1
|
Sun Z, Ma M, Liu H, Tao D, Salam SA, Han X, Liu Y, Yong JWH. Exogenous GABA-Ca Alleviates Growth Inhibition Induced by a Low-P Environment in Peanuts ( Arachis hypogaea). Antioxidants (Basel) 2024; 13:1414. [PMID: 39594555 PMCID: PMC11590983 DOI: 10.3390/antiox13111414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 11/28/2024] Open
Abstract
Phosphorus (P) deficiency is a major global factor constraining peanut production. Exogenous γ-aminobutyric acid (GABA) and Ca2+ are essential to improve stress resilience in peanuts growing under low-P conditions. This study therefore examined the detailed physiological effects of GABA-Ca on restoring peanut growth under low-P conditions. These included the root-shoot ratio, leaf nutrients, photochemical activity, reactive oxygen species (ROS), cyclic electron flow (CEF), ATP synthase activity, and the proton gradient (∆pH), all of which were measured under low-P (LP, 0.5 mM) and optimized-P (1 mM) conditions. Specifically, supplying GABA-Ca under LP conditions regulated the ∆pH by causing adjustments in CEF and ATP synthase activities, buffering the photosystems' activities, restoring the antioxidant enzyme system, and lowering ROS production. Interestingly, exogenous GABA-Ca restored peanut growth under low-P conditions, possibly by the putative signaling crosstalk between GABA and Ca2+. The plausible signal amplification between GABA and Ca2+ suggested that the combination of GABA and Ca, may offer an effective strategy for enhancing peanut adaptation to low-P conditions. Moving forward, the strategic supplementation of GABA-Ca, either during cultivation or through the formulation of novel fertilizers, opens up many possibilities for better and more resilient plant production in soils with low P.
Collapse
Affiliation(s)
- Zhiyu Sun
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Mingzhu Ma
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Huan Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Dongbing Tao
- College of Food Science, Shenyang Agricultural University, Shenyang 110866, China
| | - Shaikh Amjad Salam
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Xiaori Han
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
| | - Yifei Liu
- China-Australia Joint Laboratory for Plant Nutrition and Germplasm Resources Innovation, College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Shenyang Agricultural University, Shenyang 110866, China
- Institute of Agriculture, The University of Western Australia, Perth, WA 6009, Australia
- School of Biological Sciences, The University of Western Australia, Perth, WA 6009, Australia
| | - Jean Wan Hong Yong
- Department of Biosystems and Technology, Swedish University of Agricultural Sciences, 23456 Alnarp, Sweden
| |
Collapse
|
2
|
Dehghanian Z, Ahmadabadi M, Asgari Lajayer B, Bagheri N, Chamani M, Gougerdchi V, Hamedpour-Darabi M, Shu W, Price GW, Dell B. Role of Neurotransmitters (Biomediators) in Plant Responses to Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:3134. [PMID: 39599343 PMCID: PMC11597453 DOI: 10.3390/plants13223134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 10/29/2024] [Accepted: 11/03/2024] [Indexed: 11/29/2024]
Abstract
Plants possess a complex signaling system that enables them to sense and adapt to various environmental stressors, including abiotic factors like extreme temperatures, drought, salinity, and toxic heavy metals. While the roles of hormones and signaling molecules in plant stress responses are well established, the involvement of neurotransmitters-traditionally linked to animal nervous systems-in plant stress physiology is a relatively underexplored area. Recent findings indicate that neurotransmitters such as gamma-aminobutyric acid, glutamate, serotonin, and dopamine play crucial roles in several physiological processes within plants. They regulate ion channels, adjust stomatal movements, modulate the production of reactive oxygen species, and influence gene expression. Evidence suggests that these neurotransmitters enhance antioxidant defense mechanisms and regulate stress-responsive pathways vital for plant stress tolerance. Additionally, under stressful conditions, neurotransmitters have been shown to impact plant growth, development, and reproductive activities. This review aims to illuminate the emerging understanding of neurotransmitters as key biomediators in plant responses to abiotic stress.
Collapse
Affiliation(s)
- Zahra Dehghanian
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Mohammad Ahmadabadi
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | | | - Nazila Bagheri
- Department of Biotechnology, Faculty of Agriculture, Azarbaijan Shahid Madani University, Tabriz 53751-71379, Iran
| | - Masoud Chamani
- Department of Plant Protection, Faculty of Agriculture and Natural Resources, University of Mohaghegh Ardabili, Ardabil 56199-11367, Iran
| | - Vahideh Gougerdchi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, University of Tabriz, Tabriz 51666-16471, Iran
| | - Mohsen Hamedpour-Darabi
- Department of Horticultural Science, Faculty of Agriculture, Shiraz University, Shiraz 71946-84471, Iran
| | - Weixi Shu
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - G. W. Price
- Faculty of Agriculture, Dalhousie University, Truro, NS B2N 5E3, Canada
| | - Bernard Dell
- Centre for Crop and Food Innovation, Murdoch University, Murdoch 6150, Australia
| |
Collapse
|
3
|
Wang J, Zhang Y, Wang J, Ma F, Wang L, Zhan X, Li G, Hu S, Khan A, Dang H, Li T, Hu X. Promoting γ-aminobutyric acid accumulation to enhances saline-alkali tolerance in tomato. PLANT PHYSIOLOGY 2024; 196:2089-2104. [PMID: 39186533 DOI: 10.1093/plphys/kiae446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Accepted: 07/12/2024] [Indexed: 08/28/2024]
Abstract
Saline-alkali stress is a widely distributed abiotic stress that severely limits plant growth. γ-Aminobutyric acid (GABA) accumulates rapidly in plants under saline-alkali stress, but the underlying molecular mechanisms and associated regulatory networks remain unclear. Here, we report a MYB-like protein, I-box binding factor (SlMYBI), which positively regulates saline-alkali tolerance through induced GABA accumulation by directly modulating the glutamate decarboxylase (GAD) gene SlGAD1 in tomato (Solanum lycopersicum L.). Overexpression of SlGAD1 increased GABA levels and decreased reactive oxygen species accumulation under saline-alkali stress, while silencing of SlGAD1 further suggested that SlGAD1 plays an active role in GABA synthesis and saline-alkali tolerance of tomato. In addition, we found that SlMYBI activates SlGAD1 transcription. Both overexpression of SlMYBI and editing of SlMYBI using CRISPR-Cas9 showed that SlMYBI regulates GABA synthesis by modulating SlGAD1 expression. Furthermore, the interaction of SlNF-YC1 with SlMYBI enhanced the transcriptional activity of SlMYBI on SlGAD1 to further improve saline-alkali tolerance in tomato. Interestingly, we found that ethylene signaling was involved in the GABA response to saline-alkali stress by RNA-seq analysis of SlGAD1-overexpressing lines. This study elucidates the involvement of SlMYBI in GABA synthesis regulation. Specifically, the SlMYBI-SlNF-YC1 module is involved in GABA accumulation in response to saline-alkali stress.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Fang Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Linyang Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Xiangqiang Zhan
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Guobin Li
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Songshen Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, P.R. China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, P.R. China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi 712100, P.R. China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi 712100, P.R. China
| |
Collapse
|
4
|
Chen M, Zhu C, Zhang H, Chen S, Wang X, Gan L. Endogenous γ-Aminobutyric Acid Accumulation Enhances Salinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2024; 13:2750. [PMID: 39409618 PMCID: PMC11479070 DOI: 10.3390/plants13192750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/28/2024] [Accepted: 09/29/2024] [Indexed: 10/20/2024]
Abstract
Rice is an important food crop worldwide but is usually susceptible to saline stress. When grown on soil with excessive salt, rice plants experience osmotic, ionic, and oxidative stresses that adversely affect growth performance. γ-Aminobutyric acid (GABA) is a nonproteinogenic amino acid that plays an important role in the metabolic activities of organisms. Glutamate decarboxylase (GAD) is the rate-limiting enzyme in GABA metabolism. Here, we genetically modified rice GAD by overexpression or CRISPR-mediated genome editing. These lines, named gad3-ox1 and gad3-ox2 or gad1/3-ko, were used to explore the effects of endogenous GABA accumulation on salt tolerance in rice. Both the gad3-ox1 and gad3-ox2 lines exhibited significant accumulation of the GABA content, whereas the gad1/3-ko line presented a reduced GABA content in vivo. Notably, the two overexpression lines were markedly resistant to salt stress compared with the wild-type and knockout lines. Furthermore, our results demonstrated that endogenous GABA accumulation in the gad3-ox1 and gad3-ox2 lines increased the contents of antioxidant substances and osmotic regulators, decreased the content of membrane lipid peroxidation products and the Na+ content, and resulted in strong tolerance to salt stress. Together, these data provide a theoretical basis for cultivating rice varieties with strong salt tolerance.
Collapse
Affiliation(s)
| | | | | | | | | | - Lijun Gan
- College of Life Sciences, Nanjing Agricultural University, Nanjing 210095, China; (M.C.); (C.Z.); (H.Z.); (S.C.); (X.W.)
| |
Collapse
|
5
|
Islam SNU, Kouser S, Hassan P, Asgher M, Shah AA, Khan NA. Gamma-aminobutyric acid interactions with phytohormones and its role in modulating abiotic and biotic stress in plants. STRESS BIOLOGY 2024; 4:36. [PMID: 39158750 PMCID: PMC11333426 DOI: 10.1007/s44154-024-00180-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/10/2024] [Indexed: 08/20/2024]
Abstract
Gamma-aminobutyric acid (GABA), a ubiquitous non-protein 4-carbon amino acid present in both prokaryotic and eukaryotic organisms. It is conventionally recognized as a neurotransmitter in mammals and plays a crucial role in plants. The context of this review centers on the impact of GABA in mitigating abiotic stresses induced by climate change, such as drought, salinity, heat, and heavy metal exposure. Beyond its neurotransmitter role, GABA emerges as a key player in diverse metabolic processes, safeguarding plants against multifaceted abiotic as well as biotic challenges. This comprehensive exploration delves into the GABA biosynthetic pathway, its transport mechanisms, and its intricate interplay with various abiotic stresses. The discussion extends to the nuanced relationship between GABA and phytohormones during abiotic stress acclimation, offering insights into the strategic development of mitigation strategies against these stresses. The delineation of GABA's crosstalk with phytohormones underscores its pivotal role in formulating crucial strategies for abiotic stress alleviation in plants.
Collapse
Affiliation(s)
- Syed Nazar Ul Islam
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Shaista Kouser
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Parveena Hassan
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Mohd Asgher
- Plant Physiology and Biochemistry Laboratory, Department of Botany, School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India.
| | - Ali Asghar Shah
- School of Biosciences and Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, Jammu and Kashmir, 185234, India
| | - Nafees A Khan
- Plant Physiology and Biochemistry Laboratory, Department of Botany, Aligarh Muslim University, Aligarh, 202002, India.
| |
Collapse
|
6
|
Hoenicka H, Bein S, Starczak M, Graf W, Hanelt D, Gackowski D. β-Aminobutyric acid promotes stress tolerance, physiological adjustments, as well as broad epigenetic changes at DNA and RNA nucleobases in field elms (Ulmus minor). BMC PLANT BIOLOGY 2024; 24:779. [PMID: 39148013 PMCID: PMC11325618 DOI: 10.1186/s12870-024-05425-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 07/15/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND β-Aminobutyric acid (BABA) has been successfully used to prime stress resistance in numerous plant species; however, its effectiveness in forest trees has been poorly explored thus far. This study aimed to investigate the influence of BABA on morphological, physiological, and epigenetic parameters in field elms under various growth conditions. Epigenetic changes were assessed in both DNA and RNA through the use of reversed-phase ultra-performance liquid chromatography (UPLC) coupled with sensitive mass spectrometry. RESULTS The presented results confirm the influence of BABA on the development, physiology, and stress tolerance in field elms. However, the most important findings are related to the broad epigenetic changes promoted by this amino acid, which involve both DNA and RNA. Our findings confirm, for the first time, that BABA influences not only well-known epigenetic markers in plants, such as 5-methylcytosine, but also several other non-canonical nucleobases, such as 5-hydroxymethyluracil, 5-formylcytosine, 5-hydroxymethylcytosine, N6-methyladenine, uracil (in DNA) and thymine (in RNA). The significant effect on the levels of N6-methyladenine, the main bacterial epigenetic marker, is particularly noteworthy. In this case, the question arises as to whether this effect is due to epigenetic changes in the microbiome, the plant genome, or both. CONCLUSIONS The plant phenotype is the result of complex interactions between the plant's DNA, the microbiome, and the environment. We propose that different types of epigenetic changes in the plant and microbiome may play important roles in the largely unknown memory process that enables plants to adapt faster to changing environmental conditions.
Collapse
Affiliation(s)
- Hans Hoenicka
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany.
| | - Susanne Bein
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany
| | - Marta Starczak
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, Bydgoszcz, 85-095, Poland
| | - Wolfgang Graf
- Thünen Institute of Forest Genetics, Sieker Landstr. 2, D-22927, Grosshansdorf, Germany
| | - Dieter Hanelt
- Institute of Plant Science and Microbiology, University of Hamburg, Ohnhorst. 18, D-22609, Hamburg, Germany
| | - Daniel Gackowski
- Department of Clinical Biochemistry, Faculty of Pharmacy, Collegium Medicum in Bydgoszcz, Nicolaus Copernicus University in Toruń, Karlowicza 24, Bydgoszcz, 85-095, Poland
| |
Collapse
|
7
|
Khan Z, Jan R, Asif S, Farooq M, Kim KM. Exogenous GABA Enhances Copper Stress Resilience in Rice Plants via Antioxidant Defense Mechanisms, Gene Regulation, Mineral Uptake, and Copper Homeostasis. Antioxidants (Basel) 2024; 13:700. [PMID: 38929139 PMCID: PMC11200589 DOI: 10.3390/antiox13060700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2024] [Revised: 06/03/2024] [Accepted: 06/04/2024] [Indexed: 06/28/2024] Open
Abstract
The importance of gamma-aminobutyric acid (GABA) in plants has been highlighted due to its critical role in mitigating metal toxicity, specifically countering the inhibitory effects of copper stress on rice plants. This study involved pre-treating rice plants with 1 mM GABA for one week, followed by exposure to varying concentrations of copper at 50 μM, 100 μM, and 200 μM. Under copper stress, particularly at 100 μM and 200 μM, plant height, biomass, chlorophyll content, relative water content, mineral content, and antioxidant activity decreased significantly compared to control conditions. However, GABA treatment significantly alleviated the adverse effects of copper stress. It increased plant height by 13%, 18%, and 32%; plant biomass by 28%, 52%, and 60%; chlorophyll content by 12%, 30%, and 24%; and relative water content by 10%, 24%, and 26% in comparison to the C50, C100, and C200 treatments. Furthermore, GABA treatment effectively reduced electrolyte leakage by 11%, 34%, and 39%, and the concentration of reactive oxygen species, such as malondialdehyde (MDA), by 9%, 22%, and 27%, hydrogen peroxide (H2O2) by 12%, 38%, and 30%, and superoxide anion content by 8%, 33, and 39% in comparison to C50, C100, and C200 treatments. Additionally, GABA supplementation led to elevated levels of glutathione by 69% and 80%, superoxide dismutase by 22% and 125%, ascorbate peroxidase by 12% and 125%, and catalase by 75% and 100% in the C100+G and C200+G groups as compared to the C100 and C200 treatments. Similarly, GABA application upregulated the expression of GABA shunt pathway-related genes, including gamma-aminobutyric transaminase (OsGABA-T) by 38% and 80% and succinic semialdehyde dehydrogenase (OsSSADH) by 60% and 94% in the C100+G and C200+G groups, respectively, as compared to the C100 and C200 treatments. Conversely, the expression of gamma-aminobutyric acid dehydrogenase (OsGAD) was downregulated. GABA application reduced the absorption of Cu2+ by 54% and 47% in C100+G and C200+G groups as compared to C100, and C200 treatments. Moreover, GABA treatment enhanced the uptake of Ca2+ by 26% and 82%, Mg2+ by 12% and 67%, and K+ by 28% and 128% in the C100+G and C200+G groups as compared to C100, and C200 treatments. These findings underscore the pivotal role of GABA-induced enhancements in various physiological and molecular processes, such as plant growth, chlorophyll content, water content, antioxidant capacity, gene regulation, mineral uptake, and copper sequestration, in enhancing plant tolerance to copper stress. Such mechanistic insights offer promising implications for the advancement of safe and sustainable food production practices.
Collapse
Affiliation(s)
- Zakirullah Khan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Rahmatullah Jan
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Saleem Asif
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Muhammad Farooq
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
| | - Kyung-Min Kim
- Department of Applied Biosciences, Graduate School, Kyungpook National University, Daegu 41566, Republic of Korea; (Z.K.); (S.A.); (M.F.)
- Coastal Agriculture Research Institute, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
8
|
Decsi K, Ahmed M, Rizk R, Abdul-Hamid D, Kovács GP, Tóth Z. Emerging Trends in Non-Protein Amino Acids as Potential Priming Agents: Implications for Stress Management Strategies and Unveiling Their Regulatory Functions. Int J Mol Sci 2024; 25:6203. [PMID: 38892391 PMCID: PMC11172521 DOI: 10.3390/ijms25116203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 05/29/2024] [Accepted: 06/03/2024] [Indexed: 06/21/2024] Open
Abstract
Plants endure the repercussions of environmental stress. As the advancement of global climate change continues, it is increasingly crucial to protect against abiotic and biotic stress effects. Some naturally occurring plant compounds can be used effectively to protect the plants. By externally applying priming compounds, plants can be prompted to trigger their defensive mechanisms, resulting in improved immune system effectiveness. This review article examines the possibilities of utilizing exogenous alpha-, beta-, and gamma-aminobutyric acid (AABA, BABA, and GABA), which are non-protein amino acids (NPAAs) that are produced naturally in plants during instances of stress. The article additionally presents a concise overview of the studies' discoveries on this topic, assesses the particular fields in which they might be implemented, and proposes new avenues for future investigation.
Collapse
Affiliation(s)
- Kincső Decsi
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| | - Mostafa Ahmed
- Festetics Doctoral School, Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary;
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Roquia Rizk
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
- Department of Agricultural Biochemistry, Faculty of Agriculture, Cairo University, Giza 12613, Egypt
| | - Donia Abdul-Hamid
- Heavy Metals Department, Central Laboratory for The Analysis of Pesticides and Heavy Metals in Food (QCAP), Dokki, Cairo 12311, Egypt;
| | - Gergő Péter Kovács
- Institute of Agronomy, Szent István Campus, Hungarian University of Agriculture and Life Sciences, 2100 Gödöllő, Hungary;
| | - Zoltán Tóth
- Institute of Agronomy, Georgikon Campus, Hungarian University of Agriculture and Life Sciences, 8360 Keszthely, Hungary; (R.R.); (Z.T.)
| |
Collapse
|
9
|
Wang J, Zhang Y, Wang J, Khan A, Kang Z, Ma Y, Zhang J, Dang H, Li T, Hu X. SlGAD2 is the target of SlTHM27, positively regulates cold tolerance by mediating anthocyanin biosynthesis in tomato. HORTICULTURE RESEARCH 2024; 11:uhae096. [PMID: 38855415 PMCID: PMC11161262 DOI: 10.1093/hr/uhae096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Accepted: 03/25/2024] [Indexed: 06/11/2024]
Abstract
Cold stress significantly limits the yield and quality of tomato. Deciphering the key genes related to cold tolerance is important for selecting and breeding superior cold-tolerant varieties. γ-aminobutyric acid (GABA) responds to various types of stress by rapidly accumulating in plant. In this study, glutamic acid decarboxylase (GAD2) was a positive regulator to enhance cold stress tolerance of tomato. Overexpression of SlGAD2 decreased the extent of cytoplasmic membrane damage and increased the endogenous GABA content, antioxidant enzyme activities, and reactive oxygen species (ROS) scavenging capacity in response to cold stress, whereas Slgad2 mutant plants showed the opposite trend. In addition, SlGAD2 induced anthocyanin biosynthesis in response to cold stress by increasing the content of endogenous GABA. Further study revealed that SlGAD2 expression was negatively regulated by the transcription factor SlTHM27. However, the transcript levels of SlTHM27 were repressed under cold stress. Antioxidant enzyme activities, SlGAD2 transcript levels, GABA and anthocyanin contents were significantly increased in Slthm27 mutant plants. Further, our study demonstrated that SlTHM27 decreases SlGAD2-promoted cold resistance in tomato by repressing SlGAD2 transcription. Overall, our results showed that the SlTHM27-SlGAD2 model regulates the cold tolerance in tomato by regulating GABA and anthocyanin.
Collapse
Affiliation(s)
- Jingrong Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Yong Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Junzheng Wang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur 22620, Pakistan
| | - Zheng Kang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Yongbo Ma
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Jiarui Zhang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Haoran Dang
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| | - Tianlai Li
- College of Horticulture, Shenyang Agricultural University, Shenyang, Liaoning 110866, China
| | - Xiaohui Hu
- College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
- Key Laboratory of Protected Horticultural Engineering in Northwest, Ministry of Agriculture and Rural Affairs, Yangling, Shaanxi, 712100, China
- Shaanxi Protected Agriculture Engineering Technology Research Centre, Yangling, Shaanxi, 712100, China
| |
Collapse
|
10
|
Malakar P, Gupta SK, Chattopadhyay D. Role of plant neurotransmitters in salt stress: A critical review. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 211:108601. [PMID: 38696867 DOI: 10.1016/j.plaphy.2024.108601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 03/22/2024] [Accepted: 04/03/2024] [Indexed: 05/04/2024]
Abstract
Neurotransmitters are naturally found in many plants, but the molecular processes that govern their actions still need to be better understood. Acetylcholine, γ-Aminobutyric acid, histamine, melatonin, serotonin, and glutamate are the most common neurotransmitters in animals, and they all play a part in the development and information processing. It is worth noting that all these chemicals have been found in plants. Although much emphasis has been placed on understanding how neurotransmitters regulate mood and behaviour in humans, little is known about how they regulate plant growth and development. In this article, the information was reviewed and updated considering current thinking on neurotransmitter signaling in plants' metabolism, growth, development, salt tolerance, and the associated avenues for underlying research. The goal of this study is to advance neurotransmitter signaling research in plant biology, especially in the area of salt stress physiology.
Collapse
Affiliation(s)
- Paheli Malakar
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Santosh K Gupta
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| | - Debasis Chattopadhyay
- National Institute of Plant Genome Research, Aruna Asaf Ali Marg, New Delhi, 110067, India.
| |
Collapse
|
11
|
Qian Z, Lu L, Zihan W, Qianyue B, Chungang Z, Shuheng Z, Jiali P, Jiaxin Y, Shuang Z, Jian W. Gamma-aminobutyric acid (GABA) improves salinity stress tolerance in soybean seedlings by modulating their mineral nutrition, osmolyte contents, and ascorbate-glutathione cycle. BMC PLANT BIOLOGY 2024; 24:365. [PMID: 38706002 PMCID: PMC11071273 DOI: 10.1186/s12870-024-05023-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 04/15/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND In plants, GABA plays a critical role in regulating salinity stress tolerance. However, the response of soybean seedlings (Glycine max L.) to exogenous gamma-aminobutyric acid (GABA) under saline stress conditions has not been fully elucidated. RESULTS This study investigated the effects of exogenous GABA (2 mM) on plant biomass and the physiological mechanism through which soybean plants are affected by saline stress conditions (0, 40, and 80 mM of NaCl and Na2SO4 at a 1:1 molar ratio). We noticed that increased salinity stress negatively impacted the growth and metabolism of soybean seedlings, compared to control. The root-stem-leaf biomass (27- and 33%, 20- and 58%, and 25- and 59% under 40- and 80 mM stress, respectively]) and the concentration of chlorophyll a and chlorophyll b significantly decreased. Moreover, the carotenoid content increased significantly (by 35%) following treatment with 40 mM stress. The results exhibited significant increase in the concentration of hydrogen peroxide (H2O2), malondialdehyde (MDA), dehydroascorbic acid (DHA) oxidized glutathione (GSSG), Na+, and Cl- under 40- and 80 mM stress levels, respectively. However, the concentration of mineral nutrients, soluble proteins, and soluble sugars reduced significantly under both salinity stress levels. In contrast, the proline and glycine betaine concentrations increased compared with those in the control group. Moreover, the enzymatic activities of ascorbate peroxidase, monodehydroascorbate reductase, glutathione reductase, and glutathione peroxidase decreased significantly, while those of superoxide dismutase, catalase, peroxidase, and dehydroascorbate reductase increased following saline stress, indicating the overall sensitivity of the ascorbate-glutathione cycle (AsA-GSH). However, exogenous GABA decreased Na+, Cl-, H2O2, and MDA concentration but enhanced photosynthetic pigments, mineral nutrients (K+, K+/Na+ ratio, Zn2+, Fe2+, Mg2+, and Ca2+); osmolytes (proline, glycine betaine, soluble sugar, and soluble protein); enzymatic antioxidant activities; and AsA-GSH pools, thus reducing salinity-associated stress damage and resulting in improved growth and biomass. The positive impact of exogenously applied GABA on soybean plants could be attributed to its ability to improve their physiological stress response mechanisms and reduce harmful substances. CONCLUSION Applying GABA to soybean plants could be an effective strategy for mitigating salinity stress. In the future, molecular studies may contribute to a better understanding of the mechanisms by which GABA regulates salt tolerance in soybeans.
Collapse
Affiliation(s)
- Zhao Qian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Liu Lu
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Wei Zihan
- School of Life Sciences, Wuhan University, Wuhan, 430072, China
| | - Bai Qianyue
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhao Chungang
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Zhang Shuheng
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China
| | - Pan Jiali
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Yu Jiaxin
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Zhang Shuang
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China
| | - Wei Jian
- School of Life Sciences, Changchun Normal University, Changchun, 130032, China.
- School of Agriculture, Jilin Agricultural University, Changchun, Jilin, 130118, China.
| |
Collapse
|
12
|
Wang T, Gu X, Guo L, Zhang X, Li C. Integrated metabolomics and transcriptomics analysis reveals γ-aminobutyric acid enhances the ozone tolerance of wheat by accumulation of flavonoids. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133202. [PMID: 38091801 DOI: 10.1016/j.jhazmat.2023.133202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 11/24/2023] [Accepted: 12/06/2023] [Indexed: 02/08/2024]
Abstract
Wheat is susceptible to atmospheric ozone (O3) pollution, thus the increasing O3 is a serious threat to wheat production. γ-aminobutyric acid (GABA) is found to play key roles in the tolerance of plants to stress. However, few studies elaborated the function of GABA in response of wheat to O3. Here, we incorporated metabolome and transcriptome data to provide a more comprehensive insight on the role of GABA in enhancing the O3-tolerance of wheat. In our study, there were 31, 23, and 32 differentially accumulated flavonoids in the carbon-filtered air with GABA, elevated O3 with or without GABA treatments compared to the carbon-filtered air treatment, respectively. Elevated O3 triggered the accumulation of dihydroflavone, flavonols, and flavanols. Exogenous GABA enhanced dihydroflavone and dihydroflavonol, and also altered the expression of genes encoding some key enzymes in the flavonoid synthesis pathway. Additionally, GABA stimulated proline accumulation and antioxidant enzyme activities under elevated O3, resulting in the less accumulation of H2O2 and malondialdehyde. Consequently, GABA alleviated the grain yield loss from 19.6% to 9.6% induced by elevated O3. Our study provided comprehensive insight into the role of GABA in the alleviating the detrimental effects of elevated O3 on wheat, and a new avenue to mitigate O3 damage to the productivity of crops.
Collapse
Affiliation(s)
- Tianzuo Wang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xian Gu
- College of Pharmacy, Hebei University of Chinese Medicine, Shijiazhuang 050200, China
| | - Liyue Guo
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Xinxin Zhang
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China
| | - Caihong Li
- State Key Laboratory of Vegetation and Environmental Change, Institute of Botany, the Chinese Academy of Sciences, Beijing 100093, China.
| |
Collapse
|
13
|
Akter N, Kulsum U, Moniruzzaman M, Yasuda N, Akama K. Truncation of the calmodulin binding domain in rice glutamate decarboxylase 4 ( OsGAD4) leads to accumulation of γ-aminobutyric acid and confers abiotic stress tolerance in rice seedlings. MOLECULAR BREEDING : NEW STRATEGIES IN PLANT IMPROVEMENT 2024; 44:21. [PMID: 38435472 PMCID: PMC10904699 DOI: 10.1007/s11032-024-01460-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Accepted: 02/21/2024] [Indexed: 03/05/2024]
Abstract
GABA (Gamma-aminobutyric acid) is a non-protein amino acid widely known as major inhibitory neurotransmitter. It is synthesized from glutamate via the enzyme glutamate decarboxylase (GAD). GAD is ubiquitous in all organisms, but only plant GAD has ability to bind Ca2+/calmodulin (CaM). This kind of binding suppresses the auto-inhibition of Ca2+/calmodulin binding domain (CaMBD) when the active site of GAD is unfolded resulting in stimulated GAD activity. OsGAD4 is one of the five GAD genes in rice genome. It was confirmed that OsGAD4 has ability to bind to Ca2+/CaM. Moreover, it exhibits strongest expression against several stress conditions among the five OsGAD genes. In this study, CRISPR/Cas9-mediated genome editing was performed to trim the coding region of CaMBD from the OsGAD4 gene, to remove its autoinhibitory function. DNA sequence analysis of the genome edited rice plants revealed the truncation of CaMBD (216 bp). Genome edited line (#14-1) produced 11.26 mg GABA/100 g grain, which is almost nine-fold in comparison to wild type. Short deletion in the coding region for CaMBD yielded in mutant (#14-6) with lower GABA content than wild type counterpart. Abiotic stresses like salinity, flooding and drought significantly enhanced GABA accumulation in #14-1 at various time points compared to wild-type and #14-6 under the same stress conditions. Moreover, upregulated mRNA expression in vegetative tissues seems correlated with the stress-responsiveness of OsGAD4 when exposed to the above-mentioned stresses. Stress tolerance of OsGAD4 genome edited lines was evidenced by the higher survival rate indicating the gene may induce tolerance against abiotic stresses in rice. This is the first report on abiotic stress tolerance in rice modulated by endogenous GABA. Supplementary Information The online version contains supplementary material available at 10.1007/s11032-024-01460-1.
Collapse
Affiliation(s)
- Nadia Akter
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
- Genetic Resources and Seed Division, Bangladesh Rice Research Institute, Gazipur, 1701 Bangladesh
| | - Ummey Kulsum
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Mohammad Moniruzzaman
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Norito Yasuda
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| | - Kazuhito Akama
- Graduate School of Natural Science and Technology, Shimane University, 1060 Nishikawatsu, Matsue, Shimane 690-8504 Japan
| |
Collapse
|
14
|
Cao Z, Chen H, Zhou C, Gong M, Li Y, Shao Y, Wu Y, Bao D. Exogenous γ-Aminobutyric Acid (GABA) Enhanced Response to Abiotic Stress in Hypsizygus marmoreus by Improving Mycelial Growth and Antioxidant Capacity. Metabolites 2024; 14:94. [PMID: 38392986 PMCID: PMC10890280 DOI: 10.3390/metabo14020094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 01/19/2024] [Accepted: 01/21/2024] [Indexed: 02/25/2024] Open
Abstract
γ-Aminobutyric (GABA) acid is a nutrient and signaling molecule existing in many plants, participating in the regulation of metabolism and various physiological activities. Two strains of Hypsizygus marmoreus (a white variety and a brown variety) were investigated to study the impact of exogenous GABA on mycelial growth and the response to stress. Mycelial growth, microscopic morphology, antioxidant profile, and gad2 expression in H. marmoreu were investigated under salt, dehydration, or cold stress. The results indicated that 5 mM GABA stimulated mycelial growth under standard cultivation conditions, whereas GABA addition over 10 mM hindered the growth. Under salt, dehydration, or cold stress, treatment with 5 mM GABA significantly enhanced the mycelial growth rate and density of both H. marmoreus strains by promoting front hyphae branching. Meanwhile, the activities of key antioxidant enzymes such as peroxidase (POD), catalase (CAT), and ascorbate peroxidase (APX) were enhanced by GABA, thereby augmenting the defensive network against abiotic stress. Additionally, gad2 expression and GABA concentration were increased under abiotic stresses as a resistance regulation response. The exogenous addition of GABA strengthened the upregulation of gad2 expression and GABA production. These findings indicated that exogenously adding low concentrations of GABA effectively enhanced the mycelial growth and antioxidant profile of H. marmoreus, thereby improving its resistance against stresses.
Collapse
Affiliation(s)
- Zhi Cao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Hongyu Chen
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Chenli Zhou
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Ming Gong
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yan Li
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Youran Shao
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Yingying Wu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| | - Dapeng Bao
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai 201403, China
| |
Collapse
|
15
|
Dong Z, Huang J, Qi T, Meng A, Fu Q, Fu Y, Xu F. Exogenous γ-Aminobutyric Acid Can Improve Seed Germination and Seedling Growth of Two Cotton Cultivars under Salt Stress. PLANTS (BASEL, SWITZERLAND) 2023; 13:82. [PMID: 38202390 PMCID: PMC10781152 DOI: 10.3390/plants13010082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 12/22/2023] [Accepted: 12/24/2023] [Indexed: 01/12/2024]
Abstract
Excessive salt content in soil has adverse effects on cotton production, especially during the germination and seedling stages. γ-aminobutyric acid (GABA) is an important active substance that is expected to improve the resistance of plants to abiotic stresses. This study focused on two cotton cultivars (Gossypium hirsutum L.: Tahe 2 and Xinluzhong 62) and investigated the impact of exogenous GABA (0, 1, 2, 3, and 4 mM) on seed germination, seedling growth, and related morphological, physiological, and biochemical indicators under salt stress (150 mM NaCl). The results showed that salt stress significantly reduced the germination rate and germination index of cotton seeds (decreased by 20.34% and 32.14% for Tahe 2 and Xinluzhong 62, respectively), leading to decreased seedling height and biomass and causing leaf yellowing. Salt stress induced osmotic stress in seedlings, resulting in ion imbalance (marked reduction in K+/Na+ ratio) and oxidative damage. Under salt stress conditions, exogenous GABA increased the germination rate (increased by 10.64~23.40% and 2.63~31.58% for Tahe 2 and Xinluzhong 62, respectively) and germination index of cotton seeds, as well as plant height and biomass. GABA treatment improved leaf yellowing. Exogenous GABA treatment increased the content of proline and soluble sugars, with varying effects on betaine. Exogenous GABA treatment reduced the Na+ content in seedlings, increased the K+ content, and increased the K+/Na+ ratio (increased by 20.44~28.08% and 29.54~76.33% for Tahe 2 and Xinluzhong 62, respectively). Exogenous GABA treatment enhanced the activities of superoxide dismutase and peroxidase, and reduced the accumulation of hydrogen peroxide and malondialdehyde, but had a negative impact on catalase activity. In conclusion, exogenous GABA effectively improved cotton seed germination. By regulating osmoprotectant levels, maintaining ion homeostasis, and alleviating oxidative stress, GABA mitigated the adverse effects of salt stress on cotton seedling growth.
Collapse
Affiliation(s)
- Zhiduo Dong
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
| | - Jian Huang
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Tong Qi
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
- College of Land Science and Technology, China Agricultural University, Beijing 100193, China
| | - Ajing Meng
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
- Key Laboratory of Saline-Alkali Soil Improvement and Utilization (Saline-Alkali Land in Arid and Semi-Arid Regions), Ministry of Agriculture and Rural Affairs, Urumqi 830091, China
| | - Qiuping Fu
- College of Water Conservancy and Civil Engineering, Xinjiang Agricultural University, Urumqi 830052, China;
| | - Yanbo Fu
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
- National Soil Quality Aksu Observation Experimental Station, Aksu 843000, China
| | - Fei Xu
- Institute of Soil Fertilizer, Agricultural Water Saving, Xinjiang Academy of Agricultural Sciences, Urumqi 830091, China; (J.H.); (A.M.); (Y.F.); (F.X.)
- National Soil Quality Aksu Observation Experimental Station, Aksu 843000, China
| |
Collapse
|
16
|
Yang Y, Liu J, Li N, Guo Y, Ye H, Li Z, Wang D, Guo Y. The Optimization of Assay Conditions and Characterization of the Succinic Semialdehyde Dehydrogenase Enzyme of Germinated Tartary Buckwheat. Foods 2023; 13:17. [PMID: 38201045 PMCID: PMC10777983 DOI: 10.3390/foods13010017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2023] [Revised: 12/09/2023] [Accepted: 12/15/2023] [Indexed: 01/12/2024] Open
Abstract
In this study, the conditions for optimizing the determination of succinic semialdehyde dehydrogenase (SSADH, EC 1.2.1.79) activity in germinated Tartary buckwheat were investigated. Based on a single-factor test, the effects of temperature, pH, and succinic semialdehyde (SSA) concentration on the enzyme activity of germinated buckwheat SSADH were investigated by using the response surface method, and optimal conditions were used to study the enzymatic properties of germinated buckwheat SSADH. The results revealed that the optimum conditions for determining SSADH enzyme activity are as follows: temperature-30.8 °C, pH-8.7, and SSA concentration-0.3 mmol/L. Under these conditions, SSADH enzyme activity was measured as 346 ± 9.61 nmol/min. Furthermore, the thermal stability of SSADH was found to be superior at 25 °C, and its pH stability remained comparable at pH levels of 7.6, 8.1, and 8.6 in germinated Tartary buckwheat samples; however, a decline in stability was observed at pH 9.1. Cu2+, Co2+, and Ni2+ exhibited an activating effect on SSADH activity in germinating Tartary buckwheat, with Cu2+ having the greatest influence (p < 0.05), which was 1.21 times higher than that of the control group. Zn2+, Mn2+, and Na+ inhibited SSADH activity in germinating Tartary buckwheat, with Zn2+ showing the strongest inhibitory effect (p < 0.05). On the other hand, the Km and Vmax of SSADH for SSA in germinated Tartary buckwheat were 0.24 mmol/L and 583.24 nmol/min. The Km and Vmax of SSADH for NAD+ in germinated Tartary buckwheat were 0.64 mmol/L and 454.55 nmol/min.
Collapse
Affiliation(s)
- Yuchan Yang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Jiashang Liu
- Catering and Food Department, Inner Mongolia Vocational College of Commerce, Hohhot 010070, China;
| | - Nan Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Yu Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Hua Ye
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Zhanming Li
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Dongxu Wang
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| | - Yuanxin Guo
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212100, China; (Y.Y.); (N.L.); (Y.G.); (H.Y.); (Z.L.); (D.W.)
| |
Collapse
|
17
|
Benidickson KH, Raytek LM, Hoover GJ, Flaherty EJ, Shelp BJ, Snedden WA, Plaxton WC. Glutamate decarboxylase-1 is essential for efficient acclimation of Arabidopsis thaliana to nutritional phosphorus deprivation. THE NEW PHYTOLOGIST 2023; 240:2372-2385. [PMID: 37837235 DOI: 10.1111/nph.19300] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 09/15/2023] [Indexed: 10/15/2023]
Abstract
Glutamate decarboxylase (GAD) is a Ca2+ -calmodulin-activated, cytosolic enzyme that produces γ-aminobutyrate (GABA) as the committed step of the GABA shunt. This pathway bypasses the 2-oxoglutarate to succinate reactions of the tricarboxylic acid (TCA) cycle. GABA also accumulates during many plant stresses. We tested the hypothesis that AtGAD1 (At5G17330) facilitates Arabidopsis acclimation to Pi deprivation. Quantitative RT-PCR and immunoblotting revealed that AtGAD1 transcript and protein expression is primarily root-specific, but inducible at lower levels in shoots of Pi-deprived (-Pi) plants. Pi deprivation reduced levels of the 2-oxoglutarate dehydrogenase (2-OGDH) cofactor thiamine diphosphate (ThDP) in shoots and roots by > 50%. Growth of -Pi atgad1 T-DNA mutants was significantly attenuated relative to wild-type plants. This was accompanied by: (i) an > 60% increase in shoot and root GABA levels of -Pi wild-type, but not atgad1 plants, and (ii) markedly elevated anthocyanin and reduced free and total Pi levels in leaves of -Pi atgad1 plants. Treatment with 10 mM GABA reversed the deleterious development of -Pi atgad1 plants. Our results indicate that AtGAD1 mediates GABA shunt upregulation during Pi deprivation. This bypass is hypothesized to circumvent ThDP-limited 2-OGDH activity to facilitate TCA cycle flux and respiration by -Pi Arabidopsis.
Collapse
Affiliation(s)
| | - Lee Marie Raytek
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - Gordon J Hoover
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Edward J Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Barry J Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Wayne A Snedden
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| | - William C Plaxton
- Department of Biology, Queen's University, Kingston, ON, K7L 3N6, Canada
| |
Collapse
|
18
|
Sánchez P, Castro-Cegrí A, Sierra S, Garrido D, Llamas I, Sampedro I, Palma F. The synergy of halotolerant PGPB and mauran mitigates salt stress in tomato (Solanum lycopersicum) via osmoprotectants accumulation. PHYSIOLOGIA PLANTARUM 2023; 175:e14111. [PMID: 38148230 DOI: 10.1111/ppl.14111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 11/14/2023] [Accepted: 11/15/2023] [Indexed: 12/28/2023]
Abstract
Salinity stress is one of the major abiotic factors limiting sustainable agriculture. Halotolerant plant growth-promoting bacteria (PGPB) increased salt stress tolerance in plants, but the mechanisms underlying the tolerance are poorly understood. This study investigated the PGP activity of four halotolerant bacteria under salinity stress and the tomato salt-tolerance mechanisms induced by the synergy of these bacteria with the exopolysaccharide (EPS) mauran. All PGPB tested in this study were able to offer a significant improvement of tomato plant biomass under salinity stress; Peribacillus castrilensis N3 being the most efficient one. Tomato plants treated with N3 and the EPS mauran showed greater tolerance to NaCl than the treatment in the absence of EPS and PGPB. The synergy of N3 with mauran confers salt stress tolerance in tomato plants by increasing sodium transporter genes' expression and osmoprotectant content, including soluble sugars, polyols, proline, GABA, phenols and the polyamine putrescine. These osmolytes together with the induction of sodium transporter genes increase the osmotic adjustment capacity to resist water loss and maintain ionic homeostasis. These findings suggest that the synergy of the halotolerant bacterium N3 and the EPS mauran could enhance tomato plant growth by mitigating salt stress and could have great potential as an inductor of salinity tolerance in the agriculture sector.
Collapse
Affiliation(s)
- Patricia Sánchez
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
| | | | - Sandra Sierra
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Dolores Garrido
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| | - Inmaculada Llamas
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Inmaculada Sampedro
- Department of Microbiology, Pharmacy Faculty, University of Granada, Spain
- Biomedical Research Center (CIBM), Biotechnology Institute, Granada, Spain
| | - Francisco Palma
- Department of Plant Physiology, Science Faculty, University of Granada, Granada, Spain
| |
Collapse
|
19
|
Sun Z, Bai C, Liu Y, Ma M, Zhang S, Liu H, Bai R, Han X, Yong JWH. Resilient and sustainable production of peanut (Arachis hypogaea) in phosphorus-limited environment by using exogenous gamma-aminobutyric acid to sustain photosynthesis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2023; 263:115388. [PMID: 37611478 DOI: 10.1016/j.ecoenv.2023.115388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2023] [Revised: 08/14/2023] [Accepted: 08/17/2023] [Indexed: 08/25/2023]
Abstract
Globally, many low to medium yielding peanut fields have the potential for further yield improvement. Low phosphorus (P) limitation is one of the significant factors curtailing Arachis hypogaea productivity in many regions. In order to demonstrate the effects of gamma-aminobutyric acid (GABA) on peanuts growing under P deficiency, we used a pot-based experiment to examine the effects of exogenous GABA on alleviating P deficiency-induced physiological changes and growth inhibition in peanuts. The key physiological parameters examined were foliar gas exchange, photochemical efficiency, proton motive force, reactive oxygen species (ROS), and adenosine triphosphate (ATP) synthase activity of peanuts under cultivation with low P (LP, 0.5 mM P) and control conditions. During low P, the cyclic electron flow (CEF) maintained the high proton gradient (∆pH) induced by low ATP synthetic activity. Applying GABA during low P conditions stimulated CEF and reduced the concomitant ROS generation and thereby protecting the foliar photosystem II (PSII) from photoinhibition. Specifically, GABA enhanced the rate of electronic transmission of PSII (ETRII) by pausing the photoprotection mechanisms including non-photochemical quenching (NPQ) and ∆pH regulation. Thus, GABA was shown to be effective in restoring peanut growth when encountering P deficiency. Exogenous GABA alleviated two symptoms (increased root-shoot ratio and photoinhibition) of P-deficient peanuts. This is possibly the first report of using exogenous GABA to restore photosynthesis and growth under low P availability. Therefore, foliar applications of GABA could be a simple, safe and effective approach to overcome low yield imposed by limited P resources (low P in soils or P-fertilizers are unavailable) for sustainable peanut cultivation and especially in low to medium yielding fields.
Collapse
Affiliation(s)
- Zhiyu Sun
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Chunming Bai
- Liaoning Academy of Agricultural Sciences, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia
| | - Yifei Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China; The UWA Institute of Agriculture, The University of Western Australia, Perth, WA, Australia; School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; School of Agriculture and Environment, The University of Western Australia, Perth, WA, Australia.
| | - Mingzhu Ma
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Siwei Zhang
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Huan Liu
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Rui Bai
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Xiaori Han
- College of Land and Environment, National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, Northeast China Plant Nutrition and Fertilization Scientific Observation and Research Center for Ministry of Agriculture and Rural Affairs, Key Laboratory of Protected Horticulture of Education Ministry and Liaoning Province, Shenyang Agricultural University, Shenyang, China
| | - Jean Wan Hong Yong
- School of Biological Sciences, The University of Western Australia, Perth, WA, Australia; Department of Biosystems and Technology, Swedish University of Agricultural Sciences, Alnarp, Sweden.
| |
Collapse
|
20
|
Wang J, Hu K, Wang J, Gong Z, Li S, Deng X, Li Y. Integrated Transcriptomic and Metabolomic Analyses Uncover the Differential Mechanism in Saline-Alkaline Tolerance between Indica and Japonica Rice at the Seedling Stage. Int J Mol Sci 2023; 24:12387. [PMID: 37569762 PMCID: PMC10418499 DOI: 10.3390/ijms241512387] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 07/26/2023] [Accepted: 07/29/2023] [Indexed: 08/13/2023] Open
Abstract
Saline-alkaline stress is one of the major damages that severely affects rice (Oryza sativa L.) growth and grain yield; however, the mechanism of the tolerance remains largely unknown in rice. Herein, we comparatively investigated the transcriptome and metabolome of two contrasting rice subspecies genotypes, Luohui 9 (abbreviation for Chao2R under study, O. sativa ssp. indica, saline-alkaline-sensitive) and RPY geng (O. sativa ssp. japonica, saline-alkaline-tolerant), to identify the main pathways and important factors related to saline-alkaline tolerance. Transcriptome analysis showed that 68 genes involved in fatty acid, amino acid (such as phenylalanine and tryptophan), phenylpropanoid biosynthesis, energy metabolism (such as Glycolysis and TCA cycle), as well as signal transduction (such as hormone and MAPK signaling) were identified to be specifically upregulated in RPY geng under saline-alkaline conditions, implying that a series of cascade changes from these genes promotes saline-alkaline stress tolerance. The transcriptome changes observed in RPY geng were in high accordance with the specifically accumulation of metabolites, consisting mainly of 14 phenolic acids, 8 alkaloids, and 19 lipids based on the combination analysis of transcriptome and metabolome. Moreover, some genes involved in signal transduction as hub genes, such as PR5, FLS2, BRI1, and NAC, may participate in the saline-alkaline stress response of RPY geng by modulating key genes involved in fatty acid, phenylpropanoid biosynthesis, amino acid metabolism, and glycolysis metabolic pathways based on the gene co-expression network analysis. The present research results not only provide important insights for understanding the mechanism underlying of rice saline-alkaline tolerance at the transcriptome and metabolome levels but also provide key candidate target genes for further enhancing rice saline-alkaline stress tolerance.
Collapse
Affiliation(s)
- Jianyong Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
- Lushan Botanical Garden, Chinese Academy of Sciences, Jiujiang 332900, China
| | - Keke Hu
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Jien Wang
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Ziyun Gong
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Shuangmiao Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Xiaoxiao Deng
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| | - Yangsheng Li
- State Key Laboratory of Hybrid Rice, Key Laboratory for Research and Utilization of Heterosis in Indica Rice, Ministry of Agriculture, College of Life Sciences, Wuhan University, Wuhan 430072, China; (J.W.); (K.H.); (J.W.); (Z.G.); (S.L.); (X.D.)
| |
Collapse
|
21
|
Guo Z, Gong J, Luo S, Zuo Y, Shen Y. Role of Gamma-Aminobutyric Acid in Plant Defense Response. Metabolites 2023; 13:741. [PMID: 37367899 DOI: 10.3390/metabo13060741] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/06/2023] [Accepted: 06/08/2023] [Indexed: 06/28/2023] Open
Abstract
Gamma-aminobutyric acid (GABA) is a four-carbon non-protein amino acid that acts as a defense substance and a signaling molecule in various physiological processes, and which helps plants respond to biotic and abiotic stresses. This review focuses on the role of GABA's synthetic and metabolic pathways in regulating primary plant metabolism, redistributing carbon and nitrogen resources, reducing the accumulation of reactive oxygen species, and improving plants' tolerance of oxidative stress. This review also highlights the way in which GABA maintains intracellular pH homeostasis by acting as a buffer and activating H+-ATPase. In addition, calcium signals participate in the accumulation process of GABA under stress. Moreover, GABA also transmits calcium signals through receptors to trigger downstream signaling cascades. In conclusion, understanding the role of GABA in this defense response provides a theoretical basis for applying GABA in agriculture and forestry and feasible coping strategies for plants in complex and changeable environments.
Collapse
Affiliation(s)
- Zhujuan Guo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Junqing Gong
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Shuitian Luo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yixin Zuo
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| | - Yingbai Shen
- National Engineering Research Center of Tree Breeding and Ecological Restoration, College of Biological Sciences and Technology, Beijing Forestry University, No. 35, Qinghua East Road, Beijing 100083, China
| |
Collapse
|
22
|
Ahmadi H, Farhadi H, Morshedloo MR, Maggi F. Modeling and optimizing concentration of exogenous application of γ-aminobutyric acid on NaCl-stressed pineapple mint (Mentha suaveolens) using response surface methodology: an investigation into secondary metabolites and physiological parameters. BMC PLANT BIOLOGY 2023; 23:309. [PMID: 37296388 DOI: 10.1186/s12870-023-04312-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023]
Abstract
Salinity, a severe worldwide issue, compromises the economic production of medicinal plants including mints and causes drug-yield decline. γ-Aminobutyric acid (GABA) is a tolerance-inducing signaling bio-molecule in various plant physiological processes. Pineapple mint (Mentha suaveolens Ehrh.) is a valuable medicinal herb with an exhilarating scent of citrus fruit. Piperitenone oxide is the major bioactive constituent of its essential oil, having significant demand by pharmaceutical industries. Nonetheless, modeling and optimizing the effective concentration of GABA remain within twin foci of interest. Therefore, a two factor-five level (NaCl 0-150 mM and GABA 0-2.4 mM) central composite design was conducted to model and optimize drug yield and physiological responses of M. suaveolens. Based on the design of experiments (DoE) approach, different linear, quadratic, cubic, and quartic models were assigned to the response variables. Change trends of shoot and root dry weights followed a simple linear model, whereas sophisticated models (i.e., multiple polynomial regression) were fitted to the other traits. NaCl stress inevitably reduced root and shoot dry weight, piperitenone oxide content, relative water content, pigments content, and maximum quantum yield of PSII. However, content of malondialdehyde (MDA) and total flavonoid, and DPPH radical scavenging activity were increased under salinity. Under severe NaCl stress (150 mM), the essential oil content (0.53%) was increased three times in comparison with control (0.18%). Optimization analysis demonstrated that the highest amount of essential oil (0.6%) and piperitenone oxide (81%) as a drug yield-determining component would be achievable by application of 0.1-0.2 mM GABA under 100 mM NaCl. The highest dry weight of root and shoot was predicted to be achieved at 2.4 mM GABA. Overall, extremely severe NaCl stress (i.e., more than 100 mM) in which a sharp drop in yield components value was observed seemed to be out of M. suaveolens salinity tolerance range. Hence, it is rationale to compensate the decrease of drug yield by foliar application of a dilute GABA solution (i.e., 0.1-0.2 mM) under 100 mM NaCl stress or lower levels.
Collapse
Affiliation(s)
- Hosein Ahmadi
- Department of Horticulture Science, College of Agriculture and Natural Resources, University of Tehran, P.O.Box 31587 77871, Karaj, Iran
| | - Habib Farhadi
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, P.O.Box 55136-553, Maragheh, Iran
| | - Mohammad Reza Morshedloo
- Department of Horticultural Science, Faculty of Agriculture, University of Maragheh, P.O.Box 55136-553, Maragheh, Iran.
- Center of International Scientific and Collaborations (CISSC), Ministry of Science, Research and Technology, Tehran, Iran.
| | - Filippo Maggi
- School of Pharmacy, Chemistry Interdisciplinary Project (ChIP), University of Camerino, Camerino, 62032, Italy
| |
Collapse
|
23
|
Wu X, Yuan D, Bian X, Huo R, Lü G, Gong B, Li J, Liu S, Gao H. Transcriptome analysis showed that tomato-rootstock enhanced salt tolerance of grafted seedlings was accompanied by multiple metabolic processes and gene differences. FRONTIERS IN PLANT SCIENCE 2023; 14:1167145. [PMID: 37332726 PMCID: PMC10272605 DOI: 10.3389/fpls.2023.1167145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Accepted: 04/10/2023] [Indexed: 06/20/2023]
Abstract
Introduction Grafting is a commonly used cultural practice to counteract salt stress and is especially important for vegetable production. However, it is not clear which metabolic processes and genes are involved in the response of tomato rootstocks to salt stress. Methods To elucidate the regulatory mechanism through which grafting enhances salt tolerance, we first evaluated the salt damage index, electrolyte permeability and Na+ accumulation in tomato (Solanum lycopersicum L.) leaves of grafted seedlings (GSs) and nongrafted seedlings (NGSs) subjected to 175 mmol·L- 1 NaCl for 0-96 h, covering the front, middle and rear ranges. Results Compared with the NGS, the GSs were more salt tolerant, and the Na+ content in the leaves decreased significantly. Through transcriptome sequencing data analysis of 36 samples, we found that GSs exhibited more stable gene expression patterns, with a lower number of DEGs. WRKY and PosF21 transcription factors were significantly upregulated in the GSs compared to the NGSs. Moreover, the GSs presented more amino acids, a higher photosynthetic index and a higher content of growth-promoting hormones. The main differences between GSs and NGSs were in the expression levels of genes involved in the BR signaling pathway, with significant upregulation of XTHs. The above results show that the metabolic pathways of "photosynthetic antenna protein", "amino acid biosynthesis" and "plant hormone signal transduction" participate in the salt tolerance response of grafted seedlings at different stages of salt stress, maintaining the stability of the photosynthetic system and increasing the contents of amino acids and growth-promoting hormones (especially BRs). In this process, the transcription factors WRKYs, PosF21 and XTHs might play an important role at the molecular level. Discussion The results of this study demonstrates that grafting on salt tolerant rootstocks can bring different metabolic processes and transcription levels changes to scion leaves, thereby the scion leaves show stronger salt tolerance. This information provides new insight into the mechanism underlying tolerance to salt stress regulation and provides useful molecular biological basis for improving plant salt resistance.
Collapse
Affiliation(s)
- Xiaolei Wu
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ding Yuan
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Xinyu Bian
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Ruixiao Huo
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Guiyun Lü
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Binbin Gong
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Jingrui Li
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| | - Sichao Liu
- Chengde Vegetable Technology Promotion Station, Chengde, China
| | - Hongbo Gao
- College of Horticulture, Hebei Agricultural University, Key Laboratory of North China Water-saving Agriculture, Ministry of Agriculture and Rural Affairs, Hebei Key Laboratory of Vegetable Germplasm Innovation and Utilization, Collaborative Innovation Center of Vegetable Industry in Hebei, Baoding, China
| |
Collapse
|
24
|
Feng D, Gao Q, Sun X, Ning S, Qi N, Hua Z, Tang J. Effects of foliage-applied exogenous γ-aminobutyric acid on seedling growth of two rice varieties under salt stress. PLoS One 2023; 18:e0281846. [PMID: 36821566 PMCID: PMC9949633 DOI: 10.1371/journal.pone.0281846] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 02/02/2023] [Indexed: 02/24/2023] Open
Abstract
Exogenous γ-aminobutyric acid (GABA) has been used and regarded as a potential enhancer for plant resistance against various biotic or abiotic attackers in the crop production, especially as a promising alleviator against salt stress. In order to determine whether GABA is truly effective in promoting rice resistance under a certain level of salt stress or not and to evaluate its effect on the growth and some physiological responses of two Japonica rice varieties under salt stress. 3-leaf rice seedlings germinated from seeds were cultivated in a separate hydroponic cup with a nutrient solution that was salinized with 0, 25, 50, or 75 mmol K+ of NaCl. A 4 mmol L-1 GABA solution or water were sprayed onto leaves once a day for 8 days prior to an assessment of the seedling growth, the growth indices, root activities and three antioxidant enzyme activities in leaves were measured. Data analyses indicated that as the salt concentration increased, the plant height and the leaf area of both rice varieties decreased, while the dead leaf rate, weight ratio of the dry- and fresh-roots, superoxide dismutase (SOD) and peroxidase (POD) activities increased. Under the same saline conditions, the root activities and the leaf ascorbate peroxidase (APX) activity were enhanced at a low NaCl concentration but reduced when the salt concentration was high. A foliar application of GABA daily on both rice varieties for over a week under 3 different salinized treatments as compared with the corresponding treatments sprayed with water resulted in an enhanced effect on plant height increment by 1.7-32.4%, a reduction of dead leaf rate by 1.6-36.4%, a decline of root dry weight by 9.3-30.9% respectively, and an increment in root activities by 8.1-114.5%, and POD, SOD and APX enzyme activities increased by 5.0-33.3%, 4.1-18.5%, and 7.2-64.4% respectively. However, two rice varieties showed a significant difference in response to various salinized levels. Overall results of this study demonstrate that the application of exogenous GABA on the leaves of rice seedlings under salt stress has improved rice salt tolerance, which should provide a sufficient information for ultimately making it possible to grow rice in salinized soil.
Collapse
Affiliation(s)
- Di Feng
- Weifang University of Science and Technology, Shouguang, Shandong, China
- Tianjin Tianlong Technology Corporation Limited, Tianjin, China
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
- * E-mail:
| | - Qian Gao
- Weifang University of Science and Technology, Shouguang, Shandong, China
- Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Xiaoan Sun
- Weifang University of Science and Technology, Shouguang, Shandong, China
| | - Songrui Ning
- State Key Laboratory of Eco-hydraulics in Northwest Arid Region of China, Xi’an University of Technology, Xi’an, Shaanxi, China
| | - Na Qi
- Tianjin Tianlong Technology Corporation Limited, Tianjin, China
| | - Zetian Hua
- Tianjin Tianlong Technology Corporation Limited, Tianjin, China
| | - Jingchun Tang
- College of Environmental Science and Engineering, Nankai University, Tianjin, China
| |
Collapse
|
25
|
Ullah A, Ali I, Noor J, Zeng F, Bawazeer S, Eldin SM, Asghar MA, Javed HH, Saleem K, Ullah S, Ali H. Exogenous γ-aminobutyric acid (GABA) mitigated salinity-induced impairments in mungbean plants by regulating their nitrogen metabolism and antioxidant potential. FRONTIERS IN PLANT SCIENCE 2023; 13:1081188. [PMID: 36743556 PMCID: PMC9897288 DOI: 10.3389/fpls.2022.1081188] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Accepted: 12/23/2022] [Indexed: 06/18/2023]
Abstract
BACKGROUND Increasing soil salinization has a detrimental effect on agricultural productivity.Therefore, strategies are needed to induce salinity-tolerance in crop species for sustainable foodproduction. γ-aminobutyric acid (GABA) plays a key role in regulating plant salinity stresstolerance. However, it remains largely unknown how mungbean plants (Vigna radiata L.) respondto exogenous GABA under salinity stress. METHODS Thus, we evaluated the effect of exogenous GABA (1.5 mM) on the growth and physiobiochemicalresponse mechanism of mungbean plants to saline stress (0-, 50-, and 100 mM [NaCland Na2SO4, at a 1:1 molar ratio]). RESULTS Increased saline stress adversely affected mungbean plants' growth and metabolism. Forinstance, leaf-stem-root biomass (34- and 56%, 31- and 53%, and 27- and 56% under 50- and 100mM, respectively]) and chlorophyll concentrations declined. The carotenoid level increased (10%)at 50 mM and remained unaffected at 100 mM. Hydrogen peroxide (H2O2), malondialdehyde(MDA), osmolytes (soluble sugars, soluble proteins, proline), total phenolic content, andenzymatic activities of superoxide dismutase (SOD), ascorbate peroxidase (APX), peroxidase(POD), glutathione reductase (GTR), and polyphenol oxidation (PPO) were significantlyincreased. In leaves, salinity caused a significant increase in Na+ concentration but a decrease inK+ concentration, resulting in a low K+/Na+ concentration (51- and 71% under 50- and 100- mMstress). Additionally, nitrogen concentration and the activities of nitrate reductase (NR) andglutamine synthetase (GS) decreased significantly. The reduction in glutamate synthase (GOGAT)activity was only significant (65%) at 100 mM stress. Exogenous GABA decreased Na+, H2O2,and MDA concentrations but enhanced photosynthetic pigments, K+ and K+/Na+ ratio, Nmetabolism, osmolytes, and enzymatic antioxidant activities, thus reducing salinity-associatedstress damages, resulting in improved growth and biomass. CONCLUSION Exogenous GABA may have improved the salinity tolerance of mungbean plants by maintaining their morpho-physiological responses and reducing the accumulation of harmfulsubstances under salinity. Future molecular studies can contribute to a better understanding of themolecular mechanisms by which GABA regulates mungbean salinity tolerance.
Collapse
Affiliation(s)
- Abd Ullah
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Iftikhar Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
- Department of Genetics and Development, Columbia University Irving Medical Center, New York, NY, United States
| | - Javaria Noor
- Department of Botany, Islamia College University, Peshawar, Pakistan
| | - Fanjiang Zeng
- Xinjiang Key Laboratory of Desert Plant Root Ecology and Vegetation Restoration, Xinjiang Institute of Ecology and Geography, Chinese Academy of Sciences, Urumqi, China
- Cele National Station of Observation and Research for Desert-Grassland Ecosystems, Cele, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Sami Bawazeer
- Umm Al-Qura University, Faculty of Pharmacy, Department of Pharmacognosy, Makkah, Saudi Arabia
| | - Sayed M Eldin
- Center of Research, Faculty of Engineering, Future University in Egypt, New Cairo, Egypt
| | - Muhammad Ahsan Asghar
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, ELKH, 2 Brunszvik St. Martonvásár, Hungary
| | | | - Khansa Saleem
- Department of Horticultural Sciences, The Islamia University of Bahawalpur, Bahawalpur, Pakistan
| | - Sami Ullah
- Department of Botany, University of Peshawar, Peshawar, Pakistan
| | - Haider Ali
- Center for Plant Sciences and Biodiversity, University of Swat, Charbagh Swat, Pakistan
| |
Collapse
|
26
|
Puccio G, Ingraffia R, Mercati F, Amato G, Giambalvo D, Martinelli F, Sunseri F, Frenda AS. Transcriptome changes induced by Arbuscular mycorrhizal symbiosis in leaves of durum wheat (Triticum durum Desf.) promote higher salt tolerance. Sci Rep 2023; 13:116. [PMID: 36596823 PMCID: PMC9810663 DOI: 10.1038/s41598-022-26903-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/21/2022] [Indexed: 01/05/2023] Open
Abstract
The salinity of soil is a relevant environmental problem around the world, with climate change raising its relevance, particularly in arid and semiarid areas. Arbuscular Mycorrhizal Fungi (AMF) positively affect plant growth and health by mitigating biotic and abiotic stresses, including salt stress. The mechanisms through which these benefits manifest are, however, still unclear. This work aimed to identify key genes involved in the response to salt stress induced by AMF using RNA-Seq analysis on durum wheat (Triticum turgidum L. subsp. durum Desf. Husn.). Five hundred sixty-three differentially expressed genes (DEGs), many of which involved in pathways related to plant stress responses, were identified. The expression of genes involved in trehalose metabolism, RNA processing, vesicle trafficking, cell wall organization, and signal transduction was significantly enhanced by the AMF symbiosis. A downregulation of genes involved in both enzymatic and non-enzymatic oxidative stress responses as well as amino acids, lipids, and carbohydrates metabolisms was also detected, suggesting a lower oxidative stress condition in the AMF inoculated plants. Interestingly, many transcription factor families, including WRKY, NAC, and MYB, already known for their key role in plant abiotic stress response, were found differentially expressed between treatments. This study provides valuable insights on AMF-induced gene expression modulation and the beneficial effects of plant-AMF interaction in durum wheat under salt stress.
Collapse
Affiliation(s)
- Guglielmo Puccio
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Rosolino Ingraffia
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy ,grid.14095.390000 0000 9116 4836Plant Ecology, Institute of Biology, Freie Universität Berlin, Berlin, Germany ,grid.452299.1Berlin-Brandenburg Institute of Advanced Biodiversity Research, Berlin, Germany
| | - Francesco Mercati
- grid.5326.20000 0001 1940 4177Institute of Biosciences and BioResources (IBBR), National Research Council of Italy, Palermo, Italy
| | - Gaetano Amato
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Dario Giambalvo
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| | - Federico Martinelli
- grid.8404.80000 0004 1757 2304Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | - Francesco Sunseri
- grid.11567.340000000122070761Department of Agraria, University Mediterranea of Reggio Calabria, Reggio Calabria, Italy
| | - Alfonso S. Frenda
- grid.10776.370000 0004 1762 5517Department of Agricultural, Food and Forestry Sciences, University of Palermo, Palermo, Italy
| |
Collapse
|
27
|
Cheng P, Yue Q, Zhang Y, Zhao S, Khan A, Yang X, He J, Wang S, Shen W, Qian Q, Du W, Ma F, Zhang D, Guan Q. Application of γ-aminobutyric acid (GABA) improves fruit quality and rootstock drought tolerance in apple. JOURNAL OF PLANT PHYSIOLOGY 2023; 280:153890. [PMID: 36571915 DOI: 10.1016/j.jplph.2022.153890] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 12/01/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
GABA (γ-aminobutyric acid) plays a multifaceted role in plant growth, fruit quality, and tolerance to abiotic stresses. However, its physiological roles and mechanisms in the fruit quality and response to long-term drought stress in apple remain unelucidated. To investigate the effect of GABA on apple fruit quality and drought tolerance, we sprayed exogenous GABA on apple cultivar "Cripps Pink" and irrigated rootstock M.9-T337 with GABA, respectively. Results showed that exogenous GABA could effectively improve the fruit quality of "Cripps Pink", including increased sugar-to-acid ratio, flesh firmness, pericarp malleability, and GABA content, as well as reduced fruit acidity. In addition, pretreatment of M.9-T337 plants with GABA improved their tolerance to both long- and short-term drought stress. Specifically, 1 mM exogenous GABA increased the net photosynthetic rate, relative leaf water content, root-to-shoot ratio, and water use efficiency under long-term drought stress, and delayed the increased of the relative electrolyte leakage under short-term drought stress. RNA-seq analysis identified 1271 differentially expressed genes (DEGs) between nontreated and GABA-pretreated plants under short-term drought stress. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of these DEGs revealed that GABA may enhance plant drought resistance by upregulating the expression of genes related to "Biosynthesis of secondary metabolites", "MAPK signaling pathway", "Glutathione metabolism", and "Carbon fixation in photosynthetic organisms". In conclusion, these results revealed that exogenous GABA can improve fruit quality and enhance drought tolerance in apple.
Collapse
Affiliation(s)
- Pengda Cheng
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qianyu Yue
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yutian Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shuang Zhao
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, 22620, Pakistan
| | - Xinyue Yang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jieqiang He
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Shicong Wang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wenyun Shen
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Qian Qian
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Wanshan Du
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Dehui Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China; State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Life Science, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Qingmei Guan
- State Key Laboratory of Crop Stress Biology for Arid Areas/Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
28
|
Yan S, Chong P, Zhao M. Effect of salt stress on the photosynthetic characteristics and endogenous hormones, and: A comprehensive evaluation of salt tolerance in Reaumuria soongorica seedlings. PLANT SIGNALING & BEHAVIOR 2022; 17:2031782. [PMID: 35192777 PMCID: PMC9176252 DOI: 10.1080/15592324.2022.2031782] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 05/22/2023]
Abstract
Salinity is a major limiting factor in desert ecosystems, where Reaumuria soongarica is a dominant species. It is crucial to study the growth and physiological response mechanisms of R. soongorica under salt stress for the protection and restoration of the desert ecosystems. However, the effects of salt concentration and stress duration on endogenous hormonal content and photosynthetic efficiency and salt injury index of R. soongorica leaves have not been reported. Currently, there is no systematic evaluation system to determine physiological adaptation strategies of R. soongorica seedlings in response to salt stress. In this study, simulation experiments were performed with NaCl solution mixed with soil. Enzyme-linked immunosorbent assay and LI-6800 portable photosynthesis analyzer were used to measure indole acetic acid (IAA), corn nucleoside hormone (ZR), abscisic acid (ABA), and photosynthesis-related parameters in leaves of R. soongorica seedlings at 0 (24-48 h after salt treatment), 3, 6, and 9 days. At the same time, growth indicators (salt injury index, root-to-shoot ratio), reactive oxygen species content, superoxide dismutase enzyme (SOD) activity, osmolyte content, membrane peroxidation, and leaf pigment content were measured at different salt concentrations and treatment times. Finally, principal component analysis and membership function method were used to comprehensively evaluate the salt tolerance of seedlings. The results showed that treatment with 200 mM NaCl for 3 days significantly increased SOD activity, the content of osmotic adjustment substances (proline, soluble protein), endogenous hormone content (ABA, ZR), root-to-shoot ratio, and Chla/Chlb values but decreased malondialdehyde content (MDA) in the leaves of R. soongorica seedlings. Leaf water content (LRWC), net photosynthetic rate (Pn), transpiration rate (Tr), water use efficiency (WUE), and IAA content in R. soongorica seedlings were lower than those in the control, when exposed to 400 and 500 mM NaCl solutions. Finally, the principal component analysis revealed endogenous hormone content and antioxidant enzyme activity to be useful for the comprehensive evaluation of salt tolerance in R. soongorica seedlings. The R. soongorica seedlings showed the strongest salt tolerance when exposed to 200 mM NaCl for 3 days. This study provides a theoretical foundation for gene mining and breeding of salt-tolerant species in the future.
Collapse
Affiliation(s)
- Shipeng Yan
- College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Peifang Chong
- College of Forestry, Gansu Agricultural University, Lanzhou, China
- CONTACT Peifang Chong College of Forestry, Gansu Agricultural University, Lanzhou, China
| | - Ming Zhao
- Gansu Province Academy of Qilian Water Resource Conservation Forests Research Institute, Zhangye, China
| |
Collapse
|
29
|
Heli Z, Hongyu C, Dapeng B, Yee Shin T, Yejun Z, Xi Z, Yingying W. Recent advances of γ-aminobutyric acid: Physiological and immunity function, enrichment, and metabolic pathway. Front Nutr 2022; 9:1076223. [PMID: 36618705 PMCID: PMC9813243 DOI: 10.3389/fnut.2022.1076223] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/28/2022] [Indexed: 12/24/2022] Open
Abstract
γ-aminobutyric acid (GABA) is a non-protein amino acid which naturally and widely occurs in animals, plants, and microorganisms. As the chief inhibitory neurotransmitter in the central nervous system of mammals, it has become a popular dietary supplement and has promising application in food industry. The current article reviews the most recent literature regarding the physiological functions, preparation methods, enrichment methods, metabolic pathways, and applications of GABA. This review sheds light on developing GABA-enriched plant varieties and food products, and provides insights for efficient production of GABA through synthetic biology approaches.
Collapse
Affiliation(s)
- Zhou Heli
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Chen Hongyu
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Bao Dapeng
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, China,National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China
| | - Tan Yee Shin
- Faculty of Science and Mushroom Research Centre, Institute of Biological Sciences, University of Malaya, Kuala Lumpur, Malaysia
| | - Zhong Yejun
- State Key Laboratory of Food Science and Technology, Nanchang University, Nanchang, Jiangxi, China
| | - Zhang Xi
- BannerBio Nutraceuticals Inc., Shenzhen, China
| | - Wu Yingying
- National Engineering Research Center of Edible Fungi, Key Laboratory of Applied Mycological Resources and Utilization of Ministry of Agriculture, Institute of Edible Fungi, Shanghai Academy of Agricultural Sciences, Shanghai, China,*Correspondence: Wu Yingying,
| |
Collapse
|
30
|
Kang DM, Kwon JM, Jeong WJ, Jung YJ, Kang KK, Ahn MJ. Antioxidant Constituents and Activities of the Pulp with Skin of Korean Tomato Cultivars. Molecules 2022; 27:molecules27248741. [PMID: 36557874 PMCID: PMC9786122 DOI: 10.3390/molecules27248741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 12/02/2022] [Accepted: 12/05/2022] [Indexed: 12/14/2022] Open
Abstract
Tomato is a widely distributed, cultivated, and commercialized vegetable crop. It contains antioxidant constituents including lycopene, tocopherols, vitamin C, γ-aminobutyric acid, phenols, and flavonoids. This study determined the contents of the antioxidant components and activities of the pulp with skin of ten regular, six medium-sized, and two small cherry tomato cultivars at red ripe (BR + 10) stage cultivated in Korea. The relationships among the Hunter color coordinates, the content of each component, and antioxidant activities were measured by Pearson's correlation coefficients. As the a* value increased, the carotenoid and vitamin C contents increased, while the L* value, hue angle and tocopherol content decreased. As the b* value increased, the lycopene and total carotenoid contents decreased, and the flavonoid content in the hydrophilic extracts increased. The contents of vitamin C and total carotenoids including lycopene showed high positive correlations with the DPPH radical scavenging activities of both the lipophilic and hydrophilic extracts. Tocopherols and total phenolics in the hydrophilic and lipophilic extracts were not major positive contributors to the antioxidant activity. These findings suggest the quality standards for consumer requirements and inputs for on-going research for the development of better breeds.
Collapse
Affiliation(s)
- Dong-Min Kang
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Ji-Min Kwon
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Woo-Jin Jeong
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
| | - Yu Jin Jung
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
| | - Kwon Kyoo Kang
- Division of Horticultural Biotechnology, Hankyong National University, Anseong 17579, Republic of Korea
- Institute of Genetic Engineering, Hankyong National University, Anseong 17579, Republic of Korea
- Correspondence: (K.K.K.); (M.-J.A.); Tel.: +82-55-772-2425 (M.-J.A.)
| | - Mi-Jeong Ahn
- College of Pharmacy and Research Institute of Pharmaceutical Sciences, Gyeongsang National University, Jinju 52828, Republic of Korea
- Correspondence: (K.K.K.); (M.-J.A.); Tel.: +82-55-772-2425 (M.-J.A.)
| |
Collapse
|
31
|
Wekesa C, Asudi GO, Okoth P, Reichelt M, Muoma JO, Furch ACU, Oelmüller R. Rhizobia Contribute to Salinity Tolerance in Common Beans ( Phaseolus vulgaris L.). Cells 2022; 11:cells11223628. [PMID: 36429056 PMCID: PMC9688157 DOI: 10.3390/cells11223628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 11/10/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022] Open
Abstract
Rhizobia are soil bacteria that induce nodule formation on leguminous plants. In the nodules, they reduce dinitrogen to ammonium that can be utilized by plants. Besides nitrogen fixation, rhizobia have other symbiotic functions in plants including phosphorus and iron mobilization and protection of the plants against various abiotic stresses including salinity. Worldwide, about 20% of cultivable and 33% of irrigation land is saline, and it is estimated that around 50% of the arable land will be saline by 2050. Salinity inhibits plant growth and development, results in senescence, and ultimately plant death. The purpose of this study was to investigate how rhizobia, isolated from Kenyan soils, relieve common beans from salinity stress. The yield loss of common bean plants, which were either not inoculated or inoculated with the commercial R. tropici rhizobia CIAT899 was reduced by 73% when the plants were exposed to 300 mM NaCl, while only 60% yield loss was observed after inoculation with a novel indigenous isolate from Kenyan soil, named S3. Expression profiles showed that genes involved in the transport of mineral ions (such as K+, Ca2+, Fe3+, PO43-, and NO3-) to the host plant, and for the synthesis and transport of osmotolerance molecules (soluble carbohydrates, amino acids, and nucleotides) are highly expressed in S3 bacteroids during salt stress than in the controls. Furthermore, genes for the synthesis and transport of glutathione and γ-aminobutyric acid were upregulated in salt-stressed and S3-inocculated common bean plants. We conclude that microbial osmolytes, mineral ions, and antioxidant molecules from rhizobia enhance salt tolerance in common beans.
Collapse
Affiliation(s)
- Clabe Wekesa
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - George O. Asudi
- Department of Biochemistry, Microbiology and Biotechnology, Kenyatta University, P.O. Box 43844, Nairobi 00100, Kenya
| | - Patrick Okoth
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Michael Reichelt
- Department of Biochemistry, Max Planck Institute for Chemical Ecology, Hans-Knöll-Str. 8, 07745 Jena, Germany
| | - John O. Muoma
- Department of Biological Sciences, Masinde Muliro University of Science and Technology, P.O. Box 190-50100, Kakamega 50100, Kenya
| | - Alexandra C. U. Furch
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
| | - Ralf Oelmüller
- Matthias Schleiden Institute of Genetics, Bioinformatics and Molecular Botany, Friedrich-Schiller-University Jena, Dornburger Str. 159, 07743 Jena, Germany
- Correspondence:
| |
Collapse
|
32
|
Akbar A, Ashraf MA, Rasheed R, Hussain I, Ali S, Parveen A. Exogenous menadione sodium bisulphite alleviates detrimental effects of alkaline stress on wheat ( Triticum aestivum L.). PHYSIOLOGY AND MOLECULAR BIOLOGY OF PLANTS : AN INTERNATIONAL JOURNAL OF FUNCTIONAL PLANT BIOLOGY 2022; 28:1889-1903. [PMID: 36484028 PMCID: PMC9723007 DOI: 10.1007/s12298-022-01250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 11/07/2022] [Accepted: 11/09/2022] [Indexed: 06/17/2023]
Abstract
Menadione sodium bisulphite (MSB) is known to augment plant defense responses against abiotic and biotic stresses. Wheat is an essential cereal with significant sensitivity to alkaline stress. The present study investigated the effects of MSB seed priming (5 and 10 mM) in alleviating the damaging effects of alkaline stress on hydroponically grown wheat cultivars (salt-sensitive cv. MH-97 and salt-tolerant cv. Millat-2011). Our findings revealed a significant reduction in growth, chlorophyll contents, total soluble proteins, free amino acids, K+, Ca2+, P, and K+/Na+ in wheat cultivars under alkaline stress. In contrast, a noteworthy accretion in lipid peroxidation, H2O2 production, proline levels, antioxidant enzyme activities, soluble sugars, antioxidant compounds, and Na+ levels was noticed in wheat plants grown in alkaline hydroponic medium. MSB priming significantly lowered chlorophyll degradation, Na+ levels, and osmolyte accumulation. Further, K+/Na+ ratio, antioxidant compounds, and antioxidant enzyme activities were higher in plants primed with MSB. Therefore, seed priming eminently protected plants by regulating osmotic adjustment and strengthening oxidative defense under alkaline stress. Plants administered 5 mM MSB as seed priming manifested better tolerance to alkaline stress. Supplementary Information The online version contains supplementary material available at 10.1007/s12298-022-01250-z.
Collapse
Affiliation(s)
- Ali Akbar
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Muhammad Arslan Ashraf
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Rizwan Rasheed
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Iqbal Hussain
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| | - Shafaqat Ali
- Department of Environmental Sciences and Engineering, Government College University, Faisalabad, Pakistan
- Department of Biological Sciences and Technology, China Medical University, Taichung, 40402 Taiwan
| | - Abida Parveen
- Department of Botany, Government College University Faisalabad, New Campus, Jhang Road, Faisalabad, 38000 Pakistan
| |
Collapse
|
33
|
Guo M, Wang XS, Guo HD, Bai SY, Khan A, Wang XM, Gao YM, Li JS. Tomato salt tolerance mechanisms and their potential applications for fighting salinity: A review. FRONTIERS IN PLANT SCIENCE 2022; 13:949541. [PMID: 36186008 PMCID: PMC9515470 DOI: 10.3389/fpls.2022.949541] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Accepted: 08/17/2022] [Indexed: 06/01/2023]
Abstract
One of the most significant environmental factors affecting plant growth, development and productivity is salt stress. The damage caused by salt to plants mainly includes ionic, osmotic and secondary stresses, while the plants adapt to salt stress through multiple biochemical and molecular pathways. Tomato (Solanum lycopersicum L.) is one of the most widely cultivated vegetable crops and a model dicot plant. It is moderately sensitive to salinity throughout the period of growth and development. Biotechnological efforts to improve tomato salt tolerance hinge on a synthesized understanding of the mechanisms underlying salinity tolerance. This review provides a comprehensive review of major advances on the mechanisms controlling salt tolerance of tomato in terms of sensing and signaling, adaptive responses, and epigenetic regulation. Additionally, we discussed the potential application of these mechanisms in improving salt tolerance of tomato, including genetic engineering, marker-assisted selection, and eco-sustainable approaches.
Collapse
Affiliation(s)
- Meng Guo
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Xin-Sheng Wang
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Hui-Dan Guo
- College of Horticulture and Landscape, Henan Institute of Science and Technology, Xinxiang, China
| | - Sheng-Yi Bai
- School of Agriculture, Ningxia University, Yinchuan, China
| | - Abid Khan
- Department of Horticulture, The University of Haripur, Haripur, Pakistan
| | - Xiao-Min Wang
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Yan-Ming Gao
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| | - Jian-She Li
- School of Agriculture, Ningxia University, Yinchuan, China
- Key Laboratory of Modern Molecular Breeding for Dominant and Special Crops in Ningxia, Yinchuan, China
- Ningxia Modern Facility Horticulture Engineering Technology Research Center, Yinchuan, China
- Ningxia Facility Horticulture Technology Innovation Center, Ningxia University, Yinchuan, China
| |
Collapse
|
34
|
Liu Y, Liu X, Dong X, Yan J, Xie Z, Luo Y. The effect of Azorhizobium caulinodans ORS571 and γ-aminobutyric acid on salt tolerance of Sesbania rostrata. FRONTIERS IN PLANT SCIENCE 2022; 13:926850. [PMID: 36046585 PMCID: PMC9423025 DOI: 10.3389/fpls.2022.926850] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Accepted: 07/18/2022] [Indexed: 05/27/2023]
Abstract
Salt stress seriously affects plant growth and crop yield, and has become an important factor that threatens the soil quality worldwide. In recent years, the cultivation of salt-tolerant plants such as Sesbania rostrata has a positive effect on improving coastal saline-alkali land. Microbial inoculation and GABA addition have been shown to enhance the plant tolerance in response to the abiotic stresses, but studies in green manure crops and the revelation of related mechanisms are not clear. In this study, the effects of inoculation with Azorhizobium caulinodans ORS571 and exogenous addition of γ-Aminobutyric Acid (GABA; 200 mg·L-1) on the growth and development of S. rostrata under salt stress were investigated using potting experiments of vermiculite. The results showed that inoculation with ORS571 significantly increased the plant height, biomass, chlorophyll content, proline content (PRO), catalase (CAT) activity, and superoxide dismutase (SOD) activity of S. rostrata and reduced the malondialdehyde (MDA) level of leaves. The exogenous addition of GABA also increased the height, biomass, and CAT activity and reduced the MDA and PRO level of leaves. In addition, exogenous addition of GABA still had a certain improvement on the CAT activity and chlorophyll content of the ORS571-S. rostrata symbiotic system. In conclusion, ORS571 inoculation and GABA application have a positive effect on improving the salt stress tolerance in S. rostrata, which are closely associated with increasing chlorophyll synthesis and antioxidant enzyme activity and changing the amino acid content. Therefore, it can be used as a potential biological measure to improve the saline-alkali land.
Collapse
Affiliation(s)
- Yanan Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaolin Liu
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Xiaoyan Dong
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Jiaming Yan
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
| | - Zhihong Xie
- National Engineering Research Center for Efficient Utilization of Soil and Fertilizer Resources, College of Resources and Environment of Shandong Agricultural University, Taian, China
| | - Yongming Luo
- CAS Key Laboratory of Coastal Environmental Processes and Ecological Remediation, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai, China
- CAS Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| |
Collapse
|
35
|
Li Y, Li Y, Cui Y, Xie Y, Shi Y, Shang Y, Ma F, Zhang J, Li C. GABA-mediated inhibition of cadmium uptake and accumulation in apples. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 300:118867. [PMID: 35063536 DOI: 10.1016/j.envpol.2022.118867] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 12/30/2021] [Accepted: 01/15/2022] [Indexed: 06/14/2023]
Abstract
GABA, a four-carbon non-protein amino acid, plays an important role in animals and plants. We previously found GABA could alleviate alkali stress in apple seedlings. However, its physiological mechanism under heavy metal cadmium (Cd) stress need to be further studied. Thus, we explored its biological role in response to Cd stress. It was verified that 0.5 mM GABA could effectively alleviate Cd toxicity. Using NMT technique, we found that exogenous GABA could significantly reduce the net Cd2+ fluxes in apple roots, and Cd content was significantly lower than that in roots under Cd stress. Further analysis indicated exogenous GABA could significantly reduce the expression of genes related to the uptake and transport of Cd in apples under Cd stress. In addition, exogenous GABA could significantly increase the content of amino acids in apple roots under Cd stress. GAD is a key enzyme in GABA synthesis, we obtained transgenic apple roots of overexpression MdGAD1. Compared with the control, transgenic roots accumulated less Cd, maintained lower Cd uptake by roots, and lower expression of related transport genes. These results showed that GABA could effectively alleviate Cd toxicity in apple seedlings and provide a new perspective of GABA to alleviate Cd stress.
Collapse
Affiliation(s)
- Yuxing Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yunhao Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yinglian Cui
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yuanmei Xie
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yanjiao Shi
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Yueming Shang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Fengwang Ma
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Jing Zhang
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Cuiying Li
- State Key Laboratory of Crop Stress Biology for Arid Areas, Shaanxi Key Laboratory of Apple, College of Horticulture, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
36
|
Li Z, Zhu L, Zhao F, Li J, Zhang X, Kong X, Wu H, Zhang Z. Plant Salinity Stress Response and Nano-Enabled Plant Salt Tolerance. FRONTIERS IN PLANT SCIENCE 2022; 13:843994. [PMID: 35392516 PMCID: PMC8981240 DOI: 10.3389/fpls.2022.843994] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Accepted: 02/25/2022] [Indexed: 05/27/2023]
Abstract
The area of salinized land is gradually expanding cross the globe. Salt stress seriously reduces the yield and quality of crops and endangers food supply to meet the demand of the increased population. The mechanisms underlying nano-enabled plant tolerance were discussed, including (1) maintaining ROS homeostasis, (2) improving plant's ability to exclude Na+ and to retain K+, (3) improving the production of nitric oxide, (4) increasing α-amylase activities to increase soluble sugar content, and (5) decreasing lipoxygenase activities to reduce membrane oxidative damage. The possible commonly employed mechanisms such as alleviating oxidative stress damage and maintaining ion homeostasis were highlighted. Further, the possible role of phytohormones and the molecular mechanisms in nano-enabled plant salt tolerance were discussed. Overall, this review paper aims to help the researchers from different field such as plant science and nanoscience to better understand possible new approaches to address salinity issues in agriculture.
Collapse
Affiliation(s)
- Zengqiang Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Lan Zhu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Fameng Zhao
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jiaqi Li
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xin Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Xiangjun Kong
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| | - Honghong Wu
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
- Shenzhen Institute of Nutrition and Health, Huazhong Agricultural University, Shenzhen, China
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Zhiyong Zhang
- Henan Collaborative Innovation Centre of Modern Biological Breeding, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
37
|
Zhang M, Liu Z, Fan Y, Liu C, Wang H, Li Y, Xin Y, Gai Y, Ji X. Characterization of GABA-Transaminase Gene from Mulberry ( Morus multicaulis) and Its Role in Salt Stress Tolerance. Genes (Basel) 2022; 13:501. [PMID: 35328056 PMCID: PMC8954524 DOI: 10.3390/genes13030501] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 03/09/2022] [Accepted: 03/10/2022] [Indexed: 11/16/2022] Open
Abstract
Gamma-aminobutyric acid (GABA) has been reported to accumulate in plants when subjected to salt stress, and GABA-transaminase (GABA-T) is the main GABA-degrading enzyme in the GABA shunt pathway. So far, the salt tolerance mechanism of the GABA-T gene behind the GABA metabolism remains unclear. In this study, the cDNA (designated MuGABA-T) of GABA-T gene was cloned from mulberry, and our data showed that MuGABA-T protein shares some conserved characteristics with its homologs from several plant species. MuGABA-T gene was constitutively expressed at different levels in mulberry tissues, and was induced substantially by NaCl, ABA and SA. In addition, our results demonstrated that exogenous application of GABA significantly reduced the salt damage index and increased plant resistance to NaCl stress. We further performed a functional analysis of MuGABA-T gene and demonstrated that the content of GABA was reduced in the transgenic MuGABA-T Arabidopsis plants, which accumulated more ROS and exhibited more sensitivity to salt stress than wild-type plants. However, exogenous application of GABA significantly increased the activities of antioxidant enzymes and alleviated the active oxygen-related injury of the transgenic plants under NaCl stress. Moreover, the MuGABA-T gene was overexpressed in the mulberry hairy roots, and similar results were obtained for sensitivity to salt stress in the transgenic mulberry plants. Our results suggest that the MuGABA-T gene plays a pivotal role in GABA catabolism and is responsible for a decrease in salt tolerance, and it may be involved in the ROS pathway in the response to salt stress. Taken together, the information provided here is helpful for further analysis of the function of GABA-T genes, and may promote mulberry resistance breeding in the future.
Collapse
Affiliation(s)
- Mengru Zhang
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Zhaoyang Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yiting Fan
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
| | - Chaorui Liu
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Hairui Wang
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yan Li
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Youchao Xin
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| | - Yingping Gai
- State Key Laboratory of Crop Biology, Shandong Agricultural University, Taian 271018, China; (M.Z.); (Y.F.)
| | - Xianling Ji
- College of Forestry, Shandong Agricultural University, Taian 271018, China; (Z.L.); (C.L.); (H.W.); (Y.L.); (Y.X.)
| |
Collapse
|
38
|
Li C, Zhu J, Sun L, Cheng Y, Hou J, Fan Y, Ge Y. Exogenous γ-aminobutyric acid maintains fruit quality of apples through regulation of ethylene anabolism and polyamine metabolism. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2021; 169:92-101. [PMID: 34773806 DOI: 10.1016/j.plaphy.2021.11.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2021] [Accepted: 11/06/2021] [Indexed: 06/13/2023]
Abstract
In this study, 'Golden Delicious' apples were dipped with γ-aminobutyric acid (GABA) solution to investigate the changes of quality parameters, ethylene anabolism, polyamine metabolism and GABA shunt. Results showed that GABA distinctly suppressed respiratory rate, reduced titratable acidity, maintained higher soluble solid content and pericarp firmness of apples. Compared to the control, GABA also repressed the activities and gene expressions of polyamine oxidase (PAO) and diamine oxidase (DAO), enhanced MdMT, MdMS, MdSAMS, MdSAMDC, MdSPDS, MdODC, MdADC, and MdACL5 expressions, and accelerated the accumulation of putrescine, spermidine, and spermine in the exocarp of apples. Moreover, GABA decreased ethylene release, MdACS and MdACO gene expressions in the exocarp. In addition, exogenous GABA activated MdGAD, MdGDH, MdGS expressions and inhibited MdGABA-T and MdSSADH expressions in the GABA shunt, therefore increased endogenous GABA, pyruvic acid and glutamate contents in the exocarp. These findings suggest that exogenous GABA regulates ethylene anabolism, polyamine metabolism and GABA shunt to maintain fruit quality of 'Golden Delicious' apples.
Collapse
Affiliation(s)
- Canying Li
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jie Zhu
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Lei Sun
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yuan Cheng
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Jiabao Hou
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yiting Fan
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China
| | - Yonghong Ge
- College of Food Science and Technology, Bohai University, Jinzhou, 121013, PR China; National and Local Joint Engineering Research Center of Storage, Processing and Safety Control Technology for Fresh Agricultural and Aquatic Products, Jinzhou, 121013, PR China.
| |
Collapse
|
39
|
Liu C, Wang H, Zhang X, Ma F, Guo T, Li C. Activation of the ABA Signal Pathway Mediated by GABA Improves the Drought Resistance of Apple Seedlings. Int J Mol Sci 2021; 22:ijms222312676. [PMID: 34884481 PMCID: PMC8657939 DOI: 10.3390/ijms222312676] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 11/18/2021] [Accepted: 11/22/2021] [Indexed: 02/06/2023] Open
Abstract
Drought seriously affects the yield and quality of apples. γ-aminobutyric acid (GABA) plays an important role in the responses of plants to various stresses. However, the role and possible mechanism of GABA in the drought response of apple seedlings remain unknown. To explore the effect of GABA on apple seedlings under drought stress, seedlings of Malus hupehensis were treated with seven concentrations of GABA, and the response of seedlings under 15-day drought stress was observed. The results showed that 0.5 mM GABA was the most effective at relieving drought stress. Treatment with GABA reduced the relative electrical conductivity and MDA content of leaves induced by drought stress and significantly increased the relative water content of leaves. Exogenous GABA significantly decreased the stomatal conductance and intercellular carbon dioxide concentration and transpiration rate, and it significantly increased the photosynthetic rate under drought. GABA also reduced the accumulation of superoxide anions and hydrogen peroxide in leaf tissues under drought and increased the activities of POD, SOD, and CAT and the content of GABA. Exogenous treatment with GABA acted through the accumulation of abscisic acid (ABA) in the leaves to significantly decrease stomatal conductance and increase the stomatal closure rate, and the levels of expression of ABA-related genes PYL4, ABI1, ABI2, HAB1, ABF3, and OST1 changed in response to drought. Taken together, exogenous GABA can enhance the drought tolerance of apple seedlings.
Collapse
|
40
|
Guo Q, Jiang J, Yao W, Li L, Zhao K, Cheng Z, Han L, Wei R, Zhou B, Jiang T. Genome-wide analysis of poplar HD-Zip family and over-expression of PsnHDZ63 confers salt tolerance in transgenic Populus simonii × P.nigra. PLANT SCIENCE : AN INTERNATIONAL JOURNAL OF EXPERIMENTAL PLANT BIOLOGY 2021; 311:111021. [PMID: 34482922 DOI: 10.1016/j.plantsci.2021.111021] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Revised: 08/05/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
HD-Zip is a plant-specific HB transcription factor, which participates in plant development and stress response. In this study, we identified 63 poplar HD-Zip transcription factors, which were randomly distributed on 19 chromosomes of poplar. Based on the gene structure and phylogenetic relationship, these members are divided into four groups, which have a variety of collinear evolutionary relationships. They also have rich segmental replication events and experienced strong purification selection. Based on RNA-seq analysis, we profiled the expression pattern of the 63 HD-Zip members under salt stress. Subsequently, we carried out in-depth study on the significantly up-regulated PsnHDZ63 in the stems and leaves. The transgenic Populus simonii × P.nigra plants over-expressing PsnHDZ63 displayed better morphological and physiological indexes than WT under salt stress. In addition, PsnHDZ63 enhanced salt stress tolerance of transgenic lines by combining effective stress-resistant elements to improve reactive oxygen species scavenging ability. These studies laid a foundation for a comprehensive understanding of poplar HD-Zip family members, and revealed the important role of PsnHDZ63 in plant salt tolerance.
Collapse
Affiliation(s)
- Qing Guo
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Jiahui Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Wenjing Yao
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, 159 Longpan Road, Nanjing, 210037, China
| | - Li Li
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Lianbin Han
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Ran Wei
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Boru Zhou
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, 51 Hexing Road, Harbin, 150040, China.
| |
Collapse
|
41
|
Shelp BJ, Aghdam MS, Flaherty EJ. γ-Aminobutyrate (GABA) Regulated Plant Defense: Mechanisms and Opportunities. PLANTS (BASEL, SWITZERLAND) 2021; 10:1939. [PMID: 34579473 PMCID: PMC8468876 DOI: 10.3390/plants10091939] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 09/13/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023]
Abstract
Global climate change and associated adverse abiotic and biotic stress conditions affect plant growth and development, and agricultural sustainability in general. Abiotic and biotic stresses reduce respiration and associated energy generation in mitochondria, resulting in the elevated production of reactive oxygen species (ROS), which are employed to transmit cellular signaling information in response to the changing conditions. Excessive ROS accumulation can contribute to cell damage and death. Production of the non-protein amino acid γ-aminobutyrate (GABA) is also stimulated, resulting in partial restoration of respiratory processes and energy production. Accumulated GABA can bind directly to the aluminum-activated malate transporter and the guard cell outward rectifying K+ channel, thereby improving drought and hypoxia tolerance, respectively. Genetic manipulation of GABA metabolism and receptors, respectively, reveal positive relationships between GABA levels and abiotic/biotic stress tolerance, and between malate efflux from the root and heavy metal tolerance. The application of exogenous GABA is associated with lower ROS levels, enhanced membrane stability, changes in the levels of non-enzymatic and enzymatic antioxidants, and crosstalk among phytohormones. Exogenous GABA may be an effective and sustainable tolerance strategy against multiple stresses under field conditions.
Collapse
Affiliation(s)
- Barry J. Shelp
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| | - Morteza Soleimani Aghdam
- Department of Horticultural Science, Imam Khomeini International University, Qazvin 34148-96818, Iran;
| | - Edward J. Flaherty
- Department of Plant Agriculture, University of Guelph, Guelph, ON N1G 2W1, Canada;
| |
Collapse
|
42
|
Ghosh UK, Islam MN, Siddiqui MN, Khan MAR. Understanding the roles of osmolytes for acclimatizing plants to changing environment: a review of potential mechanism. PLANT SIGNALING & BEHAVIOR 2021; 16:1913306. [PMID: 34134596 PMCID: PMC8244753 DOI: 10.1080/15592324.2021.1913306] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/02/2021] [Revised: 03/30/2021] [Accepted: 03/31/2021] [Indexed: 05/30/2023]
Abstract
Abiotic stresses are significant environmental issues that restrict plant growth, productivity, and survival while also posing a threat to global food production and security. Plants produce compatible solutes known as osmolytes to adapt themselves in such changing environment. Osmolytes contribute to homeostasis maintenance, provide the driving gradient for water uptake, maintain cell turgor by osmotic adjustment, and redox metabolism to remove excess level of reactive oxygen species (ROS) and reestablish the cellular redox balance as well as protect cellular machinery from osmotic stress and oxidative damage. Perceiving the mechanisms how plants interpret environmental signals and transmit them to cellular machinery to activate adaptive responses is important for crop improvement programs to get stress-tolerant varieties. A large number of studies conducted in the last few decades have shown that osmolytes accumulate in plants and have strong associations with abiotic stress tolerance. Production of abundant osmolytes is needed for tolerance in many plant species. In addition, transgenic plants overexpressing genes for different osmolytes showed enhanced tolerance to various abiotic stresses. Many important aspects of their mechanisms of action are yet to be largely identified, especially regarding the relevance and relative contribution of specific osmolytes to the stress tolerance of a given species. Therefore, more efforts and resources should be invested in the study of the abiotic stress responses of plants in their natural habitats. The present review focuses on the possible roles and mechanisms of osmolytes and their association toward abiotic stress tolerance in plants. This review would help the readers in learning more about osmolytes and how they behave in changing environments as well as getting an idea of how this knowledge could be applied to develop stress tolerance in plants.
Collapse
Affiliation(s)
- Uttam Kumar Ghosh
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nahidul Islam
- Department of Agro-Processing, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| | - Md. Nurealam Siddiqui
- Department of Biochemistry and Molecular Biology, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
- Institute of Crop Science and Resource Conservation (Inres)-plant Breeding and Biotechnology, University of Bonn, Bonn, Germany
| | - Md. Arifur Rahman Khan
- Department of Agronomy, Bangabandhu Sheikh Mujibur Rahman Agricultural University, Gazipur, Bangladesh
| |
Collapse
|
43
|
Zhang X, Cheng Z, Yao W, Zhao K, Wang X, Jiang T. Functional Characterization of PsnNAC036 under Salinity and High Temperature Stresses. Int J Mol Sci 2021; 22:2656. [PMID: 33800795 PMCID: PMC7961394 DOI: 10.3390/ijms22052656] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2021] [Revised: 02/24/2021] [Accepted: 03/01/2021] [Indexed: 12/30/2022] Open
Abstract
Plant growth and development are challenged by biotic and abiotic stresses including salinity and heat stresses. For Populus simonii × P. nigra as an important greening and economic tree species in China, increasing soil salinization and global warming have become major environmental challenges. We aim to unravel the molecular mechanisms underlying tree tolerance to salt stress and high temprerature (HT) stress conditions. Transcriptomics revealed that a PsnNAC036 transcription factor (TF) was significantly induced by salt stress in P. simonii × P. nigra. This study focuses on addressing the biological functions of PsnNAC036. The gene was cloned, and its temporal and spatial expression was analyzed under different stresses. PsnNAC036 was significantly upregulated under 150 mM NaCl and 37 °C for 12 h. The result is consistent with the presence of stress responsive cis-elements in the PsnNAC036 promoter. Subcellular localization analysis showed that PsnNAC036 was targeted to the nucleus. Additionally, PsnNAC036 was highly expressed in the leaves and roots. To investigate the core activation region of PsnNAC036 protein and its potential regulatory factors and targets, we conducted trans-activation analysis and the result indicates that the C-terminal region of 191-343 amino acids of the PsnNAC036 was a potent activation domain. Furthermore, overexpression of PsnNAC036 stimulated plant growth and enhanced salinity and HT tolerance. Moreover, 14 stress-related genes upregulated in the transgenic plants under high salt and HT conditions may be potential targets of the PsnNAC036. All the results demonstrate that PsnNAC036 plays an important role in salt and HT stress tolerance.
Collapse
Affiliation(s)
- Xuemei Zhang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Zihan Cheng
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Wenjing Yao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
- Co-Innovation Center for Sustainable Forestry in Southern China/Bamboo Research Institute, Nanjing Forestry University, Nanjing 210037, China
| | - Kai Zhao
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Xueyi Wang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| | - Tingbo Jiang
- State Key Laboratory of Tree Genetics and Breeding, Northeast Forestry University, Harbin 150040, China; (X.Z.); (Z.C.); (W.Y.); (K.Z.); (X.W.)
| |
Collapse
|
44
|
Li L, Dou N, Zhang H, Wu C. The versatile GABA in plants. PLANT SIGNALING & BEHAVIOR 2021; 16:1862565. [PMID: 33404284 PMCID: PMC7889023 DOI: 10.1080/15592324.2020.1862565] [Citation(s) in RCA: 111] [Impact Index Per Article: 27.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 12/05/2020] [Accepted: 12/07/2020] [Indexed: 05/19/2023]
Abstract
Gamma-aminobutyric acid (GABA) is a ubiquitous four-carbon, non-protein amino acid. GABA has been widely studied in animal central nervous systems, where it acts as an inhibitory neurotransmitter. In plants, it is metabolized through the GABA shunt pathway, a bypass of the tricarboxylic acid (TCA) cycle. Additionally, it can be synthesized through the polyamine metabolic pathway. GABA acts as a signal in Agrobacterium tumefaciens-mediated plant gene transformation and in plant development, especially in pollen tube elongation (to enter the ovule), root growth, fruit ripening, and seed germination. It is accumulated during plant responses to environmental stresses and pathogen and insect attacks. A high concentration of GABA elevates plant stress tolerance by improving photosynthesis, inhibiting reactive oxygen species (ROS) generation, activating antioxidant enzymes, and regulating stomatal opening in drought stress. The transporters of GABA in plants are reviewed in this work. We summarize the recent research on GABA function and transporters with the goal of providing a review of GABA in plants.
Collapse
Affiliation(s)
- Li Li
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Na Dou
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Hui Zhang
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| | - Chunxia Wu
- Shandong Provincial Key Laboratory of Plant Stress Research, College of Life Science, Shandong Normal University, Ji’nan, Shandong, China
| |
Collapse
|
45
|
Abd El-Gawad HG, Mukherjee S, Farag R, Abd Elbar OH, Hikal M, Abou El-Yazied A, Abd Elhady SA, Helal N, ElKelish A, El Nahhas N, Azab E, Ismail IA, Mbarki S, Ibrahim MFM. Exogenous γ-aminobutyric acid (GABA)-induced signaling events and field performance associated with mitigation of drought stress in Phaseolus vulgaris L. PLANT SIGNALING & BEHAVIOR 2021; 16:1853384. [PMID: 33356834 PMCID: PMC7849733 DOI: 10.1080/15592324.2020.1853384] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Not much information is available to substantiate the possible role of γ -aminobutyric acid (GABA) signaling in mitigating water-deficit stress in snap bean (Phaseolus vulgaris L.) plants under semiarid conditions. Present work aims to investigate the role of exogenous GABA (foliar application; 0.5, 1 and 2 mM) in amelioration of drought stress and improvement of field performance on snap bean plants raised under two drip irrigation regimes (100% and 70% of water requirements). Water stress led to significant reduction in plant growth, leaf relative water content (RWC), cell membrane stability index (CMSI), nutrient uptake (N, P, K, Ca, Fe and Zn), pod yield and its content from protein and total soluble solids (TSS). Meanwhile, lipid peroxidation (malondialdehyde content- MDA), osmolyte content (free amino acids- FAA, proline, soluble sugars) antioxidative defense (activity of superoxide dismutase- SOD, catalase- CAT, peroxidase- POX and ascorbate peroxidase- APX) and the pod fiber content exhibited significantly increase due to water stress. Exogenous GABA application (especially at 2 mM) revealed partial normalization of the effects of drought stress in snap bean plants. GABA-induced mitigation of drought stress was manifested by improvement in growth, water status, membrane integrity, osmotic adjustment, antioxidant defense and nutrient acquisition. Furthermore, GABA application during water stress in snap bean plants resulted in improvement of field performance being manifested by increased pod yield and its quality attributes. To sum up, exogenous GABA appears to function as an effective priming molecule to alleviate drought stress in snap bean plants under semiarid conditions.
Collapse
Affiliation(s)
- Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Soumya Mukherjee
- , Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
- CONTACT Soumya Mukherjee Department of Botany, Jangipur College (University of Kalyani), Chota Kalia, Jangipur, District Murshidabad West Bengal 742213, India
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed Hikal
- Department of Biochemistry, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Salama A. Abd Elhady
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Nesreen Helal
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Amr ElKelish
- Botany Department, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ehab Azab
- Department of Biotechnology, College of Science, Taif University, Saudi Arabia
- Botany and Microbiology Department, Faculty of Science, Zagazig University, Zagazig, Sharkia, Egypt
| | - Ismail A. Ismail
- Department of Biology, College of Science, Taif University, Saudi Arabia
- Agricultural Genetic Engineering Research Institute, Agricultural Research Center, Giza, Egypt
| | - Sonia Mbarki
- Laboratory of Valorisation of Unconventional Waters, National Institute of Research in Rural Engineering, Water and Forests(INRGREF), Ariana, Tunisia
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| |
Collapse
|
46
|
Chen Z, Lin S, Li J, Chen T, Gu Q, Yang T, Zhang Z. Theanine Improves Salt Stress Tolerance via Modulating Redox Homeostasis in Tea Plants ( Camellia sinensis L.). FRONTIERS IN PLANT SCIENCE 2021; 12:770398. [PMID: 34721495 PMCID: PMC8554060 DOI: 10.3389/fpls.2021.770398] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/27/2021] [Indexed: 05/11/2023]
Abstract
Theanine, a unique non-proteinogenic amino acid, is one of the most abundant secondary metabolites in tea. Its content largely determines green tea quality and price. However, its physiological roles in tea plants remain largely unknown. Here, we showed that salt stress significantly increased the accumulation of glutamate, glutamine, alanine, proline, and γ-aminobutyric acid, as well as theanine, in the new shoots of tea plants. We further found that salt stress induced the expression of theanine biosynthetic genes, including CsGOGATs, CsAlaDC, and CsTSI, suggested that salt stress induced theanine biosynthesis. Importantly, applying theanine to the new shoots significantly enhanced the salt stress tolerance. Similar effects were also found in a model plant Arabidopsis. Notably, exogenous theanine application increased the antioxidant activity of the shoots under salt stress, suggested by reduced the reactive oxygen species accumulation and lipid peroxidation, as well as by the increased SOD, CAT, and APX activities and expression of the corresponding genes. Finally, genetic evidence supported that catalase-mediated antioxidant scavenging pathway is required for theanine-induced salt stress tolerance. Taken together, this study suggested that salt stress induces theanine biosynthesize in tea plants to enhance the salt stress tolerance through a CAT-dependent redox homeostasis pathway.
Collapse
Affiliation(s)
- Ziping Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Shijia Lin
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Juan Li
- Biotechnology Center, Anhui Agricultural University, Hefei, China
| | - Tingting Chen
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Quan Gu
- School of Biology, Food and Environment, Hefei University, Hefei, China
| | - Tianyuan Yang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
| | - Zhaoliang Zhang
- State Key Laboratory of Tea Plant Biology and Utilization, Anhui Agricultural University, Hefei, China
- *Correspondence: Zhaoliang Zhang,
| |
Collapse
|
47
|
Mellidou I, Ainalidou A, Papadopoulou A, Leontidou K, Genitsaris S, Karagiannis E, Van de Poel B, Karamanoli K. Comparative Transcriptomics and Metabolomics Reveal an Intricate Priming Mechanism Involved in PGPR-Mediated Salt Tolerance in Tomato. FRONTIERS IN PLANT SCIENCE 2021; 12:713984. [PMID: 34484277 PMCID: PMC8416046 DOI: 10.3389/fpls.2021.713984] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Accepted: 07/01/2021] [Indexed: 05/21/2023]
Abstract
Plant-associated beneficial strains inhabiting plants grown under harsh ecosystems can help them cope with abiotic stress factors by positively influencing plant physiology, development, and environmental adaptation. Previously, we isolated a potential plant growth promoting strain (AXSa06) identified as Pseudomonas oryzihabitans, possessing 1-aminocyclopropane-1-carboxylate deaminase activity, producing indole-3-acetic acid and siderophores, as well as solubilizing inorganic phosphorus. In this study, we aimed to further evaluate the effects of AXSa06 seed inoculation on the growth of tomato seedlings under excess salt (200 mM NaCl) by deciphering their transcriptomic and metabolomic profiles. Differences in transcript levels and metabolites following AXSa06 inoculation seem likely to have contributed to the observed difference in salt adaptation of inoculated plants. In particular, inoculations exerted a positive effect on plant growth and photosynthetic parameters, imposing plants to a primed state, at which they were able to respond more robustly to salt stress probably by efficiently activating antioxidant metabolism, by dampening stress signals, by detoxifying Na+, as well as by effectively assimilating carbon and nitrogen. The primed state of AXSa06-inoculated plants is supported by the increased leaf lipid peroxidation, ascorbate content, as well as the enhanced activities of antioxidant enzymes, prior to stress treatment. The identified signatory molecules of AXSa06-mediated salt tolerance included the amino acids aspartate, threonine, serine, and glutamate, as well as key genes related to ethylene or abscisic acid homeostasis and perception, and ion antiporters. Our findings represent a promising sustainable solution to improve agricultural production under the forthcoming climate change conditions.
Collapse
Affiliation(s)
- Ifigeneia Mellidou
- Institute of Plant Breeding and Genetic Resources, Hellenic Agricultural Organization DEMETER (ex NAGREF), Thermi, Greece
- *Correspondence: Ifigeneia Mellidou
| | - Aggeliki Ainalidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Anastasia Papadopoulou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Kleopatra Leontidou
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Savvas Genitsaris
- Section of Ecology and Taxonomy, School of Biology, National and Kapodistrian University of Athens, Athens, Greece
| | - Evangelos Karagiannis
- Laboratory of Pomology, Department of Horticulture, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Bram Van de Poel
- Division of Crop Biotechnics, Department of Biosystems, University of Leuven, Leuven, Belgium
| | - Katerina Karamanoli
- Laboratory of Agricultural Chemistry, School of Agriculture, Aristotle University of Thessaloniki, Thessaloniki, Greece
- Katerina Karamanoli
| |
Collapse
|
48
|
Sangpong L, Khaksar G, Pinsorn P, Oikawa A, Sasaki R, Erban A, Watanabe M, Wangpaiboon K, Tohge T, Kopka J, Hoefgen R, Saito K, Sirikantaramas S. Assessing Dynamic Changes of Taste-Related Primary Metabolism During Ripening of Durian Pulp Using Metabolomic and Transcriptomic Analyses. FRONTIERS IN PLANT SCIENCE 2021; 12:687799. [PMID: 34220909 PMCID: PMC8250156 DOI: 10.3389/fpls.2021.687799] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 05/24/2021] [Indexed: 05/07/2023]
Abstract
Durian is an economically important fruit of Southeast Asia. There is, however, a lack of in-depth information on the alteration of its metabolic networks during ripening. Here, we annotated 94 ripening-associated metabolites from the pulp of durian cv. Monthong fruit at unripe and ripe stages, using capillary electrophoresis- and gas chromatography- time-of-flight mass spectrometry, specifically focusing on taste-related metabolites. During ripening, sucrose content increased. Change in raffinose-family oligosaccharides are reported herein for the first time. The malate and succinate contents increased, while those of citrate, an abundant organic acid, were unchanged. Notably, most amino acids increased, including isoleucine, leucine, and valine, whereas aspartate decreased, and glutamate was unchanged. Furthermore, transcriptomic analysis was performed to analyze the dynamic changes in sugar metabolism, glycolysis, TCA cycle, and amino acid pathways to identify key candidate genes. Taken together, our results elucidate the fundamental taste-related metabolism of durian, which can be exploited to develop durian metabolic and genetic markers in the future.
Collapse
Affiliation(s)
- Lalida Sangpong
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Gholamreza Khaksar
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Pinnapat Pinsorn
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Akira Oikawa
- Faculty of Agriculture, Yamagata University, Yamagata, Japan
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Ryosuke Sasaki
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Alexander Erban
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Mutsumi Watanabe
- Plant Secondary Metabolism, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Karan Wangpaiboon
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Takayuki Tohge
- Plant Secondary Metabolism, Graduate School of Science and Technology, Nara Institute of Science and Technology (NAIST), Nara, Japan
| | - Joachim Kopka
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Rainer Hoefgen
- Max Planck Institute of Molecular Plant Physiology, Potsdam, Germany
| | - Kazuki Saito
- Metabolomics Research Group, RIKEN Center for Sustainable Resource Science, Yokohama, Japan
| | - Supaart Sirikantaramas
- Molecular Crop Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Molecular Sensory Science Center, Chulalongkorn University, Bangkok, Thailand
- *Correspondence: Supaart Sirikantaramas,
| |
Collapse
|
49
|
Abd Elbar OH, Elkelish A, Niedbała G, Farag R, Wojciechowski T, Mukherjee S, Abou-Hadid AF, El-Hennawy HM, Abou El-Yazied A, Abd El-Gawad HG, Azab E, Gobouri AA, El Nahhas N, El-Sawy AM, Bondok A, Ibrahim MFM. Protective Effect of γ-Aminobutyric Acid Against Chilling Stress During Reproductive Stage in Tomato Plants Through Modulation of Sugar Metabolism, Chloroplast Integrity, and Antioxidative Defense Systems. FRONTIERS IN PLANT SCIENCE 2021; 12:663750. [PMID: 34733294 PMCID: PMC8559610 DOI: 10.3389/fpls.2021.663750] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/13/2021] [Indexed: 05/13/2023]
Abstract
Despite the role of γ-aminobutyric acid (GABA) in plant tolerance to chilling stress having been widely discussed in the seedling stage, very little information is clear regarding its implication in chilling tolerance during the reproductive stage of the plant. Here, we investigated the influence of GABA (1 and 2mM) as a foliar application on tomato plants (Solanum lycopersicum L. cv. Super Marmande) subjected to chilling stress (5°C for 6h/day) for 5 successive days during the flowering stage. The results indicated that applied GABA differentially influenced leaf pigment composition by decreasing the chlorophyll a/b ratio and increasing the anthocyanin relative to total chlorophyll. However, carotenoids were not affected in both GABA-treated and non-treated stressed plants. Root tissues significantly exhibited an increase in thermo-tolerance in GABA-treated plants. Furthermore, applied GABA substantially alleviated the chilling-induced oxidative damage by protecting cell membrane integrity and reducing malondialdehyde (MDA) and H2O2. This positive effect of GABA was associated with enhancing the activity of phenylalanine ammonia-lyase (PAL), catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX). Conversely, a downregulation of peroxidase (POX) and polyphenol oxidase (PPO) was observed under chilling stress which indicates its relevance in phenol metabolism. Interesting correlations were obtained between GABA-induced upregulation of sugar metabolism coinciding with altering secondary metabolism, activities of antioxidant enzymes, and maintaining the integrity of plastids' ultrastructure Eventually, applied GABA especially at 2mM improved the fruit yield and could be recommended to mitigate the damage of chilling stress in tomato plants.
Collapse
Affiliation(s)
- Ola H. Abd Elbar
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Amr Elkelish
- Department of Botany, Faculty of Science, Suez Canal University, Ismailia, Egypt
| | - Gniewko Niedbała
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Reham Farag
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Tomasz Wojciechowski
- Department of Biosystems Engineering, Faculty of Environmental and Mechanical Engineering, Poznań University of Life Sciences, Poznań, Poland
| | - Soumya Mukherjee
- Department of Botany, Jangipur College, University of Kalyani, West Bengal, India
| | - Ayman F. Abou-Hadid
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hussien M. El-Hennawy
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ahmed Abou El-Yazied
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Hany G. Abd El-Gawad
- Department of Horticulture, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Ehab Azab
- Department of Food Science and Nutrition, College of Science, Taif University, Taif, Saudi Arabia
| | - Adil A. Gobouri
- Department of Chemistry, College of Science, Taif University, Taif, Saudi Arabia
| | - Nihal El Nahhas
- Department of Botany and Microbiology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Ahmed M. El-Sawy
- Department of Climate Modification, Central Laboratory for Agriculture Climate, Agriculture Research Center, Giza, Egypt
| | - Ahmed Bondok
- Department of Plant Pathology, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
| | - Mohamed F. M. Ibrahim
- Department of Agricultural Botany, Faculty of Agriculture, Ain Shams University, Cairo, Egypt
- *Correspondence: Mohamed F. M. Ibrahim,
| |
Collapse
|