1
|
Tyagi K, Chandan RK, Sahoo D, Ghosh S, Gupta S, Jha G. The host and pathogen myo-inositol-1-phosphate synthases are required for Rhizoctonia solani AG1-IA infection in tomato. MOLECULAR PLANT PATHOLOGY 2024; 25:e13470. [PMID: 39376048 PMCID: PMC11458890 DOI: 10.1111/mpp.13470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 04/29/2024] [Accepted: 05/05/2024] [Indexed: 10/09/2024]
Abstract
The myo-inositol-1-phosphate synthase (MIPS) catalyses the biosynthesis of myo-inositol, an important sugar that regulates various physiological and biochemical processes in plants. Here, we provide evidence that host (SlMIPS1) and pathogen (Rs_MIPS) myo-inositol-1-phosphate synthase (MIPS) genes are required for successful infection of Rhizoctonia solani, a devastating necrotrophic fungal pathogen, in tomato. Silencing of either SlMIPS1 or Rs_MIPS prevented disease, whereas an exogenous spray of myo-inositol enhanced disease severity. SlMIPS1 was upregulated upon R. solani infection, and potentially promoted source-to-sink transition, induced SWEET gene expression, and facilitated sugar availability in the infected tissues. In addition, salicylic acid (SA)-jasmonic acid homeostasis was altered and SA-mediated defence was suppressed; therefore, disease was promoted. On the other hand, silencing of SlMIPS1 limited sugar availability and induced SA-mediated defence to prevent R. solani infection. Virus-induced gene silencing of NPR1, a key gene in SA signalling, rendered SlMIPS1-silenced tomato lines susceptible to infection. These analyses suggest that induction of SA-mediated defence imparts disease tolerance in SlMIPS1-silenced tomato lines. In addition, we present evidence that SlMIPS1 and SA negatively regulate each other to modulate the defence response. SA treatment reduced SlMIPS1 expression and myo-inositol content in tomato, whereas myo-inositol treatment prevented SA-mediated defence. We emphasize that downregulation of host/pathogen MIPS can be an important strategy for controlling diseases caused by R. solani in agriculturally important crops.
Collapse
Affiliation(s)
- Kriti Tyagi
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Ravindra K. Chandan
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Debashis Sahoo
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Srayan Ghosh
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Santosh Kumar Gupta
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| | - Gopaljee Jha
- Plant–Microbe Interactions LaboratoryNational Institute of Plant Genome ResearchNew DelhiIndia
| |
Collapse
|
2
|
Heckmann A, Perochon A, Doohan FM. Genome-wide analysis of salicylic acid and jasmonic acid signalling marker gene families in wheat. PLANT BIOLOGY (STUTTGART, GERMANY) 2024; 26:691-704. [PMID: 38864777 DOI: 10.1111/plb.13659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Accepted: 03/25/2024] [Indexed: 06/13/2024]
Abstract
Jasmonic acid (JA) and salicylic acid (SA) phytohormone pathways are important regulators of stress tolerance. Knowledge regarding the diversity, phylogeny and functionality of wheat genes involved in JA and SA response is limited. Using Arabidopsis, rice and wheat genomic and wheat disease transcriptomic data, we deduced the size, phylogenetic diversity and pathogen-responsiveness of seven hormone-responsive gene families, and thus selected 14 candidates as potential hormone responsive gene markers. Gene-specific expression studies assessed the impact of exogenous JA and SA on their transcriptional activation in leaves of two distinct wheat cultivars. RNAseq data were interrogated to assess their disease responsiveness and tissue-specific expression. This study elucidated the number, phylogeny and pathogen-responsiveness of wheat genes from seven families, including 12 TaAOS, 6 TaJAMyb, 256 TaWRKY group III, 85 TaPR1, 205 TaPR2, 76 TaPR3 and 124 TaPR5. This included the first description of the wheat AOS, JAMyb, PR2, PR3 and PR5 gene families. Gene expression studies delineated TaAOS1-5B and TaJAMyb-4A as JA-responsive in leaves, but not significantly responsive to SA treatment, while TaWRKY45-B was a SA- but not a JA-responsive marker. Other candidate genes were either unresponsive or non-specific to SA or JA. Our findings highlight that all seven gene families are greatly expanded in wheat as compared to other plants (up to 7.6-fold expansion), and demonstrate disparity in the response to biotic stress between some homoeologous and paralogous sequences within these families. The SA- and JA-responsive marker genes identified herein will prove useful tools to monitor these signalling pathways in wheat.
Collapse
Affiliation(s)
- A Heckmann
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - A Perochon
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| | - F M Doohan
- UCD School of Biology and Environmental Science and Earth Institute, College of Science, University College Dublin, Dublin, Ireland
| |
Collapse
|
3
|
van Aubel G, Van Cutsem E, Emond A, Métillon G, Cordier É, Van Cutsem P. Dual Transcriptomic and Metabolomic Analysis of Elicited Flax Sheds Light on the Kinetics of Immune Defense Activation Against the Biotrophic Pathogen Oidium lini. PHYTOPATHOLOGY 2024; 114:1904-1916. [PMID: 38748518 DOI: 10.1094/phyto-02-24-0070-kc] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/09/2024]
Abstract
Flax (Linum usitatissimum) grown under controlled conditions displayed genotype-dependent resistance to powdery mildew (Oidium lini) following COS-OGA (comprising chitosan- and pectin-derived oligomers) elicitor application. The present study reveals a two-step immune response in plants preventively challenged with the elicitor: an initial, rapid response characterized by the transcription of defense genes whose protein products act in contact with or within the cell wall, where biotrophic pathogens initially thrive, followed by a prolonged activation of cell wall peroxidases and accumulation of secondary metabolites. Thus, dozens of genes encoding membrane receptors, pathogenesis-related proteins, and wall peroxidases were initially overexpressed. Repeated COS-OGA treatments had a transient effect on the transcriptome response while cumulatively remodeling the metabolome over time, with a minimum of two applications required for maximal metabolomic shifts. Secondary metabolites, in particular terpenoids and phenylpropanoids, emerged as major components of this secondary defense response alongside pathogenesis-related proteins and wall peroxidases. The sustained accumulation of secondary metabolites, even after cessation of elicitation, contrasted with the short-lived transcriptomic response. Wall peroxidase enzyme activity also exhibited cumulative effects, increasing strongly for weeks after a third elicitor treatment. This underscores the plasticity of the plant immune response in the face of a potential infection, and the need for repeated preventive applications to achieve the full protective potential of the elicitor.
Collapse
Affiliation(s)
- Géraldine van Aubel
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| | | | - Amélie Emond
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | | | - Émilie Cordier
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
| | - Pierre Van Cutsem
- Biology Department, University of Namur, Rue de Bruxelles 61, 5000 Namur, Belgium
- FytoFend S.A., 5032 Isnes, Belgium
| |
Collapse
|
4
|
Matušinsky P, Florová V, Sedláková B, Mlčoch P, Bleša D. Colonization dynamic and distribution of the endophytic fungus Microdochium bolleyi in plants measured by qPCR. PLoS One 2024; 19:e0297633. [PMID: 38271444 PMCID: PMC10810448 DOI: 10.1371/journal.pone.0297633] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 01/09/2024] [Indexed: 01/27/2024] Open
Abstract
Microdochium bolleyi is a fungal endophyte of cereals and grasses proposed as an ideal model organism for studying plant-endophyte interactions. A qPCR-based diagnostic assay was developed to detect M. bolleyi in wheat and Brachypodium distachyon tissues using the species-specific primers MbqITS derived from the ITS of the ribosomal gene. Specificity was tested against 20 fungal organisms associated with barley and wheat. Colonization dynamics, endophyte distribution in the plant, and potential of the seed transmission were analyzed in the wheat and model plant B. distachyon. The colonization of plants by endophyte starts from the germinating seed, where the seed coats are first strongly colonized, then the endophyte spreads to the adjacent parts, crown, roots near the crown, and basal parts of the stem. While in the lower distal parts of roots, the concentration of M. bolleyi DNA did not change significantly in successive samplings (30, 60, 90, 120, and 150 days after inoculation), there was a significant increase over time in the roots 1 cm under crown, crowns and stem bases. The endophyte reaches the higher parts of the base (2-4 cm above the crown) 90 days after sowing in wheat and 150 days in B. distachyon. The endophyte does not reach both host species' leaves, peduncles, and ears. Regarding the potential for seed transmission, endophyte was not detected in harvested grains of plants with heavily colonized roots. Plants grown from seeds derived from parental plants heavily colonized by endophyte did not exhibit any presence of the endophyte, so transmission by seeds was not confirmed. The course of colonization dynamics and distribution in the plant was similar for both hosts tested, with two differences: the base of the wheat stem was colonized earlier, but B. distachyon was occupied more intensively and abundantly than wheat. Thus, the designed species-specific primers could detect and quantify the endophyte in planta.
Collapse
Affiliation(s)
- Pavel Matušinsky
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Vendula Florová
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
| | - Božena Sedláková
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Patrik Mlčoch
- Department of Botany, Faculty of Science, Palacký University in Olomouc, Olomouc, Czech Republic
| | - Dominik Bleša
- Department of Plant Pathology, Agrotest Fyto, Ltd, Kroměříž, Czech Republic
- Department of Experimental Biology, Faculty of Science, Masaryk University, Brno, Czech Republic
| |
Collapse
|
5
|
Ying S, Scheible WR, Lundquist PK. A stress-inducible protein regulates drought tolerance and flowering time in Brachypodium and Arabidopsis. PLANT PHYSIOLOGY 2023; 191:643-659. [PMID: 36264121 PMCID: PMC9806587 DOI: 10.1093/plphys/kiac486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 09/25/2022] [Indexed: 06/16/2023]
Abstract
To cope with environmental stresses and ensure maximal reproductive success, plants have developed strategies to adjust the timing of their transition to reproductive growth. This has a substantial impact on the stress resilience of crops and ultimately on agricultural productivity. Here, we report a previously uncharacterized, plant-specific gene family designated as Regulator of Flowering and Stress (RFS). Overexpression of the BdRFS gene in Brachypodium distachyon delayed flowering, increased biomass accumulation, and promoted drought tolerance, whereas clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9 (CRISPR/Cas9)-mediated knockout mutants exhibited opposite phenotypes. A double T-DNA insertional mutant in the two Arabidopsis (Arabidopsis thaliana) homologs replicated the effects on flowering and water deprivation seen in the B. distachyon CRISPR knockout lines, highlighting the functional conservation of the family between monocots and dicots. Lipid analysis of B. distachyon and Arabidopsis revealed that digalactosyldiacylglycerol (DGDG) and phosphatidylcholine (PC) contents were significantly, and reciprocally, altered in overexpressor and knockout mutants. Importantly, alteration of C16:0-containing PC, a Flowering Locus T-interacting lipid, associated with flowering phenotype, with elevated levels corresponding to earlier flowering. Co-immunoprecipitation analysis suggested that BdRFS interacts with phospholipase Dα1 as well as several other abscisic acid-related proteins. Furthermore, reduction of C18:3 fatty acids in DGDG corresponded with reduced jasmonic acid metabolites in CRISPR mutants. Collectively, we suggest that stress-inducible RFS proteins represent a regulatory component of lipid metabolism that impacts several agronomic traits of biotechnological importance.
Collapse
Affiliation(s)
- Sheng Ying
- Authors for correspondence: (P.K.L.) and (S.Y.)
| | | | | |
Collapse
|
6
|
Liang W, Wang M, Du B, Ling L, Bi Y, Zhang J, Sun Y, Zhou S, Zhang L, Ma X, Ma J, Wu L, Guo C. Transcriptome analysis of strawberry ( Fragaria × ananasa) responsive to Colletotrichum gloeosporioides inoculation and mining of resistance genes. BIOTECHNOL BIOTEC EQ 2022. [DOI: 10.1080/13102818.2022.2106886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022] Open
Affiliation(s)
- Wenwei Liang
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Mingjie Wang
- Grape Laboratory, Gardening Branch, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Binghao Du
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Lei Ling
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| | - Yingdong Bi
- Soybean Laboratory, Crop Tillage and Cultivation Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jinghua Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Yimin Sun
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Shuang Zhou
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Lili Zhang
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Xiao Ma
- Berry Resources Laboratory, Institute of Rural Revitalization Science and Technology, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Jun Ma
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Liren Wu
- Resources Laboratory, Cash Crop Research Institute, Heilongjiang Academy of Agricultural Sciences, Harbin, Heilongjiang, PR China
| | - Changhong Guo
- Key Laboratory of Molecular Cytogenetics and Genetic Breeding of Heilongjiang Province, College of Life Science and Technology, Harbin Normal University, Harbin, Heilongjiang, PR China
| |
Collapse
|
7
|
Haidoulis JF, Nicholson P. Tissue-specific transcriptome responses to Fusarium head blight and Fusarium root rot. FRONTIERS IN PLANT SCIENCE 2022; 13:1025161. [PMID: 36352885 PMCID: PMC9637937 DOI: 10.3389/fpls.2022.1025161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Accepted: 09/29/2022] [Indexed: 06/16/2023]
Abstract
Fusarium head blight (FHB) and Fusarium root rot (FRR) are important diseases of small-grain cereals caused by Fusarium species. While host response to FHB has been subject to extensive study, very little is known about response to FRR and the transcriptome responses of FHB and FRR have not been thoroughly compared. Brachypodium distachyon (Bd) is an effective model for investigating host responses to both FHB and FRR. In this study the transcriptome response of Bd to F. graminearum (Fg) infection of heads and roots was investigated. An RNA-seq analysis was performed on both Bd FHB and FRR during the early infection. Additionally, an RNA-seq analysis was performed on in vitro samples of Fg for comparison with Fg gene expression in planta. Differential gene expression and gene-list enrichment analyses were used to compare FHB and FRR transcriptome responses in both Bd and Fg. Differential expression of selected genes was confirmed using RT-qPCR. Most genes associated with receptor signalling, cell-wall modification, oxidative stress metabolism, and cytokinin and auxin biosynthesis and signalling genes were generally upregulated in FHB or were downregulated in FRR. In contrast, Bd genes involved in jasmonic acid and ethylene biosynthesis and signalling, and antimicrobial production were similarly differentially expressed in both tissues in response to infection. A transcriptome analysis of predicted Fg effectors with the same infected material revealed elevated expression of core tissue-independent genes including cell-wall degradation enzymes and the gene cluster for DON production but also several tissue-dependent genes including those for aurofusarin production and cutin degradation. This evidence suggests that Fg modulates its transcriptome to different tissues of the same host.
Collapse
Affiliation(s)
| | - Paul Nicholson
- Department of Crop Genetics, John Innes Centre, Norwich Research Park, Norwich, England
| |
Collapse
|
8
|
Ogasahara T, Kouzai Y, Watanabe M, Takahashi A, Takahagi K, Kim JS, Matsui H, Yamamoto M, Toyoda K, Ichinose Y, Mochida K, Noutoshi Y. Time-series transcriptome of Brachypodium distachyon during bacterial flagellin-induced pattern-triggered immunity. FRONTIERS IN PLANT SCIENCE 2022; 13:1004184. [PMID: 36186055 PMCID: PMC9521188 DOI: 10.3389/fpls.2022.1004184] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 09/01/2022] [Indexed: 05/30/2023]
Abstract
Plants protect themselves from microorganisms by inducing pattern-triggered immunity (PTI) via recognizing microbe-associated molecular patterns (MAMPs), conserved across many microbes. Although the MAMP perception mechanism and initial events during PTI have been well-characterized, knowledge of the transcriptomic changes in plants, especially monocots, is limited during the intermediate and terminal stages of PTI. Here, we report a time-series high-resolution RNA-sequencing (RNA-seq) analysis during PTI in the leaf disks of Brachypodium distachyon. We identified 6,039 differentially expressed genes (DEGs) in leaves sampled at 0, 0.5, 1, 3, 6, and 12 hours after treatment (hat) with the bacterial flagellin peptide flg22. The k-means clustering method classified these DEGs into 10 clusters (6 upregulated and 4 downregulated). Based on the results, we selected 10 PTI marker genes in B. distachyon. Gene ontology (GO) analysis suggested a tradeoff between defense responses and photosynthesis during PTI. The data indicated the recovery of photosynthesis started at least at 12 hat. Over-representation analysis of transcription factor genes and cis-regulatory elements in DEG promoters implied the contribution of 12 WRKY transcription factors in plant defense at the early stage of PTI induction.
Collapse
Affiliation(s)
- Tsubasa Ogasahara
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yusuke Kouzai
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Akihiro Takahashi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kotaro Takahagi
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - June-Sik Kim
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
- Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
- School of Information and Data Sciences, Nagasaki University, Nagasaki, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| |
Collapse
|
9
|
Aslam MQ, Naqvi RZ, Zaidi SSEA, Asif M, Akhter KP, Scheffler BE, Scheffler JA, Liu SS, Amin I, Mansoor S. Analysis of a tetraploid cotton line Mac7 transcriptome reveals mechanisms underlying resistance against the whitefly Bemisia tabaci. Gene 2022; 820:146200. [PMID: 35131368 DOI: 10.1016/j.gene.2022.146200] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 12/14/2021] [Accepted: 01/13/2022] [Indexed: 01/09/2023]
Abstract
Whitefly inflicts both direct and indirect losses to cotton crop. Whitefly resistant cotton germplasm is a high priority and considered among the best possible solutions to mitigate this issue. In this study, we evaluated cotton leaf curl disease (CLCuD) resistant cotton line Mac7 under whitefly stress. Furthermore, we utilized the already available transcriptome data of Mac7 concerning whitefly stress to elucidate associated mechanisms and identify functionally important genes in cotton. In transcriptomic data analysis, differentially expressed genes (DEGs) were found involved in complex relay pathways, activated on whitefly exposure. The response implicates signalling through resistance genes (R-genes), MAPK, ROS, VQs or RLKs, transcription factors, which leads to the activation of defence responses including, Ca2+messengers, phytohormonal cross-talk, gossypol, flavonoids, PhasiRNA and susceptibility genes (S-genes). The qRT-PCR assay of 10 functionally important genes also showed their involvement in differential responses at 24 and 48 h post whitefly infestation. Briefly, our study helps in understanding the resistant nature of Mac7 under whitefly stress.
Collapse
Affiliation(s)
- Muhammad Qasim Aslam
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Rubab Zahra Naqvi
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Muhammad Asif
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | | | - Brian E Scheffler
- Genomics and Bioinformatics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Jodi A Scheffler
- Crop Genetics Research Unit, United States Department of Agriculture-Agricultural Research Service (USDA-ARS), 141 Experimental Station Road, Stoneville, MS, United States
| | - Shu-Sheng Liu
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insects, Institute of Insect Sciences, Zhejiang University, Hangzhou 310058, China
| | - Imran Amin
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan
| | - Shahid Mansoor
- National Institute for Biotechnology and Genetic Engineering, Constituent College of PIEAS, Faisalabad, Pakistan.
| |
Collapse
|
10
|
Ding Y, Gardiner DM, Powell JJ, Colgrave ML, Park RF, Kazan K. Adaptive defence and sensing responses of host plant roots to fungal pathogen attack revealed by transcriptome and metabolome analyses. PLANT, CELL & ENVIRONMENT 2021; 44:3526-3544. [PMID: 34591319 DOI: 10.1111/pce.14195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/15/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
Plant root-produced constitutive and inducible defences inhibit pathogenic microorganisms within roots and in the rhizosphere. However, regulatory mechanisms underlying host responses during root-pathogen interactions are largely unexplored. Using the model species Brachypodium distachyon (Bd), we studied transcriptional and metabolic responses altered in Bd roots following challenge with Fusarium graminearum (Fg), a fungal pathogen that causes diseases in diverse organs of cereal crops. Shared gene expression patterns were found between Bd roots and spikes during Fg infection associated with the mycotoxin deoxynivalenol (DON). Overexpression of BdMYB78, an up-regulated transcription factor, significantly increased root resistance during Fg infection. We show that Bd roots recognize encroaching Fg prior to physical contact by altering transcription of genes associated with multiple cellular processes such as reactive oxygen species and cell development. These changes coincide with altered levels of secreted host metabolites detected by an untargeted metabolomic approach. The secretion of Bd metabolites was suppressed by Fg as enhanced levels of defence-associated metabolites were found in roots during pre-contact with a Fg mutant defective in host perception and the ability to cause disease. Our results help to understand root defence strategies employed by plants, with potential implications for improving the resistance of cereal crops to soil pathogens.
Collapse
Affiliation(s)
- Yi Ding
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Donald M Gardiner
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Jonathan J Powell
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| | - Michelle L Colgrave
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Australian Research Council, Centre of Excellence for Innovations in Peptide and Protein Science, School of Science, Edith Cowan University, Joondalup, Western Australia, Australia
| | - Robert F Park
- The Plant Breeding Institute, School of Life & Environmental Sciences, Faculty of Science, The University of Sydney, Cobbitty, New South Wales, Australia
| | - Kemal Kazan
- Agriculture and Food, Commonwealth Scientific and Industrial Research Organization, St Lucia, Queensland, Australia
- Queensland Alliance for Agriculture and Food Innovation (QAAFI), The University of Queensland, St Lucia, Queensland, Australia
| |
Collapse
|
11
|
Beyer SF, Bel PS, Flors V, Schultheiss H, Conrath U, Langenbach CJG. Disclosure of salicylic acid and jasmonic acid-responsive genes provides a molecular tool for deciphering stress responses in soybean. Sci Rep 2021; 11:20600. [PMID: 34663865 PMCID: PMC8523552 DOI: 10.1038/s41598-021-00209-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 10/07/2021] [Indexed: 11/09/2022] Open
Abstract
Hormones orchestrate the physiology of organisms. Measuring the activity of defense hormone-responsive genes can help understanding immune signaling and facilitate breeding for plant health. However, different from model species like Arabidopsis, genes that respond to defense hormones salicylic acid (SA) and jasmonic acid (JA) have not been disclosed in the soybean crop. We performed global transcriptome analyses to fill this knowledge gap. Upon exogenous application, endogenous levels of SA and JA increased in leaves. SA predominantly activated genes linked to systemic acquired resistance and defense signaling whereas JA mainly activated wound response-associated genes. In general, SA-responsive genes were activated earlier than those responding to JA. Consistent with the paradigm of biotrophic pathogens predominantly activating SA responses, free SA and here identified most robust SA marker genes GmNIMIN1, GmNIMIN1.2 and GmWRK40 were induced upon inoculation with Phakopsora pachyrhizi, whereas JA marker genes did not respond to infection with the biotrophic fungus. Spodoptera exigua larvae caused a strong accumulation of JA-Ile and JA-specific mRNA transcripts of GmBPI1, GmKTI1 and GmAAT whereas neither free SA nor SA-marker gene transcripts accumulated upon insect feeding. Our study provides molecular tools for monitoring the dynamic accumulation of SA and JA, e.g. in a given stress condition.
Collapse
Affiliation(s)
- Sebastian F Beyer
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Paloma Sánchez Bel
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Victor Flors
- Metabolic Integration and Cell Signaling Laboratory, Plant Physiology Department of CAMN, Universitat Jaume I, 12071, Castellón, Spain
| | - Holger Schultheiss
- Agricultural Center, BASF Plant Science Company GmbH, 67117, Limburgerhof, Germany
| | - Uwe Conrath
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany
| | - Caspar J G Langenbach
- Plant Biochemistry & Molecular Biology Unit, Department of Plant Physiology, RWTH Aachen University, 52074, Aachen, Germany.
| |
Collapse
|
12
|
Tzean Y, Hou BH, Tsao SM, Chen HM, Cheng AP, Chen EG, Chou WY, Chao CP, Shen WC, Chen CC, Lee MC, Ashraf I, Yeh HH. Identification of MaWRKY40 and MaDLO1 as Effective Marker Genes for Tracking the Salicylic Acid-Mediated Immune Response in Bananas. PHYTOPATHOLOGY 2021; 111:1800-1810. [PMID: 33703920 DOI: 10.1094/phyto-01-21-0017-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bananas are among the world's most important cash and staple crops but are threatened by various devastating pathogens. The phytohormone salicylic acid (SA) plays a key role in the regulation of plant immune response. Tracking the expression of SA-responsive marker genes under pathogen infection is important in pathogenesis elucidation. However, the common SA-responsive marker genes are not consistently induced in different banana cultivars or different organs. Here, we conducted transcriptome analysis for SA response of a banana cultivar, 'Pei-Chiao' (Cavendish, AAA genome), and identified three genes, MaWRKY40, MaWRKY70, and Downy Mildew Resistant 6 (DMR6)-Like Oxygenase 1 (MaDLO1) that are robustly induced upon SA treatment in both the leaves and roots. Consistent induction of these three genes by SA treatment was also detected in both the leaves and roots of bananas belonging to different genome types such as 'Tai-Chiao No. 7' (Cavendish, AAA genome), 'Pisang Awak' (ABB genome), and 'Lady Finger' (AA genome). Furthermore, the biotrophic pathogen cucumber mosaic virus elicited the expression of MaWRKY40 and MaDLO1 in infected leaves of susceptible cultivars. The hemibiotrophic fungal pathogen Fusarium oxysporum f. sp. cubense tropical race 4 (TR4) also consistently induced the expression of MaWRKY40 and MaDLO1 in the infected roots of the F. oxysporum f. sp. cubense TR4-resistant cultivar. These results indicate that MaWRKY40 and MaDLO1 can be used as reliable SA-responsive marker genes for the study of plant immunity in banana. Revealing SA-responsive marker genes provides a stepping stone for further studies in banana resistance to pathogens.
Collapse
Affiliation(s)
- Yuh Tzean
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Bo-Han Hou
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Shu-Ming Tsao
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Ho-Ming Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - An-Po Cheng
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Elena Gamboa Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Wei-Yi Chou
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Chih-Ping Chao
- Taiwan Banana Research Institute, Jiuru Township, Pingtung County, 90442, Taiwan
| | - Wei-Chiang Shen
- Department of Plant Pathology and Microbiology, National Taiwan University, Da'an District, Taipei 10617, Taiwan
| | - Chyi-Chuann Chen
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Ming-Chi Lee
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Iqra Ashraf
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
| | - Hsin-Hung Yeh
- Agricultural Biotechnology Research Center, Academia Sinica, Nankang District, Taipei 11529, Taiwan
- Department of Plant Pathology and Microbiology, National Taiwan University, Da'an District, Taipei 10617, Taiwan
| |
Collapse
|
13
|
Basu S, Clark RE, Blundell R, Casteel CL, Charlton AM, Crowder DW. Reciprocal plant‐mediated antagonism between a legume plant virus and soil rhizobia. Funct Ecol 2021. [DOI: 10.1111/1365-2435.13828] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Saumik Basu
- Department of Entomology Washington State University Pullman WA USA
| | - Robert E. Clark
- Department of Entomology Washington State University Pullman WA USA
| | - Robert Blundell
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | - Clare L. Casteel
- Department of Plant Pathology University of California Davis Davis CA USA
- School of Integrative Plant Science, Plant Pathology and Plant‐Microbe Biology Section Cornell University Ithaca NY USA
| | | | - David W. Crowder
- Department of Entomology Washington State University Pullman WA USA
| |
Collapse
|
14
|
Changenet V, Macadré C, Boutet-Mercey S, Magne K, Januario M, Dalmais M, Bendahmane A, Mouille G, Dufresne M. Overexpression of a Cytochrome P450 Monooxygenase Involved in Orobanchol Biosynthesis Increases Susceptibility to Fusarium Head Blight. FRONTIERS IN PLANT SCIENCE 2021; 12:662025. [PMID: 33868356 PMCID: PMC8048717 DOI: 10.3389/fpls.2021.662025] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Accepted: 03/11/2021] [Indexed: 05/28/2023]
Abstract
Fusarium Head Blight (FHB) is a cereal disease caused primarily by the ascomycete fungus Fusarium graminearum with public health issues due to the production of mycotoxins including deoxynivalenol (DON). Genetic resistance is an efficient protection means and numerous quantitative trait loci have been identified, some of them related to the production of resistance metabolites. In this study, we have functionally characterized the Brachypodium distachyon BdCYP711A29 gene encoding a cytochrome P450 monooxygenase (CYP). We showed that BdCYP711A29 belongs to an oligogenic family of five members. However, following infection by F. graminearum, BdCYP711A29 is the only copy strongly transcriptionally induced in a DON-dependent manner. The BdCYP711A29 protein is homologous to the Arabidopsis thaliana MAX1 and Oryza sativa MAX1-like CYPs representing key components of the strigolactone biosynthesis. We show that BdCYP711A29 is likely involved in orobanchol biosynthesis. Alteration of the BdCYP711A29 sequence or expression alone does not modify plant architecture, most likely because of functional redundancy with the other copies. B. distachyon lines overexpressing BdCYP711A29 exhibit an increased susceptibility to F. graminearum, although no significant changes in defense gene expression were detected. We demonstrate that both orobanchol and exudates of Bd711A29 overexpressing lines stimulate the germination of F. graminearum macroconidia. We therefore hypothesize that orobanchol is a susceptibility factor to FHB.
Collapse
Affiliation(s)
- Valentin Changenet
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Catherine Macadré
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Stéphanie Boutet-Mercey
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Kévin Magne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Mélanie Januario
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Marion Dalmais
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Abdelhafid Bendahmane
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| | - Grégory Mouille
- Institut Jean-Pierre Bourgin, INRAE, AgroParisTech, Université Paris-Saclay, Versailles, France
| | - Marie Dufresne
- Université Paris-Saclay, CNRS, INRAE, University of Evry, Institute of Plant Sciences Paris-Saclay, Orsay, France
- Université de Paris, Institute of Plant Sciences Paris-Saclay, Orsay, France
| |
Collapse
|
15
|
Reilly A, Karki SJ, Twamley A, Tiley AMM, Kildea S, Feechan A. Isolate-Specific Responses of the Nonhost Grass Brachypodium distachyon to the Fungal Pathogen Zymoseptoria tritici Compared with Wheat. PHYTOPATHOLOGY 2021; 111:356-368. [PMID: 32720875 DOI: 10.1094/phyto-02-20-0041-r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Septoria tritici blotch (STB) is an important foliar disease of wheat that is caused by the fungal pathogen Zymoseptoria tritici. The grass Brachypodium distachyon has been used previously as a model system for cereal-pathogen interactions. In this study, we examined the nonhost resistance (NHR) response of B. distachyon to two different Z. tritici isolates in comparison with wheat. These isolates vary in aggressiveness on wheat cultivar Remus, displaying significant differences in disease and pycnidia coverage. Using microscopy, we found that similar isolate-specific responses were observed for hydrogen peroxide accumulation and cell death in both wheat and B. distachyon. Despite this, induction of isolate-specific patterns of defense gene expression by Z. tritici did differ between B. distachyon and wheat. Our results suggest that expression of the phenylalanine ammonia lyase PAL gene may be important for NHR in B. distachyon, while pathogenesis-related PR genes and expression of genes regulating reactive oxygen species may be important to limit disease in wheat. Future studies of the B. distachyon-Z. tritici interaction may allow identification of conserved plant immunity targets that are responsible for the isolate-specific responses observed in both plant species.
Collapse
Affiliation(s)
- Aisling Reilly
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Sujit Jung Karki
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anthony Twamley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Anna M M Tiley
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| | - Steven Kildea
- Department of Crop Science, Teagasc Crops Environment and Land Use Programme, Teagasc, Oak Park, County Carlow, Ireland
| | - Angela Feechan
- School of Agriculture and Food Science and UCD Earth Institute, University College Dublin, Belfield, Dublin 4, Ireland
| |
Collapse
|
16
|
Kouzai Y, Shimizu M, Inoue K, Uehara‐Yamaguchi Y, Takahagi K, Nakayama R, Matsuura T, Mori IC, Hirayama T, Abdelsalam SSH, Noutoshi Y, Mochida K. BdWRKY38 is required for the incompatible interaction of Brachypodium distachyon with the necrotrophic fungus Rhizoctonia solani. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2020; 104:995-1008. [PMID: 32891065 PMCID: PMC7756360 DOI: 10.1111/tpj.14976] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/10/2019] [Revised: 06/23/2020] [Accepted: 08/12/2020] [Indexed: 05/05/2023]
Abstract
Rhizoctonia solani is a soil-borne necrotrophic fungus that causes sheath blight in grasses. The basal resistance of compatible interactions between R. solani and rice is known to be modulated by some WRKY transcription factors (TFs). However, genes and defense responses involved in incompatible interaction with R. solani remain unexplored, because no such interactions are known in any host plants. Recently, we demonstrated that Bd3-1, an accession of the model grass Brachypodium distachyon, is resistant to R. solani and, upon inoculation with the fungus, undergoes rapid induction of genes responsive to the phytohormone salicylic acid (SA) that encode the WRKY TFs BdWRKY38 and BdWRKY44. Here, we show that endogenous SA and these WRKY TFs positively regulate this accession-specific R. solani resistance. In contrast to a susceptible accession (Bd21), the infection process in the resistant accessions Bd3-1 and Tek-3 was suppressed at early stages before the development of fungal biomass and infection machinery. A comparative transcriptome analysis during pathogen infection revealed that putative WRKY-dependent defense genes were induced faster in the resistant accessions than in Bd21. A gene regulatory network (GRN) analysis based on the transcriptome dataset demonstrated that BdWRKY38 was a GRN hub connected to many target genes specifically in resistant accessions, whereas BdWRKY44 was shared in the GRNs of all three accessions. Moreover, overexpression of BdWRKY38 increased R. solani resistance in Bd21. Our findings demonstrate that these resistant accessions can activate an incompatible host response to R. solani, and BdWRKY38 regulates this response by mediating SA signaling.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Minami Shimizu
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
| | - Yukiko Uehara‐Yamaguchi
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
| | - Kotaro Takahagi
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Graduate School of NanobioscienceYokohama City University22‐2 Seto, Kanazawa‐kuYokohamaKanagawa236‐0027Japan
| | - Risa Nakayama
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Izumi C. Mori
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
| | - Sobhy S. H. Abdelsalam
- Graduate School of Environmental and Life ScienceOkayama University1‐1‐1 TsushimanakaOkayama700‐8530Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life ScienceOkayama University1‐1‐1 TsushimanakaOkayama700‐8530Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research TeamRIKEN Center for Sustainable Resource Science1‐7‐22 Suehiro‐choTsurumi, Yokohama230‐0045Japan
- Kihara Institute for Biological ResearchYokohama City University641‐12 Maioka‐choTotsuka, Yokohama244‐0813Japan
- Graduate School of NanobioscienceYokohama City University22‐2 Seto, Kanazawa‐kuYokohamaKanagawa236‐0027Japan
- Institute of Plant Science and Resources (IPSR)Okayama University2‐20‐1 ChuoKurashiki710‐0046Japan
- Microalgae Production Technology LaboratoryRIKEN Baton Zone ProgramRIKEN Cluster for Science, Technology and Innovation Hub1‐7‐22 Suehiro‐cho, Tsurumi‐kuYokohamaKanagawa230‐0045Japan
| |
Collapse
|
17
|
Abdelsalam SSH, Kouzai Y, Watanabe M, Inoue K, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Tsuge S, Mochida K, Noutoshi Y. Identification of effector candidate genes of Rhizoctonia solani AG-1 IA expressed during infection in Brachypodium distachyon. Sci Rep 2020; 10:14889. [PMID: 32913311 PMCID: PMC7483729 DOI: 10.1038/s41598-020-71968-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Accepted: 08/24/2020] [Indexed: 11/23/2022] Open
Abstract
Rhizoctonia solani is a necrotrophic phytopathogen belonging to basidiomycetes. It causes rice sheath blight which inflicts serious damage in rice production. The infection strategy of this pathogen remains unclear. We previously demonstrated that salicylic acid-induced immunity could block R. solani AG-1 IA infection in both rice and Brachypodium distachyon. R. solani may undergo biotrophic process using effector proteins to suppress host immunity before necrotrophic stage. To identify pathogen genes expressed at the early infection process, here we developed an inoculation method using B. distachyon which enables to sample an increased amount of semi-synchronous infection hyphae. Sixty-one R. solani secretory effector-like protein genes (RsSEPGs) were identified using in silico approach with the publicly available gene annotation of R. solani AG-1 IA genome and our RNA-sequencing results obtained from hyphae grown on agar medium. Expression of RsSEPGs was analyzed at 6, 10, 16, 24, and 32 h after inoculation by a quantitative reverse transcription-polymerase chain reaction and 52 genes could be detected at least on a single time point tested. Their expressions showed phase-specific patterns which were classified into 6 clusters. The 23 RsSEPGs in the cluster 1–3 and 29 RsSEPGs in the cluster 4–6 are expected to be involved in biotrophic and necrotrophic interactions, respectively.
Collapse
Affiliation(s)
- Sobhy S H Abdelsalam
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.,Plant Pathology Department, Faculty of Agriculture, Alexandria University, El-Shatby, Egypt
| | - Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan
| | - Seiji Tsuge
- Graduate School of Agriculture, Kyoto Prefectural University, Kyoto, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, Yokohama, Japan.,Kihara Institute for Biological Research, Yokohama City University, Yokohama, Japan.,Institute for Plant Science and Resources (IPSR), Okayama University, Okayama, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Okayama, Japan.
| |
Collapse
|
18
|
Nam BE, Park YJ, Gil KE, Kim JH, Kim JG, Park CM. Auxin mediates the touch-induced mechanical stimulation of adventitious root formation under windy conditions in Brachypodium distachyon. BMC PLANT BIOLOGY 2020; 20:335. [PMID: 32678030 PMCID: PMC7364541 DOI: 10.1186/s12870-020-02544-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Accepted: 07/07/2020] [Indexed: 05/20/2023]
Abstract
BACKGROUND It is widely perceived that mechanical or thigmomorphogenic stimuli, such as rubbing and bending by passing animals, wind, raindrop, and flooding, broadly influence plant growth and developmental patterning. In particular, wind-driven mechanical stimulation is known to induce the incidence of radial expansion and shorter and stockier statue. Wind stimulation also affects the adaptive propagation of the root system in various plant species. However, it is unknown how plants sense and transmit the wind-derived mechanical signals to launch appropriate responses, leading to the wind-adaptive root growth. RESULTS Here, we found that Brachypodium distachyon, a model grass widely used for studies on bioenergy crops and cereals, efficiently adapts to wind-mediated lodging stress by forming adventitious roots (ARs) from nonroot tissues. Experimental dissection of wind stimuli revealed that not bending of the mesocotyls but physical contact of the leaf nodes with soil particles triggers the transcriptional induction of a group of potential auxin-responsive genes encoding WUSCHEL RELATED HOMEOBOX and LATERAL ORGAN BOUNDARIES DOMAIN transcription factors, which are likely to be involved in the induction of AR formation. CONCLUSIONS Our findings would contribute to further understanding molecular mechanisms governing the initiation and development of ARs, which will be applicable to crop agriculture in extreme wind climates.
Collapse
Affiliation(s)
- Bo Eun Nam
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Young-Joon Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Kyung-Eun Gil
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Ju-Heon Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea
| | - Jae Geun Kim
- Department of Biology Education, Seoul National University, Seoul, 08826, South Korea
| | - Chung-Mo Park
- Department of Chemistry, Seoul National University, Seoul, 08826, South Korea.
- Plant Genomics and Breeding Institute, Seoul National University, Seoul, 08826, South Korea.
| |
Collapse
|
19
|
Wang G, Xu J, Li L, Guo Z, Si Q, Zhu G, Wang X, Guo W. GbCYP86A1-1 from Gossypium barbadense positively regulates defence against Verticillium dahliae by cell wall modification and activation of immune pathways. PLANT BIOTECHNOLOGY JOURNAL 2020; 18:222-238. [PMID: 31207065 PMCID: PMC6920168 DOI: 10.1111/pbi.13190] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2019] [Revised: 06/03/2019] [Accepted: 06/11/2019] [Indexed: 05/06/2023]
Abstract
Suberin acts as stress-induced antipathogen barrier in the root cell wall. CYP86A1 encodes cytochrome P450 fatty acid ω-hydroxylase, which has been reported to be a key enzyme for suberin biosynthesis; however, its role in resistance to fungi and the mechanisms related to immune responses remain unknown. Here, we identified a disease resistance-related gene, GbCYP86A1-1, from Gossypium barbadense cv. Hai7124. There were three homologs of GbCYP86A1 in cotton, which are specifically expressed in roots and induced by Verticillium dahliae. Among them, GbCYP86A1-1 contributed the most significantly to resistance. Silencing of GbCYP86A1-1 in Hai7124 resulted in severely compromised resistance to V. dahliae, while heterologous overexpression of GbCYP86A1-1 in Arabidopsis improved tolerance. Tissue sections showed that the roots of GbCYP86A1-1 transgenic Arabidopsis had more suberin accumulation and significantly higher C16-C18 fatty acid content than control. Transcriptome analysis revealed that overexpression of GbCYP86A1-1 not only affected lipid biosynthesis in roots, but also activated the disease-resistant immune pathway; genes encoding the receptor-like kinases (RLKs), receptor-like proteins (RLPs), hormone-related transcription factors, and pathogenesis-related protein genes (PRs) were more highly expressed in the GbCYP86A1-1 transgenic line than control. Furthermore, we found that when comparing V. dahliae -inoculated and noninoculated plants, few differential genes related to disease immunity were detected in the GbCYP86A1-1 transgenic line; however, a large number of resistance genes were activated in the control. This study highlights the role of GbCYP86A1-1 in the defence against fungi and its underlying molecular immune mechanisms in this process.
Collapse
Affiliation(s)
- Guilin Wang
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Jun Xu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Lechen Li
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Zhan Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Qingxin Si
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Guozhong Zhu
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Xinyu Wang
- College of Life SciencesNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| | - Wangzhen Guo
- State Key Laboratory of Crop Genetics & Germplasm EnhancementNanjing Agricultural UniversityNanjingJiangsu ProvinceChina
| |
Collapse
|
20
|
Subramanyam S, Nemacheck JA, Hargarten AM, Sardesai N, Schemerhorn BJ, Williams CE. Multiple molecular defense strategies in Brachypodium distachyon surmount Hessian fly (Mayetiola destructor) larvae-induced susceptibility for plant survival. Sci Rep 2019; 9:2596. [PMID: 30796321 PMCID: PMC6385206 DOI: 10.1038/s41598-019-39615-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2018] [Accepted: 01/29/2019] [Indexed: 11/24/2022] Open
Abstract
The Hessian fly is a destructive pest of wheat causing severe economic damage. Numerous genes and associated biological pathways have been implicated in defense against Hessian fly. However, due to limited genetic resources, compounded with genome complexity, functional analysis of the candidate genes are challenging in wheat. Physically, Brachypodium distachyon (Bd) exhibits nonhost resistance to Hessian fly, and with a small genome size, short life cycle, vast genetic resources and amenability to transformation, it offers an alternate functional genomic model for deciphering plant-Hessian fly interactions. RNA-sequencing was used to reveal thousands of Hessian fly-responsive genes in Bd one, three, and five days after egg hatch. Genes encoding defense proteins, stress-regulating transcription factors, signaling kinases, and secondary metabolites were strongly up-regulated within the first 24 hours of larval feeding indicating an early defense, similar to resistant wheat. Defense was mediated by a hypersensitive response that included necrotic lesions, up-regulated ROS-generating and -scavenging enzymes, and H2O2 production. Suppression of cell wall-associated proteins and increased cell permeability in Bd resembled susceptible wheat. Thus, Bd molecular responses shared similarities to both resistant and susceptible wheat, validating its suitability as a model genome for undertaking functional studies of candidate Hessian fly-responsive genes.
Collapse
Affiliation(s)
- Subhashree Subramanyam
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA. .,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.
| | - Jill A Nemacheck
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Andrea M Hargarten
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| | - Nagesh Sardesai
- Corteva Agriscience, Agriculture Division of DowDuPont, Johnston, IA, 50131, USA
| | - Brandon J Schemerhorn
- USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA.,Department of Entomology, Purdue University, West Lafayette, IN, 47907, USA
| | - Christie E Williams
- Department of Agronomy, Purdue University, West Lafayette, IN, 47907, USA.,USDA-ARS Crop Production and Pest Control Research Unit, West Lafayette, IN, 47907, USA
| |
Collapse
|
21
|
Omidvar V, Dugyala S, Li F, Rottschaefer SM, Miller ME, Ayliffe M, Moscou MJ, Kianian SF, Figueroa M. Detection of Race-Specific Resistance Against Puccinia coronata f. sp. avenae in Brachypodium Species. PHYTOPATHOLOGY 2018; 108:1443-1454. [PMID: 29923800 DOI: 10.1094/phyto-03-18-0084-r] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Oat crown rust caused by Puccinia coronata f. sp. avenae is the most destructive foliar disease of cultivated oat. Characterization of genetic factors controlling resistance responses to Puccinia coronata f. sp. avenae in nonhost species could provide new resources for developing disease protection strategies in oat. We examined symptom development and fungal colonization levels of a collection of Brachypodium distachyon and B. hybridum accessions infected with three North American P. coronata f. sp. avenae isolates. Our results demonstrated that colonization phenotypes are dependent on both host and pathogen genotypes, indicating a role for race-specific responses in these interactions. These responses were independent of the accumulation of reactive oxygen species. Expression analysis of several defense-related genes suggested that salicylic acid and ethylene-mediated signaling but not jasmonic acid are components of resistance reaction to P. coronata f. sp. avenae. Our findings provide the basis to conduct a genetic inheritance study to examine whether effector-triggered immunity contributes to nonhost resistance to P. coronata f. sp. avenae in Brachypodium spp.
Collapse
Affiliation(s)
- Vahid Omidvar
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Sheshanka Dugyala
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Feng Li
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Susan M Rottschaefer
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Marisa E Miller
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Mick Ayliffe
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Matthew J Moscou
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Shahryar F Kianian
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| | - Melania Figueroa
- First, second, third, fourth, fifth, eighth, and ninth authors: Plant Pathology, University of Minnesota, St. Paul; sixth author: CSIRO Agriculture and Food, ACT, Australia; seventh author: The Sainsbury Laboratory, Norwich Research Park, Norwich NR4 7UH, U.K.; eighth author: Cereal Disease Laboratory, United States Department of Agriculture-Agricultural Research Service, St. Paul, MN, USA; and ninth author: Stakman-Borlaug Center for Sustainable Plant Health, University of Minnesota, St. Paul
| |
Collapse
|
22
|
Kouzai Y, Noutoshi Y, Inoue K, Shimizu M, Onda Y, Mochida K. Benzothiadiazole, a plant defense inducer, negatively regulates sheath blight resistance in Brachypodium distachyon. Sci Rep 2018; 8:17358. [PMID: 30478396 PMCID: PMC6255916 DOI: 10.1038/s41598-018-35790-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 11/05/2018] [Indexed: 01/01/2023] Open
Abstract
Plant defense inducers that mimic functions of the plant immune hormone salicylic acid (SA) often affect plant growth. Although benzothiadiazole (BTH), a synthetic analog of SA, has been widely used to protect crops from diseases by inducing plant defense responses, we recently demonstrated that SA, but not BTH, confers resistance against Rhizoctonia solani, the causal agent of sheath blight disease, in Brachypodium distachyon. Here, we demonstrated that BTH compromised the resistance of Bd3-1 and Gaz4, the two sheath blight-resistant accessions of B. distachyon, which activate SA-dependent signaling following challenge by R. solani. Moreover, upon analyzing our published RNA-seq data from B. distachyon treated with SA or BTH, we found that BTH specifically induces expression of genes related to chloroplast function and jasmonic acid (JA) signaling, suggesting that BTH attenuates R. solani resistance by perturbing growth-defense trade-offs and/or by inducing a JA response that may increase susceptibility to R. solani. Our findings demonstrated that BTH does not work as a simple mimic of SA in B. distachyon, and consequently may presumably cause unfavorable side effects through the transcriptional alteration, particularly with respect to R. solani resistance.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, 1-1-1 Tsushimanaka, Okayama, 700-8530, Japan
| | - Komaki Inoue
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan
| | - Minami Shimizu
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Yoshihiko Onda
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan.,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan
| | - Keiichi Mochida
- Bioproductivity Informatics Research Team, RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi, Yokohama, 230-0045, Japan. .,Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka, Yokohama, 244-0813, Japan. .,Institute of Plant Science and Resources (IPSR), Okayama University, 2-20-1 Chuo, Kurashiki, 710-0046, Japan. .,Microalgae Production Technology Laboratory, RIKEN Baton Zone Program, RIKEN Cluster for Science, Technology and Innovation Hub, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa, 230-0045, Japan. .,Graduate School of Nanobioscience, Yokohama City University, 22-2 Seto, Kanazawa-ku, Yokohama, Kanagawa, 236-0027, Japan.
| |
Collapse
|
23
|
Su P, Guo X, Fan Y, Wang L, Yu G, Ge W, Zhao L, Ma X, Wu J, Li A, Wang H, Kong L. Application of Brachypodium genotypes to the analysis of type II resistance to Fusarium head blight (FHB). PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2018; 272:255-266. [PMID: 29807599 DOI: 10.1016/j.plantsci.2018.04.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2018] [Revised: 04/15/2018] [Accepted: 04/17/2018] [Indexed: 06/08/2023]
Abstract
The resistance to Fusarium head blight (FHB) in wheat is mainly via the restrain of fungal expansion through spike rachis (type II resistance). In order to unravel the resistance mechanisms, Brachypodium distachyon 21 (Bd21), a monocotyledonous model plant, was previously proved to interact with F. graminearum, while the disease development in spike still needs to be explored in detail. Herein, it is found that the fungal spores mainly germinate on pistil of Bd21, then the hyphae rapidly extend to the bottom of floret and enter spike rachis, similar with the infection progress in wheat. However, structural difference of spike rachis was found between Brachypodium and wheat. It was found that the spread of the fungus through the rachis node of inoculated spikelets is an important index for the evaluation of type II FHB resistance in Brachypodium under optimal conditions at 28 °C and 50%-70% humidity. To verify the feasibility of this strategy, the transcription factor TaTGA2 was overexpressed in Bd21, and transgenic plants were found to show improved resistance to F. graminearum in both spikes and detached leaves, which was further supported by the increased disease severity when silencing TaTGA2 in the wheat cultivar "Sumai 3" or in tilling "Kronos" mutants. Except for Bd21, another 49 Brachypodium germplasms were further screened for FHB resistance, and three moderately susceptible germplasms, namely, PI 317418, W6-39284, and PI 254868, feasible for transformation, were determined to be better hosts than Bd21 when evaluating heterologous genes that positively regulate FHB resistance. The present study also observed variations in the levels of FHB resistance between coleoptiles and spikes or transgenic plants and natural germplasms.
Collapse
Affiliation(s)
- Peisen Su
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xiuxiu Guo
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Yanhui Fan
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Liang Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Guanghui Yu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Wenyang Ge
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Lanfei Zhao
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Xin Ma
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Jiajie Wu
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Anfei Li
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China
| | - Hongwei Wang
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| | - Lingrang Kong
- State Key Laboratory of Crop Biology, Shandong Key Laboratory of Crop Biology, College of Agronomy, Shandong Agricultural University, Tai'an, 271018, PR China.
| |
Collapse
|
24
|
Kouzai Y, Kimura M, Watanabe M, Kusunoki K, Osaka D, Suzuki T, Matsui H, Yamamoto M, Ichinose Y, Toyoda K, Matsuura T, Mori IC, Hirayama T, Minami E, Nishizawa Y, Inoue K, Onda Y, Mochida K, Noutoshi Y. Salicylic acid-dependent immunity contributes to resistance against Rhizoctonia solani, a necrotrophic fungal agent of sheath blight, in rice and Brachypodium distachyon. THE NEW PHYTOLOGIST 2018; 217:771-783. [PMID: 29048113 PMCID: PMC5765516 DOI: 10.1111/nph.14849] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2017] [Accepted: 09/13/2017] [Indexed: 05/20/2023]
Abstract
Rhizoctonia solani is a soil-borne fungus causing sheath blight. In consistent with its necrotrophic life style, no rice cultivars fully resistant to R. solani are known, and agrochemical plant defense activators used for rice blast, which upregulate a phytohormonal salicylic acid (SA)-dependent pathway, are ineffective towards this pathogen. As a result of the unavailability of genetics, the infection process of R. solani remains unclear. We used the model monocotyledonous plants Brachypodium distachyon and rice, and evaluated the effects of phytohormone-induced resistance to R. solani by pharmacological, genetic and microscopic approaches to understand fungal pathogenicity. Pretreatment with SA, but not with plant defense activators used in agriculture, can unexpectedly induce sheath blight resistance in plants. SA treatment inhibits the advancement of R. solani to the point in the infection process in which fungal biomass shows remarkable expansion and specific infection machinery is developed. The involvement of SA in R. solani resistance is demonstrated by SA-deficient NahG transgenic rice and the sheath blight-resistant B. distachyon accessions, Bd3-1 and Gaz-4, which activate SA-dependent signaling on inoculation. Our findings suggest a hemi-biotrophic nature of R. solani, which can be targeted by SA-dependent plant immunity. Furthermore, B. distachyon provides a genetic resource that can confer disease resistance against R. solani to plants.
Collapse
Affiliation(s)
- Yusuke Kouzai
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Mamiko Kimura
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Megumi Watanabe
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuki Kusunoki
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Daiki Osaka
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Tomoko Suzuki
- Department of Science, Japan Women's University, Mejirodai, Bunkyo-ku, Tokyo, 112-8681, Japan
| | - Hidenori Matsui
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Mikihiro Yamamoto
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Yuki Ichinose
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Kazuhiro Toyoda
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| | - Takakazu Matsuura
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Izumi C Mori
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Takashi Hirayama
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
| | - Eiichi Minami
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Yoko Nishizawa
- Division of Plant and Microbial Sciences, Institute of Agrobiological Sciences, National Agriculture and Food Research Organization (NARO), Tsukuba, 305-8602, Japan
| | - Komaki Inoue
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Yoshihiko Onda
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
| | - Keiichi Mochida
- Cellulose Production Research Team, Biomass Engineering Research Division, RIKEN Center for Sustainable Resource Science, Tsurumi, Yokohama, 230-0045, Japan
- Institute of Plant Science and Resources (IPSR), Okayama University, Kurashiki, 710-0046, Japan
- Kihara Institute for Biological Research, Yokohama City University, 641-12 Maioka-cho, Totsuka-ku, Yokohama, 244-0813, Japan
| | - Yoshiteru Noutoshi
- Graduate School of Environmental and Life Science, Okayama University, Kita-ku, Okayama, 700-8530, Japan
| |
Collapse
|
25
|
Expression of pathogenesis-related genes in cotton roots in response to Verticillium dahliae PAMP molecules. SCIENCE CHINA-LIFE SCIENCES 2017; 60:852-860. [DOI: 10.1007/s11427-017-9071-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2017] [Accepted: 06/19/2017] [Indexed: 10/19/2022]
|
26
|
Fisher LHC, Han J, Corke FMK, Akinyemi A, Didion T, Nielsen KK, Doonan JH, Mur LAJ, Bosch M. Linking Dynamic Phenotyping with Metabolite Analysis to Study Natural Variation in Drought Responses of Brachypodium distachyon. FRONTIERS IN PLANT SCIENCE 2016; 7:1751. [PMID: 27965679 PMCID: PMC5126067 DOI: 10.3389/fpls.2016.01751] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2016] [Accepted: 11/07/2016] [Indexed: 05/23/2023]
Abstract
Drought is an important environmental stress limiting the productivity of major crops worldwide. Understanding drought tolerance and possible mechanisms for improving drought resistance is therefore a prerequisite to develop drought-tolerant crops that produce significant yields with reduced amounts of water. Brachypodium distachyon (Brachypodium) is a key model species for cereals, forage grasses, and energy grasses. In this study, initial screening of a Brachypodium germplasm collection consisting of 138 different ecotypes exposed to progressive drought, highlighted the natural variation in morphology, biomass accumulation, and responses to drought stress. A core set of ten ecotypes, classified as being either tolerant, susceptible or intermediate, in response to drought stress, were exposed to mild or severe (respectively, 15 and 0% soil water content) drought stress and phenomic parameters linked to growth and color changes were assessed. When exposed to severe drought stress, phenotypic data and metabolite profiling combined with multivariate analysis revealed a remarkable consistency in separating the selected ecotypes into their different pre-defined drought tolerance groups. Increases in several metabolites, including for the phytohormones jasmonic acid and salicylic acid, and TCA-cycle intermediates, were positively correlated with biomass yield and with reduced yellow pixel counts; suggestive of delayed senescence, both key target traits for crop improvement to drought stress. While metabolite analysis also separated ecotypes into the distinct tolerance groupings after exposure to mild drought stress, similar analysis of the phenotypic data failed to do so, confirming the value of metabolomics to investigate early responses to drought stress. The results highlight the potential of combining the analyses of phenotypic and metabolic responses to identify key mechanisms and markers associated with drought tolerance in both the Brachypodium model plant as well as agronomically important crops.
Collapse
Affiliation(s)
- Lorraine H. C. Fisher
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Jiwan Han
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Fiona M. K. Corke
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Aderemi Akinyemi
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | | | | | - John H. Doonan
- The National Plant Phenomics Centre, Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Luis A. J. Mur
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| | - Maurice Bosch
- Institute of Biological, Environmental and Rural Sciences, Aberystwyth UniversityAberystwyth, UK
| |
Collapse
|
27
|
Lv DW, Zhen S, Zhu GR, Bian YW, Chen GX, Han CX, Yu ZT, Yan YM. High-Throughput Sequencing Reveals H 2O 2 Stress-Associated MicroRNAs and a Potential Regulatory Network in Brachypodium distachyon Seedlings. FRONTIERS IN PLANT SCIENCE 2016; 7:1567. [PMID: 27812362 PMCID: PMC5071335 DOI: 10.3389/fpls.2016.01567] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 10/05/2016] [Indexed: 05/07/2023]
Abstract
Oxidative stress in plants can be triggered by many environmental stress factors, such as drought and salinity. Brachypodium distachyon is a model organism for the study of biofuel plants and crops, such as wheat. Although recent studies have found many oxidative stress response-related proteins, the mechanism of microRNA (miRNA)-mediated oxidative stress response is still unclear. Using next generation high-throughput sequencing technology, the small RNAs were sequenced from the model plant B. distachyon 21 (Bd21) under H2O2 stress and normal growth conditions. In total, 144 known B. distachyon miRNAs and 221 potential new miRNAs were identified. Further analysis of potential new miRNAs suggested that 36 could be clustered into known miRNA families, while the remaining 185 were identified as B. distachyon-specific new miRNAs. Differential analysis of miRNAs from the normal and H2O2 stress libraries identified 31 known and 30 new H2O2 stress responsive miRNAs. The expression patterns of seven representative miRNAs were verified by reverse transcription quantitative polymerase chain reaction (RT-qPCR) analysis, which produced results consistent with those of the deep sequencing method. Moreover, we also performed RT-qPCR analysis to verify the expression levels of 13 target genes and the cleavage site of 5 target genes by known or novel miRNAs were validated experimentally by 5' RACE. Additionally, a miRNA-mediated gene regulatory network for H2O2 stress response was constructed. Our study identifies a set of H2O2-responsive miRNAs and their target genes and reveals the mechanism of oxidative stress response and defense at the post-transcriptional regulatory level.
Collapse
Affiliation(s)
- Dong-Wen Lv
- College of Life Science, Capital Normal UniversityBeijing, China
- Department of Oral and Craniofacial Molecular Biology, VCU Philips Institute for Oral Health Research, School of Dentistry, Virginia Commonwealth UniversityRichmond, VA, USA
| | - Shoumin Zhen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Geng-Rui Zhu
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Yan-Wei Bian
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Guan-Xing Chen
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Cai-Xia Han
- College of Life Science, Capital Normal UniversityBeijing, China
| | - Zi-Tong Yu
- State Agriculture Biotechnology Centre, Murdoch UniversityPerth, WA, Australia
| | - Yue-Ming Yan
- College of Life Science, Capital Normal UniversityBeijing, China
- *Correspondence: Yue-Ming Yan
| |
Collapse
|