1
|
Ding Q, Huang Z, Wang Z, Jian S, Zhang M. Identifying Calmodulin and Calmodulin-like Protein Members in Canavalia rosea and Exploring Their Potential Roles in Abiotic Stress Tolerance. Int J Mol Sci 2024; 25:11725. [PMID: 39519274 PMCID: PMC11545983 DOI: 10.3390/ijms252111725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 10/23/2024] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Calmodulins (CaMs) and calmodulin-like proteins (CMLs) belong to families of calcium-sensors that act as calcium ion (Ca2+) signal-decoding proteins and regulate downstream target proteins. As a tropical halophyte, Canavalia rosea shows great resistance to multiple abiotic stresses, including high salinity/alkalinity, extreme drought, heat, and intense sunlight. However, investigations of calcium ion signal transduction involved in the stress responses of C. rosea are limited. The CaM and CML gene families have been identified and characterized in many other plant species. Nevertheless, there is limited available information about these genes in C. rosea. In this study, a bioinformatic analysis, including the gene structures, conserved protein domains, phylogenetic relationships, chromosome distribution, and gene synteny, was comprehensively performed to identify and characterize CrCaMs and CrCMLs. A spatio-temporal expression assay in different organs and environmental conditions was then conducted using the RNA sequencing technique. Additionally, several CrCaM and CrCML members were then cloned and functionally characterized using the yeast heterogeneous expression system, and some of them were found to change the tolerance of yeast to heat, salt, alkalinity, and high osmotic stresses. The results of this study provide a foundation for understanding the possible roles of the CrCaM and CrCML genes, especially for halophyte C. rosea's natural ecological adaptability for its native habitats. This study also provides a theoretical basis for further study of the physiological and biochemical functions of plant CaMs and CMLs that are involved in tolerance to multiple abiotic stresses.
Collapse
Affiliation(s)
- Qianqian Ding
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zengwang Huang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- University of Chinese Academy of Sciences, Beijing 100039, China
| | - Zhengfeng Wang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
- Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Shuguang Jian
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| | - Mei Zhang
- Guangdong Provincial Key Laboratory of Applied Botany & South China Agricultural Plant Molecular Analysis and Genetic Improvement, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China; (Q.D.); (Z.H.); (Z.W.); (S.J.)
- CAS Engineering Laboratory for Vegetation Ecosystem Restoration on Islands and Coastal Zones, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou 510650, China
| |
Collapse
|
2
|
Liu Q, Wen J, Wang S, Chen J, Sun Y, Liu Q, Li X, Dong S. Genome-wide identification, expression analysis, and potential roles under low-temperature stress of bHLH gene family in Prunus sibirica. FRONTIERS IN PLANT SCIENCE 2023; 14:1267107. [PMID: 37799546 PMCID: PMC10548393 DOI: 10.3389/fpls.2023.1267107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 08/30/2023] [Indexed: 10/07/2023]
Abstract
The basic helix-loop-helix (bHLH) family is one of the most well-known transcription factor families in plants, and it regulates growth, development, and abiotic stress responses. However, systematic analyses of the bHLH gene family in Prunus sibirica have not been reported to date. In this study, 104 PsbHLHs were identified and classified into 23 subfamilies that were unevenly distributed on eight chromosomes. Nineteen pairs of segmental replication genes and ten pairs of tandem replication genes were identified, and all duplicated gene pairs were under purifying selection. PsbHLHs of the same subfamily usually share similar motif compositions and exon-intron structures. PsbHLHs contain multiple stress-responsive elements. PsbHLHs exhibit functional diversity by interacting and coordinating with other members. Twenty PsbHLHs showed varying degrees of expression. Eleven genes up-regulated and nine genes down-regulated in -4°C. The majority of PsbHLHs were highly expressed in the roots and pistils. Transient transfection experiments demonstrated that transgenic plants with overexpressed PsbHLH42 have better cold tolerance. In conclusion, the results of this study have significant implications for future research on the involvement of bHLH genes in the development and stress responses of Prunus sibirica.
Collapse
Affiliation(s)
- Quangang Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jiaxing Wen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shipeng Wang
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Jianhua Chen
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Yongqiang Sun
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Qingbai Liu
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Xi Li
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| | - Shengjun Dong
- College of Forestry, Shenyang Agricultural University, Shenyang, China
- Key Laboratory for Silviculture of Liaoning, Shenyang Agricultural University, Shenyang, China
| |
Collapse
|
3
|
Vaziriyeganeh M, Khan S, Zwiazek JJ. Analysis of aquaporins in northern grasses reveal functional importance of Puccinellia nuttalliana PIP2;2 in salt tolerance. PLANT, CELL & ENVIRONMENT 2023; 46:2159-2173. [PMID: 37051679 DOI: 10.1111/pce.14589] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/10/2023] [Accepted: 03/29/2023] [Indexed: 06/08/2023]
Abstract
To better understand the roles of aquaporins in salt tolerance, we cloned PIP2;1, PIP2;2, PIP2;3, PIP1;1, PIP1;3, and TIP1;1 aquaporins from three northern grasses varying is salt tolerance including the halophytic grass Puccinellia nuttalliana, moderately salt tolerant Poa juncifolia, and relatively salt sensitive Poa pratensis. We analysed aquaporin expression in roots by exposing the plants to 0 and 150 mM for 6 days in hydroponic culture. NaCl treatment upregulated several PIP transcripts in P. nuttalliana while decreasing PnuTIP1;1. The PnuPIP2;2 transcripts increased by about six-fold in P. nuttalliana, two-fold in Poa juncifolia, and did not change in Poa pratensis. The NaCl treatment enhanced the rate of water transport in yeast expressing PnuPIP2;2 by 56% compared with control. PnuPIP2,2 expression also resulted in a higher Na+ uptake in yeast cells compared with an empty vector suggesting that PnuPIP2;2 may have both water and ion transporting functions. Structural analysis revealed that the transport properties of PnuPIP2;2 could be affected by its unique pore characteristics, which include a combination of hourglass, cylindrical, and increasing diameter conical entrance shape with pore hydropathy of -0.22.
Collapse
Affiliation(s)
| | - Shanjida Khan
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| | - Janusz J Zwiazek
- Department of Renewable Resources, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
4
|
Singh L, Pruthi R, Chapagain S, Subudhi PK. Genome-Wide Association Study Identified Candidate Genes for Alkalinity Tolerance in Rice. PLANTS (BASEL, SWITZERLAND) 2023; 12:plants12112206. [PMID: 37299185 DOI: 10.3390/plants12112206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 06/01/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023]
Abstract
Alkalinity stress is a major hindrance to enhancing rice production globally due to its damaging effect on plants' growth and development compared with salinity stress. However, understanding of the physiological and molecular mechanisms of alkalinity tolerance is limited. Therefore, a panel of indica and japonica rice genotypes was evaluated for alkalinity tolerance at the seedling stage in a genome-wide association study to identify tolerant genotypes and candidate genes. Principal component analysis revealed that traits such as alkalinity tolerance score, shoot dry weight, and shoot fresh weight had the highest contribution to variations in tolerance, while shoot Na+ concentration, shoot Na+:K+ ratio, and root-to-shoot ratio had moderate contributions. Phenotypic clustering and population structure analysis grouped the genotypes into five subgroups. Several salt-susceptible genotypes such as IR29, Cocodrie, and Cheniere placed in the highly tolerant cluster suggesting different underlying tolerance mechanisms for salinity and alkalinity tolerance. Twenty-nine significant SNPs associated with alkalinity tolerance were identified. In addition to three alkalinity tolerance QTLs, qSNK4, qSNC9, and qSKC10, which co-localized with the earlier reported QTLs, a novel QTL, qSNC7, was identified. Six candidate genes that were differentially expressed between tolerant and susceptible genotypes were selected: LOC_Os04g50090 (Helix-loop-helix DNA-binding protein), LOC_Os08g23440 (amino acid permease family protein), LOC_Os09g32972 (MYB protein), LOC_Os08g25480 (Cytochrome P450), LOC_Os08g25390 (Bifunctional homoserine dehydrogenase), and LOC_Os09g38340 (C2H2 zinc finger protein). The genomic and genetic resources such as tolerant genotypes and candidate genes would be valuable for investigating the alkalinity tolerance mechanisms and for marker-assisted pyramiding of the favorable alleles for improving alkalinity tolerance at the seedling stage in rice.
Collapse
Affiliation(s)
- Lovepreet Singh
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Rajat Pruthi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Sandeep Chapagain
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| | - Prasanta K Subudhi
- School of Plant, Environmental, and Soil Sciences, Louisiana State University Agricultural Center, Baton Rouge, LA 70803, USA
| |
Collapse
|
5
|
Rao Y, Peng T, Xue S. Mechanisms of plant saline-alkaline tolerance. JOURNAL OF PLANT PHYSIOLOGY 2023; 281:153916. [PMID: 36645936 DOI: 10.1016/j.jplph.2023.153916] [Citation(s) in RCA: 23] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 12/28/2022] [Accepted: 01/09/2023] [Indexed: 06/17/2023]
Abstract
Saline-alkaline soil affects crop growth and development, thereby suppressing the yields. Human activities and climate changes are putting arable land under the threat of saline-alkalization. To feed a growing global population in limited arable land, it is of great urgence to breed saline-alkaline tolerant crops to cope with food security. Plant salt-tolerance mechanisms have already been explored for decades. However, to date, the molecular mechanisms underlying plants responses to saline-alkaline stress have remained largely elusive. Here, we summarize recent advances in plant response to saline-alkaline stress and propose some points deserving of further exploration.
Collapse
Affiliation(s)
- Ying Rao
- College of Agriculture, Guizhou University, Guiyang, 550025, China
| | - Ting Peng
- College of Agriculture, Guizhou University, Guiyang, 550025, China.
| | - Shaowu Xue
- College of Life Science and Technology, Hubei Hongshan Laboratory, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
6
|
Tayade R, Rana V, Shafiqul M, Nabi RBS, Raturi G, Dhar H, Thakral V, Kim Y. Genome-Wide Identification of Aquaporin Genes in Adzuki Bean ( Vigna angularis) and Expression Analysis under Drought Stress. Int J Mol Sci 2022; 23:ijms232416189. [PMID: 36555833 PMCID: PMC9782098 DOI: 10.3390/ijms232416189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/15/2022] [Accepted: 12/16/2022] [Indexed: 12/23/2022] Open
Abstract
The adzuki bean Vigna angularis (Wild.) is an important leguminous crop cultivated mainly for food purposes in Asian countries; it represents a source of carbohydrates, digestible proteins, minerals, and vitamins. Aquaporins (AQPs) are crucial membrane proteins involved in the transmembrane diffusion of water and small solutes in all living organisms, including plants. In this study, we used the whole genome sequence of the adzuki bean for in silico analysis to comprehensively identify 40 Vigna angularis aquaporin (VaAQP) genes and reveal how these plants react to drought stress. VaAQPs were compared with AQPs from other closely-related leguminous plants, and the results showed that mustard (Brassica rapa) (59), barrel medic (Medicago truncatula) (46), soybean (Glycine max) (66), and common bean (Phaseolus vulgaris L.) (41) had more AQP genes. Phylogenetic analysis revealed that forty VaAQPs belong to five subfamilies, with the VaPIPs (fifteen) subfamily the largest, followed by the VaNIPs (ten), VaTIPs (ten), VaSIPs (three), and VaXIPs (two) subfamilies. Furthermore, all AQP subcellular locations were found at the plasma membrane, and intron-exon analysis revealed a relationship between the intron number and gene expression, duplication, evolution, and diversity. Among the six motifs identified, motifs one, two, five, and six were prevalent in VaTIP, VaNIP, VaPIP, and VaXIP, while motifs one, three, and four were not observed in VaPIP1-3 and VaPIP1-4. Under drought stress, two of the VaAQPs (VaPIP2-1 and VaPIP2-5) showed significantly higher expression in the root tissue while the other two genes (VaPIP1-1 and VaPIP1-7) displayed variable expression in leaf tissue. This finding revealed that the selected VaAQPs might have unique molecular functions linked with the uptake of water under drought stress or in the exertion of osmoregulation to transport particular substrates rather than water to protect plants from drought. This study presents the first thorough investigation of VaAQPs in adzuki beans, and it reveals the transport mechanisms and related physiological processes that may be utilized for the development of drought-tolerant adzuki bean cultivars.
Collapse
Affiliation(s)
- Rupesh Tayade
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Varnika Rana
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Mohammad Shafiqul
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Rizwana Begum Syed Nabi
- Department of Southern Area Crop Science, National Institute of Crop Science, Rural Development Administration, Miryang 50424, Republic of Korea
| | - Gaurav Raturi
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Hena Dhar
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Vandana Thakral
- National Agri-Food Biotechnology Institute (NABI), Mohali 140306, India
| | - Yoonha Kim
- Department of Applied Biosciences, Kyungpook National University, Daegu 41566, Republic of Korea
- Correspondence: ; Tel./Fax: +82-53-950-5710
| |
Collapse
|
7
|
El-Badri AM, Batool M, Mohamed IAA, Wang Z, Wang C, Tabl KM, Khatab A, Kuai J, Wang J, Wang B, Zhou G. Mitigation of the salinity stress in rapeseed (Brassica napus L.) productivity by exogenous applications of bio-selenium nanoparticles during the early seedling stage. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 310:119815. [PMID: 35926737 DOI: 10.1016/j.envpol.2022.119815] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Revised: 05/28/2022] [Accepted: 07/17/2022] [Indexed: 06/15/2023]
Abstract
In recent years, much attention has been directed toward using nanoparticles (NPs) as one of the most effective strategies to improve plant growth, especially under salt stress conditions. Further research has been conducted to develop NPs using various chemical ways; accordingly, knowledge about the beneficial effect of bioSeNPs in rapeseed is obscure. Selenium (Se) is a vital micronutrient with a series of physiological and antioxidative properties. Seed priming is emerging as a low-cost, efficient, and environment-friendly seed treatment in nanotechnology. The current study was carried out to examine the promising effects of nanopriming via bioSeNPs on the expression level of aquaporin genes, seed microstructure, seed germination, growth traits, physiochemical attributes, and minerals uptake of two rapeseed cultivars under salinity stress conditions. Our investigation monitored the positive effects of bioSeNPs on the expression level of aquaporin genes (BnPIP1-1 and BnPIP2-1) and water uptake during the seed imbibition (4 and 8 h of priming), which indicated higher imbibition potential and germination promotion with bioSeNPs application (most effective at 150 μmol/L). The total performance index was significantly enhanced with nano-treatments in rapeseed seedlings. Collectively, nano-application improved seed microstructure, seed germination, and photosynthetic efficiency directly correlated with higher seedlings biomass, especially with a higher concentration of bioSeNPs. The enhancement in α-amylase and free amino acid contents in nanoprimed seeds resulted in rapid seed germination. Moreover, bioSeNPs increased the osmotic adjustment and enhanced the efficiency of the plant's defense system by improving the activity of enzymatic and non-enzymatic antioxidants, thus enhancing ROS scavenging under salt stress. The obtained results may indicate the strengthening of seed vigor, improving seedling growth and physiochemical attributes via bioSeNPs. Our findings displayed that bioSeNPs modulated the Na+ and K+ uptake, which improved the rapeseed growth and showed a close relationship with the low contents of toxic Na+ ion; thus, it prevented oxidative damage due to salt stress. This comprehensive data can add more knowledge to understand the mechanisms behind plant-bioSeNPs interaction and provide physiological evidence for the beneficial roles of nanopriming using bioSeNPs on rapeseed germination and seedling development under salinity stress conditions. Such studies can be used to develop simple prepackaged nano primer products, which can be used before sowing to boost seed germination and crop productivity under stress conditions.
Collapse
Affiliation(s)
- Ali Mahmoud El-Badri
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Maria Batool
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Ibrahim A A Mohamed
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Botany Department, Faculty of Agriculture, Fayoum University, Fayoum, 63514, Egypt
| | - Zongkai Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Chunyun Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Karim M Tabl
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Agricultural Botany Department, Faculty of Agriculture (Saba Basha), Alexandria University, 21531, Alexandria, Egypt
| | - Ahmed Khatab
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China; Field Crops Research Institute, Agricultural Research Center (ARC), Giza, 12619, Egypt
| | - Jie Kuai
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jing Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| | - Bo Wang
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Guangsheng Zhou
- MOA Key Laboratory of Crop Ecophysiology and Farming System in the Middle Reaches of the Yangtze River, College of Plant Science & Technology, Huazhong Agricultural University, Wuhan, 430070, China
| |
Collapse
|
8
|
Yi X, Sun X, Tian R, Li K, Ni M, Ying J, Xu L, Liu L, Wang Y. Genome-Wide Characterization of the Aquaporin Gene Family in Radish and Functional Analysis of RsPIP2-6 Involved in Salt Stress. FRONTIERS IN PLANT SCIENCE 2022; 13:860742. [PMID: 35909741 PMCID: PMC9337223 DOI: 10.3389/fpls.2022.860742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Accepted: 06/20/2022] [Indexed: 06/15/2023]
Abstract
Aquaporins (AQPs) constitute a highly diverse family of channel proteins that transport water and neutral solutes. AQPs play crucial roles in plant development and stress responses. However, the characterization and biological functions of RsAQPs in radish (Raphanus sativus L.) remain elusive. In this study, 61 non-redundant members of AQP-encoding genes were identified from the radish genome database and located on nine chromosomes. Radish AQPs (RsAQPs) were divided into four subfamilies, including 21 plasma membrane intrinsic proteins (PIPs), 19 tonoplast intrinsic proteins (TIPs), 16 NOD-like intrinsic proteins (NIPs), and 5 small basic intrinsic proteins (SIPs), through phylogenetic analysis. All RsAQPs contained highly conserved motifs (motifs 1 and 4) and transmembrane regions, indicating the potential transmembrane transport function of RsAQPs. Tissue- and stage-specific expression patterns of AQP gene analysis based on RNA-seq data revealed that the expression levels of PIPs were generally higher than TIPs, NIPs, and SIPs in radish. In addition, quantitative real-time polymerase chain reaction (qRT-PCR) revealed that seven selected RsPIPs, according to our previous transcriptome data (e.g., RsPIP1-3, 1-6, 2-1, 2-6, 2-10, 2-13, and 2-14), exhibited significant upregulation in roots of salt-tolerant radish genotype. In particular, the transcriptional levels of RsPIP2-6 dramatically increased after 6 h of 150 mM NaCl treatment during the taproot thickening stage. Additionally, overexpression of RsPIP2-6 could enhance salt tolerance by Agrobacterium rhizogenes-mediated transgenic radish hairy roots, which exhibited the mitigatory effects of plant growth reduction, leaf relative water content (RWC) reduction and alleviation of O2- in cells, as shown by nitro blue tetrazolium (NBT) staining, under salt stress. These findings are helpful for deeply dissecting the biological function of RsAQPs on the salt stress response, facilitating practical application and genetic improvement of abiotic stress resistance in radish.
Collapse
Affiliation(s)
- Xiaofang Yi
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Xiaochuan Sun
- College of Life Science and Food Engineering, Huaiyin Institute of Technology, Huai’an, China
| | - Rong Tian
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Kexin Li
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Meng Ni
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Jiali Ying
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liang Xu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Liwang Liu
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| | - Yan Wang
- National Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Horticultural Crop Biology and Genetic Improvement (East China), Ministry of Agriculture and Rural Affairs, College of Horticulture, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|