1
|
Garrido-Palazuelos LI, Aguirre-Sánchez JR, Castro-Del Campo N, López-Cuevas O, González-Torres B, Chaidez C, Medrano-Félix JA. Genomic characteristics of Salmonella Montevideo and Pomona: impact of isolation source on antibiotic resistance, virulence and metabolic capacity. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2024; 34:3972-3987. [PMID: 38576268 DOI: 10.1080/09603123.2024.2336597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Accepted: 03/25/2024] [Indexed: 04/06/2024]
Abstract
Salmonella enterica is known for its disease-causing serotypes, including Montevideo and Pomona. These serotypes have been found in various environments, including river water, sediments, food, and animals. However, the global spread of these serotypes has increased, leading to many reported infections and outbreaks. The goal of this study was the genomic analysis of 48 strains of S. Montevideo and S. Pomona isolated from different sources, including clinical. Results showed that environmental strains carried more antibiotic resistance genes than the clinical strains, such as genes for resistance to aminoglycosides, chloramphenicol, and sulfonamides. Additionally, the type 4 secretion system, was only found in environmental strains. .Also many phosphotransferase transport systems were identified and the presence of genes for the alternative pathway Entner-Doudoroff. The origin of isolation may have a significant impact on the ability of Salmonella isolates to adapt and survive in different environments, leading to genomic flexibility and a selection advantage.
Collapse
Affiliation(s)
- Lennin Isaac Garrido-Palazuelos
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Roberto Aguirre-Sánchez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Nohelia Castro-Del Campo
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Osvaldo López-Cuevas
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Berenice González-Torres
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - Cristóbal Chaidez
- Laboratorio Nacional Para la Investigación En Inocuidad Alimentaria (LANIIA), Centro de Investigación En Alimentación y Desarrollo A.C (CIAD), Culiacán, México
| | - José Andrés Medrano-Félix
- Investigadoras e investigadores por México Centro de Investigación En Alimentación y Desarrollo A.C. Laboratorio Nacional para la Investigación en Inocuidad Alimentaria, Culiacán, México
| |
Collapse
|
2
|
Bu X, Wu Y, Hong Y, Shi J, Shao J, Jia K, Dong Q, Wang X. Comparative genomics analysis of Salmonella Enteritidis isolated from clinical cases associated with chicken. BMC Microbiol 2024; 24:497. [PMID: 39587491 PMCID: PMC11587697 DOI: 10.1186/s12866-024-03651-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2024] [Accepted: 11/14/2024] [Indexed: 11/27/2024] Open
Abstract
Salmonella Enteritidis is a major foodborne pathogen, and the emergence of multidrug-resistant (MDR) S. Enteritidis poses a serious public health challenge. In this study, we report the genomic characterization of five S. Enteritidis isolates from clinical. These isolates exhibited resistance to seven classes of antimicrobials with four of the five characterized as MDR. Isolate 33 A exhibited resistance to colistin and polymyxin B, while no associated antimicrobial resistance genes (ARGs) were identified in its genome. Isolate 21 A and 44 A were extended-spectrum beta-lactamases-producing (ESBLs). Whole genome sequencing analysis revealed the presence of multiple mobile genetic elements (MGEs), including plasmids, prophages, and genomic islands, which may have facilitated the acquisition and dissemination of ARGs. Notably, several ARGs, including blaCTX-M-55, blaTEM-141, blaTEM-1B, aph(3')-IIa, aph(3'')-Ib, aph(6)-Id, tet(A), floR, fosA3, and sul2, were identified on plasmids. In addition, chromosomal point mutations in gyrA (D87G and D87Y) and acrB (F28L and L40P) were also observed in each isolate. Multiple virulence genes associated with the type III secretion system were identified on Salmonella pathogenicity islands (SPIs) SPI-1 and SPI-2. Phylogenetic analysis revealed that the five isolates, along with a clinical and chicken origin isolates in the database, clustered together, suggesting a probable common source of infection. Our findings highlight the intricate genetic mechanisms behind MDR in S. Enteritidis, emphasizing the ongoing necessity for surveillance and appropriate antimicrobial usage. This contributes to our understanding of S. Enteritidis transmission within the food chain.
Collapse
Affiliation(s)
- Xiangfeng Bu
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Yufan Wu
- Centre of Analysis and Test, School of Chemistry & Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Yi Hong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Juping Shi
- Zhangjiagang Centre for Disease Control and Prevention, Suzhou, 215600, China
| | - Jingdong Shao
- Technology Center of Zhangjiagang Customs, Suzhou, 215611, China
| | - Kai Jia
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Qingli Dong
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - Xiang Wang
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
| |
Collapse
|
3
|
De Sousa Violante M, Feurer C, Michel V, Romero K, Mallet L, Mistou MY, Cadel-Six S. Genomic diversity of Salmonella Typhimurium and its monophasic variant in pig and pork production in France. Microbiol Spectr 2024; 12:e0052624. [PMID: 39513704 PMCID: PMC11619346 DOI: 10.1128/spectrum.00526-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Accepted: 09/27/2024] [Indexed: 11/15/2024] Open
Abstract
Salmonella Typhimurium and its monophasic variant (Salmonella 4,[5],12:i:-) are among the most prevalent serovars worldwide. Even though these serovars have been the focus of many studies, their spread has not yet been investigated in French pig herds and slaughterhouses at a regional scale. Here, we characterized the genomic diversity of 188 Salmonella strains belonging to sequence type (ST) 19 and 34. These strains were isolated from pigs in metropolitan France between 2014 and 2019. Samples were collected from 10 regions, three of which together represent 75% of French pig production in 2020. To contextualize the French Salmonella genomes at a worldwide level, 193 ST 34 genomes from three continents and 14 countries were also included. This study revealed little diversity in ST 34 strains circulating in France, suggesting that one or two clones are spreading within pig herds and slaughterhouses. In silico virulence and antimicrobial resistance genes were investigated to understand the prevalence of these strains among farmed pigs and in the slaughterhouse environment. A comparison with ST 34 isolates from other countries highlighted the genomic specificity of the ST 34 monophasic variants in France, with some exceptions concerning isolates from bordering countries. This work provides new insights into the dynamics of S. Typhimurium and its monophasic variant sampled in French pig herds and slaughterhouses. IMPORTANCE Salmonellosis is a leading cause of bacterial infection in humans and animals around the world. This study provides a snapshot of the genomic diversity of one of the most prevalent Salmonella serovars (Salmonella Typhimurium and Salmonella 4,[5],12:i:-) circulating on French pig farms between 2013 and 2021. We investigated the link between geographical and genomic diversity. The analyses revealed little diversity of the strains, suggesting that one or two clones are spreading within French pig herds. We also in silico screened genetic elements that could explain the prevalence of these strains among farmed pigs and in the slaughterhouse environment. Finally, the comparison with isolates from other countries highlighted the genomic specificity of these two French sequence type 34 clones. This work provides new insights into the dynamics of S. Typhimurium and S. 4,[5],12:i:- sampled from pig herds and slaughterhouses in France, thus laying the foundations for future analyses.
Collapse
Affiliation(s)
- Madeleine De Sousa Violante
- MaIAGE, INRAE,
Université Paris-Saclay, Jouy-en-Josas, France
-
ACTALIA, La Roche-sur-Foron, Haute-Savoie, France
| | - Carole Feurer
-
IFIP–Institut du Porc, Pôle Viandes et Charcuteries, Pacé, France
| | | | - Karol Romero
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| | - Ludovic Mallet
-
Institut Universitaire du Cancer de Toulouse–Oncopole, Toulouse, Haute-Garonne, France
| | | | - Sabrina Cadel-Six
- Salmonella and Listeria Unit (SEL),
ANSES, Laboratory for Food Safety, Maisons-Alfort, France
| |
Collapse
|
4
|
Wang L, Chen S, Xing M, Dong L, Zhu H, Lin Y, Li J, Sun T, Zhu X, Wang X. Genome characterization of Shewanella algae in Hainan Province, China. Front Microbiol 2024; 15:1474871. [PMID: 39417074 PMCID: PMC11480045 DOI: 10.3389/fmicb.2024.1474871] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Accepted: 09/23/2024] [Indexed: 10/19/2024] Open
Abstract
Shewanella algae is an emerging marine zoonotic pathogen. In this study, we first reported the Shewanella algae infections in patients and animals in Hainan Province, China. Currently, there is still relatively little known about the whole-genome characteristics of Shewanella algae in most tropical regions, including in southern China. Here, we sequenced the 62 Shewanella algae strains isolated from Hainan Province and combined with the whole genomes sequences of 144 Shewanella algae genomes from public databases to analyze genomic features. Phylogenetic analysis revealed that Shewanella algae is widely distributed in the marine environments of both temperate and tropical countries, exhibiting close phylogenetic relationships with genomes isolated from patients, animals, and plants. Thereby confirming that exposure to marine environments is a risk factor for Shewanella algae infections. Average nucleotide identity analysis indicated that the clonally identical genomes could be isolated from patients with different sample types at different times. Pan-genome analysis identified a total of 21,909 genes, including 1,563 core genes, 8,292 strain-specific genes, and 12,054 accessory genes. Multiple putative virulence-associated genes were identified, encompassing 14 categories and 16 subcategories, with 171 distinct virulence factors. Three different plasmid replicon types were detected in 33 genomes. Eleven classes of antibiotic resistance genes and 352 integrons were identified. Antimicrobial susceptibility testing revealed a high resistance rate to imipenem and colistin among the strains studied, with 5 strains exhibiting multidrug resistance. However, they were all sensitive to amikacin, minocycline, and tigecycline. Our findings clarify the genomic characteristics and population structure of Shewanella algae in Hainan Province. The results offer insights into the genetic basis of pathogenicity in Shewanella algae and enhance our understanding of its global phylogeography.
Collapse
Affiliation(s)
- Licheng Wang
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Shaojin Chen
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Mei Xing
- Wenchang People’s Hospital, Wenchang, China
| | - Lingzhi Dong
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Huaxiong Zhu
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Yujin Lin
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Jinyi Li
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Tuo Sun
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Xiong Zhu
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| | - Xiaoxia Wang
- Clinical & Central Laboratory of Sanya People’s Hospital, Sanya, China
| |
Collapse
|
5
|
Chung M, Dudley E, Kittana H, Thompson AC, Scott M, Norman K, Valeris-Chacin R. Genomic Profiling of Antimicrobial Resistance Genes in Clinical Salmonella Isolates from Cattle in the Texas Panhandle, USA. Antibiotics (Basel) 2024; 13:843. [PMID: 39335016 PMCID: PMC11428942 DOI: 10.3390/antibiotics13090843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 08/18/2024] [Accepted: 08/28/2024] [Indexed: 09/30/2024] Open
Abstract
Rising antimicrobial resistance (AMR) in Salmonella serotypes host-adapted to cattle is of increasing concern to the beef and dairy industry. The bulk of the existing literature focuses on AMR post-slaughter. In comparison, the understanding of AMR in Salmonella among pre-harvest cattle is still limited, particularly in Texas, which ranks top five in beef and dairy exports in the United States; inherently, the health of Texas cattle has nationwide implications for the health of the United States beef and dairy industry. In this study, long-read whole genome sequencing and bioinformatic methods were utilized to analyze antimicrobial resistance genes (ARGs) in 98 isolates from beef and dairy cattle in the Texas Panhandle. Fisher exact tests and elastic net models accounting for population structure were used to infer associations between genomic ARG profiles and antimicrobial phenotypic profiles and metadata. Gene mapping was also performed to assess the role of mobile genetic elements in harboring ARGs. Antimicrobial resistance genes were found to be statistically different between the type of cattle operation and Salmonella serotypes. Beef operations were statistically significantly associated with more ARGs compared to dairy operations. Salmonella Heidelberg, followed by Salmonella Dublin isolates, were associated with the most ARGs. Additionally, specific classes of ARGs were only present within mobile genetic elements.
Collapse
Affiliation(s)
- Max Chung
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA
| | - Ethan Dudley
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA
| | - Hatem Kittana
- College of Veterinary Medicine, Kansas State University, Manhattan, KS 66506, USA
| | - Alexis C Thompson
- Texas A&M Veterinary Medical Diagnostic Laboratory, Canyon, TX 79015, USA
| | - Matthew Scott
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA
| | - Keri Norman
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, College Station, TX 77843, USA
| | - Robert Valeris-Chacin
- College of Veterinary Medicine and Biomedical Sciences, Texas A&M University, Canyon, TX 79015, USA
| |
Collapse
|
6
|
Tamura H. Bacterial Pesticides: Mechanism of Action, Possibility of Food Contamination, and Residue Analysis Using MS. JOURNAL OF PESTICIDE SCIENCE 2024; 49:135-147. [PMID: 39398503 PMCID: PMC11464265 DOI: 10.1584/jpestics.d24-006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/02/2024] [Indexed: 10/15/2024]
Abstract
As Sustainable Development Goals (SDGs) and the realities of climate change become widely accepted around the world, the next-generation of integrated pest management will become even more important for establishing a sustainable food production system. To meet the current challenge of food security and climate change, biological control has been developed as one sustainable crop protection technology. However, most registered bacteria are ubiquitous soil-borne bacteria that are closely related to food poisoning and spoilage bacteria. Therefore, this review outlined (1) the mechanism of action of bacterial pesticides, (2) potential concerns about secondary contamination sources associated with past food contamination, and, as a prospective solution, focused on (3) principles and methods of bacterial identification, and (4) the possibility of identifying residual bacteria based on mass spectrometry.
Collapse
|
7
|
Shen Z, Zhang CY, Gull T, Zhang S. Comparison of genotypic and phenotypic antimicrobial resistance profiles of Salmonella enterica isolates from poultry diagnostic specimens. J Vet Diagn Invest 2024; 36:529-537. [PMID: 38571400 PMCID: PMC11185115 DOI: 10.1177/10406387241242118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2024] Open
Abstract
The spread of antimicrobial-resistant bacteria is a significant concern, as it can lead to increased morbidity and mortality in both humans and animals. Whole-genome sequencing (WGS) is a powerful tool that can be used to conduct a comprehensive analysis of the genetic basis of antimicrobial resistance (AMR). We compared the phenotypic and genotypic AMR profiles of 97 Salmonella isolates derived from chicken and turkey diagnostic samples. We focused AMR analysis on 5 antimicrobial classes: aminoglycoside, beta-lactam, phenicol, tetracycline, and trimethoprim. The overall sensitivity and specificity of WGS in predicting phenotypic antimicrobial resistance in the Salmonella isolates were 93.4% and 99.8%, respectively. There were 16 disagreement instances, including 15 that were phenotypically resistant but genotypically susceptible; the other instance involved phenotypic susceptibility but genotypic resistance. Of the isolates examined, 67 of 97 (69%) carried at least 1 resistance gene, with 1 isolate carrying as many as 12 resistance genes. Of the 31 AMR genes analyzed, 16 were identified as aminoglycoside-resistance genes, followed by 4 beta-lactam-resistance, 3 tetracycline-resistance, 2 sulfonamide-resistance, and 1 each of fosfomycin-, quinolone-, phenicol-, trimethoprim-, bleomycin-, and colistin-resistance genes. Most of the resistance genes found were located on plasmids.
Collapse
Affiliation(s)
- Zhenyu Shen
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - C. Y. Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - Tamara Gull
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| | - Shuping Zhang
- Veterinary Medical Diagnostic Laboratory and Department of Veterinary Pathobiology, College Veterinary Medicine, University of Missouri–Columbia, Columbia, MO, USA
| |
Collapse
|
8
|
Meyer C, Price S, Ercumen A. Do animal husbandry operations contaminate groundwater sources with antimicrobial resistance: systematic review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:16164-16176. [PMID: 38321277 PMCID: PMC10894137 DOI: 10.1007/s11356-024-31899-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 01/03/2024] [Indexed: 02/08/2024]
Abstract
Antimicrobial resistance (AMR) is a critical global health concern. Animal husbandry operations are AMR hotspots due to heavy antibiotic use and dissemination of animal waste into the environment. In this systematic review, we examined the impact of swine, poultry, and cattle operations on AMR in groundwater. We searched PubMed, Web of Science, CAB Direct, and the North Carolina State University Agricultural and Environmental Science databases in June 2022. The search returned 2487 studies. Of the 23 eligible studies, 17 were conducted in high-income countries (primarily the USA, also Canada, Saudi Arabia, Cyprus), and 6 were conducted in a single upper-middle-income country (China). Studies investigated facilities for swine (13), poultry (4), cattle (3), and multiple types of animals (3). The sampling distance ranged from onsite to > 20 km from facilities; the majority of studies (19) sampled onsite. Most studies collected samples from monitoring wells; only 5 studies investigated private drinking water wells. AMR in groundwater was associated with animal husbandry operations in 74% (17/23) of all studies, 65% (11/17) of studies in high-income countries, and 100% (6/6) of studies in China. Contamination was mostly found in onsite wells, especially downgradient of waste lagoons, but also in offsite private wells up to 2-3 km away. Few studies reported weather data, but AMR contamination appeared to increase with rainy conditions. Future studies should sample private wells at varying distances from animal husbandry operations under different weather conditions and include low- and middle-income countries where food animal production is intensifying.
Collapse
Affiliation(s)
- Cameron Meyer
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27607, USA.
| | - Skyler Price
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27607, USA
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, 2800 Faucette Dr, Raleigh, NC, 27607, USA
| |
Collapse
|
9
|
Hugho EA, Kumburu HH, Thomas K, Lukambagire AS, Wadugu B, Amani N, Kinabo G, Hald T, Mmbaga BT. High diversity of Salmonella spp. from children with diarrhea, food, and environmental sources in Kilimanjaro - Tanzania: one health approach. Front Microbiol 2024; 14:1277019. [PMID: 38235427 PMCID: PMC10793262 DOI: 10.3389/fmicb.2023.1277019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2023] [Accepted: 12/06/2023] [Indexed: 01/19/2024] Open
Abstract
Salmonella is one of the most frequent causes of diarrhea globally. This study used a One Health approach to identify Salmonella species in children admitted with diarrhea and tested samples from the cases' household environment to investigate their genetic similarity using whole genome sequencing. Surveillance of hospitalized diarrhea cases among children under 5 years was conducted in rural and urban Moshi Districts in the Kilimanjaro Region of Tanzania from July 2020 through November 2022. Household visits were conducted for every child case whose parent/caregiver provided consent. Stool samples, water, domestic animal feces, meat, and milk were collected and tested for Salmonella. Isolates were sequenced on the Illumina NextSeq platform. Multilocus Sequence Typing and phylogenetic analyses were performed to map the genetic relatedness of the isolates. Salmonella was isolated from 72 (6.0%) of 1,191 samples. The prevalence of Salmonella in children with diarrhea, domestic animal feces, food, and water was 2.6% (n = 8/306), 4.6% (n = 8/174), 4.2% (n = 16/382), and 17.3% (n = 39/225), respectively. Four (1.3%) of the 306 enrolled children had a Salmonella positive sample taken from their household. The common sequence types (STs) were ST1208, ST309, ST166, and ST473. Salmonella Newport was shared by a case and a raw milk sample taken from the same household. The study revealed a high diversity of Salmonella spp., however, we detected a Salmonella clone of ST1208 isolated at least from all types of samples. These findings contribute to understanding the epidemiology of Salmonella in the region and provide insight into potential control of foodborne diseases through a One Health approach.
Collapse
Affiliation(s)
- Ephrasia A. Hugho
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Institute of Public Health, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Happiness H. Kumburu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Biochemistry, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Kate Thomas
- Ministry of Primary Industries, New Zealand Food Safety, Wellington, New Zealand
| | | | - Boaz Wadugu
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Nelson Amani
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
| | - Grace Kinabo
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Pediatrics, Christian Medical Center, Kilimanjaro, Moshi, Tanzania
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| | - Tine Hald
- Research Group for Genomic Epidemiology, Technical University of Denmark, Lyngby, Denmark
| | - Blandina T. Mmbaga
- Biotechnology Research Laboratory, Kilimanjaro Clinical Research Institute, Moshi, Kilimanjaro, Tanzania
- Department of Pediatrics, Christian Medical Center, Kilimanjaro, Moshi, Tanzania
- Faculty of Medicine, Kilimanjaro Christian Medical University College, Moshi, Tanzania
| |
Collapse
|
10
|
Benefo EO, Karanth S, Pradhan AK. A machine learning approach to identifying Salmonella stress response genes in isolates from poultry processing. Food Res Int 2024; 175:113635. [PMID: 38128977 DOI: 10.1016/j.foodres.2023.113635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 10/21/2023] [Accepted: 10/24/2023] [Indexed: 12/23/2023]
Abstract
We explored the potential of machine learning to identify significant genes associated with Salmonella stress response during poultry processing using whole genome sequencing (WGS) data. The Salmonella isolates (n = 177) used in this study were obtained from various chicken sources (skin before chiller, chicken carcass before chiller, frozen chicken, and post-chill chicken carcass). Six machine learning algorithms (random forest, neural network, cost-sensitive learning, logit boost, and support vector machine linear and radial kernels) were trained on Salmonella WGS data, and model fit was assessed using standard evaluation metrics such as the area under the receiver operating characteristic (AUROC) curve and confusion matrix statistics. All models achieved high performances based on the AUROC metric, with logit boost showing the best performance with an AUROC score of 0.904, sensitivity of 0.889, and specificity of 0.920. The significant genes identified included ybtX, which encodes a Yersiniabactin-associated zinc transporter, and the transferase-encoding genes yccK and thiS. Additionally, genes coding for cold (cspA, cspD, and cspE) and heat shock (rpoH and rpoE) responses were identified. Other significant genes included those involved in lipopolysaccharide biosynthesis (irp1, waaD, rfc, and rfbX), DNA repair and replication (traI), biofilm formation (ccdA and fyuA), and cellular metabolism (irtA).
Collapse
Affiliation(s)
- Edmund O Benefo
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Abani K Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
11
|
Xu B, Hou Z, Liu L, Wei J. Genomic and proteomic analysis of Salmonella Enteritidis isolated from a patient with foodborne diarrhea. World J Microbiol Biotechnol 2023; 40:48. [PMID: 38114804 DOI: 10.1007/s11274-023-03857-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 11/24/2023] [Indexed: 12/21/2023]
Abstract
Salmonella is a major cause of foodborne diseases and clinical infections worldwide. This study aimed to investigate the drug resistance, genomic characteristics, and protein expression of foodborne Salmonella in Shanxi Province. We isolated a strain of Salmonella Enteritidis from patient feces and designated it 31A. The drug resistance of 31A against 14 antibiotics was determined using an antimicrobial susceptibility test. Whole-genome sequencing and quantitative proteomic analysis were performed on the 31A strain. Functional annotation of drug resistance genes/proteins and virulence genes/proteins was conducted using various databases, such as VFDB, ARDB, CAZY, COG, KOG, CARD, GO, and KEGG. The focus of this study was understanding the mechanisms related to food poisoning, and the genetic evolution of 31A was analyzed through comparative genomics. The 31A strain belonged to ST11 Salmonella Enteritidis and showed resistance to β-lactam and quinolone antibiotics. The genome of 31A had 70 drug resistance genes, 321 virulence genes, 12 SPIs, and 3 plasmid replicons. Functional annotation of these drug resistance and virulence genes revealed that drug resistance genes were mainly involved in defense mechanisms to confer resistance to antibiotics, while virulence genes were mainly associated with cellular motility. There were extensive interactions among the virulence genes, which included SPI-1, SPI-2, flagella, fimbriae, capsules and so on. The 31A strain had a close relationship with ASM2413794v1 and ASM130523v1, which were also ST11 Salmonella Enteritidis strains from Asia and originated from clinical patients, animals, and food. These results suggested minimal genomic differences among strains from different sources and the potential for interhost transmission. Differential analysis of the virulence and drug resistance-related proteins revealed their involvement in pathways related to human diseases, indicating that these proteins mediated bacterial invasion and infection. The integration of genomic and proteomic information led to the discovery that Salmonella can survive in a strong acid environment through various acid resistance mechanisms after entering the intestine with food and then invade intestinal epithelial cells to exert its effects. In this study, we comprehensively analyzed the drug resistance and virulence characteristics of Salmonella Enteritidis 31A using a combination of genomic and proteomic approaches, focusing on the pathogenic mechanism of Salmonella Enteritidis in food poisoning. We found significant fluctuations in various virulence factors during the survival, invasion, and infection of Salmonella Enteritidis, which collectively contributed to its pathogenicity. These results provide important information for the source tracing, prevention, and treatment of clinical infections caused by Salmonella Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China.
| | - Zhuru Hou
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China.
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China.
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, 032200, Shanxi, China
| |
Collapse
|
12
|
Fenske GJ, Pouzou JG, Pouillot R, Taylor DD, Costard S, Zagmutt FJ. The genomic and epidemiological virulence patterns of Salmonella enterica serovars in the United States. PLoS One 2023; 18:e0294624. [PMID: 38051743 DOI: 10.1371/journal.pone.0294624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 11/06/2023] [Indexed: 12/07/2023] Open
Abstract
The serovars of Salmonella enterica display dramatic differences in pathogenesis and host preferences. We developed a process (patent pending) for grouping Salmonella isolates and serovars by their public health risk. We collated a curated set of 12,337 S. enterica isolate genomes from human, beef, and bovine sources in the US. After annotating a virulence gene catalog for each isolate, we used unsupervised random forest methods to estimate the proximity (similarity) between isolates based upon the genomic presentation of putative virulence traits We then grouped isolates (virulence clusters) using hierarchical clustering (Ward's method), used non-parametric bootstrapping to assess cluster stability, and externally validated the clusters against epidemiological virulence measures from FoodNet, the National Outbreak Reporting System (NORS), and US federal sampling of beef products. We identified five stable virulence clusters of S. enterica serovars. Cluster 1 (higher virulence) serovars yielded an annual incidence rate of domestically acquired sporadic cases roughly one and a half times higher than the other four clusters combined (Clusters 2-5, lower virulence). Compared to other clusters, cluster 1 also had a higher proportion of infections leading to hospitalization and was implicated in more foodborne and beef-associated outbreaks, despite being isolated at a similar frequency from beef products as other clusters. We also identified subpopulations within 11 serovars. Remarkably, we found S. Infantis and S. Typhimurium subpopulations that significantly differed in genome length and clinical case presentation. Further, we found that the presence of the pESI plasmid accounted for the genome length differences between the S. Infantis subpopulations. Our results show that S. enterica strains associated with highest incidence of human infections share a common virulence repertoire. This work could be updated regularly and used in combination with foodborne surveillance information to prioritize serovars of public health concern.
Collapse
Affiliation(s)
- Gavin J Fenske
- EpiX Analytics, Fort Collins, Colorado, United States of America
| | - Jane G Pouzou
- EpiX Analytics, Fort Collins, Colorado, United States of America
| | - Régis Pouillot
- EpiX Analytics, Fort Collins, Colorado, United States of America
| | - Daniel D Taylor
- EpiX Analytics, Fort Collins, Colorado, United States of America
| | - Solenne Costard
- EpiX Analytics, Fort Collins, Colorado, United States of America
| | | |
Collapse
|
13
|
Rong D, Liu Z, Huang J, Zhang F, Wu Q, Dai J, Li Y, Zhao M, Li Q, Zhang J, Wu S. Prevalence and characterization of Staphylococcus aureus and Staphylococcus argenteus isolated from rice and flour products in Guangdong, China. Int J Food Microbiol 2023; 406:110348. [PMID: 37573713 DOI: 10.1016/j.ijfoodmicro.2023.110348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/15/2023]
Abstract
Staphylococcus aureus and Staphylococcus argenteus have been implicated in food poisoning outbreaks, and have been found in various types of food products according to our previous study. Rice and flour products are popular and widely consumed around the world. However, limited data are available on the microbial safety of S. aureus in rice and flour products, and S. argenteus has never been reported. Thus, this study aimed to investigate the contamination of S. aureus and S. argenteus in 250 fresh rice and flour product samples from five cities in Guangdong, China. According to qualitative and quantitative analyses, 68 (27.2 %) and 11 (4.4 %) samples were positive for S. aureus and S. argenteus, including 9 samples that exceeded 100 MPN/g. For antibiotics susceptibility tests in 16 antibiotics, the S. aureus isolates exhibited higher rates of resistance and multidrug resistance than S. argenteus. The S. aureus and S. argenteus isolates were mainly resistant to penicillin (70.21 %; 79.17 %), tetracycline (20.21 %; 58.33 %) and azithromycin (19.68 %, 8.33 %). However, the other antibiotic resistance rates were <10 %. Furthermore, the genetic background of the isolates was analyzed by whole-genome sequencing (WGS). As a result, the S. aureus isolates were divided into 18 known sequence types (STs) and 4 novel STs (ST7675, ST7679, ST7680 and ST7682), which mainly belonged to ST188 (20.6 %) and ST6 (14.7 %). The S. argenteus isolates mainly belonged to ST2250 (90.9 %), with a novel type (ST7683). In total, 36 and 16 antibiotic resistance genes (ARGs) were found in S. aureus and S. argenteus isolates, respectively. In addition, 91 virulence genes (VFs) were detected in S. aureus isolates as well as 90 % of core VFs were similar to S. argenteus. More than 20 % of the S. aureus isolates carried the classic enterotoxin gene (sea-sec), but chp, cna and map were free in all S. argenteus isolates. Importantly, 33.8 % of S. aureus isolates belonged to the immune evasion cluster (IEC) type B, whereas most of S. argenteus isolates (90.9 %) belong to IEC type E. According to the phylogenetic analysis, the S. aureus and S. argenteus isolates in fresh rice and flour products may indicate loss or acquisition of ARGs and VFs to survive and adapt to the environment. Our study confirmed the presence of S. argenteus in rice and flour products at first and focused on the multi-dimensional systematic comparative analysis of S. aureus and S. argenteus to reveal their ubiquity and similarities or differences, and provide more accurate and effective basic information for follow-up monitoring and tracking.
Collapse
Affiliation(s)
- Dongli Rong
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Zhenjie Liu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jiahui Huang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Feng Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qingping Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jingsha Dai
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Yuanyu Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Miao Zhao
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Qi Li
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Jumei Zhang
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China
| | - Shi Wu
- Guangdong Provincial Key Laboratory of Microbial Safety and Health, State Key Laboratory of Applied Microbiology Southern China, Key Laboratory of Agricultural Microbiomics and Precision Application, Ministry of Agriculture and Rural Affairs, Institute of Microbiology, Guangdong Academy of Sciences, Guangzhou 510070, PR China.
| |
Collapse
|
14
|
Xu B, Hou Z, Liu L, Yan R, Zhang J, Wei J, Du M, Xuan Y, Fan L, Li Z. The Resistance and Virulence Characteristics of Salmonella Enteritidis Strain Isolated from Patients with Food Poisoning Based on the Whole-Genome Sequencing and Quantitative Proteomic Analysis. Infect Drug Resist 2023; 16:6567-6586. [PMID: 37823028 PMCID: PMC10564084 DOI: 10.2147/idr.s411125] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Accepted: 09/27/2023] [Indexed: 10/13/2023] Open
Abstract
Objective This paper explores the drug resistance, genome and proteome expression characteristics of Salmonella from a food poisoning event. Methods A multidrug-resistant Salmonella Enteritidis strain, labeled as 27A, was isolated and identified from a food poisoning patient. Antimicrobial susceptibility testing determined the resistance of 27A strain to 14 antibiotics. Then, WGS analysis and comparative genomics analysis were performed on 27A, and the functional annotation of resistance genes, virulence genes were performed based on VFDB, ARDB, COG, CARD, GO, KEGG, and CAZY databases. Meanwhile, based on iTRAQ technology, quantitative proteomic analysis was conducted on 27A to analyze the functions and interactions of differentially expressed proteins related to bacterial resistance and pathogenicity. Results Strain 27A belonged to ST11 S. Enteritidis and was resistant to levofloxacin, ciprofloxacin, ampicillin, piperacillin, and ampicillin/sulbactam. There were 33 drug resistance genes, 384 virulence genes and 2 plasmid replicon, IncFIB(S) and IncFII(S), annotated by WGS. Proteomic analysis revealed significant changes in virulence and drug proteins, which were mainly involved in bacterial pathogenicity and metabolic processes. PPI prediction showed the relationship between virulence proteins and T3SS proteins, and PagN cooperated with proteins related to T3SS to jointly mediate the invasion of 27A strain on the human body. Phylogenetic analysis indicated that S. Enteritidis has potential transmission in humans, food, and animals. Conclusion This study comprehensively analyzed the drug resistance and virulence phenotypes of S. Enteritidis 27A using genomic and proteomic approaches. These helps reveal the drug resistance and virulence mechanisms of S. Enteritidis, and provides important information for the source tracing and the prevention of related diseases, which lays a foundation for research on food safety, public health monitoring, and the drug resistance and pathogenicity of S. Enteritidis.
Collapse
Affiliation(s)
- Benjin Xu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Zhuru Hou
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Ling Liu
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Rongrong Yan
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jinjing Zhang
- Department of Clinical Laboratory, Fenyang Hospital of Shanxi Province, Fenyang, People’s Republic of China
| | - Jianhong Wei
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Miao Du
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Yan Xuan
- Department of Medical Laboratory Science, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
| | - Lei Fan
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| | - Zhuoxi Li
- Key Laboratory of Lvliang for Clinical Molecular Diagnostics, Fenyang, People’s Republic of China
- Department of Basic Medicine, Fenyang College of Shanxi Medical University, Fenyang, People’s Republic of China
| |
Collapse
|
15
|
Yu JL, Jiang LL, Dong R, Liu SY. Intracranial infection and sepsis in infants caused by Salmonella derby: A case report. World J Clin Cases 2023; 11:6961-6966. [PMID: 37901018 PMCID: PMC10600864 DOI: 10.12998/wjcc.v11.i28.6961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 08/20/2023] [Accepted: 09/06/2023] [Indexed: 09/25/2023] Open
Abstract
BACKGROUND Salmonella derby (S. derby) is a Gram-negative diplococcus that is common in the digestive tract. Infected patients generally experience symptoms such as fever and diarrhea. Mild cases are mostly self-healing gastroenteritis, and severe cases can cause fatal typhoid fever. Clinical cases are more common in children. The most common form of S. derby infection is self-healing gastroenteritis, in which, fever lasts for about 2 d and diarrhea for < 7 d. S. derby can often cause bacterial conjunctivitis, pneumonia, endocarditis, peritonitis and urethritis. However, intracranial infections in infants caused by S. derby are rare in clinical practice and have not been reported before in China. CASE SUMMARY A 4-mo-old female infant had recurrent fever for 2 wk, with a maximum body temperature of around 39.4°C. Treatment for infectious fever in a local hospital was ineffective, and she was admitted to our hospital. Before admission, there was one sudden convulsion, characterized by unclear consciousness, limb twitching, gaze in both eyes, and slight cyanosis on the face. Cerebrospinal fluid (CSF) culture was positive for Gram-negative bacilli, which conformed to S. derby. After treatment with meropenem and ceftriaxone antibiotics, the patient was discharged home in a clinically stable state after 4 wk of treatment. CONCLUSION We reported a rare case of S. derby cultured in CSF. S. derby enters the CSF through the blood-brain barrier, causing purulent meningitis. If not treated timeously, it can lead to serious, life-threatening infection.
Collapse
Affiliation(s)
- Jing-Lu Yu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Li-Li Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Rong Dong
- Department of Neonatology, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| | - Si-Yu Liu
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui 323000, Zhejiang Province, China
| |
Collapse
|
16
|
Goyal PA, Bankar NJ, Mishra VH, Borkar SK, Makade JG. Revolutionizing Medical Microbiology: How Molecular and Genomic Approaches Are Changing Diagnostic Techniques. Cureus 2023; 15:e47106. [PMID: 38022057 PMCID: PMC10646819 DOI: 10.7759/cureus.47106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Accepted: 10/16/2023] [Indexed: 12/01/2023] Open
Abstract
Molecular and genomic approaches have revolutionized medical microbiology by offering faster and more accurate diagnostic techniques for infectious diseases. Traditional methods, which include culturing microbes and biochemical testing, are time-consuming and may not detect antibiotic-resistant strains. In contrast, molecular and genomic methods, including polymerase chain reaction (PCR)-based techniques and whole-genome sequencing, provide rapid and precise detection of pathogens, early-stage diseases, and antibiotic-resistant strains. These approaches have advantages such as high sensitivity and specificity, the potential for targeted therapies, and personalized medicine. However, implementing molecular and genomic techniques faces challenges related to cost, equipment, expertise, and data analysis. Ethical and legal considerations regarding patient privacy and genetic data usage also arise. Nonetheless, the future of medical microbiology lies in the widespread adoption of molecular and genomic approaches, which can lead to improved patient outcomes and the identification of antibiotic-resistant strains. Continued advancements, education, and exploration of ethical implications are necessary to fully harness the potential of molecular and genomic techniques in medical microbiology.
Collapse
Affiliation(s)
- Poyasha A Goyal
- Microbiology, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Nandkishor J Bankar
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Vaishnavi H Mishra
- Microbiology, Jawaharlal Nehru Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Sonali K Borkar
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Higher Education and Research (DU), Wardha, IND
| | - Jagadish G Makade
- Community Medicine, Datta Meghe Medical College, Datta Meghe Institute of Medical Sciences(DU), Wardha, IND
| |
Collapse
|
17
|
Karanth S, Patel J, Shirmohammadi A, Pradhan AK. Machine learning to predict foodborne salmonellosis outbreaks based on genome characteristics and meteorological trends. Curr Res Food Sci 2023; 6:100525. [PMID: 37377491 PMCID: PMC10290999 DOI: 10.1016/j.crfs.2023.100525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 05/15/2023] [Accepted: 05/27/2023] [Indexed: 06/29/2023] Open
Abstract
Several studies have shown a correlation between outbreaks of Salmonella enterica and meteorological trends, especially related to temperature and precipitation. Additionally, current studies based on outbreaks are performed on data for the species Salmonella enterica, without considering its intra-species and genetic heterogeneity. In this study, we analyzed the effect of differential gene expression and a suite of meteorological factors on salmonellosis outbreak scale (typified by case numbers) using a combination of machine learning and count-based modeling methods. Elastic Net regularization model was used to identify significant genes from a Salmonella pan-genome, and a multi-variable Poisson regression developed to fit the individual and mixed effects data. The best-fit Elastic Net model (α = 0.50; λ = 2.18) identified 53 significant gene features. The final multi-variable Poisson regression model (χ2 = 5748.22; pseudo R2 = 0.669; probability > χ2 = 0) identified 127 significant predictor terms (p < 0.10), comprising 45 gene-only predictors, average temperature, average precipitation, and average snowfall, and 79 gene-meteorological interaction terms. The significant genes ranged in functionality from cellular signaling and transport, virulence, metabolism, and stress response, and included gene variables not considered as significant by the baseline model. This study presents a holistic approach towards evaluating multiple data sources (such as genomic and environmental data) to predict outbreak scale, which could help in revising the estimates for human health risk.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Jitendra Patel
- Environmental Microbial & Food Safety Lab, USDA-ARS, Beltsville, MD, 20705, USA
| | - Adel Shirmohammadi
- Environmental Science & Technology, University of Maryland, College Park, MD, 20742, USA
| | - Abani K. Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
- Center for Food Safety and Security Systems, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
18
|
Owusu W, van Vliet AHM, Riddell NE, Stewart G, Akwani WC, Aryeetey S, Arthur RA, Sylverken AA, Hingley-Wilson SM. A multiplex PCR assay for the differentiation of Mycobacterium tuberculosis complex reveals high rates of mixed-lineage tuberculosis infections among patients in Ghana. Front Cell Infect Microbiol 2023; 13:1125079. [PMID: 37077529 PMCID: PMC10108843 DOI: 10.3389/fcimb.2023.1125079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/17/2023] [Indexed: 04/05/2023] Open
Abstract
In low-resource settings with high tuberculosis (TB) burdens, lack of rapid diagnostic methods for detection and differentiation of Mycobacterium tuberculosis complex (MTBC) is a major challenge affecting TB management. This study utilized comparative genomic analyses of MTBC lineages; M. tuberculosis, M. africanum Lineages 5/6 and M. bovis to identify lineage-specific genes. Primers were designed for the development of a Multiplex PCR assay which was successful in differentiating the MTBC lineages. There was no cross-reaction with other respiratory pathogens tested. Validation of the assay using clinical samples was performed with sputum DNA extracts from 341 clinically confirmed active TB patients. It was observed that 24.9% of cases were caused by M. tuberculosis, while M. africanum L5 & L6 reported 9.0% and 14.4%, respectively. M. bovis infection was the least frequently detected lineage with 1.8%. Also, 27.0% and 17.0% of the cases were PCR negative and unspeciated, respectively. However, mixed-lineage TB infections were recorded at a surprising 5.9%. This multiplex PCR assay will allow speciation of MTBC lineages in low-resource regions, providing rapid differentiation of TB infections to select appropriate medication at the earliest possible time point. It will also be useful in epidemiological surveillance studies providing reliable information on the prevalence of TB lineages as well as identifying difficult to treat cases of mixed-lineage tuberculosis infections.
Collapse
Affiliation(s)
- Wellington Owusu
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Arnoud H. M. van Vliet
- Department of Comparative Biomedical Sciences, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Natalie E. Riddell
- Department of Biochemical Sciences, School of Biosciences and Medicine, University of Surrey, Guildford, United Kingdom
| | - Graham Stewart
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Winifred C. Akwani
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sherihane Aryeetey
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Rejoice Agyeiwaa Arthur
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Augustina Angelina Sylverken
- Kumasi Centre for Collaborative Research in Tropical Medicine, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
19
|
Quinn MW, Linton NF, Leon-Velarde CG, Chen S. Application of a CRISPR Sequence-Based Method for a Large-Scale Assessment of Salmonella Serovars in Ontario Poultry Production Environments. Appl Environ Microbiol 2023; 89:e0192322. [PMID: 36853053 PMCID: PMC10057875 DOI: 10.1128/aem.01923-22] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/17/2023] [Indexed: 03/01/2023] Open
Abstract
Accurate detection of all Salmonella serovars present in a sample is important in surveillance programs. Current detection protocols are limited to detection of a predominant serovar, missing identification of less abundant serovars in a sample. An alternative method, called CRISPR-SeroSeq, serotyping by sequencing of amplified CRISPR spacers, was employed to detect multiple serovars in a sample without the need of culture isolation. The CRISPR-SeroSeq method successfully detected 34 most frequently reported Salmonella serovars in pure cultures and target serovars at 104 CFU/mL in 27 Salmonella-negative environmental enrichment samples post-spiked with one of 15 different serovars, plus 2 additional serovars at 1 log CFU/mL higher abundance. When the method was applied to 442 naturally contaminated environmental samples collected from 192 poultry farms, 25 different serovars were detected from 430 of the samples. In 73.1% of the samples, 2 to 7 serovars were detected, with Salmonella Kiambu (55.7%), Salmonella Infantis (48.4%), Salmonella Kentucky (27.1%), Salmonella Livingstone (26.6%), and Salmonella Mbandaka/Montevideo (23.4%) being the most prevalent on the farms. Single isolates from 384 samples were also analyzed using a traditional serotyping method, and the same serovar identified by culture was detected by CRISPR-SeroSeq in 96.1% (369/384) of samples, with the former missing detection of additional and sometimes critical serovars. The surveillance data obtained via CRISPR-SeroSeq revealed a significant emergence of Salmonella Kiambu and Salmonella Rissen on poultry farms in Ontario. The results highlight the effectiveness of the CRISPR-SeroSeq approach in detecting multiple Salmonella serovars in poultry environmental samples under applied conditions, providing updated surveillance information on Salmonella serovars on poultry farms in Ontario. IMPORTANCE The CRISPR-SeroSeq method represents an alternative molecular tool to the traditional culture-based serotyping method that can detect multiple Salmonella serovars in a sample and provide rapid serovar results without the need of selective enrichment and culture isolation. The evaluation results can facilitate implementation of the method in routine Salmonella surveillance on poultry farms and in outbreak investigations. The application of the method can increase the accuracy of current serovar prevalence information. The results highlight the effectiveness of the validated method and the need for monitoring Salmonella serovars in poultry environments to improve current surveillance programs. The updated surveillance data provide timely information on emergence of different Salmonella serovars on poultry farms in Ontario and support on-farm risk assessment and risk management of Salmonella.
Collapse
Affiliation(s)
- Matthew W. Quinn
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | - Nicola F. Linton
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| | | | - Shu Chen
- Laboratory Services Division, University of Guelph, Guelph, Ontario, Canada
| |
Collapse
|
20
|
Whole-Genome Analysis of Antimicrobial-Resistant Salmonella enterica Isolated from Duck Carcasses in Hanoi, Vietnam. Curr Issues Mol Biol 2023; 45:2213-2229. [PMID: 36975513 PMCID: PMC10047438 DOI: 10.3390/cimb45030143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Revised: 02/16/2023] [Accepted: 02/22/2023] [Indexed: 03/11/2023] Open
Abstract
Salmonella enterica is one of the most dangerous foodborne pathogens listed by the World Health Organization. In this study, whole-duck samples were collected at wet markets in five districts in Hanoi, Vietnam, in October 2019 to assess their Salmonella infection rates and evaluate the susceptibility of the isolated strains to antibiotics currently used in the prophylaxis and treatment of Salmonella infection. Based on the antibiotic resistance profiles, eight multidrug resistance strains were whole-genome-sequenced, and their antibiotic resistance genes, genotypes, multi-locus sequence-based typing (MLST), virulence factors, and plasmids were analyzed. The results of the antibiotic susceptibility test indicate that phenotypic resistance to tetracycline and cefazolin was the most common (82.4%, 28/34 samples). However, all isolates were susceptible to cefoxitin and meropenem. Among the eight sequenced strains, we identified 43 genes associated with resistance to multiple classes of antibiotics such as aminoglycoside, beta-lactam, chloramphenicol, lincosamide, quinolone, and tetracycline. Notably, all strains carried the blaCTX-M-55 gene, which confers resistance to third-generation antibiotics including cefotaxime, cefoperazone, ceftizoxime, and ceftazidime, as well as resistance genes of other broad-spectrum antibiotics used in clinical treatment such as gentamicin, tetracycline, chloramphenicol, and ampicillin. Forty-three different antibiotic resistance genes were predicted to be present in the isolated Salmonella strains’ genomes. In addition, three plasmids were predicted in two strains, 43_S11 and 60_S17. The sequenced genomes also indicated that all strains carried SPI-1, SPI-2, and SPI-3. These SPIs are composed of antimicrobial resistance gene clusters and thus represent a potential threat to public health management. Taken together, this study highlights the extent of multidrug-resistant Salmonella contamination in duck meat in Vietnam.
Collapse
|
21
|
Genomic Characteristics and Phylogenetic Analyses of a Multiple Drug-Resistant Klebsiella pneumoniae Harboring Plasmid-Mediated MCR-1 Isolated from Tai'an City, China. Pathogens 2023; 12:pathogens12020221. [PMID: 36839493 PMCID: PMC9963795 DOI: 10.3390/pathogens12020221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/22/2022] [Accepted: 12/26/2022] [Indexed: 02/04/2023] Open
Abstract
Klebsiella pneumoniae is a clinically common opportunistic pathogen that causes pneumonia and upper respiratory tract infection in humans as well as community-and hospital-acquired infections, posing significant threats to public health. Moreover, the insertion of a plasmid carrying the mobile colistin resistance (MCR) genes brings obstacles to the clinical treatment of K. pneumoniae infection. In this study, a strain of colistin-resistant K. pneumoniae (CRKP) was isolated from sputum samples of a patient who was admitted to a tertiary hospital in Tai'an city, China, and tested for drug sensitivity. The results showed that KPTA-2108 was multidrug-resistant (MDR), being resistant to 21 of 26 selected antibiotics, such as cefazolin, amikacin, tigecycline and colistin but sensitive to carbapenems via antibiotic resistance assays. The chromosome and plasmid sequences of the isolated strain KPTA-2108 were obtained using whole-genome sequencing technology and then were analyzed deeply using bioinformatics methods. The whole-genome sequencing analysis showed that the length of KPTA-2108 was 5,306,347 bp and carried four plasmids, pMJ4-1, pMJ4-2, pMJ4-3, and pMJ4-4-MCR. The plasmid pMJ4-4-MCR contained 30,124 bp and was found to be an IncX4 type. It was the smallest plasmid in the KPTA-2108 strain and carried only one resistance gene MCR-1. Successful conjugation tests demonstrated that pMJ4-4-MCR carrying MCR-1 could be horizontally transmitted through conjugation between bacteria. In conclusion, the acquisition and genome-wide characterization of a clinical MDR strain of CRKP may provide a scientific basis for the treatment of K. pneumoniae infection and epidemiological data for the surveillance of CRKP.
Collapse
|
22
|
Nguyen TT, Le HV, Xuan DP, Vu TN, Nguyen MH, Tran HTT. Whole-genome sequencing of antimicrobial-resistant Salmonella enterica isolates from a Cairina moschata carcass. Data Brief 2023; 47:108932. [PMID: 36819900 PMCID: PMC9929197 DOI: 10.1016/j.dib.2023.108932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 01/04/2023] [Accepted: 01/18/2023] [Indexed: 01/26/2023] Open
Abstract
Salmonella enterica is one of the most common agents of foodborne bacterial illness with poultry being an important reservoir. The indiscriminate use of antimicrobial compounds in poultry farming increasingly leads to antimicrobial-resistant (AMR) which threatens the health of both animals and humans. Antimicrobial-resistant Salmonella enterica from the poultry can spread to human through the direct contact with infected poultry or fecal contaminated environments. Antimicrobial-resistant S. enterica, especially fluoroquinolone-resistant nontyphoidal Salmonella is in the list of global health concern stated by the World Health Organization (WHO). Here we report the whole-genome sequencing data and de novo genome assemble of antimicrobial-resistant S. enterica strains S8 and S9 from the C. moschata carcass collected in Vietnam. Genomic DNA of S. enterica were extracted and subjected to whole-genome sequencing using Illumina MiSeq platform. The genome size of antimicrobial-resistant S. enterica strain S8 is 4,707,459 bp with a GC-content of 52.38%, containing 10 antimicrobial resistant genes. The genome size of antimicrobial-resistant Samonella enterica strain S9 is 4,923,944 bp with a GC-content of 52,39%, containing 10 antimicrobial resistance genes. Our data provided the insights on antimicrobial resistant genes of S. enterica isolates from the C. moschata carcass, which help to understand the infection mechanism of antimicrobial-resistant S. enterica in human.
Collapse
Affiliation(s)
- Trung Thanh Nguyen
- Department of Food Microbiology and Genetically Modified Food, Vietnam National Institute for Food Control, Cau Giay, Hanoi, Vietnam
| | - Hoa Vinh Le
- Department of Food Microbiology and Genetically Modified Food, Vietnam National Institute for Food Control, Cau Giay, Hanoi, Vietnam
| | - Da Pham Xuan
- Center for Genetic and Reproductive Health, Faculty of Medicine - Vietnam National University, Ho Chi Minh City, Vietnam
| | - Trung Nghia Vu
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Solna, Stockholm, Sweden
| | - Minh Hong Nguyen
- Bioresource Research Center, Phenikaa University, Hanoi 12116, Vietnam
| | - Huyen Thi Thanh Tran
- Vinmec Research Institute of Stemcell and Gene Technology, Hai Ba Trung, Hanoi, Vietnam
- Corresponding author at: Vinmec Research Institute of Stemcell and Gene Technology, Hai Ba Trung, Hanoi, Vietnam.
| |
Collapse
|
23
|
García-Soto S, Linde J, Methner U. Epidemiological Analysis on the Occurrence of Salmonella enterica Subspecies enterica Serovar Dublin in the German Federal State Schleswig-Holstein Using Whole-Genome Sequencing. Microorganisms 2023; 11:microorganisms11010122. [PMID: 36677417 PMCID: PMC9863307 DOI: 10.3390/microorganisms11010122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Revised: 12/21/2022] [Accepted: 12/27/2022] [Indexed: 01/05/2023] Open
Abstract
The cattle-adapted serovar Salmonella Dublin (S. Dublin) causes enteritis and systemic diseases in animals. In the German federal state Schleswig-Holstein, S. Dublin is the most important serovar in cattle indicating an endemic character of the infection. To gain information on dissemination and routes of infection, whole-genome sequencing (WGS) was used to explore the genetic traits of 78 S. Dublin strains collected over a period of six years. The phylogeny was analysed using core-genome single nucleotide polymorphisms (cgSNPs). Genomic clusters at 100, 15 and 1 cgSNPs were selected for molecular analysis. Important specific virulence determinants were detected in all strains but multidrug resistance in S. Dublin organisms was not found. Using 15 cgSNPs epidemiological links between herds were identified, clusters at 1 cgSNPs provided clear evidence on both persistence of S. Dublin at single farms in consecutive years and transmission of the organisms between herds in different distances. A possible risk factor for the repeated occurrence of S. Dublin in certain districts of Schleswig-Holstein might be the spreading of manure on pastures and grassland. Effective control of S. Dublin requires farm-specific analysis of the management supplemented by WGS of outbreak causing S. Dublin strains to clearly identify routes of infection.
Collapse
|
24
|
Alzahrani KO, AL-Reshoodi FM, Alshdokhi EA, Alhamed AS, Al Hadlaq MA, Mujallad MI, Mukhtar LE, Alsufyani AT, Alajlan AA, Al Rashidy MS, Al Dawsari MJ, Al-Akeel SI, AL-Harthi MH, Al Manee AM, Alghoribi MF, Alajel SM. Antimicrobial resistance and genomic characterization of Salmonella enterica isolates from chicken meat. Front Microbiol 2023; 14:1104164. [PMID: 37065154 PMCID: PMC10100587 DOI: 10.3389/fmicb.2023.1104164] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Accepted: 03/15/2023] [Indexed: 04/18/2023] Open
Abstract
This study investigated genotypic and phenotypic antimicrobial resistance profiles, phylogenic relatedness, plasmid and virulence composition of 39 Salmonella enterica strains isolated from chicken meat samples using whole genome sequencing (WGS) technology. Four distinct serotypes were identified; Salmonella Minnesota (16/39, 41%), Salmonella Infantis (13/39, 33.3%), Salmonella Enteritidis (9/39, 23.1%), and one isolate was detected for Salmonella Kentucky (1/39, 2.6%), with sequence types (STs) as followed: ST548, ST32, ST11, and ST198, respectively. Phenotypic resistance to tetracycline (91.2%), ampicillin (82.4%), sulfisoxazole (64.7%), and nalidixic acid (61.6%) was the most observed. Resistome analysis revealed the presence of resistance genes to aminoglycosides, β-lactamase, sulfonamides, trimethoprim, phenicol, lincosamide, macrolides, and tetracyclines. Plasmidome showed the presence of eight incompatibility groups, including IncA/C2, IncFIB(K)_1_Kpn3, Col440I_1, IncR, IncX1, IncI1_1_Alpha, IncFIB(S)/IncFII(S), IncHI2/IncHI2A, IncX2 and ColpVC plasmids across the 39 genomes. Three resistance genes, sul2, tetA and blaCMY-2, were predicted to be located on IncA/C2 plasmid in S. Minnesota isolates, whereas all S. Infantis isolates were positive to IncFIB(K)_1_Kpn3 plasmid that carries bla CTX-M-65 gene. Eleven Salmonella pathogenicity islands and up to 131 stress and/or virulence genes were identified in the evaluated genomes. Phylogenetic analysis showed four phylogroups that were consistent with the identified ST profiles with a high level of inter-diversity between isolates. This is the first genomic characterization of Salmonella isolates from retail chicken meat in Saudi Arabia using WGS technology. The availability of Salmonella genomes from multiple geographic locations, including Saudi Arabia, would be highly beneficial in future source-tracking, especially during epidemiological surveillance and outbreak investigations.
Collapse
Affiliation(s)
- Khaloud O. Alzahrani
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Fahad M. AL-Reshoodi
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Elaf A. Alshdokhi
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Ashwaq S. Alhamed
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari A. Al Hadlaq
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mohammed I. Mujallad
- Molecular Biology Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Lenah E. Mukhtar
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Amani T. Alsufyani
- Antimicrobial Resistance Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdullah A. Alajlan
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Malfi S. Al Rashidy
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Mashan J. Al Dawsari
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Saleh I. Al-Akeel
- Microbial Identification Division, Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Meshari H. AL-Harthi
- Microbiology Section, Food Laboratory, Laboratories Executive Department, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
| | - Abdulaziz M. Al Manee
- Microbial Hazards Division, Risk Assessment Department, Executive Department of Monitoring and Risk Assessment, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- Biology Department, Faculty of Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Majed F. Alghoribi
- Infectious Diseases Research Department, King Abdullah International Medical Research Center (KAIMRC), Riyadh, Saudi Arabia
- Department of Basic Science, College of Science and Health Professions, King Saud Bin Abdulaziz University for Health Sciences (KSAU), Riyadh, Saudi Arabia
| | - Suliman M. Alajel
- Reference Laboratory for Microbiology, Executive Department of Reference Laboratories, Research and Laboratories Sector, Saudi Food and Drug Authority (SFDA), Riyadh, Saudi Arabia
- *Correspondence: Suliman M. Alajel,
| |
Collapse
|
25
|
Yang MR, Wu YW. A Cross-Validated Feature Selection (CVFS) approach for extracting the most parsimonious feature sets and discovering potential antimicrobial resistance (AMR) biomarkers. Comput Struct Biotechnol J 2022; 21:769-779. [PMID: 36698972 PMCID: PMC9842539 DOI: 10.1016/j.csbj.2022.12.046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 12/27/2022] [Accepted: 12/27/2022] [Indexed: 12/29/2022] Open
Abstract
Understanding genes and their underlying mechanisms is critical in deciphering how antimicrobial-resistant (AMR) bacteria withstand detrimental effects of antibiotic drugs. At the same time the genes related to AMR phenotypes may also serve as biomarkers for predicting whether a microbial strain is resistant to certain antibiotic drugs. We developed a Cross-Validated Feature Selection (CVFS) approach for robustly selecting the most parsimonious gene sets for predicting AMR activities from bacterial pan-genomes. The core idea behind the CVFS approach is interrogating features among non-overlapping sub-parts of the datasets to ensure the representativeness of the features. By randomly splitting the dataset into disjoint sub-parts, conducting feature selection within each sub-part, and intersecting the features shared by all sub-parts, the CVFS approach is able to achieve the goal of extracting the most representative features for yielding satisfactory AMR activity prediction accuracy. By testing this idea on bacterial pan-genome datasets, we showed that this approach was able to extract the most succinct feature sets that predicted AMR activities very well, indicating the potential of these genes as AMR biomarkers. The functional analysis demonstrated that the CVFS approach was able to extract both known AMR genes and novel ones, suggesting the capabilities of the algorithm in selecting relevant features and highlighting the potential of the novel genes in expanding the antimicrobial resistance gene databases.
Collapse
Affiliation(s)
- Ming-Ren Yang
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC,Department of Electrical Engineering, National Taiwan University of Science and Technology, Taipei 106, Taiwan, ROC
| | - Yu-Wei Wu
- Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, Taipei 110, Taiwan, ROC,Clinical Big Data Research Center, Taipei Medical University Hospital, Taipei, Taiwan, ROC,TMU Research Center for Digestive Medicine, Taipei Medical University, Taipei 110, Taiwan, ROC,Correspondence to: Graduate Institute of Biomedical Informatics, College of Medical Science and Technology, Taipei Medical University, 250, Wuxing St., Sinyi Distr., Taipei 110, Taiwan, ROC.
| |
Collapse
|
26
|
Khan AS, Pierneef RE, Gonzalez-Escalona N, Maguire M, Georges K, Abebe W, Adesiyun AA. Phylogenetic analyses of Salmonella detected along the broiler production chain in Trinidad and Tobago. Poult Sci 2022; 102:102322. [PMID: 36473385 PMCID: PMC9720344 DOI: 10.1016/j.psj.2022.102322] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 10/28/2022] [Accepted: 11/01/2022] [Indexed: 11/12/2022] Open
Abstract
This study was conducted to determine the phylogenies of Salmonella strains isolated from cross-sectional studies conducted at hatcheries, broiler farms, processing plants, and retail outlets (broiler production chain) in Trinidad and Tobago over 4 yr (2016-2019). Whole-genome sequencing (WGS) was used to characterize Salmonella isolates. Core genome phylogenies of 8 serovars of public health significance were analyzed for similarities in origin and relatedness. In addition, Salmonella strains isolated from human salmonellosis cases in Trinidad were analyzed for their relatedness to the isolates detected along the broiler production chain. The common source of these isolates of diverse serovars within farms, within processing plants, between processing plants and retail outlets, and among farm-processing plant-retail outlet continuum was well-supported (bootstrap value >70%) by the core genome phylogenies for the respective serovars. Also, genome analyses revealed clustering of Salmonella serovars of regional (intra-Caribbean) and international (extra-Caribbean) origin. Similarly, strains of S. Enteritidis and S. Infantis isolated from human clinical salmonellosis in 2019 from Trinidad and Tobago clustered with our processing plant isolates recovered in 2018. This study is the first phylogenetic analysis of Salmonella isolates using WGS from the broiler industry in the Caribbean region. The use of WGS confirmed the genetic relatedness and transmission of Salmonella serovars contaminating chickens in broiler processing, and retailing in the country, with zoonotic and food safety implications for humans.
Collapse
Affiliation(s)
- Anisa S. Khan
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Rian E. Pierneef
- Agricultural Research Council-Biotechnology Platform, Pretoria 0110, South Africa
| | - Narjol Gonzalez-Escalona
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Meghan Maguire
- Division of Microbiology, Office of Regulatory Science, Center for Food Safety and Applied Nutrition, Food and Drug Administration, College Park, MD, USA
| | - Karla Georges
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago
| | - Woubit Abebe
- Department of Pathobiology, Center for Food Animal Health, Food Safety and Food Defense, Tuskegee University, College of Veterinary Medicine, Tuskegee, AL 36088, USA
| | - Abiodun A. Adesiyun
- School of Veterinary Medicine, Faculty of Medical Sciences, University of the West Indies, St. Augustine, Trinidad and Tobago,Department of Production Animal Studies, Faculty of Veterinary Science, University of Pretoria, Pretoria 0110, South Africa,Corresponding author:
| |
Collapse
|
27
|
Qian J, Wu Z, Zhu Y, Liu C. One Health: a holistic approach for food safety in livestock. SCIENCE IN ONE HEALTH 2022; 1:100015. [PMID: 39076604 PMCID: PMC11262287 DOI: 10.1016/j.soh.2023.100015] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 05/07/2023] [Indexed: 07/31/2024]
Abstract
The food safety of livestock is a critical issue between animals and humans due to their complex interactions. Pathogens have the potential to spread at every stage of the animal food handling process, including breeding, processing, packaging, storage, transportation, marketing and consumption. In addition, application of the antibiotic usage in domestic animals is a controversial issue because, while they can combat food-borne zoonotic pathogens and promote animal growth and productivity, they can also lead to the transmission of antibiotic-resistant microorganisms and antibiotic-resistant genes across species and habitats. Coevolution of microbiomes may occur in humans and animals as well which may alter the structure of the human microbiome through animal food consumption. One Health is a holistic approach to systematically understand the complex relationships among humans, animals and environments which may provide effective countermeasures to solve food safety problems aforementioned. This paper depicts the main pathogen spectrum of livestock and animal products, summarizes the flow of antibiotic-resistant bacteria and genes between humans and livestock along the food-chain production, and the correlation of their microbiome is reviewed as well to advocate for deeper interdisciplinary communication and collaboration among researchers in medicine, epidemiology, veterinary medicine and ecology to promote One Health approaches to address the global food safety challenges.
Collapse
Affiliation(s)
- Jing Qian
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zheyuan Wu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yongzhang Zhu
- School of Global Health, Chinese Center for Tropical Diseases Research, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chang Liu
- Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| |
Collapse
|
28
|
Ji L, Lin X, Yuan K, Li Y, Leghari A, Yuan B, Lin H. The recombinant swinepox virus expressing sseB could provide piglets with strong protection against Salmonella typhimurium challenge. Microb Pathog 2022; 172:105801. [PMID: 36170951 DOI: 10.1016/j.micpath.2022.105801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 09/20/2022] [Accepted: 09/21/2022] [Indexed: 11/16/2022]
Abstract
Salmonella spp. poses a great threat to the livestock, food safety and public health. A recombinant swinepox virus expressing a protective antigen sseB was constructed by homologous recombination to develop a vaccine against Salmonella infection. The rSPV-sseB was verified using PCR, Western blot and indirect immunofluorescence assay. The immune responses and protective efficacy of rSPV-sseB were assessed in piglets. Forty piglets were immunized with rSPV-sseB, inactive Salmonella vaccine, wild-type SPV (wtSPV), or PBS. The results showed that the level of the sseB-specific antibody of the rSPV-sseB-vaccinated piglets was significantly higher at all time points post-vaccination than those of the inactivated Salmonella vaccine (P < 0.05), wtSPV (P < 0.001) or mock treated piglets (P < 0.001). The IL-4 and IFN-γ in the rSPV-sseB group were significantly higher than the other three groups at all post-infection time points. rSPV-sseB provided piglets with strong protection against the challenge of S. typhimurium with lethal dose. These results suggest the possibility of using recombinant swinepox virus rSPV-sseB as a promising vaccine to prevent Salmonella infection.
Collapse
Affiliation(s)
- Lin Ji
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Xisha Lin
- School of Biological Science and Food Engineering, Chuzhou University, Chuzhou, 239000, China; Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, 210095, China.
| | - Kenan Yuan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Yue Li
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ambreen Leghari
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China; Shaheed Benazir Bhutto University of Veterinary and Animal Sciences Sakrand, Sindh, 67210, Pakistan
| | - Bingbing Yuan
- Yellow Sea Fisheries Research Institute, Chinese Academy of Fishery Sciences, Qingdao, 266071, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.
| |
Collapse
|
29
|
Ramtahal MA, Amoako DG, Ismail A, Bester L, Abia ALK, Essack SY. Salmonella Yoruba: a rare serotype revealed through genomic sequencing along the farm-to-fork continuum of an intensive poultry farm in KwaZulu-Natal, South Africa. Acta Trop 2022; 234:106620. [PMID: 35907503 DOI: 10.1016/j.actatropica.2022.106620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 07/08/2022] [Accepted: 07/26/2022] [Indexed: 11/01/2022]
Abstract
Salmonella enterica is a zoonotic pathogen of worldwide public health importance. We characterised Salmonella isolates from poultry along the farm-to-fork continuum using whole genome sequencing (WGS) and bioinformatics analysis. Three multilocus sequence types (MLSTs), i.e., ST15 (1.9%), ST152 (5.9%) and ST1316 (92.2%) and three serotypes, i.e., S. Heidelberg (1.9%), Kentucky (5.9%) and Yoruba (92.2%) were detected. The rare serotype, S. Yoruba, was detected among the farm and abattoir isolates and contained resistance and virulence determinants. Resistome analysis revealed the presence of the aac(6')-Iaa gene associated with aminoglycoside resistance, a single point mutation in the parC gene associated with fluoroquinolone and quinolone resistance, and a single isolate contained the fosA7 gene responsible for fosfomycin resistance. No antibiotic resistance genes (ARGs) were identified for isolates phenotypically non-susceptible to azithromycin, cephalosporins, chloramphenicol and nitrofurantoin and resistance was thought to be attributable to other resistance mechanisms. The fully susceptible profiles observed for the wastewater isolates suggest that the poultry environment may receive antibiotic-resistant strains and resistance determinants from poultry with the potential of becoming a pathway of Salmonella transmission along the continuum. Six plasmids were identified and were only carried by 92.2% of the S. Yoruba isolates in varying combinations. Four plasmids were common to all S. Yoruba isolates along the continuum; isolates from the litter and faeces on the farm contained two additional plasmids. Ten Salmonella pathogenicity islands (SPIs) and 177 virulence genes were identified; some were serotype-specific. Phylogenetic analysis of S. Heidelberg and Kentucky showed that isolates were related to animal and human isolates from other countries. Phylogenetic analysis among the S. Yoruba isolates revealed four clades based on the isolate sources along the farm-to-fork continuum. Although the transmission of Salmonella strains along the farm-to-fork continuum was not evident, pathogenic, resistant Salmonella present in the poultry production chain poses a food safety risk. WGS analysis can provide important information on the spread, resistance, pathogenicity, and epidemiology of isolates and new, rare or emerging Salmonella strains to develop intervention strategies to improve food safety.
Collapse
Affiliation(s)
- Melissa A Ramtahal
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa.
| | - Daniel G Amoako
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Centre for Respiratory Diseases and Meningitis, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Arshad Ismail
- Core Sequencing Facility, National Institute for Communicable Diseases, Johannesburg 2131, South Africa
| | - Linda Bester
- Biomedical Research Unit, School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| | - Akebe L K Abia
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; Environmental Research Foundation, Westville 3630, KwaZulu-Natal
| | - Sabiha Y Essack
- Antimicrobial Research Unit, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
| |
Collapse
|
30
|
Joshi A, Bhardwaj D, Kaushik A, Juneja VK, Taneja P, Thakur S, Kumra Taneja N. Advances in multi-omics based quantitative microbial risk assessment in the dairy sector: A semi-systematic review. Food Res Int 2022; 156:111323. [PMID: 35651076 DOI: 10.1016/j.foodres.2022.111323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2021] [Revised: 04/26/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
With the increasing consumption of packaged and ready-to-eat food products, the risk of foodborne illness has drastically increased and so has the dire need for proper management. The conventional Microbial Risk Assessment (MRA) investigations require prior knowledge of process flow, exposure, and hazard assessment throughout the supply chain. These data are often generated using conventional microbiological approaches based either on shelf-life studies or specific spoilage organisms (SSOs), frequently overlooking crucial information such as antimicrobial resistance (AMR), biofilm formation, virulence factors and other physiological variations coupled with bio-chemical characteristics of food matrix. Additionally, the microbial risks in food are diverse and heterogenous, that might be an outcome of growth and activity of multiple microbial populations rather than a single species contamination. The uncertainty on the microbial source, time as well as point of entry into the food supply chain poses a constraint to the efficiency of preventive approaches and conventional MRA. In the last few decades, significant breakthroughs in molecular methods and continuously progressing bioinformatics tools have opened up a new horizon for risk analysis-based approaches in food safety. Real time polymerase chain reaction (qPCR) and kit-based assays provide better accuracy and precision with shorter processing time. Despite these improvements, the effect of complex food matrix on growth environment and recovery of pathogen is a persistent problem for risk assessors. The dairy industry is highly impacted by spoilage and pathogenic microorganisms. Therefore, this review discusses the evolution and recent advances in MRAmethodologies equipped with predictive interventions and "multi-omics" approach for robust MRA specifically targeting dairy products. It also highlights the limiting gap area and the opportunity for improvement in this field to ensure precision food safety.
Collapse
Affiliation(s)
- Akanksha Joshi
- Dept. of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Dinesh Bhardwaj
- Dept. of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | - Abhishek Kaushik
- Dept. of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India
| | | | - Pankaj Taneja
- Department of Biotechnology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Sheetal Thakur
- Department of Food Science and Technology, MMICT & BM (HM), MMDU, Mullana, Ambala, Haryana, India
| | - Neetu Kumra Taneja
- Dept. of Basic and Applied Sciences, National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India; Center for Advance Translational Research in Food Nanobiotechnology (CATR-FNB), National Institute of Food Technology Entrepreneurship and Management, Haryana 131028, India.
| |
Collapse
|
31
|
Genomic analysis of Salmonella Typhimurium from humans and food sources accurately predicts phenotypic multi-drug resistance. Food Microbiol 2022; 103:103957. [DOI: 10.1016/j.fm.2021.103957] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 10/17/2021] [Accepted: 11/24/2021] [Indexed: 02/01/2023]
|
32
|
Genomic Screening of Antimicrobial Resistance Markers in UK and US Campylobacter Isolates Highlights Stability of Resistance over an 18-Year Period. Antimicrob Agents Chemother 2022; 66:e0168721. [PMID: 35404076 PMCID: PMC9112873 DOI: 10.1128/aac.01687-21] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Campylobacter jejuni and Campylobacter coli are important bacterial causes of human foodborne illness. Despite several years of reduced antibiotics usage in livestock production in the United Kingdom (UK) and United States (US), a high prevalence of antimicrobial resistance (AMR) persists in Campylobacter. Both countries have instigated genome sequencing-based surveillance programs for Campylobacter, and in this study, we have identified AMR genes in 32,256 C. jejuni and 8,776 C. coli publicly available genome sequences to compare the prevalence and trends of AMR in Campylobacter isolated in the UK and US between 2001 and 2018. AMR markers were detected in 68% of C. coli and 53% of C. jejuni isolates, with 15% of C. coli isolates being multidrug resistant (MDR), compared to only 2% of C. jejuni isolates. The prevalence of aminoglycoside, macrolide, quinolone, and tetracycline resistance remained fairly stable from 2001 to 2018 in both C. jejuni and C. coli, but statistically significant differences were observed between the UK and US. There was a statistically significant higher prevalence of aminoglycoside and tetracycline resistance for US C. coli and C. jejuni isolates and macrolide resistance for US C. coli isolates. In contrast, UK C. coli and C. jejuni isolates showed a significantly higher prevalence of quinolone resistance. Specific multilocus sequence type (MLST) clonal complexes (e.g., ST-353/464) showed >95% quinolone resistance. This large-scale comparison of AMR prevalence has shown that the prevalence of AMR remains stable for Campylobacter in the UK and the US. This suggests that antimicrobial stewardship and restricted antibiotic usage may help contain further expansion of AMR prevalence in Campylobacter but are unlikely to reduce it in the short term.
Collapse
|
33
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Ziebell K, Bharat A, Mulvey MR, Janecko N, Ricker N, Allen SE, Bondo KJ, Jardine CM. Using whole-genome sequence data to examine the epidemiology of antimicrobial resistance in Escherichia coli from wild meso-mammals and environmental sources on swine farms, conservation areas, and the Grand River watershed in southern Ontario, Canada. PLoS One 2022; 17:e0266829. [PMID: 35395054 PMCID: PMC8993012 DOI: 10.1371/journal.pone.0266829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022] Open
Abstract
Antimicrobial resistance (AMR) threatens the health of humans and animals and has repeatedly been detected in wild animal species across the world. This cross-sectional study integrates whole-genome sequence data from Escherichia coli isolates with demonstrated phenotypic resistance that originated from a previous longitudinal wildlife study in southern Ontario, as well as phenotypically resistant E. coli water isolates previously collected as part of a public health surveillance program. The objective of this work was to assess for evidence of possible transmission of antimicrobial resistance determinants between wild meso-mammals, swine manure pits, and environmental sources on a broad scale in the Grand River watershed, and at a local scale—for the subset of samples collected on both swine farms and conservation areas in the previous wildlife study. Logistic regression models were used to assess potential associations between sampling source, location type (swine farm vs. conservation area), and the occurrence of select resistance genes and predicted plasmids. In total, 200 isolates from the following sources were included: water (n = 20), wildlife (n = 73), swine manure pit (n = 31), soil (n = 73), and dumpsters (n = 3). Several genes and plasmid incompatibility types were significantly more likely to be identified on swine farms compared to conservation areas. Conversely, internationally distributed sequence types (e.g., ST131), extended-spectrum beta-lactamase- and AmpC-producing E. coli were isolated in lower prevalences (<10%) and were almost exclusively identified in water sources, or in raccoon and soil isolates obtained from conservation areas. Differences in the odds of detecting resistance genes and predicted plasmids among various sources and location types suggest different primary sources for individual AMR determinants, but, broadly, our findings suggest that raccoons, skunks and opossums in this region may be exposed to AMR pollution via water and agricultural sources, as well as anthropogenic sources in conservation areas.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- * E-mail:
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Adam A. Vogt
- Independent Researcher, Mississauga, Ontario, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
34
|
Lee KY, Atwill ER, Pitesky M, Huang A, Lavelle K, Rickard M, Shafii M, Hung-Fan M, Li X. Antimicrobial Resistance Profiles of Non-typhoidal Salmonella From Retail Meat Products in California, 2018. Front Microbiol 2022; 13:835699. [PMID: 35369434 PMCID: PMC8966841 DOI: 10.3389/fmicb.2022.835699] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 01/10/2022] [Indexed: 12/31/2022] Open
Abstract
Non-typhoidal Salmonella remains a leading cause of foodborne illness in the United States, with food animal products serving as a key conduit for transmission. The emergence of antimicrobial resistance (AMR) poses an additional public health concern warranting better understanding of its epidemiology. In this study, 958 retail meat samples collected from January to December 2018 in California were tested for Salmonella. From multivariable logistic regression, there was a 6.47 (90% CI 2.29–18.27), 3.81 (90% CI 1.29–11.27), and 3.12 (90% CI 1.03–9.45) higher odds of contamination in samples purchased in the fall, spring, and summer than in winter months, respectively, and a 3.70 (90% CI 1.05–13.07) higher odds in ground turkey compared to pork samples. Fourteen distinct serotypes and 17 multilocus sequence types were identified among the 43 isolates recovered, with S. Kentucky (25.58%), S. Reading (18.60%), S. Infantis (11.63%), and S. Typhimurium (9.30%) comprising the top serotypes. High prevalence of resistance was observed in retail chicken isolates for streptomycin (12/23, 52.17%) and tetracycline (12/23, 52.17%), in ground turkey isolates for ampicillin (8/15, 53.34%), and in ground beef isolates for nalidixic acid (2/3, 66.67%). Fourteen (32.56%) were susceptible to all antimicrobials tested, 11 (25.58%) were resistant to one drug, and 12 (27.91%) were resistant to two drugs. The remaining six isolates (13.95%) were multidrug-resistant (MDR, ≥3 drug classes) S. Infantis (n = 4), S. Reading (n = 1), and S. Kentucky (n = 1). Whole-genome sequencing (WGS) identified 16 AMR genes and 17 plasmid replicons, including blaCTX–M–65 encoding ceftriaxone resistance and a D87Y mutation in gyrA conferring resistance to nalidixic acid and reduced susceptibility to ciprofloxacin. The IncFIB(pN55391) replicon previously identified in connection to the worldwide dissemination of pESI-like mega plasmid carriage in an emerged S. Infantis clone was detected in four of the six MDR isolates. Genotypes from WGS showed high concordance with phenotype with overall sensitivity and specificity of 95.31% and 100%, respectively. This study provides insight into the AMR profiles of a diversity of Salmonella serotypes isolated from retail meat products in California and highlights the value of routine retail food surveillance for the detection and characterization of AMR in foodborne pathogens.
Collapse
Affiliation(s)
- Katie Yen Lee
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Edward Robert Atwill
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Maurice Pitesky
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Anny Huang
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States
| | - Kurtis Lavelle
- Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| | - Maribel Rickard
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Marzieh Shafii
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Melody Hung-Fan
- Contra Costa County Public Health Laboratory, Martinez, CA, United States
| | - Xunde Li
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, Davis, CA, United States.,Western Institute for Food Safety and Security, University of California, Davis, Davis, CA, United States
| |
Collapse
|
35
|
Algarni S, Ricke SC, Foley SL, Han J. The Dynamics of the Antimicrobial Resistance Mobilome of Salmonella enterica and Related Enteric Bacteria. Front Microbiol 2022; 13:859854. [PMID: 35432284 PMCID: PMC9008345 DOI: 10.3389/fmicb.2022.859854] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Accepted: 03/07/2022] [Indexed: 12/31/2022] Open
Abstract
The foodborne pathogen Salmonella enterica is considered a global public health risk. Salmonella enterica isolates can develop resistance to several antimicrobial drugs due to the rapid spread of antimicrobial resistance (AMR) genes, thus increasing the impact on hospitalization and treatment costs, as well as the healthcare system. Mobile genetic elements (MGEs) play key roles in the dissemination of AMR genes in S. enterica isolates. Multiple phenotypic and molecular techniques have been utilized to better understand the biology and epidemiology of plasmids including DNA sequence analyses, whole genome sequencing (WGS), incompatibility typing, and conjugation studies of plasmids from S. enterica and related species. Focusing on the dynamics of AMR genes is critical for identification and verification of emerging multidrug resistance. The aim of this review is to highlight the updated knowledge of AMR genes in the mobilome of Salmonella and related enteric bacteria. The mobilome is a term defined as all MGEs, including plasmids, transposons, insertion sequences (ISs), gene cassettes, integrons, and resistance islands, that contribute to the potential spread of genes in an organism, including S. enterica isolates and related species, which are the focus of this review.
Collapse
Affiliation(s)
- Suad Algarni
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Steven C. Ricke
- Meat Science and Animal Biologics Discovery Program, Department of Animal and Dairy Sciences, University of Wisconsin, Madison, WI, United States
| | - Steven L. Foley
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- Cellular and Molecular Biology Graduate Program, University of Arkansas, Fayetteville, AR, United States
| | - Jing Han
- Division of Microbiology, FDA National Center for Toxicological Research, Jefferson, AR, United States
- *Correspondence: Jing Han,
| |
Collapse
|
36
|
Akwani WC, van Vliet AH, Joel JO, Andres S, Diricks M, Maurer FP, Chambers MA, Hingley-Wilson SM. The Use of Comparative Genomic Analysis for the Development of Subspecies-Specific PCR Assays for Mycobacterium abscessus. Front Cell Infect Microbiol 2022; 12:816615. [PMID: 35419298 PMCID: PMC8995789 DOI: 10.3389/fcimb.2022.816615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 03/07/2022] [Indexed: 01/21/2023] Open
Abstract
Mycobacterium abscessus complex (MABC) is an important pathogen of immunocompromised patients. Accurate and rapid determination of MABC at the subspecies level is vital for optimal antibiotic therapy. Here we have used comparative genomics to design MABC subspecies-specific PCR assays. Analysis of single nucleotide polymorphisms and core genome multilocus sequence typing showed clustering of genomes into three distinct clusters representing the MABC subspecies M. abscessus, M. bolletii and M. massiliense. Pangenome analysis of 318 MABC genomes from the three subspecies allowed for the identification of 15 MABC subspecies-specific genes. In silico testing of primer sets against 1,663 publicly available MABC genomes and 66 other closely related Mycobacterium genomes showed that all assays had >97% sensitivity and >98% specificity. Subsequent experimental validation of two subspecies-specific genes each showed the PCR assays worked well in individual and multiplex format with no false-positivity with 5 other mycobacteria of clinical importance. In conclusion, we have developed a rapid, accurate, multiplex PCR-assay for discriminating MABC subspecies that could improve their detection, diagnosis and inform correct treatment choice.
Collapse
Affiliation(s)
- Winifred C. Akwani
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Arnoud H.M. van Vliet
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Jordan O. Joel
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Sönke Andres
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
| | - Margo Diricks
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- German Center for Infection Research (DZIF), Partner Site Hamburg-Lübeck-Borstel-Riems, Hamburg, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
| | - Florian P. Maurer
- National and Supranational Reference Center for Mycobacteria, Research Center Borstel, Borstel, Germany
- Molecular and Experimental Mycobacteriology, Research Center Borstel, Borstel, Germany
- Institute of Medical Microbiology, Virology, and Hygiene, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Mark A. Chambers
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
- Department of Pathology and Infectious Diseases, School of Veterinary Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| | - Suzanne M. Hingley-Wilson
- Department of Microbial Sciences, School of Biosciences and Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, United Kingdom
| |
Collapse
|
37
|
Zhang C, Yang M. Antimicrobial Peptides: From Design to Clinical Application. Antibiotics (Basel) 2022; 11:antibiotics11030349. [PMID: 35326812 PMCID: PMC8944448 DOI: 10.3390/antibiotics11030349] [Citation(s) in RCA: 56] [Impact Index Per Article: 18.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 02/27/2022] [Accepted: 03/04/2022] [Indexed: 02/06/2023] Open
Abstract
Infection of multidrug-resistant (MDR) bacteria, such as methicillin-resistant Staphylococcus aureus (MRSA), carbapenem-resistant Enterobacteriaceae (CRE), and extended-spectrum beta-lactamase (ESBL)-producing Escherichia coli, brings public health issues and causes economic burden. Pathogenic bacteria develop several methods to resist antibiotic killing or inhibition, such as mutation of antibiotic function sites, activation of drug efflux pumps, and enzyme-mediated drug degradation. Antibiotic resistance components can be transferred between bacteria by mobile genetic elements including plasmids, transposons, and integrons, as well as bacteriophages. The development of antibiotic resistance limits the treatment options for bacterial infection, especially for MDR bacteria. Therefore, novel or alternative antibacterial agents are urgently needed. Antimicrobial peptides (AMPs) display multiple killing mechanisms against bacterial infections, including directly bactericidal activity and immunomodulatory function, as potential alternatives to antibiotics. In this review, the development of antibiotic resistance, the killing mechanisms of AMPs, and especially, the design, optimization, and delivery of AMPs are reviewed. Strategies such as structural change, amino acid substitution, conjugation with cell-penetration peptide, terminal acetylation and amidation, and encapsulation with nanoparticles will improve the antimicrobial efficacy, reduce toxicity, and accomplish local delivery of AMPs. In addition, clinical trials in AMP studies or applications of AMPs within the last five years were summarized. Overall, AMPs display diverse mechanisms of action against infection of pathogenic bacteria, and future research studies and clinical investigations will accelerate AMP application.
Collapse
Affiliation(s)
- Chunye Zhang
- Department of Veterinary Pathobiology, University of Missouri, Columbia, MO 65212, USA;
| | - Ming Yang
- Department of Surgery, University of Missouri, Columbia, MO 65211, USA
- Correspondence:
| |
Collapse
|
38
|
Vogt NA, Hetman BM, Vogt AA, Pearl DL, Reid-Smith RJ, Parmley EJ, Kadykalo S, Janecko N, Bharat A, Mulvey MR, Ziebell K, Robertson J, Nash J, Allen V, Majury A, Ricker N, Bondo KJ, Allen SE, Jardine CM. Rural Raccoons (Procyon lotor) Not Likely to Be a Major Driver of Antimicrobial Resistant Human Salmonella Cases in Southern Ontario, Canada: A One Health Epidemiological Assessment Using Whole-Genome Sequence Data. Front Vet Sci 2022; 9:840416. [PMID: 35280127 PMCID: PMC8914089 DOI: 10.3389/fvets.2022.840416] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 01/24/2022] [Indexed: 11/13/2022] Open
Abstract
Non-typhoidal Salmonella infections represent a substantial burden of illness in humans, and the increasing prevalence of antimicrobial resistance among these infections is a growing concern. Using a combination of Salmonella isolate short-read whole-genome sequence data from select human cases, raccoons, livestock and environmental sources, and an epidemiological framework, our objective was to determine if there was evidence for potential transmission of Salmonella and associated antimicrobial resistance determinants between these different sources in the Grand River watershed in Ontario, Canada. Logistic regression models were used to assess the potential associations between source type and the presence of select resistance genes and plasmid incompatibility types. A total of 608 isolates were obtained from the following sources: humans (n = 58), raccoons (n = 92), livestock (n = 329), and environmental samples (n = 129). Resistance genes of public health importance, including blaCMY−2, were identified in humans, livestock, and environmental sources, but not in raccoons. Most resistance genes analyzed were significantly more likely to be identified in livestock and/or human isolates than in raccoon isolates. Based on a 3,002-loci core genome multi-locus sequence typing (cgMLST) scheme, human Salmonella isolates were often more similar to isolates from livestock and environmental sources, than with those from raccoons. Rare instances of serovars S. Heidelberg and S. Enteritidis in raccoons likely represent incidental infections and highlight possible acquisition and dissemination of predominantly poultry-associated Salmonella by raccoons within these ecosystems. Raccoon-predominant serovars were either not identified among human isolates (S. Agona, S. Thompson) or differed by more than 350 cgMLST loci (S. Newport). Collectively, our findings suggest that the rural population of raccoons on swine farms in the Grand River watershed are unlikely to be major contributors to antimicrobial resistant human Salmonella cases in this region.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- *Correspondence: Nadine A. Vogt
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | | | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, Guelph, ON, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Stefanie Kadykalo
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, ON, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, MB, Canada
| | - Kim Ziebell
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - James Robertson
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | - John Nash
- National Microbiology Laboratory, Public Health Agency of Canada, Guelph, ON, Canada
| | | | - Anna Majury
- Public Health Ontario, Kingston, ON, Canada
- Department of Biomedical and Molecular Science, Queen's University, Kingston, ON, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
| | - Samantha E. Allen
- Wyoming Game and Fish Department, Laramie, WY, United States
- Department of Veterinary Sciences, University of Wyoming, Laramie, WY, United States
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, Guelph, ON, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, ON, Canada
| |
Collapse
|
39
|
Huang Z, Yu K, Fu S, Xiao Y, Wei Q, Wang D. Genomic analysis reveals high intra-species diversity of Shewanella algae. Microb Genom 2022; 8. [PMID: 35143386 PMCID: PMC8942018 DOI: 10.1099/mgen.0.000786] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Shewanella algae is widely distributed in marine and freshwater habitats, and has been proved to be an emerging marine zoonotic and human pathogen. However, the genomic characteristics and pathogenicity of Shewanella algae are unclear. Here, the whole-genome features of 55 S. algae strains isolated from different sources were described. Pan-genome analysis yielded 2863 (19.4 %) genes shared among all strains. Functional annotation of the core genome showed that the main functions are focused on basic lifestyle such as metabolism and energy production. Meanwhile, the phylogenetic tree of the single nucleotide polymorphisms (SNPs) of core genome divided the 55 strains into three clades, with the majority of strains from China falling into the first two clades. As for the accessory genome, 167 genomic islands (GIs) and 65 phage-related elements were detected. The CRISPR-Cas system with a high degree of confidence was predicted in 23 strains. The GIs carried a suite of virulence genes and mobile genetic elements, while prophages contained several transposases and integrases. Horizontal genes transfer based on homology analysis indicated that these GIs and prophages were parts of major drivers for the evolution and the environmental adaptation of S. algae. In addition, a rich putative virulence-associated gene pool was found. Eight classes of antibiotic-associated resistance genes were detected, and the carriage rate of β-lactam resistance genes was 100 %. In conclusion, S. algae exhibits a high intra-species diversity in the aspects of population structure, virulence-associated genes and potential drug resistance, which is helpful for its evolution in pathogenesis and environmental adaptability.
Collapse
Affiliation(s)
- Zhenzhou Huang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, PR China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, PR China
| | - Keyi Yu
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, PR China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, PR China
| | - Songzhe Fu
- Key Laboratory of Environment Controlled Aquaculture (KLECA), Ministry of Education, Dalian, PR China.,College of Marine Science and Environment, Dalian Ocean University, Dalian, PR China
| | - Yue Xiao
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, PR China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, PR China
| | - Qiang Wei
- Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, PR China
| | - Duochun Wang
- National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention (China CDC), State Key Laboratory of Infectious Disease Prevention and Control, Beijing 102206, PR China.,Center for Human Pathogenic Culture Collection, China CDC, Beijing 102206, PR China
| |
Collapse
|
40
|
Comparative genomics and antibiotic resistance of Yersinia enterocolitica obtained from a pork production chain and human clinical cases in Brazil. Food Res Int 2022; 152:110917. [DOI: 10.1016/j.foodres.2021.110917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 12/13/2021] [Accepted: 12/20/2021] [Indexed: 11/21/2022]
|
41
|
Wu Y, Zhang D, Duan A, Ao Y, Li S. The application of riboswitch sequencing for human gut bacterial classification and identification. Mol Phylogenet Evol 2022; 169:107409. [PMID: 35063674 DOI: 10.1016/j.ympev.2022.107409] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/29/2021] [Accepted: 11/29/2021] [Indexed: 11/15/2022]
Abstract
Bacteria, especially gut bacteria play important roles in human health and diseases. The classification of many bacterial genera by the 16S ribosomal RNA (rRNA) has failed due to its low inter-species resolution. Given the wide distribution of riboswitches in bacteria, they may help 16S rRNA differentiate closely related species. We found that among 28 groups of species that could not be distinguished by 16S rRNA, eight of them could be separated by the TPP riboswitch and other riboswitches. Moreover, the species in the 16S rRNA database and these riboswitch databases overlap, therefore, using riboswitch databases can help 16S rRNA better identify species. In addition, we used Klenow DNA polymerase and a pair of short primers to facilitate the library construction of TPP riboswitches for sequencing. The sequencing results showed that the TPP riboswitch could detect the major phyla similar to those detected by 16S rRNA. Therefore, the TPP riboswitch and other riboswitch classes could potentially be applied to gut bacteria classification.
Collapse
Affiliation(s)
- Yaoyao Wu
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, P. R. China
| | - Deying Zhang
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, P. R. China; State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-sen University, Guangzhou, 510627, P. R. China(2)
| | - Anqi Duan
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, P. R. China
| | - Yaqi Ao
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, P. R. China
| | - Sanshu Li
- Medical School, Engineering Research Center of Molecular Medicine of Ministry of Education, Key Laboratory of Precision Medicine and Molecular Diagnosis of Fujian Universities, Institute of Genomics, School of Biomedical Sciences, Huaqiao University, Xiamen, 361021, P. R. China.
| |
Collapse
|
42
|
Karanth S, Tanui CK, Meng J, Pradhan AK. Exploring the predictive capability of advanced machine learning in identifying severe disease phenotype in Salmonella enterica. Food Res Int 2022; 151:110817. [PMID: 34980422 DOI: 10.1016/j.foodres.2021.110817] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 11/12/2021] [Accepted: 11/17/2021] [Indexed: 11/26/2022]
Abstract
The past few years have seen a significant increase in availability of whole genome sequencing information, allowing for its incorporation in predictive modeling for foodborne pathogens to account for inter- and intra-species differences in their virulence. However, this is hindered by the inability of traditional statistical methods to analyze such large amounts of data compared to the number of observations/isolates. In this study, we have explored the applicability of machine learning (ML) models to predict the disease outcome, while identifying features that exert a significant effect on the prediction. This study was conducted on Salmonella enterica, a major foodborne pathogen with considerable inter- and intra-serovar variation. WGS of isolates obtained from various sources (i.e., human, chicken, and swine) were used as input in four machine learning models (logistic regression with ridge, random forest, support vector machine, and AdaBoost) to classify isolates based on disease severity (extraintestinal vs. gastrointestinal) in the host. The predictive performances of all models were tested with and without Elastic Net regularization to combat dimensionality issues. Elastic Net-regularized logistic regression model showed the best area under the receiver operating characteristic curve (AUC-ROC; 0.86) and outcome prediction accuracy (0.76). Additionally, genes coding for transcriptional regulation, acidic, oxidative, and anaerobic stress response, and antibiotic resistance were found to be significant predictors of disease severity. These genes, which were significantly associated with each outcome, could possibly be input in amended, gene-expression-specific predictive models to estimate virulence pattern-specific effect of Salmonella and other foodborne pathogens on human health.
Collapse
Affiliation(s)
- Shraddha Karanth
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA
| | - Collins K Tanui
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA
| | - Jianghong Meng
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA; Joint Institute for Food Safety and Applied Nutrition, University of Maryland, College Park, MD 20742, USA
| | - Abani K Pradhan
- Department of Nutrition and Food Science, University of Maryland, College Park, MD 20742, USA; Center for Food Safety and Security Systems, University of Maryland, College Park, MD 20742, USA.
| |
Collapse
|
43
|
Yang SM, Kim E, Lee W, Kim HY. Genomic characteristics and comparative genomics of Salmonella enterica subsp. enterica serovar Schwarzengrund strain S16 isolated from chicken feces. Gut Pathog 2022; 14:1. [PMID: 34983642 PMCID: PMC8728987 DOI: 10.1186/s13099-021-00476-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/13/2021] [Indexed: 01/18/2023] Open
Abstract
Background Salmonella enterica subsp. enterica serovar Schwarzengrund (S. Schwarzengrund) is most frequently isolated from commensals humans or poultry. Here we report S. Schwarzengrund strain S16, the first sequenced genome in the Republic of Korea. Additionally, genome sequencing for strain S16 was performed and compared with other S. Schwarzengrund genomes obtained from public database. Results Strain S16 was isolated from chicken feces. The complete genome consists of one chromosome and one plasmid. The genome size is 4,822,755 bp with 4852 coding sequences. Strain S16 was determined as serovar Schwarzengrund by in silico serotyping and typed as sequence type (ST) 96. Forty-six S. Schwarzengrund genomes yielded a pangenome of 7112 genes, core-genome of 3374 genes, accessory-genome of 2906 genes, and unique-genome of 835 genes. Eighty-one genes were unique to strain S16, including hypothetical proteins and transcriptional regulators. Genotypic analysis of antibiotic resistance of strain S16 confirmed resistance to amikacin, ciprofloxacin, sulfamethoxazole, streptomycin, and tetracycline. Unlike other S. Schwarzengrund genomes, strain S16 had a mutation of gyrB. Moreover, similar to other S. Schwarzengrund genomes reported in other countries, strain S16 was harbored for 153 virulence genes including Saf operon and cdtB gene. All the antibiotic resistance genes and virulence genes were present in the core- or accessory-genomes. Conclusions Complete genome of strain S16 was sequenced. Comparative genomic analysis revealed several genes responsible for antibiotic resistance and specific genomic features of strain S16 and identified virulence factors that might contribute to the human and animal pathogenicity of other S. Schwarzengrund genomes. Supplementary Information The online version contains supplementary material available at 10.1186/s13099-021-00476-8.
Collapse
Affiliation(s)
- Seung-Min Yang
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Eiseul Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Woojung Lee
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea
| | - Hae-Yeong Kim
- Institute of Life Sciences & Resources and Department of Food Science and Biotechnology, Kyung Hee University, Yongin, 17104, South Korea.
| |
Collapse
|
44
|
Ksibi B, Ktari S, Ghedira K, Othman H, Maalej S, Mnif B, Fabre L, Rhimi F, Hello SL, Hammami A. Antimicrobial resistance genes, virulence markers and prophage sequences in Salmonella enterica serovar Enteritidis isolated in Tunisia using whole genome sequencing. CURRENT RESEARCH IN MICROBIAL SCIENCES 2022; 3:100151. [PMID: 35909609 PMCID: PMC9325895 DOI: 10.1016/j.crmicr.2022.100151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Antimcrobial resistance genes, virulence factors and prophage sequences were studied in WGS of 45 Salmonella Enteritidis from different sources. WGS is most powerful tool for determining genomic variation in S. Enteritidis. Two major lineages of S. Enteritidis were detected in Tunisia. Missense mutations identified in virulence genes were mostly detected in lineage B. Salmon118970_sal3 and RE_2010 phages were detected in lineage A and lineage B, respectively.
Salmonella Enteritidis causes a major public health problem in the world. Whole genome sequencing can give us a lot of information not only about the phylogenetic relatedness of these bacteria but also in antimicrobial resistance and virulence gene predictions. In this study, we analyzed the whole genome data of 45 S. Enteritidis isolates recovered in Tunisia from different origins, human, animal, and foodborne samples. Two major lineages (A and B) were detected based on 802 SNPs differences. Among these SNPs, 493 missense SNPs were identified. A total of 349 orthologue genes mutated by one or two missense SNPs were classified in 22 functional groups with the prevalence of carbohydrate transport and metabolism group. A good correlation between genotypic antibiotic resistance profiles and phenotypic analysis were observed. Only resistant isolates carried the respective molecular resistant determinants. The investigation of virulence markers showed the distribution of 11 Salmonella pathogenicity islands (SPI) out of 23 previously described. The SPI-1 and SPI-2 genes encoding type III secretion systems were highly conserved in all isolates except one. In addition, the virulence plasmid genes were present in all isolates except two. We showed the presence of two fimbrial operons sef and ste previously considered to be specific for typhoidal Salmonella. Our collection of S. Enteritidis reveal a diversity among prophage profiles. SNPs analysis showed that missense mutations identified in fimbriae and in SPI-1 and SPI-2 genes were mostly detected in lineage B. In conclusion, WGS is a powerful application to study functional genomic determinants of S. Enteritidis such as antimicrobial resistance genes, virulence markers and prophage sequences. Further studies are needed to predict the impact of the missenses SNPs that can affect the protein functions associated with pathogenicity.
Collapse
|
45
|
Dos Santos Bersot L, Carbonera NR, Rodrigues Valcanaia CD, Viana C, Nero LA. Multidrug-Resistant and Extended-Spectrum β-Lactamase-Producing Salmonella enterica Serotype Heidelberg Is Widespread in a Poultry Processing Facility in Southern Brazil. J Food Prot 2021; 84:2053-2058. [PMID: 34324677 DOI: 10.4315/jfp-21-140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 07/16/2021] [Indexed: 11/11/2022]
Abstract
ABSTRACT This study was conducted to characterize the distribution of Salmonella isolates in a poultry processing facility and to identify their antibiotic resistance profiles. Salmonella enterica was detected in 146 samples (66.7%), and 125 isolates were identified as Salmonella Heidelberg (n = 123), Salmonella Abony (n = 1), and Salmonella O:4,5 (n = 1). Salmonella Heidelberg isolates were subjected to XbaI macrorestriction analysis and pulsed-field gel electrophoresis. The 66 pulsotypes obtained were grouped into four major clusters, indicating cross-contamination and persistence of this serotype in the processing facility. Selected S. enterica isolates were characterized by their antibiotic resistance, and most (n = 122, 97.6%) were multidrug resistant. Resistance to third-generation cephalosporins ceftazidime (84 isolates, 67.2%) and cefotaxime and ceftriaxone (91 isolates, 72.8%) was particularly prevalent. Production of extended-spectrum β-lactamases (ESBL) was identified in 24 isolates (19.2%), and ESBL-producing isolates were resistant to at least eight antibiotics. This study revealed the high prevalence of Salmonella Heidelberg in the poultry chain, providing insight into the ecology of this pathogen in this facility. The high prevalence of multidrug-resistant S. enterica is a concern due to the potential consequences for public health. HIGHLIGHTS
Collapse
Affiliation(s)
- Luciano Dos Santos Bersot
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Neila Rita Carbonera
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Carolina Dias Rodrigues Valcanaia
- LACOMA - Laboratório de Inspeção e Controle de Qualidade de Alimentos e Água, Universidade Federal do Paraná, Setor Palotina, Departamento de Ciências Veterinárias, Rua Pioneiro, 2153, Jardim Dallas, 85950-000, Palotina, PR, Brazil
| | - Cibeli Viana
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| | - Luís Augusto Nero
- InsPOA - Laboratório de Inspeção de Produtos de Origem Animal, Universidade Federal de Viçosa, Departamento de Veterinária, Avenida PH Rolfs, s/n, Campus Universitário, 36570-900, Viçosa, MG, Brazil
| |
Collapse
|
46
|
Vogt NA, Hetman BM, Pearl DL, Vogt AA, Reid-Smith RJ, Parmley EJ, Janecko N, Bharat A, Mulvey MR, Ricker N, Bondo KJ, Allen SE, Jardine CM. Using whole-genome sequence data to examine the epidemiology of Salmonella, Escherichia coli and associated antimicrobial resistance in raccoons (Procyon lotor), swine manure pits, and soil samples on swine farms in southern Ontario, Canada. PLoS One 2021; 16:e0260234. [PMID: 34793571 PMCID: PMC8601536 DOI: 10.1371/journal.pone.0260234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 11/04/2021] [Indexed: 11/19/2022] Open
Abstract
To better understand the contribution of wildlife to the dissemination of Salmonella and antimicrobial resistance in Salmonella and Escherichia coli, we examined whole-genome sequence data from Salmonella and E. coli isolates collected from raccoons (Procyon lotor) and environmental sources on farms in southern Ontario. All Salmonella and phenotypically resistant E. coli collected from raccoons, soil, and manure pits on five swine farms as part of a previous study were included. We assessed for evidence of potential transmission of these organisms between different sources and farms utilizing a combination of population structure assessments (using core-genome multi-locus sequence typing), direct comparisons of multi-drug resistant isolates, and epidemiological modeling of antimicrobial resistance (AMR) genes and plasmid incompatibility (Inc) types. Univariable logistic regression models were fit to assess the impact of source type, farm location, and sampling year on the occurrence of select resistance genes and Inc types. A total of 159 Salmonella and 96 resistant E. coli isolates were included. A diversity of Salmonella serovars and sequence types were identified, and, in some cases, we found similar or identical Salmonella isolates and resistance genes between raccoons, soil, and swine manure pits. Certain Inc types and resistance genes associated with source type were consistently more likely to be identified in isolates from raccoons than swine manure pits, suggesting that manure pits are not likely a primary source of those particular resistance determinants for raccoons. Overall, our data suggest that transmission of Salmonella and AMR determinants between raccoons and swine manure pits is uncommon, but soil-raccoon transmission appears to be occurring frequently. More comprehensive sampling of farms, and assessment of farms with other livestock species, as well as additional environmental sources (e.g., rivers) may help to further elucidate the movement of resistance genes between these various sources.
Collapse
Affiliation(s)
- Nadine A. Vogt
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Benjamin M. Hetman
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - David L. Pearl
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Adam A. Vogt
- Independent Researcher, Mississauga, Ontario, Canada
| | - Richard J. Reid-Smith
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - E. Jane Parmley
- Department of Population Medicine, Ontario Veterinary College, Guelph, Ontario, Canada
- Centre for Foodborne, Environmental and Zoonotic Infectious Diseases, Public Health Agency of Canada, Guelph, Ontario, Canada
| | - Nicol Janecko
- Quadram Institute Bioscience, Norwich, United Kingdom
| | - Amrita Bharat
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Michael R. Mulvey
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, Manitoba, Canada
- Department of Medical Microbiology and Infectious Diseases, University of Manitoba, Winnipeg, Manitoba, Canada
| | - Nicole Ricker
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Kristin J. Bondo
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
| | - Samantha E. Allen
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
- Wyoming Game and Fish Department, Laramie, Wyoming, United States of America
- Department of Veterinary Sciences, University of Wyoming, Laramie, Wyoming, United States of America
| | - Claire M. Jardine
- Department of Pathobiology, Ontario Veterinary College, Guelph, Ontario, Canada
- Canadian Wildlife Health Cooperative, Ontario Veterinary College, Guelph, Ontario, Canada
| |
Collapse
|
47
|
Bombaywala S, Purohit HJ, Dafale NA. Mobility of antibiotic resistance and its co-occurrence with metal resistance in pathogens under oxidative stress. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 297:113315. [PMID: 34298350 DOI: 10.1016/j.jenvman.2021.113315] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 07/08/2021] [Accepted: 07/16/2021] [Indexed: 06/13/2023]
Abstract
The bacterial communities are challenged with oxidative stress during their exposure to bactericidal antibiotics, metals, and different levels of dissolved oxygen (DO) encountered in diverse environmental habitats. The frequency of antibiotic resistance genes (ARGs) and metal resistance genes (MRGs) co-selection is increased by selective pressure posed by oxidative stress. Hence, study of resistance acquisition is important from an evolutionary perspective. To understand the dependence of oxidative stress on the dissemination of ARGs and MRGs through a pathogenic bacterial population, 12 metagenomes belonging to gut, water and soil habitats were evaluated. The metagenome-wide analysis showed the chicken gut to pose the most diverse pool of ARGs (30.4 ppm) and pathogenic bacteria (Simpson diversity = 0.98). The most common types of resistances found in all the environmental samples were efflux pumps (13.22 ppm) and genes conferring resistance to vancomycin (12.4 ppm), tetracycline (12.1 ppm), or beta-lactam (9.4 ppm) antibiotics. Additionally, limiting DO level in soil was observed to increase the abundance of excision nucleases (uvrA and uvrB), DNA polymerase (polA), catalases (katG), and other oxidative stress response genes (OSGs). This was further evident from major variations occurred in antibiotic efflux genes due to the effect of DO concentration on two human pathogens, namely Salmonella enterica and Shigella sonnei found in all the selected habitats. In conclusion, the microbial community, when challenged with oxidative stress caused by environmental variations in oxygen level, tends to accumulate higher amounts of ARGs with increased dissemination potential through triggering non-lethal mutagenesis. Furthermore, the genetic linkage or co-occurrence of ARGs and MRGs provides evidence for selecting ARGs under high concentrations of heavy metals.
Collapse
Affiliation(s)
- Sakina Bombaywala
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Hemant J Purohit
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India
| | - Nishant A Dafale
- Environmental Biotechnology & Genomics Division, CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur, 4400 20, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
48
|
Slobodiuk S, Niven C, Arthur G, Thakur S, Ercumen A. Does Irrigation with Treated and Untreated Wastewater Increase Antimicrobial Resistance in Soil and Water: A Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:11046. [PMID: 34769568 PMCID: PMC8583129 DOI: 10.3390/ijerph182111046] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 01/21/2023]
Abstract
Population growth and water scarcity necessitate alternative agriculture practices, such as reusing wastewater for irrigation. Domestic wastewater has been used for irrigation for centuries in many historically low-income and arid countries and is becoming more widely used by high-income countries to augment water resources in an increasingly dry climate. Wastewater treatment processes are not fully effective in removing all contaminants, such as antimicrobial resistant bacteria (ARB) and antimicrobial resistance genes (ARGs). Literature reviews on the impact of wastewater irrigation on antimicrobial resistance (AMR) in the environment have been inconclusive and mostly focused on treated wastewater. We conducted the first systematic review to assess the impact of irrigation with both treated or untreated domestic wastewater on ARB and ARGs in soil and adjacent water bodies. We screened titles/abstracts of 3002 articles, out of which 41 were screened in full text and 26 were included in this review. Of these, thirteen investigated irrigation with untreated wastewater, and nine found a positive association with ARB/ARGs in soil. Out of thirteen studies focused on treated wastewater, six found a positive association with ARB/ARGs while six found mixed/negative associations. Our findings demonstrate that irrigation with untreated wastewater increases AMR in soil and call for precautionary action by field workers, their families, and consumers when untreated wastewater is used to irrigate crops. The effect of irrigation with treated wastewater was more variable among the studies included in our review, highlighting the need to better understand to what extent AMR is disseminated through this practice. Future research should assess factors that modify the effect of wastewater irrigation on AMR in soil, such as the degree and type of wastewater treatment, and the duration and intensity of irrigation, to inform guidelines on the reuse of wastewater for irrigation.
Collapse
Affiliation(s)
- Stacy Slobodiuk
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA; (C.N.); (A.E.)
| | - Caitlin Niven
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA; (C.N.); (A.E.)
| | - Greer Arthur
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27695, USA; (G.A.); (S.T.)
| | - Siddhartha Thakur
- Department of Population Health and Pathobiology, North Carolina State University, Raleigh, NC 27695, USA; (G.A.); (S.T.)
| | - Ayse Ercumen
- Department of Forestry and Environmental Resources, North Carolina State University, Raleigh, NC 27695, USA; (C.N.); (A.E.)
| |
Collapse
|
49
|
Wildlife symbiotic bacteria are indicators of the health status of the host and its ecosystem. Appl Environ Microbiol 2021; 88:e0138521. [PMID: 34669453 PMCID: PMC8752132 DOI: 10.1128/aem.01385-21] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactic acid bacteria (LAB) are gut symbionts that can be used as a model to understand the host-microbiota crosstalk under unpredictable environmental conditions such as wildlife ecosystems. The aim of this study was to determine whether viable LAB can be informative of the health status of wild boar populations. We monitored the genotype and phenotype of LAB based on markers that included safety and phylogenetic origin, antibacterial activity and immunomodulatory properties. A LAB profile dominated by lactobacilli appears to stimulate protective immune responses and relates to strains widely used as probiotics, resulting in a potentially healthy wildlife population whereas microbiota overpopulated by enterococci was observed in a hostile environment. These enterococci were closely related to pathogenic strains that have developed mechanisms to evade innate immune system, posing a potential risk for the host health. Furthermore, our LAB isolates displayed antibacterial properties in a species-dependent manner. Nearly all of them were able to inhibit bacterial pathogens, raising the possibility of using them as a la carte antibiotic alternative in the unexplored field of wildlife disease mitigation. Our study highlights that microbiological characterization of LAB is a useful indicator of wildlife health status and the ecological origin from which they derive. Significance Statement The wildlife symbiotic microbiota is an important component to the greater for greater diversity and functionality of their bacterial populations, influencing the host health and adaptability to its ecosystem. Although many microbes are partly responsible for the development of multiple physiological processes, only certain bacterial groups such as lactic acid bacteria (LAB) have the capacity to overpopulate the gut, promoting health (or disease) when specific genetic and environmental conditions are present. LAB have been exploited in many ways due to their probiotic properties, in particular lactobacilli, however their relationship with wildlife gut-associated microbiota hosts remains to be elucidated. On the other hand, it is unclear whether LAB such as enterococci, which have been associated with detrimental health effects, could lead to disease. These important questions have not been properly addressed in the field of wildlife, and therefore, should be clearly attained.
Collapse
|
50
|
Zakaria Z, Hassan L, Ahmad N, Husin SA, Ali RM, Sharif Z, Sohaimi NM, Garba B. Discerning the Antimicrobial Resistance, Virulence, and Phylogenetic Relatedness of Salmonella Isolates Across the Human, Poultry, and Food Materials Sources in Malaysia. Front Microbiol 2021; 12:652642. [PMID: 34531832 PMCID: PMC8438298 DOI: 10.3389/fmicb.2021.652642] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 08/09/2021] [Indexed: 12/15/2022] Open
Abstract
Salmonella enterica subspecies enterica serovar Enteritidis is one of the major foodborne zoonotic pathogens globally. It has significantly impacted human health and global trade. In this investigation, whole-genome sequencing was employed to determine the antimicrobial resistance (AMR) pattern of a collection of Salmonella Enteritidis isolated from humans, poultry, and food sources. The study also investigated the virulence genes profile of the isolates as well as the phylogenetic relationships among strains. Illumina NextSeq technology was used to sequence the genome of 82 Salmonella Enteritidis strains isolated over 3 years (2016-2018) in Peninsular Malaysia. The pattern of resistance showed that tetracycline had the highest frequency (37/82, 45.12%), and isolates from food samples showed the highest rate of 9/18 (50.00%), followed by human 17/35 (48.57%) and then poultry 11/29 (37.93%). The second drug with the highest resistance rate is ampicillin with 5/29 (17.24%) for poultry, 4/35 (11.43%) for human, and 0/18 (0.00%) for food isolates respectively. Similarly, a total of 19 antimicrobial resistance (AMR) genes corresponding to the nine drugs used in the disc diffusion assay were evaluated from the whole genome sequence data. The aminoglycoside resistance gene aac(6')-ly was detected in 79 of the 82 isolates (96.34%). While the phylogenetic analysis revealed distinct lineages isolated, the three sources indicating possible cross-contamination. In conclusion, the results showed that the genomic profile of Salmonella Enteritidis isolated from humans, poultry, and food samples share genetic traits, hence the need to institute measures at controlling the continuous spread of these resistant pathogens.
Collapse
Affiliation(s)
- Zunita Zakaria
- Institute of Bioscience, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Latiffah Hassan
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Norazah Ahmad
- Infectious Diseases Research Centre, Institute for Medical Research, National Institutes of Health, Selangor, Malaysia
| | - Suraya Amir Husin
- Medical Development Division, Ministry of Health, Putrajaya, Malaysia
| | - Rohaya Mohd Ali
- Diagnostic and Quality Assurance Division, Department of Veterinary Services, Ministry of Agriculture and Agro-Based Industry, Putrajaya, Malaysia
| | - Zawiyah Sharif
- Food Safety and Quality Division, Ministry of Health, Selangor, Malaysia
| | - Norfitriah Mohamed Sohaimi
- Department of Veterinary Laboratory Diagnostics, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia
| | - Bashiru Garba
- Department of Veterinary Pathology and Microbiology, Faculty of Veterinary Medicine, Universiti Putra Malaysia, Serdang, Malaysia.,Department of Veterinary Public Health and Preventive Medicine, Faculty of Veterinary Medicine, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|