1
|
Anyanwu MU, Ikenna-Ezeh NH, Okafor SC, Ezemuoka CF, Nwobi OC, Ogunniran TM, Obodoechi LO, Okorie-Kanu OJ, Mgbeahuruike AC, Okosi IR, Jaja IF. Commercial Day-Old Chicks in Nigeria Are Potential Reservoirs of Colistin- and Tigecycline-Resistant Potentially Pathogenic Escherichia coli. Antibiotics (Basel) 2024; 13:1067. [PMID: 39596761 PMCID: PMC11591113 DOI: 10.3390/antibiotics13111067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/07/2024] [Accepted: 11/08/2024] [Indexed: 11/29/2024] Open
Abstract
Background: Frequent use of colistin (COL) and tetracyclines in the Nigerian poultry sector potentially triggers bacterial resistance against COL and tigecycline (TIG), which are last-line antibiotics used to treat multidrug-resistant infections. Aim/Objectives: This study aimed to isolate COL- and TIG-resistant E. coli from commercial day-old chicks distributed to poultry farmers in Nsukka Southeastern Nigeria, assess the production of extended-spectrum β-lactamase (ESBL) and carbapenemase by the isolates, and establish their pathogenic potentials. Materials and Methods: Non-duplicate cloacal swabs were systematically collected from 250 randomly selected day-old chicks. MacConkey agar with 1 µg/mL of COL and 16 µg/mL of tetracycline was used for the isolation of putative COL- and tetracycline-resistant E. coli, respectively. E. coli isolates were confirmed biochemically using the API20E Gram-negative identification kit and molecularly by polymerase chain reaction targeting the uidA gene. Phenotypic COL resistance was established using COL agar and COL disc elution tests, while TIG insusceptibility was determined with disc diffusion. ESBL and carbapenemase production was assessed by double-disc synergy and modified carbapenem inactivation methods, respectively. Pathogenic potentials were determined using phenotypic methods. Results: COL- and TIG-resistant E. coli was recovered from 95 (38.0%) and 62 (24.8%) swabs from the 250 chicks, respectively. None of the isolates were potential ESBL or carbapenemase producers. The COL-resistant isolates displayed pathogenic potentials such as biofilm formation, haemagglutination, cell surface hydrophobicity, surface layer, and gelatinase activities at rates of 30.7%, 8.4%, 33.7%, 23.5%, and 17.6%, respectively. Meanwhile, the TIG-resistant isolates exhibited their respective potentials at rates of 47.0%, 21.0%, 35.5%, 58.1%, and 43.6%. Red, dry, and rough (RDAR) was the predominant curli fimbriae, and the cellulose morphotype portrayed by both the COL- and TIG-unsusceptible potential biofilm-producing isolates. Conclusions: This study demonstrates that a significant percentage of commercial day-old chicks distributed to farmers in Nsukka, southeastern Nigeria, are colonized by potentially pathogenic COL- and TIG-resistant E. coli, which could spread to humans and the environment.
Collapse
Affiliation(s)
- Madubuike Umunna Anyanwu
- Department of Veterinary Microbiology and Immunology, University of Nigeria, Nsukka 400001, Nigeria; (N.H.I.-E.); (C.F.E.); (A.C.M.)
- Department of Biotechnology and Food Technology, Faculty of Science, University of Johannesburg, Johannesburg 2092, South Africa
| | - Nkechi Harriet Ikenna-Ezeh
- Department of Veterinary Microbiology and Immunology, University of Nigeria, Nsukka 400001, Nigeria; (N.H.I.-E.); (C.F.E.); (A.C.M.)
| | | | - Chinaza Francisca Ezemuoka
- Department of Veterinary Microbiology and Immunology, University of Nigeria, Nsukka 400001, Nigeria; (N.H.I.-E.); (C.F.E.); (A.C.M.)
| | - Obichukwu Chisom Nwobi
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria; (O.C.N.); (L.O.O.); (O.J.O.-K.)
| | | | - Lynda Onyinyechi Obodoechi
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria; (O.C.N.); (L.O.O.); (O.J.O.-K.)
| | - Onyinye Josephine Okorie-Kanu
- Department of Veterinary Public Health and Preventive Medicine, University of Nigeria, Nsukka 400001, Nigeria; (O.C.N.); (L.O.O.); (O.J.O.-K.)
| | - Anthony Christian Mgbeahuruike
- Department of Veterinary Microbiology and Immunology, University of Nigeria, Nsukka 400001, Nigeria; (N.H.I.-E.); (C.F.E.); (A.C.M.)
| | | | - Ishmael Festus Jaja
- Department of Livestock and Pasture Science, University of Fort Hare, Alice 5700, South Africa
| |
Collapse
|
2
|
Aramli N, Safarkar R, Shiralipour A, Sadeghi Z. Biofilm formation, antibiotic-resistance and clonal relatedness among clinical isolates of Acinetobacterbaumannii. Microb Pathog 2024; 195:106916. [PMID: 39236969 DOI: 10.1016/j.micpath.2024.106916] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/21/2024] [Accepted: 09/03/2024] [Indexed: 09/07/2024]
Abstract
In this work, the antibiotic resistance, biofilm formation capability, and clonal relatedness of 50 A. baumannii isolates collected from three hospitals in Ardabil city, Iran, were evaluated. Antibiotic sensitivity and biofilm formation of isolates were determined by disk diffusion and microtiter-plate methods, respectively. Molecular typing of isolates was also performed using repetitive sequence-based PCR (REP-PCR). The majority of isolates were resistant to cephems, aminoglycosides, and carbapenems, with 80 % classified as multi-drug resistant (MDR). While, only isolates collected from blood and tracheal were resistant to colistin. Additionally, 42 isolates (84 %) had biofilm formation capability. According to rep-PCR results, 34 isolates showed similar banding patterns, while 16 isolates had unique banding patterns. Finally, based on the molecular analysis, there was a direct relationship between biofilm formation and the antibiotic resistance of isolates. In other words, MDR isolates had a higher ability to form biofilm.
Collapse
Affiliation(s)
- Nima Aramli
- Department of Biology, Islamic Azad University, Ardabil Branch, Ardabil, Iran.
| | - Roya Safarkar
- Department of Biology, Islamic Azad University, Ardabil Branch, Ardabil, Iran
| | - Aref Shiralipour
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Zahra Sadeghi
- Laboratory of Alavi Educational Hospital, Ardabil University of Medical Sciences, Ardabil, Iran
| |
Collapse
|
3
|
Harkova LG, de Dios R, Rubio-Valle A, Pérez-Pulido AJ, McCarthy RR. Cyclic AMP is a global virulence regulator governing inter and intrabacterial signalling in Acinetobacter baumannii. PLoS Pathog 2024; 20:e1012529. [PMID: 39241032 PMCID: PMC11410210 DOI: 10.1371/journal.ppat.1012529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 09/18/2024] [Accepted: 08/22/2024] [Indexed: 09/08/2024] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen with high morbidity and mortality rates. Current treatment options for this pathogen are limited due to its increasing resistance to last-resort antibiotics. Despite A. baumannii's leading position in the World Health Organisations priority pathogens list, little is known about its virulence regulation. Through a high-throughput screening approach to identify novel biofilm regulators, we identified a previously uncharacterised predicted adenylate cyclase (AC), CavA, as a central regulator of this phenotype. cAMP is a crucial mediator of various aspects of bacterial physiology in other species but information about its role in A. baumannii is limited. We confirm that CavA AC is functional and synthesizes cAMP in A. baumannii. Using dRNA-seq, we verify that CavA is a negative biofilm formation regulator affecting Csu pili and exopolysaccharide production. We demonstrate for the first time that in A. baumannii, cAMP is atop of a hierarchical signalling cascade controlling inter- and intrabacterial signalling by modulating quorum sensing and cyclic di-GMP systems, ultimately governing virulence in vivo and adaptive antibiotic resistance. In contrast to the well-established paradigm in other bacteria where cAMP and cyclic di-GMP levels are inversely regulated, we uncover that the levels of these second messengers are directly proportional in A. baumannii. Overall, this study uncovers the central role of CavA and cAMP in the pathogenic success of A. baumannii and highlights this signalling cascade as a high potential target for novel therapeutic development.
Collapse
Affiliation(s)
- Lyuboslava G Harkova
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Rubén de Dios
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| | - Alejandro Rubio-Valle
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Antonio J Pérez-Pulido
- Centro Andaluz de Biología del Desarrollo (CABD-CSIC-JA), Universidad Pablo de Olavide, Sevilla, Spain
| | - Ronan R McCarthy
- Antimicrobial Innovations Centre, Division of Biosciences, Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, United Kingdom
| |
Collapse
|
4
|
Choi CH, Mun S, Oh MH. Identification and characterization of Acinetobacter nosocomialis BfmRS, two-component regulatory system, essential for biofilm development. Genes Genomics 2024; 46:531-539. [PMID: 38507111 DOI: 10.1007/s13258-024-01509-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024]
Abstract
BACKGROUND Biofilm development by bacteria is considered to be an essential stage in the bacterial infection. Acinetobacter nosocomialis is an important nosocomial pathogen causing a variety of human infections. However, characteristics and specific determinants of biofilm development have been poorly characterized in A. nosocomialis. OBJECTIVE The aim of this study was to investigate the factors involved in the biofilm development by A. nosocomialis. METHODS Library of random transposon mutants was constructed using the Tn5 mutagenesis. The mutant strains, in which the ability of biofilm formation was significantly impaired, were screened by gentian violet staining. The roles of BfmR and BfmS were determined by constructing a bfmR and bfmS deletion mutant and analyzing the effects of bfmR and bfmS mutation on the biofilm development and motility of A. nosocomialis. RESULTS We identified a biofilm-defective mutant in which a transposon insertion inactivated an open reading frame encoding the BfmR in a two-component regulatory system consisting of BfmR and BfmS. The bfmR mutant revealed a significant reduction in biofilm formation and motility compared to wild-type strain. Deficiency in the biofilm formation and motility of the bfmR mutant was restored by single copy bfmR complementation. In contrast, the bfmS mutant had no effect on biofilm formation. CONCLUSION A. nosocomialis has a two-component regulatory system, BfmRS. BfmR is a response regulator required for the initial attachment and maturation of biofilm during the biofilm development as well as the bacterial growth. BfmR could be a potential drug target for A. nosocomialis infection.
Collapse
Affiliation(s)
- Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea
| | - Seyoung Mun
- Department of Cosmedical and Materials, Dankook University, Cheonan, 31116, Republic of Korea
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea
- Center for Bio‑Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea
| | - Man Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan, 31116, Republic of Korea.
- Center for Bio‑Medical Engineering Core Facility, Dankook University, Cheonan, 31116, Republic of Korea.
- Smart Animal Bio Institute, Dankook University, Cheonan, 31116, Republic of Korea.
| |
Collapse
|
5
|
Jha NK, Gopu V, Sivasankar C, Singh SR, Devi PB, Murali A, Shetty PH. In vitro and in silico assessment of anti-biofilm and anti-quorum sensing properties of 2,4-Di-tert butylphenol against Acinetobacter baumannii. J Med Microbiol 2024; 73. [PMID: 38506718 DOI: 10.1099/jmm.0.001813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/21/2024] Open
Abstract
Introduction. Acinetobacter baumannii is a nosocomial pathogen with a high potential to cause food-borne infections. It is designated as a critical pathogen by the World Health Organization due to its multi-drug resistance and mortalities reported. Biofilm governs major virulence factors, which promotes drug resistance in A. baumannii. Thus, a compound with minimum selection pressure on the pathogen can be helpful to breach biofilm-related virulence.Hypothesis/Gap Statement. To identify anti-biofilm and anti-virulent metabolites from extracts of wild Mangifera indica (mango) brine pickle bacteria that diminishes pathogenesis and resistance of A. baumannii.Aim. This study reports anti-biofilm and anti-quorum sensing (QS) efficacy of secondary metabolites from bacterial isolates of fermented food origin.Method. Cell-free supernatants (CFS) of 13 bacterial isolates from fermented mango brine pickles were screened for their efficiency in inhibiting biofilm formation and GC-MS was used to identify its metabolites. Anti-biofilm metabolite was tested on early and mature biofilms, pellicle formation, extra polymeric substances (EPS), cellular adherence, motility and resistance of A. baumannii. Gene expression and in silico studies were also carried out to validate the compounds efficacy.Results. CFS of TMP6b identified as Bacillus vallismortis, inhibited biofilm production (83.02 %). Of these, major compound was identified as 2,4-Di-tert-butyl phenol (2,4-DBP). At sub-lethal concentrations, 2,4-DBP disrupted both early and mature biofilm formation. Treatment with 2,4-DBP destructed in situ biofilm formed on glass and plastic. In addition, key virulence traits like pellicle (77.5 %), surfactant (95.3 %), EPS production (3-fold) and cell adherence (65.55 %) reduced significantly. A. baumannii cells treated with 2,4-DBP showed enhanced sensitivity towards antibiotics, oxide radicals and blood cells. Expression of biofilm-concomitant virulence genes like csuA/B, pgaC, pgaA, bap, bfmR, katE and ompA along with QS genes abaI, abaR significantly decreased. The in silico studies further validated the higher binding affinity of 2,4-DBP to the AbaR protein than the cognate ligand molecule.Conclusion. To our knowledge, this is the first report to demonstrate 2,4- DBP has anti-pathogenic potential alone and with antibiotics by in vitro, and in silico studies against A. baumannii. It also indicates its potential use in therapeutics and bio-preservatives.
Collapse
Affiliation(s)
- Nisha Kumari Jha
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Venkadesaperumal Gopu
- Department of Microbiology and Molecular Genetics, Institute of Medical Research Israel-Canada, Hebrew University of Jerusalem, Jerusalem, Israel
| | - Chandran Sivasankar
- Department of Public Health, College of Veterinary Medicine, Jeonbuk National University, Iksan-54596, Republic of Korea
| | - Satya Ranjan Singh
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | - Palanisamy Bruntha Devi
- Department of Food Science and Technology, Pondicherry University, Pondicherry-605014, India
| | - Ayaluru Murali
- Department of Bioinformatics, Pondicherry University, Pondicherry-605014, India
| | | |
Collapse
|
6
|
Moran CL, Debowski A, Vrielink A, Stubbs K, Sarkar-Tyson M. N-acetyl-β-hexosaminidase activity is important for chitooligosaccharide metabolism and biofilm formation in Burkholderia pseudomallei. Environ Microbiol 2024; 26:e16571. [PMID: 38178319 DOI: 10.1111/1462-2920.16571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 12/18/2023] [Indexed: 01/06/2024]
Abstract
Burkholderia pseudomallei is a saprophytic Gram-negative bacillus that can cause the disease melioidosis. Although B. pseudomallei is a recognised member of terrestrial soil microbiomes, little is known about its contribution to the saprophytic degradation of polysaccharides within its niche. For example, while chitin is predicted to be abundant within terrestrial soils the chitinolytic capacity of B. pseudomallei is yet to be defined. This study identifies and characterises a putative glycoside hydrolase, bpsl0500, which is expressed by B. pseudomallei K96243. Recombinant BPSL0500 was found to exhibit activity against substrate analogues and GlcNAc disaccharides relevant to chitinolytic N-acetyl-β-d-hexosaminidases. In B. pseudomallei, bpsl0500 was found to be essential for both N-acetyl-β-d-hexosaminidase activity and chitooligosaccharide metabolism. Furthermore, bpsl0500 was also observed to significantly affect biofilm deposition. These observations led to the identification of BPSL0500 activity against model disaccharide linkages that are present in biofilm exopolysaccharides, a feature that has not yet been described for chitinolytic enzymes. The results in this study indicate that chitinolytic N-acetyl-β-d-hexosaminidases like bpsl0500 may facilitate biofilm disruption as well as chitin assimilation, providing dual functionality for saprophytic bacteria such as B. pseudomallei within the competitive soil microbiome.
Collapse
Affiliation(s)
- Clare L Moran
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Aleksandra Debowski
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| | - Alice Vrielink
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
| | - Keith Stubbs
- School of Molecular Sciences, The University of Western Australia, Crawley, Australia
- ARC Training Centre for Next-Gen Technologies in Biomedical Analysis, School of Molecular Sciences, University of Western Australia, Crawley, Australia
| | - Mitali Sarkar-Tyson
- Marshall Centre for Infectious Disease Research and Training, School of Biomedical Sciences, The University of Western Australia, Nedlands, Australia
| |
Collapse
|
7
|
Li Y, Zhang B, Liu X, Wan H, Qin Y, Yan H, Wang Y, An Y, Yang Y, Dai Y, Yang L, Wang Y. A bio-inspired nanoparticle coating for vascular healing and immunomodulatory by cGMP-PKG and NF-kappa B signaling pathways. Biomaterials 2023; 302:122288. [PMID: 37677917 DOI: 10.1016/j.biomaterials.2023.122288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Revised: 07/25/2023] [Accepted: 08/18/2023] [Indexed: 09/09/2023]
Abstract
Drug-eluting stents (DESs) implantation is an effective method to tackle in-stent restenosis (ISR), which has been considered as an efficient treatment for coronary atherosclerosis. Although fruitful results have been achieved in treating coronary artery diseases (CAD), concern has arisen regarding the long-term safety and efficacy of DESs, primarily due to adverse events such as delayed re-endothelialization, persistent inflammatory response, and late stent thrombosis (LST). Taking inspiration from the immunomodulatory functions of camouflage strategies, this study designed a bio-inspired nanoparticle-coated stent. Briefly, the platelet membrane-coated poly (lactic-co-glycolic acid)/Rapamycin nanoparticles (PNP) were sprayed onto stents, forming a homogenous nanoparticle coating. The bilayer of poly (lactic-co-glycolic acid) (PLGA) and platelet membrane works synergistically to promote the sustained-release effect of rapamycin. In vitro studies revealed that the PNP-coated surfaces promoted the competitive adhesion of endothelia cells while inhibiting smooth muscle cells. Subsequent in vivo studies demonstrated that these surfaces expedite re-endothelialization and elicit immunomodulatory effects by regulating the cGMP-PKG and NF-kappa B signaling pathways, influencing the biosynthesis cofactors and immune system signaling. The study successfully deviced a novel and biomimetic drug-eluting stent system, unraveling its detailed functions and molecular mechanism of action for enhanced vascular healing.
Collapse
Affiliation(s)
- Yanyan Li
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Bo Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Xiyu Liu
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Huining Wan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yumei Qin
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Hui Yan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yu Wang
- Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Yongqi An
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yuan Yang
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Yan Dai
- Sichuan Xingtai Pule Medical Technology Co Ltd, Chengdu, Sichuan, 610045, China
| | - Li Yang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, Sichuan, 610065, China.
| |
Collapse
|
8
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Comparative Transcriptomic Profiling of Pellicle and Planktonic Cells from Carbapenem-Resistant Acinetobacter baumannii. Antibiotics (Basel) 2023; 12:1185. [PMID: 37508281 PMCID: PMC10375965 DOI: 10.3390/antibiotics12071185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2023] [Revised: 06/24/2023] [Accepted: 07/06/2023] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii forms air-liquid interface pellicles that boost its ability to withstand desiccation and increase survival under antibiotic pressure. This study aims to delve into the transcriptomic profiles of pellicle cells from clinical strains of carbapenem-resistant A. baumannii (CRAB). The total RNA was extracted from pellicle cells from three pellicle-forming CRAB strains and planktonic cells from three non-pellicle-forming CRAB strains, subject to RNA sequencing using Illumina HiSeq 2500 system. A transcriptomic analysis between pellicle and planktonic cells, along with differential expression genes (DEGs) analysis and enrichment analysis of annotated COGs, GOs, and KEGGs, was performed. Our analysis identified 366 DEGs in pellicle cells: 162 upregulated genes and 204 downregulated genes. The upregulated ABUW_1624 (yiaY) gene and downregulated ABUW_1550 gene indicated potential involvement in fatty acid degradation during pellicle formation. Another upregulated ABUW_2820 (metQ) gene, encoding the D-methionine transporter system, hinted at its contribution to pellicle formation. The upregulation of two-component systems, CusSR and KdpDE, which implies the regulation of copper and potassium ions in a CRAB pellicle formation was also observed. These findings provide valuable insights into the regulation of gene expression during the formation of pellicles in CRAB, and these are potential targets that may aid in the eradication of CRAB infections.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
| |
Collapse
|
9
|
Kim B, Gurung S, Han SR, Lee JH, Oh TJ. Comparative Genomic Analysis of Biofilm-Forming Polar Microbacterium sp. Strains PAMC22086 and PAMC21962 Isolated from Extreme Habitats. Microorganisms 2023; 11:1757. [PMID: 37512929 PMCID: PMC10384088 DOI: 10.3390/microorganisms11071757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 06/28/2023] [Accepted: 06/29/2023] [Indexed: 07/30/2023] Open
Abstract
The members of Microbacterium isolated from different environments are known to form peptidoglycan. In this study, we compared the biofilm-forming abilities of Microbacterium sp. PAMC22086 (PAMC22086), which was isolated from the soil in the South Shetland Islands and Microbacterium sp. PAMC21962 (PAMC21962), which was isolated from algae in the South Shetland Islands. The analysis of average nucleotide identity and phylogeny of PAMC22086 revealed a 97% similarity to Microbacterium oxydans VIU2A, while PAMC21962 showed a 99.1% similarity to Microbacterium hominis SGAir0570. For the comparative genomic analysis of PAMC22086 and PAMC21962, the genes related to biofilm formation were identified using EggNOG and KEGG pathway databases. The genes possessed by both PAMC22086 and PAMC21962 are cpdA, phnB, rhlC, and glgC, which regulate virulence, biofilm formation, and multicellular structure. Among the genes indirectly involved in biofilm formation, unlike PAMC21962, PAMC22086 possessed csrA, glgC, and glgB, which are responsible for attachment and glycogen biosynthesis. Additionally, in PAMC22086, additional functional genes rsmA, which is involved in mobility and polysaccharide production, and dksA, GTPase, and oxyR, which play roles in cell cycle and stress response, were identified. In addition, the biofilm-forming ability of the two isolates was examined in vivo using the standard crystal violet staining technique, and morphological differences in the biofilm were investigated. It is evident from the different distribution of biofilm-associated genes between the two strains that the bacteria can survive in different niches by employing distinct strategies. Both strains exhibit distinct morphologies. PAMC22086 forms a biofilm that attaches to the side, while PAMC21962 indicates growth starting from the center. The biofilm formation-related genes in Microbacterium are not well understood. However, it has been observed that Microbacterium species form biofilm regardless of the number of genes they possess. Through comparison between different Microbacterium species, it was revealed that specific core genes are involved in cell adhesion, which plays a crucial role in biofilm formation. This study provides a comprehensive profile of the Microbacterium genus's genomic features and a preliminary understanding of biofilm in this genus, laying the foundation for further research.
Collapse
Affiliation(s)
- Byeollee Kim
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - Saru Gurung
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
| | - So-Ra Han
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
| | - Jun-Hyuck Lee
- Research Unit of Cryogenic Novel Materials, Korea Polar Research Institute, Incheon 21990, Republic of Korea
| | - Tae-Jin Oh
- Department of Life Science and Biochemical Engineering, SunMoon University, Asan 31460, Republic of Korea
- Bio Big Data-Based Chungnam Smart Clean Research Leader Training Program, SunMoon University, Asan 31460, Republic of Korea
- Genome-Based BioIT Convergence Institute, Asan 31460, Republic of Korea
- Department of Pharmaceutical Engineering and Biotechnology, SunMoon University, Asan 31460, Republic of Korea
| |
Collapse
|
10
|
Iruegas R, Pfefferle K, Göttig S, Averhoff B, Ebersberger I. Feature architecture aware phylogenetic profiling indicates a functional diversification of type IVa pili in the nosocomial pathogen Acinetobacter baumannii. PLoS Genet 2023; 19:e1010646. [PMID: 37498819 PMCID: PMC10374093 DOI: 10.1371/journal.pgen.1010646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 06/06/2023] [Indexed: 07/29/2023] Open
Abstract
The Gram-negative bacterial pathogen Acinetobacter baumannii is a major cause of hospital-acquired opportunistic infections. The increasing spread of pan-drug resistant strains makes A. baumannii top-ranking among the ESKAPE pathogens for which novel routes of treatment are urgently needed. Comparative genomics approaches have successfully identified genetic changes coinciding with the emergence of pathogenicity in Acinetobacter. Genes that are prevalent both in pathogenic and a-pathogenic Acinetobacter species were not considered ignoring that virulence factors may emerge by the modification of evolutionarily old and widespread proteins. Here, we increased the resolution of comparative genomics analyses to also include lineage-specific changes in protein feature architectures. Using type IVa pili (T4aP) as an example, we show that three pilus components, among them the pilus tip adhesin ComC, vary in their Pfam domain annotation within the genus Acinetobacter. In most pathogenic Acinetobacter isolates, ComC displays a von Willebrand Factor type A domain harboring a finger-like protrusion, and we provide experimental evidence that this finger conveys virulence-related functions in A. baumannii. All three genes are part of an evolutionary cassette, which has been replaced at least twice during A. baumannii diversification. The resulting strain-specific differences in T4aP layout suggests differences in the way how individual strains interact with their host. Our study underpins the hypothesis that A. baumannii uses T4aP for host infection as it was shown previously for other pathogens. It also indicates that many more functional complexes may exist whose precise functions have been adjusted by modifying individual components on the domain level.
Collapse
Affiliation(s)
- Ruben Iruegas
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Katharina Pfefferle
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | - Beate Averhoff
- Molecular Microbiology & Bioenergetics, Institute of Molecular Biosciences, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIK-F), Frankfurt am Main, Germany
- LOEWE Centre for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
| |
Collapse
|
11
|
Ng HK, Puah SM, Teh CSJ, Idris N, Chua KH. Characterisation of pellicle-forming ability in clinical carbapenem-resistant Acinetobacter baumannii. PeerJ 2023; 11:e15304. [PMID: 37214089 PMCID: PMC10194081 DOI: 10.7717/peerj.15304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 04/06/2023] [Indexed: 05/24/2023] Open
Abstract
Background Acinetobacter baumannii was reported to have resistance towards carbapenems and the ability to form an air-liquid biofilm (pellicle) which contributes to their virulence. The GacSA two-component system has been previously shown to play a role in pellicle formation. Therefore, this study aims to detect the presence of gacA and gacS genes in carbapenem-resistant Acinetobacter baumannii (CRAB) isolates recovered from patients in intensive care units and to investigate their pellicle forming ability. Methods The gacS and gacA genes were screened in 96 clinical CRAB isolates using PCR assay. Pellicle formation assay was performed in Mueller Hinton medium and Luria Bertani medium using borosilicate glass tubes and polypropylene plastic tubes. The biomass of the pellicle was quantitated using the crystal violet staining assay. The selected isolates were further assessed for their motility using semi-solid agar and monitored in real-time using real-time cell analyser (RTCA). Results All 96 clinical CRAB isolates carried the gacS and gacA genes, however, only four isolates (AB21, AB34, AB69 and AB97) displayed the ability of pellicle-formation phenotypically. These four pellicle-forming isolates produced robust pellicles in Mueller Hinton medium with better performance in borosilicate glass tubes in which biomass with OD570 ranging from 1.984 ± 0.383 to 2.272 ± 0.376 was recorded. The decrease in cell index starting from 13 hours obtained from the impedance-based RTCA showed that pellicle-forming isolates had entered the growth stage of pellicle development. Conclusion These four pellicle-forming clinical CRAB isolates could be potentially more virulent, therefore further investigation is warranted to provide insights into their pathogenic mechanisms.
Collapse
Affiliation(s)
- Heng Kang Ng
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Suat Moi Puah
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Cindy Shuan Ju Teh
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Nuryana Idris
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Kek Heng Chua
- Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| |
Collapse
|
12
|
Porous Pellicle Formation of a Filamentous Bacterium, Leptothrix. Appl Environ Microbiol 2022; 88:e0134122. [PMID: 36416549 PMCID: PMC9746318 DOI: 10.1128/aem.01341-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
The bacterium Leptothrix cholodnii generates filaments encased in a sheath comprised of woven nanofibrils. In static liquid culture, L. cholodnii moves toward the air-liquid interface, where it forms porous pellicles. Observations of aggregation at the interface reveal that clusters consisting of only a few bacteria primarily grow by netting free cells. These growing clusters hierarchically enlarge through the random docking of other small clusters. We find that the bacteria swim using their polar flagellum toward the interface, where their sheath assists them in intertwining with others and thereby promotes the formation of small clusters. In contrast, sheathless hydrophobic mutant cells get stuck to the interface. We find that the nanofibril sheath is vital for robust pellicle formation as it lowers cell surface hydrophobicity by 60%, thereby reducing their adsorption and enabling cells to move toward and stick together at the air-liquid interface. IMPORTANCE Efficient and sustainable management of water resources is becoming a fundamental issue for supporting growing populations and for developing economic activity. Fundamental to this management is the treatment of wastewater. Microorganisms are the active component of activated sludge that is employed in the biodegradation process of many wastewater treatment facilities. However, uncontrolled growth of filamentous bacteria such as Sphaerotilus often results in filamentous bulking, lowering the efficiency of water treatment systems. To prevent this undesirable condition, strategies based on a fundamental understanding of the ecology of filamentous bacteria are required. Although the filamentous bacterium Leptothrix cholodnii, which is closely related to Sphaerotilus, is a minor inhabitant of activated sludge, its complete genome sequence is known, making gene manipulation relatively easy. Moreover, L. cholodnii generates porous pellicles under static conditions, which may be a characteristic of filamentous bulking. We show that both swimming motility and nanofibril-mediated air-liquid interface attachment are required for porous pellicle formation. These insights are critical for a better understanding of the characteristics of filamentous bulking and might improve strategies to control activated sludge.
Collapse
|
13
|
Ramezanalizadeh F, Rasooli I, Owlia P, Darvish Alipour Astaneh S, Abdolhamidi R. Vaccination with a combination of planktonic and biofilm virulence factors confers protection against carbapenem-resistant Acinetobacter baumannii strains. Sci Rep 2022; 12:19909. [PMID: 36402866 PMCID: PMC9675771 DOI: 10.1038/s41598-022-24163-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/10/2022] [Indexed: 11/21/2022] Open
Abstract
Acinetobacter baumannii is a multi-drug resistant pathogen with the ability to switch between planktonic and biofilm phenotypes. Although there is no vaccine against A. baumannii infections, many attempts have been made to develop vaccines using planktonic or biofilm antigens. To cover the different phenotypes of A. baumannii during growth and attachment, we combined planktonic upregulated antigens of iron receptors with biofilm upregulated antigens of pilus rods and evaluated immune responses and protective efficacies of the combined vaccine using lethal and sub-lethal murine sepsis models. The results showed that the combined vaccine elicited high IgG antibody titers and conferred protection against lethal doses of two Carbapenem-resistant high adherent A. baumannii strains. Complete bacterial clearance from all the affected tissues of the mice challenged with A. baumannii was an excellent achievement with our quadrivalent immunogen. These results demonstrate both planktonic and biofilm antigens are important during antigen selection for vaccine design.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran.
- Department of Biology, Molecular Microbiology Research Center, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran.
| | - Parviz Owlia
- Department of Biology, Molecular Microbiology Research Center, Shahed University, Tehran-Qom Express Way, Tehran, 3319118651, Iran
| | - Shakiba Darvish Alipour Astaneh
- Department of Biotechnology, Semnan University, Central Administration of Semnan University, Campus 1, P.O. Box 35131-19111, Semnan, Islamic Republic of Iran
| | | |
Collapse
|
14
|
Kim HJ, Kim NY, Ko SY, Park SY, Oh MH, Shin MS, Lee YC, Lee JC. Complementary Regulation of BfmRS Two-Component and AbaIR Quorum Sensing Systems to Express Virulence-Associated Genes in Acinetobacter baumannii. Int J Mol Sci 2022; 23:13136. [PMID: 36361923 PMCID: PMC9657202 DOI: 10.3390/ijms232113136] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/22/2022] [Accepted: 10/26/2022] [Indexed: 09/22/2023] Open
Abstract
Acinetobacter baumannii expresses various virulence factors to adapt to hostile environments and infect susceptible hosts. This study investigated the regulatory network of the BfmRS two-component and AbaIR quorum sensing (QS) systems in the expression of virulence-associated genes in A. baumannii ATCC 17978. The ΔbfmS mutant exhibited a significant decrease in surface motility, which presumably resulted from the low expression of pilT and A1S_0112-A1S_0119 gene cluster. The ΔbfmR mutant displayed a significant reduction in biofilm and pellicle formation due to the low expression of csu operon. The deletion of abaR did not affect the expression of bfmR or bfmS. However, the expression of abaR and abaI was upregulated in the ΔbfmR mutant. The ΔbfmR mutant also produced more autoinducers than did the wild-type strain, suggesting that BfmR negatively regulates the AbaIR QS system. The ΔbfmS mutant exhibited no autoinducer production in the bioassay system. The expression of the A1S_0112-A1S_0119 gene cluster was downregulated in the ΔabaR mutant, whereas the expression of csu operon was upregulated in this mutant with a high cell density. In conclusion, for the first time, we demonstrated that the BfmRS-AbaIR QS system axis regulated the expression of virulence-associated genes in A. baumannii. This study provides new insights into the complex network system involved in the regulation of virulence-associated genes underlying the pathogenicity of A. baumannii.
Collapse
Affiliation(s)
- Hyo-Jeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Na-Yeong Kim
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Seo-Yeon Ko
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Seong-Yong Park
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Man-Hwan Oh
- Department of Microbiology, College of Science and Technology, Dankook University, Cheonan 16890, Korea
| | - Min-Sang Shin
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Yoo-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| | - Je-Chul Lee
- Department of Microbiology, School of Medicine, Kyungpook National University, Daegu 41944, Korea
| |
Collapse
|
15
|
Djahanschiri B, Di Venanzio G, Distel JS, Breisch J, Dieckmann MA, Goesmann A, Averhoff B, Göttig S, Wilharm G, Feldman MF, Ebersberger I. Evolutionarily stable gene clusters shed light on the common grounds of pathogenicity in the Acinetobacter calcoaceticus-baumannii complex. PLoS Genet 2022; 18:e1010020. [PMID: 35653398 PMCID: PMC9162365 DOI: 10.1371/journal.pgen.1010020] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 04/04/2022] [Indexed: 11/19/2022] Open
Abstract
Nosocomial pathogens of the Acinetobacter calcoaceticus-baumannii (ACB) complex are a cautionary example for the world-wide spread of multi- and pan-drug resistant bacteria. Aiding the urgent demand for novel therapeutic targets, comparative genomics studies between pathogens and their apathogenic relatives shed light on the genetic basis of human-pathogen interaction. Yet, existing studies are limited in taxonomic scope, sensing of the phylogenetic signal, and resolution by largely analyzing genes independent of their organization in functional gene clusters. Here, we explored more than 3,000 Acinetobacter genomes in a phylogenomic framework integrating orthology-based phylogenetic profiling and microsynteny conservation analyses. We delineate gene clusters in the type strain A. baumannii ATCC 19606 whose evolutionary conservation indicates a functional integration of the subsumed genes. These evolutionarily stable gene clusters (ESGCs) reveal metabolic pathways, transcriptional regulators residing next to their targets but also tie together sub-clusters with distinct functions to form higher-order functional modules. We shortlisted 150 ESGCs that either co-emerged with the pathogenic ACB clade or are preferentially found therein. They provide a high-resolution picture of genetic and functional changes that coincide with the manifestation of the pathogenic phenotype in the ACB clade. Key innovations are the remodeling of the regulatory-effector cascade connecting LuxR/LuxI quorum sensing via an intermediate messenger to biofilm formation, the extension of micronutrient scavenging systems, and the increase of metabolic flexibility by exploiting carbon sources that are provided by the human host. We could show experimentally that only members of the ACB clade use kynurenine as a sole carbon and energy source, a substance produced by humans to fine-tune the antimicrobial innate immune response. In summary, this study provides a rich and unbiased set of novel testable hypotheses on how pathogenic Acinetobacter interact with and ultimately infect their human host. It is a comprehensive resource for future research into novel therapeutic strategies. The spread of multi- and pan-drug resistant bacterial pathogens is a worldwide threat to human health. Understanding the genetics of host colonization and infection can substantially help in devising novel ways of treatment. Acinetobacter baumannii, a nosocomial pathogen ranked top by the World Health Organization in the list of bacteria for which novel therapeutic approaches are needed, is a prime example. Here, we have carved out the genetic make-up that distinguishes A. baumannii and its pathogenic next relatives from other and mostly apathogenic Acinetobacter species. We found a rich spectrum of pathways and regulatory modules that reveal how the pathogens have modified biofilm formation, iron scavenging, and their carbohydrate metabolism to adapt to their human host. Among these, the capability to metabolize kynurenine is particularly intriguing. Humans produce this substance to contain bacterial invaders and to fine-tune the innate immune response. But A. baumannii and closely related pathogens found a way to feed on kynurenine. This suggests that the pathogens might be able to dysregulate the human immune response. In summary, our study substantially deepens the understanding of how a highly critical pathogen interacts with its host, which substantially eases the identification of novel targets for innovative therapeutic strategies.
Collapse
Affiliation(s)
- Bardya Djahanschiri
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Gisela Di Venanzio
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jesus S. Distel
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Jennifer Breisch
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | | | - Alexander Goesmann
- Bioinformatics and Systems Biology, Justus Liebig University Gießen, Gießen, Germany
| | - Beate Averhoff
- Inst. of Molecular Biosciences, Department of Molecular Microbiology and Bioenergetics, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Stephan Göttig
- Institute for Medical Microbiology and Infection Control, University Hospital, Goethe University, Frankfurt, Germany
| | | | - Mario F. Feldman
- Department of Molecular Microbiology, Washington University School of Medicine, St Louis, Missouri, United States of America
| | - Ingo Ebersberger
- Applied Bioinformatics Group, Inst. of Cell Biology and Neuroscience, Goethe University Frankfurt, Frankfurt am Main, Germany
- Senckenberg Biodiversity and Climate Research Centre (S-BIKF), Frankfurt am Main, Germany
- LOEWE Center for Translational Biodiversity Genomics (TBG), Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|
16
|
The StkSR Two-Component System Influences Colistin Resistance in Acinetobacter baumannii. Microorganisms 2022; 10:microorganisms10050985. [PMID: 35630428 PMCID: PMC9146086 DOI: 10.3390/microorganisms10050985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/13/2022] [Accepted: 04/22/2022] [Indexed: 01/27/2023] Open
Abstract
Acinetobacter baumannii is an opportunistic human pathogen responsible for numerous severe nosocomial infections. Genome analysis on the A. baumannii clinical isolate 04117201 revealed the presence of 13 two-component signal transduction systems (TCS). Of these, we examined the putative TCS named here as StkSR. The stkR response regulator was deleted via homologous recombination and its progeny, ΔstkR, was phenotypically characterized. Antibiogram analyses of ΔstkR cells revealed a two-fold increase in resistance to the clinically relevant polymyxins, colistin and polymyxin B, compared to wildtype. PAGE-separation of silver stained purified lipooligosaccharide isolated from ΔstkR and wildtype cells ruled out the complete loss of lipooligosaccharide as the mechanism of colistin resistance identified for ΔstkR. Hydrophobicity analysis identified a phenotypical change of the bacterial cells when exposed to colistin. Transcriptional profiling revealed a significant up-regulation of the pmrCAB operon in ΔstkR compared to the parent, associating these two TCS and colistin resistance. These results reveal that there are multiple levels of regulation affecting colistin resistance; the suggested ‘cross-talk’ between the StkSR and PmrAB two-component systems highlights the complexity of these systems.
Collapse
|
17
|
Roy S, Chowdhury G, Mukhopadhyay AK, Dutta S, Basu S. Convergence of Biofilm Formation and Antibiotic Resistance in Acinetobacter baumannii Infection. Front Med (Lausanne) 2022; 9:793615. [PMID: 35402433 PMCID: PMC8987773 DOI: 10.3389/fmed.2022.793615] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/31/2022] [Indexed: 07/30/2023] Open
Abstract
Acinetobacter baumannii (A. baumannii) is a leading cause of nosocomial infections as this pathogen has certain attributes that facilitate the subversion of natural defenses of the human body. A. baumannii acquires antibiotic resistance determinants easily and can thrive on both biotic and abiotic surfaces. Different resistance mechanisms or determinants, both transmissible and non-transmissible, have aided in this victory over antibiotics. In addition, the propensity to form biofilms (communities of organism attached to a surface) allows the organism to persist in hospitals on various medical surfaces (cardiac valves, artificial joints, catheters, endotracheal tubes, and ventilators) and also evade antibiotics simply by shielding the bacteria and increasing its ability to acquire foreign genetic material through lateral gene transfer. The biofilm formation rate in A. baumannii is higher than in other species. Recent research has shown how A. baumannii biofilm-forming capacity exerts its effect on resistance phenotypes, development of resistome, and dissemination of resistance genes within biofilms by conjugation or transformation, thereby making biofilm a hotspot for genetic exchange. Various genes control the formation of A. baumannii biofilms and a beneficial relationship between biofilm formation and "antimicrobial resistance" (AMR) exists in the organism. This review discusses these various attributes of the organism that act independently or synergistically to cause hospital infections. Evolution of AMR in A. baumannii, resistance mechanisms including both transmissible (hydrolyzing enzymes) and non-transmissible (efflux pumps and chromosomal mutations) are presented. Intrinsic factors [biofilm-associated protein, outer membrane protein A, chaperon-usher pilus, iron uptake mechanism, poly-β-(1, 6)-N-acetyl glucosamine, BfmS/BfmR two-component system, PER-1, quorum sensing] involved in biofilm production, extrinsic factors (surface property, growth temperature, growth medium) associated with the process, the impact of biofilms on high antimicrobial tolerance and regulation of the process, gene transfer within the biofilm, are elaborated. The infections associated with colonization of A. baumannii on medical devices are discussed. Each important device-related infection is dealt with and both adult and pediatric studies are separately mentioned. Furthermore, the strategies of preventing A. baumannii biofilms with antibiotic combinations, quorum sensing quenchers, natural products, efflux pump inhibitors, antimicrobial peptides, nanoparticles, and phage therapy are enumerated.
Collapse
Affiliation(s)
- Subhasree Roy
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Goutam Chowdhury
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Asish K. Mukhopadhyay
- Division of Molecular Microbiology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Shanta Dutta
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Sulagna Basu
- Division of Bacteriology, Indian Council of Medical Research (ICMR)-National Institute of Cholera and Enteric Diseases, Kolkata, India
| |
Collapse
|
18
|
Yin B, Lin X, Wang T, Liu L. Detailed Characterization of Antipathogenic Properties of Human Milk N-Glycome, against Staphylococcus aureus, Indicating Its Targeting on Cell Surface Proteins. ACS Infect Dis 2022; 8:635-644. [PMID: 35132860 DOI: 10.1021/acsinfecdis.1c00652] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Human milk N-glycome was previously identified to have strong antipathogenic activities. This study is aimed to characterize the detailed antibacterial properties and the potential function mechanism of human milk N-glycome against Staphylococcus aureus. A serials of traditional antibacterial assays showed that human milk N-glycome possessed both bacteriostatic and bactericidal activities, which was further confirmed by the cell structure disruption including the change of transmembrane potential and leakage of intracellular contents. The results of the bacterial surface zeta potential and hydrophobicity, bacterial binding assay, gel shift assay, and fluorescence spectra and the different synergistic effects of human milk N-glycome combined with different antibiotics indicated that the bacterial surface proteins could be the targets of human milk N-glycome. Moreover, human milk N-glycome also showed antibiofilm activity. In conclusion, human milk N-glycome exhibited good potential for acting as an antibacterial substance against S. aureus and the antibacterial mechanism was a cell surface targeting action.
Collapse
Affiliation(s)
- Binru Yin
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Xisha Lin
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Ting Wang
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| | - Li Liu
- Glycomics and Glycan Bioengineering Research Center (GGBRC), College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
- Jiangsu Collaborative Innovation Center of Meat Production, Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, Jiangsu 210095, China
| |
Collapse
|
19
|
The Molecular Basis of Acinetobacter baumannii Cadmium Toxicity and Resistance. Appl Environ Microbiol 2021; 87:e0171821. [PMID: 34495707 DOI: 10.1128/aem.01718-21] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Acinetobacter species are ubiquitous Gram-negative bacteria that can be found in water, in soil, and as commensals of the human skin. The successful inhabitation of Acinetobacter species in diverse environments is primarily attributable to the expression of an arsenal of stress resistance determinants, which includes an extensive repertoire of metal ion efflux systems. Metal ion homeostasis in the hospital pathogen Acinetobacter baumannii contributes to pathogenesis; however, insights into its metal ion transporters for environmental persistence are lacking. Here, we studied the impact of cadmium stress on A. baumannii. Our functional genomics and independent mutant analyses revealed a primary role for CzcE, a member of the cation diffusion facilitator (CDF) superfamily, in resisting cadmium stress. We also show that the CzcCBA heavy metal efflux system contributes to cadmium efflux. Collectively, these systems provide A. baumannii with a comprehensive cadmium translocation pathway from the cytoplasm to the periplasm and subsequently the extracellular space. Furthermore, analysis of the A. baumannii metallome under cadmium stress showed zinc depletion, as well as copper enrichment, both of which are likely to influence cellular fitness. Overall, this work provides new knowledge on the role of a broad arsenal of membrane transporters in A. baumannii metal ion homeostasis. IMPORTANCE Cadmium toxicity is a widespread problem, yet the interaction of this heavy metal with biological systems is poorly understood. Some microbes have evolved traits to proactively counteract cadmium toxicity, including Acinetobacter baumannii, which is notorious for persisting in harsh environments. Here, we show that A. baumannii utilizes a dedicated cadmium efflux protein in concert with a system that is primarily attuned to zinc efflux to efficiently overcome cadmium stress. The molecular characterization of A. baumannii under cadmium stress revealed how active cadmium efflux plays a key role in preventing the dysregulation of bacterial metal ion homeostasis, which appeared to be a primary means by which cadmium exerts toxicity upon the bacterium.
Collapse
|
20
|
Ibrahim S, Al-Saryi N, Al-Kadmy IMS, Aziz SN. Multidrug-resistant Acinetobacter baumannii as an emerging concern in hospitals. Mol Biol Rep 2021; 48:6987-6998. [PMID: 34460060 PMCID: PMC8403534 DOI: 10.1007/s11033-021-06690-6] [Citation(s) in RCA: 126] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/24/2021] [Indexed: 02/07/2023]
Abstract
Acinetobacter baumannii has become a major concern for scientific attention due to extensive antimicrobial resistance. This resistance causes an increase in mortality rate because strains resistant to antimicrobial agents are a major challenge for physicians and healthcare workers regarding the eradication of either hospital or community-based infections. These strains with emerging resistance are a serious issue for patients in the intensive care unit (ICU). Antibiotic resistance has increased because of the acquirement of mobile genetic elements such as transposons, plasmids, and integrons and causes the prevalence of multidrug resistance strains (MDR). In addition, an increase in carbapenem resistance, which is used as last line antibiotic treatment to eliminate infections with multidrug-resistant Gram-negative bacteria, is a major concern. Carbapenems resistant A. baumannii (CR-Ab) is a worldwide problem. Because these strains are often resistant to all other commonly used antibiotics. Therefore, pathogenic multi-drug resistance A. baumannii (MDR-Ab) associated infections become hard to eradicate. Plasmid-mediated resistance causes outbreaks of extensive drug-resistant. A. baumannii (XDR-Ab). In addition, recent outbreaks relating to livestock and community settings illustrate the existence of large MDR-Ab strain reservoirs within and outside hospital settings. The purpose of this review, proper monitoring, prevention, and treatment are required to control (XDR-Ab) infections. Attachment, the formation of biofilms and the secretion of toxins, and low activation of inflammatory responses are mechanisms used by pathogenic A. baumannii strain. This review will discuss some aspects associated with antibiotics resistance in A. baumannii as well as cover briefly phage therapy as an alternative therapeutic treatment.
Collapse
Affiliation(s)
- Susan Ibrahim
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Nadal Al-Saryi
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| | - Israa M S Al-Kadmy
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq.
| | - Sarah Naji Aziz
- Branch of Biotechnology, Department of Biology, College of Science, Mustansiriyah University, POX 10422, Baghdad, Iraq
| |
Collapse
|
21
|
Milani ES, Hasani A, Varschochi M, Sadeghi J, Memar MY, Hasani A. Biocide resistance in Acinetobacter baumannii: appraising the mechanisms. J Hosp Infect 2021; 117:135-146. [PMID: 34560167 DOI: 10.1016/j.jhin.2021.09.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/14/2021] [Accepted: 09/15/2021] [Indexed: 11/17/2022]
Abstract
A global upsurge in antibiotic-resistant Acinetobacter baumannii requires supervised selection of biocides and disinfectants to avert nosocomial infections by reducing its spread. Moreover, inadequate and improper biocides have been reported as a contributing factor in antimicrobial resistance. Regardless of the manner of administration, a biocidal concentration that does not kill the target bacteria creates a stress response, propagating the resistance mechanisms. This is an essential aspect of the disinfection programme and the overall bio-contamination management plan. Knowing the mechanisms of action of biocides and resistance modalities may open new avenues to discover novel agents. This review describes the mechanisms of action of some biocides, resistance mechanisms, and approaches to study susceptibility/resistance to these agents.
Collapse
Affiliation(s)
- E S Milani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran; Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran; Clinical Research Development Unit, Sina Educational, Research and Treatment Centre, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - M Varschochi
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - J Sadeghi
- Department of Microbiology, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - M Y Memar
- Infectious and Tropical Diseases Research Centre, Tabriz University of Medical Sciences, Tabriz, Iran
| | - A Hasani
- Department of Clinical Biochemistry and Laboratory Sciences, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
22
|
Antibiofilm and antivirulence potential of silver nanoparticles against multidrug-resistant Acinetobacter baumannii. Sci Rep 2021; 11:10751. [PMID: 34031472 PMCID: PMC8144575 DOI: 10.1038/s41598-021-90208-4] [Citation(s) in RCA: 75] [Impact Index Per Article: 18.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 04/26/2021] [Indexed: 11/08/2022] Open
Abstract
We aimed to isolate Acinetobacter baumannii (A. baumannii) from wound infections, determine their resistance and virulence profile, and assess the impact of Silver nanoparticles (AgNPs) on the bacterial growth, virulence and biofilm-related gene expression. AgNPs were synthesized and characterized using TEM, XRD and FTIR spectroscopy. A. baumannii (n = 200) were isolated and identified. Resistance pattern was determined and virulence genes (afa/draBC, cnf1, cnf2, csgA, cvaC, fimH, fyuA, ibeA, iutA, kpsMT II, PAI, papC, PapG II, III, sfa/focDE and traT) were screened using PCR. Biofilm formation was evaluated using Microtiter plate method. Then, the antimicrobial activity of AgNPs was evaluated by the well-diffusion method, growth kinetics and MIC determination. Inhibition of biofilm formation and the ability to disperse biofilms in exposure to AgNPs were evaluated. The effect of AgNPs on the expression of virulence and biofilm-related genes (bap, OmpA, abaI, csuA/B, A1S_2091, A1S_1510, A1S_0690, A1S_0114) were estimated using QRT-PCR. In vitro infection model for analyzing the antibacterial activity of AgNPs was done using a co-culture infection model of A. baumannii with human fibroblast skin cell line HFF-1 or Vero cell lines. A. baumannii had high level of resistance to antibiotics. Most of the isolates harbored the fimH, afa/draBC, cnf1, csgA and cnf2, and the majority of A. baumannii produced strong biofilms. AgNPs inhibited the growth of A. baumannii efficiently with MIC ranging from 4 to 25 µg/ml. A. baumannii showed a reduced growth rate in the presence of AgNPs. The inhibitory activity and the anti-biofilm activity of AgNPs were more pronounced against the weak biofilm producers. Moreover, AgNPs decreased the expression of kpsMII , afa/draBC,bap, OmpA, and csuA/B genes. The in vitro infection model revealed a significant antibacterial activity of AgNPs against extracellular and intracellular A. baumannii. AgNPs highly interrupted bacterial multiplication and biofilm formation. AgNPs downregulated the transcription level of important virulence and biofilm-related genes. Our findings provide an additional step towards understanding the mechanisms by which sliver nanoparticles interfere with the microbial spread and persistence.
Collapse
|
23
|
Insights into Acinetobacter baumannii fatty acid synthesis 3-oxoacyl-ACP reductases. Sci Rep 2021; 11:7050. [PMID: 33782435 PMCID: PMC8007833 DOI: 10.1038/s41598-021-86400-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 03/08/2021] [Indexed: 11/08/2022] Open
Abstract
Treatments for 'superbug' infections are the focus for innovative research, as drug resistance threatens human health and medical practices globally. In particular, Acinetobacter baumannii (Ab) infections are repeatedly reported as difficult to treat due to increasing antibiotic resistance. Therefore, there is increasing need to identify novel targets in the development of different antimicrobials. Of particular interest is fatty acid synthesis, vital for the formation of phospholipids, lipopolysaccharides/lipooligosaccharides, and lipoproteins of Gram-negative envelopes. The bacterial type II fatty acid synthesis (FASII) pathway is an attractive target for the development of inhibitors and is particularly favourable due to the differences from mammalian type I fatty acid synthesis. Discrete enzymes in this pathway include two reductase enzymes: 3-oxoacyl-acyl carrier protein (ACP) reductase (FabG) and enoyl-ACP reductase (FabI). Here, we investigate annotated FabG homologs, finding a low-molecular weight 3-oxoacyl-ACP reductase, as the most likely FASII FabG candidate, and high-molecular weight 3-oxoacyl-ACP reductase (HMwFabG), showing differences in structure and coenzyme preference. To date, this is the second bacterial high-molecular weight FabG structurally characterized, following FabG4 from Mycobacterium. We show that ΔAbHMwfabG is impaired for growth in nutrient rich media and pellicle formation. We also modelled a third 3-oxoacyl-ACP reductase, which we annotated as AbSDR. Despite containing residues for catalysis and the ACP coordinating motif, biochemical analyses showed limited activity against an acetoacetyl-CoA substrate in vitro. Inhibitors designed to target FabG proteins and thus prevent fatty acid synthesis may provide a platform for use against multidrug-resistant pathogens including A. baumannii.
Collapse
|
24
|
Blaschke U, Skiebe E, Wilharm G. Novel Genes Required for Surface-Associated Motility in Acinetobacter baumannii. Curr Microbiol 2021; 78:1509-1528. [PMID: 33666749 PMCID: PMC7997844 DOI: 10.1007/s00284-021-02407-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 02/10/2021] [Indexed: 01/28/2023]
Abstract
Acinetobacter baumannii is an opportunistic and increasingly multi-drug resistant human pathogen rated as a critical priority one pathogen for the development of new antibiotics by the WHO in 2017. Despite the lack of flagella, A. baumannii can move along wet surfaces in two different ways: via twitching motility and surface-associated motility. While twitching motility is known to depend on type IV pili, the mechanism of surface-associated motility is poorly understood. In this study, we established a library of 30 A. baumannii ATCC® 17978™ mutants that displayed deficiency in surface-associated motility. By making use of natural competence, we also introduced these mutations into strain 29D2 to differentiate strain-specific versus species-specific effects of mutations. Mutated genes were associated with purine/pyrimidine/folate biosynthesis (e.g. purH, purF, purM, purE), alarmone/stress metabolism (e.g. Ap4A hydrolase), RNA modification/regulation (e.g. methionyl-tRNA synthetase), outer membrane proteins (e.g. ompA), and genes involved in natural competence (comEC). All tested mutants originally identified as motility-deficient in strain ATCC® 17978™ also displayed a motility-deficient phenotype in 29D2. By contrast, further comparative characterization of the mutant sets of both strains regarding pellicle biofilm formation, antibiotic resistance, and virulence in the Galleria mellonella infection model revealed numerous strain-specific mutant phenotypes. Our studies highlight the need for comparative analyses to characterize gene functions in A. baumannii and for further studies on the mechanisms underlying surface-associated motility.
Collapse
Affiliation(s)
- Ulrike Blaschke
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| | - Evelyn Skiebe
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany
| | - Gottfried Wilharm
- Robert Koch Institute, Project group P2, Burgstr. 37, 38855, Wernigerode, Germany.
| |
Collapse
|
25
|
Sykes EME, Deo S, Kumar A. Recent Advances in Genetic Tools for Acinetobacter baumannii. Front Genet 2020; 11:601380. [PMID: 33414809 PMCID: PMC7783400 DOI: 10.3389/fgene.2020.601380] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Accepted: 11/30/2020] [Indexed: 12/26/2022] Open
Abstract
Acinetobacter baumannii is classified as a top priority pathogen by the World Health Organization (WHO) because of its widespread resistance to all classes of antibiotics. This makes the need for understanding the mechanisms of resistance and virulence critical. Therefore, tools that allow genetic manipulations are vital to unravel the mechanisms of multidrug resistance (MDR) and virulence in A. baumannii. A host of current strategies are available for genetic manipulations of A. baumannii laboratory-strains, including ATCC® 17978TM and ATCC® 19606T, but depending on susceptibility profiles, these strategies may not be sufficient when targeting strains newly obtained from clinic, primarily due to the latter's high resistance to antibiotics that are commonly used for selection during genetic manipulations. This review highlights the most recent methods for genetic manipulation of A. baumannii including CRISPR based approaches, transposon mutagenesis, homologous recombination strategies, reporter systems and complementation techniques with the spotlight on those that can be applied to MDR clinical isolates.
Collapse
Affiliation(s)
| | | | - Ayush Kumar
- Department of Microbiology, University of Manitoba, Winnipeg, MB, Canada
| |
Collapse
|
26
|
Mayer C, Muras A, Parga A, Romero M, Rumbo-Feal S, Poza M, Ramos-Vivas J, Otero A. Quorum Sensing as a Target for Controlling Surface Associated Motility and Biofilm Formation in Acinetobacter baumannii ATCC ® 17978 TM. Front Microbiol 2020; 11:565548. [PMID: 33101239 PMCID: PMC7554515 DOI: 10.3389/fmicb.2020.565548] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 09/10/2020] [Indexed: 12/14/2022] Open
Abstract
The important nosocomial pathogen Acinetobacter baumannii presents a quorum sensing (QS) system (abaI/abaR) mediated by acyl-homoserine-lactones (AHLs) and several quorum quenching (QQ) enzymes. However, the roles of this complex network in the control of the expression of important virulence-related phenotypes such as surface-associated motility and biofilm formation is not clear. Therefore, the effect of the mutation of the AHL synthase AbaI, and the exogenous addition of the QQ enzyme Aii20J on surface-associated motility and biofilm formation by A. baumannii ATCC® 17978TM was studied in detail. The effect of the enzyme on biofilm formation by several multidrug-resistant A. baumannii clinical isolates differing in their motility pattern was also tested. We provide evidence that a functional QS system is required for surface-associated motility and robust biofilm formation in A. baumannii ATCC® 17978TM. Important differences were found with the well-studied strain A. nosocomialis M2 regarding the relevance of the QS system depending on environmental conditions The in vitro biofilm-formation capacity of A. baumannii clinical strains was highly variable and was not related to the antibiotic resistance or surface-associated motility profiles. A high variability was also found in the sensitivity of the clinical strains to the action of the QQ enzyme, revealing important differences in virulence regulation between A. baumannii isolates and confirming that studies restricted to a single strain are not representative for the development of novel antimicrobial strategies. Extracellular DNA emerges as a key component of the extracellular matrix in A. baumannii biofilms since the combined action of the QQ enzyme Aii20J and DNase reduced biofilm formation in all tested strains. Results demonstrate that QQ strategies in combination with other enzymatic treatments such as DNase could represent an alternative approach for the prevention of A. baumannii colonization and survival on surfaces and the prevention and treatment of infections caused by this pathogen.
Collapse
Affiliation(s)
- Celia Mayer
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.,National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Andrea Muras
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ana Parga
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- National Biofilms Innovation Centre, Biodiscovery Institute and School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Soraya Rumbo-Feal
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - Margarita Poza
- Microbioloxía, Instituto de Investigación Biomédica da Coruña, Centro de Investigacións Científicas Avanzadas da Coruña, Universidade da Coruña, A Coruña, Spain
| | - José Ramos-Vivas
- Servicio de Microbiología, Hospital Universitario Marqués de Valdecilla-Instituto de Investigación Valdecilla, Santander, Spain
| | - Ana Otero
- Departamento de Microbioloxía e Parasitoloxía, Facultade de Bioloxía, Edificio CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
27
|
Geisinger E, Mortman NJ, Dai Y, Cokol M, Syal S, Farinha A, Fisher DG, Tang AY, Lazinski DW, Wood S, Anthony J, van Opijnen T, Isberg RR. Antibiotic susceptibility signatures identify potential antimicrobial targets in the Acinetobacter baumannii cell envelope. Nat Commun 2020; 11:4522. [PMID: 32908144 PMCID: PMC7481262 DOI: 10.1038/s41467-020-18301-2] [Citation(s) in RCA: 56] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Accepted: 08/13/2020] [Indexed: 11/13/2022] Open
Abstract
A unique, protective cell envelope contributes to the broad drug resistance of the nosocomial pathogen Acinetobacter baumannii. Here we use transposon insertion sequencing to identify A. baumannii mutants displaying altered susceptibility to a panel of diverse antibiotics. By examining mutants with antibiotic susceptibility profiles that parallel mutations in characterized genes, we infer the function of multiple uncharacterized envelope proteins, some of which have roles in cell division or cell elongation. Remarkably, mutations affecting a predicted cell wall hydrolase lead to alterations in lipooligosaccharide synthesis. In addition, the analysis of altered susceptibility signatures and antibiotic-induced morphology patterns allows us to predict drug synergies; for example, certain beta-lactams appear to work cooperatively due to their preferential targeting of specific cell wall assembly machineries. Our results indicate that the pathogen may be effectively inhibited by the combined targeting of multiple pathways critical for envelope growth.
Collapse
Affiliation(s)
- Edward Geisinger
- Department of Biology, Northeastern University, Boston, MA, 02115, USA.
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| | - Nadav J Mortman
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Yunfei Dai
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Murat Cokol
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
- Laboratory of Systems Pharmacology, Harvard Medical School, Boston, MA, 02115, USA
| | - Sapna Syal
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Andrew Farinha
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - Delaney G Fisher
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Amy Y Tang
- Department of Biology, Northeastern University, Boston, MA, 02115, USA
| | - David W Lazinski
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA
| | - Stephen Wood
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Jon Anthony
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Tim van Opijnen
- Biology Department, Boston College, Chestnut Hill, MA, 02467, USA
| | - Ralph R Isberg
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, MA, 02111, USA.
| |
Collapse
|
28
|
Zdarta A, Smułek W, Kaczorek E. Multilevel changes in bacterial properties on long-term exposure to hydrocarbons and impact of these cells on fresh-water communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 729:138956. [PMID: 32498169 DOI: 10.1016/j.scitotenv.2020.138956] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2020] [Revised: 04/20/2020] [Accepted: 04/22/2020] [Indexed: 06/11/2023]
Abstract
To handle the impact of habitat transformations, the microbial cells developed mechanisms aimed at adjustment of their biological processes in response to signals indicating environmental changes. One of the first changes in their properties is observed on their surface, which has direct contact with the dynamically varying surroundings. In this study, we present results of changes in the cell surface properties which may have a decisive impact on the xenobiotics' bioavailability and microbial cell survival. These changes influence their ability to remove xenobiotics by accelerating and empowering this process. Moreover, the application of microorganisms exposed for long-term to hydrocarbons in bioremediation processes might have positive impact on biodegradation of the latter in the natural environment as well as natural microbial community diversity. This study demonstrates a variety of microbial cell mechanisms of adaptation to long-term exposure to hydrocarbons and their potential as the bioremediation tools.
Collapse
Affiliation(s)
- Agata Zdarta
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland.
| | - Wojciech Smułek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| | - Ewa Kaczorek
- Institute of Chemical Technology and Engineering, Poznan University of Technology, Berdychowo 4, 60-965 Poznan, Poland
| |
Collapse
|
29
|
Monem S, Furmanek-Blaszk B, Łupkowska A, Kuczyńska-Wiśnik D, Stojowska-Swędrzyńska K, Laskowska E. Mechanisms Protecting Acinetobacter baumannii against Multiple Stresses Triggered by the Host Immune Response, Antibiotics and Outside-Host Environment. Int J Mol Sci 2020; 21:E5498. [PMID: 32752093 PMCID: PMC7432025 DOI: 10.3390/ijms21155498] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 07/29/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Acinetobacter baumannii is considered one of the most persistent pathogens responsible for nosocomial infections. Due to the emergence of multidrug resistant strains, as well as high morbidity and mortality caused by this pathogen, A. baumannii was placed on the World Health Organization (WHO) drug-resistant bacteria and antimicrobial resistance research priority list. This review summarizes current studies on mechanisms that protect A. baumannii against multiple stresses caused by the host immune response, outside host environment, and antibiotic treatment. We particularly focus on the ability of A. baumannii to survive long-term desiccation on abiotic surfaces and the population heterogeneity in A. baumannii biofilms. Insight into these protective mechanisms may provide clues for the development of new strategies to fight multidrug resistant strains of A. baumannii.
Collapse
Affiliation(s)
- Soroosh Monem
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Beata Furmanek-Blaszk
- Department of Microbiology, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland;
| | - Adrianna Łupkowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Dorota Kuczyńska-Wiśnik
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Karolina Stojowska-Swędrzyńska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| | - Ewa Laskowska
- Department of General and Medical Biochemistry, Faculty of Biology, University of Gdansk, Wita Stwosza 59, 80-308 Gdansk, Poland; (S.M.); (A.Ł.); (D.K.-W.); (K.S.-S.)
| |
Collapse
|
30
|
Walsh BJC, Wang J, Edmonds KA, Palmer LD, Zhang Y, Trinidad JC, Skaar EP, Giedroc DP. The Response of Acinetobacter baumannii to Hydrogen Sulfide Reveals Two Independent Persulfide-Sensing Systems and a Connection to Biofilm Regulation. mBio 2020; 11:e01254-20. [PMID: 32576676 PMCID: PMC7315123 DOI: 10.1128/mbio.01254-20] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 05/19/2020] [Indexed: 12/13/2022] Open
Abstract
Acinetobacter baumannii is an opportunistic nosocomial pathogen that is the causative agent of several serious infections in humans, including pneumonia, sepsis, and wound and burn infections. A. baumannii is also capable of forming proteinaceous biofilms on both abiotic and epithelial cell surfaces. Here, we investigate the response of A. baumannii toward sodium sulfide (Na2S), known to be associated with some biofilms at oxic/anoxic interfaces. The addition of exogenous inorganic sulfide reveals that A. baumannii encodes two persulfide-sensing transcriptional regulators, a primary σ54-dependent transcriptional activator (FisR), and a secondary system controlled by the persulfide-sensing biofilm growth-associated repressor (BigR), which is only induced by sulfide in a fisR deletion strain. FisR activates an operon encoding a sulfide oxidation/detoxification system similar to that characterized previously in Staphylococcus aureus, while BigR regulates a secondary persulfide dioxygenase (PDO2) as part of yeeE-yedE-pdo2 sulfur detoxification operon, found previously in Serratia spp. Global S-sulfuration (persulfidation) mapping of the soluble proteome reveals 513 persulfidation targets well beyond FisR-regulated genes and includes five transcriptional regulators, most notably the master biofilm regulator BfmR and a poorly characterized catabolite regulatory protein (Crp). Both BfmR and Crp are well known to impact biofilm formation in A. baumannii and other organisms, respectively, suggesting that persulfidation of these regulators may control their activities. The implications of these findings on bacterial sulfide homeostasis, persulfide signaling, and biofilm formation are discussed.IMPORTANCE Although hydrogen sulfide (H2S) has long been known as a respiratory poison, recent reports in numerous bacterial pathogens reveal that H2S and more downstream oxidized forms of sulfur collectedly termed reactive sulfur species (RSS) function as antioxidants to combat host efforts to clear the infection. Here, we present a comprehensive analysis of the transcriptional and proteomic response of A. baumannii to exogenous sulfide as a model for how this important human pathogen manages sulfide/RSS homeostasis. We show that A. baumannii is unique in that it encodes two independent persulfide sensing and detoxification pathways that govern the speciation of bioactive sulfur in cells. The secondary persulfide sensor, BigR, impacts the expression of biofilm-associated genes; in addition, we identify two other transcriptional regulators known or projected to regulate biofilm formation, BfmR and Crp, as highly persulfidated in sulfide-exposed cells. These findings significantly strengthen the connection between sulfide homeostasis and biofilm formation in an important human pathogen.
Collapse
Affiliation(s)
- Brenna J C Walsh
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
| | - Jiefei Wang
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| | | | - Lauren D Palmer
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - Yixiang Zhang
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Jonathan C Trinidad
- Laboratory for Biological Mass Spectrometry, Indiana University, Bloomington, Indiana, USA
| | - Eric P Skaar
- Department of Pathology, Microbiology and Immunology, and Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, Tennessee, USA
| | - David P Giedroc
- Department of Chemistry, Indiana University, Bloomington, Indiana, USA
- Department of Molecular and Cellular Biochemistry, Indiana University, Bloomington, Indiana, USA
| |
Collapse
|
31
|
Subhadra B, Surendran S, Lim BR, Yim JS, Kim DH, Woo K, Kim HJ, Oh MH, Choi CH. Regulation of the AcrAB efflux system by the quorum-sensing regulator AnoR in Acinetobacter nosocomialis. J Microbiol 2020; 58:507-518. [PMID: 32462488 DOI: 10.1007/s12275-020-0185-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2020] [Revised: 05/11/2020] [Accepted: 05/11/2020] [Indexed: 10/24/2022]
Abstract
Multidrug efflux pumps play an important role in antimicrobial resistance and pathogenicity in bacteria. Here, we report the functional characterization of the RND (resistance-nodulation- division) efflux pump, AcrAB, in Acinetobacter nosocomialis. An in silico analysis revealed that homologues of the AcrAB efflux pump, comprising AcrA and AcrB, are widely distributed among different bacterial species. Deletion of acrA and/or acrB genes led to decreased biofilm/pellicle formation and reduced antimicrobial resistance in A. nosocomialis. RNA sequencing and mRNA expression analyses showed that expression of acrA/B was downregulated in a quorum sensing (QS) regulator (anoR)-deletion mutant, indicating transcriptional activation of the acrAB operon by AnoR in A. nosocomialis. Bioassays showed that secretion of N-acyl homoserine lactones (AHLs) was unaffected in acrA and acrB deletion mutants; however, AHL secretion was limited in a deletion mutant of acrR, encoding the acrAB regulator, AcrR. An in silico analysis indicated the presence of AcrR-binding motifs in promoter regions of anoI (encoding AHL synthase) and anoR. Specific binding of AcrR was confirmed by electrophoretic mobility shift assays, which revealed that AcrR binds to positions -214 and -217 bp upstream of the translational start sites of anoI and anoR, respectively, demonstrating transcriptional regulation of these QS genes by AcrR. The current study further addresses the possibility that AcrAB is controlled by the osmotic stress regulator, OmpR, in A. nosocomialis. Our data demonstrate that the AcrAB efflux pump plays a crucial role in biofilm/pellicle formation and antimicrobial resistance in A. nosocomialis, and is under the transcriptional control of a number of regulators. In addition, the study emphasizes the interrelationship of QS and AcrAB efflux systems in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Surya Surendran
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Bo Ra Lim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jong Sung Yim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Dong Ho Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Kyungho Woo
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hwa-Jung Kim
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea.,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, 31116, Republic of Korea.
| | - Chul Hee Choi
- Department of Microbiology, Chungnam National University School of Medicine, Daejeon, 35015, Republic of Korea. .,Department of Medical Science, Chungnam National University, Daejeon, 34134, Republic of Korea.
| |
Collapse
|
32
|
Alquethamy SF, Adams FG, Naidu V, Khorvash M, Pederick VG, Zang M, Paton JC, Paulsen IT, Hassan KA, Cain AK, McDevitt CA, Eijkelkamp BA. The Role of Zinc Efflux during Acinetobacter baumannii Infection. ACS Infect Dis 2020; 6:150-158. [PMID: 31658418 DOI: 10.1021/acsinfecdis.9b00351] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Acinetobacter baumannii is a ubiquitous Gram-negative bacterium, that is associated with significant disease in immunocompromised individuals. The success of A. baumannii is partly attributable to its high level of antibiotic resistance. Further, A. baumannii expresses a broad arsenal of putative zinc efflux systems that are likely to aid environmental persistence and host colonization, but detailed insights into how the bacterium deals with toxic concentrations of zinc are lacking. In this study we present the transcriptomic responses of A. baumannii to toxic zinc concentrations. Subsequent mutant analyses revealed a primary role for the resistance-nodulation-cell division heavy metal efflux system CzcCBA, and the cation diffusion facilitator transporter CzcD in zinc resistance. To examine the role of zinc at the host-pathogen interface we utilized a murine model of zinc deficiency and challenge with wild-type and czcA mutant strains, which identified highly site-specific roles for zinc during A. baumannii infection. Overall, we provide novel insight into the key zinc resistance mechanisms of A. baumannii and outline the role these systems play in enabling the bacterium to survive in diverse environments.
Collapse
Affiliation(s)
- Saleh F. Alquethamy
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Felise G. Adams
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| | - Varsha Naidu
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, New South Wales 2109, Australia
| | - Marjan Khorvash
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Victoria G. Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Maoge Zang
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - James C. Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
| | - Ian T. Paulsen
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, New South Wales 2109, Australia
| | - Karl A. Hassan
- School of Environmental and Life Sciences, University of Newcastle, University Drive, Callaghan, New South Wales 2308, Australia
| | - Amy K. Cain
- Department of Molecular Sciences, Macquarie University, Balaclava Road, Macquarie Park, New South Wales 2109, Australia
| | - Christopher A. McDevitt
- Department of Microbiology and Immunology, The Peter Doherty Institute for Infection and Immunity, University of Melbourne, Elizabeth Street, Melbourne, Victoria 3000, Australia
| | - Bart A. Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, North Terrace, Adelaide, South Australia 5005, Australia
- College of Science and Engineering, Flinders University, Sturt Road, Bedford Park, South Australia 5042, Australia
| |
Collapse
|
33
|
Krasauskas R, Skerniškytė J, Armalytė J, Sužiedėlienė E. The role of Acinetobacter baumannii response regulator BfmR in pellicle formation and competitiveness via contact-dependent inhibition system. BMC Microbiol 2019; 19:241. [PMID: 31690263 PMCID: PMC6833216 DOI: 10.1186/s12866-019-1621-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Accepted: 10/22/2019] [Indexed: 12/13/2022] Open
Abstract
Background Acinetobacter baumannii is one of the most important opportunistic pathogens responsible for hospital acquired infections. It displays multi-drug resistance profile and has the ability to colonize surfaces and persist under harsh conditions. A. baumannii two-component signal transduction system BfmRS, consisting of response regulator BfmR and sensor kinase BfmS, has been implicated in the control of various virulence-related traits and has been suggested to act as a global modulator of A. baumannii physiology. Results Here, we assessed the role of BfmR regulator in pellicle formation and bacterial competition, features important for the establishment of A. baumannii in clinical environment. We show that BfmR is required for the pellicle formation of A. baumannii, as ΔbfmRS mutant lacked this phenotype. The loss of bfmRS also greatly reduced the secretion of A. baumannii Hcp protein, which is a component of T6SS secretion system. However, T6SS-mediated killing phenotype was not impaired in ΔbfmRS mutant. On the contrary, the same mutation resulted in the transcriptional activation of contact-dependent inhibition (CDI) system, which A. baumannii used to inhibit the growth of another clinical A. baumannii strain and a closely related species Acinetobacter baylyi. Conclusions The obtained results indicate that BfmR is not only required for the pellicle phenotype induction in A. baumannii, but also, due to the down-regulation of a CDI system, could allow the incorporation of other A. baumannii strains or related species, possibly increasing the likelihood of the pathogens’ survival.
Collapse
Affiliation(s)
- Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania.
| | - Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
34
|
Role of Caulobacter Cell Surface Structures in Colonization of the Air-Liquid Interface. J Bacteriol 2019; 201:JB.00064-19. [PMID: 31010900 DOI: 10.1128/jb.00064-19] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 04/15/2019] [Indexed: 01/17/2023] Open
Abstract
In aquatic environments, Caulobacter spp. can be found at the boundary between liquid and air known as the neuston. I report an approach to study temporal features of Caulobacter crescentus colonization and pellicle biofilm development at the air-liquid interface and have defined the role of cell surface structures in this process. At this interface, C. crescentus initially forms a monolayer of cells bearing a surface adhesin known as the holdfast. When excised from the liquid surface, this monolayer strongly adheres to glass. The monolayer subsequently develops into a three-dimensional structure that is highly enriched in clusters of stalked cells known as rosettes. As this pellicle film matures, it becomes more cohesive and less adherent to a glass surface. A mutant strain lacking a flagellum does not efficiently reach the surface, and strains lacking type IV pili exhibit defects in organization of the three-dimensional pellicle. Strains unable to synthesize the holdfast fail to accumulate at the boundary between air and liquid and do not form a pellicle. Phase-contrast images support a model whereby the holdfast functions to trap C. crescentus cells at the air-liquid boundary. Unlike the holdfast, neither the flagellum nor type IV pili are required for C. crescentus to partition to the air-liquid interface. While it is well established that the holdfast enables adherence to solid surfaces, this study provides evidence that the holdfast has physicochemical properties that allow partitioning of nonmotile mother cells to the air-liquid interface and facilitate colonization of this microenvironment.IMPORTANCE In aquatic environments, the boundary at the air interface is often highly enriched with nutrients and oxygen. Colonization of this niche likely confers a significant fitness advantage in many cases. This study provides evidence that the cell surface adhesin known as a holdfast enables Caulobacter crescentus to partition to and colonize the air-liquid interface. Additional surface structures, including the flagellum and type IV pili, are important determinants of colonization and biofilm formation at this boundary. Considering that holdfast-like adhesins are broadly conserved in Caulobacter spp. and other members of the diverse class Alphaproteobacteria, these surface structures may function broadly to facilitate colonization of air-liquid boundaries in a range of ecological contexts, including freshwater, marine, and soil ecosystems.
Collapse
|
35
|
Khadke SK, Lee JH, Woo JT, Lee J. Inhibitory Effects of Honokiol and Magnolol on Biofilm Formation by Acinetobacter baumannii. BIOTECHNOL BIOPROC E 2019. [DOI: 10.1007/s12257-019-0006-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
36
|
Raorane CJ, Lee JH, Kim YG, Rajasekharan SK, García-Contreras R, Lee J. Antibiofilm and Antivirulence Efficacies of Flavonoids and Curcumin Against Acinetobacter baumannii. Front Microbiol 2019; 10:990. [PMID: 31134028 PMCID: PMC6517519 DOI: 10.3389/fmicb.2019.00990] [Citation(s) in RCA: 76] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Accepted: 04/18/2019] [Indexed: 01/08/2023] Open
Abstract
Acinetobacter baumannii is well adapted to hospital environments, and the persistence of its chronic infections is mainly due to its ability to form biofilms resistant to conventional antibiotics and host immune systems. Hence, the inhibitions of biofilm formation and virulence characteristics provide other means of addressing infections. In this study, the antibiofilm activities of twelve flavonoids were initially investigated. Three most active flavonoids, namely, fisetin, phloretin, and curcumin, dose-dependently inhibited biofilm formation by a reference A. baumannii strain and by several clinical isolates, including four multidrug-resistant isolates. Furthermore, the antibiofilm activity of curcumin (the most active flavonoid) was greater than that of the well-known biofilm inhibitor gallium nitrate. Curcumin inhibited pellicle formation and the surface motility of A. baumannii. Interestingly, curcumin also showed antibiofilm activity against Candida albicans and mixed cultures of C. albicans and A. baumannii. In silico molecular docking of the biofilm response regulator BfmR showed that the binding efficacy of flavonoids with BfmR was correlated with antibiofilm efficacy. In addition, curcumin treatment diminished A. baumannii virulence in an in vivo Caenorhabditis elegans model without cytotoxicity. The study shows curcumin and other flavonoids have potential for controlling biofilm formation by and the virulence of A. baumannii.
Collapse
Affiliation(s)
| | - Jin-Hyung Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | - Yong-Guy Kim
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| | | | - Rodolfo García-Contreras
- Department of Microbiology and Parasitology, Faculty of Medicine, National Autonomous University of Mexico, Mexico City, Mexico
| | - Jintae Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan, South Korea
| |
Collapse
|
37
|
The transcription factor NemR is an electrophile-sensing regulator important for the detoxification of reactive electrophiles in Acinetobacter nosocomialis. Res Microbiol 2019; 170:123-130. [PMID: 30797834 DOI: 10.1016/j.resmic.2019.02.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Revised: 02/06/2019] [Accepted: 02/13/2019] [Indexed: 02/08/2023]
Abstract
NemR is an electrophile-sensing regulator which controls two enzymes required for the detoxification of reactive electrophiles: N-ethylmaleimide (NEM) reductase and glyoxalase I in Escherichia coli. Both enzymes are essential for bacterial survival in the presence of toxic reactive electrophiles, such as N-ethylmaleimide and methyl glyoxal. Here, we report the identification and characterization of NemR from Acinetobacter nosocomialis, a nosocomial pathogen. We confirmed that nemR and the nemA gene which encodes N-ethylmaleimide reductase form a single operon, which is in accordance with the reports from E. coli. Bioinformatic analysis revealed the presence of an NemR binding motif in the promoter regions of nemRA operon and gloA (encoding glyoxalase I) and the binding was confirmed by gel mobility shift assay. The deletion of nemR resulted in increased biofilm/pellicle formation in A. nosocomialis. mRNA expression analysis revealed that NemR acts as a repressor of the nemRA operon and gloA, and that the repressor function is inactivated by the addition of toxic Cys modification agents, contributing to bacterial survival. In addition, it was demonstrated that the nemRA operon is positively regulated by the quorum sensing regulator, AnoR and the operon plays a role in biofilm/pellicle formation in A. nosocomialis.
Collapse
|
38
|
MITE Aba12 , a Novel Mobile Miniature Inverted-Repeat Transposable Element Identified in Acinetobacter baumannii ATCC 17978 and Its Prevalence across the Moraxellaceae Family. mSphere 2019; 4:4/1/e00028-19. [PMID: 30787115 PMCID: PMC6382973 DOI: 10.1128/mspheredirect.00028-19] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation. Insertion sequences (IS) are fundamental mediators of genome plasticity with the potential to generate phenotypic variation with significant evolutionary outcomes. Here, a recently active miniature inverted-repeat transposon element (MITE) was identified in a derivative of Acinetobacter baumannii ATCC 17978 after being subjected to stress conditions. Transposition of the novel element led to the disruption of the hns gene, resulting in a characteristic hypermotile phenotype. DNA identity shared between the terminal inverted repeats of this MITE and coresident ISAba12 elements, together with the generation of 9-bp target site duplications, provides strong evidence that ISAba12 elements were responsible for mobilization of the MITE (designated MITEAba12) within this strain. A wider genome-level survey identified MITEAba12 in 30 additional Acinetobacter genomes at various frequencies and one Moraxella osloensis genome. Ninety MITEAba12 copies could be identified, of which 40% had target site duplications, indicating recent transposition events. Elements ranged between 111 and 114 bp; 90% were 113 bp in length. Using the MITEAba12 consensus sequence, putative outward-facing Escherichia coli σ70 promoter sequences in both orientations were identified. The identification of transcripts originating from the promoter in one direction supports the proposal that the element can influence neighboring host gene transcription. The location of MITEAba12 varied significantly between and within genomes, preferentially integrating into AT-rich regions. Additionally, a copy of MITEAba12 was identified in a novel 8.5-kb composite transposon, Tn6645, in the M. osloensis CCUG 350 chromosome. Overall, this study shows that MITEAba12 is the most abundant nonautonomous element currently found in Acinetobacter. IMPORTANCE One of the most important weapons in the armory of Acinetobacter is its impressive genetic plasticity, facilitating rapid genetic mutations and rearrangements as well as integration of foreign determinants carried by mobile genetic elements. Of these, IS are considered one of the key forces shaping bacterial genomes and ultimately evolution. We report the identification of a novel nonautonomous IS-derived element present in multiple bacterial species from the Moraxellaceae family and its recent translocation into the hns locus in the A. baumannii ATCC 17978 genome. The latter finding adds new knowledge to only a limited number of documented examples of MITEs in the literature and underscores the plastic nature of the hns locus in A. baumannii. MITEAba12, and its predicted parent(s), may be a source of substantial adaptive evolution within environmental and clinically relevant bacterial pathogens and, thus, have broad implications for niche-specific adaptation.
Collapse
|
39
|
The Role of the CopA Copper Efflux System in Acinetobacter baumannii Virulence. Int J Mol Sci 2019; 20:ijms20030575. [PMID: 30699983 PMCID: PMC6387184 DOI: 10.3390/ijms20030575] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Revised: 01/25/2019] [Accepted: 01/26/2019] [Indexed: 11/24/2022] Open
Abstract
Acinetobacter baumannii has emerged as one of the leading causative agents of nosocomial infections. Due to its high level of intrinsic and adapted antibiotic resistance, treatment failure rates are high, which allows this opportunistic pathogen to thrive during infection in immune-compromised patients. A. baumannii can cause infections within a broad range of host niches, with pneumonia and bacteraemia being associated with the greatest levels of morbidity and mortality. Although its resistance to antibiotics is widely studied, our understanding of the mechanisms required for dealing with environmental stresses related to virulence and hospital persistence, such as copper toxicity, is limited. Here, we performed an in silico analysis of the A. baumannii copper resistome, examining its regulation under copper stress. Using comparative analyses of bacterial P-type ATPases, we propose that A. baumannii encodes a member of a novel subgroup of P1B-1 ATPases. Analyses of three putative inner membrane copper efflux systems identified the P1B-1 ATPase CopA as the primary mediator of cytoplasmic copper resistance in A. baumannii. Using a murine model of A. baumannii pneumonia, we reveal that CopA contributes to the virulence of A. baumannii. Collectively, this study advances our understanding of how A. baumannii deals with environmental copper toxicity, and it provides novel insights into how A. baumannii combats adversities encountered as part of the host immune defence.
Collapse
|
40
|
Skerniškytė J, Krasauskas R, Péchoux C, Kulakauskas S, Armalytė J, Sužiedėlienė E. Surface-Related Features and Virulence Among Acinetobacter baumannii Clinical Isolates Belonging to International Clones I and II. Front Microbiol 2019; 9:3116. [PMID: 30671029 PMCID: PMC6331429 DOI: 10.3389/fmicb.2018.03116] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 12/03/2018] [Indexed: 01/07/2023] Open
Abstract
Acinetobacter baumannii currently represents one of the most important nosocomial infection agent due to its multidrug-resistance and a propensity for the epidemic spread. The A. baumannii strains belonging to the international clonal lineages I (IC I) and II (IC II) are associated with the hospital outbreaks and a high virulence. However, the intra and inter lineage-specific features of strains belonging to these most worldwide spread A. baumannii clones are not thoroughly explored. In this study we have investigated a set of cell surface-related features of A. baumannii IC I (n = 20) and IC II (n = 16) lineage strains, representing 30 distinct pulsed-field gel electrophoresis types in the collection of clinical isolates obtained in Lithuanian tertiary care hospitals. We show that A. baumannii IC II strains are non-motile, do not form pellicle and display distinct capsular polysaccharide profile compared with the IC I strains. Moreover, in contrast to the overall highly hydrophobic IC I strains, IC II strains showed a greater variation in cell surface hydrophobicity. Within the IC II lineage, hydrophilic strains demonstrated reduced ability to form biofilm and adhere to the abiotic surfaces, also possessed twofold thicker cell wall and exhibited higher resistance to desiccation. Furthermore, these strains showed increased adherence to the lung epithelial cells and were more virulent in nematode and mouse infection model compared with the hydrophobic IC II strains. According to the polymerase chain reaction-based locus-typing, the reduction in hydrophobicity of IC II strains was not capsule or lipooligosaccharide locus type-dependent. Hence, this study shows that the most widespread A. baumannii clonal lineages I and II markedly differ in the series of cell surface-related phenotypes including the considerable phenotypic diversification of IC II strains at the intra-lineage level. These findings suggest that the genotypically related A. baumannii strains might evolve the features which could provide an advantage at the specific conditions outside or within the host.
Collapse
Affiliation(s)
- Jūratė Skerniškytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Renatas Krasauskas
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | | | - Saulius Kulakauskas
- INRA, MICALIS Institute, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Julija Armalytė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| | - Edita Sužiedėlienė
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, Lithuania
| |
Collapse
|
41
|
Mayer C, Muras A, Romero M, López M, Tomás M, Otero A. Multiple Quorum Quenching Enzymes Are Active in the Nosocomial Pathogen Acinetobacter baumannii ATCC17978. Front Cell Infect Microbiol 2018; 8:310. [PMID: 30271754 PMCID: PMC6146095 DOI: 10.3389/fcimb.2018.00310] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Accepted: 08/14/2018] [Indexed: 12/24/2022] Open
Abstract
Acinetobacter baumannii presents a typical luxI/luxR quorum sensing (QS) system (abaI/abaR) but the acyl-homoserine lactone (AHL) signal profile and factors controlling the production of QS signals in this species have not been determined yet. A very complex AHL profile was identified for A. baumannii ATCC17978 as well as for A. nosocomialis M2, but only when cultivated under static conditions, suggesting that surface or cell-to-cell contact is involved in the activation of the QS genes. The analysis of A. baumanni clinical isolates revealed a strain-specific AHL profile that was also affected by nutrient availability. The concentration of OHC12-HSL, the major AHL found in A. baumannii ATCC17978, peaked upon stationary-phase establishment and decreases steeply afterwards. Quorum quenching (QQ) activity was found in the cell extracts of A. baumannii ATCC17978, correlating with the disappearance of the AHLs from the culture media, indicating that AHL concentration may be self-regulated in this pathogen. Since QQ activity was observed in strains in which AidA, a novel α/β-hydrolase recently identified in A. baumannii, is not present, we have searched for additional QQ enzymes in A. baumannii ATCC17978. Seven putative AHL-lactonase sequences could be identified in the genome and the QQ activity of 3 of them could be confirmed. At least six of these lactonase sequences are also present in all clinical isolates as well as in A. nosocomialis M2. Surface-associated motility and biofilm formation could be blocked by the exogenous addition of the wide spectrum QQ enzyme Aii20J. The differential regulation of the QQ enzymes in A. baumannii ATCC17978 and the full dependence of important virulence factors on the QS system provides a strong evidence of the importance of the AHL-mediated QS/QQ network in this species.
Collapse
Affiliation(s)
- Celia Mayer
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Andrea Muras
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Manuel Romero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - María López
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña Spain
| | - María Tomás
- Department of Microbiology, Complejo Hospitalario Universitario A Coruña-INIBIC, A Coruña Spain
| | - Ana Otero
- Department of Microbiology and Parasitology, Faculty of Biology-CIBUS, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
42
|
Subhadra B, Kim J, Kim DH, Woo K, Oh MH, Choi CH. Local Repressor AcrR Regulates AcrAB Efflux Pump Required for Biofilm Formation and Virulence in Acinetobacter nosocomialis. Front Cell Infect Microbiol 2018; 8:270. [PMID: 30131944 PMCID: PMC6090078 DOI: 10.3389/fcimb.2018.00270] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Accepted: 07/19/2018] [Indexed: 12/28/2022] Open
Abstract
Multidrug efflux systems contribute to antimicrobial resistance and pathogenicity in bacteria. Here, we report the identification and characterization of a transcriptional regulator AcrR controlling the yet uncharacterized multidrug efflux pump, AcrAB in Acinetobacter nosocomialis. In silico analysis revealed that the homologs of AcrR and AcrAB are reported in the genomes of many other bacterial species. We confirmed that the genes encoding the AcrAB efflux pump, acrA and acrB forms a polycistronic operon which is under the control of acrR gene upstream of acrA. Bioinformatic analysis indicated the presence of AcrR binding motif in the promoter region of acrAB operon and the specific binding of AcrR was confirmed by electrophoretic mobility shift assay (EMSA). The EMSA data showed that AcrR binds to −89 bp upstream of the start codon of acrA. The mRNA expression analysis depicted that the expression of acrA and acrB genes are elevated in the deletion mutant compared to that in the wild type confirming that AcrR acts as a repressor of acrAB operon in A. nosocomialis. The deletion of acrR resulted in increased motility, biofilm/pellicle formation and invasion in A. nosocomialis. We further analyzed the role of AcrR in A. nosocomialis pathogenesis in vivo using murine model and it was shown that acrR mutant is highly virulent inducing severe infection in mouse leading to host death. In addition, the intracellular survival rate of acrR mutant was higher compared to that of wild type. Our data demonstrates that AcrR functions as an important regulator of AcrAB efflux pump and is associated with several phenotypes such as motility, biofilm/pellicle formation and pathogenesis in A. nosocomialis.
Collapse
Affiliation(s)
- Bindu Subhadra
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Jaeseok Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Dong Ho Kim
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Kyungho Woo
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| | - Man Hwan Oh
- Department of Nanobiomedical Science, Dankook University, Cheonan, South Korea
| | - Chul Hee Choi
- Department of Microbiology and Medical Science, Chungnam National University School of Medicine, Daejeon, South Korea
| |
Collapse
|
43
|
Adams FG, Stroeher UH, Hassan KA, Marri S, Brown MH. Resistance to pentamidine is mediated by AdeAB, regulated by AdeRS, and influenced by growth conditions in Acinetobacter baumannii ATCC 17978. PLoS One 2018; 13:e0197412. [PMID: 29750823 PMCID: PMC5947904 DOI: 10.1371/journal.pone.0197412] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/01/2018] [Indexed: 12/11/2022] Open
Abstract
In recent years, effective treatment of infections caused by Acinetobacter baumannii has become challenging due to the ability of the bacterium to acquire or up-regulate antimicrobial resistance determinants. Two component signal transduction systems are known to regulate expression of virulence factors including multidrug efflux pumps. Here, we investigated the role of the AdeRS two component signal transduction system in regulating the AdeAB efflux system, determined whether AdeA and/or AdeB can individually confer antimicrobial resistance, and explored the interplay between pentamidine resistance and growth conditions in A. baumannii ATCC 17978. Results identified that deletion of adeRS affected resistance towards chlorhexidine and 4',6-diamidino-2-phenylindole dihydrochloride, two previously defined AdeABC substrates, and also identified an 8-fold decrease in resistance to pentamidine. Examination of ΔadeA, ΔadeB and ΔadeAB cells augmented results seen for ΔadeRS and identified a set of dicationic AdeAB substrates. RNA-sequencing of ΔadeRS revealed transcription of 290 genes were ≥2-fold altered compared to the wildtype. Pentamidine shock significantly increased adeA expression in the wildtype, but decreased it in ΔadeRS, implying that AdeRS activates adeAB transcription in ATCC 17978. Investigation under multiple growth conditions, including the use of Biolog phenotypic microarrays, revealed resistance to pentamidine in ATCC 17978 and mutants could be altered by bioavailability of iron or utilization of different carbon sources. In conclusion, the results of this study provide evidence that AdeAB in ATCC 17978 can confer intrinsic resistance to a subset of dicationic compounds and in particular, resistance to pentamidine can be significantly altered depending on the growth conditions.
Collapse
Affiliation(s)
- Felise G. Adams
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Uwe H. Stroeher
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
| | - Karl A. Hassan
- Department of Chemistry and Biomolecular Sciences, Macquarie University, Sydney, NSW, Australia
| | - Shashikanth Marri
- College of Medicine and Public Health, Flinders University, Adelaide, SA, Australia
| | - Melissa H. Brown
- College of Science and Engineering, Flinders University, Adelaide, SA, Australia
- * E-mail:
| |
Collapse
|
44
|
Eijkelkamp BA, Begg SL, Pederick VG, Trapetti C, Gregory MK, Whittall JJ, Paton JC, McDevitt CA. Arachidonic Acid Stress Impacts Pneumococcal Fatty Acid Homeostasis. Front Microbiol 2018; 9:813. [PMID: 29867785 PMCID: PMC5958418 DOI: 10.3389/fmicb.2018.00813] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Accepted: 04/10/2018] [Indexed: 12/21/2022] Open
Abstract
Free fatty acids hold dual roles during infection, serving to modulate the host immune response while also functioning directly as antimicrobials. Of particular importance are the long chain polyunsaturated fatty acids, which are not commonly found in bacterial organisms, that have been proposed to have antibacterial roles. Arachidonic acid (AA) is a highly abundant long chain polyunsaturated fatty acid and we examined its effect upon Streptococcus pneumoniae. Here, we observed that in a murine model of S. pneumoniae infection the concentration of AA significantly increases in the blood. The impact of AA stress upon the pathogen was then assessed by a combination of biochemical, biophysical and microbiological assays. In vitro bacterial growth and intra-macrophage survival assays revealed that AA has detrimental effects on pneumococcal fitness. Subsequent analyses demonstrated that AA exerts antimicrobial activity via insertion into the pneumococcal membrane, although this did not increase the susceptibility of the bacterium to antibiotic, oxidative or metal ion stress. Transcriptomic profiling showed that AA treatment also resulted in a dramatic down-regulation of the genes involved in fatty acid biosynthesis, in addition to impacts on other metabolic processes, such as carbon-source utilization. Hence, these data reveal that AA has two distinct mechanisms of perturbing the pneumococcal membrane composition. Collectively, this work provides a molecular basis for the antimicrobial contribution of AA to combat pneumococcal infections.
Collapse
Affiliation(s)
- Bart A Eijkelkamp
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Stephanie L Begg
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Victoria G Pederick
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Claudia Trapetti
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Melissa K Gregory
- Adelaide Medical School, University of Adelaide, Adelaide, SA, Australia
| | - Jonathan J Whittall
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - James C Paton
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| | - Christopher A McDevitt
- Research Centre for Infectious Diseases, School of Biological Sciences, University of Adelaide, Adelaide, SA, Australia
| |
Collapse
|
45
|
Abdollahi S, Rasooli I, Mousavi Gargari SL. The role of TonB-dependent copper receptor in virulence of Acinetobacter baumannii. INFECTION GENETICS AND EVOLUTION 2018; 60:181-190. [PMID: 29505819 DOI: 10.1016/j.meegid.2018.03.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 02/11/2018] [Accepted: 03/01/2018] [Indexed: 12/15/2022]
Abstract
Acinetobacter baumannii is an opportunistic gram negative pathogen that can adhere to different surfaces and cause different nosocomial infections. To investigate the role of TonB-dependent copper receptor, an outer membrane protein, in virulence of A. baumannii, we deleted this receptor from A. baumannii chromosome. There was a significant decrease in biofilm formation by copper receptor deficient mutant strain. Similarly, the adherence to human epithelial cell and the hydrophobicity were declined. The survival rate of the mutant strain in human sera was reduced while no change was observed in motility of strains. In murine pneumonia model, the bacterial lethal dose 0 (LD0), LD50 and LD100 were increased for mutant strain. Moreover, in vivo and in vitro experiments revealed changes in growth rate and dissemination of mutant strain; so that the bacterial load of the mutant was significantly reduced in the spleen and lung. The findings suggest a critical role for TonB-dependent copper receptor in virulence of A. baumannii.
Collapse
Affiliation(s)
| | - Iraj Rasooli
- Department of Biology, Shahed University, Tehran, Iran; Molecular Microbiology Research Center, Shahed University, Tehran, Iran.
| | | |
Collapse
|
46
|
Farshadzadeh Z, Taheri B, Rahimi S, Shoja S, Pourhajibagher M, Haghighi MA, Bahador A. Growth Rate and Biofilm Formation Ability of Clinical and Laboratory-Evolved Colistin-Resistant Strains of Acinetobacter baumannii. Front Microbiol 2018; 9:153. [PMID: 29483899 PMCID: PMC5816052 DOI: 10.3389/fmicb.2018.00153] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Accepted: 01/23/2018] [Indexed: 12/29/2022] Open
Abstract
Two different mechanisms of resistance to colistin in Acinetobacter baumannii have been described. The first involves the total loss of lipopolysaccharide (LPS) due to mutations in the lpxACD operon, which is involved in the lipid A biosynthesis pathway. The second entails the addition of ethanolamine to the lipid A of the LPS resulting from mutations in the PmrAB two-component system. To evaluate the impact of colistin resistance-associated mutations on antimicrobial resistance and virulence properties, four pairs of clinical and laboratory-evolved colistin-susceptible/colistin-resistant (ColS/ColR) A. baumannii isolates were used. Antimicrobial susceptibility, surface motility, in vitro and in vivo biofilm-forming capacity, in vitro and in vivo expression levels of biofilm-associated genes, and in vitro growth rate were analyzed in these strains. Growth rate, in vitro and in vivo biofilm formation ability, as well as expression levels of biofilm-associated gene were reduced in ColR LPS-deficient isolate (the lpxD mutant) when compared with its ColS partner, whereas there were not such differences between LPS-modified isolates (the pmrB mutants) and their parental isolates. Mutation in lpxD was accompanied by a greater reduction in minimum inhibitory concentrations of azithromycin, vancomycin, and rifampin than mutation in pmrB. Besides, loss of LPS was associated with a significant reduction in surface motility without any change in expression of type IV pili. Collectively, colistin resistance through loss of LPS causes a more considerable cost in biological features such as growth rate, motility, and biofilm formation capacity relative to LPS modification. Therefore, ColR LPS-modified strains are more likely to spread and transmit from one patient to another in hospital settings, which results in more complex treatment and control.
Collapse
Affiliation(s)
- Zahra Farshadzadeh
- Department of Microbiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Behrouz Taheri
- Department of Medical Laboratory Sciences, School of Paramedicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Sara Rahimi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Saeed Shoja
- Infectious and Tropical Disease Research Center, Hormozgan Health Institute, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Maryam Pourhajibagher
- Dental Research Center, Dentistry Research Institute, Tehran University of Medical Sciences, Tehran, Iran.,Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad A Haghighi
- Department of Microbiology, Faculty of Medicine, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Abbas Bahador
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
47
|
Quinn B, Traglia GM, Nguyen M, Martinez J, Liu C, Fernandez JS, Ramirez MS. Effect of Host Human Products on Natural Transformation in Acinetobacter baumannii. Curr Microbiol 2018; 76:950-953. [PMID: 29332139 DOI: 10.1007/s00284-017-1417-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 12/06/2017] [Indexed: 12/15/2022]
Abstract
Our previous data show that serum albumin can trigger natural transformation in Acinetobacter baumannii. However, extracellular matrix/basal membrane components, norepinephrine, and mucin did not have a significant effect on this process. Therefore, the effect of human products appears to be albumin specific, as both BSA and HSA have been shown to increase of natural transformation.
Collapse
Affiliation(s)
- Brettni Quinn
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - German M Traglia
- Laboratorio de Bacteriología Clínica, Departamento de Bioquímica Clínica, Facultad de Farmacia y Bioquímica, Hospital de Clínicas José de San Martín, Buenos Aires, Argentina
| | - Meaghan Nguyen
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jasmine Martinez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Christine Liu
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Jennifer S Fernandez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA
| | - Maria Soledad Ramirez
- Center for Applied Biotechnology Studies, Department of Biological Science, College of Natural Sciences and Mathematics, California State University Fullerton, Fullerton, CA, USA.
| |
Collapse
|
48
|
Abstract
Covering: up to 2017.Natural products are important secondary metabolites produced by bacterial and fungal species that play important roles in cellular growth and signaling, nutrient acquisition, intra- and interspecies communication, and virulence. A subset of natural products is produced by nonribosomal peptide synthetases (NRPSs), a family of large, modular enzymes that function in an assembly line fashion. Because of the pharmaceutical activity of many NRPS products, much effort has gone into the exploration of their biosynthetic pathways and the diverse products they make. Many interesting NRPS pathways have been identified and characterized from both terrestrial and marine bacterial sources. Recently, several NRPS pathways in human commensal bacterial species have been identified that produce molecules with antibiotic activity, suggesting another source of interesting NRPS pathways may be the commensal and pathogenic bacteria that live on the human body. The ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, and Enterobacter spp.) have been identified as a significant cause of human bacterial infections that are frequently multidrug resistant. The emerging resistance profile of these organisms has prompted calls from multiple international agencies to identify novel antibacterial targets and develop new approaches to treat infections from ESKAPE pathogens. Each of these species contains several NRPS biosynthetic gene clusters. While some have been well characterized and produce known natural products with important biological roles in microbial physiology, others have yet to be investigated. This review catalogs the NRPS pathways of ESKAPE pathogens. The exploration of novel NRPS products may lead to a better understanding of the chemical communication used by human pathogens and potentially to the discovery of novel therapeutic approaches.
Collapse
Affiliation(s)
- Andrew M Gulick
- Hauptman-Woodward Medical Research Institute, 700 Ellicott Street, Buffalo, NY 14203, USA.
| |
Collapse
|
49
|
Chen R, Lv R, Xiao L, Wang M, Du Z, Tan Y, Cui Y, Yan Y, Luo Y, Yang R, Song Y. A1S_2811, a CheA/Y-like hybrid two-component regulator from Acinetobacter baumannii ATCC17978, is involved in surface motility and biofilm formation in this bacterium. Microbiologyopen 2017; 6. [PMID: 28714256 PMCID: PMC5635159 DOI: 10.1002/mbo3.510] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/22/2017] [Accepted: 05/25/2017] [Indexed: 12/14/2022] Open
Abstract
Two‐component systems in Acinetobacter baumannii are associated with its virulence, drug resistance, motility, biofilm formation, and other characteristics. In this study, we used RecAb, a genetic engineering method, to investigate the function of A1S_2811 in A. baumannii strain ATCC17978. A1S_2811, a hypothetical hybrid sensor histidine kinase/response regulator, has four histidine‐containing phosphotransfer domains, a CheA‐like regulatory domain, and a CheY‐like receiver domain at its C terminus. Compared with the ATCC17978 strain, both surface motility and biofilm formation at the gas–liquid interface decreased significantly in the A1S_2811 knock‐out strain. The number of pilus‐like structures and the amount of extrapolymeric substances on the cell surface also decreased in the A1S_2811 null strain. Transcription of abaI, which encodes an N‐acylhomoserine lactone synthase in A. baumannii , decreased significantly in the A1S_2811 null strain, and supplementation with synthetic N‐(3‐oxodecanoyl) homoserine‐l‐lactone rescued the surface motility and biofilm formation phenotype in the null mutant. We speculate that A1S_2811 regulates surface motility and biofilm formation, not by regulating type IV pili‐associated genes expression, but by regulating the chaperone/usher pili‐associated csuA/ABCDE operon and the AbaI‐dependent quorum‐sensing pathway‐associated A1S_0112‐0119 operon instead.
Collapse
Affiliation(s)
- Rong Chen
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China.,Department of Clinical Microbiology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ruichen Lv
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Lisheng Xiao
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Min Wang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Zongmin Du
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yafang Tan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yujun Cui
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanfeng Yan
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yanping Luo
- Department of Clinical Microbiology, General Hospital of Chinese People's Liberation Army, Beijing, China
| | - Ruifu Yang
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| | - Yajun Song
- State Key Laboratory of Pathogen and Biosecurity, Beijing Institute of Microbiology and Epidemiology, Beijing, China
| |
Collapse
|
50
|
Rumbo-Feal S, Pérez A, Ramelot TA, Álvarez-Fraga L, Vallejo JA, Beceiro A, Ohneck EJ, Arivett BA, Merino M, Fiester SE, Kennedy MA, Actis LA, Bou G, Poza M. Contribution of the A. baumannii A1S_0114 Gene to the Interaction with Eukaryotic Cells and Virulence. Front Cell Infect Microbiol 2017; 7:108. [PMID: 28421168 PMCID: PMC5376624 DOI: 10.3389/fcimb.2017.00108] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2016] [Accepted: 03/17/2017] [Indexed: 11/29/2022] Open
Abstract
Genetic and functional studies showed that some components of the Acinetobacter baumannii ATCC 17978 A1S_0112-A1S_0119 gene cluster are critical for biofilm biogenesis and surface motility. Recently, our group has shown that the A1S_0114 gene was involved in biofilm formation, a process related with pathogenesis. Confirming our previous results, microscopy images revealed that the ATCC 17978 Δ0114 derivative lacking this gene was unable to form a mature biofilm structure. Therefore, other bacterial phenotypes were analyzed to determine the role of this gene in the pathogenicity of A. baumannii ATCC 17978. The interaction of the ATCC 17978 parental strain and the Δ0114 mutant with A549 human alveolar epithelial cells was quantified revealing that the A1S_0114 gene was necessary for proper attachment to A549 cells. This dependency correlates with the negative effect of the A1S_0114 deletion on the expression of genes coding for surface proteins and pili-assembly systems, which are known to play a role in adhesion. Three different experimental animal models, including vertebrate and invertebrate hosts, confirmed the role of the A1S_0114 gene in virulence. All of the experimental infection assays indicated that the virulence of the ATCC 17978 was significantly reduced when this gene was inactivated. Finally, we discovered that the A1S_0114 gene was involved in the production of a small lipopeptide-like compound herein referred to as acinetin 505 (Ac-505). Ac-505 was isolated from ATCC 17978 spent media and its chemical structure was interpreted by mass spectrometry. Overall, our observations provide novel information on the role of the A1S_0114 gene in A. baumannii's pathobiology and lay the foundation for future work to determine the mechanisms by which Ac-505, or possibly an Ac-505 precursor, could execute critical functions as a secondary metabolite.
Collapse
Affiliation(s)
- Soraya Rumbo-Feal
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Astrid Pérez
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain.,Departamento de Microbiología y Parasitología, Universidad de Santiago de CompostelaSantiago de Compostela, Spain.,Department of Microbiology, Miami UniversityOxford, OH, USA
| | - Theresa A Ramelot
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, USA
| | - Laura Álvarez-Fraga
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Juan A Vallejo
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Alejandro Beceiro
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Emily J Ohneck
- Department of Microbiology, Miami UniversityOxford, OH, USA
| | | | - María Merino
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | | | - Michael A Kennedy
- Department of Chemistry and Biochemistry, Miami UniversityOxford, OH, USA
| | - Luis A Actis
- Department of Microbiology, Miami UniversityOxford, OH, USA
| | - Germán Bou
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| | - Margarita Poza
- Departamento de Microbiología, Instituto de Investigación Biomédica, Complejo Hospitalario Universitario (CHUAC), Universidad de A Coruña (UDC)A Coruña, Spain
| |
Collapse
|