1
|
Wang M, Yang Y, Li D, Wang Y, Ji T, Li Q, Zhang J, Zhang P, Su J. Miconazole-splitomicin combined β-glucan hydrogel for effective prevention of Candida albicans Periprosthetic Joint Infection. Eur J Pharm Sci 2024:106955. [PMID: 39505047 DOI: 10.1016/j.ejps.2024.106955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Revised: 11/01/2024] [Accepted: 11/03/2024] [Indexed: 11/08/2024]
Abstract
As one of the most common and serious infections caused by Candida albicans (C. albicans), periprosthetic joint infection (PJI) increasingly concerns surgeons and scientists. Generally, biofilms shield C. albicans from antifungal agents and immune clearance and induce drug-resistant strains. Developing novel strategies for PJI to get rid of current drug-resistant problems is highly needed. In our study, splitomicin (SP) can inhibit the mycelium formation of C. albicans and enhance the drug sensitivity of C. albicans to miconazole nitrate (MCZ). The combination of SP and MCZ significantly inhibited the viability, proliferation and adhesion of C. albicans, reduced the yeast to hyphae transition and biofilm formation. When SP and MCZ were coloaded in the β-glucan hydrogel, a viscoelastic solid with porous 3D network, sustained release and erosion properties was obtained. In the in vivo PJI mice model, SP-MCZ-β-glucan hydrogel effectively reduced the colonization and aggregation of C. albicans around the implant, reduced the pathological changes caused by C. albicans in the femur tissue. Therefore, SP-MCZ-β-glucan hydrogel holds a great promise for the management of C. albicans infection around joint prosthesis.
Collapse
Affiliation(s)
- Menghan Wang
- The first affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China; School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Ying Yang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Dongdong Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Yanmei Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Tailin Ji
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Qingqing Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Jiye Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China
| | - Peipei Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, P. R. China.
| | - Jin Su
- The first affiliated hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P. R. China.
| |
Collapse
|
2
|
Zhang X, Liew KJ, Cao L, Wang J, Chang Z, Tan MCY, Chong KL, Chong CS. Transcriptome analysis of Candida albicans planktonic cells in response to plasma medicine. J Med Microbiol 2024; 73. [PMID: 38967406 DOI: 10.1099/jmm.0.001841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/06/2024] Open
Abstract
Introduction. Cold plasma is frequently utilized for the purpose of eliminating microbial contaminants. Under optimal conditions, it can function as plasma medicine for treating various diseases, including infections caused by Candida albicans, an opportunistic pathogen that can overgrow in individuals with weakened immune system.Gap Statement. To date, there has been less molecular study on cold plasma-treated C. albicans.Research Aim. The study aims to fill the gap in understanding the molecular response of C. albicans to cold plasma treatment.Methodology. This project involved testing a cold plasma generator to determine its antimicrobial effectiveness on C. albicans' planktonic cells. Additionally, the cells' transcriptomics responses were investigated using RNA sequencing at various treatment durations (1, 3 and 5 min).Results. The results show that our cold plasma effectively eliminates C. albicans. Cold plasma treatment resulted in substantial downregulation of important pathways, such as 'nucleotide metabolism', 'DNA replication and repair', 'cell growth', 'carbohydrate metabolism' and 'amino acid metabolism'. This was an indication of cell cycle arrest of C. albicans to preserve energy consumption under unfavourable conditions. Nevertheless, C. albicans adapted its GSH antioxidant system to cope with the oxidative stress induced by reactive oxygen species, reactive nitrogen species and other free radicals. The treatment likely led to a decrease in cell pathogenicity as many virulence factors were downregulated.Conclusion. The study demonstrated the major affected pathways in cold plasma-treated C. albicans, providing valuable insights into the molecular response of C. albicans to cold plasma treatment. The findings contribute to the understanding of the antimicrobial efficiency of cold plasma and its potential applications in the field of microbiology.
Collapse
Affiliation(s)
- Xinhua Zhang
- School of Photoelectric Engineering, Changzhou Institute of Technology, Changzhou 213028, PR China
- Suzhou Amazing Grace Medical Equipment Co., Ltd, Suzhou 215101, PR China
- Jiangsu Huayu Printing & Coating Equipment Co. Ltd, Nantong 226300, PR China
| | - Kok Jun Liew
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Li Cao
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, PR China
| | - Jie Wang
- Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, PR China
| | - Zhidong Chang
- Suzhou Amazing Grace Medical Equipment Co., Ltd, Suzhou 215101, PR China
| | - Melvin Chun Yun Tan
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Kheng Loong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| | - Chun Shiong Chong
- Department of Biosciences, Faculty of Science, Universiti Teknologi Malaysia, Skudai 81310, Johor, Malaysia
| |
Collapse
|
3
|
Nguyen TA, Kim HY, Stocker S, Kidd S, Alastruey-Izquierdo A, Dao A, Harrison T, Wahyuningsih R, Rickerts V, Perfect J, Denning DW, Nucci M, Cassini A, Beardsley J, Gigante V, Sati H, Morrissey CO, Alffenaar JW. Pichia kudriavzevii (Candida krusei): A systematic review to inform the World Health Organisation priority list of fungal pathogens. Med Mycol 2024; 62:myad132. [PMID: 38935911 PMCID: PMC11210618 DOI: 10.1093/mmy/myad132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/26/2023] [Accepted: 12/11/2023] [Indexed: 06/29/2024] Open
Abstract
In response to the growing global threat of fungal infections, in 2020 the World Health Organisation (WHO) established an Expert Group to identify priority fungi and develop the first WHO fungal priority pathogen list (FPPL). The aim of this systematic review was to evaluate the features and global impact of invasive infections caused by Pichia kudriavzevii (formerly known as Candida krusei). PubMed and Web of Science were used to identify studies published between 1 January 2011 and 18 February 2021 reporting on the criteria of mortality, morbidity (defined as hospitalisation and length of stay), drug resistance, preventability, yearly incidence, and distribution/emergence. Overall, 33 studies were evaluated. Mortality rates of up to 67% in adults were reported. Despite the intrinsic resistance of P. kudriavzevii to fluconazole with decreased susceptibility to amphotericin B, resistance (or non-wild-type rate) to other azoles and echinocandins was low, ranging between 0 and 5%. Risk factors for developing P. kudriavzevii infections included low birth weight, prior use of antibiotics/antifungals, and an underlying diagnosis of gastrointestinal disease or cancer. The incidence of infections caused by P. kudriavzevii is generally low (∼5% of all Candida-like blood isolates) and stable over the 10-year timeframe, although additional surveillance data are needed. Strategies targeting the identified risk factors for developing P. kudriavzevii infections should be developed and tested for effectiveness and feasibility of implementation. Studies presenting data on epidemiology and susceptibility of P. kudriavzevii were scarce, especially in low- and middle-income countries (LMICs). Thus, global surveillance systems are required to monitor the incidence, susceptibility, and morbidity of P. kudriavzevii invasive infections to inform diagnosis and treatment. Timely species-level identification and susceptibility testing should be conducted to reduce the high mortality and limit the spread of P. kudriavzevii in healthcare facilities.
Collapse
Affiliation(s)
- Thi Anh Nguyen
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
| | - Hannah Yejin Kim
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| | - Sophie Stocker
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Clinical Pharmacology and Toxicology, St Vincent's Hospital, Sydney, NSW, Australia
| | - Sarah Kidd
- National Mycology Reference Centre, Microbiology and Infectious Diseases, SA Pathology, Adelaide, SA, Australia
| | - Ana Alastruey-Izquierdo
- Mycology Reference Laboratory, National Centre for Microbiology, Instituto de Salud Carlos III, Majadahonda, Madrid, Spain
| | - Aiken Dao
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Thomas Harrison
- Institute of Infection and Immunity, St George's University London, London, UK
- MRC Centre for Medical Mycology, University of Exeter, Exeter, UK
| | - Retno Wahyuningsih
- Department of Parasitology, Faculty of Medicine, Universitas Kristen Indonesia, Jakarta, Indonesia
| | | | - John Perfect
- Division of Infectious Diseases and International Health, Duke University School of Medicine, Durham, NC, USA
| | - David W Denning
- Manchester Fungal Infection Group (MFIG), Manchester Academic Health Science Centre, The University of Manchester, Manchester, UK
| | - Marcio Nucci
- Department of Internal Medicine, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Alessandro Cassini
- Cantonal Doctor Office, Public Health Department, Canton of Vaud, Lausanne, Switzerland
| | - Justin Beardsley
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Valeria Gigante
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - Hatim Sati
- AMR Division, World Health Organisation, Geneva, Switzerland
| | - C Orla Morrissey
- Department of Infectious Diseases, Alfred Health, Melbourne, VIC, Australia
- Department of Infectious Diseases, Central Clinical School, Faculty of Medicine, Nursing and Health Sciences, Monash University, Melbourne, VIC, Australia
| | - Jan-Willem Alffenaar
- Faculty of Medicine and Health, School of Pharmacy, The University of Sydney, Sydney, NSW, Australia
- Sydney Infectious Diseases Institute, The University of Sydney, Sydney, NSW, Australia
- Department of Pharmacy, Westmead Hospital, Sydney, NSW, Australia
| |
Collapse
|
4
|
Li D, Wang L, Zhao Z, Bai C, Li X. A novel model for predicting deep-seated candidiasis due to Candida glabrata among cancer patients: A 6-year study in a cancer center of China. Med Mycol 2024; 62:myae010. [PMID: 38318635 DOI: 10.1093/mmy/myae010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/16/2024] [Accepted: 02/02/2024] [Indexed: 02/07/2024] Open
Abstract
Followed by Candida albicans, Candida glabrata ranks as the second major species contributing to invasive candidiasis. Given the higher medical burden and lower susceptibility to azoles in C. glabrata infections, identifying these infections is critical. From 2016 to 2021, patients with deep-seated candidiasis due to C. glabrata and non-glabrata Candida met the criteria to be enrolled in the study. Clinical data were randomly divided into training and validation cohorts. A predictive model and nomogram were constructed using R software based on the stepwise algorithm and logistic regression. The performance of the model was assessed by the area under the receiver operating characteristic curve and decision curve analysis (DCA). A total of 197 patients were included in the study, 134 of them infected with non-glabrata Candida and 63 with C. glabrata. The predictive model for C. glabrata infection consisted of gastrointestinal cancer, co-infected with bacteria, diabetes mellitus, and kidney dysfunction. The specificity was 84.1% and the sensitivity was 61.5% in the validation cohort when the cutoff value was set to the same as the training cohort. Based on the model, treatment for patients with a high-risk threshold was better than 'treatment for all' in DCA, while opting low-risk patients out of treatment was also better than 'treatment for none' in opt-out DCA. The predictive model provides a rapid method for judging the probability of infections due to C. glabrata and will be of benefit to clinicians making decisions about therapy strategies.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Lin Wang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Zhihong Zhao
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute & Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Tianjin, China
| |
Collapse
|
5
|
Wang JZ, Yuan D, Yang XH, Sun CH, Hou LL, Zhang Y, Gao YX. Etiology of lower respiratory tract in pneumonia based on metagenomic next-generation sequencing: a retrospective study. Front Cell Infect Microbiol 2024; 13:1291980. [PMID: 38264726 PMCID: PMC10803656 DOI: 10.3389/fcimb.2023.1291980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Accepted: 12/13/2023] [Indexed: 01/25/2024] Open
Abstract
Introduction Pneumonia are the leading cause of death worldwide, and antibiotic treatment remains fundamental. However, conventional sputum smears or cultures are still inefficient for obtaining pathogenic microorganisms.Metagenomic next-generation sequencing (mNGS) has shown great value in nucleic acid detection, however, the NGS results for lower respiratory tract microorganisms are still poorly studied. Methods This study dealt with investigating the efficacy of mNGS in detecting pathogens in the lower respiratory tract of patients with pulmonary infections. A total of 112 patients admitted at the First Affiliated Hospital of Zhengzhou University between April 30, 2018, and June 30, 2020, were enrolled in this retrospective study. The bronchoalveolar lavage fluid (BALF) was obtained from lower respiratory tract from each patient. Routine methods (bacterial smear and culture) and mNGS were employed for the identification of pathogenic microorganisms in BALF. Results The average patient age was 53.0 years, with 94.6% (106/112) obtaining pathogenic microorganism results. The total mNGS detection rate of pathogenic microorganisms significantly surpassed conventional methods (93.7% vs. 32.1%, P < 0.05). Notably, 75% of patients (84/112) were found to have bacteria by mNGS, but only 28.6% (32/112) were found to have bacteria by conventional approaches. The most commonly detected bacteria included Acinetobacter baumannii (19.6%), Klebsiella pneumoniae (17.9%), Pseudomonas aeruginosa (14.3%), Staphylococcus faecium (12.5%), Enterococcus faecium (12.5%), and Haemophilus parainfluenzae (11.6%). In 29.5% (33/112) of patients, fungi were identified using mNGS, including 23 cases of Candida albicans (20.5%), 18 of Pneumocystis carinii (16.1%), and 10 of Aspergillus (8.9%). However, only 7.1 % (8/112) of individuals were found to have fungi when conventional procedures were used. The mNGS detection rate of viruses was significantly higher than the conventional method rate (43.8% vs. 0.9%, P < 0.05). The most commonly detected viruses included Epstein-Barr virus (15.2%), cytomegalovirus (13.4%), circovirus (8.9%), human coronavirus (4.5%), and rhinovirus (4.5%). Only 29.4% (33/112) of patients were positive, whereas 5.4% (6/112) of patients were negative for both detection methods as shown by Kappa analysis, indicating poor consistency between the two methods (P = 0.340; Kappa analysis). Conclusion Significant benefits of mNGS have been shown in the detection of pathogenic microorganisms in patients with pulmonary infection. For those with suboptimal therapeutic responses, mNGS can provide an etiological basis, aiding in precise anti-infective treatment.
Collapse
Affiliation(s)
- Jin-zhu Wang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Ding Yuan
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Xiang-hong Yang
- Emergency and Critical Care Center, Intensive Care Unit, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, China
| | - Chang-hua Sun
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Lin-lin Hou
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan Zhang
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Yan-xia Gao
- Emergency Department, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| |
Collapse
|
6
|
Wang M, Zhang C, Li Z, Ji B, Man S, Yi M, Li R, Hao M, Wang S. Epidemiology and antifungal susceptibility of fungal infections from 2018 to 2021 in Shandong, eastern China: A report from the SPARSS program. Indian J Med Microbiol 2024; 47:100518. [PMID: 38016503 DOI: 10.1016/j.ijmmb.2023.100518] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 10/26/2023] [Accepted: 11/22/2023] [Indexed: 11/30/2023]
Abstract
PURPOSE We analyzed the pathogenic fungal epidemiology and antifungal susceptibility from 2018 to 2021 in Shandong Province, China, to provide the basis for empiric antifungal therapy. METHODS Fungal isolates were collected from 54 hospitals in Shandong province from 2018 to 2021 through the Shandong Province Pediatric bacterial & fungal Antimicrobial Resistance Surveillance System (SPARSS), WHONET v5.6 and SPSS software v20.0 were used for statistical analysis. RESULTS A total of 15,348 strains of fungi were collected, with Candida accounting for 78.25 %, followed by Aspergillus at 15.45 %, and other species at 6.27 %. Candida albicans was the predominant Candida species, but more than half of the Candida isolates were non-albicans species, with C. tropicalis being the most dominant (22.74 %), followed by C. glabrata (17.50 %) and C. parapsilosis (11.02 %). The composition of fungi varied significantly among different age groups. Children had a higher proportion of C. albicans (47.30 %) compared to non-children (32.06 %). The non-wild-type phenotype rate of Candida for Amphotericin B was less than 3 %, while Cryptococcus neoformans was 16.67 %. In addition, less than 6 % of C. albicans and C. parapsilosis were resistant to fluconazole and voriconazole, and 96.30 % of C. glabrata were SDD to fluconazole. We also found that 80.56 % of C. glabrata and 83.70 % of C. krusei were voriconazole WT/susceptibility phenotype. However, the susceptibility rates of C. tropicalis to fluconazole/voriconazole decreased from 70.40 %/46.40 % in 2018 to 62.30 %/35.20 % in 2021. The comprehensive susceptibility rate to fluconazole of C. albicans, C. tropicalis, C. parapsilosis and C. glabrata isolated from the blood has decreased from 69.36 % to 56.62 %. CONCLUSIONS The study reveals that the composition and antifungal susceptibility of pathogenic fungi in Shandong Province differ from other regions. Moreover, the resistance to azoles is more severe, especially in C. tropicalis. These findings indicate the need for region-specific antifungal treatment strategies to combat fungal infections effectively.
Collapse
Affiliation(s)
- Mengyuan Wang
- Clinical Microbiology Department, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
| | - Chunyan Zhang
- Clinical Microbiology Department, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
| | - Zheng Li
- Clinical Microbiology Department, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
| | - Bing Ji
- Laboratory Medicine, Hospital Affiliated to Binzhou Medical University, Binzhou, 256603, China.
| | - Sijin Man
- Laboratory Medicine, Central People's Hospital of Tengzhou, Tengzhou, 277500, China.
| | - Maoli Yi
- Laboratory Medicine, Yantai Yuhuangding Hospital, YanTai, 264000, China.
| | - Renzhe Li
- Laboratory Medicine, Jining First People's Hospital, Jining, 272111, China.
| | - Mingju Hao
- Laboratory Medicine, Shandong Provincial Qianfoshan Hospital, Jinan, 250014, China.
| | - Shifu Wang
- Clinical Microbiology Department, Children's Hospital Affiliated to Shandong University, Jinan, 250022, China; Shandong Provincial Clinical Research Center for Children's Health and Disease, Jinan, China.
| |
Collapse
|
7
|
Cao Y, Liu M, Han M, Ji S. Multi-arm ε-polylysines exhibit broad-spectrum antifungal activities against Candida species. Biomater Sci 2023; 11:7588-7597. [PMID: 37823351 DOI: 10.1039/d3bm01233f] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
Invasive fungal infections pose a crucial threat to public health and are an under-recognized component of antimicrobial resistance, which is an emerging crisis worldwide. Here we designed and synthesized a panel of multi-arm ε-polylysines (ε-mPLs, nR-Km) with a precise number of n = 3-6 arms of ε-oligo(L-lysine)s and a precise arm length of m = 3-7 ε-lysine residues. ε-mPLs have good biocompatibility and exhibited broad-spectrum antifungal activities towards Aspergillus, Mucorales and Candida species, and their antifungal activities increased with residue arm length. Among these ε-mPLs, 3R-K7 showed high antifungal activity against C. albicans with a MIC value of as low as 24 μg mL-1 (only 1/16th that of ε-PL) and also exhibited similar antifungal activity towards the clinically isolated multi-drug resistant (MDR) C. albicans strain. Furthermore, 3R-K7 could inhibit the formation of C. albicans biofilms and kill the cells within mature C. albicans biofilms. Mechanistic studies proved that 3R-K7 killed fungal cells by entering the cells to generate reactive oxygen species (ROS) and induce cell apoptosis. An in vivo study showed that 3R-K7 significantly increased the survival rate of mice in a systemic murine candidiasis model, demonstrating that ε-mPL has great potential as a new antifungal agent.
Collapse
Affiliation(s)
- Yuanqiao Cao
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Ming Liu
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Miaomiao Han
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
| | - Shengxiang Ji
- Key Laboratory of Polymer Ecomaterials, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, 5625 Renmin Street, Changchun, Jilin 130022, P. R. China.
- School of Applied Chemistry and Engineering, University of Science and Technology of China, Hefei 230026, P. R. China
| |
Collapse
|
8
|
Li Y, Gu C, Yang Y, Ding Y, Ye C, Tang M, Liu J, Zeng Z. Epidemiology, antifungal susceptibility, risk factors, and mortality of persistent candidemia in adult patients in China: a 6-year multicenter retrospective study. BMC Infect Dis 2023; 23:369. [PMID: 37264301 DOI: 10.1186/s12879-023-08241-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Accepted: 04/11/2023] [Indexed: 06/03/2023] Open
Abstract
BACKGROUND Data on persistent candidemia (PC), a recognized complication of candidemia, are lacking in China. This study aimed to investigate the clinical characteristics and risk factors for the mortality of PC among adults in China. METHODS This 6-year retrospective study analyzed the prevalence, species distribution, antifungal susceptibility, risk factors, and patient mortality of PC among adults in three regional tertiary teaching hospitals in China from 2016 to 2021. We collected electronic laboratory records data of PC and non-PC patients and used the Student test or Mann-Whitney U test for a retrospective study. Logistic regression was used to identify risk factors associated with persistent candidemia. RESULTS The definition of PC was fulfilled by 36 patients (13.7%, 36/263). The mean age of the patients was 59.9 years (60 years for patients with PC; 59.8 years for those with non-PC; P > 0.05) and 131 (60.1%) were men [16 with PC (44.4%), 115 with non-PC (63.2%), P < 0.05]. The mean annual incidence was 0.15/1000 admissions (including PC 0.03/1000 admissions vs. non-PC 0.12/1000 admissions, P < 0.05). Candida parapsilosis (14/36, 38.9%) and Candida albicans (81/182, 44.5%) were the predominant pathogens in patients with PC and non-PC, respectively. Most isolates were susceptible to flucytosine (99.0%) and amphotericin B (99.5%), and the activity of antifungal agents against Candida species was not statistically significantly different between patients with PC and non-PC (P > 0.05). The 30-day mortality rate was 20.2% (16.7% with PC vs. 20.9% with non-PC, P > 0.05). Multivariable regression analysis showed that use of broad-spectrum antibiotics (odds ratio (OR), 5.925; 95% confidence interval (CI), 1.886-18.616, P = 0.002), fluconazole (OR, 3.389; 95% CI, 1.302-8.820, P = 0.012) and C. parapsilosis infection (OR, 6.143; 95% CI, 2.093-18.031, P = 0.001) were independent predictors of PC, sex (male) (OR, 0.199; 95% CI, 0.077-0.518, P = 0.001) was the protective factor for PC. Respiratory dysfunction (OR, 5.763; 95% CI, 1.592-20.864, P = 0.008) and length of hospital stay(OR, 0.925; 95% CI, 0.880-0.973, P = 0.002) were independent predictors of 30-day mortality in patients with non-PC. C. tropicalis bloodstream infection (OR, 12.642; 95% CI, 1.059-150.951; P = 0.045) was an independent predictor of 30-day mortality in patients with PC. CONCLUSIONS The epidemiological data of patients with PC and non-PC were different in the distribution of Candida species, the mean annual incidence and independent predictors of 30-day mortality. Flucytosine and amphotericin B could be used as first-choice drugs in the presence of PC infections.
Collapse
Affiliation(s)
- Yanping Li
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Department of Laboratory Medicine, Luxian People's Hospital, Luxian, 646100, Sichuan Province, P.R. China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China
| | - Chenghong Gu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Department of Laboratory Medicine, Zigong Fourth People's Hospital, Zigong, 643000, P.R. China
| | - Yuling Yang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Department of Laboratory Medicine, The Second People's Hospital of Neijiang, Neijiang, 641000, P.R. China
| | - Yinhuan Ding
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China
| | - Caihong Ye
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China
| | - Min Tang
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China
| | - Jinbo Liu
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China.
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China.
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China.
| | - Zhangrui Zeng
- Department of Laboratory Medicine, the Affiliated Hospital of Southwest Medical University, 25 Taiping street, Luzhou, 646000, P.R. China.
- Sichuan Province Engineering Technology Research Center of Clinical Diseases Molecular Diagnosis, Luzhou, 646000, P.R. China.
- Clinical Diseases Molecular Diagnosis Key Laboratory of LuZhou, Luzhou, 646000, P.R. China.
| |
Collapse
|
9
|
Yang Z, Zhang F, Li D, Wang S, Pang Z, Chen L, Li R, Shi D. Correlation Between Drug Resistance and Virulence of Candida Isolates from Patients with Candidiasis. Infect Drug Resist 2022; 15:7459-7473. [PMID: 36544991 PMCID: PMC9762413 DOI: 10.2147/idr.s387675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 11/23/2022] [Indexed: 12/23/2022] Open
Abstract
Purpose This article aims to provide a theoretical basis for new or adjuvant strategies to facilitate the early diagnosis and treatment of candidiasis and to determine if drug-resistant Candida would affect virulence. Patients and Methods Our strains were collected from patients diagnosed with candidiasis in our hospital. The strains were identified by MALDI-TOF system and ITS sequencing. Antifungal sensitivity testing in vitro was performed to evaluate susceptibility of these isolates to current widely used antifungal drugs. The Galleria mellonella larvae model infected by Candida spp. was used to compare the virulence of drug-resistant and susceptible Candida spp. Results A total of 206 Candida strains were collected from clinical specimens. Candida albicans was the most common species among them, and was predominantly isolated from male patients aged over 40 years in ICU environments suffering from pulmonary and/or cerebral conditions. The accuracy rate of MALDI TOF-MS identification was 92.72% when compared with ITS sequencing as the standard method. Most Candida species, except for C. tropicalis which showed high resistance to micafungin, showed high susceptibilities to voriconazole, itraconazole, amphotericin B and micafungin but were highly resistant to terbinafine. For each specific Candida species, the G. mellonella larvae model revealed that the virulence of drug-resistant Candida isolates did not markedly differ from that of the drug-susceptible isolates, however, the virulence was dose-dependent on inoculated fungal cells in this model. Conclusion The possibility of Candida infection should not be neglected in patients at critical care hospital settings and C. albicans is the most common causative agent. MALDI-TOF MS has the advantages of rapidity and high accuracy, and should be a preferred method for identification of Candida spp. in a clinical laboratory. Voriconazole, itraconazole, amphotericin B and micafungin can still be recommended as the first line antifungals to treat candidiasis.
Collapse
Affiliation(s)
- Zhiya Yang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Fangfang Zhang
- Department of Dermatology, Jining Dermatosis Prevention and Treatment Hospital, Jining, Shandong, 272000, People’s Republic of China
| | - Dongmei Li
- Department of Microbiology & Immunology, Georgetown University Medical Center, Washington, DC, 20057USA
| | - Sisi Wang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Zhiping Pang
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Liu Chen
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China
| | - Renzhe Li
- The Laboratory of Clinical Medicine, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Renzhe Li, Clinical Laboratory of Jining No.1 People’s Hospital, 272111, People’s Republic of China, Tel +86 13563704987, Email
| | - Dongmei Shi
- The Laboratory of Medical Mycology, Jining No.1 People’s Hospital, Jining, Shandong, 272111, People’s Republic of China,Department of Dermatology, Jining No.1 People’s Hospital, Jining, Shandong, 272001, People’s Republic of China,Correspondence: Dongmei Shi, The Laboratory of Medical Mycology and Dermatology Department of Jining No.1 People’s Hospital, Shandong, 272011, China, Tel +86 537-6051008, Email
| |
Collapse
|
10
|
Bilal H, Shafiq M, Hou B, Islam R, Khan MN, Khan RU, Zeng Y. Distribution and antifungal susceptibility pattern of Candida species from mainland China: A systematic analysis. Virulence 2022; 13:1573-1589. [PMID: 36120738 PMCID: PMC9487756 DOI: 10.1080/21505594.2022.2123325] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/07/2022] [Accepted: 09/07/2022] [Indexed: 02/05/2023] Open
Abstract
Antifungal resistance to Candida pathogens increases morbidity and mortality of immunosuppressive patients, an emerging crisis worldwide. Understanding the Candida prevalence and antifungal susceptibility pattern is necessary to control and treat candidiasis. We aimed to systematically analyse the susceptibility profiles of Candida species published in the last ten years (December 2011 to December 2021) from mainland China. The studies were collected from PubMed, Google Scholar, and Science Direct search engines. Out of 89 included studies, a total of 44,716 Candida isolates were collected, mainly comprising C. albicans (49.36%), C. tropicalis (21.89%), C. parapsilosis (13.92%), and C. glabrata (11.37%). The lowest susceptibility was detected for azole group; fluconazole susceptibilities against C. parapsilosis, C. albicans, C. glabrata, C. tropicalis, C. guilliermondii, C. pelliculosa, and C. auris were 93.25%, 91.6%, 79.4%, 77.95%, 76%, 50%, and 0% respectively. Amphotericin B and anidulafungin were the most susceptible drugs for all Candida species. Resistance to azole was mainly linked with mutations in ERG11, ERG3, ERG4, MRR1-2, MSH-2, and PDR-1 genes. Mutation in FKS-1 and FKS-2 in C. auris and C. glabrata causing resistance to echinocandins was stated in two studies. Gaps in the studies' characteristics were detected, such as 79.77%, 47.19 %, 26.97%, 7.86%, and 4.49% studies did not mention the mortality rates, age, gender, breakpoint reference guidelines, and fungal identification method, respectively. The current study demonstrates the overall antifungal susceptibility pattern of Candida species, gaps in surveillance studies and risk-reduction strategies that could be supportive in candidiasis therapy and for the researchers in their future studies.
Collapse
Affiliation(s)
- Hazrat Bilal
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Muhammad Shafiq
- Department of Cell Biology and Genetics, Shantou University Medical College, Shantou, China
| | - Bing Hou
- Department of laboratory, Shantou Municipal Skin Hospital, Shantou, China
| | - Rehmat Islam
- Key Laboratory of Space Bioscience and Biotechnology, School of Life Sciences, Northwestern Polytechnical University, Xi’an, China
| | - Muhammad Nadeem Khan
- Faculty of Biological Sciences, Department of Microbiology, Quaid-i-Azam University, Islamabad, Pakistan
| | - Rahat Ullah Khan
- Institute of Microbiology, Faculty of Veterinary and Animal Sciences Gomal University, Dera Ismail Khan, Pakistan
| | - Yuebin Zeng
- Department of Dermatology, The second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
11
|
Sathi FA, Paul SK, Ahmed S, Alam MM, Nasreen SA, Haque N, Islam A, Nila SS, Afrin SZ, Aung MS, Kobayashi N. Prevalence and Antifungal Susceptibility of Clinically Relevant Candida Species, Identification of Candida auris and Kodamaea ohmeri in Bangladesh. Trop Med Infect Dis 2022; 7:tropicalmed7090211. [PMID: 36136623 PMCID: PMC9506023 DOI: 10.3390/tropicalmed7090211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2022] [Revised: 08/22/2022] [Accepted: 08/22/2022] [Indexed: 11/16/2022] Open
Abstract
Candida species are major fungal pathogens in humans. The aim of this study was to determine the prevalence of individual Candida species and their susceptibility to antifungal drugs among clinical isolates in a tertiary care hospital in Bangladesh. During a 10-month period in 2021, high vaginal swabs (HVSs), blood, and aural swabs were collected from 360 patients. From these specimens, Candida spp. was isolated from cultures on Sabouraud dextrose agar media, and phenotypic and genetic analyses were performed. A total of 109 isolates were recovered, and C. albicans accounted for 37%, being derived mostly from HVSs. Among non-albicans Candida (NAC), C. parapsilosis was the most frequent, followed by C. ciferrii, C. tropicalis, and C. glabrata. Three isolates from blood and two isolates from aural discharge were genetically identified as C. auris and Kodamaea ohmeri, respectively. NAC isolates were more resistant to fluconazole (overall rate, 29%) than C. albicans (10%). Candida isolates from blood showed 95% susceptibility to voriconazole and less susceptibility to fluconazole (67%). Two or three amino acid substitutions were detected in the ERG11 of two fluconazole-resistant C. albicans isolates. The present study is the first to reveal the prevalence of Candida species and their antifungal susceptibility in Bangladesh.
Collapse
Affiliation(s)
- Fardousi Akter Sathi
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | | | - Salma Ahmed
- Department of Microbiology, Mugda Medical College, Dhaka 1214, Bangladesh
| | | | | | - Nazia Haque
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Arup Islam
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Sultana Shabnam Nila
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Sultana Zahura Afrin
- Department of Microbiology, Mymensingh Medical College, Mymensingh 2200, Bangladesh
| | - Meiji Soe Aung
- Department of Hygiene, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
| | - Nobumichi Kobayashi
- Department of Hygiene, School of Medicine, Sapporo Medical University, Sapporo 060-8556, Japan
- Correspondence: ; Tel.: +81-11-611-2111
| |
Collapse
|
12
|
Xia J, Huang W, Lu F, Li M, Wang B. Comparative Analysis of Epidemiological and Clinical Characteristics Between Invasive Candida Infection versus Colonization in Critically Ill Patients in a Tertiary Hospital in Anhui, China. Infect Drug Resist 2022; 15:3905-3918. [PMID: 35909934 PMCID: PMC9329706 DOI: 10.2147/idr.s368792] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 07/12/2022] [Indexed: 11/26/2022] Open
Abstract
Objective Invasive infections due to Candida spp. have unique epidemiology, strain distribution, antimicrobial susceptibility, and clinical features. This study aimed to compare and evaluate these characteristic variables between invasive Candida infection and colonization of critically ill patients in local China to potentially improve differential diagnosis and therapy. Methods A total of 193 critically ill patients were recruited and followed up for the study, and 133 Candida isolates were obtained from invasive Candida-infected or -colonized subjects. The strains were identified to species level through matrix-assisted laser desorption/ionization–time-of-flight mass spectrometry, assisted by DNA sequencing. Candida susceptibility to common antifungals, including azoles, was determined by microbroth ATB Fungus 3 methodology. Azole resistance–related gene sequencing and homologous 3D-structure modeling were employed. Patient demographics and clinical risk factors were documented and comparatively analyzed from the hospital information-management system. Results Non–C. albicans Candida (56%) principally caused invasive Candida infections, while C. albicans (55.17%) contributed more to Candida colonization in critically ill patients. Additional risk factors exerted significant impact on both Candida cohorts, primarily including invasive interventions, cancers, and concurrent infections in common. Most colonized Candida spp. harbored relatively higher sensitivity to azoles. ERG11 gene mutations of T348A and A1309G, A395T and C461T, and a novel G1193T to our knowledge were identified in azole-resistant C. albicans, C. tropicalis, and C. parapsilosis respectively, and their corresponding homologous 3D-structure modeling was putatively achieved. Conclusion Distinct epidemiological and clinical characteristics existed between invasive Candida infection and colonization in critically ill patients. Multiple risk factors significantly involved both the Candida cohorts. Colonized Candida exhibited generally higher azole sensitivity than invasively infectious counterparts. ERG11 point mutations had mechanistically potential ties with local Candida resistance to azoles.
Collapse
Affiliation(s)
- Jinxing Xia
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Wei Huang
- Department of Oncology, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Fanbo Lu
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Moyan Li
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| | - Bo Wang
- Department of Clinical Laboratory, First Affiliated Hospital of Anhui Medical University, Hefei, People's Republic of China
| |
Collapse
|
13
|
Tunay B, Aydin S. Investigation of inflammation-related parameters in patients with candidemia hospitalized in the intensive care unit: A retrospective cohort study. Sci Prog 2022; 105:368504221124055. [PMID: 36071635 PMCID: PMC10450468 DOI: 10.1177/00368504221124055] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND Candidemia is the most common invasive fungal disease in intensive care units (ICUs). OBJECTIVE We aimed to investigate cases of candidemia infection developing in the ICU and factors associated with mortality due to this infection. MATERIALS AND METHODS This is a retrospective study including patients admitted to a tertiary university hospital ICU between January 2012 and December 2020. Patients over 18 years of age who had candida growth in at least one blood culture taken from central or peripheral samples (>48 h after admission to the ICU) without concurrent growth were evaluated. RESULTS The study group consisted of 136 patients with candida. Eighty-seven (63.97%) patients were male, with a median age of 69.5 (59-76.5) years. The 7-day mortality rate was 35.29%, while the 30-day mortality rate was 69.11%. As a result of multiple logistic regression analysis, after adjusting for age and malignancy, high APACHE II score and low platelet-lymphocyte ratio (PLR) - were found to be significant factors in predicting both 7-day and 30-day mortality. CONCLUSION In this study, PLR and APACHE II scores were shown to be independent predictors of mortality in patients with candidemia in the ICU.
Collapse
Affiliation(s)
- Burcu Tunay
- Department of Anesthesiology and Reanimation, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| | - Selda Aydin
- Department of Infectious Diseases and Clinical Microbiology, Istanbul Medipol University School of Medicine, Istanbul, Turkey
| |
Collapse
|
14
|
Parslow BY, Thornton CR. Continuing Shifts in Epidemiology and Antifungal Susceptibility Highlight the Need for Improved Disease Management of Invasive Candidiasis. Microorganisms 2022; 10:microorganisms10061208. [PMID: 35744725 PMCID: PMC9228503 DOI: 10.3390/microorganisms10061208] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 12/07/2022] Open
Abstract
Invasive candidiasis (IC) is a systemic life-threatening infection of immunocompromised humans, but remains a relatively neglected disease among public health authorities. Ongoing assessments of disease epidemiology are needed to identify and map trends of importance that may necessitate improvements in disease management and patient care. Well-established incidence increases, largely due to expanding populations of patients with pre-disposing risk factors, has led to increased clinical use and pressures on antifungal drugs. This has been exacerbated by a lack of fast, accurate diagnostics that have led treatment guidelines to often recommend preventative strategies in the absence of proven infection, resulting in unnecessary antifungal use in many instances. The consequences of this are multifactorial, but a contribution to emerging drug resistance is of primary concern, with high levels of antifungal use heavily implicated in global shifts to more resistant Candida strains. Preserving and expanding the utility and number of antifungals should therefore be of the highest priority. This may be achievable through the development and use of biomarker tests, bringing about a new era in improved antifungal stewardship, as well as novel antifungals that offer favorable profiles by targeting Candida pathogenesis mechanisms over cell viability.
Collapse
Affiliation(s)
- Ben Y. Parslow
- Biosciences, College of Life and Environmental Sciences, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK;
| | - Christopher R. Thornton
- Medical Research Council Centre for Medical Mycology, Geoffrey Pope Building, University of Exeter, Stocker Road, Exeter EX4 4QD, UK
- Correspondence:
| |
Collapse
|
15
|
Egger M, Hoenigl M, Thompson GR, Carvalho A, Jenks JD. Let's talk about Sex Characteristics - as a Risk Factor for Invasive Fungal Diseases. Mycoses 2022; 65:599-612. [PMID: 35484713 DOI: 10.1111/myc.13449] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2022] [Revised: 04/21/2022] [Accepted: 04/22/2022] [Indexed: 12/01/2022]
Abstract
Biological sex, which comprises differences in host sex hormone homeostasis and immune responses, can have a substantial impact on the epidemiology of infectious diseases. Comprehensive data on sex distributions in invasive fungal diseases (IFDs) is lacking. In this review we performed a literature search of in vitro/animal studies, clinical studies, systematic reviews, and meta-analyses of invasive fungal infections. Females represented 51.2% of invasive candidiasis cases, mostly matching the proportions of females among the general population in the United States and Europe (>51%). In contrast, other IFDs were overrepresented in males, including invasive aspergillosis (51% males), mucormycosis (60%), cryptococcosis (74%), coccidioidomycosis (70%), histoplasmosis (61%), and blastomycosis (66%). Behavioral variations, as well as differences related to biological sex, may only in part explain these findings. Further investigations concerning the association between biological sex/gender and the pathogenesis of IFDs is warranted.
Collapse
Affiliation(s)
- Matthias Egger
- Division of Infectious Diseases, Medical University of Graz, Austria
| | - Martin Hoenigl
- Division of Infectious Diseases, Medical University of Graz, Austria.,Division of Infectious Diseases and Global Public Health, Department of Medicine, University of California San Diego, La Jolla, CA, USA.,Clinical and Translational Fungal - Working Group, University of California San Diego, La Jolla, CA, USA
| | - George R Thompson
- University of California Davis Center for Valley Fever, California, USA.,Department of Internal Medicine, Division of Infectious Diseases, University of California Davis Medical Center, California, USA.,Department of Medical Microbiology and Immunology, University of California Davis, California, USA
| | - Agostinho Carvalho
- Life and Health Sciences Research Institute (ICVS), School of Medicine, University of Minho, Braga, Portugal.,ICVS/3B's -, PT Government Associate Laboratory, Braga/Guimarães, Portugal
| | | |
Collapse
|
16
|
Shantal CJN, Juan CC, Lizbeth BUS, Carlos HGJ, Estela GPB. Candida glabrata is a successful pathogen: an artist manipulating the immune response. Microbiol Res 2022; 260:127038. [DOI: 10.1016/j.micres.2022.127038] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Revised: 04/02/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
|
17
|
Phuna ZX, Madhavan P. A CLOSER LOOK AT THE MYCOBIOME IN ALZHEIMER'S DISEASE: FUNGAL SPECIES, PATHOGENESIS AND TRANSMISSION. Eur J Neurosci 2022; 55:1291-1321. [DOI: 10.1111/ejn.15599] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2021] [Revised: 01/17/2022] [Accepted: 01/18/2022] [Indexed: 11/30/2022]
Affiliation(s)
- Zhi Xin Phuna
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| | - Priya Madhavan
- School of Medicine, Faculty of Health & Medical Sciences, Taylor’s University Malaysia Subang Jaya Selangor
| |
Collapse
|
18
|
Development of a Simple DNA Extraction Method and Candida Pan Loop-Mediated Isothermal Amplification Assay for Diagnosis of Candidemia. Pathogens 2022; 11:pathogens11020111. [PMID: 35215055 PMCID: PMC8878442 DOI: 10.3390/pathogens11020111] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2021] [Revised: 01/17/2022] [Accepted: 01/17/2022] [Indexed: 01/27/2023] Open
Abstract
To reduce the morbidity and mortality of candidemia patients through rapid treatment, the development of a simple, rapid molecular diagnostic method that is based on nucleic acid extraction and is superior to conventional methods for detecting Candida in the blood is necessary. We developed a multiplex Candida Pan/internal control (IC) loop-mediated isothermal amplification (LAMP) assay and a simple DNA extraction boiling protocol using Chelex-100 that could extract yeast DNA in blood within 20 min. The Chelex-100/boiling method for DNA extraction showed comparable efficiency to that of the commercial QIAamp UCP Pathogen Mini Kit using Candida albicans qPCR. In addition, the Candida Pan/IC LAMP assay showed superior sensitivity to that of general Candida Pan and species qPCRs against clinical DNA samples extracted with the QIAamp UCP Pathogen Mini Kit and Chelex-100/boiling method. The Candida Pan/IC LAMP assay followed by Chelex-100/boiling-mediated DNA extraction showed high sensitivity (100%) and specificity (100%) against clinical samples infected with Candida. These results suggest that the Candida Pan/IC LAMP assay could be used as a rapid molecular diagnostic test for candidemia.
Collapse
|
19
|
Botelho TKR, Danielli LJ, Seide M, Borges PP, Cruz AB. Distribution and antifungal susceptibility of Candida species isolated from clinical samples in southern Brazil. BRAZ J PHARM SCI 2022. [DOI: 10.1590/s2175-97902022e20727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
|
20
|
Antifungal Resistance in Clinical Isolates of Candida glabrata in Ibero-America. J Fungi (Basel) 2021; 8:jof8010014. [PMID: 35049954 PMCID: PMC8781625 DOI: 10.3390/jof8010014] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 12/17/2021] [Accepted: 12/21/2021] [Indexed: 12/14/2022] Open
Abstract
In different regions worldwide, there exists an intra-and inter-regional variability in the rates of resistance to antifungal agents in Candida glabrata, highlighting the importance of understanding the epidemiology and antifungal susceptibility profiles of C. glabrata in each region. However, in some regions, such as Ibero-America, limited data are available in this context. Therefore, in the present study, a systematic review was conducted to determine the antifungal resistance in C. glabrata in Ibero-America over the last five years. A literature search for articles published between January 2015 and December 2020 was conducted without language restrictions, using the PubMed, Embase, Cochrane Library, and LILACS databases. The search terms that were used were "Candida glabrata" AND "antifungal resistance" AND "Country", and 22 publications were retrieved from different countries. The use of azoles (fluconazole, itraconazole, voriconazole, posaconazole, isavuconazole, ketoconazole, and miconazole) varied between 4.0% and 100%, and that of echinocandins (micafungin, caspofungin, and anidulafungin) between 1.1% and 10.0%. The limited information on this subject in the region of Ibero-America emphasizes the need to identify the pathogens at the species level and perform antifungal susceptibility tests that may lead to the appropriate use of these drugs and the optimal doses in order to avoid the development of antifungal resistance or multi-resistance.
Collapse
|
21
|
Wang B, He X, Lu F, Li Y, Wang Y, Zhang M, Huang Y, Xia J. Candida Isolates From Blood and Other Normally Sterile Foci From ICU Patients: Determination of Epidemiology, Antifungal Susceptibility Profile and Evaluation of Associated Risk Factors. Front Public Health 2021; 9:779590. [PMID: 34858938 PMCID: PMC8632017 DOI: 10.3389/fpubh.2021.779590] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 10/19/2021] [Indexed: 12/29/2022] Open
Abstract
Background: The clinical diagnosis and therapy for ICU patients with invasive candidiasis are challenged by the changes of Candida community composition and antimicrobial resistance. The epidemiology and drug sensitivity of candidiasis in ICU as well as its risk factors and drug resistance mechanism were investigated. Methods: In the present study, 115 patients in ICU were recruited from June 2019 through July 2020. Among them, 83 Candida isolates were identified with MALDI-TOF mass spectrometry. The susceptibility to antifungals was measured by microdilution method. The molecular mechanisms of azole-resistant Candida tropicalis were explored by sequencing, and their outcomes were explicitly documented. Results: Candida glabrata and C. tropicalis were the predominant non-C. albicans Candida. The specimen sources were mainly urine, bronchoalveolar lavage fluid and blood. The age, length of hospitalization, tracheotomy, diabetes and concomitant bacterial infection were the main risk factors for candidiasis. The majority of Candida species exhibited susceptibility to antifungals. However, certain C. tropicalis were frequently resistant to azoles. The polymorphism of the ERG11 in C. tropicalis was likely associated with azole resistance. Conclusion: The multiple risk factors for candidiasis in ICU patients need to be considered. Certain C. tropicalis exhibit resistance to azoles likely due to the ERG11 gene polymorphism.
Collapse
Affiliation(s)
- Bo Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xinlong He
- Department of Pathogen Biology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Feng Lu
- Department of Pathogen Biology, School of Medicine, Yangzhou University, Yangzhou, China.,Jiangsu Key Laboratory of Experimental and Translational Non-coding RNA Research, Yangzhou University, Yangzhou, China
| | - Yajuan Li
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yuerong Wang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Min Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Ying Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jinxing Xia
- Department of Clinical Laboratory, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| |
Collapse
|
22
|
The network interplay of interferon and Toll-like receptor signaling pathways in the anti-Candida immune response. Sci Rep 2021; 11:20281. [PMID: 34645905 PMCID: PMC8514550 DOI: 10.1038/s41598-021-99838-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/30/2021] [Indexed: 01/22/2023] Open
Abstract
Fungal infections represent a major global health problem affecting over a billion people that kills more than 1.5 million annually. In this study, we employed an integrative approach to reveal the landscape of the human immune responses to Candida spp. through meta-analysis of microarray, bulk, and single-cell RNA sequencing (scRNA-seq) data for the blood transcriptome. We identified across these different studies a consistent interconnected network interplay of signaling molecules involved in both Toll-like receptor (TLR) and interferon (IFN) signaling cascades that is activated in response to different Candida species (C. albicans, C. auris, C. glabrata, C. parapsilosis, and C. tropicalis). Among these molecules are several types I IFN, indicating an overlap with antiviral immune responses. scRNA-seq data confirmed that genes commonly identified by the three transcriptomic methods show cell type-specific expression patterns in various innate and adaptive immune cells. These findings shed new light on the anti-Candida immune response, providing putative molecular pathways for therapeutic intervention.
Collapse
|
23
|
Chen J, Hu N, Xu H, Liu Q, Yu X, Zhang Y, Huang Y, Tan J, Huang X, Zeng L. Molecular Epidemiology, Antifungal Susceptibility, and Virulence Evaluation of Candida Isolates Causing Invasive Infection in a Tertiary Care Teaching Hospital. Front Cell Infect Microbiol 2021; 11:721439. [PMID: 34604110 PMCID: PMC8479822 DOI: 10.3389/fcimb.2021.721439] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 08/09/2021] [Indexed: 01/08/2023] Open
Abstract
Background The incidence of invasive candidiasis is increasing worldwide. However, the epidemiology, antifungal susceptibility, and virulence of Candida spp. in most hospitals remain unclear. This study aimed to evaluate invasive candidiasis in a tertiary care hospital in Nanchang City, China. Methods MALDI-TOF MS and 18S rDNA ITS sequencing were used to identify Candida strains. Randomly amplified polymorphic DNA analysis was used for molecular typing; biofilm production, caseinase, and hemolysin activities were used to evaluate virulence. The Sensititre™ YeastOne YO10 panel was used to examine antifungal susceptibility. Mutations in ERG11 and the hotspot regions of FKS1 of drug-resistant strains were sequenced to evaluate the possible mechanisms of antifungal resistance. Results We obtained 110 Candida strains, which included 40 Candida albicans (36.36%), 37 C. parapsilosis (33.64%), 21 C. tropicalis (19.09%), 9 C. glabrata (8.18%), 2 C. rugose (1.82%), and 1 C. haemulonii (0.91%) isolates. At a limiting point of 0.80, C. albicans isolates could be grouped into five clusters, C. parapsilosis and C. tropicalis isolates into seven clusters, and C. glabrata isolates into only one cluster comprising six strains by RAPD typing. Antifungal susceptibility testing revealed that the isolates showed the greatest overall resistance against fluconazole (6.36%), followed by voriconazole (4.55%). All C. albicans and C. parapsilosis isolates exhibited 100% susceptibility to echinocandins (i.e., anidulafungin, caspofungin, and micafungin), whereas one C. glabrata strain was resistant to echinocandins. The most common amino acid substitutions noted in our study was 132aa (Y132H, Y132F) in the azole-resistant strains. No missense mutation was identified in the hotpot regions of FKS1. Comparison of the selected virulence factors detectable in a laboratory environment, such as biofilm, caseinase, and hemolysin production, revealed that most Candida isolates were caseinase and hemolysin producers with a strong activity (Pz < 0.69). Furthermore, C. parapsilosis had greater total biofilm biomass (average Abs620 = 0.712) than C. albicans (average Abs620 = 0.214, p < 0.01) or C. tropicalis (average Abs620 = 0.450, p < 0.05), although all C. glabrata strains were either low- or no-biofilm producers. The virulence level of the isolates from different specimen sources or clusters showed no obvious correlation. Interesting, 75% of the C. albicans from cluster F demonstrated azole resistance, whereas two azole-resistant C. tropicalis strains belonged to the cluster Y. Conclusion This study provides vital information regarding the epidemiology, pathogenicity, and antifungal susceptibility of Candida spp. in patients admitted to Nanchang City Hospital.
Collapse
Affiliation(s)
- Junzhu Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Niya Hu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Hongzhi Xu
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Preventive Medicine and Public Health, School of Public Health, Nanchang University, Nanchang, China
| | - Qiong Liu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Xiaomin Yu
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yuping Zhang
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Yongcheng Huang
- Department of Preventive Medicine and Public Health, School of Public Health, Nanchang University, Nanchang, China
| | - Junjun Tan
- Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Xiaotian Huang
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Medical Microbiology, School of Medicine, Nanchang University, Nanchang, China
| | - Lingbing Zeng
- Department of Clinical Laboratory, The First Affiliated Hospital of Nanchang University, Nanchang, China.,Department of Preventive Medicine and Public Health, School of Public Health, Nanchang University, Nanchang, China
| |
Collapse
|
24
|
Frías-De-León MG, Hernández-Castro R, Conde-Cuevas E, García-Coronel IH, Vázquez-Aceituno VA, Soriano-Ursúa MA, Farfán-García ED, Ocharán-Hernández E, Rodríguez-Cerdeira C, Arenas R, Robledo-Cayetano M, Ramírez-Lozada T, Meza-Meneses P, Pinto-Almazán R, Martínez-Herrera E. Candida glabrata Antifungal Resistance and Virulence Factors, a Perfect Pathogenic Combination. Pharmaceutics 2021; 13:pharmaceutics13101529. [PMID: 34683822 PMCID: PMC8538829 DOI: 10.3390/pharmaceutics13101529] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/03/2021] [Accepted: 09/14/2021] [Indexed: 02/07/2023] Open
Abstract
In recent years, a progressive increase in the incidence of invasive fungal infections (IFIs) caused by Candida glabrata has been observed. The objective of this literature review was to study the epidemiology, drug resistance, and virulence factors associated with the C. glabrata complex. For this purpose, a systematic review (January 2001-February 2021) was conducted on the PubMed, Scielo, and Cochrane search engines with the following terms: "C. glabrata complex (C. glabrata sensu stricto, C. nivariensis, C. bracarensis)" associated with "pathogenicity" or "epidemiology" or "antibiotics resistance" or "virulence factors" with language restrictions of English and Spanish. One hundred and ninety-nine articles were found during the search. Various mechanisms of drug resistance to azoles, polyenes, and echinocandins were found for the C. glabrata complex, depending on the geographical region. Among the mechanisms found are the overexpression of drug transporters, gene mutations that alter thermotolerance, the generation of hypervirulence due to increased adhesion factors, and modifications in vital enzymes that produce cell wall proteins that prevent the activity of drugs designed for its inhibition. In addition, it was observed that the C. glabrata complex has virulence factors such as the production of proteases, phospholipases, and hemolysins, and the formation of biofilms that allows the complex to evade the host immune response and generate fungal resistance. Because of this, the C. glabrata complex possesses a perfect pathogenetic combination for the invasion of the immunocompromised host.
Collapse
Affiliation(s)
- María Guadalupe Frías-De-León
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Rigoberto Hernández-Castro
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Esther Conde-Cuevas
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Itzel H. García-Coronel
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
| | - Víctor Alfonso Vázquez-Aceituno
- Departamento de Ecología de Agentes Patógenos, Hospital General “Dr. Manuel Gea González”, Ciudad de México 14080, Mexico; (R.H.-C.); (V.A.V.-A.)
| | - Marvin A. Soriano-Ursúa
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Eunice D. Farfán-García
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Esther Ocharán-Hernández
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
| | - Carmen Rodríguez-Cerdeira
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Dermatology Department, Hospital Vithas Ntra. Sra. de Fátima and University of Vigo, 36206 Vigo, Spain
- Campus Universitario, University of Vigo, 36310 Vigo, Spain
| | - Roberto Arenas
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Sección de Micología, Hospital General “Dr. Manuel Gea González”, Tlalpan, Ciudad de México 14080, Mexico
| | - Maura Robledo-Cayetano
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
| | - Tito Ramírez-Lozada
- Servicio de Ginecología y Obstetricia, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico;
| | - Patricia Meza-Meneses
- Maestría en Ciencias de la Salud, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (E.C.-C.); (I.H.G.-C.); (P.M.-M.)
- Servicio de Infectología, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico
| | - Rodolfo Pinto-Almazán
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| | - Erick Martínez-Herrera
- Unidad de Investigación, Hospital Regional de Alta Especialidad de Ixtapaluca, Ixtapaluca 56530, Mexico; (M.G.F.-D.-L.); (M.R.-C.)
- Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Plan de San Luis y Díaz Mirón, Ciudad de México 11340, Mexico; (M.A.S.-U.); (E.D.F.-G.); (E.O.-H.)
- Efficiency, Quality, and Costs in Health Services Research Group (EFISALUD), Galicia Sur Health Research Institute (IIS Galicia Sur), SERGAS-UVIGO, 36213 Vigo, Spain; (C.R.-C.); (R.A.)
- Correspondence: (R.P.-A.); (E.M.-H.); Tel.: +52-555-972-9800 (R.P.-A. or E.M.-H.)
| |
Collapse
|
25
|
Scorzoni L, Fuchs BB, Junqueira JC, Mylonakis E. Current and promising pharmacotherapeutic options for candidiasis. Expert Opin Pharmacother 2021; 22:867-887. [PMID: 33538201 DOI: 10.1080/14656566.2021.1873951] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Introduction: Candida spp. are commensal yeasts capable of causing infections such as superficial, oral, vaginal, or systemic infections. Despite medical advances, the antifungal pharmacopeia remains limited and the development of alternative strategies is needed.Areas covered: We discuss available treatments for Candida spp. infections, highlighting advantages and limitations related to pharmacokinetics, cytotoxicity, and antimicrobial resistance. Moreover, we present new perspectives to improve the activity of the available antifungals, discussing their immunomodulatory potential and advances on drug delivery carriers. New therapeutic approaches are presented including recent synthesized antifungal compounds (Enchochleated-Amphotericin B, tetrazoles, rezafungin, enfumafungin, manogepix and arylamidine); drug repurposing using a diversity of antibacterial, antiviral and non-antimicrobial drugs; combination therapies with different compounds or photodynamic therapy; and innovations based on nano-particulate delivery systems.Expert opinion: With the lack of novel drugs, the available assets must be leveraged to their best advantage through modifications that enhance delivery, efficacy, and solubility. However, these efforts are met with continuous challenges presented by microbes in their infinite plight to resist and survive therapeutic drugs. The pharmacotherapeutic options in development need to focus on new antimicrobial targets. The success of each antimicrobial agent brings strategic insights to the next phased approach in treatingCandida spp. infections.
Collapse
Affiliation(s)
- Liliana Scorzoni
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Beth Burgwyn Fuchs
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| | - Juliana Campos Junqueira
- Department of Biosciences and Oral Diagnosis, Institute of Science and Technology, São Paulo State University/UNESP, SP Brazil
| | - Eleftherios Mylonakis
- Division of Infectious Diseases, Rhode Island Hospital, Alpert Medical School, Brown University, Providence, RI USA
| |
Collapse
|
26
|
Battu A, Purushotham R, Dey P, Vamshi SS, Kaur R. An aspartyl protease-mediated cleavage regulates structure and function of a flavodoxin-like protein and aids oxidative stress survival. PLoS Pathog 2021; 17:e1009355. [PMID: 33630938 PMCID: PMC7943015 DOI: 10.1371/journal.ppat.1009355] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 03/09/2021] [Accepted: 02/02/2021] [Indexed: 11/30/2022] Open
Abstract
A family of eleven glycosylphosphatidylinositol-anchored aspartyl proteases, commonly referred to as CgYapsins, regulate a myriad of cellular processes in the pathogenic yeast Candida glabrata, but their protein targets are largely unknown. Here, using the immunoprecipitation-mass spectrometry approach, we identify the flavodoxin-like protein (Fld-LP), CgPst2, to be an interactor of one of the aspartyl protease CgYps1. We also report the presence of four Fld-LPs in C. glabrata, which are required for survival in kidneys in the murine model of systemic candidiasis. We further demonstrated that of four Fld-LPs, CgPst2 was solely required for menadione detoxification. CgPst2 was found to form homo-oligomers, and contribute to cellular NADH:quinone oxidoreductase activity. CgYps1 cleaved CgPst2 at the C-terminus, and this cleavage was pivotal to oligomerization, activity and function of CgPst2. The arginine-174 residue in CgPst2 was essential for CgYps1-mediated cleavage, with alanine substitution of the arginine-174 residue also leading to elevated activity and oligomerization of CgPst2. Finally, we demonstrate that menadione treatment led to increased CgPst2 and CgYps1 protein levels, diminished CgYps1-CgPst2 interaction, and enhanced CgPst2 cleavage and activity, thereby implicating CgYps1 in activating CgPst2. Altogether, our findings of proteolytic cleavage as a key regulatory determinant of CgPst2, which belongs to the family of highly conserved, electron-carrier flavodoxin-fold-containing proteins, constituting cellular oxidative stress defense system in diverse organisms, unveil a hidden regulatory layer of environmental stress response mechanisms.
Collapse
Affiliation(s)
- Anamika Battu
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
- Graduate studies, Manipal Academy of Higher Education, Manipal, Karnataka, India
| | - Rajaram Purushotham
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Partha Dey
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - S. Surya Vamshi
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| | - Rupinder Kaur
- Laboratory of Fungal Pathogenesis, Centre for DNA Fingerprinting and Diagnostics, Hyderabad, India
| |
Collapse
|
27
|
Pediatric and Neonatal Invasive Candidiasis: Species Distribution and Mortality Rate in a Thai Tertiary Care Hospital. Pediatr Infect Dis J 2021; 40:96-102. [PMID: 33021588 DOI: 10.1097/inf.0000000000002912] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
BACKGROUND Invasive candidiasis (IC) is a serious infection among children with underlying medical conditions. A shift from C. albicans to non-albicans Candida has been observed worldwide. This study aims to identify species of Candida and factors associated with the overall 30-day mortality rate. METHODS A retrospective chart review was conducted among children with culture-confirmed IC from birth to 15 years of age at King Chulalongkorn Memorial Hospital, Thailand. Multivariate Cox regression analysis was performed to determine associated factors with 30-day mortality. RESULTS From 2003 to 2019, 102 episodes of IC in pediatric group with a median age of 16 months (interquartile range 4-65) and 12 episodes of IC in neonatal group with a median age of 18 days (interquartile range 12-22). The species distribution were Candida albicans (35%), Candida parapsilosis (26%), Candida tropicalis (22%), Candida glabrata (6%) and other/unspecified species (11%). Antifungal treatment was given in 88% (67% Amphotericin B deoxycholate, 28% Fluconazole). Overall 30-day mortality rates were 28.5% [95% confidence interval (CI) 20.8%-38.4%] and 8.3% (95% CI 1.2%-46.1%) in pediatrics and neonates, respectively. Mortality rate among the neutropenic group was significantly higher than non-neutropenic group (46.4% vs. 20.6%, P = 0.005). Factors associated with 30-day mortality in pediatric IC were shock [adjusted hazard ratio (aHR) 4.2; 95% CI 1.8-9.4], thrombocytopenia (aHR 7.7; 95% CI 1.8-33.9) and no antifungal treatment (aHR 4.6; 95% CI 1.7-12.1). CONCLUSIONS Two-third of children with IC were diagnosed with non-albicans Candida. Children with high mortality rate included those with neutropenia, presented with shock or thrombocytopenia, such that the proper empiric antifungal treatment is recommended.
Collapse
|
28
|
Li D, Li T, Bai C, Zhang Q, Li Z, Li X. A predictive nomogram for mortality of cancer patients with invasive candidiasis: a 10-year study in a cancer center of North China. BMC Infect Dis 2021; 21:76. [PMID: 33446133 PMCID: PMC7809763 DOI: 10.1186/s12879-021-05780-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2020] [Accepted: 01/07/2021] [Indexed: 12/29/2022] Open
Abstract
Background Invasive candidiasis is the most common fungal disease among hospitalized patients and continues to be a major cause of mortality. Risk factors for mortality have been studied previously but rarely developed into a predictive nomogram, especially for cancer patients. We constructed a nomogram for mortality prediction based on a retrospective review of 10 years of data for cancer patients with invasive candidiasis. Methods Clinical data for cancer patients with invasive candidiasis during the period of 2010–2019 were studied; the cases were randomly divided into training and validation cohorts. Variables in the training cohort were subjected to a predictive nomogram based on multivariate logistic regression analysis and a stepwise algorithm. We assessed the performance of the nomogram through the area under the receiver operating characteristic (ROC) curve (AUC) and decision curve analysis (DCA) in both the training and validation cohorts. Results A total of 207 cases of invasive candidiasis were examined, and the crude 30-day mortality was 28.0%. Candida albicans (48.3%) was the predominant species responsible for infection, followed by the Candida glabrata complex (24.2%) and Candida tropicalis (10.1%). The training and validation cohorts contained 147 and 60 cases, respectively. The predictive nomogram consisted of bloodstream infections, intensive care unit (ICU) admitted > 3 days, no prior surgery, metastasis and no source control. The AUCs of the training and validation cohorts were 0.895 (95% confidence interval [CI], 0.846–0.945) and 0.862 (95% CI, 0.770–0.955), respectively. The net benefit of the model performed better than “treatment for all” in DCA and was also better for opting low-risk patients out of treatment than “treatment for none” in opt-out DCA. Conclusion Cancer patients with invasive candidiasis exhibit high crude mortality. The predictive nomogram established in this study can provide a probability of mortality for a given patient, which will be beneficial for therapeutic strategies and outcome improvement.
Collapse
Affiliation(s)
- Ding Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China.
| | - Tianjiao Li
- State Key Laboratory of Medicinal Chemical Biology, College of Pharmacy, Nankai University, Tianjin, China
| | - Changsen Bai
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Qing Zhang
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Zheng Li
- Department of Clinical Laboratory, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Huanhu West Road, Hexi District, Tianjin, 300060, China
| | - Xichuan Li
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Sciences, Tianjin Normal University, Binshuixi Road, Tianjin, 300387, Xiqing District, China.
| |
Collapse
|
29
|
Yakut N, Kepenekli E, Ergenc Z, Baran E, Cerikcioglu N. Antifungal susceptibility, species distribution and risk factors associated with mortality of invasive candidiasis in children in Turkey: A six-year retrospective, single-centre study. J Mycol Med 2020; 31:101082. [PMID: 33249314 DOI: 10.1016/j.mycmed.2020.101082] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 10/06/2020] [Accepted: 11/03/2020] [Indexed: 10/23/2022]
Abstract
Invasive candidiasis (IC) is a life-threatening fungal infection with high morbidity and mortality. In this study, we aimed to investigate the Candida species distribution and antifungal drug susceptibility and to identify the risk factors associated with IC mortality in children. We conducted a retrospective, single-centre study of paediatric IC in patients from a tertiary care hospital in Turkey between January 2013 and February 2019. A total of 56 Candida isolates underwent antifungal susceptibility testing performed by Sensititre YeastOne YO10 panel, and the demographic and clinical data of 65 patients were examined during the study period. The most commonly isolated species was Candida albicans in 30 patients (46%), followed by C. parapsilosis in 25 patients (38%) and C. tropicalis in three patients (5%). According to the antifungal drug susceptibility testing, C. albicans was fully susceptible to fluconazole and the other antifungal agents (100%). None of the isolates displayed resistance to anidulafungin, micafungin, flucytosine, posaconazole, voriconazole or itraconazole. There were low rates of resistance to fluconazole (1.8%), caspofungin (1.8%) and micafungin (1.8%). In addition, 5.3% of the Candida isolates were susceptible in a dose-dependent manner to itraconazole, 3.6% were susceptible to voriconazole and fluconazole and 1.8% were susceptible to anidulafungin. The mortality rate of IC was 15.4%. Thrombocytopenia after IC treatment was significantly associated with mortality in the multivariate analysis. These results, which help determine the species distribution, antifungal susceptibility patterns and risk factors for mortality, could make a significant contribution to the management of these challenging infections, including choosing appropriate empirical antifungal therapy.
Collapse
Affiliation(s)
- N Yakut
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey.
| | - E Kepenekli
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - Z Ergenc
- Division of Pediatric Infectious Diseases, Department of Pediatrics, Marmara University School of Medicine, Istanbul, Turkey
| | - E Baran
- Marmara University School of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| | - N Cerikcioglu
- Marmara University School of Medicine, Department of Medical Microbiology, Istanbul, Turkey
| |
Collapse
|
30
|
Zeng Z, Tian G, Ding Y, Yang K, Deng J, Liu J. Epidemiology, antifungal susceptibility, risk factors and mortality of invasive candidiasis in neonates and children in a tertiary teaching hospital in Southwest China. Mycoses 2020; 63:1164-1174. [PMID: 32687642 DOI: 10.1111/myc.13146] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2020] [Revised: 07/11/2020] [Accepted: 07/13/2020] [Indexed: 12/29/2022]
Abstract
BACKGROUND Invasive candidiasis (IC) is a major cause of morbidity and mortality in neonates and children; however, little information on the epidemiology of IC in paediatric patients in China is available. METHODS A 7-year retrospective study was conducted to analyse the prevalence, species distributions, antifungal susceptibility, risk factors and mortality among paediatric inpatients with IC in a regional tertiary teaching hospital in Southwest China. RESULTS A total of 86 paediatric inpatients with IC during the seven-year study period were identified, with a mean annual incidence of 1.04 cases per 1000 admissions and a neonatal incidence of 2.72 cases per 1000 admissions. The species distributions of Candida albicans and non-albicans Candida were 48.8% and 51.2%, respectively. The total resistance rates to fluconazole (FCA), itraconazole (ITR) and voriconazole (VRC) were 8.1%, 26.7% and 14.0%, respectively. Age, length of hospital stay, respiratory dysfunction, hospitalisation duration > 30 days and IC due to C albicans and Candida glabrata were associated with neonatal mortality (P < 0.05) according to univariate analyses. Respiratory dysfunction [odds ratio (OR), 50.03; 95% confidence interval (CI), 3.47-721.44; P = 0.004] was the only independent predictor of neonatal mortality. The overall mortality rate was 8.1%, and only neonatal IC patients died, with a neonatal mortality rate of 13.0%. CONCLUSIONS This report shows that the incidence and mortality of IC among neonatal patients warrants increased attention in Southwest China. Clinical interventions should be actively applied to reduce the incidence and mortality of neonatal infection. Fluconazole was a reasonable choice for the treatment of IC prior to species identification.
Collapse
Affiliation(s)
- Zhangrui Zeng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Gang Tian
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Yinhuan Ding
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Kui Yang
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jian Deng
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jinbo Liu
- Department of Laboratory Medicine, Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
31
|
Song Y, Chen X, Yan Y, Wan Z, Liu W, Li R. Prevalence and Antifungal Susceptibility of Pathogenic Yeasts in China: A 10-Year Retrospective Study in a Teaching Hospital. Front Microbiol 2020; 11:1401. [PMID: 32719663 PMCID: PMC7347963 DOI: 10.3389/fmicb.2020.01401] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Accepted: 05/29/2020] [Indexed: 12/29/2022] Open
Abstract
To determine the dynamic changes of pathogenic yeast prevalence and antifungal susceptibility patterns in tertiary hospitals in China, we analyzed 527 yeast isolates preserved in the Research Center for Medical Mycology at Peking University, Beijing, China, between Jan 2010 and Dec 2019 and correctly identified 19 yeast species by matrix-assisted laser desorption ionization time-of-flight mass spectrometry (MALDI-TOF-MS) and ribosomal DNA sequencing. Antifungal susceptibility testing was performed following a Sensititre YeastOne colorimetric microdilution panel with nine clinically available antifungals. The Clinical and Laboratory Standards Institute (CLSI)-approved standard M27-A3 (S4) and newly revised clinical breakpoints or species-specific and method-specific epidemiological cutoff values were used for the interpretation of susceptibility test data. In this study, although Candida albicans was the predominant single species, non-C. albicans species constituted >50% of isolates in 6 out of 10 years, and more rare species were present in the recent 5 years. The non-C. albicans species identified most frequently were Candida parapsilosis sensu stricto, Candida tropicalis, and Candida glabrata. The prevalence of fluconazole and voriconazole resistance in the C. parapsilosis sensu stricto population was <3%, but C. tropicalis exhibited decreased susceptibility to fluconazole (42, 57.5%) and voriconazole (31, 42.5%), and 22 (30.1%) C. tropicalis isolates exhibited wild-type minimum inhibitory concentrations (MICs) to posaconazole. Furthermore, fluconazole and voriconazole cross-resistance prevalence in C. tropicalis was 19 (26.1%). The overall prevalence of fluconazole resistance in the C. glabrata population was 14 (26.9%), and prevalence of isolates exhibiting voriconazole non-wild-type MICs was 33 (63.5%). High-level echinocandin resistance was mainly observed in C. glabrata, and the prevalence rates of isolate resistance to anidulafungin, micafungin, and caspofungin were 5 (9.6%), 5 (9.6%), and 4 (7.7%), respectively. Moreover, one C. glabrata isolate showed multidrug resistant to azoles, echinocandins, and flucytosine. Overall, the 10-year surveillance study showed the increasing prevalence of non-C. albicans species over time; the emergence of azole resistance in C. tropicalis and multidrug resistance in C. glabrata over the years reinforced the need for epidemiological surveillance and monitoring.
Collapse
Affiliation(s)
- Yinggai Song
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Xianlian Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Zunyi Medical University, Zunyi, China
| | - Yan Yan
- Department of Laboratory Medicine, Peking University First Hospital, Beijing, China
| | - Zhe Wan
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Wei Liu
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| | - Ruoyu Li
- Department of Dermatology and Venereology, Peking University First Hospital, Beijing, China.,Research Center for Medical Mycology, Peking University, Beijing, China.,National Clinical Research Center for Skin and Immune Diseases, Beijing, China
| |
Collapse
|
32
|
Seyoum E, Bitew A, Mihret A. Distribution of Candida albicans and non-albicans Candida species isolated in different clinical samples and their in vitro antifungal suscetibity profile in Ethiopia. BMC Infect Dis 2020; 20:231. [PMID: 32188422 PMCID: PMC7081544 DOI: 10.1186/s12879-020-4883-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 02/12/2020] [Indexed: 12/30/2022] Open
Abstract
Background The spectrum of yeasts and their antifungal susceptibility profile are poorly known and treatment of fungal disease has remained empirical. The aim of this study is to determine the spectrum and antifungal susceptibility profile of yeasts particularly of Candida species. Methods A descriptive study on the composition of Candida species and antifungal susceptibility profile were conducted from January 2018 to September 2018. Clinical samples collected from different sites were cultured on Sabouraud dextrose agar and incubated for an appropriate time. Identification of yeast isolates and their antifungal susceptibility profile were determined by the VITEK 2 compact system. Descriptive statistics such as frequency and percentage of Candida species were calculated using SPSS version 20. Results Of 209 yeasts recovered, 104(49.8%), 90 (43.1%), 15(7.2%) were C. albicans, non albicans Candida species, and other yeasts, respectively. Among non albicans Candida species, Candida krusei was the commonest isolate. Of other yeast groups, 66.7% was represented by Cryptococcus laurentii. Regardless of Candida species identified, 85.6, 3.9, and 10.5% of the isolates were susceptible, intermediate, and resistant to fluconazole, respectively. C krusei was 100% resistant to the drug. Voriconazole demonstrated the greatest antifungal activity against Candida isolates in which 99.4% of Candida isolates were susceptible. The susceptibility and the resistance rate of Candida isolate to both caspofungin and micafungin were the same being 96 and 4% respectively. However, micafungin was more potent than caspofungin. The susceptibility, resistant, and intermediate rates of yeasts against flucytosine were, 86.2, 6.6, and 7.2%, respectively. Conclusions The present study demonstrated the distribution of Candida species in different clinical specimens where the isolation rate of non-albicans Candida species was comparable to Candida albicans. The high resistance rate of C. krusei to fluconazole and flucytosine may demonstrate that the treatment of candidiasis empirically is questionable.
Collapse
Affiliation(s)
- Elias Seyoum
- Ethiopian Public Health Institute, Clinical Bacteriology and Mycology Research Case Team, Addis Ababa, Ethiopia.
| | - Adane Bitew
- Department of Medical Laboratory Sciences, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Amete Mihret
- Ethiopian Public Health Institute, Clinical Bacteriology and Mycology Research Case Team, Addis Ababa, Ethiopia
| |
Collapse
|