1
|
Bastani MN, Jalilian S, Bahreiny SS, Makvandi M, Aghaei M, Mansouri Z, Karamali N, Sakhavarz T, Amraei M, Harooni E. Update prognostic potency of surfactant protein D (SP-D) in the COVID-19 landscape: an In-depth meta-analytical exploration. Biomark Med 2024; 18:1135-1148. [PMID: 39618167 DOI: 10.1080/17520363.2024.2432325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/18/2024] [Indexed: 12/18/2024] Open
Abstract
INTRODUCTION Surfactant Protein D (SP-D), a key component of the innate immune system, has attracted significant interest for its potential role in the pathophysiology and prognosis of COVID-19. This systematic review and meta-analysis aim to clarify the prognostic importance of SP-D levels in COVID-19 patients. METHODS A comprehensive literature search was conducted using PubMed, Web of Science, Cochrane Library, Scopus, EMBASE, and Google Scholar, covering studies published from January 2000 to January 2024. The inclusion criteria focused on studies measuring SP-D levels in the serum or plasma of COVID-19 patients, comparing severe and non-severe cases. Standardized mean differences (SMD) with 95% confidence intervals (CI) were calculated using a random-effects model to assess overall effect sizes. Meta-regressions and subgroup analyses were performed to identify potential sources of heterogeneity, including patient age, assay techniques, and gender ratio. RESULTS The meta-analysis incorporated data from nine studies involving 5,410 COVID-19 patients. Elevated SP-D levels were significantly correlated with increased disease severity, yielding an SMD of 0.642 (95% CI: 0.314 to 0.870; p = 0.012). CONCLUSION This meta-analysis confirms the prognostic significance of SP-D in the context of COVID-19. Elevated SP-D levels are associated with severe disease outcomes, highlighting its potential as a prognostic biomarker.
Collapse
Affiliation(s)
- Mohammad-Navid Bastani
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Shahram Jalilian
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Sobhan Bahreiny
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Manoochehr Makvandi
- Department of Medical Virology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Mojtaba Aghaei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Zahra Mansouri
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
- Medical Basic Sciences Research Institute, Physiology Research Center, Department of Physiology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Negin Karamali
- Department of Immunology, School of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Tannaz Sakhavarz
- Department of Biochemistry, Faculty of Biological Science, Kharazmi University, Tehran, Iran
| | - Mahdi Amraei
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Elnaz Harooni
- Student Research Committee, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
2
|
Mapelli M, Salvioni E, Mattavelli I, Banfi C, Ghilardi S, Greco A, Biondi ML, Rovai S, Mancini E, Harari S, Agostoni P. Surfactant-derived protein type B: a new biomarker linked to respiratory failure and lung damage in mild to moderate SARS-CoV-2 pneumonia. ERJ Open Res 2024; 10:00301-2024. [PMID: 39588076 PMCID: PMC11587118 DOI: 10.1183/23120541.00301-2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 06/24/2024] [Indexed: 11/27/2024] Open
Abstract
Background The COVID-19 pandemic has led to significant concern due to its impact on human health, particularly through pneumonia-induced lung damage. Surfactant proteins A and D (SP-A and SP-D) are implicated in COVID-19 lung damage, but the role of surfactant protein B (SP-B) remains unclear. Methods We conducted a single-centre, prospective observational study involving 73 hospitalised COVID-19 pneumonia patients. SP-B levels were measured within 48 h of admission, alongside SP-A and SP-D in a subset. Clinical data were collected, and follow-up visits were conducted after 6 months. Results At hospitalisation, circulating immature SP-B levels measured in 73 patients (median 26.31 arbitrary units (AU) (interquartile range 14.27-41.31)) correlated significantly with lung involvement (r=0.447, p<0.001) and oxygen support requirement (p=0.005). SP-B levels did not predict mechanical ventilation or intensive care unit admission. SP-B decreased significantly (p<0.001) from 25.53 AU (14.36-41.46) at the acute hospitalisation to 12.73 AU (9.12-20.23) at the 6-month follow-up, whereas SP-A and SP-D did not change significantly. Immature SP-B (but not SP-A and SP-D) was confirmed to be significantly associated with the need for oxygen support (n=26, 58%) during the hospitalisation (p<0.05). Conclusion Immature SP-B emerges as a potential biomarker for COVID-19 pneumonia severity and prognosis. Its dynamic changes suggest utility in monitoring disease progression and long-term outcomes, despite limitations in predicting hard end-points. Larger studies are needed to validate these findings and understand the underlying mechanisms of surfactant protein dysregulation in COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Massimo Mapelli
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | | | | | | | | | | | - Sara Rovai
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | | | - Sergio Harari
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
- UO di Pneumologia e Terapia Semi-Intensiva Respiratoria, MultiMedica IRCCS, Milan, Italy
| | - Piergiuseppe Agostoni
- Centro Cardiologico Monzino, IRCCS, Milan, Italy
- Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| |
Collapse
|
3
|
Lesur O, Segal ED, Rego K, Mercat A, Asfar P, Chagnon F. Process-Specific Blood Biomarkers and Outcomes in COVID-19 Versus Non-COVID-19 ARDS (APEL-COVID Study): A Prospective, Observational Cohort Study. J Clin Med 2024; 13:5919. [PMID: 39407979 PMCID: PMC11477790 DOI: 10.3390/jcm13195919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/21/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
Background: Severe acute respiratory syndrome (SARS) and acute respiratory distress syndrome (ARDS) are often considered separate clinico-radiological entities. Whether these conditions also present a single process-specific systemic biomolecular phenotype and how this relates to patient outcomes remains unknown. A prospective cohort study was conducted, including adult patients admitted to the ICU and general floors for COVID-19-related (COVID+) or non-COVID-19-related (COVID-) acute respiratory failure during the main phase of the pandemic. The primary objective was to study blood biomarkers and outcomes among different groups and severity subsets. Results: A total of 132 patients were included, as follows: 67 COVID+, 54 COVID- (with 11 matched control subjects for biomarker reference), and 58 of these patients allowed for further pre- and post-analysis. The baseline apelin (APL) levels were higher in COVID+ patients (p < 0.0001 vs. COVID- patients) and in SARS COVID+ patients (p ≤ 0.02 vs. ARDS), while the IL-6 levels were higher in ARDS COVID- patients (p ≤ 0.0001 vs. SARS). Multivariable logistic regression analyses with cohort biomarkers and outcome parameters revealed the following: (i) log-transformed neprilysin (NEP) activity was significantly higher in COVID+ patients (1.11 [95% CI: 0.4-1.9] vs. 0.37 [95% CI: 0.1-0.8], fold change (FC): 1.43 [95% CI: 1.04-1.97], p = 0.029) and in SARS patients (FC: 1.65 [95% CI: 1.05-2.6], p = 0.032 vs. non-SARS COVID+ patients, and 1.73 [95% CI: 1.19-2.5], p = 0.005 vs. ARDS COVID- patients) and (ii) higher lysyl oxidase (LOX) activity and APL levels were respectively associated with death and a shorter length of hospital stay in SARS COVID+ patients (Odds Ratios (OR): 1.01 [1.00-1.02], p = 0.05, and OR: -0.007 [-0.013-0.0001], p = 0.048). Conclusion: Process-specific blood biomarkers exhibited distinct profiles between COVID+ and COVID- patients, and across stages of severity. NEP and LOX activities, as well as APL levels, are particularly linked to COVID+ patients and their outcomes (ClinicalTrials.gov Identifier: NCT04632732).
Collapse
Affiliation(s)
- Olivier Lesur
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Départements de Soins Intensifs et Service de Pneumologie, CHU Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke QC J1H 5N4, Canada
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Eric David Segal
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Kevin Rego
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
- Départements de Soins Intensifs et Service de Pneumologie, CHU Sherbrooke, 3001, 12th Avenue Nord, Sherbrooke QC J1H 5N4, Canada
- Département de Médecine, CHU Sherbrooke, Faculté de Médecine et des Sciences de la Santé, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada;
| | - Alain Mercat
- Département de Médecine Intensive-Réanimation, CHU Angers, 49000 Angers, France; (A.M.); (P.A.)
| | - Pierre Asfar
- Département de Médecine Intensive-Réanimation, CHU Angers, 49000 Angers, France; (A.M.); (P.A.)
| | - Frédéric Chagnon
- Centre de Recherche Clinique du CHU Sherbrooke (CRCHUS), Department of Intensive Care Medicine, Faculty of Medicine and Health Sciences, University of Sherbrooke, 3001 12th Avenue Nord, Sherbrooke, QC J1H 5N4, Canada;
| |
Collapse
|
4
|
Bastani MN, Jalilian S. Unraveling the enigma: The emerging significance of pulmonary surfactant proteins in predicting, diagnosing, and managing COVID-19. Immun Inflamm Dis 2024; 12:e1302. [PMID: 38860749 PMCID: PMC11165688 DOI: 10.1002/iid3.1302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Revised: 04/23/2024] [Accepted: 05/19/2024] [Indexed: 06/12/2024] Open
Abstract
BACKGROUND Severe cases of COVID-19 often lead to the development of acute respiratory syndrome, a critical condition believed to be caused by the harmful effects of SARS-CoV-2 on type II alveolar cells. These cells play a crucial role in producing pulmonary surfactants, which are essential for proper lung function. Specifically focusing on surfactant proteins, including Surfactant protein A (SP-A), Surfactant protein B, Surfactant protein C, and Surfactant protein D (SP-D), changes in the levels of pulmonary surfactants may be a significant factor in the pathological changes seen in COVID-19 infection. OBJECTIVE This study aims to gain insights into surfactants, particularly their impacts and changes during COVID-19 infection, through a comprehensive review of current literature. The study focuses on the function of surfactants as prognostic markers, diagnostic factors, and essential components in the management and treatment of COVID-19. FINDING In general, pulmonary surfactants serve to reduce the surface tension at the gas-liquid interface, thereby significantly contributing to the regulation of respiratory mechanics. Additionally, these surfactants play a crucial role in the innate immune system within the pulmonary microenvironment. Within the spectrum of COVID-19 infections, a compelling association is observed, characterized by elevated levels of SP-D and SP-A across a range of manifestations from mild to severe pneumonia. The sudden decline in respiratory function observed in COVID-19 patients may be attributed to the decreased synthesis of surfactants by type II alveolar cells. CONCLUSION Collectin proteins such as SP-A and SP-D show promise as biomarkers, offering potential avenues for predicting and monitoring pulmonary alveolar injury in the context of COVID-19. This clarification enhances our understanding of the molecular complexities contributing to respiratory complications in severe COVID-19 cases, providing a foundation for targeted therapeutic approaches using surfactants and refined clinical management strategies.
Collapse
Affiliation(s)
- Mohammad Navid Bastani
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| | - Shahram Jalilian
- Department of Medical Virology, School of MedicineAhvaz Jundishapur University of Medical SciencesAhvazIran
| |
Collapse
|
5
|
Maddaloni L, Zullino V, Bugani G, Lazzaro A, Brisciani M, Mastroianni CM, Santinelli L, Ruberto F. Could SP-A and SP-D Serum Levels Predict COVID-19 Severity? Int J Mol Sci 2024; 25:5620. [PMID: 38891806 PMCID: PMC11171469 DOI: 10.3390/ijms25115620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 05/15/2024] [Accepted: 05/18/2024] [Indexed: 06/21/2024] Open
Abstract
Given the various clinical manifestations that characterize Coronavirus Disease 2019 (COVID-19), the scientific community is constantly searching for biomarkers with prognostic value. Surfactant proteins A (SP-A) and D (SP-D) are collectins that play a crucial role in ensuring proper alveolar function and an alteration of their serum levels was reported in several pulmonary diseases characterized by Acute Respiratory Distress Syndrome (ARDS) and pulmonary fibrosis. Considering that such clinical manifestations can also occur during Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) infection, we wondered if these collectins could act as prognostic markers. In this regard, serum levels of SP-A and SP-D were measured by enzyme immunoassay in patients with SARS-CoV-2 infection (n = 51) at admission (T0) and after seven days (T1) and compared with healthy donors (n = 11). SP-D increased in COVID-19 patients compared to healthy controls during the early phases of infection, while a significant reduction was observed at T1. Stratifying SARS-CoV-2 patients according to disease severity, increased serum SP-D levels were observed in severe compared to mild patients. In light of these results, SP-D, but not SP-A, seems to be an eligible marker of COVID-19 pneumonia, and the early detection of SP-D serum levels could be crucial for preventive clinical management.
Collapse
Affiliation(s)
- Luca Maddaloni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.M.M.); (L.S.)
| | - Veronica Zullino
- Department of General and Specialistic Surgery, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (M.B.); (F.R.)
| | - Ginevra Bugani
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.M.M.); (L.S.)
| | - Alessandro Lazzaro
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.M.M.); (L.S.)
| | - Matteo Brisciani
- Department of General and Specialistic Surgery, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (M.B.); (F.R.)
| | - Claudio Maria Mastroianni
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.M.M.); (L.S.)
| | - Letizia Santinelli
- Department of Public Health and Infectious Diseases, Sapienza University of Rome, 00185 Rome, Italy; (A.L.); (C.M.M.); (L.S.)
| | - Franco Ruberto
- Department of General and Specialistic Surgery, Sapienza University of Rome, 00185 Rome, Italy; (V.Z.); (M.B.); (F.R.)
| |
Collapse
|
6
|
Jacob IB, Gemmiti A, Xiong W, Reynolds E, Nicholas B, Thangamani S, Jia H, Wang G. Human surfactant protein A inhibits SARS-CoV-2 infectivity and alleviates lung injury in a mouse infection model. Front Immunol 2024; 15:1370511. [PMID: 38596675 PMCID: PMC11002091 DOI: 10.3389/fimmu.2024.1370511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 03/11/2024] [Indexed: 04/11/2024] Open
Abstract
Introduction SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. Objective This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity and lung injury in vitro and in vivo. Results Human SP-A can bind both SARS-CoV-2 S protein and hACE2 in a dose-dependent manner (p<0.01). Pre-incubation of SARS-CoV-2 (Delta) with human SP-A inhibited virus binding and entry and reduced viral load in human lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein (NP), and titer (p<0.01). We observed significant weight loss, increased viral burden, and mortality rate, and more severe lung injury in SARS-CoV-2 infected hACE2/SP-A KO mice (SP-A deficient mice with hACE2 transgene) compared to infected hACE2/mSP-A (K18) and hACE2/hSP-A1 (6A2) mice (with both hACE2 and human SP-A1 transgenes) 6 Days Post-infection (DPI). Furthermore, increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Discussion Collectively, human SP-A attenuates SARS-CoV-2-induced acute lung injury (ALI) by directly binding to the S protein and hACE2, and inhibiting its infectivity; and SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
Collapse
Affiliation(s)
- Ikechukwu B. Jacob
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Amanda Gemmiti
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Weichuan Xiong
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
| | - Erin Reynolds
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Brian Nicholas
- Department of Otolaryngology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Saravanan Thangamani
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| | - Hongpeng Jia
- Department of Surgery, Johns-Hopkins University, Baltimore, MD, United States
| | - Guirong Wang
- Department of Surgery, the State University of New York (SUNY) Upstate Medical University, Syracuse, NY, United States
- Department of Microbiology & Immunology, SUNY Upstate Medical University, Syracuse, NY, United States
| |
Collapse
|
7
|
杨 杨, 刘 刚, 欧 毅, 鹿 文. [Lung-protective effect of esketamine combined with distal limb ischemic preconditioning in elderly patients undergoing thoracoscopic radical surgery for lung cancer: a randomized controlled trial in 160 cases]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:484-490. [PMID: 38597439 PMCID: PMC11006705 DOI: 10.12122/j.issn.1673-4254.2024.03.09] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Indexed: 04/11/2024]
Abstract
OBJECTIVE To evaluate the effect of esketamine combined with distal limb ischemic preconditioning (LIP) for lung protection in elderly patients undergoing thoracoscopic radical surgery for lung cancer. METHODS This randomized trial was conducted in 160 patients undergoing elective thoracoscopic surgery for lung cancer, who were randomized into control group (with saline injection and sham LIP), esketamine group, LIP group, and esketamine + LIP group (n=40). Before anesthesia induction, according to the grouping, the patients received an intravenous injection with 0.5 mg/kg esketamine or 10 ml saline (in control group). LIP was induced by applying a tourniquet 1-2 cm above the popliteal fossa in the left lower limb to block the blood flow for 5 min for 3 times at the interval of 5 min, and sham LIP was performed by applying the tourniquet without pressurization for 30 min. Oxygenation index (OI) and alveolar-arterial PO2 difference (A-aDO2) were calculated before induction (T0), at 30 min (T0.5) and 1 h (T1) of one-lung ventilation (OLV), and at 1 h after two-lung ventilation (T3). Serum levels of SP-D, CC-16 and TNF-α were measured by ELISA at T0, T1, T2 (2 h of OLV), T3, and 24 h after the operation (T4). The length of hospital stay and postoperative pulmonary complications of the patients were recorded. RESULTS Compared with those in the control group, the patients in the other 3 groups had significantly lower CC-16, SP-D and TNF-α levels, shorter hospital stay, and lower incidences of lung infection and lung atelectasis (all P < 0.05). Serum CC-16, SP-D and TNF-α levels, hospital stay, incidences of complications were significantly lower or shorter in the combined treatment group than in esketamine group and LIP group (all P < 0.05). CONCLUSION In elderly patients undergoing thoracoscopic radical surgery for lung cancer, treatment with esketamine combined with LIP can alleviate acute lung injury by enhancing anti-inflammatory response to shorten postoperative hospital stay, reduce lung complications and promote the patients' recovery.
Collapse
Affiliation(s)
- 杨 杨
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 刚 刘
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 毅 欧
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| | - 文琪 鹿
- />蚌埠医科大学第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical University, Bengbu 233000, China
| |
Collapse
|
8
|
Eluu SC, Obayemi JD, Salifu AA, Yiporo D, Oko AO, Aina T, Oparah JC, Ezeala CC, Etinosa PO, Ugwu CM, Esimone CO, Soboyejo WO. In-vivo studies of targeted and localized cancer drug release from microporous poly-di-methyl-siloxane (PDMS) devices for the treatment of triple negative breast cancer. Sci Rep 2024; 14:31. [PMID: 38167999 PMCID: PMC10761815 DOI: 10.1038/s41598-023-50656-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/22/2023] [Indexed: 01/05/2024] Open
Abstract
Triple-negative breast cancer (TNBC) treatment is challenging and frequently characterized by an aggressive phenotype and low prognosis in comparison to other subtypes. This paper presents fabricated implantable drug-loaded microporous poly-di-methyl-siloxane (PDMS) devices for the delivery of targeted therapeutic agents [Luteinizing Hormone-Releasing Hormone conjugated paclitaxel (PTX-LHRH) and Luteinizing Hormone-Releasing Hormone conjugated prodigiosin (PG-LHRH)] for the treatment and possible prevention of triple-negative cancer recurrence. In vitro assessment using the Alamar blue assay demonstrated a significant reduction (p < 0.05) in percentage of cell growth in a time-dependent manner in the groups treated with PG, PG-LHRH, PTX, and PTX-LHRH. Subcutaneous triple-negative xenograft breast tumors were then induced in athymic female nude mice that were four weeks old. Two weeks later, the tumors were surgically but partially removed, and the device implanted. Mice were observed for tumor regrowth and organ toxicity. The animal study revealed that there was no tumor regrowth, six weeks post-treatment, when the LHRH targeted drugs (LHRH-PTX and LHRH-PGS) were used for the treatment. The possible cytotoxic effects of the released drugs on the liver, kidney, and lung are assessed using quantitative biochemical assay from blood samples of the treatment groups. Ex vivo histopathological results from organ tissues showed that the targeted cancer drugs released from the implantable drug-loaded device did not induce any adverse effect on the liver, kidneys, or lungs, based on the results of qualitative toxicity studies. The implications of the results are discussed for the targeted and localized treatment of triple negative breast cancer.
Collapse
Affiliation(s)
- S C Eluu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - J D Obayemi
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA
| | - A A Salifu
- Department of Engineering, Morrissey College of Arts and Science, Boston College, Boston, USA
| | - D Yiporo
- Department of Mechanical Engineering, Ashesi University, Berekuso, Ghana
| | - A O Oko
- Department of Biology and Biotechnology, David Umahi Federal, University of Health Sciences, Uburu, Nigeria
| | - T Aina
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - J C Oparah
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - C C Ezeala
- Department of Material Science, African University of Science and Technology, Km 10 Airport Road, Abuja, Nigeria
| | - P O Etinosa
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA
| | - C M Ugwu
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - C O Esimone
- Department of Pharmaceutical Microbiology and Biotechnology, Nnamdi Azikiwe University, Ifite Awka, 420110, Anambra State, Nigeria
| | - W O Soboyejo
- Department of Mechanical Engineering, Higgins Lab, Worcester Polytechnic Institute (WPI), 100 Institute Road, Worcester, MA, 01609, USA.
- Department of Biomedical Engineering, Gateway Park Life Sciences and Bioengineering Centre, Worcester Polytechnic Institute, 60 Prescott Street, Worcester, MA, 01609, USA.
- Department of Engineering, SUNY Polytechnic Institute, 100 Seymour Rd, Utica, NY, 13502, USA.
| |
Collapse
|
9
|
Garavaglia ML, Bodega F, Porta C, Milzani A, Sironi C, Dalle-Donne I. Molecular Impact of Conventional and Electronic Cigarettes on Pulmonary Surfactant. Int J Mol Sci 2023; 24:11702. [PMID: 37511463 PMCID: PMC10380520 DOI: 10.3390/ijms241411702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 07/11/2023] [Accepted: 07/15/2023] [Indexed: 07/30/2023] Open
Abstract
The alveolar epithelium is covered by a non-cellular layer consisting of an aqueous hypophase topped by pulmonary surfactant, a lipo-protein mixture with surface-active properties. Exposure to cigarette smoke (CS) affects lung physiology and is linked to the development of several diseases. The macroscopic effects of CS are determined by several types of cell and molecular dysfunction, which, among other consequences, lead to surfactant alterations. The purpose of this review is to summarize the published studies aimed at uncovering the effects of CS on both the lipid and protein constituents of surfactant, discussing the molecular mechanisms involved in surfactant homeostasis that are altered by CS. Although surfactant homeostasis has been the topic of several studies and some molecular pathways can be deduced from an analysis of the literature, it remains evident that many aspects of the mechanisms of action of CS on surfactant homeostasis deserve further investigation.
Collapse
Affiliation(s)
| | - Francesca Bodega
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Cristina Porta
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Aldo Milzani
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| | - Chiara Sironi
- Dipartimento di Fisiopatologia Medico-Chirurgica e dei Trapianti, Università degli Studi di Milano, 20133 Milan, Italy
| | - Isabella Dalle-Donne
- Dipartimento di Bioscienze, Università degli Studi di Milano, 20133 Milan, Italy
| |
Collapse
|
10
|
Dhooria S, Arora S, Chaudhary S, Sehgal IS, Prabhakar N, Mohammad N, Sharma R, Das P, Kumar Y, Garg M, Puri GD, Bhalla A, Muthu V, Prasad KT, Agarwal R, Aggarwal AN. Risk factors for clinically significant diffuse parenchymal lung abnormalities persisting after severe COVID-19 pneumonia. Indian J Med Res 2023; 157:427-437. [PMID: 37322633 PMCID: PMC10443720 DOI: 10.4103/ijmr.ijmr_2360_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Indexed: 06/17/2023] Open
Abstract
Background & objectives The risk factors for clinically significant diffuse parenchymal lung abnormalities (CS-DPLA) persisting after severe coronavirus disease 2019 (COVID-19) pneumonia remain unclear. The present study was conducted to assess whether COVID-19 severity and other parameters are associated with CS-DPLA. Methods The study participants included patients who recovered after acute severe COVID-19 and presented with CS-DPLA at two or six month follow up and control group (without CS-DPLA). Adults volunteers without any acute illness, chronic respiratory illness and without a history of severe COVID-19 were included as healthy controls for the biomarker study. The CS-DPLA was identified as a multidimensional entity involving clinical, radiological and physiological pulmonary abnormalities. The primary exposure was the neutrophil-lymphocyte ratio (NLR). Recorded confounders included age, sex, peak lactate dehydrogenase (LDH), advanced respiratory support (ARS), length of hospital stay (LOS) and others; associations were analyzed using logistic regression. The baseline serum levels of surfactant protein D, cancer antigen 15-3 and transforming growth factor-β (TGF-β) were also compared among cases, controls and healthy volunteers. Results We identified 91/160 (56.9%) and 42/144 (29.2%) participants with CS-DPLA at two and six months, respectively. Univariate analyses revealed associations of NLR, peak LDH, ARS and LOS with CS-DPLA at two months and of NLR and LOS at six months. The NLR was not independently associated with CS-DPLA at either visit. Only LOS independently predicted CS-DPLA at two months [adjusted odds ratios (aOR) (95% confidence interval [CI]), 1.16 (1.07-1.25); P<0.001] and six months [aOR (95% CI) and 1.07 (1.01-1.12); P=0.01]. Participants with CS-DPLA at six months had higher baseline serum TGF-β levels than healthy volunteers. Interpretation and conclusions Longer hospital stay was observed to be the only independent predictor of CS-DPLA six months after severe COVID-19. Serum TGF-β should be evaluated further as a biomarker.
Collapse
Affiliation(s)
- Sahajal Dhooria
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Siddhant Arora
- Department of Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Shivani Chaudhary
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Inderpaul Singh Sehgal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Nidhi Prabhakar
- Department of Radiodiagnosis & Imaging, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Nasim Mohammad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Riya Sharma
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Prabir Das
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Yashwant Kumar
- Department of Immunopathology, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Mandeep Garg
- Department of Radiodiagnosis & Imaging, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Goverdhan Dutt Puri
- Department of Anaesthesia & Intensive Care, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashish Bhalla
- Department of Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Valliappan Muthu
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Kuruswamy Thurai Prasad
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ritesh Agarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| | - Ashutosh Nath Aggarwal
- Department of Pulmonary Medicine, Postgraduate Institute of Medical Education & Research, Chandigarh, India
| |
Collapse
|
11
|
Jacob IB, Gemmiti A, Xiong W, Reynolds E, Nicholas B, Thangamani S, Jia H, Wang G. Human Surfactant Protein A Alleviates SARS-CoV-2 Infectivity in Human Lung Epithelial Cells. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.04.03.535215. [PMID: 37066146 PMCID: PMC10103969 DOI: 10.1101/2023.04.03.535215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/18/2023]
Abstract
SARS coronavirus 2 (SARS-CoV-2) infects human angiotensin-converting enzyme 2 (hACE2)-expressing lung epithelial cells through its spike (S) protein. The S protein is highly glycosylated and could be a target for lectins. Surfactant protein A (SP-A) is a collagen-containing C-type lectin, expressed by mucosal epithelial cells and mediates its antiviral activities by binding to viral glycoproteins. This study examined the mechanistic role of human SP-A in SARS-CoV-2 infectivity. The interactions between human SP-A and SARS-CoV-2 S protein and hACE2 receptor, and SP-A level in COVID-19 patients were assessed by ELISA. The effect of SP-A on SARS-CoV-2 infectivity was analyzed by infecting human lung epithelial cells (A549-ACE2) with pseudoviral particles and infectious SARS-CoV-2 (Delta variant) pre-incubated with SP-A. Virus binding, entry, and infectivity were assessed by RT-qPCR, immunoblotting, and plaque assay. The results showed that human SP-A can bind SARS-CoV-2 S protein/RBD and hACE2 in a dose-dependent manner (p<0.01). Human SP-A inhibited virus binding and entry, and reduce viral load in lung epithelial cells, evidenced by the dose-dependent decrease in viral RNA, nucleocapsid protein, and titer (p<0.01). Increased SP-A level was observed in the saliva of COVID-19 patients compared to healthy controls (p<0.05), but severe COVID-19 patients had relatively lower SP-A levels than moderate COVID-19 patients (p<0.05). Therefore, SP-A plays an important role in mucosal innate immunity against SARS-CoV-2 infectivity by directly binding to the S protein and inhibiting its infectivity in host cells. SP-A level in the saliva of COVID-19 patients might serve as a biomarker for COVID-19 severity.
Collapse
|
12
|
Scaramuzzo G, Nucera F, Asmundo A, Messina R, Mari M, Montanaro F, Johansen MD, Monaco F, Fadda G, Tuccari G, Hansbro NG, Hansbro PM, Hansel TT, Adcock IM, David A, Kirkham P, Caramori G, Volta CA, Spadaro S. Cellular and molecular features of COVID-19 associated ARDS: therapeutic relevance. J Inflamm (Lond) 2023; 20:11. [PMID: 36941580 PMCID: PMC10027286 DOI: 10.1186/s12950-023-00333-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Accepted: 02/08/2023] [Indexed: 03/23/2023] Open
Abstract
The severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection can be asymptomatic or cause a disease (COVID-19) characterized by different levels of severity. The main cause of severe COVID-19 and death is represented by acute (or acute on chronic) respiratory failure and acute respiratory distress syndrome (ARDS), often requiring hospital admission and ventilator support.The molecular pathogenesis of COVID-19-related ARDS (by now termed c-ARDS) is still poorly understood. In this review we will discuss the genetic susceptibility to COVID-19, the pathogenesis and the local and systemic biomarkers correlated with c-ARDS and the therapeutic options that target the cell signalling pathways of c-ARDS.
Collapse
Affiliation(s)
- Gaetano Scaramuzzo
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Francesco Nucera
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Alessio Asmundo
- Medicina Legale, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Roberto Messina
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Matilde Mari
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Federica Montanaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Matt D. Johansen
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Francesco Monaco
- Chirurgia Toracica, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Guido Fadda
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Giovanni Tuccari
- Section of Pathological Anatomy, Department of Human Pathology of Adult and Developmental Age “Gaetano Barresi”, University of Messina, Messina, Italy
| | - Nicole G. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Philip M. Hansbro
- Centre for Inflammation, School of Life Sciences, Faculty of Science, Centenary Institute and University of Technology Sydney, Sydney, NSW Australia
| | - Trevor T. Hansel
- Medical Research Council and Asthma, UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Ian M. Adcock
- Airway Disease Section, National Heart and Lung Institute, Imperial College London, London, UK
| | - Antonio David
- Intensive Care Unit, Dipartimento di Patologia Umana e dell’Età Evolutiva Gaetano Barresi, Università di Messina, Messina, Italy
| | - Paul Kirkham
- Department of Biomedical Sciences, Faculty of Sciences and Engineering, University of Wolverhampton, West Midlands, Wolverhampton, UK
| | - Gaetano Caramori
- Pneumologia, Dipartimento di Scienze Biomediche, Odontoiatriche e delle Immagini Morfologiche e Funzionali (BIOMORF), Università di Messina, Messina, Italy
| | - Carlo Alberto Volta
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| | - Savino Spadaro
- Department of Translational Medicine, University of Ferrara, Ferrara, Italy
- Department of Emergency, Section of Intensive Care and Anesthesia, Azienda Ospedaliera-Universitaria Sant’Anna, Ferrara, Italy
| |
Collapse
|
13
|
Abstract
Drug-induced interstitial lung disease (DI-ILD) is an increasingly common cause of morbidity and mortality as the list of culprit drugs continues to grow. Unfortunately, DI-ILD is difficult to study, diagnose, prove, and manage. This article attempts to raise awareness of the challenges in DI-ILD and discusses the current clinical landscape.
Collapse
Affiliation(s)
- Nicole Ng
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, PO Box 1232, New York, NY 10029, USA.
| | - Maria L Padilla
- Division of Pulmonary, Critical Care, and Sleep Medicine, Icahn School of Medicine at Mount Sinai, 1 Gustave L Levy Place, PO Box 1232, New York, NY 10029, USA
| | - Philippe Camus
- Pulmonary and Intensive Care at Universite de Bourgogne, 1 Rue Marion, F21079, Dijon, France
| |
Collapse
|
14
|
Bramer LM, Hontz RD, Eisfeld AJ, Sims AC, Kim YM, Stratton KG, Nicora CD, Gritsenko MA, Schepmoes AA, Akasaka O, Koga M, Tsutsumi T, Nakamura M, Nakachi I, Baba R, Tateno H, Suzuki S, Nakajima H, Kato H, Ishida K, Ishii M, Uwamino Y, Mitamura K, Paurus VL, Nakayasu ES, Attah IK, Letizia AG, Waters KM, Metz TO, Corson K, Kawaoka Y, Gerbasi VR, Yotsuyanagi H, Iwatsuki-Horimoto K. Multi-omics of NET formation and correlations with CNDP1, PSPB, and L-cystine levels in severe and mild COVID-19 infections. Heliyon 2023; 9:e13795. [PMID: 36915486 PMCID: PMC9988701 DOI: 10.1016/j.heliyon.2023.e13795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 03/09/2023] Open
Abstract
The detailed mechanisms of COVID-19 infection pathology remain poorly understood. To improve our understanding of SARS-CoV-2 pathology, we performed a multi-omics and correlative analysis of an immunologically naïve SARS-CoV-2 clinical cohort from blood plasma of uninfected controls, mild, and severe infections. Consistent with previous observations, severe patient populations showed an elevation of pulmonary surfactant levels. Intriguingly, mild patients showed a statistically significant elevation in the carnosine dipeptidase modifying enzyme (CNDP1). Mild and severe patient populations showed a strong elevation in the metabolite L-cystine (oxidized form of the amino acid cysteine) and enzymes with roles in glutathione metabolism. Neutrophil extracellular traps (NETs) were observed in both mild and severe populations, and NET formation was higher in severe vs. mild samples. Our correlative analysis suggests a potential protective role for CNDP1 in suppressing PSPB release from the pulmonary space whereas NET formation correlates with increased PSPB levels and disease severity. In our discussion we put forward a possible model where NET formation drives pulmonary occlusions and CNDP1 promotes antioxidation, pleiotropic immune responses, and vasodilation by accelerating histamine synthesis.
Collapse
Affiliation(s)
- Lisa M Bramer
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Robert D Hontz
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Amie J Eisfeld
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA
| | - Amy C Sims
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Young-Mo Kim
- Pacific Northwest National Laboratory, Richland, WA, USA
| | | | | | | | | | - Osamu Akasaka
- Emergency Medical Center, Fujisawa City Hospital 2-6-1 Fujisawa, Fujisawa, Japan
| | - Michiko Koga
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Takeya Tsutsumi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | - Morio Nakamura
- Department of Pulmonary Medicine, Tokyo Saiseikai Central, Tokyo, Japan
| | - Ichiro Nakachi
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Rie Baba
- Pulmonary Division, Department of Internal Medicine, Utsunomiya Hospital, Utsunomiya, Japan
| | - Hiroki Tateno
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Shoji Suzuki
- Department of Pulmonary Medicine, Saitama City Hospital, Saitama, Japan
| | - Hideaki Nakajima
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | - Hideaki Kato
- Department of Hematology and Clinical Immunology, University School of Medicine, Yokohama, Japan
| | | | - Makoto Ishii
- Division of Pulmonary Medicine, Department of Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Yoshifumi Uwamino
- Department of Laboratory Medicine, Keio University School of Medicine, Tokyo, Japan
| | - Keiko Mitamura
- Division of Infection Control, Eiju General Hospital, Tokyo, Japan
| | | | | | - Isaac K Attah
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Andrew G Letizia
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | | | - Thomas O Metz
- Pacific Northwest National Laboratory, Richland, WA, USA
| | - Karen Corson
- U.S. Naval Medical Research Unit No. TWO (NAMRU-2), Singapore, Singapore
| | - Yoshihiro Kawaoka
- Department of Pathobiological Sciences, University of Wisconsin-Madison, Madison, WI, USA.,Department of Microbiology and Immunology, Japan.,International Research Center for Infectious Diseases, Institute of Medical Science, University of Tokyo, Tokyo, Japan
| | | | - Hiroshi Yotsuyanagi
- Division of Infectious Diseases, Advanced Clinical Research Center, Institute of Medical Science, University of Tokyo
| | | |
Collapse
|
15
|
Leal VNC, Andrade MMS, Teixeira FME, Cambui RAG, Roa MEGV, Marra LG, Yamada SM, Alberca RW, Gozzi-Silva SC, Yendo TM, Netto LC, Duarte AJS, Sato MN, Pontillo A. Severe COVID-19 patients show a dysregulation of the NLRP3 inflammasome in circulating neutrophils. Scand J Immunol 2023; 97:e13247. [PMID: 36541819 DOI: 10.1111/sji.13247] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/15/2022] [Accepted: 12/15/2022] [Indexed: 12/24/2022]
Abstract
SARS-CoV-2 triggers inflammasome-dependent release of pro-inflammatory cytokine IL-1β and pyroptosis, therefore, contributes to the huge inflammatory response observed in severe COVID-19 patients. Less is known about the engagement of inflammasome in neutrophils, main players in tissue injury and severe infection. We studied the activation of the inflammasome in neutrophils from severe COVID-19 patients and assessed its consequence in term of cells contribution to disease pathogenesis. We demonstrated that NLRP3 inflammasome is dramatically activated in neutrophils from severe COVID-19 patients and that the specific inhibition of NLRP3 reverts neutrophils' activation. Next, the stimulation of severe patients' neutrophils with common NLRP3 stimuli was not able to further activate the inflammasome, possibly due to exhaustion or increased percentage of circulating immature neutrophils. Collectively, our results demonstrate that the NLRP3 inflammasome is hyperactivated in severe COVID-19 neutrophils and its exhaustion may be responsible for the increased susceptibility to subsequent (and possibly lethal) infections. Our findings thus include a novel piece in the complex puzzle of COVID-19 pathogenesis.
Collapse
Affiliation(s)
- Vinicius N C Leal
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Milena M S Andrade
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Franciane M E Teixeira
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Raylane A G Cambui
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Mariela E G V Roa
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Letícia G Marra
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Suemy M Yamada
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| | - Ricardo W Alberca
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Sarah C Gozzi-Silva
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Tatiana M Yendo
- Departamento de Dermatologia, Instituto de Medicina Tropical, Faculdade de Medicina, Universidade de São Paulo, São Paulo, Brazil
| | - Lucas C Netto
- Unidade Terapia Intensiva, Hospital das Clínicas/FMUSP, São Paulo, Brazil
| | - Alberto J S Duarte
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Maria N Sato
- Laboratório de Investigação Médica em Dermatologia e Imunodeficiências (LIM-56), Departamento de Dermatologia, Hospital das Clínicas e Faculdade de Medicina/HCFMUSP, São Paulo, Brazil
| | - Alessandra Pontillo
- Laboratório de Imunogenética, Departamento de Imunologia, Instituto de Ciências Biomédicas/ICB, Universidade de São Paulo/USP, São Paulo, Brazil
| |
Collapse
|
16
|
Salvioni L, Testa F, Sulejmani A, Pepe F, Giorgio Lovaglio P, Berta P, Dominici R, Leoni V, Prosperi D, Vittadini G, Colombo M, Fiandra L. Surfactant protein D (SP-D) as a biomarker of SARS-CoV-2 infection. Clin Chim Acta 2022; 537:140-145. [PMID: 36341812 PMCID: PMC9617654 DOI: 10.1016/j.cca.2022.10.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/11/2022] [Accepted: 10/16/2022] [Indexed: 11/05/2022]
Abstract
Background Surfactant protein-D (SP-D) is a lung-resident protein that has emerged as a potential biomarker for COVID-19. Previous investigations on acute respiratory distress syndrome patients demonstrated a significant increment of SP-D serum levels in pathological conditions. Since SP-D is not physiologically permeable to alveoli-capillary membrane and poorly expressed by other tissues, this enhancement is likely due to an impairment of the pulmonary barrier caused by prolonged inflammation. Methods A retrospective study on a relatively large cohort of patients of Hospital Pio XI of Desio was conducted to assess differences of the hematic SP-D concentrations among COVID-19 patients and healthy donors and if SP-D levels resulted a risk factor for disease severity and mortality. Results The first analysis, using an ANOVA-model, showed a significant difference in the mean of log SP-D levels between COVID-19 patients and healthy donors. Significant variations were also found between dead vs survived patients. Results confirm that SP-D concentrations were significantly higher for both hospitalized COVID-19 and dead patients, with threshold values of 150 and 250 ng/mL, respectively. Further analysis conducted with Logistic Mixed models, highlighted that higher SP-D levels at admission and increasing differences among follow-up and admission values resulted the strongest significant risk factors of mortality (model predictive accuracy, AUC = 0.844). Conclusions The results indicate that SP-D can be a predictive marker of COVID-19 disease and its outcome. Considering its prognostic value in terms of mortality, the early detection of SP-D levels and its follow-up in hospitalized patients should be considered to direct the therapeutic intervention.
Collapse
Affiliation(s)
- Lucia Salvioni
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Filippo Testa
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Adela Sulejmani
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Francesca Pepe
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy
| | - Pietro Giorgio Lovaglio
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, University of Milano-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
| | - Paolo Berta
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, University of Milano-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
| | - Roberto Dominici
- Laboratory of Clinical Biochemistry, Ospedale Pio XI of Desio, ASST-Brianza, via Mazzini 1, 20833 Desio, Italy
| | - Valerio Leoni
- Department of Medicine and Surgery, University of Milano Bicocca, via Cadore 48, 20900 Monza, Italy,Laboratory of Clinical Biochemistry, Ospedale Pio XI of Desio, ASST-Brianza, via Mazzini 1, 20833 Desio, Italy
| | - Davide Prosperi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy
| | - Giorgio Vittadini
- Department of Statistics and Quantitative Methods, University of Milano-Bicocca, University of Milano-Bicocca, Via Bicocca degli Arcimboldi 8, 20126 Milan, Italy
| | - Miriam Colombo
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy,Corresponding authors
| | - Luisa Fiandra
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, P.zza della Scienza 2, 20126 Milan, Italy,Corresponding authors
| |
Collapse
|
17
|
Pulmonary Fibrosis as a Result of Acute Lung Inflammation: Molecular Mechanisms, Relevant In Vivo Models, Prognostic and Therapeutic Approaches. Int J Mol Sci 2022; 23:ijms232314959. [PMID: 36499287 PMCID: PMC9735580 DOI: 10.3390/ijms232314959] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/24/2022] [Accepted: 11/25/2022] [Indexed: 12/03/2022] Open
Abstract
Pulmonary fibrosis is a chronic progressive lung disease that steadily leads to lung architecture disruption and respiratory failure. The development of pulmonary fibrosis is mostly the result of previous acute lung inflammation, caused by a wide variety of etiological factors, not resolved over time and causing the deposition of fibrotic tissue in the lungs. Despite a long history of study and good coverage of the problem in the scientific literature, the effective therapeutic approaches for pulmonary fibrosis treatment are currently lacking. Thus, the study of the molecular mechanisms underlying the transition from acute lung inflammation to pulmonary fibrosis, and the search for new molecular markers and promising therapeutic targets to prevent pulmonary fibrosis development, remain highly relevant tasks. This review focuses on the etiology, pathogenesis, morphological characteristics and outcomes of acute lung inflammation as a precursor of pulmonary fibrosis; the pathomorphological changes in the lungs during fibrosis development; the known molecular mechanisms and key players of the signaling pathways mediating acute lung inflammation and pulmonary fibrosis, as well as the characteristics of the most common in vivo models of these processes. Moreover, the prognostic markers of acute lung injury severity and pulmonary fibrosis development as well as approved and potential therapeutic approaches suppressing the transition from acute lung inflammation to fibrosis are discussed.
Collapse
|
18
|
Blood serum analysis: a modified sandwich enzyme-linked immunosorbent assay protocol. MethodsX 2022; 9:101923. [DOI: 10.1016/j.mex.2022.101923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Accepted: 11/05/2022] [Indexed: 11/23/2022] Open
|
19
|
Jayadi, Airlangga PS, Kusuma E, Waloejo CS, Salinding A, Lestari P. Correlation between serum surfactant protein-D level with respiratory compliance and acute respiratory distress syndrome in critically ill COVID-19 Patients: A retrospective observational study. Int J Crit Illn Inj Sci 2022; 12:204-210. [PMID: 36779213 PMCID: PMC9910112 DOI: 10.4103/ijciis.ijciis_27_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 07/03/2022] [Accepted: 07/20/2022] [Indexed: 12/24/2022] Open
Abstract
Background Acute respiratory distress syndrome (ARDS) is one of the manifestations of severe coronavirus disease 2019 (COVID-19) with low respiratory compliance and poor oxygenation as main characteristics and mortality rate of 50%-94%. Surfactants, including surfactant protein D (SP-D), have a role in maintaining respiratory compliance. This study aimed to analyze the relationship between serum SP-D levels with respiratory compliance and ARDS in patients with critically ill COVID-19 pneumonia. Methods This study was a cross-sectional study. Subjects were adult reverse transcription-polymerase chain reaction-confirmed COVID-19 patients who had ARDS treated with invasive mechanical ventilation. All data were obtained from medical records. Statistical analysis was done using Spearman test, Mann-Whitney test, and receiver operating characteristic curve. Results Serum level of SP-D was significantly correlated with static respiratory compliance (P = 0.009; correlation coefficient [rs] = 0.467). Serum SP-D levels correlated with ARDS severity (P < 0.001). SP-D levels had a very strong diagnostic value for ARDS severity, with an optimal cutoff value of 44.24 ng/mL (sensitivity 92.3%; specificity 94.1%). ARDS severity also correlated significantly with respiratory compliance (P = 0.005; correlation coefficient 0.496). Conclusion Higher serum SP-D levels were associated with lower respiratory compliance, ARDS severity, and may be utilized diagnostically to identify patients with severe ARDS.
Collapse
Affiliation(s)
- Jayadi
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Prananda Surya Airlangga
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Edward Kusuma
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Christrijogo Soemartono Waloejo
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Agustina Salinding
- Department of Anesthesiology and Reanimation, Faculty of Medicine, Dr. Soetomo General Hospital, Airlangga University, Surabaya, Indonesia
| | - Pudji Lestari
- Department of Public Health and Preventive Medicine, Faculty of Medicine, Airlangga University, Surabaya, Indonesia
| |
Collapse
|
20
|
Ke Y, Zhu Y, Chen S, Hu J, Chen R, Li W, Liu S. Clinical Utility of Circulating Pneumoproteins as Diagnostic and Prognostic Biomarkers in COVID-19: A Systematic Review and Meta-analysis. Infect Dis Ther 2022; 11:1981-1998. [PMID: 36006559 PMCID: PMC9403970 DOI: 10.1007/s40121-022-00686-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/05/2022] [Indexed: 11/05/2022] Open
Abstract
INTRODUCTION This study explored circulating pneumoproteins in the diagnosis, severity, and prognosis of COVID-19 by meta-analysis. METHODS We searched five databases and other sources until December 16, 2021. Standardized mean difference (SMD) and 95% confidence interval (CI) were the overall outcomes. RevMan 5.3, Stata 16, and Meta-DiSc 1.4 were utilized for pooled analysis. RESULTS A total of 2432 subjects from 26 studies were included. Patients with COVID-19 had higher circulating KL-6, SP-D, and SP-A levels (SMD 1.34, 95% CI [0.60, 2.08]; SMD 1.74, 95% CI [0.64, 2.84]; SMD 3.42, 95% CI [1.31, 5.53], respectively) than healthy individuals. Circulating SP-D levels were not significantly different in survivors and non-survivors (SMD - 0.19, 95% CI [- 0.78, 0.40]). Circulating KL-6, SP-D, and RAGE levels in patients with mild to moderate COVID-19 were significantly lower (SMD - 0.93, 95% CI [- 1.22, - 0.65]; SMD - 1.32, 95% CI [- 2.34, - 0.29]; SMD - 1.17, 95% CI [- 2.06, - 0.28], respectively) than in patients with severe COVID-19. Subgroup analysis suggested that country and total number may be related to the heterogeneity when analyzing SP-D in patients with mild to moderate vs. severe COVID-19. The meta-analysis of diagnostic accuracy including KL-6 for severity, KL-6 for mortality, and SP-D for severity demonstrated that they all had limited diagnostic value. CONCLUSION Therefore, circulating pneumoproteins (KL-6, SP-D, and RAGEs) reflect the diagnosis, severity, and prognosis of COVID-19, and follow-up studies are still needed.
Collapse
Affiliation(s)
- Yani Ke
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Yuqing Zhu
- The First Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Shuaihang Chen
- The Second Clinical Medical College of Zhejiang Chinese Medical University, No 548, Binwen Road, Hangzhou, 310051, Zhejiang, China
| | - Jie Hu
- Department of Infectious Diseases, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China.
| | - Ruilin Chen
- Department of Respiration, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Wu Li
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China
| | - Shan Liu
- Department of Clinical Evaluation Center, The First Affiliated Hospital of Zhejiang Chinese Medical University, No. 54, Youdian Road, Hangzhou, 310006, Zhejiang, China.
| |
Collapse
|
21
|
Kuwana T, Kinoshita K, Ihara S, Sawada N, Hosokawa T, Mutoh T, Iguchi U, Nakagawa K, Yamaguchi J. The Characteristics of Patients with Severe COVID-19 Pneumonia Treated with Direct Hemoperfusion Using Polymyxin B-Immobilized Fiber Column (PMX-DHP). Infect Drug Resist 2022; 15:4819-4828. [PMID: 36043160 PMCID: PMC9420440 DOI: 10.2147/idr.s374920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/16/2022] [Indexed: 12/15/2022] Open
Abstract
Purpose The characteristics of patients with severe COVID-19 pneumonia who underwent direct hemoperfusion using polymyxin B-immobilized fiber column (PMX-DHP), in addition to steroids and immunomodulators, remain unclear. Patients and Methods We conducted a retrospective observational study on 31 patients with severe COVID-19 pneumonia treated with PMX-DHP in an intensive care unit (ICU) from December 2020 to September 2021. Results Outcomes 28 days after admission to the ICU were 20 in the survival group and 11 in the death group. Parameters significantly different between the survival and death group before PMX-DHP were percentage of invasive mechanical ventilation (25% vs 72.7%, P = 0.0209), PaO2/FIO2 (P/F) ratio (104.5 vs 75, P = 0.0317), and sequential organ failure assessment (SOFA) score (2 vs 3, P = 0.0356). Invasive mechanical ventilation avoidance rate was significantly different between the survival (100%) and death group (0%) (P = 0.0012). P/F ratio, respiratory ratio (RR), and lymphocyte counts improved significantly after PMX-DHP for all patients. The lymphocyte counts changed significantly in the survival (P < 0.0001), but not the death group (P = 0.7927). Conclusion PMX-DHP, in addition to steroids and immunomodulators, may improve oxygenation and alleviate tachypnea by modulating the lymphocyte numbers and levels of various mediator against severe COVID-19 pneumonia. It may be better to perform PMX-DHP before multi organ dysfunction and lung injury has progressed. Furthermore, the early increase in lymphocyte counts after PMX-DHP might be an indicate a positive outcome.
Collapse
Affiliation(s)
- Tsukasa Kuwana
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Kosaku Kinoshita
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Shingo Ihara
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Nami Sawada
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Toru Hosokawa
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Tomokazu Mutoh
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Umefumi Iguchi
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Katsuhiro Nakagawa
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| | - Junko Yamaguchi
- Division of Emergency and Critical Care Medicine, Department of Acute Medicine, Nihon University School of Medicine, Tokyo, Japan
| |
Collapse
|
22
|
Arakawa N, Matsuyama S, Matsuoka M, Kitamura I, Miyashita K, Kitagawa Y, Imai K, Ogawa K, Maeda T, Saito Y, Hasegawa C. Serum stratifin and presepsin as candidate biomarkers for early detection of COVID-19 disease progression. J Pharmacol Sci 2022; 150:21-30. [PMID: 35926945 PMCID: PMC9188980 DOI: 10.1016/j.jphs.2022.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Revised: 05/18/2022] [Accepted: 06/06/2022] [Indexed: 01/08/2023] Open
Abstract
The prognosis of patients with severe cases of COVID-19 is poor; thus, biomarkers for earlier prediction of COVID-19 progression are vital. We measured levels of five lung injury-related biomarkers, SP-D, KL-6, presepsin, kallistatin and stratifin, in serum samples collected serially during hospitalization from 31 patients with mild/moderate or severe/critical COVID-19 pneumonia, and their predictive performances were compared. Like the previously reported presepsin, a new biomarker candidate, stratifin, was significantly elevated with the onset of severe or critical symptoms in COVID-19 patients and decreased with symptom improvement. Notably, changes in stratifin and presepsin levels were distinctly earlier than those in SP-D, KL-6 and even SpO2/FiO2 values. Furthermore, serum levels of these biomarkers were significantly higher at the pre-severe stage (before the start of oxygen support) of patients who eventually advanced to severe/critical stages than in the patients who remained at the mild/moderate stage. These results were confirmed in an independent cohort, including 71 mild/moderate and 14 severe/critical patients, for whom the performance of stratifin and presepsin in discriminating between mild/moderate and pre-severe conditions of COVID-19 patients was superior to that of the SpO2/FiO2 ratio. Therefore, we concluded that stratifin and presepsin could be used as prognostic biomarkers for severe COVID-19 progression.
Collapse
|
23
|
Fedorchenko Y, Zimba O. CAN PULMONARY SURFACTANT PROTEINS BE RELIABLE INDICATORS OF COVID-19-ASSOCIATED PULMONARY INJURY? CENTRAL ASIAN JOURNAL OF MEDICAL HYPOTHESES AND ETHICS 2022. [DOI: 10.47316/cajmhe.2022.3.2.01] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
The COVID-19 pandemic is still raging all over the world. New variants of the coronavirus emerge and infect recovered from previous infections, vaccinated, and unvaccinated subjects. One aspect remains unchanged that is the lungs are the main targets of the pandemic coronavirus. This challenging situation requires the search for reliable predictive markers of severe and complicated course of the disease. Serum surfactant proteins are known to correlate with pulmonary injury severity in numerous diseases. Measurement of such protein levels may help timely predict the risk. Surfactant proteins can also be helpful diagnostic purposes in COVID-19.
Collapse
|
24
|
Pacheco-Hernández LM, Ramírez-Noyola JA, Gómez-García IA, Ignacio-Cortés S, Zúñiga J, Choreño-Parra JA. Comparing the Cytokine Storms of COVID-19 and Pandemic Influenza. J Interferon Cytokine Res 2022; 42:369-392. [PMID: 35674675 PMCID: PMC9422807 DOI: 10.1089/jir.2022.0029] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2014] [Accepted: 04/19/2022] [Indexed: 12/15/2022] Open
Abstract
Emerging respiratory viruses are major health threats due to their potential to cause massive outbreaks. Over the past 2 years, the coronavirus disease 2019 (COVID-19) pandemic has caused millions of cases of severe infection and deaths worldwide. Although natural and vaccine-induced protective immune mechanisms against the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have been increasingly identified, the factors that determine morbimortality are less clear. Comparing the immune signatures of COVID-19 and other severe respiratory infections such as the pandemic influenza might help dissipate current controversies about the origin of their severe manifestations. As such, identifying homologies in the immunopathology of both diseases could provide targets for immunotherapy directed to block shared pathogenic mechanisms. Meanwhile, finding unique characteristics that differentiate each infection could shed light on specific immune alterations exploitable for diagnostic and individualized therapeutics for each case. In this study, we summarize immunopathological aspects of COVID-19 and pandemic influenza from the perspective of cytokine storms as the driving force underlying morbidity. Thereby, we analyze similarities and differences in the cytokine profiles of both infections, aiming to bring forward those molecules more attractive for translational medicine and drug development.
Collapse
Affiliation(s)
- Lynette Miroslava Pacheco-Hernández
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Jazmín Ariadna Ramírez-Noyola
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Programa de Maestría en Ciencias de la Salud, Sección de Estudios de Posgrado e Investigación, Escuela Superior de Medicina, Instituto Politécnico Nacional, Salvador Díaz Mirón and Plan de San Luis, Mexico City, Mexico
| | - Itzel Alejandra Gómez-García
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Sergio Ignacio-Cortés
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - Joaquín Zúñiga
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| | - José Alberto Choreño-Parra
- Laboratory of Immunobiology and Genetics, Instituto Nacional de Enfermedades Respiratorias “Ismael Cosío Villegas,” Mexico City, Mexico
- Tecnologico de Monterrey, Escuela de Medicina y Ciencias de la Salud, Mexico City, Mexico
| |
Collapse
|
25
|
Depicolzuane LC, Roberts CM, Thomas NJ, Anderson-Fears K, Liu D, Barbosa JPP, Souza FR, Pimentel AS, Floros J, Gandhi CK. Hydrophilic But Not Hydrophobic Surfactant Protein Genetic Variants Are Associated With Severe Acute Respiratory Syncytial Virus Infection in Children. Front Immunol 2022; 13:922956. [PMID: 35903101 PMCID: PMC9317530 DOI: 10.3389/fimmu.2022.922956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 06/07/2022] [Indexed: 11/13/2022] Open
Abstract
Respiratory syncytial virus (RSV) is the leading cause of lower respiratory tract infection-related hospitalization in the first year of life. Surfactant dysfunction is central to pathophysiologic mechanisms of various pulmonary diseases including RSV. We hypothesized that RSV severity is associated with single nucleotide polymorphisms (SNPs) of surfactant proteins (SPs). We prospectively enrolled 405 RSV-positive children and divided them into moderate and severe RSV disease. DNA was extracted and genotyped for sixteen specific SP gene SNPs. SP-A1 and A2 haplotypes were assigned. The association of RSV severity with SP gene SNPs was investigated by multivariate logistic regression. A likelihood ratio test was used to test the goodness of fit between two models (one with clinical and demographic data alone and another that included genetic variants). p ≤ 0.05 denotes statistical significance. A molecular dynamics simulation was done to determine the impact of the SFTPA2 rs1965708 on the SP-A behavior under various conditions. Infants with severe disease were more likely to be younger, of lower weight, and exposed to household pets and smoking, as well as having co-infection on admission. A decreased risk of severe RSV was associated with the rs17886395_C of the SFTPA2 and rs2243639_A of the SFTPD, whereas an increased risk was associated with the rs1059047_C of the SFTPA1. RSV severity was not associated with SNPs of SFTPB and SFTPC. An increased risk of severe RSV was associated with the 1A0 genotype of SFTPA2 in its homozygous or heterozygous form with 1A3. A molecular dynamic simulation study of SP-A variants that differ in amino acid 223, an important amino acid change (Q223K) between 1A0 and 1A3, showed no major impact on the behavior of these two variants except for higher thermodynamic stability of the K223 variant. The likelihood ratio test showed that the model with multi-allelic variants along with clinical and demographic data was a better fit to predict RSV severity. In summary, RSV severity was associated with hydrophilic (but not with hydrophobic) SPs gene variants. Collectively, our findings show that SP gene variants may play a key role in RSV infection and have a potential role in prognostication.
Collapse
Affiliation(s)
- Lynnlee C. Depicolzuane
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Catherine M. Roberts
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Neal J. Thomas
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Keenan Anderson-Fears
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | - Dajiang Liu
- Department of Public Health Science, The Pennsylvania State College of Medicine, Hershey, PA, United States
| | | | - Felipe Rodrigues Souza
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - André Silva Pimentel
- Departamento de Química, Pontifícia Universidade Católica do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Joanna Floros
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- Department of Obstetrics & Gynecology, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| | - Chintan K. Gandhi
- Center for Host defense, Inflammation, and Lung Disease (CHILD) Research, Department of Pediatrics, The Pennsylvania State College of Medicine, Hershey, PA, United States
- *Correspondence: Joanna Floros, ; Chintan K. Gandhi,
| |
Collapse
|
26
|
Navarro KM, Butler CR, Fent K, Toennis C, Sammons D, Ramirez-Cardenas A, Clark KA, Byrne DC, Graydon PS, Hale CR, Wilkinson AF, Smith DL, Alexander-Scott MC, Pinkerton LE, Eisenberg J, Domitrovich JW. The Wildland Firefighter Exposure and Health Effect (WFFEHE) Study: Rationale, Design, and Methods of a Repeated-Measures Study. Ann Work Expo Health 2022; 66:714-727. [PMID: 34919119 PMCID: PMC9203592 DOI: 10.1093/annweh/wxab117] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Revised: 11/18/2021] [Accepted: 12/06/2021] [Indexed: 01/04/2023] Open
Abstract
The wildland firefighter exposure and health effect (WFFEHE) study was a 2-year repeated-measures study to investigate occupational exposures and acute and subacute health effects among wildland firefighters. This manuscript describes the study rationale, design, methods, limitations, challenges, and lessons learned. The WFFEHE cohort included fire personnel ages 18-57 from six federal wildland firefighting crews in Colorado and Idaho during the 2018 and 2019 fire seasons. All wildland firefighters employed by the recruited crews were invited to participate in the study at preseason and postseason study intervals. In 2019, one of the crews also participated in a 3-day midseason study interval where workplace exposures and pre/postshift measurements were collected while at a wildland fire incident. Study components assessed cardiovascular health, pulmonary function and inflammation, kidney function, workplace exposures, and noise-induced hearing loss. Measurements included self-reported risk factors and symptoms collected through questionnaires; serum and urine biomarkers of exposure, effect, and inflammation; pulmonary function; platelet function and arterial stiffness; and audiometric testing. Throughout the study, 154 wildland firefighters participated in at least one study interval, while 144 participated in two or more study interval. This study was completed by the Centers for Disease Control and Prevention's National Institute for Occupational Safety and Health through a collaborative effort with the U.S. Department of Agriculture Forest Service, Department of the Interior National Park Service, and Skidmore College. Conducting research in the wildfire environment came with many challenges including collecting study data with study participants with changing work schedules and conducting study protocols safely and operating laboratory equipment in remote field locations. Forthcoming WFFEHE study results will contribute to the scientific evidence regarding occupational risk factors and exposures that can impact wildland firefighter health over a season and across two wildland fire seasons. This research is anticipated to lead to the development of preventive measures and policies aimed at reducing risk for wildland firefighters and aid in identifying future research needs for the wildland fire community.
Collapse
Affiliation(s)
- Kathleen M. Navarro
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, USA,Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA,Author to whom correspondence should be addressed. Tel: +1-303-236-5953;
| | - Corey R. Butler
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, USA,United States Department of the Interior, Denver, CO, USA
| | - Kenneth Fent
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA
| | - Christine Toennis
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Cincinnati, OH, USA
| | - Deborah Sammons
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Cincinnati, OH, USA
| | - Alejandra Ramirez-Cardenas
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, USA
| | - Kathleen A. Clark
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Respiratory Health Division, Morgantown, VA, USA
| | - David C. Byrne
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA
| | - Pamela S. Graydon
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA
| | - Christa R. Hale
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Western States Division, Denver, CO, USA
| | - Andrea F. Wilkinson
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA,First Responder Health and Safety Laboratory, Skidmore College, Saratoga Springs, NY, USA
| | - Denise L. Smith
- First Responder Health and Safety Laboratory, Skidmore College, Saratoga Springs, NY, USA
| | - Marissa C. Alexander-Scott
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Health Effects Laboratory Division, Cincinnati, OH, USA
| | - Lynne E. Pinkerton
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA,Maximus, Attain, Falls Church, VA, USA
| | - Judith Eisenberg
- Centers for Disease Control and Prevention, National Institute for Occupational Safety and Health, Division of Field Studies and Engineering, Cincinnati, OH, USA
| | - Joseph W. Domitrovich
- United States Forest Service, National Technology and Development Program, Missoula, MT, USA
| |
Collapse
|
27
|
Gorący A, Rosik J, Szostak B, Ustianowski Ł, Ustianowska K, Gorący J. Human Cell Organelles in SARS-CoV-2 Infection: An Up-to-Date Overview. Viruses 2022; 14:v14051092. [PMID: 35632833 PMCID: PMC9144443 DOI: 10.3390/v14051092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/10/2022] [Accepted: 05/17/2022] [Indexed: 12/10/2022] Open
Abstract
Since the end of 2019, the whole world has been struggling with the life-threatening pandemic amongst all age groups and geographic areas caused by Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV-2). The Coronavirus Disease 2019 (COVID-19) pandemic, which has led to more than 468 million cases and over 6 million deaths reported worldwide (as of 20 March 2022), is one of the greatest threats to human health in history. Meanwhile, the lack of specific and irresistible treatment modalities provoked concentrated efforts in scientists around the world. Various mechanisms of cell entry and cellular dysfunction were initially proclaimed. Especially, mitochondria and cell membrane are crucial for the course of infection. The SARS-CoV-2 invasion depends on angiotensin converting enzyme 2 (ACE2), transmembrane serine protease 2 (TMPRSS2), and cluster of differentiation 147 (CD147), expressed on host cells. Moreover, in this narrative review, we aim to discuss other cell organelles targeted by SARS-CoV-2. Lastly, we briefly summarize the studies on various drugs.
Collapse
Affiliation(s)
- Anna Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Clinical and Molecular Biochemistry, Pomeranian Medical University, 70-204 Szczecin, Poland
| | - Jakub Rosik
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
- Department of Chemistry, The University of Chicago, Chicago, IL 60637, USA
- Correspondence:
| | - Bartosz Szostak
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Łukasz Ustianowski
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Klaudia Ustianowska
- Department of Physiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (B.S.); (Ł.U.); (K.U.)
| | - Jarosław Gorący
- Independent Laboratory of Invasive Cardiology, Pomeranian Medical University, 70-204 Szczecin, Poland; (A.G.); (J.G.)
| |
Collapse
|
28
|
Tiezzi M, Morra S, Seminerio J, Van Muylem A, Godefroid A, Law-Weng-Sam N, Van Praet A, Corbière V, Orte Cano C, Karimi S, Del Marmol V, Bondue B, Benjelloun M, Lavis P, Mascart F, van de Borne P, Cardozo AK. SP-D and CC-16 Pneumoproteins' Kinetics and Their Predictive Role During SARS-CoV-2 Infection. Front Med (Lausanne) 2022; 8:761299. [PMID: 35211479 PMCID: PMC8863171 DOI: 10.3389/fmed.2021.761299] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Accepted: 12/07/2021] [Indexed: 12/12/2022] Open
Abstract
Background Surfactant protein D (SP-D) and pulmonary club cell protein 16 (CC-16) are called “pneumoproteins” and are involved in host defense against oxidative stress, inflammation, and viral outbreak. This study aimed to determine the predictive value of these pneumoproteins on the incidence of acute respiratory distress syndrome (ARDS) or death in patients with coronavirus disease-2019 (COVID-19). Methods This retrospective study included 87 patients admitted to an emergency department. Blood samples were collected on three time points (days 1, 5, and 14 from hospital admission). SP-D and CC-16 serum levels were determined, and univariate and multivariate analyses considering confounding variables (age, body mass index, tobacco use, dyspnea, hypertension, diabetes mellitus, neutrophil-to-lymphocyte ratio) were performed. Results Based on the multivariate analysis, SP-D level on D1 was positively and slightly correlated with subsequent development of ARDS, independent of body mass index, dyspnea, and diabetes mellitus. CC-16 level on D1 was modestly and positively correlated with fatal outcome. A rise in SP-D between D1 and D5 and D1 and D14 had a strong negative association with incidence of ARDS. These associations were independent of tobacco use and neutrophil-to-lymphocyte ratio. Conclusions Overall, our data reveal that increase in SP-D levels is a good prognostic factor for patients with COVID-19, and that initial CC-16 levels correlated with slightly higher risk of death. SP-D and CC-16 may prove useful to predict outcomes in patients with COVID-19.
Collapse
Affiliation(s)
- Margherita Tiezzi
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| | - Sofia Morra
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Jimmy Seminerio
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Alain Van Muylem
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Audrey Godefroid
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Noémie Law-Weng-Sam
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Anne Van Praet
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Corbière
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium
| | - Carmen Orte Cano
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Sina Karimi
- Department of Internal Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Véronique Del Marmol
- Department of Dermatology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Benjamin Bondue
- Department of Respiratory Medicine, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Mariam Benjelloun
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Faculty of Medicine, Université Libre de Bruxelles, Brussels, Belgium
| | - Philomène Lavis
- Department of Pathology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium
| | - Françoise Mascart
- Laboratory of Vaccinology and Mucosal Immunity, Université Libre de Bruxelles, Brussels, Belgium.,Immunobiology Clinic, Erasme University Hospital, Université libre de Bruxelles, Brussels, Belgium
| | - Philippe van de Borne
- Department of Cardiology, Erasme University Hospital, Université Libre de Bruxelles, Brussels, Belgium.,Institute for Translational Research in Cardiovascular and Respiratory Sciences, Université Libre de Bruxelles, Brussels, Belgium
| | - Alessandra K Cardozo
- Inflammation and Cell Death Signalling Group, Experimental Gastroenterology Laboratory and Endotools-Medical Faculty, ULB, Brussels, Belgium
| |
Collapse
|
29
|
Herman L, De Smedt SC, Raemdonck K. Pulmonary surfactant as a versatile biomaterial to fight COVID-19. J Control Release 2022; 342:170-188. [PMID: 34813878 PMCID: PMC8605818 DOI: 10.1016/j.jconrel.2021.11.023] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 11/13/2021] [Accepted: 11/15/2021] [Indexed: 02/06/2023]
Abstract
The COVID-19 pandemic has wielded an enormous pressure on global health care systems, economics and politics. Ongoing vaccination campaigns effectively attenuate viral spreading, leading to a reduction of infected individuals, hospitalizations and mortality. Nevertheless, the development of safe and effective vaccines as well as their global deployment is time-consuming and challenging. In addition, such preventive measures have no effect on already infected individuals and can show reduced efficacy against SARS-CoV-2 variants that escape vaccine-induced host immune responses. Therefore, it is crucial to continue the development of specific COVID-19 targeting therapeutics, including small molecular drugs, antibodies and nucleic acids. However, despite clear advantages of local drug delivery to the lung, inhalation therapy of such antivirals remains difficult. This review aims to highlight the potential of pulmonary surfactant (PS) in the treatment of COVID-19. Since SARS-CoV-2 infection can progress to COVID-19-related acute respiratory distress syndrome (CARDS), which is associated with PS deficiency and inflammation, replacement therapy with exogenous surfactant can be considered to counter lung dysfunction. In addition, due to its surface-active properties and membrane-interacting potential, PS can be repurposed to enhance drug spreading along the respiratory epithelium and to promote intracellular drug delivery. By merging these beneficial features, PS can be regarded as a versatile biomaterial to combat respiratory infections, in particular COVID-19.
Collapse
Affiliation(s)
- Lore Herman
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Stefaan C De Smedt
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| | - Koen Raemdonck
- Ghent Research Group on Nanomedicines, Laboratory of General Biochemistry and Physical Pharmacy, Faculty of Pharmaceutical Sciences, Ghent University, Ottergemsesteenweg 460, 9000 Ghent, Belgium.
| |
Collapse
|
30
|
Katopodis P, Randeva HS, Spandidos DA, Saravi S, Kyrou I, Karteris E. Host cell entry mediators implicated in the cellular tropism of SARS‑CoV‑2, the pathophysiology of COVID‑19 and the identification of microRNAs that can modulate the expression of these mediators (Review). Int J Mol Med 2021; 49:20. [PMID: 34935057 PMCID: PMC8722767 DOI: 10.3892/ijmm.2021.5075] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022] Open
Abstract
The pathophysiology of coronavirus disease 2019 (COVID-19) is mainly dependent on the underlying mechanisms that mediate the entry of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) into the host cells of the various human tissues/organs. Recent studies have indicated a higher order of complexity of the mechanisms of infectivity, given that there is a wide-repertoire of possible cell entry mediators that appear to co-localise in a cell- and tissue-specific manner. The present study provides an over-view of the 'canonical' SARS-CoV-2 mediators, namely angiotensin converting enzyme 2, transmembrane protease serine 2 and 4, and neuropilin-1, expanding on the involvement of novel candidates, including glucose-regulated protein 78, basigin, kidney injury molecule-1, metabotropic glutamate receptor subtype 2, ADAM metallopeptidase domain 17 (also termed tumour necrosis factor-α convertase) and Toll-like receptor 4. Furthermore, emerging data indicate that changes in microRNA (miRNA/miR) expression levels in patients with COVID-19 are suggestive of further complexity in the regulation of these viral mediators. An in silico analysis revealed 160 candidate miRNAs with potential strong binding capacity in the aforementioned genes. Future studies should concentrate on elucidating the association between the cellular tropism of the SARS-CoV-2 cell entry mediators and the mechanisms through which they might affect the clinical outcome. Finally, the clinical utility as a biomarker or therapeutic target of miRNAs in the context of COVID-19 warrants further investigation.
Collapse
Affiliation(s)
- Periklis Katopodis
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Harpal S Randeva
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Demetrios A Spandidos
- Laboratory of Clinical Virology, Medical School, University of Crete, 71409 Heraklion, Greece
| | - Sayeh Saravi
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| | - Ioannis Kyrou
- Warwickshire Institute for The Study of Diabetes, Endocrinology and Metabolism (WISDEM), University Hospitals Coventry and Warwickshire NHS Trust, Coventry CV2 2DX, UK
| | - Emmanouil Karteris
- Biosciences, College of Health, Medicine and Life Sciences, Brunel University London, Uxbridge UB8 3PH, UK
| |
Collapse
|
31
|
Udut VV, Naumov SA, Evtushenko DN, Udut EV, Naumov SS, Zyuz'kov GN. A case of xenon inhalation therapy for respiratory failure and neuropsychiatric disorders associated with COVID-19. EXCLI JOURNAL 2021; 20:1517-1525. [PMID: 34924901 PMCID: PMC8678062 DOI: 10.17179/excli2021-4316] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 10/25/2021] [Indexed: 11/28/2022]
Abstract
Acute respiratory distress syndrome (ARDS) is the main danger to the life of patients with pneumonia caused by SARS-CoV-2. At the same time, respiratory failure (RF) after ARDS can persist for a long time despite intensive therapy. Therefore, it is important to develop new effective approaches for restoring the ventilation function of the lungs after COVID-19. Here, we present a case report of effective application of short-term inhalations of xenon-oxygen (Xe/O2) gas mixture for treatment of RF and neuropsychiatric disorders (NPD) associated with COVID-19. The patient inhaled a gas mixture of 70 % Xe and 30 % O2. We used multispiral computed tomography, evaluated psychometry, studied hematological and biochemical blood parameters, and applied some other methods of clinical studies to assess the therapeutic effectiveness of Xe inhalation. Also, we studied the mechanism of action of xenon with computer modeling. The clinical case showed the high efficacy of Xe/O2 mixture for treating severe RF and NPD after SARS-CoV-2 infection. Xenon inhalations dramatically increased oxygen saturation and the degree of pneumatization of the lungs. We found out that in coronavirus pneumonia, saturated phospholipids of surfactant are transferred to the solid-ordered phase, which disrupts the surface tension of the alveoli and alveolar gas exchange. Using molecular modeling methods, we demonstrated that the xenon atom increases the distance between the acyl chains of phospholipids due to the van der Waals dispersion interaction. These changes allow for the phase transition of phospholipids from the solid-ordered phase to the liquid phase and restore the functional activity of the surfactant. The findings suggest the feasibility of conducting studies on the effectiveness of Xe/O2 inhalations for treating ARDS in SARS-CoV-2 infection.
Collapse
Affiliation(s)
- Vladimir Vasil'evich Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | - Sergei Alexandrovich Naumov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia
| | | | - Elena Vladimirovna Udut
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,Siberian State Medical University, Tomsk, Russia
| | | | - Gleb Nikolaevich Zyuz'kov
- Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, Tomsk, Russia,*To whom correspondence should be addressed: Gleb Nikolaevich Zyuz'kov, Tomsk National Research Medical Center, Russian Academy of Sciences, Goldberg Research Institute of Pharmacology and Regenerative Medicine, 634028, Lenin avenue, 3, Tomsk, Russia; Telephone: +73822418372, E-mail:
| |
Collapse
|