP20 gene family. Synteny analysis revealed that 19 DiHSP20 genes of D. involucrata shared a syntenic connection with Arabidopsis genes, 39 with C. acuminata genes, and just 6 with O. sativa genes. Additionally, heat stress differently enhanced the expression levels of D. involucrata HSP20 genes. After 1 hour of heat treatment, the expression levels of most DiHSP20 genes, particularly DiHSP20-7, DiHSP20-29, DiHSP20-30, DiHSP20-32, and DiHSP20-34, were dramatically increased, suggestted that they might be employed as heat tolerance candidate genes. Overall, these findings add to our knowledge of the HSP20 family genes and provide helpful information for breeding heat stress resistance in D. involucrata.
Collapse
Affiliation(s)
- Zhe Hou
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
- Key Laboratory of Southwest China Wildlife Resources Conservation (Ministry of Education), College of Life Science, China West Normal University, Nanchong, China
| | - Ang Li
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
| | - Changbing Huang
- College of Landscape Engineering, SuZhou Polytechnic Institute of Agriculture, Suzhou, China
- *Correspondence: Changbing Huang,
| |
Collapse
|
41
|
Genome-Wide Identification and Salt Stress Response Analysis of the bZIP Transcription Factor Family in Sugar Beet. Int J Mol Sci 2022; 23:ijms231911573. [PMID: 36232881 PMCID: PMC9569505 DOI: 10.3390/ijms231911573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 12/04/2022] Open
Abstract
As one of the largest transcription factor families in plants, bZIP transcription factors play important regulatory roles in different biological processes, especially in the process of stress response. Salt stress inhibits the growth and yield of sugar beet. However, bZIP-related studies in sugar beet (Beta vulgaris L.) have not been reported. This study aimed to identify the bZIP transcription factors in sugar beet and analyze their biological functions and response patterns to salt stress. Using bioinformatics, 48 BvbZIP genes were identified in the genome of sugar beet, encoding 77 proteins with large structural differences. Collinearity analysis showed that three pairs of BvbZIP genes were fragment replication genes. The BvbZIP genes were grouped according to the phylogenetic tree topology and conserved structures, and the results are consistent with those reported in Arabidopsis. Under salt stress, the expression levels of most BvbZIP genes were decreased, and only eight genes were up-regulated. GO analysis showed that the BvbZIP genes were mainly negatively regulated in stress response. Protein interaction prediction showed that the BvbZIP genes were mainly involved in light signaling and ABA signal transduction, and also played a certain role in stress responses. In this study, the structures and biological functions of the BvbZIP genes were analyzed to provide foundational data for further mechanistic studies and for facilitating the efforts toward the molecular breeding of stress-resilient sugar beet.
Collapse
|
42
|
Phylogenetic and Transcriptional Analyses of the HSP20 Gene Family in Peach Revealed That PpHSP20-32 Is Involved in Plant Height and Heat Tolerance. Int J Mol Sci 2022; 23:ijms231810849. [PMID: 36142761 PMCID: PMC9501816 DOI: 10.3390/ijms231810849] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/12/2022] [Accepted: 09/12/2022] [Indexed: 11/16/2022] Open
Abstract
The heat shock protein 20 (HSP20) proteins comprise an ancient, diverse, and crucial family of proteins that exists in all organisms. As a family, the HSP20s play an obvious role in thermotolerance, but little is known about their molecular functions in addition to heat acclimation. In this study, 42 PpHSP20 genes were detected in the peach genome and were randomly distributed onto the eight chromosomes. The primary modes of gene duplication of the PpHSP20s were dispersed gene duplication (DSD) and tandem duplication (TD). PpHSP20s in the same class shared similar motifs. Based on phylogenetic analysis of HSP20s in peach, Arabidopsis thaliana, Glycine max, and Oryza sativa, the PpHSP20s were classified into 11 subclasses, except for two unclassified PpHSP20s. cis-elements related to stress and hormone responses were detected in the promoter regions of most PpHSP20s. Gene expression analysis of 42 PpHSP20 genes revealed that the expression pattern of PpHSP20-32 was highly consistent with shoot length changes in the cultivar 'Zhongyoutao 14', which is a temperature-sensitive semi-dwarf. PpHSP20-32 was selected for further functional analysis. The plant heights of three transgenic Arabidopsis lines overexpressing PpHSP20-32 were significantly higher than WT, although there was no significant difference in the number of nodes. In addition, the seeds of three over-expressing lines of PpHSP20-32 treated with high temperature showed enhanced thermotolerance. These results provide a foundation for the functional characterization of PpHSP20 genes and their potential use in the growth and development of peach.
Collapse
|
43
|
Qi H, Chen X, Luo S, Fan H, Guo J, Zhang X, Ke Y, Yang P, Yu F. Genome-Wide Identification and Characterization of Heat Shock Protein 20 Genes in Maize. Life (Basel) 2022; 12:life12091397. [PMID: 36143433 PMCID: PMC9505046 DOI: 10.3390/life12091397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/16/2022] Open
Abstract
Maize is an important cereal crop worldwide and is sensitive to abiotic stresses in fluctuant environments that seriously affect its growth, yield, and quality. The small heat shock protein (HSP20) plays a crucial role in protecting plants from abiotic stress. However, little is known about HSP20 in maize (ZmHSP20). In this study, 44 ZmHSP20s were identified, which were unequally distributed over 10 chromosomes, and 6 pairs of ZmHSP20s were tandemly presented. The gene structure of ZmHSP20s was highly conserved, with 95% (42) of the genes having no more than one intron. The analysis of the cis-element in ZmHSP20s promoter demonstrated large amounts of elements related to hormonal and abiotic stress responses, including abscisic acid (ABA), high temperature, and hypoxia. The ZmHSP20s protein had more than two conserved motifs that were predictably localized in the cytoplasm, nucleus, endoplasmic reticulum, peroxisome, mitochondria, and plasma. Phylogenetic analysis using HSP20s in Arabidopsis, rice, maize, and Solanum tuberosum indicated that ZmHSP20s were classified into 11 categories, of which each category had unique subcellular localization. Approximately 80% (35) of ZmHSP20 were upregulated under heat stress at the maize seedling stage, whereas the opposite expression profiling of 10 genes under 37 and 48 °C was detected. A total of 20 genes were randomly selected to investigate their expression under treatments of ABA, gibberellin (GA), ethylene, low temperature, drought, and waterlogging, and the results displayed that more than half of these genes were downregulated while ZmHSP20-3, ZmHSP20-7, ZmHSP20-24, and ZmHSP20-44 were upregulated under 1 h treatment of ethylene. A yeast-one-hybrid experiment was conducted to analyze the binding of four heat stress transcription factors (ZmHSFs) with eight of the ZmHSP20s promoter sequences, in which ZmHSF3, ZmHSF13, and ZmHSF17 can bind to most of these selected ZmHSP20s promoters. Our results provided a valuable resource for studying HSP20s function and offering candidates for genetic improvement under abiotic stress.
Collapse
Affiliation(s)
- Huanhuan Qi
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xiaoke Chen
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Sen Luo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Hongzeng Fan
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Jinghua Guo
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Xuehai Zhang
- National Key Laboratory of Wheat and Maize Crop Science, Henan Agricultural University, Zhengzhou 450002, China
| | - Yinggen Ke
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Pingfang Yang
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
| | - Feng Yu
- State Key Laboratory of Biocatalysis and Enzyme Engineering, School of Life Sciences, Hubei University, Wuhan 430062, China
- Correspondence:
| |
Collapse
|
44
|
Niu J, Li Z, Zhu J, Wu R, Kong L, Niu T, Li X, Cheng X, Li J, Dai L. Genome-wide identification and characterization of the C2 domain family in Sorghum bicolor (L.) and expression profiles in response to saline-alkali stress. PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1695-1711. [PMID: 36387979 PMCID: PMC9636366 DOI: 10.1007/s12298-022-01222-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 08/08/2022] [Accepted: 08/11/2022] [Indexed: 06/16/2023]
Abstract
The C2 domain family proteins in plants has been recently shown to be involved in the response to abiotic stress such as salt and drought stress. However, less information on C2 domain family members has been reported in Sorghum bicolor (L.), which is a tolerant cereal crop. To elaborate the mechanism of C2 domain family members in response to abiotic stress, bioinformatic methods were used to analyze this family. The results indicated that 69 C2 domain genes belonging to 5 different groups were first identified within the sorghum genome, and each group possessed various gene structures and conserved functional domains. Second, those C2 family genes were localized on 10 chromosomes 3 tandem repeat genes and 1 pair of repeat gene fragments were detected. The family members further presented a variety of stress responsive cis-elements. Third, in addition to being the major integral component of the membrane, sorghum C2 domain family proteins mainly played roles in response to abiotic and biotic stress with their organic transport and catalytic activity by specific location in the cell on the basis of gene ontology analysis. C2 family genes were differentially expressed in root, shoot or leaf, and shown different expression profiling after saline-alkali stress, which indicated that C2 family members played an important role in response to saline-alkali stress based on the transcription profiles of RNA-seq data and expression analysis by quantitative real-time polymerase chain reaction. Besides, most C2 family members were mainly located in cytoplasmi and nucleus. Weighted gene co-expression network analysis revealed three modules (turquoise, dark magenta and pink) that were associated with stress resistance, respectively. Therefore, the present research provides comprehensive information for further analysis of the molecular function of C2 domain family genes in sorghum. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01222-3.
Collapse
Affiliation(s)
- Jiangshuai Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Zhijiang Li
- College of Food Science, Heilongjiang Bayi Agricultural University, Daqing, 163319 Heilongjiang Province China
| | - Jiarui Zhu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Rong Wu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Lingxin Kong
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Tingli Niu
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xueying Li
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Xinran Cheng
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| | - Jianying Li
- Daqing Branch of Heilongjiang Academy of Agricultural Sciences, Daqing, 163319 Heilongjiang Province China
| | - Lingyan Dai
- College of Life Science and Technology, Heilongjiang Bayi Agricultural University, No.5, Xinfeng Road, High-tech Zone, Daqing, 163319 Heilongjiang Province China
| |
Collapse
|
45
|
Huang J, Hai Z, Wang R, Yu Y, Chen X, Liang W, Wang H. Genome-wide analysis of HSP20 gene family and expression patterns under heat stress in cucumber ( Cucumis sativus L.). FRONTIERS IN PLANT SCIENCE 2022; 13:968418. [PMID: 36035708 PMCID: PMC9412230 DOI: 10.3389/fpls.2022.968418] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 07/27/2022] [Indexed: 05/03/2023]
Abstract
Cucumber is an important vegetable in China, and its yield and cultivation area are among the largest in the world. Excessive temperatures lead to high-temperature disorder in cucumber. Heat shock protein 20 (HSP20), an essential protein in the process of plant growth and development, is a universal protective protein with stress resistance. HSP20 plays crucial roles in plants under stress. In this study, we characterized the HSP20 gene family in cucumber by studying chromosome location, gene duplication, phylogenetic relationships, gene structure, conserved motifs, protein-protein interaction (PPI) network, and cis-regulatory elements. A total of 30 CsHSP20 genes were identified, distributed across 6 chromosomes, and classified into 11 distinct subgroups based on conserved motif composition, gene structure analyses, and phylogenetic relationships. According to the synteny analysis, cucumber had a closer relationship with Arabidopsis and soybean than with rice and maize. Collinearity analysis revealed that gene duplication, including tandem and segmental duplication, occurred as a result of positive selection and purifying selection. Promoter analysis showed that the putative promoters of CsHSP20 genes contained growth, stress, and hormone cis-elements, which were combined with protein-protein interaction networks to reveal their potential function mechanism. We further analyzed the gene expression of CsHSP20 genes under high stress and found that the majority of the CsHSP20 genes were upregulated, suggesting that these genes played a positive role in the heat stress-mediated pathway at the seedling stage. These results provide comprehensive information on the CsHSP20 gene family in cucumber and lay a solid foundation for elucidating the biological functions of CsHSP20. This study also provides valuable information on the regulation mechanism of the CsHSP20 gene family in the high-temperature resistance of cucumber.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Huahua Wang
- College of Life Science, Henan Normal University, Xinxiang, China
| |
Collapse
|
46
|
Wang H, Dong Z, Chen J, Wang M, Ding Y, Xue Q, Liu W, Niu Z, Ding X. Genome-wide identification and expression analysis of the Hsp20, Hsp70 and Hsp90 gene family in Dendrobium officinale. FRONTIERS IN PLANT SCIENCE 2022; 13:979801. [PMID: 36035705 PMCID: PMC9399769 DOI: 10.3389/fpls.2022.979801] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
Dendrobium officinale, an important orchid plant with great horticultural and medicinal values, frequently suffers from abiotic or biotic stresses in the wild, which may influence its well-growth. Heat shock proteins (Hsps) play essential roles in the abiotic stress response of plants. However, they have not been systematically investigated in D. officinale. Here, we identified 37 Hsp20 genes (DenHsp20s), 43 Hsp70 genes (DenHsp70s) and 4 Hsp90 genes (DenHsp90s) in D. officinale genome. These genes were classified into 8, 4 and 2 subfamilies based on phylogenetic analysis and subcellular predication, respectively. Sequence analysis showed that the same subfamily members have relatively conserved gene structures and similar protein motifs. Moreover, we identified 33 pairs of paralogs containing 30 pairs of tandem duplicates and 3 pairs of segmental duplicates among these genes. There were 7 pairs in DenHsp70s under positive selection, which may have important functions in helping cells withstand extreme stress. Numerous gene promoter sequences contained stress and hormone response cis-elements, especially light and MeJA response elements. Under MeJA stress, DenHsp20s, DenHsp70s and DenHsp90s responded to varying degrees, among which DenHsp20-5,6,7,16 extremely up-regulated, which may have a strong stress resistance. Therefore, these findings could provide useful information for evolutional and functional investigations of Hsp20, Hsp70 and Hsp90 genes in D. officinale.
Collapse
Affiliation(s)
- Hongman Wang
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zuqi Dong
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Jianbing Chen
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Meng Wang
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Yuting Ding
- College of Forestry, Beijing Forestry University, Beijing, China
| | - Qingyun Xue
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Wei Liu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Zhitao Niu
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| | - Xiaoyu Ding
- College of Life Sciences, Nanjing Normal University, Nanjing, China
- Jiangsu Provincial Engineering Research Center for Technical Industrialization for Dendrobium, Nanjing, China
| |
Collapse
|
47
|
Wei H, Movahedi A, Yang J, Zhang Y, Liu G, Zhu S, Yu C, Chen Y, Zhong F, Zhang J. Characteristics and molecular identification of glyceraldehyde-3-phosphate dehydrogenases in poplar. Int J Biol Macromol 2022; 219:185-198. [PMID: 35932802 DOI: 10.1016/j.ijbiomac.2022.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 07/18/2022] [Accepted: 08/01/2022] [Indexed: 11/17/2022]
Abstract
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), an essential enzyme of the glycolysis metabolic pathway, plays a vital role in carbon metabolism, plant development, and stress resistance. As a kind of woody plant, poplars are widely cultivated for afforestation. Although the whole genome data of poplars have been published, little information is known about the GAPDH family of genes in poplar. This study performed a genome-wide identification of the poplar GAPDH family, and 13 determined PtGAPDH genes were identified from poplar genome. Phylogenetic tree showed that the PtGAPDH members were divided into PtGAPA/B, PtGAPC, PtGAPCp, and PtGAPN groups. A total of 13 PtGAPDH genes were distributed on eight chromosomes, 13 gene pairs belonging to segmented replication events were detected in poplar, and 23 collinearity gene pairs were determined between poplar and willow. The PtGAPDHcis-acting elements associated with growth and development as well as stress resistance revealed that PtGAPDHs might be involved in these processes. The phosphoglycerate kinase (PGK) and triose-phosphate isomerase (TPI) were predicted as the putative interaction proteins of PtGAPDHs. Gene ontology (GO) analysis showed that PtGAPDHs play a crucial role in the oxidation and reduction processes. PtGAPDH expression levels were induced by NaCl and PEG treatments, which implied that PtGAPDHs might be involved in stress response. Overexpression of PtGAPC1 significantly changed the contents of lipid and carbohydrate metabolites, which indicated that PtGAPC1 plays an essential role in metabolic regulation. This study highlights the characterizations and profiles of PtGAPDHs and reveals that PtGAPC1 is involved in the loop of lipid and carbohydrate metabolisms.
Collapse
Affiliation(s)
- Hui Wei
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Ali Movahedi
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China; College of Arts and Sciences, Arlington International University, Wilmington, DE 19804, USA.
| | - Jie Yang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanyan Zhang
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China.
| | - Guoyuan Liu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China
| | - Sheng Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, Key Laboratory of Forest Genetics & Biotechnology, Ministry of Education, College of Biology and the Environment, Nanjing Forestry University, Nanjing 210037, China
| | - Chunmei Yu
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Yanhong Chen
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Fei Zhong
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| | - Jian Zhang
- Key Laboratory of Landscape Plant Genetics and Breeding, School of Life Sciences, Nantong University, Nantong, China.
| |
Collapse
|
48
|
Miao S, Li F, Han Y, Yao Z, Xu Z, Chen X, Liu J, Zhang Y, Wang A. Identification of OSCA gene family in Solanum habrochaites and its function analysis under stress. BMC Genomics 2022; 23:547. [PMID: 35915415 PMCID: PMC9341080 DOI: 10.1186/s12864-022-08675-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 05/31/2022] [Indexed: 12/15/2022] Open
Abstract
Background OSCA (hyperosmolality-gated calcium-permeable channel) is a calcium permeable cation channel protein that plays an important role in regulating plant signal transduction. It is involved in sensing changes in extracellular osmotic potential and an increase in Ca2+ concentration. S. habrochaites is a good genetic material for crop improvement against cold, late blight, planthopper and other diseases. Till date, there is no report on OSCA in S. habrochaites. Thus, in this study, we performed a genome-wide screen to identify OSCA genes in S. habrochaites and characterized their responses to biotic and abiotic stresses. Results A total of 11 ShOSCA genes distributed on 8 chromosomes were identified. Subcellular localization analysis showed that all members of ShOSCA localized on the plasma membrane and contained multiple stress-related cis acting elements. We observed that genome-wide duplication (WGD) occurred in the genetic evolution of ShOSCA5 (Solhab04g250600) and ShOSCA11 (Solhab12g051500). In addition, repeat events play an important role in the expansion of OSCA gene family. OSCA gene family of S. habrochaites used the time lines of expression studies by qRT-PCR, do indicate OSCAs responded to biotic stress (Botrytis cinerea) and abiotic stress (drought, low temperature and abscisic acid (ABA)). Among them, the expression of ShOSCAs changed significantly under four stresses. The resistance of silencing ShOSCA3 plants to the four stresses was reduced. Conclusion This study identified the OSCA gene family of S. habrochaites for the first time and analyzed ShOSCA3 has stronger resistance to low temperature, ABA and Botrytis cinerea stress. This study provides a theoretical basis for clarifying the biological function of OSCA, and lays a foundation for tomato crop improvement. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-022-08675-6.
Collapse
Affiliation(s)
- Shuang Miao
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Fengshuo Li
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Yang Han
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Zhongtong Yao
- College of Agriculture, Northeast Agricultural University, Harbin, 150030, China
| | - Zeqian Xu
- School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, 200030, China
| | - Xiuling Chen
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China
| | - Jiayin Liu
- College of Sciences, Northeast Agricultural University, Harbin, 150030, China
| | - Yao Zhang
- College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| | - Aoxue Wang
- College of Horticulture and Landscape Architecture, Northeast Agricultural University, Harbin, 150030, China. .,College of Life Sciences, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
49
|
Huang Y, Liu J, Li J, Sun M, Duan Y. The heat shock protein 20 gene editing suppresses mycelial growth of Botryosphaeria dothidea and decreases its pathogenicity to postharvest apple fruits. Front Microbiol 2022; 13:930012. [PMID: 35966691 PMCID: PMC9363843 DOI: 10.3389/fmicb.2022.930012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 07/04/2022] [Indexed: 11/25/2022] Open
Abstract
Apple ring rot caused by Botryosphaeria dothidea is an essential and prevalent disease in the apple orchard in China. Our previous study demonstrated that dimethyl trisulfide (DT) from Chinese leek (Allium tuberosum) significantly suppressed the mycelial growth of B. dothidea and inhibited the incidence of apple ring rot postharvest. However, the mechanism underlying the inhibitory role of DT against B. dothidea is not fully understood. Comparing the control and the DT-treated B. dothidea mycelial transcriptomes revealed that heat shock protein 20 (Hsp20) strongly responded to DT treatment. This study identified four Hsp20 genes throughout the B. dothidea genome (BdHsp20_1-4). Each BdHsp20 gene had a conserved ACD with a variable N-terminal region and a short C-terminal extension. The segmental duplication event has contributed to the expansion of the BdHsp20 gene family. Compared to the wild-type strain, the CRISPR/Cas9 gene-edited BdHsp20 mutant (ΔBdHsp20) decreased the mycelial growth by 55.95% and reduced the disease symptom in postharvest apple fruit by 96.34%. However, the BdHsp20 complemented strain (ΔBdHsp20_C) significantly restored the growth and pathogenicity, which suggested that the BdHsp20 gene was closely involved in the growth and pathogenicity of B. dothidea. This study would accelerate the exploration of the molecular mechanism of the inhibitory effect of DT against B. dothidea and also provide new insights for the management of apple ring rot disease.
Collapse
Affiliation(s)
- Yonghong Huang
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- *Correspondence: Yonghong Huang
| | - Junping Liu
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Jinghui Li
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Meng Sun
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
| | - Yanxin Duan
- College of Horticulture, Qingdao Agricultural University, Qingdao, China
- Laboratory of Quality and Safety Risk Assessment for Fruit (Qingdao), Ministry of Agriculture and Rural Affairs, Qingdao, China
- National Technology Centre for Whole Process Quality Control of FSEN Horticultural Products (Qingdao), Qingdao, China
- Qingdao Key Laboratory of Modern Agriculture Quality and Safety Engineering, Qingdao, China
- Yanxin Duan
| |
Collapse
|
50
|
Effect of Developmental Stages on Genes Involved in Middle and Downstream Pathway of Volatile Terpene Biosynthesis in Rose Petals. Genes (Basel) 2022; 13:genes13071177. [PMID: 35885960 PMCID: PMC9320630 DOI: 10.3390/genes13071177] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/16/2022] Open
Abstract
Terpenoids are economically and ecologically important compounds, and they are vital constituents in rose flower fragrance and rose essential oil. The terpene synthase genes (TPSs), trans-prenyltransferases genes (TPTs), NUDX1 are involved in middle and downstream pathway of volatile terpene biosynthesis in rose flowers. We identified 7 complete RcTPTs, 49 complete RcTPSs, and 9 RcNUDX1 genes in the genome of Rosachinensis. During the flower opening process of butterfly rose (Rosachinensis ‘Mutabilis’, MU), nine RcTPSs expressed in the petals of opening MU flowers exhibited two main expression trends, namely high and low, in old and fresh petals. Five short-chain petal-expressed RcTPTs showed expression patterns corresponding to RcTPSs. Analysis of differential volatile terpenes and differential expressed genes indicated that higher emission of geraniol from old MU petals might be related to the RcGPPS expression. Comprehensive analysis of volatile emission, sequence structure, micro-synteny and gene expression suggested that RcTPS18 may encode (E,E)-α-farnesene synthase. These findings may be useful for elucidating the molecular mechanism of terpenoid metabolism in rose and are vital for future studies on terpene regulation.
Collapse
|