1
|
Van Deusen AL, Kumar S, Calhan OY, Goggin SM, Shi J, Williams CM, Keeler AB, Fread KI, Gadani IC, Deppmann CD, Zunder ER. A single-cell mass cytometry-based atlas of the developing mouse brain. Nat Neurosci 2025; 28:174-188. [PMID: 39695302 DOI: 10.1038/s41593-024-01786-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 09/12/2024] [Indexed: 12/20/2024]
Abstract
Development of the mammalian brain requires precise molecular changes across diverse cell lineages. While single-cell RNA abundances in the developing brain have been characterized by single-cell RNA sequencing (scRNA-seq), single-cell protein abundances have not been characterized. To address this gap, we performed mass cytometry on the whole brain at embryonic day (E)11.5-E12.5 and the telencephalon, the diencephalon, the mesencephalon and the rhombencephalon at E13.5-postnatal day (P)4 from C57/BL6 mice. Using a 40-antibody panel to analyze 24,290,787 cells from two to four biological replicates per sample, we identify 85 molecularly distinct cell clusters from distinct lineages. Our analyses confirm canonical molecular pathways of neurogenesis and gliogenesis, and predict two distinct trajectories for cortical oligodendrogenesis. Differences in protein versus RNA expression from mass cytometry and scRNA-seq, validated by immunohistochemistry and RNAscope in situ hybridization (ISH), demonstrate the value of protein-level measurements for identifying functional cell states. Our findings show the utility of mass cytometry as a scalable platform for single-cell profiling of brain tissues.
Collapse
Affiliation(s)
- Amy L Van Deusen
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Sushanth Kumar
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - O Yipkin Calhan
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Sarah M Goggin
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Jiachen Shi
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Corey M Williams
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Austin B Keeler
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
| | - Kristen I Fread
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA
| | - Irene C Gadani
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA
| | - Christopher D Deppmann
- Department of Biology, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Cell Biology, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
| | - Eli R Zunder
- Neuroscience Graduate Program, School of Medicine, University of Virginia, Charlottesville, VA, USA.
- Department of Biomedical Engineering, School of Engineering, University of Virginia, Charlottesville, VA, USA.
- Program in Fundamental Neuroscience, College of Arts and Sciences, University of Virginia, Charlottesville, VA, USA.
| |
Collapse
|
2
|
Tavakoli Z, Jahandar H, Shahpasand K, Zaeifi D, Mousavi SE. Targeting cis-p-tau and neuro-related gene expression in traumatic brain injury: therapeutic insights from TC-DAPK6 treatment in mice. Mol Biol Rep 2024; 51:1010. [PMID: 39320385 DOI: 10.1007/s11033-024-09945-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
BACKGROUND Traumatic brain injury (TBI) is a significant global health concern and is characterized by brain dysfunction resulting from external physical forces, leading to brain pathology and neuropsychiatric disorders such as anxiety. This study investigates the effects of TC-DAPK6 on tau hyper-phosphorylation, gene expression, anxiety, and behavior impairment in the TBI mice model. METHODS AND RESULTS A weight drop model induced the TBI and the anxiety levels were evaluated using an elevated plus maze (EPM) test. TC-DAPK6 was intraperitoneally administered one-month post-TBI and continued for two months. The total cis-p-tau ratio in the brain was assessed using western blot and immunofluorescence staining. Molecular analysis was conducted on Aff2, Zkscan16, Kcna1, Pcdhac2, and Pcdhga8 to investigate the function and pathogenic role of TC-DAPK6 in neurological diseases in the cerebral cortex tissues of TBI-model mice, and the results were compared with TC-DAPK6 TBI-treatment group. The anxiety level and phosphorylation of tau protein in the TBI group were significantly increased compared to the sham groups and decreased substantially in the TBI-treatment group after TC-DAPK6 administration; the TBI group mostly spent their time with open arms. TC-DAPK6 decreased the expression level of genes as much as the sham group. Meanwhile, KCNA1 showed the highest fold of changes in the TBI and TBI-treatment groups. CONCLUSIONS The study demonstrates a clear association between cis-p-tau and neuro-related gene expression levels in TBI-induced mice. Targeting these pathways with DAPK1 inhibitors, shows promise for therapeutic interventions in TBI and related neurodegenerative disorders.
Collapse
Affiliation(s)
- Zahra Tavakoli
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hoda Jahandar
- Department of Biotechnology, Faculty of Advanced Sciences and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Pharmaceutical Sciences Research Center, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Koorosh Shahpasand
- Department of Brain and Cognitive Sciences, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Davood Zaeifi
- Department of Cell and Molecular Biology, School of Biology, College of Science, University of Tehran, 16th Azar St., Enghelab Sq, P.O. Box: 1417466191, Tehran, Iran.
| | - Seyyedeh Elaheh Mousavi
- Department of Pharmacology, School of Medicine, Tehran University of Medical Sciences, P.O. Box: 13145784, Tehran, Iran.
| |
Collapse
|
3
|
Shcherbakova A, Utkina M, Valyaeva A, Pachuashvili N, Bondarenko E, Urusova L, Popov S, Mokrysheva N. Factors Affecting Cell Viability during the Enzymatic Dissociation of Human Endocrine Tumor Tissues. BIOLOGY 2024; 13:665. [PMID: 39336093 PMCID: PMC11429318 DOI: 10.3390/biology13090665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 08/22/2024] [Accepted: 08/23/2024] [Indexed: 09/30/2024]
Abstract
The enzymatic dissociation of human solid tissues is a critical process for disaggregating extracellular matrix and the isolation of individual cells for various applications, including the immortalizing primary cells, creating novel cell lines, and performing flow cytometry and its specialized type, FACS, as well as conducting scRNA-seq studies. Tissue dissociation procedures should yield intact, highly viable single cells that preserve morphology and cell surface markers. However, endocrine tissues, such as adrenal gland tumors, thyroid carcinomas, and pituitary neuroendocrine tumors, present unique challenges due to their complex tissue organization and morphological features. Our study conducted a morphological examination of these tissues, highlighting the intricate structures and secondary degenerative changes that complicate the dissociation process. We investigated the effects of various dissociation parameters, including the types of enzymes, incubation duration, and post-dissociation purification procedures, such as debris removal and nontarget blood cell lysis, on the viability of cells derived from different tumor types. The findings emphasize the importance of optimizing tissue digestion protocols to preserve cell viability and integrity, ensuring reliable outcomes for downstream analyses.
Collapse
Affiliation(s)
- Anastasia Shcherbakova
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Marina Utkina
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Anna Valyaeva
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
- A.N. Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Leninskye Gory, House 1, Building 40, 119992 Moscow, Russia
| | - Nano Pachuashvili
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Ekaterina Bondarenko
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Liliya Urusova
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Sergey Popov
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| | - Natalya Mokrysheva
- Department of General, Molecular and Population Genetics, Endocrinology Research Centre, Dm. Ulyanova St., 11, 117292 Moscow, Russia
| |
Collapse
|
4
|
Ma W, Wei S, Li Q, Zeng J, Xiao W, Zhou C, Yoneda KY, Zeki AA, Li T. Simvastatin Overcomes Resistance to Tyrosine Kinase Inhibitors in Patient-derived, Oncogene-driven Lung Adenocarcinoma Models. Mol Cancer Ther 2024; 23:700-710. [PMID: 38237027 PMCID: PMC11065592 DOI: 10.1158/1535-7163.mct-23-0458] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 11/17/2023] [Accepted: 01/16/2024] [Indexed: 05/03/2024]
Abstract
There is an unmet clinical need to develop novel strategies to overcome resistance to tyrosine kinase inhibitors (TKI) in patients with oncogene-driven lung adenocarcinoma (LUAD). The objective of this study was to determine whether simvastatin could overcome TKI resistance using the in vitro and in vivo LUAD models. Human LUAD cell lines, tumor cells, and patient-derived xenograft (PDX) models from TKI-resistant LUAD were treated with simvastatin, either alone or in combination with a matched TKI. Tumor growth inhibition was measured by the 3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-sulfophenyl)-2H-tetrazolium (MTS) assay and expression of molecular targets was assessed by immunoblots. Tumors were assessed by histopathology, IHC stain, immunoblots, and RNA sequencing. We found that simvastatin had a potent antitumor effect in tested LUAD cell lines and PDX tumors, regardless of tumor genotypes. Simvastatin and TKI combination did not have antagonistic cytotoxicity in these LUAD models. In an osimertinib-resistant LUAD PDX model, simvastatin and osimertinib combination resulted in a greater reduction in tumor volume than simvastatin alone (P < 0.001). Immunoblots and IHC stain also confirmed that simvastatin inhibited TKI targets. In addition to inhibiting 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA) reductase, RNA sequencing and Western blots identified the proliferation, migration, and invasion-related genes (such as PI3K/Akt/mTOR, YAP/TAZ, focal adhesion, extracellular matrix receptor), proteasome-related genes, and integrin (α3β1, αvβ3) signaling pathways as the significantly downregulated targets in these PDX tumors treated with simvastatin and a TKI. The addition of simvastatin is a safe approach to overcome acquired resistance to TKIs in several oncogene-driven LUAD models, which deserve further investigation.
Collapse
Affiliation(s)
- Weijie Ma
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Pathology and Laboratory Medicine, Dartmouth Hitchcock Medical Center, Geisel School of Medicine at Dartmouth, Lebanon, NH, USA
| | - Sixi Wei
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Biochemistry, Hospital Affiliated to Guizhou Medical University, Guiyang, Guizhou, China
| | - Qianping Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Current address: Department of Thoracic Surgery, Shanghai Sixth People’s Hospital, Shanghai, China
| | - Jie Zeng
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
| | - Wenwu Xiao
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Department of Biochemistry and Molecular Medicine, University of California Davis, Sacramento, CA, USA
| | - Chihong Zhou
- Department of Pathology and Laboratory Medicine, University of California Davis School of Medicine, Sacramento, California, USA
| | - Ken Y. Yoneda
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Amir A. Zeki
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
- Division of Pulmonary, Critical Care, and Sleep Medicine, Department of Internal Medicine, University of California Davis School of Medicine, UC Davis Lung Center, Sacramento, California, USA
| | - Tianhong Li
- Division of Hematology/Oncology, Department of Internal Medicine, University of California Davis School of Medicine, University of California Davis Comprehensive Cancer Center, Sacramento, CA, USA
- Medical Service, Veterans Affairs Northern California Health Care System, 10535 Hospital Way, Mather, CA
| |
Collapse
|
5
|
Gershon R, Polevikov A, Karepov Y, Shenkar A, Ben-Horin I, Alter Regev T, Dror-Levinsky M, Lipczyc K, Gasri-Plotnitsky L, Diamant G, Shapira N, Bensimhon B, Hagai A, Shahar T, Grossman R, Ram Z, Volovitz I. Frequencies of 4 tumor-infiltrating lymphocytes potently predict survival in glioblastoma, an immune desert. Neuro Oncol 2024; 26:473-487. [PMID: 37870293 PMCID: PMC10912003 DOI: 10.1093/neuonc/noad204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Indexed: 10/24/2023] Open
Abstract
BACKGROUND GBM is an aggressive grade 4 primary brain tumor (BT), with a 5%-13% 5-year survival. Most human GBMs manifest as immunologically "cold" tumors or "immune deserts," yet the promoting or suppressive roles of specific lymphocytes within the GBM tumor microenvironment (TME) is of considerable debate. METHODS We used meticulous multiparametric flow cytometry (FC) to determine the lymphocytic frequencies in 102 GBMs, lower-grade gliomas, brain metastases, and nontumorous brain specimen. FC-attained frequencies were compared with frequencies estimated by "digital cytometry." The FC-derived data were combined with the patients' demographic, clinical, molecular, histopathological, radiological, and survival data. RESULTS Comparison of FC-derived data to CIBERSORT-estimated data revealed the poor capacity of digital cytometry to estimate cell frequencies below 0.2%, the frequency range of most immune cells in BTs. Isocitrate dehydrogenase (IDH) mutation status was found to affect TME composition more than the gliomas' pathological grade. Combining FC and survival data disclosed that unlike other cancer types, the frequency of helper T cells (Th) and cytotoxic T lymphocytes (CTL) correlated negatively with glioma survival. In contrast, the frequencies of γδ-T cells and CD56bright natural killer cells correlated positively with survival. A composite parameter combining the frequencies of these 4 tumoral lymphocytes separated the survival curves of GBM patients with a median difference of 10 months (FC-derived data; P < .0001, discovery cohort), or 4.1 months (CIBERSORT-estimated data; P = .01, validation cohort). CONCLUSIONS The frequencies of 4 TME lymphocytes strongly correlate with the survival of patients with GBM, a tumor considered an immune desert.
Collapse
Affiliation(s)
- Rotem Gershon
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Antonina Polevikov
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Yevgeny Karepov
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Anatoly Shenkar
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Idan Ben-Horin
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Oncology Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tal Alter Regev
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Meytal Dror-Levinsky
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Kelly Lipczyc
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Lital Gasri-Plotnitsky
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Gil Diamant
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Nati Shapira
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Barak Bensimhon
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Aharon Hagai
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Tal Shahar
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Rachel Grossman
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Zvi Ram
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
- Neurosurgery Department, The Tel-Aviv Sourasky Medical Center, Tel-Aviv, Israel
| |
Collapse
|
6
|
Ma W, Oswald J, Rios Angulo A, Chen Q. Tmem119 expression is downregulated in a subset of brain metastasis-associated microglia. BMC Neurosci 2024; 25:6. [PMID: 38308250 PMCID: PMC10837931 DOI: 10.1186/s12868-024-00846-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Accepted: 01/22/2024] [Indexed: 02/04/2024] Open
Abstract
Under pathological conditions, the immune-specialized brain microenvironment contains both resident microglia and bone marrow-derived myeloid cells recruited from peripheral circulation. Due to largely overlapping phenotypic similarities between these ontogenically distinct myeloid populations, studying their individual functions in central nervous system diseases has been challenging. Recently, transmembrane protein 119 (Tmem119) has been reported as a marker for resident microglia which is not expressed by bone marrow-derived myeloid cells. However, several studies have reported the loss or reduction of Tmem119 expression in pathologically activated microglia. Here, we examined whether Tmem119 could be used as a robust marker to identify brain metastasis-associated microglia. In addition, we also compared Tmem119 expression of primary microglia to the immortalized microglia-like BV2 cell line and characterized expression changes after LPS treatment. Lastly, we used a commercially available transgenic mouse line (Tmem119-eGFP) to compare Tmem119 expression patterns to the traditional antibody-based detection methods. Our results indicate that brain metastasis-associated microglia have reduced Tmem119 gene and protein expression.
Collapse
Affiliation(s)
- Weili Ma
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA.
| | - Jack Oswald
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA
| | - Angela Rios Angulo
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA
| | - Qing Chen
- Immunology, Metastasis and Microenvironment Program, The Wistar Institute, 3601 Spruce Street, 19104, Philadelphia, PA, USA.
| |
Collapse
|
7
|
Janas PP, Chauché C, Shearer P, Perona-Wright G, McSorley HJ, Schwarze J. Cold dispase digestion of murine lungs improves recovery and culture of airway epithelial cells. PLoS One 2024; 19:e0297585. [PMID: 38271372 PMCID: PMC10810513 DOI: 10.1371/journal.pone.0297585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024] Open
Abstract
Airway epithelial cells (AECs) play a key role in maintaining lung homeostasis, epithelium regeneration and the initiation of pulmonary immune responses. To isolate and study murine AECs investigators have classically used short and hot (1h 37°C) digestion protocols. Here, we present a workflow for efficient AECs isolation and culture, utilizing long and cold (20h 4°C) dispase II digestion of murine lungs. This protocol yields a greater number of viable AECs compared to an established 1h 37°C dispase II digestion. Using a combination of flow cytometry and immunofluorescent microscopy, we demonstrate that compared to the established method, the cold digestion allows for recovery of a 3-fold higher number of CD45-CD31-EpCAM+ cells from murine lungs. Their viability is increased compared to established protocols, they can be isolated in larger numbers by magnetic-activated cell sorting (MACS), and they result in greater numbers of distal airway stem cell (DASC) KRT5+p63+ colonies in vitro. Our findings demonstrate that temperature and duration of murine lung enzymatic digestion have a considerable impact on AEC yield, viability, and ability to form colonies in vitro. We believe this workflow will be helpful for studying lung AECs and their role in the biology of lung.
Collapse
Affiliation(s)
- Piotr Pawel Janas
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Caroline Chauché
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| | - Patrick Shearer
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Georgia Perona-Wright
- Institute of Infection, Immunity & Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Henry J. McSorley
- Division of Cell Signalling and Immunology, School of Life Sciences, University of Dundee, Dundee, United Kingdom
| | - Jürgen Schwarze
- Centre for Inflammation Research, Institute for Regeneration and Repair, The University of Edinburgh, Edinburgh BioQuarter, Edinburgh, United Kingdom
| |
Collapse
|
8
|
Frolova AA, Gerashchenko TS, Patysheva MR, Fedorov AA, Tsyganov MM, Bokova UA, Bragina OD, Vostrikova MA, Garbukov EY, Cherdyntseva NV. Preparation of a Single-Cell Suspension from Tumor Biopsy Samples for Single-Cell RNA Sequencing. Bull Exp Biol Med 2023; 175:519-523. [PMID: 37770788 DOI: 10.1007/s10517-023-05898-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Indexed: 09/30/2023]
Abstract
An essential requirement for single-cell RNA sequencing in cancer is the preparation of high-quality single-cell suspensions from the tumor tissue. In this work, various methods of dissociation of tumor biopsy specimens were analyzed and developed to obtain a cell suspension with at least 80% viability. It was found that the optimal conditions for sample preparation are mechanical dissociation followed by incubation with a collagenase/hyaluronidase mixture with addition of DNAase I for 60 min. Thus, we optimize the approach for preparing single-cell suspensions from the tumor biopsy tissue for single-cell RNA sequencing.
Collapse
Affiliation(s)
- A A Frolova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia.
- National Research Tomsk State University, Tomsk, Russia.
| | - T S Gerashchenko
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M R Patysheva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
| | - A A Fedorov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M M Tsyganov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| | - U A Bokova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - O D Bragina
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - M A Vostrikova
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - E Yu Garbukov
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
| | - N V Cherdyntseva
- Cancer Research Institute, Tomsk National Research Medical Center, Russian Academy of Sciences, Tomsk, Russia
- National Research Tomsk State University, Tomsk, Russia
- Siberian State Medical University, Ministry of Health of the Russian Federation, Tomsk, Russia
| |
Collapse
|
9
|
Lan M, Zhang S, Gao L. Efficient Generation of Paired Single-Cell Multiomics Profiles by Deep Learning. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2301169. [PMID: 37114830 PMCID: PMC10375161 DOI: 10.1002/advs.202301169] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/08/2023] [Indexed: 06/19/2023]
Abstract
Recent advances in single-cell sequencing technology have made it possible to measure multiple paired omics simultaneously in a single cell such as cellular indexing of transcriptomes and epitopes by sequencing (CITE-seq) and single-nucleus chromatin accessibility and mRNA expression sequencing (SNARE-seq). However, the widespread application of these single-cell multiomics profiling technologies has been limited by their experimental complexity, noise in nature, and high cost. In addition, single-omics sequencing technologies have generated tremendous and high-quality single-cell datasets but have yet to be fully utilized. Here, single-cell multiomics generation (scMOG), a deep learning-based framework to generate single-cell assay for transposase-accessible chromatin (ATAC) data in silico is developed from experimentally available single-cell RNA-seq measurements and vice versa. The results demonstrate that scMOG can accurately perform cross-omics generation between RNA and ATAC, and generate paired multiomics data with biological meanings when one omics is experimentally unavailable and out of training datasets. The generated ATAC, either alone or in combination with measured RNA, exhibits equivalent or superior performance to that of the experimentally measured counterparts throughout multiple downstream analyses. scMOG is also applied to human lymphoma data, which proves to be more effective in identifying tumor samples than the experimentally measured ATAC data. Finally, the performance of scMOG is investigated in other omics such as proteomics and it still shows robust performance on surface protein generation.
Collapse
Affiliation(s)
- Meng Lan
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Shixiong Zhang
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| | - Lin Gao
- School of Computer Science and Technology, Xidian University, Xi'an, Shaanxi, 710071, China
| |
Collapse
|
10
|
Butto T, Mungikar K, Baumann P, Winter J, Lutz B, Gerber S. Nuclei on the Rise: When Nuclei-Based Methods Meet Next-Generation Sequencing. Cells 2023; 12:cells12071051. [PMID: 37048124 PMCID: PMC10093037 DOI: 10.3390/cells12071051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Revised: 03/22/2023] [Accepted: 03/27/2023] [Indexed: 04/03/2023] Open
Abstract
In the last decade, we have witnessed an upsurge in nuclei-based studies, particularly coupled with next-generation sequencing. Such studies aim at understanding the molecular states that exist in heterogeneous cell populations by applying increasingly more affordable sequencing approaches, in addition to optimized methodologies developed to isolate and select nuclei. Although these powerful new methods promise unprecedented insights, it is important to understand and critically consider the associated challenges. Here, we provide a comprehensive overview of the rise of nuclei-based studies and elaborate on their advantages and disadvantages, with a specific focus on their utility for transcriptomic sequencing analyses. Improved designs and appropriate use of the various experimental strategies will result in acquiring biologically accurate and meaningful information.
Collapse
Affiliation(s)
- Tamer Butto
- Institute for Pharmaceutical and Biomedical Sciences, Johannes Gutenberg-University, 55128 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| | - Kanak Mungikar
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
| | - Peter Baumann
- Faculty of Biology, Johannes Gutenberg-University, 55128 Mainz, Germany
- Institute of Molecular Biology (IMB), 55128 Mainz, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
| | - Beat Lutz
- Leibniz Institute for Resilience Research (LIR), 55122 Mainz, Germany
- Institute of Physiological Chemistry, University Medical Center Mainz, 55128 Mainz, Germany
| | - Susanne Gerber
- Institute of Human Genetics, University Medical Center Mainz, 55131 Mainz, Germany
- Correspondence: (T.B.); (S.G.); Tel.: +49-(0)6131-39-27331 (S.G.)
| |
Collapse
|
11
|
Lue LF, Walker DG, Beh ST, Beach TG. Isolation of Human Microglia from Neuropathologically Diagnosed Cases in the Single-Cell Era. Methods Mol Biol 2023; 2561:43-62. [PMID: 36399264 DOI: 10.1007/978-1-0716-2655-9_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
This chapter describes the core procedures that we have developed over the last two decades to isolate routinely the microglia from postmortem human brains. The method is suitable for brain slices consisting of both gray and white matter.The ability to concomitantly isolate vascular cells with glial cells provides the opportunity to investigate multiple cell types originating from the same donor. This represents a novel approach for -omics research, with the potential for discovering the shared or distinct molecular features among the glia and vascular cells from the same individual.
Collapse
Affiliation(s)
- Lih-Fen Lue
- Human Cell Core for Translational Research, Banner Sun Health Research Institute, Sun City, AZ, USA.
| | - Douglas G Walker
- Molecular Neuroscience Research Center, Shiga University of Medical Science, Shiga, Otsu, Japan
| | - Suet Theng Beh
- Human Cell Core for Translational Research, Banner Sun Health Research Institute, Sun City, AZ, USA
| | - Thomas G Beach
- Civin Neuropathology Laboratory, Banner Sun Health Research Institute, Sun City, AZ, USA
| |
Collapse
|
12
|
Unger PPA, Oja AE, Khemai-Mehraban T, Ouwendijk WJD, Hombrink P, Verjans GMGM. T-cells in human trigeminal ganglia express canonical tissue-resident memory T-cell markers. J Neuroinflammation 2022; 19:249. [PMID: 36203181 PMCID: PMC9535861 DOI: 10.1186/s12974-022-02611-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Accepted: 09/27/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Trigeminal ganglia (TG) neurons are the main site of lifelong latent herpes simplex virus type 1 (HSV-1) infection. T-cells in ganglia contribute to long-term control of latent HSV-1 infection, but it is unclear whether these cells are bona fide tissue-resident memory T-cells (TRM). We optimized the processing of human post-mortem nervous tissue to accurately phenotype T-cells in human TG ex vivo and in situ. METHODS Peripheral blood mononuclear cells (PBMC; 5 blood donors) were incubated with several commercial tissue digestion enzyme preparations to determine off-target effect on simultaneous detection of 15 specific T-cell subset markers by flow cytometry. Next, optimized enzymatic digestion was applied to ex vivo phenotype T-cells in paired PBMC, normal appearing white matter (NAWM) and TG of 8 deceased brain donors obtained < 9 h post-mortem by flow cytometry. Finally, the phenotypic and functional markers, and spatial orientation of T-cells in relation to neuronal somata, were determined in TG tissue sections of five HSV-1-latently infected individuals by multiparametric in situ analysis. RESULTS Collagenase IV digestion of human nervous tissue was most optimal to obtain high numbers of viable T-cells without disrupting marker surface expression. Compared to blood, majority T-cells in paired NAWM and TG were effector memory T-cells expressing the canonical TRM markers CD69, CXCR6 and the immune checkpoint marker PD1, and about half co-expressed CD103. A trend of relatively higher TRM frequencies were detected in TG of latently HSV-1-infected compared to HSV-1 naïve individuals. Subsequent in situ analysis of latently HSV-1-infected TG showed the presence of cytotoxic T-cells (TIA-1+), which occasionally showed features of proliferation (KI-67+) and activation (CD137+), but without signs of degranulation (CD107a+) nor damage (TUNEL+) of TG cells. Whereas majority T-cells expressed PD-1, traits of T-cell senescence (p16INK4a+) were not detected. CONCLUSIONS The human TG represents an immunocompetent environment in which both CD4 and CD8 TRM are established and retained. Based on our study insights, we advocate for TRM-targeted vaccine strategies to bolster local HSV-1-specific T-cell immunity, not only at the site of recurrent infection but also at the site of HSV-1 latency.
Collapse
Affiliation(s)
- Peter-Paul A Unger
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Anna E Oja
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Tamana Khemai-Mehraban
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Werner J D Ouwendijk
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands
| | - Pleun Hombrink
- Department of Hematopoiesis, Sanquin Research and Landsteiner Laboratory, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Georges M G M Verjans
- Department of Viroscience, Erasmus MC, Molewaterplein 40, 3015 GD, Rotterdam, The Netherlands.
| |
Collapse
|
13
|
Isolation of mitochondria-derived mitovesicles and subpopulations of microvesicles and exosomes from brain tissues. Nat Protoc 2022; 17:2517-2549. [PMID: 35962195 PMCID: PMC9633367 DOI: 10.1038/s41596-022-00719-1] [Citation(s) in RCA: 54] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Extracellular vesicles (EVs) are nanoscale vesicles secreted into the extracellular space by all cell types, including neurons and astrocytes in the brain. EVs play pivotal roles in physiological and pathophysiological processes such as waste removal, cell-to-cell communication and transport of either protective or pathogenic material into the extracellular space. Here we describe a detailed protocol for the reliable and consistent isolation of EVs from both murine and human brains, intended for anyone with basic laboratory experience and performed in a total time of 27 h. The method includes a mild extracellular matrix digestion of the brain tissue, a series of filtration and centrifugation steps to purify EVs and an iodixanol-based high-resolution density step gradient that fractionates different EV populations, including mitovesicles, a newly identified type of EV of mitochondrial origin. We also report detailed downstream protocols for the characterization and analysis of brain EV preparations using nanotrack analysis, electron microscopy and western blotting, as well as for measuring mitovesicular ATP kinetics. Furthermore, we compared this novel iodixanol-based high-resolution density step gradient to the previously described sucrose-based gradient. Although the yield of total EVs recovered was similar, the iodixanol-based gradient better separated distinct EV species as compared with the sucrose-based gradient, including subpopulations of microvesicles, exosomes and mitovesicles. This technique allows quantitative, highly reproducible analyses of brain EV subtypes under normal physiological processes and pathological brain conditions, including neurodegenerative diseases such as Alzheimer's disease and Parkinson's disease.
Collapse
|
14
|
Abstract
The single-cell revolution in the field of genomics is in full bloom, with clever new molecular biology tricks appearing regularly that allow researchers to explore new modalities or scale up their projects to millions of cells and beyond. Techniques abound to measure RNA expression, DNA alterations, protein abundance, chromatin accessibility, and more, all with single-cell resolution and often in combination. Despite such a rapidly changing technology landscape, there are several fundamental principles that are applicable to the majority of experimental workflows to help users avoid pitfalls and exploit the advantages of the chosen platform. In this overview article, we describe a variety of popular single-cell genomics technologies and address some common questions pertaining to study design, sample preparation, quality control, and sequencing strategy. As the majority of relevant publications currently revolve around single-cell RNA-seq, we will prioritize this genomics modality in our discussion. © 2022 Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Claire Regan
- Cold Spring Harbor Laboratory, Cold Spring Harbor, New York
| | | |
Collapse
|
15
|
Electric-field facilitated rapid and efficient dissociation of tissues Into viable single cells. Sci Rep 2022; 12:10728. [PMID: 35750779 PMCID: PMC9232619 DOI: 10.1038/s41598-022-13068-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2022] [Accepted: 05/17/2022] [Indexed: 11/08/2022] Open
Abstract
Single-Cell Analysis is a growing field that endeavors to obtain genetic profiles of individual cells. Disruption of cell-cell junctions and digestion of extracellular matrix in tissues requires tissue-specific mechanical and chemical dissociation protocols. Here, a new approach for dissociating tissues into constituent cells is described. Placing a tissue biopsy core within a liquid-filled cavity and applying an electric field between two parallel plate electrodes facilitates rapid dissociation of complex tissues into single cells. Different solution compositions, electric field strengths, and oscillation frequencies are investigated experimentally and with COMSOL Multiphysics. The method is compared with standard chemical and mechanical approaches for tissue dissociation. Treatment of tissue samples at 100 V/cm 1 kHz facilitated dissociation of 95 ± 4% of biopsy tissue sections in as little as 5 min, threefold faster than conventional chemical-mechanical techniques. The approach affords good dissociation of tissues into single cells while preserving cell viability, morphology, and cell cycle progression, suggesting utility for sample preparation of tissue specimens for direct Single-Cell Analysis.
Collapse
|
16
|
Burja B, Paul D, Tastanova A, Edalat SG, Gerber R, Houtman M, Elhai M, Bürki K, Staeger R, Restivo G, Lang R, Sodin-Semrl S, Lakota K, Tomšič M, Levesque MP, Distler O, Rotar Ž, Robinson MD, Frank-Bertoncelj M. An Optimized Tissue Dissociation Protocol for Single-Cell RNA Sequencing Analysis of Fresh and Cultured Human Skin Biopsies. Front Cell Dev Biol 2022; 10:872688. [PMID: 35573685 PMCID: PMC9096112 DOI: 10.3389/fcell.2022.872688] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 04/13/2022] [Indexed: 12/16/2022] Open
Abstract
We present an optimized dissociation protocol for preparing high-quality skin cell suspensions for in-depth single-cell RNA-sequencing (scRNA-seq) analysis of fresh and cultured human skin. Our protocol enabled the isolation of a consistently high number of highly viable skin cells from small freshly dissociated punch skin biopsies, which we use for scRNA-seq studies. We recapitulated not only the main cell populations of existing single-cell skin atlases, but also identified rare cell populations, such as mast cells. Furthermore, we effectively isolated highly viable single cells from ex vivo cultured skin biopsy fragments and generated a global single-cell map of the explanted human skin. The quality metrics of the generated scRNA-seq datasets were comparable between freshly dissociated and cultured skin. Overall, by enabling efficient cell isolation and comprehensive cell mapping, our skin dissociation-scRNA-seq workflow can greatly facilitate scRNA-seq discoveries across diverse human skin pathologies and ex vivo skin explant experimentations.
Collapse
Affiliation(s)
- Blaž Burja
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Dominique Paul
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Aizhan Tastanova
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Sam G. Edalat
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Reto Gerber
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Miranda Houtman
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Muriel Elhai
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Kristina Bürki
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Ramon Staeger
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Gaetana Restivo
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Ramon Lang
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Snezna Sodin-Semrl
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Katja Lakota
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
| | - Matija Tomšič
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mitchell P. Levesque
- Department of Dermatology, University of Zurich, University Hospital Zurich, Schlieren, Switzerland
| | - Oliver Distler
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Žiga Rotar
- Department of Rheumatology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Mark D. Robinson
- Department of Molecular Life Sciences and Swiss Institute of Bioinformatics, University of Zurich, Zurich, Switzerland
| | - Mojca Frank-Bertoncelj
- Center of Experimental Rheumatology, Department of Rheumatology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
- BioMed X Institute, Heidelberg, Germany
| |
Collapse
|
17
|
Rozowsky JS, Meesters-Ensing JI, Lammers JAS, Belle ML, Nierkens S, Kranendonk MEG, Kester LA, Calkoen FG, van der Lugt J. A Toolkit for Profiling the Immune Landscape of Pediatric Central Nervous System Malignancies. Front Immunol 2022; 13:864423. [PMID: 35464481 PMCID: PMC9022116 DOI: 10.3389/fimmu.2022.864423] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 03/11/2022] [Indexed: 11/13/2022] Open
Abstract
The prognosis of pediatric central nervous system (CNS) malignancies remains dismal due to limited treatment options, resulting in high mortality rates and long-term morbidities. Immunotherapies, including checkpoint inhibition, cancer vaccines, engineered T cell therapies, and oncolytic viruses, have promising results in some hematological and solid malignancies, and are being investigated in clinical trials for various high-grade CNS malignancies. However, the role of the tumor immune microenvironment (TIME) in CNS malignancies is mostly unknown for pediatric cases. In order to successfully implement immunotherapies and to eventually predict which patients would benefit from such treatments, in-depth characterization of the TIME at diagnosis and throughout treatment is essential. In this review, we provide an overview of techniques for immune profiling of CNS malignancies, and detail how they can be utilized for different tissue types and studies. These techniques include immunohistochemistry and flow cytometry for quantifying and phenotyping the infiltrating immune cells, bulk and single-cell transcriptomics for describing the implicated immunological pathways, as well as functional assays. Finally, we aim to describe the potential benefits of evaluating other compartments of the immune system implicated by cancer therapies, such as cerebrospinal fluid and blood, and how such liquid biopsies are informative when designing immune monitoring studies. Understanding and uniformly evaluating the TIME and immune landscape of pediatric CNS malignancies will be essential to eventually integrate immunotherapy into clinical practice.
Collapse
Affiliation(s)
| | | | | | - Muriël L. Belle
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | - Stefan Nierkens
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
- Center for Translational Immunology, University Medical Center Utrecht, Utrecht, Netherlands
| | | | | | - Friso G. Calkoen
- Princess Máxima Center for Pediatric Oncology, Utrecht, Netherlands
| | | |
Collapse
|
18
|
Wang GC, Huang TR, Wang KY, Wu ZL, Xie JB, Zhang HL, Yin L, Tang WL, Peng B. Inflammation induced by lipopolysaccharide advanced androgen receptor expression and epithelial-mesenchymal transition progress in prostatitis and prostate cancer. Transl Androl Urol 2022; 10:4275-4287. [PMID: 34984192 PMCID: PMC8661260 DOI: 10.21037/tau-21-964] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2021] [Accepted: 11/18/2021] [Indexed: 12/15/2022] Open
Abstract
Background To explore the mechanism of prostatic inflammation on prostate cancer (PCa) by comparing the changes of prostate epithelial cells and PCa cells in an inflammatory environment. Methods First, immunohistochemistry (IHC) was used to compare the level of expression of TNF-α, IL-1β, IL-6, and TGF-β between benign prostatic hyperplasia (BPH), prostatitis, and PCa. Then primary prostate epithelial cells were sampled from patients who were suspected of PCa and had histological prostatitis (HP) confirmed by pathological biopsy. Lipopolysaccharide (LPS) or BAY11-7082 were used to investigate the change of androgen receptor (AR) and AR-mediated transcription, epithelial-mesenchymal transition (EMT) in primary prostate epithelial cells, and lymph node carcinoma of the prostate (LNCap) cells. Results TNF-α, IL-1β, IL-6, and TGF-β were significantly increased in HP and PCa compared with those in BPH patients. The proliferation of primary prostate epithelial cells and LNCap cells got the inflection point at LPS 10 µg/mL. In an inflammatory environment with 10 µg/mL LPS, both primary prostate epithelial cell and LNCap cell viability increased, and AR, AR-mediated transcription, and EMT processes were significantly increased. Inhibitors of NF-κB with 10 nM BAY11-7082 decreased AR, AR-mediated transcription, and EMT processes. Conclusions NF-κB regulates AR expression and EMT in prostatitis and PCa, and NF-κB inhibitors may have potential therapeutic value.
Collapse
Affiliation(s)
- Guang-Chun Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tian-Run Huang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Urology, Shanghai Traditional Chinese Medicine Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ke-Yi Wang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zong-Lin Wu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jin-Bo Xie
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hou-Liang Zhang
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Lei Yin
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Wen-Long Tang
- Department of Urology, People's Hospital of Lincang, Lincang, China
| | - Bo Peng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|
19
|
Al-Ani A, Toms D, Sunba S, Giles K, Touahri Y, Schuurmans C, Ungrin M. Scaffold-Free Retinal Pigment Epithelium Microtissues Exhibit Increased Release of PEDF. Int J Mol Sci 2021; 22:11317. [PMID: 34768747 PMCID: PMC8583603 DOI: 10.3390/ijms222111317] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 12/26/2022] Open
Abstract
The retinal pigmented epithelium (RPE) plays a critical role in photoreceptor survival and function. RPE deficits are implicated in a wide range of diseases that result in vision loss, including age-related macular degeneration (AMD) and Stargardt disease, affecting millions worldwide. Subretinal delivery of RPE cells is considered a promising avenue for treatment, and encouraging results from animal trials have supported recent progression into the clinic. However, the limited survival and engraftment of transplanted RPE cells delivered as a suspension continues to be a major challenge. While RPE delivery as epithelial sheets exhibits improved outcomes, this comes at the price of increased complexity at both the production and transplant stages. In order to combine the benefits of both approaches, we have developed size-controlled, scaffold-free RPE microtissues (RPE-µTs) that are suitable for scalable production and delivery via injection. RPE-µTs retain key RPE molecular markers, and interestingly, in comparison to conventional monolayer cultures, they show significant increases in the transcription and secretion of pigment-epithelium-derived factor (PEDF), which is a key trophic factor known to enhance the survival and function of photoreceptors. Furthermore, these microtissues readily spread in vitro on a substrate analogous to Bruch's membrane, suggesting that RPE-µTs may collapse into a sheet upon transplantation. We anticipate that this approach may provide an alternative cell delivery system to improve the survival and integration of RPE transplants, while also retaining the benefits of low complexity in production and delivery.
Collapse
Affiliation(s)
- Abdullah Al-Ani
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada
- Cumming School of Medicine, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Derek Toms
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Saud Sunba
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
| | - Kayla Giles
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
| | - Yacine Touahri
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (Y.T.); (C.S.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Carol Schuurmans
- Sunnybrook Research Institute, Toronto, ON M4N 3M5, Canada; (Y.T.); (C.S.)
- Department of Biochemistry, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Mark Ungrin
- Department of Comparative Biology and Experimental Medicine, Faculty of Veterinary Medicine, University of Calgary, Calgary, AB T2N 1N4, Canada; (A.A.-A.); (S.S.); (K.G.)
- Alberta Children’s Hospital Research Institute, University of Calgary, Calgary, AB T2N 4N1, Canada
- Alberta Diabetes Institute, University of Alberta, Edmonton, AB T6G 2E1, Canada
- Biomedical Engineering Graduate Program, University of Calgary, Calgary, AB T2N 1N4, Canada
| |
Collapse
|
20
|
Serrano GE, Walker JE, Intorcia AJ, Glass MJ, Arce RA, Piras IS, Talboom JS, Nelson CM, Cutler BD, Sue LI, Lue LF, Huentelman M, Beach TG. Whole-Cell Dissociated Suspension Analysis in Human Brain Neurodegenerative Disease: A Pilot Study. JOURNAL OF TISSUE SCIENCE & ENGINEERING 2021; 12:242.. [PMID: 39055131 PMCID: PMC11271822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Figures] [Subscribe] [Scholar Register] [Indexed: 07/27/2024]
Abstract
Biochemical analysis of human brain tissue is typically done by homogenizing whole pieces of brain and separately characterizing the proteins, RNA, DNA, and other macromolecules within. While this has been sufficient to identify substantial changes, there is little ability to identify small changes or alterations that may occur in subsets of cells. To effectively investigate the biochemistry of disease in the brain, with its different cell types, we must first separate the cells and study them as phenotypically defined populations or even as individuals. In this project, we developed a new method for the generation of Whole Cell Dissociated Suspensions (WCDS) in fresh human brain tissue that could be shared as a resource with scientists to study single human cells or populations. Characterization of WCDS was done in paraffin-embedded sections stained with H&E, and by phenotyping with antibodies using immunohistochemistry and Fluorescence Activated Cell Sorting (FACS). Additionally, we compared extracted RNA from WCDS with RNA from adjacent intact cortical tissue, using RT-qPCR for cell-type-specific RNA for the same markers as well as whole transcriptome sequencing. More than 11,626 gene transcripts were successfully sequenced and classified using an external database either as being mainly expressed in neurons, astrocytes, microglia, oligodendrocytes, endothelial cells, or mixed (in two or more cell types). This demonstrates that we are currently capable of producing WCDS with a full representation of different brain cell types combined with RNA quality suitable for use in biochemical analysis.
Collapse
Affiliation(s)
- Geidy E Serrano
- Banner Sun Health Research Institute, Arizona, United States
| | | | | | - Michael J Glass
- Banner Sun Health Research Institute, Arizona, United States
| | - Richard A Arce
- Banner Sun Health Research Institute, Arizona, United States
| | - Ignazio S. Piras
- Translational Genomics Research Institute, Phoenix, USA
- Institute of Arizona Alzheimer’s Consortium, Phoenix, USA
| | - Joshua S Talboom
- Translational Genomics Research Institute, Phoenix, USA
- Institute of Arizona Alzheimer’s Consortium, Phoenix, USA
| | | | - Brett D Cutler
- Banner Sun Health Research Institute, Arizona, United States
| | - Lucia I Sue
- Banner Sun Health Research Institute, Arizona, United States
| | - Lih-Fen Lue
- Banner Sun Health Research Institute, Arizona, United States
| | - Matthew Huentelman
- Translational Genomics Research Institute, Phoenix, USA
- Institute of Arizona Alzheimer’s Consortium, Phoenix, USA
| | - Thomas G Beach
- Banner Sun Health Research Institute, Arizona, United States
| |
Collapse
|
21
|
Richter M, Piwocka O, Musielak M, Piotrowski I, Suchorska WM, Trzeciak T. From Donor to the Lab: A Fascinating Journey of Primary Cell Lines. Front Cell Dev Biol 2021; 9:711381. [PMID: 34395440 PMCID: PMC8356673 DOI: 10.3389/fcell.2021.711381] [Citation(s) in RCA: 58] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 06/21/2021] [Indexed: 12/02/2022] Open
Abstract
Primary cancer cell lines are ex vivo cell cultures originating from resected tissues during biopsies and surgeries. Primary cell cultures are objects of intense research due to their high impact on molecular biology and oncology advancement. Initially, the patient-derived specimen must be subjected to dissociation and isolation. Techniques for tumour dissociation are usually reliant on the organisation of connecting tissue. The most common methods include enzymatic digestion (with collagenase, dispase, and DNase), chemical treatment (with ethylene diamine tetraacetic acid and ethylene glycol tetraacetic acid), or mechanical disaggregation to obtain a uniform cell population. Cells isolated from the tissue specimen are cultured as a monolayer or three-dimensional culture, in the form of multicellular spheroids, scaffold-based cultures (i.e., organoids), or matrix-embedded cultures. Every primary cell line must be characterised to identify its origin, purity, and significant features. The process of characterisation should include different assays utilising specific (extra- and intracellular) markers. The most frequently used approaches comprise immunohistochemistry, immunocytochemistry, western blot, flow cytometry, real-time polymerase chain reaction, karyotyping, confocal microscopy, and next-generation sequencing. The growing body of evidence indicates the validity of the usage of primary cancer cell lines in the formulation of novel anti-cancer treatments and their contribution to drug development.
Collapse
Affiliation(s)
- Magdalena Richter
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| | - Oliwia Piwocka
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
| | - Marika Musielak
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Igor Piotrowski
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Wiktoria M. Suchorska
- Radiobiology Lab, Department of Medical Physics, Greater Poland Cancer Center, Poznań, Poland
- Department of Electroradiology, Poznan University of Medical Sciences, Poznań, Poland
| | - Tomasz Trzeciak
- Department of Orthopaedics and Traumatology, Poznan University of Medical Sciences, Poznań, Poland
| |
Collapse
|
22
|
Diamant G, Simchony Goldman H, Gasri Plotnitsky L, Roitman M, Shiloach T, Globerson-Levin A, Eshhar Z, Haim O, Pencovich N, Grossman R, Ram Z, Volovitz I. T Cells Retain Pivotal Antitumoral Functions under Tumor-Treating Electric Fields. THE JOURNAL OF IMMUNOLOGY 2021; 207:709-719. [PMID: 34215656 DOI: 10.4049/jimmunol.2100100] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/28/2021] [Indexed: 11/19/2022]
Abstract
Tumor-treating fields (TTFields) are a localized, antitumoral therapy using alternating electric fields, which impair cell proliferation. Combining TTFields with tumor immunotherapy constitutes a rational approach; however, it is currently unknown whether TTFields' locoregional effects are compatible with T cell functionality. Healthy donor PBMCs and viably dissociated human glioblastoma samples were cultured under either standard or TTFields conditions. Select pivotal T cell functions were measured by multiparametric flow cytometry. Cytotoxicity was evaluated using a chimeric Ag receptor (CAR)-T-based assay. Glioblastoma patient samples were acquired before and after standard chemoradiation or standard chemoradiation + TTFields treatment and examined by immunohistochemistry and by RNA sequencing. TTFields reduced the viability of proliferating T cells, but had little or no effect on the viability of nonproliferating T cells. The functionality of T cells cultured under TTFields was retained: they exhibited similar IFN-γ secretion, cytotoxic degranulation, and PD1 upregulation as controls with similar polyfunctional patterns. Glioblastoma Ag-specific T cells exhibited unaltered viability and functionality under TTFields. CAR-T cells cultured under TTFields exhibited similar cytotoxicity as controls toward their CAR target. Transcriptomic analysis of patients' glioblastoma samples revealed a significant shift in the TTFields-treated versus the standard-treated samples, from a protumoral to an antitumoral immune signature. Immunohistochemistry of samples before and after TTFields treatment showed no reduction in T cell infiltration. T cells were found to retain key antitumoral functions under TTFields settings. Our data provide a mechanistic insight and a rationale for ongoing and future clinical trials that combine TTFields with immunotherapy.
Collapse
Affiliation(s)
- Gil Diamant
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel.,Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Hadar Simchony Goldman
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Lital Gasri Plotnitsky
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Marina Roitman
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel
| | - Tamar Shiloach
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Anat Globerson-Levin
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Zelig Eshhar
- Laboratory for Cancer Research and Immunotherapy, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel
| | - Oz Haim
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Niv Pencovich
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Rachel Grossman
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Zvi Ram
- Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| | - Ilan Volovitz
- The Cancer Immunotherapy Laboratory, Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University Tel-Aviv, Israel; .,Neurosurgery Department, Tel-Aviv Medical Center, Sackler Faculty of Medicine, Tel-Aviv University, Tel-Aviv, Israel; and
| |
Collapse
|
23
|
Brain-Derived Extracellular Vesicles in Health and Disease: A Methodological Perspective. Int J Mol Sci 2021; 22:ijms22031365. [PMID: 33573018 PMCID: PMC7866382 DOI: 10.3390/ijms22031365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2020] [Revised: 01/22/2021] [Accepted: 01/25/2021] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EVs) are double membrane structures released by presumably all cell types that transport and deliver lipids, proteins, and genetic material to near or distant recipient cells, thereby affecting their phenotype. The basic knowledge of their functions in healthy and diseased brain is still murky and many questions about their biology are unsolved. In neurological diseases, EVs are regarded as attractive biomarkers and as therapeutic tools due to their ability to cross the blood–brain barrier (BBB). EVs have been successfully isolated from conditioned media of primary brain cells and cerebrospinal fluid (CSF), but protocols allowing for the direct study of pathophysiological events mediated or influenced by EVs isolated from brain have only recently been published. This review aims to give a brief overview of the current knowledge of EVs’ functions in the central nervous system (CNS) and the current protocols to isolate brain-derived EVs (BDEVs) used in different publications. By comparing the proteomic analysis of some of these publications, we also assess the influence of the isolation method on the protein content of BDEVs.
Collapse
|
24
|
Single-cell multiomics: technologies and data analysis methods. Exp Mol Med 2020; 52:1428-1442. [PMID: 32929225 PMCID: PMC8080692 DOI: 10.1038/s12276-020-0420-2] [Citation(s) in RCA: 274] [Impact Index Per Article: 54.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Revised: 02/14/2020] [Accepted: 02/28/2020] [Indexed: 01/31/2023] Open
Abstract
Advances in single-cell isolation and barcoding technologies offer unprecedented opportunities to profile DNA, mRNA, and proteins at a single-cell resolution. Recently, bulk multiomics analyses, such as multidimensional genomic and proteogenomic analyses, have proven beneficial for obtaining a comprehensive understanding of cellular events. This benefit has facilitated the development of single-cell multiomics analysis, which enables cell type-specific gene regulation to be examined. The cardinal features of single-cell multiomics analysis include (1) technologies for single-cell isolation, barcoding, and sequencing to measure multiple types of molecules from individual cells and (2) the integrative analysis of molecules to characterize cell types and their functions regarding pathophysiological processes based on molecular signatures. Here, we summarize the technologies for single-cell multiomics analyses (mRNA-genome, mRNA-DNA methylation, mRNA-chromatin accessibility, and mRNA-protein) as well as the methods for the integrative analysis of single-cell multiomics data. The expansion of single-cell profiling technologies will provide unprecedented insights into the molecular mechanisms inherent in disease. Novel technologies known collectively as ‘single-cell multiomics’ enable systematic, high-resolution profiling of DNA, RNA and proteins in individual cells. This provides valuable data about gene regulation and molecular populations, and cellular processes during disease development and progression. Daehee Hwang and co-workers at Seoul National University, Seoul, South Korea, reviewed existing single-cell multiomics technologies and highlighted ways to integrate the data generated. Analytical features of multiomics allow scientists to isolate, sequence and label (or ‘barcode’) multiple molecules in single cells. Different sequencing techniques can be used for different purposes, such as exploring gene mutation coverage or measuring RNA transcripts. Combining these sequencing data will help identify links between significant features during disease.
Collapse
|
25
|
Huang Y, Cheng L, Turchinovich A, Mahairaki V, Troncoso JC, Pletniková O, Haughey NJ, Vella LJ, Hill AF, Zheng L, Witwer KW. Influence of species and processing parameters on recovery and content of brain tissue-derived extracellular vesicles. J Extracell Vesicles 2020; 9:1785746. [PMID: 32944174 PMCID: PMC7480582 DOI: 10.1080/20013078.2020.1785746] [Citation(s) in RCA: 72] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Extracellular vesicles (EVs) are involved in a wide range of physiological and pathological processes by shuttling material out of and between cells. Tissue EVs may thus lend insights into disease mechanisms and also betray disease when released into easily accessed biological fluids. Since brain-derived EVs (bdEVs) and their cargo may serve as biomarkers of neurodegenerative diseases, we evaluated modifications to a published, rigorous protocol for separation of EVs from brain tissue and studied effects of processing variables on quantitative and qualitative outcomes. To this end, size exclusion chromatography (SEC) and sucrose density gradient ultracentrifugation were compared as final separation steps in protocols involving stepped ultracentrifugation. bdEVs were separated from brain tissues of human, macaque, and mouse. Effects of tissue perfusion and a model of post-mortem interval (PMI) before final bdEV separation were probed. MISEV2018-compliant EV characterization was performed, and both small RNA and protein profiling were done. We conclude that the modified, SEC-employing protocol achieves EV separation efficiency roughly similar to a protocol using gradient density ultracentrifugation, while decreasing operator time and, potentially, variability. The protocol appears to yield bdEVs of higher purity for human tissues compared with those of macaque and, especially, mouse, suggesting opportunities for optimization. Where possible, perfusion should be performed in animal models. The interval between death/tissue storage/processing and final bdEV separation can also affect bdEV populations and composition and should thus be recorded for rigorous reporting. Finally, different populations of EVs obtained through the modified method reported herein display characteristic RNA and protein content that hint at biomarker potential. To conclude, this study finds that the automatable and increasingly employed technique of SEC can be applied to tissue EV separation, and also reveals more about the importance of species-specific and technical considerations when working with tissue EVs. These results are expected to enhance the use of bdEVs in revealing and understanding brain disease.
Collapse
Affiliation(s)
- Yiyao Huang
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lesley Cheng
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Andrey Turchinovich
- Molecular Epidemiology, German Cancer Research Center DKFZ, Heidelberg, Germany.,SciBerg e.Kfm, Mannheim, Germany
| | - Vasiliki Mahairaki
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Juan C Troncoso
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Olga Pletniková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Norman J Haughey
- Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Laura J Vella
- The Florey Institute of Neuroscience and Mental Health, The University of Melbourne, Parkville, Australia.,Department of Surgery, The University of Melbourne, the Royal Melbourne Hospital, Parkville, Australia
| | - Andrew F Hill
- Department of Biochemistry and Genetics, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, Australia
| | - Lei Zheng
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Kenneth W Witwer
- Department of Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.,Department of Neurology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
26
|
Ehlen L, Arndt J, Treue D, Bischoff P, Loch FN, Hahn EM, Kotsch K, Klauschen F, Beyer K, Margonis GA, Kreis ME, Kamphues C. Novel methods for in vitro modeling of pancreatic cancer reveal important aspects for successful primary cell culture. BMC Cancer 2020; 20:417. [PMID: 32404074 PMCID: PMC7222463 DOI: 10.1186/s12885-020-06929-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 05/05/2020] [Indexed: 01/05/2023] Open
Abstract
Background Pancreatic cancer remains a fatal disease. Experimental systems are needed for personalized treatment strategies, drug testing and to further understand tumor biology. Cell cultures can serve as an excellent preclinical platform, but their generation remains challenging. Methods Tumor cells from surgically removed pancreatic ductal adenocarcinoma (PDAC) specimens were cultured under novel protocols. Cellular growth and composition were analyzed and culture conditions were continuously optimized. Characterization of cell cultures and primary tumors was performed via hematoxylin and eosin (HE) and immunofluorescence (IF) staining. Results Protocols for two- and three-dimensional PDAC primary cell cultures could successfully be established. Primary cell culture depended on dissociation techniques, growth factor supplementation and extracellular matrix components containing Matrigel being crucial for the transformation to three-dimensional PDAC organoids. The generated cultures showed to be highly resemblant to established PDAC primary cell cultures. HE and IF staining for cell culture and corresponding primary tumor characterization could successfully be performed. Conclusions The work presented herein shows novel and effective methods to successfully establish primary PDAC cell cultures in a distinct time frame. Factors contributing to cell growth and differentiation could be identified with important implications for further primary cell culture protocols. The established protocols might serve as novel tools in personalized tumor therapy.
Collapse
Affiliation(s)
- L Ehlen
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany.
| | - J Arndt
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - D Treue
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - P Bischoff
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F N Loch
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - E M Hahn
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Kotsch
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - F Klauschen
- Institute of Pathology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - K Beyer
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - G A Margonis
- Department of Surgery, Johns Hopkins University School of Medicine, Baltimore, USA
| | - M E Kreis
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - C Kamphues
- Department of General, Visceral and Vascular Surgery, Charité - Universitätsmedizin Berlin, Berlin, Germany
| |
Collapse
|
27
|
Chavkin NW, Hirschi KK. Single Cell Analysis in Vascular Biology. Front Cardiovasc Med 2020; 7:42. [PMID: 32296715 PMCID: PMC7137757 DOI: 10.3389/fcvm.2020.00042] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/12/2022] Open
Abstract
The ability to quantify DNA, RNA, and protein variations at the single cell level has revolutionized our understanding of cellular heterogeneity within tissues. Via such analyses, individual cells within populations previously thought to be homogeneous can now be delineated into specific subpopulations expressing unique sets of genes, enabling specialized functions. In vascular biology, studies using single cell RNA sequencing have revealed extensive heterogeneity among endothelial and mural cells even within the same vessel, key intermediate cell types that arise during blood and lymphatic vessel development, and cell-type specific responses to disease. Thus, emerging new single cell analysis techniques are enabling vascular biologists to elucidate mechanisms of vascular development, homeostasis, and disease that were previously not possible. In this review, we will provide an overview of single cell analysis methods and highlight recent advances in vascular biology made possible through single cell RNA sequencing.
Collapse
Affiliation(s)
- Nicholas W Chavkin
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States
| | - Karen K Hirschi
- Department of Cell Biology, Developmental Genomics Center, School of Medicine, University of Virginia, Charlottesville, VA, United States.,Departments of Medicine and Genetics, Cardiovascular Research Center, School of Medicine, Yale University, New Haven, CT, United States
| |
Collapse
|
28
|
Novel Breast Cancer Brain Metastasis Patient-Derived Orthotopic Xenograft Model for Preclinical Studies. Cancers (Basel) 2020; 12:cancers12020444. [PMID: 32074948 PMCID: PMC7072242 DOI: 10.3390/cancers12020444] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Revised: 02/05/2020] [Accepted: 02/10/2020] [Indexed: 12/20/2022] Open
Abstract
The vast majority of mortality in breast cancer results from distant metastasis. Brain metastases occur in as many as 30% of patients with advanced breast cancer, and the 1-year survival rate of these patients is around 20%. Pre-clinical animal models that reliably reflect the biology of breast cancer brain metastasis are needed to develop and test new treatments for this deadly condition. The patient-derived xenograft (PDX) model maintains many features of a donor tumor, such as intra-tumor heterogeneity, and permits the testing of individualized treatments. However, the establishment of orthotopic PDXs of brain metastasis is procedurally difficult. We have developed a method for generating such PDXs with high tumor engraftment and growth rates. Here, we describe this method and identify variables that affect its outcomes. We also compare the brain-orthotopic PDXs with ectopic PDXs grown in mammary pads of mice, and show that the responsiveness of PDXs to chemotherapeutic reagents can be dramatically affected by the site that they are in.
Collapse
|
29
|
O'Flanagan CH, Campbell KR, Zhang AW, Kabeer F, Lim JLP, Biele J, Eirew P, Lai D, McPherson A, Kong E, Bates C, Borkowski K, Wiens M, Hewitson B, Hopkins J, Pham J, Ceglia N, Moore R, Mungall AJ, McAlpine JN, Shah SP, Aparicio S. Dissociation of solid tumor tissues with cold active protease for single-cell RNA-seq minimizes conserved collagenase-associated stress responses. Genome Biol 2019; 20:210. [PMID: 31623682 PMCID: PMC6796327 DOI: 10.1186/s13059-019-1830-0] [Citation(s) in RCA: 148] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Revised: 09/10/2019] [Accepted: 09/20/2019] [Indexed: 12/22/2022] Open
Abstract
BACKGROUND Single-cell RNA sequencing (scRNA-seq) is a powerful tool for studying complex biological systems, such as tumor heterogeneity and tissue microenvironments. However, the sources of technical and biological variation in primary solid tumor tissues and patient-derived mouse xenografts for scRNA-seq are not well understood. RESULTS We use low temperature (6 °C) protease and collagenase (37 °C) to identify the transcriptional signatures associated with tissue dissociation across a diverse scRNA-seq dataset comprising 155,165 cells from patient cancer tissues, patient-derived breast cancer xenografts, and cancer cell lines. We observe substantial variation in standard quality control metrics of cell viability across conditions and tissues. From the contrast between tissue protease dissociation at 37 °C or 6 °C, we observe that collagenase digestion results in a stress response. We derive a core gene set of 512 heat shock and stress response genes, including FOS and JUN, induced by collagenase (37 °C), which are minimized by dissociation with a cold active protease (6 °C). While induction of these genes was highly conserved across all cell types, cell type-specific responses to collagenase digestion were observed in patient tissues. CONCLUSIONS The method and conditions of tumor dissociation influence cell yield and transcriptome state and are both tissue- and cell-type dependent. Interpretation of stress pathway expression differences in cancer single-cell studies, including components of surface immune recognition such as MHC class I, may be especially confounded. We define a core set of 512 genes that can assist with the identification of such effects in dissociated scRNA-seq experiments.
Collapse
Affiliation(s)
- Ciara H O'Flanagan
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kieran R Campbell
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Department of Statistics, University of British Columbia, Vancouver, BC, Canada
- UBC Data Science Institute, University of British Columbia, Vancouver, BC, Canada
| | - Allen W Zhang
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Graduate Bioinformatics program, University of British Columbia, Vancouver, BC, Canada
- BC Children's Hospital Research, Vancouver, BC, Canada
| | - Farhia Kabeer
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Jamie L P Lim
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justina Biele
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Peter Eirew
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Daniel Lai
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Andrew McPherson
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Esther Kong
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Cherie Bates
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Kelly Borkowski
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Matt Wiens
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Brittany Hewitson
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - James Hopkins
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Jenifer Pham
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada
| | - Nicholas Ceglia
- Graduate Bioinformatics program, University of British Columbia, Vancouver, BC, Canada
| | - Richard Moore
- Michael Smith Genome Sciences Centre, Vancouver, BC, Canada
| | | | - Jessica N McAlpine
- Department of Gynecology and Obstetrics, University of British Columbia, Vancouver, BC, Canada
| | - Sohrab P Shah
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada.
- Computational Oncology, Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY, USA.
| | - Samuel Aparicio
- Department of Molecular Oncology, British Columbia Cancer Research Centre, Vancouver, BC, Canada.
- UBC Data Science Institute, University of British Columbia, Vancouver, BC, Canada.
| |
Collapse
|
30
|
Computational Analysis of High-Dimensional Mass Cytometry Data from Clinical Tissue Samples. Methods Mol Biol 2019; 1989:295-307. [PMID: 31077113 DOI: 10.1007/978-1-4939-9454-0_19] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
The advent of mass cytometry has resulted in the generation of high-dimensional, single-cell expression data sets from clinical samples. These data sets cannot be effectively analyzed using traditional approaches. Instead, new approaches using dimensionality reduction and network analysis techniques have been implemented to assess these data. Here, detailed methods are described for analyzing immune cell expression from clinical samples using network analyses. Specifically, details are given for performing SCAFFoLD and CITRUS analyses. The methods described will use immune cell tumor infiltrate as an example.
Collapse
|
31
|
Abstract
It is now a routine to carry out single-cell RNA-Seq to define the gene expression patterns of thousands of cells, thereby revolutionizing many areas of research. Projects are underway to use these techniques to create an atlas of the expressed genes in all cell types of the human body. Here we describe cold-active protease methods for single-cell dissociation of organs and tissues that better preserve the in vivo gene expression patterns.
Collapse
|
32
|
Gorshkov K, Chen CZ, Marshall RE, Mihatov N, Choi Y, Nguyen DT, Southall N, Chen KG, Park JK, Zheng W. Advancing precision medicine with personalized drug screening. Drug Discov Today 2018; 24:272-278. [PMID: 30125678 DOI: 10.1016/j.drudis.2018.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2018] [Revised: 07/26/2018] [Accepted: 08/13/2018] [Indexed: 01/15/2023]
Abstract
Personalized drug screening (PDS) of approved drug libraries enables rapid development of specific small-molecule therapies for individual patients. With a multidisciplinary team including clinicians, researchers, ethicists, informaticians and regulatory professionals, patient treatment can be optimized with greater efficacy and fewer adverse effects by using PDS as an approach to find remedies. In addition, PDS has the potential to rapidly identify therapeutics for a patient suffering from a disease without an existing therapy. From cancer to bacterial infections, we review specific maladies addressed with PDS campaigns. We predict that PDS combined with personal genomic analyses will contribute to the development of future precision medicine endeavors.
Collapse
Affiliation(s)
- Kirill Gorshkov
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Catherine Z Chen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Raisa E Marshall
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Nino Mihatov
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Yong Choi
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Dac-Trung Nguyen
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Noel Southall
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Kevin G Chen
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - John K Park
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892-3375, USA
| | - Wei Zheng
- National Center for Advancing Translational Sciences, National Institutes of Health, Bethesda, MD 20892-3375, USA.
| |
Collapse
|
33
|
Hu Y, An Q, Sheu K, Trejo B, Fan S, Guo Y. Single Cell Multi-Omics Technology: Methodology and Application. Front Cell Dev Biol 2018; 6:28. [PMID: 29732369 PMCID: PMC5919954 DOI: 10.3389/fcell.2018.00028] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/08/2018] [Indexed: 12/30/2022] Open
Abstract
In the era of precision medicine, multi-omics approaches enable the integration of data from diverse omics platforms, providing multi-faceted insight into the interrelation of these omics layers on disease processes. Single cell sequencing technology can dissect the genotypic and phenotypic heterogeneity of bulk tissue and promises to deepen our understanding of the underlying mechanisms governing both health and disease. Through modification and combination of single cell assays available for transcriptome, genome, epigenome, and proteome profiling, single cell multi-omics approaches have been developed to simultaneously and comprehensively study not only the unique genotypic and phenotypic characteristics of single cells, but also the combined regulatory mechanisms evident only at single cell resolution. In this review, we summarize the state-of-the-art single cell multi-omics methods and discuss their applications, challenges, and future directions.
Collapse
Affiliation(s)
- Youjin Hu
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun-Ye-Sat University, Guangzhou, China
| | - Qin An
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Katherine Sheu
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Brandon Trejo
- Department of Human Genetics, David Geffen School of Medicine, UCLA, Los Angeles, CA, United States
| | - Shuxin Fan
- Zhongshan Ophthalmic Center, State Key Laboratory of Ophthalmology, Sun-Ye-Sat University, Guangzhou, China
| | - Ying Guo
- The Second Affiliated Hospital, Xiangya School of Medicine, Central South University, Changsha, China
| |
Collapse
|
34
|
Taipale K, Tähtinen S, Havunen R, Koski A, Liikanen I, Pakarinen P, Koivisto-Korander R, Kankainen M, Joensuu T, Kanerva A, Hemminki A. Interleukin 8 activity influences the efficacy of adenoviral oncolytic immunotherapy in cancer patients. Oncotarget 2018; 9:6320-6335. [PMID: 29464075 PMCID: PMC5814215 DOI: 10.18632/oncotarget.23967] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 12/12/2017] [Indexed: 12/20/2022] Open
Abstract
After the landmark approval of T-VEC, oncolytic viruses are finding their way to the clinics. However, response rates have still room for improvement, and unfortunately there are currently no available markers to predict responses for oncolytic immunotherapy. Interleukin 8 (IL-8) production is upregulated in many cancers and it also connects to several pathways that have been shown to impair the efficacy of adenoviral immunotherapy. We studied the role of IL-8 in 103 cancer patients treated with oncolytic adenoviruses. We found high baseline serum IL-8 concentration to be independently associated with poor prognosis (p<0.001). Further, normal baseline IL-8 was associated with improved prognostic potential of calculation of the neutrophil-to-lymphocyte ratio (p<0.001). Interestingly, a decrease in IL-8 concentration after treatment with oncolytic adenovirus predicted better overall survival (p<0.001) and higher response rate, although this difference was not significant (p=0.066). We studied the combination of adenovirus and IL-8 neutralizing antibody ex vivo in single cell suspensions and in co-cultures of tumor-associated CD15+ neutrophils and CD3+ tumor-infiltrating lymphocytes derived from fresh patient tumor samples. These results indicate a role for IL-8 as a biomarker in oncolytic virotherapy, but additionally provide a rationale for targeting IL-8 to improve treatment efficacy. In conclusion, curtailing the activity of IL-8 systemically or locally in the tumor microenvironment could improve anti-tumor immune responses resulting in enhanced efficacy of adenoviral immunotherapy of cancer.
Collapse
Affiliation(s)
- Kristian Taipale
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Siri Tähtinen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Riikka Havunen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Anniina Koski
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Neurosurgery, HUCH, Helsinki, Finland
| | - Ilkka Liikanen
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland
| | - Päivi Pakarinen
- Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | | | - Matti Kankainen
- Institute for Molecular Medicine Finland (FIMM), University of Helsinki, Helsinki, Finland
| | | | - Anna Kanerva
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Department of Obstetrics and Gynecology, HUCH, Helsinki, Finland
| | - Akseli Hemminki
- Cancer Gene Therapy Group, University of Helsinki, Faculty of Medicine, Helsinki, Finland.,Docrates Cancer Center, Helsinki, Finland.,TILT Biotherapeutics Ltd., Helsinki, Finland.,Helsinki University Hospital Comprehensive Cancer Center, Helsinki, Finland
| |
Collapse
|