1
|
Matakone M, Founou RC, Founou LL, Dimani BD, Koudoum PL, Fonkoua MC, Boum-Ii Y, Gonsu H, Noubom M. Multi-drug resistant (MDR) and extended-spectrum β-lactamase (ESBL) producing Escherichia coli isolated from slaughtered pigs and slaughterhouse workers in Yaoundé, Cameroon. One Health 2024; 19:100885. [PMID: 39281346 PMCID: PMC11402427 DOI: 10.1016/j.onehlt.2024.100885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 08/23/2024] [Indexed: 09/18/2024] Open
Abstract
Antimicrobial resistance (AMR) in the food chain remains a global public health concern for both humans and animals. This study aimed to determine the prevalence, resistance profiles, and clonal relatedness of multidrug-resistant (MDR) and extended-spectrum β-lactamases- producing Escherichia coli (ESBL-Ec) isolated from slaughtered pigs and slaughterhouse workers in Yaoundé, Cameroon. A cross-sectional study was conducted over four months, from February to May 2023 in two selected pig's slaughterhouse markets in Yaoundé. Rectal swabs were collected from 375 pigs at four time points and pooled per three according to gender, origin, and abattoirs leading to 125 pooled samples. Seven faecal samples from 60 contacted exposed workers were collected. Samples were cultured on CHROMagar™ ESBL medium, dark pink to reddish colonies were considered E. coli. Resistance genes including bla CTX-M, bla SHV and bla TEM were detected using the polymerase chain reaction (PCR) while ERIC-PCR was used to assess the genetic relatedness between isolates. The prevalence of ESBL-Ec was elevated among exposed workers (71.4 %; n = 5/7) and pigs (70.4 %; n = 88/125). Overall, ESBL-Ec exhibited high resistance to cefuroxime (100 %, n = 105/105), cefotaxime (100 %, n = 105/105), amoxicillin-clavulanic acid (98.1 %, n = 103/105), cefixime (92.4 %, n = 97/105), tetracycline (86.7 %, n = 91/105) and sulfamethoxazole-trimethoprim (81.9 %, n = 86/105). However, these isolates showed good susceptibility to gentamicin (3.8 %, n = 4/105), chloramphenicol (8.6 %, n = 9/105), and fosfomycin (14.3 %, n = 15/105). All human isolates and 75.8 % (n = 75/99) of pig isolates were multi-drug resistant. The bla CTX-M was the most prevalent resistance gene among exposed workers (100 %, n = 6/6) and pigs (80.8 %, n = 80/99) followed by bla TEM (33.3 % each). High clonal relatedness of ESBL-Ec strains was observed among pig and human isolates across slaughterhouses. This study showed that the gastrointestinal tract of pigs might be an important reservoir of MDR and ESBL-Ec in Yaoundé, Cameroon and these resistant bacteria might be circulating between sources, especially humans. Heightening awareness on appropriate antibiotic use in humans and animals as well as implementing stringent biosecurity and food safety measures are imperative to prevent the emergence and spread of AMR in the country.
Collapse
Affiliation(s)
- Moise Matakone
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Raspail Carrel Founou
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Antimicrobial Resistance and Infectious Disease (ARID) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
- Antimicrobial Research Unit, School of Health Sciences, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa
- Cameroonian Society for Microbiology, Yaoundé, Cameroon
| | - Luria Leslie Founou
- Cameroonian Society for Microbiology, Yaoundé, Cameroon
- Reproductive, Maternal, Newborn and Child Health (ReMARCH) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
- Bioinformatics & Applied Machine Learning Research Unit, EDEN Biosciences Research Institute (EBRI), EDEN Foundation, Yaoundé, Cameroon
| | - Brice Davy Dimani
- Antimicrobial Resistance and Infectious Disease (ARID) Research Unit, Research Institute of the Centre of Expertise and Biological Diagnostic of Cameroon (CEDBCAM-RI), Yaoundé, Cameroon
| | - Patrice Landry Koudoum
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
| | - Marie Christine Fonkoua
- Cameroonian Society for Microbiology, Yaoundé, Cameroon
- Centre Pasteur du Cameroun, Yaoundé, Cameroon
| | - Yap Boum-Ii
- Cameroonian Society for Microbiology, Yaoundé, Cameroon
- Centre Pasteur de Bangui, Bangui, Central African Republic
| | - Hortense Gonsu
- Cameroonian Society for Microbiology, Yaoundé, Cameroon
- Faculty of Medicine and Biomedical Sciences, University of Yaoundé 1, Yaoundé, Cameroon
- University Teaching Hospital of Yaoundé, Yaoundé, Cameroon
| | - Michel Noubom
- Department of Microbiology- Haematology and Immunology, Faculty of Medicine and Pharmaceutical Sciences, University of Dschang, Dschang, Cameroon
- Annex Regional Hospital of Dschang (ARHD), Dschang, Cameroon
| |
Collapse
|
2
|
Chowdhury S, Sadhukhan P, Mahata N. Immunoinformatics investigation on pathogenic Escherichia coli proteome to develop an epitope-based peptide vaccine candidate. Mol Divers 2024:10.1007/s11030-024-11034-0. [PMID: 39516450 DOI: 10.1007/s11030-024-11034-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 10/26/2024] [Indexed: 11/16/2024]
Abstract
Escherichia coli (E. coli), a gram-negative bacterium, quickly colonizes in the human gastrointestinal tract after birth and typically sustains a long-term, symbiotic relationship with the host. However, certain virulent strains of E. coli can cause diseases such as urinary tract infections, meningitis, and enteric disorders. The rising antibiotic resistance among these strains has heightened the urgency for an effective vaccine. This study employs immunoinformatics and a reverse vaccinology technique to identify prospective antigens and create an efficient vaccine construct. In this study, we reported the "Attaching and Effacing Protein" a novel outer-membrane protein conserved in all pathogenic E. coli strains, based on proteome screening. We developed an in silico multi-epitope vaccine that includes helper T lymphocyte (HTL), cytotoxic T lymphocyte (CTL), B cell lymphocyte (BCL), and pan HLA DR-binding reactive epitope (PADRE) sequences, along with appropriate linkers and adjuvants. Machine Learning algorithms were used to evaluate antigenicity, solubility, stability, and non-allergenicity of the vaccine construct. Additionally, molecular docking analysis revealed that vaccine construct has a strong predicted binding affinity for human toll-like receptors on the cell surface. In this context, laboratory validations are necessary to demonstrate the effectiveness of the possible vaccine design that showed encouraging findings through computational validation.
Collapse
Affiliation(s)
- Soham Chowdhury
- Department of Life Science and Biotechnology, Jadavpur University, Kolkata, West Bengal, India
| | - Pinkan Sadhukhan
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, 713209, India.
| |
Collapse
|
3
|
Kavanaugh LG, Dey D, Shafer WM, Conn GL. Structural and functional diversity of Resistance-Nodulation-Division (RND) efflux pump transporters with implications for antimicrobial resistance. Microbiol Mol Biol Rev 2024; 88:e0008923. [PMID: 39235227 PMCID: PMC11426026 DOI: 10.1128/mmbr.00089-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/06/2024] Open
Abstract
SUMMARYThe discovery of bacterial efflux pumps significantly advanced our understanding of how bacteria can resist cytotoxic compounds that they encounter. Within the structurally and functionally distinct families of efflux pumps, those of the Resistance-Nodulation-Division (RND) superfamily are noteworthy for their ability to reduce the intracellular concentration of structurally diverse antimicrobials. RND systems are possessed by many Gram-negative bacteria, including those causing serious human disease, and frequently contribute to resistance to multiple antibiotics. Herein, we review the current literature on the structure-function relationships of representative transporter proteins of tripartite RND efflux pumps of clinically important pathogens. We emphasize their contribution to bacterial resistance to clinically used antibiotics, host defense antimicrobials and other biocides, as well as highlighting structural similarities and differences among efflux transporters that help bacteria survive in the face of antimicrobials. Furthermore, we discuss technical advances that have facilitated and advanced efflux pump research and suggest future areas of investigation that will advance antimicrobial development efforts.
Collapse
Affiliation(s)
- Logan G Kavanaugh
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Graduate Program in Microbiology and Molecular Genetics, Emory University, Atlanta, Georgia, USA
| | - Debayan Dey
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
| | - William M Shafer
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia, USA
- Laboratories of Microbial Pathogenesis, VA Medical Research Service, Veterans Affairs Medical Center, Decatur, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| | - Graeme L Conn
- Department of Biochemistry, Emory University School of Medicine, Atlanta, Georgia, USA
- Emory Antibiotic Resistance Center, Emory University School of Medicine, Atlanta, Georgia, USA
| |
Collapse
|
4
|
Park N, Hur JI, Lee S, Ryu S. Prevalence of CTX-M types among ESBL-producing pathogenic Escherichia coli isolates from foodborne diarrheal patients in Gyeonggi-do, South Korea. Food Sci Biotechnol 2024; 33:2825-2833. [PMID: 39184973 PMCID: PMC11339195 DOI: 10.1007/s10068-024-01549-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 02/02/2024] [Accepted: 02/15/2024] [Indexed: 08/27/2024] Open
Abstract
Prevalence and characteristics of extended-spectrum β-lactamase (ESBL)-producing pathogenic Escherichia coli from foodborne diarrheal patients were studied. Analysis of 495 E. coli isolates revealed that 80 isolates were ESBL-producing pathogenic E. coli, and enteroaggregative E. coli and enterotoxigenic E. coli were two of the most prevalent pathotypes. In silico Clermont phylo-typing of the 80 ESBL-producing E. coli showed that phylogroup A (49/80) and D (22/80) were the predominant phylogroups. The average nucleotide identity analysis of ESBL-producing E. coli disclosed that they could be grouped into two phylogenetic groups; 25 A and 55 B groups. All strains, except one, harbored the blaCTX-M gene. All CTX-M-15 type ESBL-producing strains also carried qnrS, a plasmid-mediated quinolone resistance gene (PMQR). These results suggest that the diversity of ESBL-producing E. coli is high and that co-existence of blaCTX-M-15 and qnrS genes is widespread, highlighting their high risk of antibiotic-resistance spreading in infectious disease outbreaks. Supplementary Information The online version contains supplementary material available at 10.1007/s10068-024-01549-5.
Collapse
Affiliation(s)
- Nanjoo Park
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
- Gyeonggi-do Research Institute of Health & Environment, Suwon, South Korea
| | - Jeong In Hur
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| | - Sohyun Lee
- Gyeonggi-do Research Institute of Health & Environment, Suwon, South Korea
| | - Sangryeol Ryu
- Department of Food and Animal Biotechnology, Seoul National University, Seoul, South Korea
- Department of Agricultural Biotechnology, Seoul National University, Seoul, South Korea
- Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, South Korea
- Center for Food and Bioconvergence, Seoul National University, Seoul, South Korea
| |
Collapse
|
5
|
Pylkkö T, Schneider YKH, Rämä T, Andersen JH, Tammela P. Bioprospecting of inhibitors of EPEC virulence from metabolites of marine actinobacteria from the Arctic Sea. Front Microbiol 2024; 15:1432475. [PMID: 39282555 PMCID: PMC11392781 DOI: 10.3389/fmicb.2024.1432475] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Accepted: 06/28/2024] [Indexed: 09/19/2024] Open
Abstract
A considerable number of antibacterial agents are derived from bacterial metabolites. Similarly, numerous known compounds that impede bacterial virulence stem from bacterial metabolites. Enteropathogenic Escherichia coli (EPEC) is a notable human pathogen causing intestinal infections, particularly affecting infant mortality in developing regions. These infections are characterized by microvilli effacement and intestinal epithelial lesions linked with aberrant actin polymerization. This study aimed to identify potential antivirulence compounds for EPEC infections among bacterial metabolites harvested from marine actinobacteria (Kocuria sp. and Rhodococcus spp.) from the Arctic Sea by the application of virulence-based screening assays. Moreover, we demonstrate the suitability of these antivirulence assays to screen actinobacteria extract fractions for the bioassay-guided identification of metabolites. We discovered a compound in the fifth fraction of a Kocuria strain that interferes with EPEC-induced actin polymerization without affecting growth. Furthermore, a growth-inhibiting compound was identified in the fifth fraction of a Rhodococcus strain. Our findings include the bioassay-guided identification, HPLC-MS-based dereplication, and isolation of a large phospholipid and a likely antimicrobial peptide, demonstrating the usefulness of this approach in screening for compounds capable of inhibiting EPEC virulence.
Collapse
Affiliation(s)
- Tuomas Pylkkö
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| | | | - Teppo Rämä
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Jeanette Hammer Andersen
- Marbio, Faculty for Fisheries, Biosciences and Economy, UiT-The Arctic University of Norway, Tromsø, Norway
| | - Päivi Tammela
- Drug Research Program, Faculty of Pharmacy, University of Helsinki, Helsinki, Finland
| |
Collapse
|
6
|
Shi Z, Lan Y, Wang Y, Yan X, Ma X, Hassan FU, Rushdi HE, Xu Z, Wang W, Deng T. Multi-omics strategy reveals potential role of antimicrobial resistance and virulence factor genes responsible for Simmental diarrheic calves caused by Escherichia coli. mSystems 2024; 9:e0134823. [PMID: 38742910 PMCID: PMC11237395 DOI: 10.1128/msystems.01348-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 04/05/2024] [Indexed: 05/16/2024] Open
Abstract
Escherichia coli (E. coli) is reported to be an important pathogen associated with calf diarrhea. Antibiotic resistance genes (ARGs) and virulence factor genes (VFGs) pose a considerable threat to both animal and human health. However, little is known about the characterization of ARGs and VFGs presented in the gut microbiota of diarrheic calves caused by E. coli. In this study, we used multi-omics strategy to analyze the ARG and VFG profiles of Simmental calves with diarrhea caused by E. coli K99. We found that gut bacterial composition and their microbiome metabolic functions varied greatly in diarrheic calves compared to healthy calves. In total, 175 ARGs were identified, and diarrheal calves showed a significantly higher diversity and abundance of ARGs than healthy calves. Simmental calves with diarrhea showed higher association of VFGs with pili function, curli assembly, and ferrienterobactin transport of E. coli. Co-occurrence patterns based on Pearson correlation analysis revealed that E. coli had a highly significant (P < 0.0001) correlation coefficient (>0.8) with 16 ARGs and 7 VFGs. Metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Phylotype analysis of E. coli genomes showed that the predominant phylogroup B1 in diarrheic Simmental calves was associated with 10 ARGs and 3 VFGs. These findings provide an overview of the diversity and abundance of the gut microbiota in diarrheic calves caused by E. coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the calves affected with diarrhea.IMPORTANCESimmental is a well-recognized beef cattle breed worldwide. They also suffer significant economic losses due to diarrhea. In this study, fecal metagenomic analysis was applied to characterize the antibiotic resistance gene (ARG) and virulence factor gene (VFG) profiles of diarrheic Simmental calves. We identified key ARGs and VFGs correlated with Escherichia coli isolated from Simmental calves. Additionally, metabolomics analysis showed that differentially expressed metabolites in Simmental calves with diarrhea displayed a high correlation with the aforementioned ARGs and VFGs. Our findings provide an insight into the diversity and abundance of the gut microbiota in diarrheic calves caused by Escherichia coli and pave the way for further studies on the mechanisms of antibiotic resistance and virulence in the diarrheal calves from cattle hosts.
Collapse
Affiliation(s)
- Zhihai Shi
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yali Lan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Yazhou Wang
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiangzhou Yan
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Xiaoya Ma
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| | - Faiz-Ul Hassan
- Institute of Animal and Dairy Sciences, University of Agriculture, Faisalabad, Pakistan
| | - Hossam E Rushdi
- Department of Animal Production, Faculty of Agriculture, Cairo University, Giza, Egypt
| | - Zhaoxue Xu
- Institute of Animal Husbandry and Veterinary Medicine, Henan Academy of Agricultural Sciences, Zhengzhou, China
| | - Wenjia Wang
- College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou, Henan, China
| | - Tingxian Deng
- Guangxi Provincial Key Laboratory of Buffalo Genetics, Breeding and Reproduction Technology, Buffalo Research Institute, Chinese Academy of Agricultural Sciences, Nanning, China
| |
Collapse
|
7
|
Thattil SJ, Ajith TA. Prevalence and Antibiogram of Escherichia coli Isolated from Children Under Five
Years of Age Presented with Acute Diarrhoea: Cross Sectional Study from a Tertiary
Care Centre in South India. ANTI-INFECTIVE AGENTS 2024; 22. [DOI: 10.2174/0122113525274118231203153143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/06/2023] [Accepted: 09/15/2023] [Indexed: 07/31/2024]
Abstract
Aim:
The study aimed to analyze the prevalence and antibiogram of E. coli isolated from stool sample cultures collected from children below five years of age who were presented with acute diarrhoea in a tertiary care centre.
Background:
Multidrug-resistant strains of diarrheagenic E. coliremain a major public health concern for greater morbidity and mortality. Antibiotic resistance and susceptibility patterns of E. coli were found to vary with geographical location.
Objective:
To determine the prevalence and antibiogram of E. coli isolated from cultures of diarrhoea stool samples collected from children below five years of age from laboratory records.
Methods:
A cross-sectional study was designed to analyze the report on stool culture of children (aged below five years) presented with acute diarrhea during the period between 2017 and 2020. The prevalence of E. coli and its antibiogram were analyzed. The data were subjected to statis-tical analysis.
Results:
A total of 245 diarrhoea stool samples results were analyzed. E. coli was confirmed in 176 samples (72%). More number of isolates (51/176, 28.9%) were found in children below one year of age with male dominance. Amoxicillin resistance was found in all the E. coli strains isolated with no significant difference (p=0.2233) between genders and age groups below and above one year. A significant difference (p=0.0001) was found between male and female chil-dren of age below and above one year for cefotaxime and ciprofloxacin resistance. Polymyxin B (72%) followed by imipenem (69%) sensitivity was exhibited by the isolated E. coli strains.
Conclusion:
E. coli isolates were more sensitive to polymyxin B and imipenem while they were most resistant to amoxicillin. Effective antibiotic treatment strategies should be developed to control E. coli infections in children.
Collapse
Affiliation(s)
- Santhosh J. Thattil
- Department of Microbiology, Nyle Womens’ and Children’s Super speciality Hospital, Kaiparambu, Thrissur, 680546,
Kerala, India
| | - Thekkuttuparambil A. Ajith
- Department of Biochemistry, Amala Institute of Medical Sciences, Amala Nagar, Thrissur, 680555, Kerala,
India
| |
Collapse
|
8
|
Van Nederveen V, Melton-Celsa A. Extracellular components in enteroaggregative Escherichia coli biofilm and impact of treatment with proteinase K, DNase or sodium metaperiodate. Front Cell Infect Microbiol 2024; 14:1379206. [PMID: 38938878 PMCID: PMC11209426 DOI: 10.3389/fcimb.2024.1379206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Accepted: 04/23/2024] [Indexed: 06/29/2024] Open
Abstract
Enteroaggregative E. coli (EAEC) is a major cause of diarrhea worldwide. EAEC are highly adherent to cultured epithelial cells and make biofilms. Both adherence and biofilm formation rely on the presence of aggregative adherence fimbriae (AAF). We compared biofilm formation from two EAEC strains of each of the five AAF types. We found that AAF type did not correlate with the level of biofilm produced. Because the composition of the EAEC biofilm has not been fully described, we stained EAEC biofilms to determine if they contained protein, carbohydrate glycoproteins, and/or eDNA and found that EAEC biofilms contained all three extracellular components. Next, we assessed the changes to the growing or mature EAEC biofilm mediated by treatment with proteinase K, DNase, or a carbohydrate cleavage agent to target the different components of the matrix. Growing biofilms treated with proteinase K had decreased biofilm staining for more than half of the strains tested. In contrast, although sodium metaperiodate only altered the biofilm in a quantitative way for two strains, images of biofilms treated with sodium metaperiodate showed that the EAEC were more spread out. Overall, we found variability in the response of the EAEC strains to the treatments, with no one treatment producing a biofilm change for all strains. Finally, once formed, mature EAEC biofilms were more resistant to treatment than biofilms grown in the presence of those same treatments.
Collapse
Affiliation(s)
- Viktoria Van Nederveen
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
- Henry M. Jackson Foundation for the Advancement of Military Medicine, Inc., Bethesda, MD, United States
| | - Angela Melton-Celsa
- Department of Microbiology and Immunology, Uniformed Services University, Bethesda, MD, United States
| |
Collapse
|
9
|
Halder S, Jaiswal N, Koley H, Mahata N. Cloning, improved expression and purification of invasion plasmid antigen D (IpaD): an effector protein of enteroinvasive Escherichia coli (EIEC). Biotechnol Genet Eng Rev 2024; 40:409-435. [PMID: 36871167 DOI: 10.1080/02648725.2023.2184027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Accepted: 02/15/2023] [Indexed: 03/06/2023]
Abstract
The widespread increase in broad-spectrum antimicrobial resistance is making it more difficult to treat gastrointestinal infections. Enteroinvasive Escherichia coli is a prominent etiological agent of bacillary dysentery, invading via the fecal-oral route and exerting virulence on the host via the type III secretion system. IpaD, a surface-exposed protein on the T3SS tip that is conserved among EIEC and Shigella, may serve as a broad immunogen for bacillary dysentery protection. For the first time, we present an effective framework for improving the expression level and yield of IpaD in the soluble fraction for easy recovery, as well as ideal storage conditions, which may aid in the development of new protein therapies for gastrointestinal infections in the future. To achieve this, uncharacterized full length IpaD gene from EIEC was cloned into pHis-TEV vector and induction parameters were optimized for enhanced expression in the soluble fraction. After affinity-chromatography based purification, 61% pure protein with a yield of 0.33 mg per litre of culture was obtained. The purified IpaD was retained its secondary structure with a prominent α-helical structure as well as functional activity during storage, at 4°C, -20°C and -80°C using 5% sucrose as cryoprotectants, which is a critical criterion for protein-based treatments.
Collapse
Affiliation(s)
- Sudeshna Halder
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Namita Jaiswal
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| | - Hemanta Koley
- Department Bacteriology, National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Nibedita Mahata
- Department of Biotechnology, National Institute of Technology Durgapur, Durgapur, India
| |
Collapse
|
10
|
Karambwe S, Traoré AN, Potgieter N. Epidemiology of Cefotaxime-Hydrolysing β-Lactamase-Producing Escherichia coli in Children with Diarrhoea Reported Globally between 2012 and 2022. Microorganisms 2024; 12:171. [PMID: 38257997 PMCID: PMC10820611 DOI: 10.3390/microorganisms12010171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/12/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
The global spread of cefotaxime-hydrolysing β-lactamase (CTX-M)-producing Escherichia coli (E. coli) and its associated impact on paediatric diarrhoeal treatment and management has become a public health concern. This review assessed surveillance studies on CTX-M-producing E. coli associated with diarrhoea in children published between 2012 and 2022 globally. A total of thirty-eight studies were included for data analysis, categorised into continental regions, and tabulated. The majority (68%) of studies were conducted in Asian countries while few studies were conducted in Europe (11%) and Africa (18%), respectively. On the African continent, the majority (11%) of studies were conducted in Northern Africa while no studies were reported in East Africa. On the American continent, 3% of the studies were reported from South America. The studies included were classified into diarrheagenic E. coli (74%; 28/38) and faecal carriage (26%; 10/38). Of all the E. coli pathotypes associated with CTX-M production, EPEC was frequently reported. The prevalence of CTX-M-producing E. coli including the CTX-M-15-producing variants ranged between 1% and 94%. About 37% of the studies generalised the report as blaCTX-M-positive E. coli. The use of sequencing in characterising the CTX-M-producing E. coli was reported in only 32% of all the studies. This review provides information on the epidemiology of CTX-M-15-producing E. coli in paediatric diarrhoea and the extent to which surveillance is being performed. This is relevant in informing clinical practice for the management of diarrhoea as well as the design of future surveillance studies.
Collapse
Affiliation(s)
| | | | - Natasha Potgieter
- Department of Biochemistry and Microbiology, University of Venda, Private Bag X5050, Thohoyandou 0950, South Africa; (S.K.); (A.N.T.)
| |
Collapse
|
11
|
Zhou N, An T, Zhang Y, Zhao G, Wei C, Shen X, Li F, Wang X. Improving Photocleavage Efficiency of Photocleavable Protein for Antimicrobial Peptide Histatin 1 Expression. Protein Pept Lett 2024; 31:141-152. [PMID: 38243926 DOI: 10.2174/0109298665276722231212053009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 11/17/2023] [Accepted: 11/20/2023] [Indexed: 01/22/2024]
Abstract
BACKGROUND Antimicrobial peptides (AMPs) are promising alternative agents for antibiotics to overcome antibiotic resistance problems. But, it is difficult to produce large-scale antimicrobial research due to the toxicity towards expression hosts or degradation by peptidases in the host. Therefore, heterologous recombinant expression of antimicrobial peptides has always been a challenging issue. OBJECTIVES To overcome toxicity to the expression host and low expression level, a new photocleavable protein fusion expression method for antimicrobial peptides is provided.3 Methods: Through directed evolution and high throughput screening, a photocleavable protein mutant R6-2-6-4 with a higher photocleavage efficiency was obtained. The DNA coding sequence of antimicrobial peptide Histatin 1 was fused within the sequence of R6-2-6-4 gene. The fusion gene was successfully expressed in Escherichia coli expression system. RESULTS Antimicrobial peptide Histatin 1 could be successfully expressed and purified by fusing within PhoCl mutant R6-2-6-4. The antimicrobial activity was rarely affected, and the MIC value was 33 ug/mL, which was basically equivalent to 32 ug/mL of the chemically synthesized Histatin 1. After amplification in a 5 L fermenter, the expression of PhoCl mutant (R6-2-6-4)-Histatin1 improved up to 87.6 mg/L in fermenter, and Histatin1 obtained by photocleavage also could up to 11 mg/L. The prepared Histatin1 powder remained stable when stored at 4oC for up to 4 months without any degradation. In addition, the expression and photocleavage of β -Defensin105 and Lysostaphin verified the certain universality of the PhoCl mutant fusion expression system. CONCLUSION Antimicrobial peptides Histatin 1, β -Defensin 105 and Lysostaphin were successfully expressed and purified by photocleavable protein mutant. This may provide a novel strategy to express and purify antimicrobial peptides in the Escherichia coli expression system.
Collapse
Affiliation(s)
- Nana Zhou
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Tai An
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Yuan Zhang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Guomiao Zhao
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Chao Wei
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xuemei Shen
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Fan Li
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| | - Xiaoyan Wang
- Nutrition and Health Research Institute, COFCO Corporation, Beijing 102209, China
| |
Collapse
|
12
|
Azam MW, Zarrilli R, Khan AU. Updates on the Virulence Factors Produced by Multidrug-Resistant Enterobacterales and Strategies to Control Their Infections. Microorganisms 2023; 11:1901. [PMID: 37630461 PMCID: PMC10456890 DOI: 10.3390/microorganisms11081901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 07/06/2023] [Accepted: 07/25/2023] [Indexed: 08/27/2023] Open
Abstract
The Enterobacterales order is a massive group of Gram-negative bacteria comprised of pathogenic and nonpathogenic members, including beneficial commensal gut microbiota. The pathogenic members produce several pathogenic or virulence factors that enhance their pathogenic properties and increase the severity of the infection. The members of Enterobacterales can also develop resistance against the common antimicrobial agents, a phenomenon called antimicrobial resistance (AMR). Many pathogenic Enterobacterales members are known to possess antimicrobial resistance. This review discusses the virulence factors, pathogenicity, and infections caused by multidrug-resistant Enterobacterales, especially E. coli and some other bacterial species sharing similarities with the Enterobacterales members. We also discuss both conventional and modern approaches used to combat the infections caused by them. Understanding the virulence factors produced by the pathogenic bacteria will help develop novel strategies and methods to treat infections caused by them.
Collapse
Affiliation(s)
- Mohd W. Azam
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| | - Raffaele Zarrilli
- Department of Public Health, University of Naples Federico II, 80131 Naples, Italy
| | - Asad U. Khan
- Medical Microbiology and Molecular Biology Laboratory, Interdisciplinary Biotechnology Unit, Aligarh Muslim University, Aligarh 202002, India
| |
Collapse
|
13
|
Hadi HA, Al-Hail H, Aboidris LE, Al-Orphaly M, Ahmed MAS, Samuel BG, Mohamed HA, Sultan AA, Skariah S. Prevalence and genetic characterization of clinically relevant extended-spectrum β-lactamase-producing Enterobacterales in the Gulf Cooperation Council countries. FRONTIERS IN ANTIBIOTICS 2023; 2:1177954. [PMID: 39816644 PMCID: PMC11732020 DOI: 10.3389/frabi.2023.1177954] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Accepted: 05/17/2023] [Indexed: 01/03/2025]
Abstract
Introduction Among Gram-negative bacteria (GNB), Enterobacterales (Enterobacterales), such as Escherichia coli (E. coli) and Klebsiella pneumoniae (K. pneumoniae), are the most clinically relevant pathogens in healthcare settings. Infections secondary to these pathogens are widely common but multidrug resistance (MDR) in Enterobacterales has become a significant challenge with increased morbidity, mortality, and cost of management. The escalating global prevalence of MDR in Enterobacterales has led to limited treatment options, raising an urgent need for novel antimicrobial therapy(s) and detailed studies exploring underlying resistance mechanisms. In Enterobacterales, the prime antimicrobial resistance mechanism against β-lactam antibiotics is mainly the production of β-lactamases, particularly extended-spectrum β-lactamases (ESBLs). Although the Gulf region is witnessing major challenges from infections secondary to MDR GNB, the extent of the problem has not been fully evaluated. Therefore, this review aims to address the prevalence and genetic characterization of ESBL-producing Enterobacterales in the Gulf Cooperation Council (GCC) countries. Methods PubMed® (National Library of Medicine, Bethesda, MD, USA) search was conducted, which looked for academic articles discussing the epidemiology of MDR Enterobacterales in the GCC countries, published in the last 5 years. Results and conclusions In GCC countries there is a high prevalence rate of MDR Enterobacterales, particularly ESBLs. Prevalence rates of ESBL-producing Enterobacterales among the Enterobacterales in general clinical samples in the GCC region is 21.6%-29.3%, with a slightly higher prevalence rate in intensive care unit patients (17.3-31.3%) and in patients with urinary tract infections (25.2%-31.7%). ESBL carriers have also been noted in the general community. ESBL-producing Enterobacterales from the GCC region show high levels of resistance to ampicillin, aztreonam, third-/fourth-generation cephalosporins, fluoroquinolones, and trimethoprim-sulfamethoxazole. Intermediate resistance rates are observed against nitrofurantoin, piperacillin/tazobactam, and gentamicin, with increasing resistance observed against tigecycline. The isolates demonstrate low-level resistance to carbapenems, fosfomycin, colistin, and amikacin. Enterobacterales isolates that are concomitant ESBL producers and are carbapenem resistant have been increasingly reported and demonstrate alarmingly increased antibiotic resistance patterns compared with ESBL Enterobacterales. The most prevalent genes for ESBL resistance in the Enterobacterales isolates in the GCC region are: bla CTX-M (subtype group 1) followed by/co-dominated by bla TEM and bla SHV, whereas the most common carbapenem-resistant genes are bla OXA-48 and bla NDM-1.
Collapse
Affiliation(s)
- Hamad A. Hadi
- Department of Infectious Diseases, Communicable Diseases Centre, Hamad Medical Corporation, Doha, Qatar
| | - Hissa Al-Hail
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Leena Elsheikh Aboidris
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mahmood Al-Orphaly
- Department of Medical Education, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Mazen A. Sid Ahmed
- Laboratory Services, Philadelphia Department of Public Health, Philadelphia, PA, United States
- The Life Science Centre, School of Science and Technology, Örebro University, Örebro, Sweden
| | - Bincy Gladson Samuel
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Hana Adam Mohamed
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Ali A. Sultan
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| | - Sini Skariah
- Department of Microbiology and Immunology, Weill Cornell Medicine – Qatar, Education City, Qatar Foundation, Doha, Qatar
| |
Collapse
|
14
|
Tok S, Guzel M, Soyer Y. Emerging Increase in Colistin Resistance Rates in Escherichia coli and Salmonella enterica from Türkiye. Curr Microbiol 2023; 80:222. [PMID: 37221339 DOI: 10.1007/s00284-023-03323-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/03/2023] [Indexed: 05/25/2023]
Abstract
Foodborne infections caused by drug-resistant Salmonella spp. are a global health concern. Moreover, commensal Escherichia coli is considered risky due to the presence of antimicrobial resistance genes. Colistin is considered a last-resort antibiotic against Gram-negative bacterial infections. Colistin resistance can be transferred both vertically, and horizontally via conjugation between bacterial species. Plasmid-mediated resistance has been associated with mcr-1 to mcr-10 genes. In this study, we collected food samples (n = 238), and isolated E. coli (n = 36) and Salmonella (n = 16), representing recent isolates. We included previously collected Salmonella (n = 197) and E. coli (n = 56) from various sources from 2010 to 2015 in Türkiye as representing historical isolates to investigate colistin-resistance over time. In all isolates, colistin resistance was screened phenotypically by minimum inhibitory concentration (MIC), and then in resistant isolates, mcr-1 to mcr-5 genes were further screened. In addition, the antibiotic resistance of recent isolates was determined, and antibiotic resistance genes were investigated. We found that in total 20 Salmonella isolates (9.38%) and 23 of the E. coli isolates (25%) showed phenotypic colistin resistance. Interestingly, the majority of colistin-resistant isolates (N:32) had resistance levels above 128 mg/L. Furthermore 75% of commensal E. coli isolates recently isolated were resistant at least 3 antibiotics. Overall, we found that the colistin resistance has been increased from 8.12 to 25% in Salmonella isolates, and 7.14% to 52.8% in E. coli isolates over time. However, none of these resistant isolates carried mcr genes, most likely indicating emerging chromosomal colistin resistance.
Collapse
Affiliation(s)
- Seray Tok
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey
| | - Mustafa Guzel
- Department of Food Engineering, Hitit University, Çorum, Turkey
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey
| | - Yeşim Soyer
- Department of Food Engineering, Faculty of Engineering, Middle East Technical University, Ankara, Turkey.
- Department of Biotechnology, Middle East Technical University, Ankara, Turkey.
| |
Collapse
|
15
|
Islam MM, Farag E, Hassan MM, Jaffrey SS, Atta M, Al-Marri AM, Al-Zeyara AM, Al Romaihi H, Bansal D, Mkhize-Kwitshana ZL. Rodent-borne zoonoses in Qatar: A possible One-Health framework for the intervention of future epidemic. One Health 2023. [DOI: 10.1016/j.onehlt.2023.100517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/27/2023] Open
|
16
|
Liu F, Smith AD, Wang TTY, Pham Q, Cheung L, Yang H, Li RW. Biological pathways via which the anthocyanin malvidin alleviated the murine colitis induced by Citrobacter rodentium. Food Funct 2023; 14:1048-1061. [PMID: 36562464 DOI: 10.1039/d2fo02873e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Enteropathogenic E. coli (EPEC) is a causal agent for diarrheal diseases and contributes to morbidity and mortality in children under the age of five years. The emergence and rapid spread of antibiotic resistant EPEC strains necessitate the search for novel alternatives to antibiotics. In this study, we used Citrobacter rodentium, a natural mouse pathogen that mimics many aspects of human EPEC infections, to investigate the antimicrobial properties of the blueberry anthocyanin malvidin 3-glucoside (MG) using a multi-omics approach. MG supplementation reversed the bodyweight loss induced by C. rodentium infection and improved colonic hyperplasia and histopathological scores. In the colon tissue, MG supplementation significantly increased the expression of Hace1, a key regulator of TNFα-driven signaling, and impacted multiple pathways, such as TGFβ signaling. MG partially restored C. rodentium-induced microbial dysbiosis and significantly enhanced the abundance of the probiotic Bifidobacterium animalis. Moreover, MG disrupted the interactions of E. coli with other gut microbes. MG significantly mediated several host- and microbiota-derived metabolites, such as cytosine, ureidopropionic acid, and glutaric acid. MG normalized the bioactive lipid oleoylethanolamine, a member of the endocannabinoid system, from the dysregulated level in infected mice, directly contributing to its overall beneficial effects. Our findings provided novel insights into molecular processes via which the flavonoid malvidin exerts its biological effects in the gastrointestinal tract.
Collapse
Affiliation(s)
- Fang Liu
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Allen D Smith
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Thomas T Y Wang
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Quynhchi Pham
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Lumei Cheung
- USDA-ARS, Diet, Genomics, and Immunology Laboratory, Beltsville Human Nutrition Research Center, Beltsville, MD, USA
| | - Haiyan Yang
- College of Public Health, Zhengzhou University, Zhengzhou, China.
| | - Robert W Li
- USDA-ARS, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
17
|
Prevalence of Multidrug-Resistant Diarrheagenic Escherichia coli in Asia: A Systematic Review and Meta-Analysis. Antibiotics (Basel) 2022; 11:antibiotics11101333. [PMID: 36289991 PMCID: PMC9598397 DOI: 10.3390/antibiotics11101333] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/20/2022] [Accepted: 09/28/2022] [Indexed: 12/02/2022] Open
Abstract
Diarrhea is one of the leading causes of morbidity and mortality in developing countries. Diarrheagenic Escherichia coli (DEC) is an important bacterial agent for diarrhea in infants, children, and international travelers, and accounts for more than 30% of diarrheal cases in children less than 5 years old. However, the choices of antimicrobial agents are now being limited by the ineffectiveness of many first-line drugs, in relation to the emergence of antimicrobial-resistant E. coli strains. The aim of this systematic review and meta-analysis was to provide an updated prevalence of antimicrobial-resistant DEC in Asia. A comprehensive systematic search was conducted on three electronic databases (PubMed, ScienceDirect, and Scopus), where 40 eligible studies published between 2010 and 2022 were identified. Using meta-analysis of proportions and a random-effects model, the pooled prevalence of DEC in Asian diarrheal patients was 22.8% (95% CI: 16.5–29.2). The overall prevalence of multidrug-resistant (MDR) and extended-spectrum beta-lactamase (ESBL)-producing DEC strains was estimated to be 66.3% (95% CI: 58.9–73.7) and 48.6% (95% CI: 35.1–62.1), respectively. Considering antimicrobial drugs for DEC, the resistance prevalence was highest for the penicillin class of antibiotics, where 80.9% of the DEC isolates were resistant to amoxicillin and 73.5% were resistant to ampicillin. In contrast, resistance to carbapenems such as imipenem (0.1%), ertapenem (2.6%), and meropenem (7.9%) was the lowest. The relatively high prevalence estimation signifies that the multidrug-resistant DEC is a public health threat. Effective antibiotic treatment strategies, which may lead to better outcomes for the control of E. coli infections in Asia, are necessary.
Collapse
|
18
|
Bumbangi FN, Llarena AK, Skjerve E, Hang’ombe BM, Mpundu P, Mudenda S, Mutombo PB, Muma JB. Evidence of Community-Wide Spread of Multi-Drug Resistant Escherichia coli in Young Children in Lusaka and Ndola Districts, Zambia. Microorganisms 2022; 10:1684. [PMID: 36014101 PMCID: PMC9416312 DOI: 10.3390/microorganisms10081684] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/02/2022] [Accepted: 08/17/2022] [Indexed: 12/23/2022] Open
Abstract
Increased antimicrobial resistance (AMR) has been reported for pathogenic and commensal Escherichia coli (E. coli), hampering the treatment, and increasing the burden of infectious diarrhoeal diseases in children in developing countries. This study focused on exploring the occurrence, patterns, and possible drivers of AMR E. coli isolated from children under-five years in Zambia. A hospital-based cross-sectional study was conducted in the Lusaka and Ndola districts. Rectal swabs were collected from 565 and 455 diarrhoeic and healthy children, respectively, from which 1020 E. coli were cultured and subjected to antibiotic susceptibility testing. Nearly all E. coli (96.9%) were resistant to at least one antimicrobial agent tested. Further, 700 isolates were Multi-Drug Resistant, 136 were possibly Extensively-Drug Resistant and nine were Pan-Drug-Resistant. Forty percent of the isolates were imipenem-resistant, mostly from healthy children. A questionnaire survey documented a complex pattern of associations between and within the subgroups of the levels of MDR and socio-demographic characteristics, antibiotic stewardship, and guardians' knowledge of AMR. This study has revealed the severity of AMR in children and the need for a community-specific-risk-based approach to implementing measures to curb the problem.
Collapse
Affiliation(s)
- Flavien Nsoni Bumbangi
- School of Medicine, Eden University, Lusaka P.O. Box 37727, Zambia
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Ann-Katrin Llarena
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Eystein Skjerve
- Faculty of Veterinary Medicine, Norwegian University of Life Sciences, 1432 Ås, Norway
| | - Bernard Mudenda Hang’ombe
- Department of Paraclinical Studies, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| | - Prudence Mpundu
- Department of Environmental and Occupational Health, Levy Mwanawasa Medical University, Lusaka P.O. Box 33991, Zambia
| | - Steward Mudenda
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
- Department of Pharmacy, School of Health Sciences, University of Zambia, Lusaka P.O. Box 50110, Zambia
| | - Paulin Beya Mutombo
- Kinshasa School of Public Health, Faculty of Medicine, University of Kinshasa, Kinshasa 834, Congo
| | - John Bwalya Muma
- Department of Disease Control, School of Veterinary Medicine, University of Zambia, Lusaka P.O. Box 32379, Zambia
| |
Collapse
|
19
|
McGrath CJ, Laveckis E, Bell A, Crost E, Juge N, Schüller S. Development of a novel human intestinal model to elucidate the effect of anaerobic commensals on Escherichia coli infection. Dis Model Mech 2022; 15:275170. [PMID: 35302159 PMCID: PMC9066490 DOI: 10.1242/dmm.049365] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 03/10/2022] [Indexed: 01/01/2023] Open
Abstract
The gut microbiota plays a crucial role in protecting against enteric infection. However, the underlying mechanisms are largely unknown owing to a lack of suitable experimental models. Although most gut commensals are anaerobic, intestinal epithelial cells require oxygen for survival. In addition, most intestinal cell lines do not produce mucus, which provides a habitat for the microbiota. Here, we have developed a microaerobic, mucus-producing vertical diffusion chamber (VDC) model and determined the influence of Limosilactobacillus reuteri and Ruminococcus gnavus on enteropathogenic Escherichia coli (EPEC) infection. Optimization of the culture medium enabled bacterial growth in the presence of mucus-producing T84/LS174T cells. Whereas L. reuteri diminished EPEC growth and adhesion to T84/LS174T and mucus-deficient T84 epithelia, R. gnavus only demonstrated a protective effect in the presence of LS174T cells. Reduced EPEC adherence was not associated with altered type III secretion pore formation. In addition, co-culture with L. reuteri and R. gnavus dampened EPEC-induced interleukin 8 secretion. The microaerobic mucin-producing VDC system will facilitate investigations into the mechanisms underpinning colonization resistance and aid the development of microbiota-based anti-infection strategies. This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Conor J. McGrath
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Edgaras Laveckis
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK
| | - Andrew Bell
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Emmanuelle Crost
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Nathalie Juge
- Gut Microbes and Health Programme, Quadram Institute Bioscience, Gut Microbes and Health Institute Strategic Programme, Norwich NR4 7UQ, UK
| | - Stephanie Schüller
- Department of Clinical Medicine, Norwich Medical School, University of East Anglia, Norwich NR4 7UQ, UK,Author for correspondence ()
| |
Collapse
|
20
|
Antitumor Activities of tRNA-Derived Fragments and tRNA Halves from Non-pathogenic Escherichia coli Strains on Colorectal Cancer and Their Structure-Activity Relationship. mSystems 2022; 7:e0016422. [PMID: 35400173 PMCID: PMC9040620 DOI: 10.1128/msystems.00164-22] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
tRNAs purified from non-pathogenic Escherichia coli strains (NPECSs) possess cytotoxic properties on colorectal cancer cells. In the present study, the bioactivity of tRNA halves and tRNA fragments (tRFs) derived from NPECSs are investigated for their anticancer potential. Both the tRNA halves and tRF mimics studied exhibited significant cytotoxicity on colorectal cancer cells, with the latter being more effective, suggesting that tRFs may be important contributors to the bioactivities of tRNAs derived from the gut microbiota. Through high-throughput screening, the EC83 mimic, a double-strand RNA with a 22-nucleotide (nt) 5′-tRF derived from tRNA-Leu(CAA) as an antisense chain, was identified as the one with the highest potency (50% inhibitory concentration [IC50] = 52 nM). Structure-activity investigations revealed that 2′-O-methylation of the ribose of guanosine (Gm) may enhance the cytotoxic effects of the EC83 mimic via increasing the stability of its tertiary structure, which is consistent with the results of in vivo investigations showing that the EC83-M2 mimic (Gm modified) exhibited stronger antitumor activity against both HCT-8 and LoVo xenografts. Consistently, 4-thiouridine modification does not. This provides the first evidence that the bioactivity of tRF mimics would be impacted by chemical modifications. Furthermore, the present study provides the first evidence to suggest that novel tRNA fragments derived from the gut microbiota may possess anticancer properties and have the potential to be potent and selective therapeutic molecules. IMPORTANCE While the gut microbiota has been increasingly recognized to be of vital importance for human health and disease, the current literature shows that there is a lack of attention given to non-pathogenic Escherichia coli strains. Moreover, the biological activities of tRNA fragments (tRFs) derived from bacteria have rarely been investigated. The findings from this study revealed tRFs as a new class of bioactive constituents derived from gut microorganisms, suggesting that studies on biological functional molecules in the intestinal microbiota should not neglect tRFs. Research on tRFs would play an important role in the biological research of gut microorganisms, including bacterium-bacterium interactions, the gut-brain axis, and the gut-liver axis, etc. Furthermore, the guidance on the rational design of tRF therapeutics provided in this study indicates that further investigations should pay more attention to these therapeutics from probiotics. The innovative drug research of tRFs as potent druggable RNA molecules derived from intestinal microorganisms would open a new area in biomedical sciences.
Collapse
|
21
|
Antimicrobial Resistance, Pathogenic, and Molecular Characterization of Escherichia coli from Diarrheal Patients in South Korea. Pathogens 2022; 11:pathogens11040385. [PMID: 35456060 PMCID: PMC9030120 DOI: 10.3390/pathogens11040385] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/18/2022] [Accepted: 03/21/2022] [Indexed: 11/17/2022] Open
Abstract
Diarrheal diseases due to foodborne Escherichia coli are the leading cause of illness in humans. Here, we performed pathogenic typing, molecular typing, and antimicrobial susceptibility tests on seventy-five isolates of E. coli isolated from stool samples of patients suffering from foodborne diseases in Busan, South Korea. All the isolates were identified as E. coli by both biochemical analysis (API 20E system) and matrix-assisted laser desorption/ionization-time of flight mass spectrometry (MALDI-TOF MS). The bacteria displayed entero-pathogenic E. coli (EPEC) (47.0%), entero-aggregative E. coli (EAEC) (33.3%), entero-toxigenic E. coli (ETEC) (6.6%), ETEC and EPEC (6.6%), EPEC and EAEC (4%), and ETEC and EAEC (2.7%) characteristics. The E. coli isolates were highly resistant to nalidixic acid (44.0%), tetracycline (41.3%), ampicillin (40%), ticarcillin (38.7%), and trimethoprim/sulfamethoxazole (34.7%); however, they were highly susceptible to imipenem (98.6%), cefotetan (98.6%), cefepime (94.6%), and chloramphenicol (94.6%). Although 52 strains (69.3%) showed resistance against at least 1 of the 16 antibiotics tested, 23 strains (30.7%) were susceptible to all the antibiotics. Nine different serotypes (O166, O8, O20, O25, O119, O159, O28ac, O127a, and O18), five genotypes (I to V, random-amplified polymorphic DNA), and four phenotypes (A to D, MALDI-TOF MS) were identified, showing the high level of heterogeneity between the E. coli isolates recovered from diarrheal patients in South Korea.
Collapse
|
22
|
Kantele A, Lääveri T. Extended-spectrum beta-lactamase-producing strains among diarrhoeagenic Escherichia coli-prospective traveller study with literature review. J Travel Med 2022; 29:6217594. [PMID: 33834207 PMCID: PMC8763120 DOI: 10.1093/jtm/taab042] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2020] [Revised: 01/27/2020] [Accepted: 01/29/2020] [Indexed: 01/25/2023]
Abstract
BACKGROUND Antibiotics are no longer the primary approach for treating all travellers' diarrhoea (TD): most cases resolve without antibiotics and using them predisposes to colonization by multidrug-resistant bacteria. Data are accumulating on increasing resistance among TD pathogens, yet research into the most common agents, diarrhoeagenic Escherichia coli (DEC), remains limited. METHODS A total of 413 travellers to the (sub)tropics were analyzed for travel-acquired diarrhoeal pathogens and ESBL-PE. To identify ESBL-producing DEC, ESBL-producing E. coli (ESBL-EC) isolates were subjected to multiplex qPCR for various DEC pathotypes: enteroaggregative (EAEC), enteropathogenic (EPEC), enterotoxigenic (ETEC), enteroinvasive (EIEC) and enterohaemorrhagic (EHEC) E. coli.For a literature review, we screened studies among travellers and locals in low- and middle-income countries (LMICs) on the frequency of ESBL-producing DEC, and among travellers, also DEC with resistance to ciprofloxacin, azithromycin, and rifamycin derivatives. RESULTS Our rate of ESBL-EC among all DEC findings was 2.7% (13/475); among EAEC 5.7% (10/175), EPEC 1.1% (2/180), ETEC 1.3% (1/80) and EHEC (0/35) or EIEC 0% (0/5). The literature search yielded three studies reporting ESBL-EC frequency and thirteen exploring resistance to TD antibiotics among travel-acquired DEC. For EAEC and ETEC, the ESBL-EC rates were 10-13% and 14-15%, resistance to fluoroquinolones 0-42% and 0-40%, azithromycin 0-29% and 0-61%, and rifaximin 0% and 0-20%. The highest rates were from the most recent collections. Proportions of ESBL-producing DEC also appear to be increasing among locals in LMICs and even carbapenemase-producing DEC were reported. CONCLUSION ESBL producers are no longer rare among DEC, and the overall resistance to various antibiotics is increasing. The data predict decreasing efficacy of antibiotic treatment, threatening its benefits, for disadvantages still prevail when efficacy is lost.
Collapse
Affiliation(s)
- Anu Kantele
- To whom correspondence should be addressed. Professor Anu Kantele, Meilahti Vaccine Research Center MeVac, University of Helsinki and Helsinki University Hospital, Biomedicum 1, Haartmaninkatu 8, FI-00029 HUS, Finland; Tel: +358-50-309-7640;
| | | |
Collapse
|
23
|
Afridi OK, Ali J, Chang JH. Resistome and microbial profiling of pediatric patient's gut infected with multidrug-resistant diarrhoeagenic Enterobacteriaceae using next-generation sequencing; the first study from Pakistan. Libyan J Med 2021; 16:1915615. [PMID: 33877031 PMCID: PMC8078919 DOI: 10.1080/19932820.2021.1915615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Accepted: 04/08/2021] [Indexed: 12/11/2022] Open
Abstract
A high prevalence of multidrug-resistant (MDR) pathogens has been reported in adult and pediatric populations of Pakistan. However, data describing the effect of MDR microbes on the gut microbiota is scarce. We designed a cross-sectional pediatric study to investigate the effect of MDR microbes' infection on the gut microbiome and its resistome of children using high-throughput next-generation sequencing (NGS). A cross-sectional study was conducted at a tertiary health care hospital in Peshawar Pakistan, between 5 September 2019 to 15 February 2020. Pediatric patients with acute gastroenteritis (n = 200) were enrolled. All the enrolled pediatric patients underwent initial antimicrobial resistance (AMR) screening using the disk diffusion method. Children with MDR infections were identified and selected for gut microbiome and its resistome profiling using NGS. Out of 200 enrolled pediatric patients, 80 (40%) were found infected with MDR diarrheagenic Enterobacteriaceae consisting of 50 (62.5%) infections caused by extended-spectrum beta-lactamase (ESBL) producing E. coli while 30 (37.5%) by MDR Enterobacter specie. A total of 63 and 17 antibiotic-resistant genes (ARGs) conferring resistance to 7 and 5 classes of antibiotics were identified in the resistomes of MDR diarrheagenic Enterobacteriaceae infected and healthy children, respectively. NGS-based gut microbial profiling of MDR Enterobacter spp., ESBL producing E. coli infected pediatric patients and healthy controls revealed the predominance of Proteobacteria and Actinobacteria, respectively. An increased abundance of several pathogenic gram-negative bacteria namely E. coli, Enterobacter cloacae, and Salmonella enterica was observed in the gut microbiota of children infected with MDR bacterial infections than that of the healthy controls. This work indicates that children with MDR infections have reduced microbial diversity and enriched ARGs than healthy controls. The emergence of MDR bacterial strains and their association with gut dysbiosis needs immediate attention to regulate antibiotics usage in Pakistani children.
Collapse
Affiliation(s)
- Ome Kalsoom Afridi
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| | - Johar Ali
- Center of Genome Sciences, Rehman Medical Institute Peshawar, Pakistan
- Executive Development Center, Sukkur Institute of Business Administration University, Pakistan
- Department of Biotechnology, Institute of Integrative Biosciences, CECOS University of IT & Emerging Sciences, Peshawar, Pakistan
| | - Jeong Ho Chang
- Department of Biology Education, Kyungpook National University, Daegu, Republic of Korea
| |
Collapse
|
24
|
Borgio JF, Rasdan AS, Sonbol B, Alhamid G, Almandil NB, AbdulAzeez S. Emerging Status of Multidrug-Resistant Bacteria and Fungi in the Arabian Peninsula. BIOLOGY 2021; 10:biology10111144. [PMID: 34827138 PMCID: PMC8614875 DOI: 10.3390/biology10111144] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Simple Summary The incidence and developing status of multidrug-resistant bacteria and fungi, as well as their related mortality, is reviewed by a systematic published literature search from nine countries in the Arabian Peninsula. In order to analyse the emerging status and mortality, a total of 382 research articles were selected from a comprehensive screening of 1705 papers. More than 850 deaths reported since 2010 in the Arabian Peninsula due to the infection of multidrug-resistant bacteria and fungi. Multidrug-resistant bacteria Acinetobacter baumannii, Mycobacterium tuberculosis, Staphylococcus aureus, and fungi Candida auris are the most prevalent and causing high deaths. To control these infections and associated deaths in the Arabian Peninsula, continuous preventive measures, accurate methods for early diagnosis of infection, active surveillance, constant monitoring, developing vaccines, eradicating multidrug resistance modulators, and data sharing among countries are required. Abstract We aimed to identify the prevalence and emerging status of multidrug-resistant bacteria and fungi and their associated mortality in nine countries in the Arabian Peninsula. Original research articles and case studies regarding multidrug-resistant bacteria and fungi in the Arabian Peninsula, published during the last 10 years, were retrieved from PubMed and Scopus. A total of 382 studies were included as per the inclusion and exclusion criteria, as well as the PRISMA guidelines, from a thorough screening of 1705 articles, in order to analyse the emerging status and mortality. The emerging nature of >120 multidrug-resistant (MDR) bacteria and fungi in the Arabian Peninsula is a serious concern that requires continuous monitoring and immediate preventive measures. More than 50% (n = 453) of multidrug-resistant, microbe-associated mortality (n = 871) in the Arabian Peninsula was due to MDR Acinetobacter baumannii, Mycobacterium tuberculosis and Staphylococcus aureus infection. Overall, a 16.51% mortality was reported among MDR-infected patients in the Arabian Peninsula from the 382 articles of this registered systematic review. MDR A. baumannii (5600 isolates) prevailed in all the nine countries of the Arabian Peninsula and was one of the fastest emerging MDR bacteria with the highest mortality (n = 210). A total of 13,087 Mycobacterium tuberculosis isolates were reported in the region. Candida auris (580 strains) is the most prevalent among the MDR fungal pathogen in the Arabian Peninsula, having caused 54 mortalities. Active surveillance, constant monitoring, the development of a candidate vaccine, an early diagnosis of MDR infection, the elimination of multidrug resistance modulators and uninterrupted preventive measures with enhanced data sharing are mandatory to control MDR infection and associated diseases of the Arabian Peninsula. Accurate and rapid detection methods are needed to differentiate MDR strain from other strains of the species. This review summarises the logical relation, prevalence, emerging status and associated mortality of MDR microbes in the Arabian Peninsula.
Collapse
Affiliation(s)
- J. Francis Borgio
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
- Correspondence: or ; Tel.: +966-013-3330864
| | - Alia Saeed Rasdan
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Bayan Sonbol
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Galyah Alhamid
- Department of Epidemic Diseases Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia; (A.S.R.); (B.S.); (G.A.)
| | - Noor B. Almandil
- Department of Clinical Pharmacy Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| | - Sayed AbdulAzeez
- Department of Genetic Research, Institute for Research and Medical Consultations (IRMC), Imam Abdulrahman Bin Faisal University, Dammam 31441, Saudi Arabia;
| |
Collapse
|
25
|
The Ecology and Antibiotic Resistance Patterns of Gastrointestinal Tract Infections in A Tertiary Care Hospital in Oman. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2021. [DOI: 10.22207/jpam.15.3.60] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A wide range of gastrointestinal (GI) illnesses is caused by foodborne bacteria that can arise from either a direct bacterial infection or bacterial toxin ingestion. The treatment of these infections has been hampered by the appearance of resistant strains. This current study aims to investigate the prevalence of Gastrointestinal tract (GIT) infections in Omani patients and their resistance pattern against commonly used antibiotics. Seven hundred and ninety fresh stool samples were obtained from Omani patients attending Sultan Qaboos University Hospital with GI manifestation from the 1st of June to the 30th of November 2019. Bacterial identification in stool samples was carried out by inoculation in culture media, microscopical examination and biochemical tests confirmed by MALDI. BD PhoenixTM. The antibiotics sensitivity testing was carried out by the Manual disk diffusion method and by MALDI. BD PhoenixTM. Out of 790 stool samples, 49 samples were positive for GIT bacterial infections. Salmonella spp. was the most prevalent isolate and more associated with children less than ten years old. Out of the 49 bacterial isolates, 3 (6.1%) were Clostridium difficili, 4 (8.2%) were Shigella flexneri, 5 (10.2%) were Campylobacter jejuni, and different Salmonella spp. serotypes were detected such as Salmonella Kentucky (8.2%), Salmonella enteritidis (6.1%), Salmonella infantis (4.1%), Salmonella welteverden (4.1%), Salmonella typhimurium (4.1%), Salmonella anatum (2.0%), Salmonella tesvia (2.0%), Salmonella Uganda (2.0%), Salmonella Arizona (2.0%) and (40.8%) of other Salmonella spp. serotypes. Eighty percent of isolated Campylobacter jejuni were resistant to Ciprofloxacin and Tetracycline. Salmonella spp. and Shigella flexneri were highly resistant to Amikacin, Gentamicin, and Cefuroxime. The low level of bacterial infection detected among screened patients in the present study indicates the excellent hand washing hygiene practice in reducing GIT infections among patients in Oman. This good hand washing hygiene practice is of great help in the efforts of controlling the spread of other severe diseases like COVID-19. However, detecting the emerging of antibiotic-resistant of GIT bacterial pathogens among patients in Oman, such as Salmonella and Shigella to a commonly used antibiotic such as Gentamicin, is alarming.
Collapse
|
26
|
Phenotypic and Genotypic Properties of Fluoroquinolone-Resistant, qnr-Carrying Escherichia coli Isolated from the German Food Chain in 2017. Microorganisms 2021; 9:microorganisms9061308. [PMID: 34208509 PMCID: PMC8233838 DOI: 10.3390/microorganisms9061308] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 06/08/2021] [Accepted: 06/11/2021] [Indexed: 12/28/2022] Open
Abstract
Fluoroquinolones are the highest priority, critically important antimicrobial agents. Resistance development can occur via different mechanisms, with plasmid-mediated quinolone resistance (PMQR) being prevalent in the livestock and food area. Especially, qnr genes, commonly located on mobile genetic elements, are major drivers for the spread of resistance determinants against fluoroquinolones. We investigated the prevalence and characteristics of qnr-positive Escherichia (E.) coli obtained from different monitoring programs in Germany in 2017. Furthermore, we aimed to evaluate commonalities of qnr-carrying plasmids in E. coli. We found qnr to be broadly spread over different livestock and food matrices, and to be present in various sequence types. The qnr-positive isolates were predominantly detected within selectively isolated ESBL (extended spectrum beta-lactamase)-producing E. coli, leading to a frequent association with other resistance genes, especially cephalosporin determinants. Furthermore, we found that qnr correlates with the presence of genes involved in resistance development against quaternary ammonium compounds (qac). The detection of additional point mutations in many isolates within the chromosomal QRDR region led to even higher MIC values against fluoroquinolones for the investigated E. coli. All of these attributes should be carefully taken into account in the risk assessment of qnr-carrying E. coli from livestock and food.
Collapse
|
27
|
The frequency of hybrid Enteroaggregative/Uropathogenic Escherichia coli isolated from clinical samples of Isfahan hospitals, Iran. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
|
28
|
Islam MM, Farag E, Mahmoudi A, Hassan MM, Mostafavi E, Enan KA, Al-Romaihi H, Atta M, El Hussein ARM, Mkhize-Kwitshana Z. Rodent-Related Zoonotic Pathogens at the Human-Animal-Environment Interface in Qatar: A Systematic Review and Meta-Analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18115928. [PMID: 34073025 PMCID: PMC8198466 DOI: 10.3390/ijerph18115928] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 05/06/2021] [Accepted: 05/27/2021] [Indexed: 11/30/2022]
Abstract
Rodents are one of the most diversified terrestrial mammals, and they perform several beneficial activities in nature. These animals are also important as carriers of many pathogens with public health importance. The current systematic review was conducted to formulate a true depiction of rodent-related zoonoses in Qatar. Following systematic searches on PubMed, Scopus, Science Direct, and Web of Science and a screening process, a total of 94 published articles were selected and studied. The studied articles reported 23 rodent-related zoonotic pathogens that include nine bacterial, eleven parasitic, and three viral pathogens, from which the frequently reported pathogens were Mycobacterium tuberculosis (32 reports), Escherichia coli (23), and Salmonella spp. (16). The possible pathway of entry of the rodent-borne pathogens can be the land port, seaports, and airport of Qatar through carrier humans and animals, contaminated food, and agricultural products. The pathogens can be conserved internally by rodents, pets, and livestock; by agricultural production systems; and by food marketing chains. The overall estimated pooled prevalence of the pathogens among the human population was 4.27% (95%CI: 4.03–4.51%; p < 0.001) with significant heterogeneity (I2 = 99.50%). The top three highest prevalent pathogens were M.tuberculosis (30.90%; 22.75–39.04%; p < 0.001; I2 = 99.70%) followed by Toxoplasma gondii (21.93%; 6.23–37.61%; p < 0.001; I2 = 99.30%) and hepatitis E virus (18.29%; 11.72–24.86%; p < 0.001; I2 = 96.70%). However, there is a knowledge gap about the listed pathogens regarding the occurrence, transmission pathways, and rodent role in transmission dynamics at the human–animal–environment interface in Qatar. Further studies are required to explore the role of rodents in spreading zoonotic pathogens through the One Health framework, consisting of zoologists, ecologists, microbiologists, entomologists, veterinarians, and public health experts in this country.
Collapse
Affiliation(s)
- Md Mazharul Islam
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- School of Laboratory Medicine and Medical Sciences, College of Health Sciences, University of KwaZulu Natal, Durban 4000, South Africa
- Correspondence: or (M.M.I.); (E.F.); Tel.: +974-660-64382 (M.M.I.); +974-440-70396 (E.F.)
| | - Elmoubashar Farag
- Ministry of Public Health, Doha P.O. Box 42, Qatar;
- Correspondence: or (M.M.I.); (E.F.); Tel.: +974-660-64382 (M.M.I.); +974-440-70396 (E.F.)
| | - Ahmad Mahmoudi
- Department of Biology, Faculty of Science, Urmia University, Urmia 5756151818, Iran;
| | - Mohammad Mahmudul Hassan
- Faculty of Veterinary Medicine, Chattogram Veterinary and Animal Sciences University, Chattogram 4225, Bangladesh;
| | - Ehsan Mostafavi
- Department of Epidemiology and Biostatistics, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Tehran 1316943551, Iran;
- National Reference Laboratory for Plague, Tularemia and Q Fever, Research Centre for Emerging and Reemerging Infectious Diseases, Pasteur Institute of Iran, Akanlu, Kabudar Ahang, Hamadan 6556153145, Iran
| | - Khalid A. Enan
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- Department of Virology, Central Laboratory, The Ministry of Higher Education and Scientific Research, Khartum 7099, Sudan;
| | | | - Muzzamil Atta
- Department of Animal Resources, Ministry of Municipality and Environment, Doha P.O. Box 35081, Qatar; (K.A.E.), (M.A.)
- College of Animal Production, Bahri University, Khartoum 11111, Sudan
| | - Abdel Rahim M. El Hussein
- Department of Virology, Central Laboratory, The Ministry of Higher Education and Scientific Research, Khartum 7099, Sudan;
| | - Zilungile Mkhize-Kwitshana
- School of Life Sciences, College of Agriculture, Engineering & Science, University of KwaZulu Natal, Durban 4000, South Africa;
- South African Medical Research Council, Cape Town 7505, South Africa
| |
Collapse
|
29
|
Pylkkö T, Ilina P, Tammela P. Development and validation of a high-content screening assay for inhibitors of enteropathogenic E. coli adhesion. J Microbiol Methods 2021; 184:106201. [PMID: 33713725 DOI: 10.1016/j.mimet.2021.106201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Revised: 03/05/2021] [Accepted: 03/05/2021] [Indexed: 11/25/2022]
Abstract
Enteropathogenic E. coli (EPEC) causes intestinal infections leading to severe diarrhea. EPEC attaches to the host cell causing lesions to the intestinal epithelium coupled with the effacement of microvilli. In the process, actin accumulates into a pedestal-like structure under bacterial microcolonies. We designed an automated fluorescence microscopy-based screening method for discovering compounds capable of inhibiting EPEC adhesion and virulence using aurodox, a type three secretion system (T3SS) inhibitor, as a positive control. The screening assay employs an EPEC strain (2348/69) expressing a fluorescent protein and actin staining for monitoring the bacteria and their pedestals respectively, analyzing these with a custom image analysis pipeline. The assay allows for the discovery of compounds capable of preventing the formation of pathogenic actin rearrangements. These compounds may be interfering with virulence-related molecular pathways relevant for developing antivirulence leads.
Collapse
Affiliation(s)
- Tuomas Pylkkö
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Polina Ilina
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland
| | - Päivi Tammela
- Drug Research Program, Division of Pharmaceutical Biosciences, Faculty of Pharmacy, P.O. Box 56, FI-00014, University of Helsinki, Finland.
| |
Collapse
|
30
|
Abstract
Diarrheal disease is still a major public health concern, as it is still considered an important cause of death in children under five years of age. A few decades ago, the detection of enteropathogenic E. coli was made by detecting the O, H, and K antigens, mostly by agglutination. The recent protocols recommend the molecular methods for diagnosing EPEC, as they can distinguish between typical and atypical EPEC by identifying the presence/absence of specific virulence factors. EPEC are defined as diarrheagenic strains of E. coli that can produce attaching and effacing lesions on the intestinal epithelium while being incapable of producing Shiga toxins and heat-labile or heat-stable enterotoxins. The ability of these strains to produce attaching and effacing lesions enable them to cause localized lesions by attaching tightly to the surface of the intestinal epithelial cells, disrupting the surfaces of the cells, thus leading to the effacement of the microvilli. EPEC are classified on typical and atypical isolates, based on the presence or absence of E. coli adherence factor plasmids. All the EPEC strains are eae positive; typical EPEC strains are eae+, bfpA+, while atypical strains are eae+, bfpA−. No vaccines are currently available to prevent EPEC infections.
Collapse
|
31
|
Longitudinal monitoring of multidrug resistance in Escherichia coli on broiler chicken fattening farms in Shandong, China. Poult Sci 2020; 100:100887. [PMID: 33516478 PMCID: PMC7936140 DOI: 10.1016/j.psj.2020.11.064] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Revised: 11/21/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022] Open
Abstract
The extensive use of antibiotics has, in recent years, caused antimicrobial resistance and multidrug resistance in Escherichia coli to gradually develop into a worldwide problem. These resistant E. coli could be transmitted to humans through animal products and animal feces in the environment, thereby creating a problem for bacterial treatment for humans and animals and resulting in a public health issue. Monitoring the resistance of E. coli throughout the broiler fattening period is therefore of great significance for both the poultry industry and public health. In this longitudinal study, samples were taken from 6 conventional broiler fattening farms in Shandong Province, China, at 3 different times within 1 fattening period. The overall isolation rate of E. coli was 53.04% (375/707). Antibiotic resistance was very common in the E. coli isolated from these farms, and differed for different antibiotics, with ampicillin having the highest rate (92.86%) and cefoxitin the lowest (10.12%). Multidrug resistance was as high as 91.07%. More importantly, both the resistance rate of E. coli to the different drugs and the detection rate of drug resistance genes increased over time. The mobile colistin resistance (mcr-1) gene was detected in 24.40% of the strains, and these strains often carried other drug resistance genes, such as those conferring aminoglycoside, β-lactamase, tetracycline, and sulfonamide resistance. Antimicrobial resistance and drug resistance genes in E. coli were least common in the early fattening stage. The individual detection rates of sul1, sul3, aacC4, aphA3, and mcr-1 were significantly lower (P < 0.05) for the early fattening stage than for the middle and late stages. The rational use of antibiotics, in conjunction with the improvement of the breeding environment during the entire broiler fattening cycle, will be helpful in the development of the poultry industry and the protection of public health.
Collapse
|
32
|
Perez-Lopez A, Sundararaju S, Al-Mana H, Tsui KM, Hasan MR, Suleiman M, Janahi M, Al Maslamani E, Tang P. Molecular Characterization of Extended-Spectrum β-Lactamase-Producing Escherichia coli and Klebsiella pneumoniae Among the Pediatric Population in Qatar. Front Microbiol 2020; 11:581711. [PMID: 33262745 PMCID: PMC7686840 DOI: 10.3389/fmicb.2020.581711] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 10/12/2020] [Indexed: 11/13/2022] Open
Abstract
INTRODUCTION Although extended-spectrum β-lactamase (ESBL)-producing Enterobacterales are a public health problem in the Arabian Peninsula, data on the molecular characteristic of their antimicrobial resistance determinants in children is limited. AIM To determine the molecular characteristics of ESBL-producing Escherichia coli and Klebsiella pneumoniae in the pediatric population of Qatar. METHODS Whole-genome sequencing was performed on ESBL-producing E. coli and K. pneumoniae isolates recovered from screening and clinical specimens from pediatric patients at Sidra Medicine in Doha from January to December 2018. RESULTS A total of 327 ESBL producers were sequenced: 254 E. coli and 73 K. pneumoniae. Non-susceptibility rates to non-β-lactam antibiotics for both species were 18.1 and 30.1% for gentamicin, 0.8 and 4.1% for amikacin, 41.3 and 41.1% for ciprofloxacin, and 65.8 and 76.1% for cotrimoxazole. The most common sequence types (STs) were ST131 (16.9%), ST38 and ST10 (8.2% each) in E. coli and ST307 (9.7%), and ST45 and ST268 (6.9% each) in K. pneumoniae. CTX-M type ESBLs were found in all but one isolate, with CTX-M-15 accounting for 87.8%. Among other β-lactamases, TEM-1B and OXA-1 were coproduced in 41 and 19.6% of isolates. The most common plasmid-mediated quinolone resistance genes cocarried were qnr A/B/E/S (45.3%). Ninety percent of gentamicin non-susceptible isolates harbored genes encoding AAC(3) enzymes, mainly aac(3)-IIa. Only two of 57 isolates harboring aac(6')-Ib-cr were non-susceptible to amikacin. Chromosomal mutations in genes encoding DNA gyrase and topoisomerase IV enzymes were detected in 96.2% fluoroquinolone-non-susceptible E. coli and 26.7% fluoroquinolone-non-susceptible K. pneumoniae. CONCLUSION Our data show that CTX-M enzymes are largely the most prevalent ESBLs in children in Qatar with a predominance of CTX-M-15. Carbapenem-sparing options to treat ESBL infections are limited, given the frequent coproduction of OXA-1 and TEM-1B enzymes and coresistance to antibiotic classes other than β-lactams.
Collapse
Affiliation(s)
- Andres Perez-Lopez
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | | | - Hassan Al-Mana
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Biomedical Research Centre, Qatar University, Doha, Qatar
| | - Kin Ming Tsui
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Infectious Diseases, Faculty of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Mohammad Rubayet Hasan
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| | - Mohammed Suleiman
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
| | - Mohammed Janahi
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Pediatric Infectious Diseases, Sidra Medicine, Doha, Qatar
| | - Eman Al Maslamani
- Weill Cornell Medical College in Qatar, Doha, Qatar
- Division of Pediatric Infectious Diseases, Sidra Medicine, Doha, Qatar
| | - Patrick Tang
- Division of Microbiology, Department of Pathology, Sidra Medicine, Doha, Qatar
- Weill Cornell Medical College in Qatar, Doha, Qatar
| |
Collapse
|