1
|
Ruscu M, Capitanescu B, Rupek P, Dandekar T, Radu E, Hermann DM, Popa-Wagner A. The post-stroke young adult brain has limited capacity to re-express the gene expression patterns seen during early postnatal brain development. Brain Pathol 2024; 34:e13232. [PMID: 38198833 PMCID: PMC11328347 DOI: 10.1111/bpa.13232] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 12/18/2023] [Indexed: 01/12/2024] Open
Abstract
The developmental origins of the brain's response to injury can play an important role in recovery after a brain lesion. In this study, we investigated whether the ischemic young adult brain can re-express brain plasticity genes that were active during early postnatal development. Differentially expressed genes in the cortex of juvenile post-natal day 3 and the peri-infarcted cortical areas of young, 3-month-old post-stroke rats were identified using fixed-effects modeling within an empirical Bayes framework through condition-specific comparison. To further analyze potential biological processes, upregulated and downregulated genes were assessed for enrichment using GSEA software. The genes showing the highest expression changes were subsequently verified through RT-PCR. Our findings indicate that the adult brain partially recapitulates the gene expression profile observed in the juvenile brain but fails to upregulate many genes and pathways necessary for brain plasticity. Of the upregulated genes in post-stroke brains, specific roles have not been assigned to Apobec1, Cenpf, Ect2, Folr2, Glipr1, Myo1f, and Pttg1. New genes that failed to upregulate in the adult post-stroke brain include Bex4, Cd24, Klhl1/Mrp2, Trim67, and St8sia2. Among the upregulated pathways, the largest change was observed in the KEGG pathway "One carbon pool of folate," which is necessary for cellular proliferation, followed by the KEGG pathway "Antifolate resistance," whose genes mainly encode the family of ABC transporters responsible for the efflux of drugs that have entered the brain. We also noted three less-described downregulated KEGG pathways in experimental models: glycolipid biosynthesis, oxytocin, and cortisol pathways, which could be relevant as therapeutic targets. The limited brain plasticity of the adult brain is illustrated through molecular and histological analysis of the axonal growth factor, KIF4. Collectively, these results strongly suggest that further research is needed to decipher the complex genetic mechanisms that prevent the re-expression of brain plasticity-associated genes in the adult brain.
Collapse
Affiliation(s)
- Mihai Ruscu
- Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, Essen, Germany
- University of Medicine and Pharmacy Craiova, Craiova, Romania
| | | | - Paul Rupek
- Chair of Bioinformatics, University of Würzburg, Wuerzburg, Germany
| | - Thomas Dandekar
- Chair of Bioinformatics, University of Würzburg, Wuerzburg, Germany
| | - Eugen Radu
- University of Medicine and Pharmacy Carol Davila, Bucharest, Romania
| | - Dirk M Hermann
- Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, Essen, Germany
- University of Medicine and Pharmacy Craiova, Craiova, Romania
| | - Aurel Popa-Wagner
- Vascular Neurology and Dementia, Department of Neurology, University Hospital Essen, Essen, Germany
- University of Medicine and Pharmacy Craiova, Craiova, Romania
| |
Collapse
|
2
|
Jin W, Pei J, Roy JR, Jayaraman S, Ahalliya RM, Kanniappan GV, Mironescu M, Palanisamy CP. Comprehensive review on single-cell RNA sequencing: A new frontier in Alzheimer's disease research. Ageing Res Rev 2024; 100:102454. [PMID: 39142391 DOI: 10.1016/j.arr.2024.102454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 08/07/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Alzheimer's disease (AD) is a multifaceted neurodegenerative condition marked by gradual cognitive deterioration and the loss of neurons. While conventional bulk RNA sequencing techniques have shed light on AD pathology, they frequently obscure the cellular diversity within brain tissues. The advent of single-cell RNA sequencing (scRNA-seq) has transformed our capability to analyze the cellular composition of AD, allowing for the detection of unique cell populations, rare cell types, and gene expression alterations at an individual cell level. This review examines the use of scRNA-seq in AD research, focusing on its contributions to understanding cellular diversity, disease progression, and potential therapeutic targets. We discuss key technological innovations, data analysis techniques, and challenges associated with scRNA-seq in studying AD. Furthermore, we highlight recent studies that have utilized scRNA-seq to identify novel biomarkers, uncover disease-associated pathways, and elucidate the role of non-neuronal cells, such as microglia and astrocytes, in AD pathogenesis. By providing a comprehensive overview of advancements in scRNA-seq for unraveling cellular heterogeneity in AD, this review highlights the transformative impact of scRNA-seq on our comprehension of disease mechanisms and the creation of targeted treatments.
Collapse
Affiliation(s)
- Wengang Jin
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - JinJin Pei
- Qinba State Key Laboratory of Biological Resources and Ecological Environment, 2011 QinLing-Bashan Mountains Bioresources Comprehensive Development C. I. C, Shaanxi Province Key Laboratory of Bio-Resources, College of Bioscience and Bioengineering, Shaanxi University of Technology, Hanzhong 723001, China
| | - Jeane Rebecca Roy
- Department of Anatomy, Bhaarath Medical College and hospital, Bharath Institute of Higher Education and Research (BIHER), Chennai, Tamil Nadu 600073, India
| | - Selvaraj Jayaraman
- Centre of Molecular Medicine and Diagnostics (COMManD), Department of Biochemistry, Saveetha Dental College & Hospital, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai 600077, India
| | - Rathi Muthaiyan Ahalliya
- Department of Biochemistry and Cancer Research Centre, FASCM, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Gopalakrishnan Velliyur Kanniappan
- Center for Global Health Research, Saveetha Medical College & Hospital, Saveetha Institute of Medical and Technical Sciences (SIMATS), Thandalam, Chennai, Tamil Nadu 602105, India.
| | - Monica Mironescu
- Faculty of Agricultural Sciences Food Industry and Environmental Protection, Lucian Blaga University of Sibiu, Bv. Victoriei 10, Sibiu 550024, Romania.
| | - Chella Perumal Palanisamy
- Department of Chemical Technology, Faculty of Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
3
|
Cipriano GL, Mazzon E, Anchesi I. Estrogen Receptors: A New Frontier in Alzheimer's Disease Therapy. Int J Mol Sci 2024; 25:9077. [PMID: 39201762 PMCID: PMC11354998 DOI: 10.3390/ijms25169077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/19/2024] [Accepted: 08/20/2024] [Indexed: 09/03/2024] Open
Abstract
Alzheimer's disease (AD) is a long-term neurodegenerative condition that leads to the deterioration of neurons and synapses in the cerebral cortex, resulting in severe dementia. AD is significantly more prevalent in postmenopausal women, suggesting a neuroprotective role for estrogen. Estrogen is now known to regulate a wide array of physiological functions in the body by interacting with three known estrogen receptors (ERs) and with the β-amyloid precursor protein, a key factor in AD pathogenesis. Recent experimental evidence indicates that new selective ER modulators and phytoestrogens may be promising treatments for AD for their neuroprotective and anti-apoptotic properties. These alternatives may offer fewer side effects compared to traditional hormone therapies, which are associated with risks such as cardiovascular diseases, cancer, and metabolic dysfunctions. This review sheds light on estrogen-based treatments that may help to partially prevent or control the neurodegenerative processes characteristic of AD, paving the way for further investigation in the development of estrogen-based treatments.
Collapse
Affiliation(s)
| | - Emanuela Mazzon
- IRCCS Centro Neurolesi “Bonino-Pulejo”, Via Provinciale Palermo, Contrada Casazza, 98124 Messina, Italy; (G.L.C.); (I.A.)
| | | |
Collapse
|
4
|
Nguyen DPQ, Pham S, Jallow AW, Ho NT, Le B, Quang HT, Lin YF, Lin YF. Multiple Transcriptomic Analyses Explore Potential Synaptic Biomarker Rabphilin-3A for Alzheimer's Disease. Sci Rep 2024; 14:18717. [PMID: 39134564 PMCID: PMC11319786 DOI: 10.1038/s41598-024-66693-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 07/03/2024] [Indexed: 08/15/2024] Open
Abstract
Alzheimer's disease (AD) is a prevalent neurodegenerative disorder afflicting the elderly population worldwide. The identification of potential gene candidates for AD holds promises for diagnostic biomarkers and therapeutic targets. Employing a comprehensive strategy, this study integrated transcriptomic data from diverse data sources, including microarray and single-cell datasets from blood and tissue samples, enabling a detailed exploration of gene expression dynamics. Through this thorough investigation, 19 notable candidate genes were found with consistent expression changes across both blood and tissue datasets, suggesting their potential as biomarkers for AD. In addition, single cell sequencing analysis further highlighted their specific expression in excitatory and inhibitory neurons, the primary functional units in the brain, underscoring their relevance to AD pathology. Moreover, the functional enrichment analysis revealed that three of the candidate genes were downregulated in synaptic signaling pathway. Further validation experiments significantly showed reduced levels of rabphilin-3A (RPH3A) in 3xTg-AD model mice, implying its role in disease pathogenesis. Given its role in neurotransmitter exocytosis and synaptic function, further investigation into RPH3A and its interactions with neurotrophic proteins may provide valuable insights into the complex molecular mechanisms underlying synaptic dysfunction in AD.
Collapse
Affiliation(s)
- Doan Phuong Quy Nguyen
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
- Institute of Biomedicine, Hue University of Medicine and Pharmacy, Hue University, Hue, Vietnam
| | - Son Pham
- BioTuring Inc., San Diego, CA, 92121, USA
| | - Amadou Wurry Jallow
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan
| | | | - Bao Le
- Faculty of Pharmacy, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Hung Tran Quang
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan
| | - Yi-Fang Lin
- Department of Laboratory Medicine, Taipei Medical University-Shuang Ho Hospital, New Taipei City, 235, Taiwan
| | - Yung-Feng Lin
- Ph.D. Program in Medical Biotechnology, College of Medical Science and Technology, Taipei Medical University, No. 301, Yuantong Rd., Zhonghe Dist., New Taipei City, 235, Taiwan.
- School of Medical Laboratory Science and Biotechnology, College of Medical Science and Technology, Taipei Medical University, New Taipei City, 235, Taiwan.
- Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei City, 110, Taiwan.
| |
Collapse
|
5
|
Enduru N, Fernandes BS, Bahrami S, Dai Y, Andreassen OA, Zhao Z. Genetic overlap between Alzheimer's disease and immune-mediated diseases: an atlas of shared genetic determinants and biological convergence. Mol Psychiatry 2024; 29:2447-2458. [PMID: 38499654 DOI: 10.1038/s41380-024-02510-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 02/27/2024] [Accepted: 02/29/2024] [Indexed: 03/20/2024]
Abstract
The occurrence of immune disease comorbidities in Alzheimer's disease (AD) has been observed in both epidemiological and molecular studies, suggesting a neuroinflammatory basis in AD. However, their shared genetic components have not been systematically studied. Here, we composed an atlas of the shared genetic associations between 11 immune-mediated diseases and AD by analyzing genome-wide association studies (GWAS) summary statistics. Our results unveiled a significant genetic overlap between AD and 11 individual immune-mediated diseases despite negligible genetic correlations, suggesting a complex shared genetic architecture distributed across the genome. The shared loci between AD and immune-mediated diseases implicated several genes, including GRAMD1B, FUT2, ADAMTS4, HBEGF, WNT3, TSPAN14, DHODH, ABCB9, and TNIP1, all of which are protein-coding genes and thus potential drug targets. Top biological pathways enriched with these identified shared genes were related to the immune system and cell adhesion. In addition, in silico single-cell analyses showed enrichment of immune and brain cells, including neurons and microglia. In summary, our results suggest a genetic relationship between AD and the 11 immune-mediated diseases, pinpointing the existence of a shared however non-causal genetic basis. These identified protein-coding genes have the potential to serve as a novel path to therapeutic interventions for both AD and immune-mediated diseases and their comorbidities.
Collapse
Affiliation(s)
- Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Brisa S Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Shahram Bahrami
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Yulin Dai
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA
| | - Ole A Andreassen
- Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital & Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- KG Jebsen Centre for Neurodevelopmental Disorders, University of Oslo, Oslo, Norway
| | - Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX, USA.
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| |
Collapse
|
6
|
Zhao Z, Liu A, Citu C, Enduru N, Chen X, Manuel A, Sinha T, Gorski D, Fernandes B, Yu M, Schulz P, Simon L, Soto C. Single-nucleus multiomics reveals the disrupted regulatory programs in three brain regions of sporadic early-onset Alzheimer's disease. RESEARCH SQUARE 2024:rs.3.rs-4622123. [PMID: 39149497 PMCID: PMC11326379 DOI: 10.21203/rs.3.rs-4622123/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis-regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.
Collapse
Affiliation(s)
- Zhongming Zhao
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Faillace Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Andi Liu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Citu Citu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Nitesh Enduru
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
- Department of Epidemiology, Human Genetics and Environmental Sciences, School of Public Health, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Xian Chen
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Astrid Manuel
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Tirthankar Sinha
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Damian Gorski
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Brisa Fernandes
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Meifang Yu
- Center for Precision Health, McWilliams School of Biomedical Informatics, The University of Texas Health Science Center at Houston, Houston
| | - Paul Schulz
- Department of Neurology, McGovern School of Medicine, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| | - Lukas Simon
- Therapeutic Innovation Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Claudio Soto
- Mitchell Center for Alzheimer's Disease and Related Brain Disorders, Department of Neurology, McGovern Medical School, The University of Texas Health Science Center at Houston, Houston, TX 77030, USA
| |
Collapse
|
7
|
Liu A, Citu C, Enduru N, Chen X, Manuel AM, Sinha T, Gorski D, Fernandes BS, Yu M, Schulz PE, Simon LM, Soto C, Zhao Z. Single-nucleus multiomics reveals the disrupted regulatory programs in three brain regions of sporadic early-onset Alzheimer's disease. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600720. [PMID: 38979371 PMCID: PMC11230393 DOI: 10.1101/2024.06.25.600720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Sporadic early-onset Alzheimer's disease (sEOAD) represents a significant but less-studied subtype of Alzheimer's disease (AD). Here, we generated a single-nucleus multiome atlas derived from the postmortem prefrontal cortex, entorhinal cortex, and hippocampus of nine individuals with or without sEOAD. Comprehensive analyses were conducted to delineate cell type-specific transcriptomic changes and linked candidate cis- regulatory elements (cCREs) across brain regions. We prioritized seven conservative transcription factors in glial cells in multiple brain regions, including RFX4 in astrocytes and IKZF1 in microglia, which are implicated in regulating sEOAD-associated genes. Moreover, we identified the top 25 altered intercellular signaling between glial cells and neurons, highlighting their regulatory potential on gene expression in receiver cells. We reported 38 cCREs linked to sEOAD-associated genes overlapped with late-onset AD risk loci, and sEOAD cCREs enriched in neuropsychiatric disorder risk loci. This atlas helps dissect transcriptional and chromatin dynamics in sEOAD, providing a key resource for AD research.
Collapse
|
8
|
Han Y, Chen K, Yu H, Cui C, Li H, Hu Y, Zhang B, Li G. Maf1 loss regulates spinogenesis and attenuates cognitive impairment in Alzheimer's disease. Brain 2024; 147:2128-2143. [PMID: 38226680 PMCID: PMC11146433 DOI: 10.1093/brain/awae015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 01/04/2024] [Accepted: 01/08/2024] [Indexed: 01/17/2024] Open
Abstract
Alzheimer's disease is neurodegenerative and characterized by progressive cognitive impairment. Synaptic dysfunction appears in the early stage of Alzheimer's disease and is significantly correlated with cognitive impairment. However, the specific regulatory mechanism remains unclear. Here, we found the transcription factor Maf1 to be upregulated in Alzheimer's disease and determined that conditional knockout of Maf1 in a transgenic mouse model of Alzheimer's disease restored learning and memory function; the downregulation of Maf1 reduced the intraneuronal calcium concentration and restored neuronal synaptic morphology. We also demonstrated that Maf1 regulated the expression of NMDAR1 by binding to the promoter region of Grin1, further regulating calcium homeostasis and synaptic remodelling in neurons. Our results clarify the important role and mechanism of the Maf1-NMDAR1 signalling pathway in stabilizing synaptic structure, neuronal function and behaviour during Alzheimer's disease pathogenesis. This therefore serves as a potential diagnostic and therapeutic target for the early stage of Alzheimer's disease.
Collapse
Affiliation(s)
- Yingying Han
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Kui Chen
- Department of Neurosurgery, Xinhua Hospital, Shanghai Jiaotong University, School of Medicine, Shanghai 200092, China
| | - Hongxiang Yu
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Can Cui
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Hongxia Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yongbo Hu
- Department of Neurology, the First Affiliated Hospital of Naval Medical University (Shanghai Changhai Hospital), the Second Military Medical University, Shanghai 200092, China
| | - Bei Zhang
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Gang Li
- Department of Neurology, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| |
Collapse
|
9
|
Zhang S, Heil BJ, Mao W, Chikina M, Greene CS, Heller EA. MousiPLIER: A Mouse Pathway-Level Information Extractor Model. eNeuro 2024; 11:ENEURO.0313-23.2024. [PMID: 38789274 PMCID: PMC11154669 DOI: 10.1523/eneuro.0313-23.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 05/10/2024] [Accepted: 05/16/2024] [Indexed: 05/26/2024] Open
Abstract
High-throughput gene expression profiling measures individual gene expression across conditions. However, genes are regulated in complex networks, not as individual entities, limiting the interpretability of gene expression data. Machine learning models that incorporate prior biological knowledge are a powerful tool to extract meaningful biology from gene expression data. Pathway-level information extractor (PLIER) is an unsupervised machine learning method that defines biological pathways by leveraging the vast amount of published transcriptomic data. PLIER converts gene expression data into known pathway gene sets, termed latent variables (LVs), to substantially reduce data dimensionality and improve interpretability. In the current study, we trained the first mouse PLIER model on 190,111 mouse brain RNA-sequencing samples, the greatest amount of training data ever used by PLIER. We then validated the mousiPLIER approach in a study of microglia and astrocyte gene expression across mouse brain aging. mousiPLIER identified biological pathways that are significantly associated with aging, including one latent variable (LV41) corresponding to striatal signal. To gain further insight into the genes contained in LV41, we performed k-means clustering on the training data to identify studies that respond strongly to LV41. We found that the variable was relevant to striatum and aging across the scientific literature. Finally, we built a Web server (http://mousiplier.greenelab.com/) for users to easily explore the learned latent variables. Taken together, this study defines mousiPLIER as a method to uncover meaningful biological processes in mouse brain transcriptomic studies.
Collapse
Affiliation(s)
- Shuo Zhang
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Benjamin J Heil
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Weiguang Mao
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Maria Chikina
- Department of Computational and Systems Biology, School of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania 15260
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Denver, Colorado 80045
| | - Elizabeth A Heller
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania 19104
- Penn Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| |
Collapse
|
10
|
Ma Y, Shi W, Dong Y, Sun Y, Jin Q. Spatial Multi-Omics in Alzheimer's Disease: A Multi-Dimensional Approach to Understanding Pathology and Progression. Curr Issues Mol Biol 2024; 46:4968-4990. [PMID: 38785566 PMCID: PMC11119029 DOI: 10.3390/cimb46050298] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/14/2024] [Accepted: 05/15/2024] [Indexed: 05/25/2024] Open
Abstract
Alzheimer's Disease (AD) presents a complex neuropathological landscape characterized by hallmark amyloid plaques and neurofibrillary tangles, leading to progressive cognitive decline. Despite extensive research, the molecular intricacies contributing to AD pathogenesis are inadequately understood. While single-cell omics technology holds great promise for application in AD, particularly in deciphering the understanding of different cell types and analyzing rare cell types and transcriptomic expression changes, it is unable to provide spatial distribution information, which is crucial for understanding the pathological processes of AD. In contrast, spatial multi-omics research emerges as a promising and comprehensive approach to analyzing tissue cells, potentially better suited for addressing these issues in AD. This article focuses on the latest advancements in spatial multi-omics technology and compares various techniques. Additionally, we provide an overview of current spatial omics-based research results in AD. These technologies play a crucial role in facilitating new discoveries and advancing translational AD research in the future. Despite challenges such as balancing resolution, increasing throughput, and data analysis, the application of spatial multi-omics holds immense potential in revolutionizing our understanding of human disease processes and identifying new biomarkers and therapeutic targets, thereby potentially contributing to the advancement of AD research.
Collapse
Affiliation(s)
| | | | | | | | - Qiguan Jin
- College of Physical Education, Yangzhou University, Yangzhou 225127, China; (Y.M.); (W.S.); (Y.D.); (Y.S.)
| |
Collapse
|
11
|
Soni N, Hohsfield LA, Tran KM, Kawauchi S, Walker A, Javonillo D, Phan J, Matheos D, Da Cunha C, Uyar A, Milinkeviciute G, Gomez‐Arboledas A, Tran K, Kaczorowski CC, Wood MA, Tenner AJ, LaFerla FM, Carter GW, Mortazavi A, Swarup V, MacGregor GR, Green KN. Genetic diversity promotes resilience in a mouse model of Alzheimer's disease. Alzheimers Dement 2024; 20:2794-2816. [PMID: 38426371 PMCID: PMC11032575 DOI: 10.1002/alz.13753] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 03/02/2024]
Abstract
INTRODUCTION Alzheimer's disease (AD) is a neurodegenerative disorder with multifactorial etiology, including genetic factors that play a significant role in disease risk and resilience. However, the role of genetic diversity in preclinical AD studies has received limited attention. METHODS We crossed five Collaborative Cross strains with 5xFAD C57BL/6J female mice to generate F1 mice with and without the 5xFAD transgene. Amyloid plaque pathology, microglial and astrocytic responses, neurofilament light chain levels, and gene expression were assessed at various ages. RESULTS Genetic diversity significantly impacts AD-related pathology. Hybrid strains showed resistance to amyloid plaque formation and neuronal damage. Transcriptome diversity was maintained across ages and sexes, with observable strain-specific variations in AD-related phenotypes. Comparative gene expression analysis indicated correlations between mouse strains and human AD. DISCUSSION Increasing genetic diversity promotes resilience to AD-related pathogenesis, relative to an inbred C57BL/6J background, reinforcing the importance of genetic diversity in uncovering resilience in the development of AD. HIGHLIGHTS Genetic diversity's impact on AD in mice was explored. Diverse F1 mouse strains were used for AD study, via the Collaborative Cross. Strain-specific variations in AD pathology, glia, and transcription were found. Strains resilient to plaque formation and plasma neurofilament light chain (NfL) increases were identified. Correlations with human AD transcriptomics were observed.
Collapse
Affiliation(s)
- Neelakshi Soni
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Lindsay A. Hohsfield
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kristine M. Tran
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Shimako Kawauchi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Amber Walker
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dominic Javonillo
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Jimmy Phan
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Dina Matheos
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
| | - Celia Da Cunha
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Asli Uyar
- The Jackson LaboratoryBar HarborMaineUSA
| | - Giedre Milinkeviciute
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Angela Gomez‐Arboledas
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Katelynn Tran
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Marcelo A. Wood
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Andrea J. Tenner
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Molecular Biology and BiochemistryUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Pathology and Laboratory MedicineUniversity of CaliforniaIrvineCaliforniaUSA
| | - Frank M. LaFerla
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | | | - Ali Mortazavi
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cellular BiologyUniversity of CaliforniaIrvineCaliforniaUSA
- Center for Complex Biological SystemsUniversity of CaliforniaIrvineCaliforniaUSA
| | - Vivek Swarup
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| | - Grant R. MacGregor
- Transgenic Mouse Facility, ULAROffice of ResearchUniversity of CaliforniaIrvineCaliforniaUSA
- Department of Developmental and Cellular BiologyUniversity of CaliforniaIrvineCaliforniaUSA
| | - Kim N. Green
- Department of Neurobiology and BehaviorUniversity of CaliforniaIrvineCaliforniaUSA
- Institute for Memory Impairments and Neurological DisordersUniversity of CaliforniaIrvineCaliforniaUSA
| |
Collapse
|
12
|
Saito K, Shigetomi E, Shinozaki Y, Kobayashi K, Parajuli B, Kubota Y, Sakai K, Miyakawa M, Horiuchi H, Nabekura J, Koizumi S. Microglia sense astrocyte dysfunction and prevent disease progression in an Alexander disease model. Brain 2024; 147:698-716. [PMID: 37955589 PMCID: PMC10834242 DOI: 10.1093/brain/awad358] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 09/28/2023] [Accepted: 10/06/2023] [Indexed: 11/14/2023] Open
Abstract
Alexander disease (AxD) is an intractable neurodegenerative disorder caused by GFAP mutations. It is a primary astrocyte disease with a pathological hallmark of Rosenthal fibres within astrocytes. AxD astrocytes show several abnormal phenotypes. Our previous study showed that AxD astrocytes in model mice exhibit aberrant Ca2+ signals that induce AxD aetiology. Here, we show that microglia have unique phenotypes with morphological and functional alterations, which are related to the pathogenesis of AxD. Immunohistochemical studies of 60TM mice (AxD model) showed that AxD microglia exhibited highly ramified morphology. Functional changes in microglia were assessed by Ca2+ imaging using hippocampal brain slices from Iba1-GCaMP6-60TM mice and two-photon microscopy. We found that AxD microglia showed aberrant Ca2+ signals, with high frequency Ca2+ signals in both the processes and cell bodies. These microglial Ca2+ signals were inhibited by pharmacological blockade or genetic knockdown of P2Y12 receptors but not by tetrodotoxin, indicating that these signals are independent of neuronal activity but dependent on extracellular ATP from non-neuronal cells. Our single-cell RNA sequencing data showed that the expression level of Entpd2, an astrocyte-specific gene encoding the ATP-degrading enzyme NTPDase2, was lower in AxD astrocytes than in wild-type astrocytes. In situ ATP imaging using the adeno-associated virus vector GfaABC1D ATP1.0 showed that exogenously applied ATP was present longer in 60TM mice than in wild-type mice. Thus, the increased ATP level caused by the decrease in its metabolizing enzyme in astrocytes could be responsible for the enhancement of microglial Ca2+ signals. To determine whether these P2Y12 receptor-mediated Ca2+ signals in AxD microglia play a significant role in the pathological mechanism, a P2Y12 receptor antagonist, clopidogrel, was administered. Clopidogrel significantly exacerbated pathological markers in AxD model mice and attenuated the morphological features of microglia, suggesting that microglia play a protective role against AxD pathology via P2Y12 receptors. Taken together, we demonstrated that microglia sense AxD astrocyte dysfunction via P2Y12 receptors as an increase in extracellular ATP and alter their morphology and Ca2+ signalling, thereby protecting against AxD pathology. Although AxD is a primary astrocyte disease, our study may facilitate understanding of the role of microglia as a disease modifier, which may contribute to the clinical diversity of AxD.
Collapse
Affiliation(s)
- Kozo Saito
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Eiji Shigetomi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Youichi Shinozaki
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kenji Kobayashi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Bijay Parajuli
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Yuto Kubota
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Kent Sakai
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Miho Miyakawa
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| | - Hiroshi Horiuchi
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Junichi Nabekura
- Division of Homeostatic Development, National Institute for Physiological Sciences, National Institutes of Natural Sciences, Aichi 444-8585, Japan
| | - Schuichi Koizumi
- Department of Neuropharmacology, Interdisciplinary Graduate School of Medicine, University of Yamanashi, Yamanashi 409-3898, Japan
- GLIA Center, University of Yamanashi, Yamanashi 409-3898, Japan
| |
Collapse
|
13
|
Wang X, Yang X, He W, Zhang S, Song X, Zhang J, Ma J, Chen L, Niu P, Chen T. Single-cell transcriptomics analysis of zebrafish brain reveals adverse effects of manganese on neurogenesis. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 341:122908. [PMID: 37952916 DOI: 10.1016/j.envpol.2023.122908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/17/2023] [Revised: 10/22/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
Manganese (Mn) is considered as an important environmental risk factor for Parkinson's disease. Excessive exposure to Mn can damage various neural cells and affect the neurogenesis, resulting in neurological dysfunction. However, the specific mechanisms of Mn exposure affecting neurogenesis have not been well understood, including compositional changes and heterogeneity of various neural cells. Zebrafish have been successfully used as a neurotoxicity model due to its homology with mammals in several key regions of the brain, as well as its advantages such as small size. We performed single-cell RNA sequencing of zebrafish brains from normal and Mn-exposed groups. Our results suggested that low levels of Mn exposure activated neurogenesis in the zebrafish brain, including promoting the proliferation of neural progenitor cells and differentiation to newborn neurons and oligodendrocytes, while high levels of Mn exposure inhibited neurogenesis and neural function. Mn could affect neurogenesis through specific molecular pathways. In addition, Mn regulated intercellular communication and affected cellular communication in neural cells through specific signaling pathways. Taken together, our study elucidates the cellular composition of the zebrafish brain and adds to the understanding of the mechanisms involved in Mn-induced neurogenesis damage.
Collapse
Affiliation(s)
- Xueting Wang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Yang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Weifeng He
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Shixuan Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Xin Song
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junrou Zhang
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Junxiang Ma
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Li Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Piye Niu
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China
| | - Tian Chen
- Department of Occupational Health and Environmental Health, School of Public Health, Capital Medical University, Beijing 100069, China; Beijing Key Laboratory of Environmental Toxicology, Capital Medical University, Beijing 100069, China.
| |
Collapse
|
14
|
Betti MJ, Aldrich MC, Gamazon ER. Minimum entropy framework identifies a novel class of genomic functional elements and reveals regulatory mechanisms at human disease loci. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.06.11.544507. [PMID: 37398170 PMCID: PMC10312628 DOI: 10.1101/2023.06.11.544507] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/04/2023]
Abstract
We introduce CoRE-BED, a framework trained using 19 epigenomic features in 33 major cell and tissue types to predict cell-type-specific regulatory function. CoRE-BED identifies nine functional classes de-novo, capturing both known and new regulatory categories. Notably, we describe a previously undercharacterized class that we term Development Associated Elements (DAEs), which are highly enriched in cell types with elevated regenerative potential and distinguished by the dual presence of either H3K4me2 and H3K9ac (an epigenetic signature associated with kinetochore assembly) or H3K79me3 and H4K20me1 (a signature associated with transcriptional pause release). Unlike bivalent promoters, which represent a transitory state between active and silenced promoters, DAEs transition directly to or from a non-functional state during stem cell differentiation and are proximal to highly expressed genes. CoRE-BED's interpretability facilitates causal inference and functional prioritization. Across 70 complex traits, distal insulators account for the largest mean proportion of SNP heritability (~49%) captured by the GWAS. Collectively, our results demonstrate the value of exploring non-conventional ways of regulatory classification that enrich for trait heritability, to complement existing approaches for cis-regulatory prediction.
Collapse
Affiliation(s)
| | | | - Eric R Gamazon
- Vanderbilt University Medical Center, Nashville, TN
- Clare Hall, University of Cambridge, Cambridge, England
| |
Collapse
|
15
|
O'Connor LM, O'Connor BA, Lim SB, Zeng J, Lo CH. Integrative multi-omics and systems bioinformatics in translational neuroscience: A data mining perspective. J Pharm Anal 2023; 13:836-850. [PMID: 37719197 PMCID: PMC10499660 DOI: 10.1016/j.jpha.2023.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 06/20/2023] [Accepted: 06/25/2023] [Indexed: 09/19/2023] Open
Abstract
Bioinformatic analysis of large and complex omics datasets has become increasingly useful in modern day biology by providing a great depth of information, with its application to neuroscience termed neuroinformatics. Data mining of omics datasets has enabled the generation of new hypotheses based on differentially regulated biological molecules associated with disease mechanisms, which can be tested experimentally for improved diagnostic and therapeutic targeting of neurodegenerative diseases. Importantly, integrating multi-omics data using a systems bioinformatics approach will advance the understanding of the layered and interactive network of biological regulation that exchanges systemic knowledge to facilitate the development of a comprehensive human brain profile. In this review, we first summarize data mining studies utilizing datasets from the individual type of omics analysis, including epigenetics/epigenomics, transcriptomics, proteomics, metabolomics, lipidomics, and spatial omics, pertaining to Alzheimer's disease, Parkinson's disease, and multiple sclerosis. We then discuss multi-omics integration approaches, including independent biological integration and unsupervised integration methods, for more intuitive and informative interpretation of the biological data obtained across different omics layers. We further assess studies that integrate multi-omics in data mining which provide convoluted biological insights and offer proof-of-concept proposition towards systems bioinformatics in the reconstruction of brain networks. Finally, we recommend a combination of high dimensional bioinformatics analysis with experimental validation to achieve translational neuroscience applications including biomarker discovery, therapeutic development, and elucidation of disease mechanisms. We conclude by providing future perspectives and opportunities in applying integrative multi-omics and systems bioinformatics to achieve precision phenotyping of neurodegenerative diseases and towards personalized medicine.
Collapse
Affiliation(s)
- Lance M. O'Connor
- College of Biological Sciences, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Blake A. O'Connor
- School of Pharmacy, University of Wisconsin, Madison, WI, 53705, USA
| | - Su Bin Lim
- Department of Biochemistry and Molecular Biology, Ajou University School of Medicine, Suwon, 16499, South Korea
| | - Jialiu Zeng
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| | - Chih Hung Lo
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore, 308232, Singapore
| |
Collapse
|
16
|
Gabitto MI, Travaglini KJ, Rachleff VM, Kaplan ES, Long B, Ariza J, Ding Y, Mahoney JT, Dee N, Goldy J, Melief EJ, Brouner K, Campos J, Carr AJ, Casper T, Chakrabarty R, Clark M, Compos J, Cool J, Valera Cuevas NJ, Dalley R, Darvas M, Ding SL, Dolbeare T, Mac Donald CL, Egdorf T, Esposito L, Ferrer R, Gala R, Gary A, Gloe J, Guilford N, Guzman J, Ho W, Jarksy T, Johansen N, Kalmbach BE, Keene LM, Khawand S, Kilgore M, Kirkland A, Kunst M, Lee BR, Malone J, Maltzer Z, Martin N, McCue R, McMillen D, Meyerdierks E, Meyers KP, Mollenkopf T, Montine M, Nolan AL, Nyhus J, Olsen PA, Pacleb M, Pham T, Pom CA, Postupna N, Ruiz A, Schantz AM, Sorensen SA, Staats B, Sullivan M, Sunkin SM, Thompson C, Tieu M, Ting J, Torkelson A, Tran T, Wang MQ, Waters J, Wilson AM, Haynor D, Gatto N, Jayadev S, Mufti S, Ng L, Mukherjee S, Crane PK, Latimer CS, Levi BP, Smith K, Close JL, Miller JA, Hodge RD, Larson EB, Grabowski TJ, Hawrylycz M, Keene CD, Lein ES. Integrated multimodal cell atlas of Alzheimer's disease. RESEARCH SQUARE 2023:rs.3.rs-2921860. [PMID: 37292694 PMCID: PMC10246227 DOI: 10.21203/rs.3.rs-2921860/v1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Alzheimer's disease (AD) is the most common cause of dementia in older adults. Neuropathological and imaging studies have demonstrated a progressive and stereotyped accumulation of protein aggregates, but the underlying molecular and cellular mechanisms driving AD progression and vulnerable cell populations affected by disease remain coarsely understood. The current study harnesses single cell and spatial genomics tools and knowledge from the BRAIN Initiative Cell Census Network to understand the impact of disease progression on middle temporal gyrus cell types. We used image-based quantitative neuropathology to place 84 donors spanning the spectrum of AD pathology along a continuous disease pseudoprogression score and multiomic technologies to profile single nuclei from each donor, mapping their transcriptomes, epigenomes, and spatial coordinates to a common cell type reference with unprecedented resolution. Temporal analysis of cell-type proportions indicated an early reduction of Somatostatin-expressing neuronal subtypes and a late decrease of supragranular intratelencephalic-projecting excitatory and Parvalbumin-expressing neurons, with increases in disease-associated microglial and astrocytic states. We found complex gene expression differences, ranging from global to cell type-specific effects. These effects showed different temporal patterns indicating diverse cellular perturbations as a function of disease progression. A subset of donors showed a particularly severe cellular and molecular phenotype, which correlated with steeper cognitive decline. We have created a freely available public resource to explore these data and to accelerate progress in AD research at SEA-AD.org.
Collapse
Affiliation(s)
| | | | - Victoria M. Rachleff
- Allen Institute for Brain Science, Seattle, WA, 98109
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | | | - Brian Long
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jeanelle Ariza
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Yi Ding
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Nick Dee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jeff Goldy
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Erica J. Melief
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | | | - John Campos
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | | | - Tamara Casper
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Michael Clark
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jazmin Compos
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jonah Cool
- Chan Zuckerberg Initiative, Redwood City, CA 94063
| | | | - Rachel Dalley
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Martin Darvas
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Song-Lin Ding
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tim Dolbeare
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Tom Egdorf
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Luke Esposito
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Rohan Gala
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Amanda Gary
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jessica Gloe
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Windy Ho
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tim Jarksy
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Lisa M. Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Sarah Khawand
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Mitch Kilgore
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Amanda Kirkland
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Michael Kunst
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Brian R. Lee
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Zoe Maltzer
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Naomi Martin
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Rachel McCue
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Kelly P. Meyers
- Kaiser Permanente Washington Research Institute, Seattle, WA, 98101
| | | | - Mark Montine
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Amber L. Nolan
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Julie Nyhus
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Paul A. Olsen
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Maiya Pacleb
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Thanh Pham
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Nadia Postupna
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Augustin Ruiz
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Aimee M. Schantz
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | | | - Brian Staats
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Matt Sullivan
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | - Michael Tieu
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Jonathan Ting
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Amy Torkelson
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Tracy Tran
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Jack Waters
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Angela M. Wilson
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - David Haynor
- Department of Radiology, University of Washington, Seattle, WA 98014
| | - Nicole Gatto
- Kaiser Permanente Washington Research Institute, Seattle, WA, 98101
| | - Suman Jayadev
- Department of Neurology, University of Washington, Seattle, WA 98104
| | - Shoaib Mufti
- Allen Institute for Brain Science, Seattle, WA, 98109
| | - Lydia Ng
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | - Paul K. Crane
- Department of Medicine, University of Washington, Seattle, WA 98104
| | - Caitlin S. Latimer
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Boaz P. Levi
- Allen Institute for Brain Science, Seattle, WA, 98109
| | | | | | | | | | - Eric B. Larson
- Department of Medicine, University of Washington, Seattle, WA 98104
| | | | | | - C. Dirk Keene
- Department of Laboratory Medicine and Pathology, University of Washington, Seattle, WA 98104
| | - Ed S. Lein
- Allen Institute for Brain Science, Seattle, WA, 98109
| |
Collapse
|
17
|
Bryzgalov LO, Korbolina EE, Merkulova TI. Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24097955. [PMID: 37175659 PMCID: PMC10177989 DOI: 10.3390/ijms24097955] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent type of dementia in elderly populations with a significant genetic component. The accumulating evidence suggests that AD involves a reconfiguration of the epigenetic landscape, including DNA methylation, post-translational modification of histone proteins, and chromatin remodeling. Along with environmental factors, individual specific genetic features play a considerable role in the formation of epigenetic architecture. In this study, we attempt to identify the non-coding regulatory SNPs (rSNPs) able to affect the epigenetic mechanisms in AD. To this end, the multi-omics approach is used. The GEO (Gene Expression Omnibus) available data (GSE153875) for AD patients and controls are integrated to reveal the rSNPs that display allele-specific features in both ChIP-seq profiles of four histone modifications and RNA-seq. Furthermore, we analyze the presence of rSNPs in the promoters of genes reported to be differentially expressed between AD and the normal brain (AD-related genes) and involved in epigenetic regulation according to the EpiFactors database. We also searched for the rSNPs in the promoters of the genes coding for transcription regulators of the identified AD-related genes. These regulators were selected based on the corresponding ChIP-seq peaks (ENCODE) in the promoter regions of these genes. Finally, we formed a panel of rSNPs localized to the promoters of genes that contribute to the epigenetic landscape in AD and, thus, to the genetic predisposition for this disease.
Collapse
Affiliation(s)
- Leonid O Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
- Vector-Best, 630117 Novosibirsk, Russia
| | - Elena E Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| | - Tatiana I Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| |
Collapse
|
18
|
Saura CA, Deprada A, Capilla-López MD, Parra-Damas A. Revealing cell vulnerability in Alzheimer's disease by single-cell transcriptomics. Semin Cell Dev Biol 2023; 139:73-83. [PMID: 35623983 DOI: 10.1016/j.semcdb.2022.05.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 05/12/2022] [Accepted: 05/12/2022] [Indexed: 12/31/2022]
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder that by affecting specific brain cell types and regions cause severe pathological and functional changes in memory neural circuits. A comprehensive knowledge of the pathogenic mechanisms underlying AD requires a deeper understanding of the cell-specific pathological responses through integrative molecular analyses. Recent application of high-throughput single-cell transcriptomics to postmortem tissue has proved powerful to unravel cell susceptibility and biological networks responding to amyloid and tau pathologies. Here, we review single-cell transcriptomic studies successfully applied to decipher cell-specific gene expression programs and pathways in the brain of AD patients. Transcriptional information reveals both specific and common gene signatures affecting the major cerebral cell types, including astrocytes, endothelial cells, microglia, neurons, and oligodendrocytes. Cell type-specific transcriptomes associated with AD pathology and clinical symptoms are related to common biological networks affecting, among others pathways, synaptic function, inflammation, proteostasis, cell death, oxidative stress, and myelination. The general picture that emerges from systems-level single-cell transcriptomics is a spatiotemporal pattern of cell diversity and biological pathways, and novel cell subpopulations affected in AD brain. We argue that broader implementation of cell transcriptomics in larger AD human cohorts using standardized protocols is fundamental for reliable assessment of temporal and regional cell-type gene profiling. The possibility of applying this methodology for personalized medicine in clinics is still challenging but opens new roads for future diagnosis and treatment in dementia.
Collapse
Affiliation(s)
- Carlos A Saura
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain.
| | - Angel Deprada
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Maria Dolores Capilla-López
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| | - Arnaldo Parra-Damas
- Institut de Neurociències, Department de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Barcelona 08193, Spain; Centro de Investigación Biomédica en Red Enfermedades Neurodegenerativas (CIBERNED), Spain
| |
Collapse
|
19
|
Maitre M, Jeltsch-David H, Okechukwu NG, Klein C, Patte-Mensah C, Mensah-Nyagan AG. Myelin in Alzheimer's disease: culprit or bystander? Acta Neuropathol Commun 2023; 11:56. [PMID: 37004127 PMCID: PMC10067200 DOI: 10.1186/s40478-023-01554-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 03/20/2023] [Indexed: 04/03/2023] Open
Abstract
Alzheimer's disease (AD) is a neurodegenerative disorder with neuronal and synaptic losses due to the accumulation of toxic amyloid β (Αβ) peptide oligomers, plaques, and tangles containing tau (tubulin-associated unit) protein. While familial AD is caused by specific mutations, the sporadic disease is more common and appears to result from a complex chronic brain neuroinflammation with mitochondriopathies, inducing free radicals' accumulation. In aged brain, mutations in DNA and several unfolded proteins participate in a chronic amyloidosis response with a toxic effect on myelin sheath and axons, leading to cognitive deficits and dementia. Αβ peptides are the most frequent form of toxic amyloid oligomers. Accumulations of misfolded proteins during several years alters different metabolic mechanisms, induce chronic inflammatory and immune responses with toxic consequences on neuronal cells. Myelin composition and architecture may appear to be an early target for the toxic activity of Aβ peptides and others hydrophobic misfolded proteins. In this work, we describe the possible role of early myelin alterations in the genesis of neuronal alterations and the onset of symptomatology. We propose that some pathophysiological and clinical forms of the disease may arise from structural and metabolic disorders in the processes of myelination/demyelination of brain regions where the accumulation of non-functional toxic proteins is important. In these forms, the primacy of the deleterious role of amyloid peptides would be a matter of questioning and the initiating role of neuropathology would be primarily the fact of dysmyelination.
Collapse
Affiliation(s)
- Michel Maitre
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France.
| | - Hélène Jeltsch-David
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
- Biotechnologie et signalisation cellulaire, UMR 7242 CNRS, Université de Strasbourg, 300 Boulevard Sébastien Brant CS 10413, Illkirch cedex, 67412, France
| | - Nwife Getrude Okechukwu
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christian Klein
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Christine Patte-Mensah
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| | - Ayikoe-Guy Mensah-Nyagan
- Biopathologie de la Myéline, Neuroprotection et Stratégies Thérapeutiques, Fédération de Médecine Translationnelle de Strasbourg (FMTS), INSERM U1119, Université de Strasbourg, Bâtiment CRBS de la Faculté de Médecine, 1 rue Eugène Boeckel, Strasbourg, 67000, France
| |
Collapse
|
20
|
Anderson AG, Rogers BB, Loupe JM, Rodriguez-Nunez I, Roberts SC, White LM, Brazell JN, Bunney WE, Bunney BG, Watson SJ, Cochran JN, Myers RM, Rizzardi LF. Single nucleus multiomics identifies ZEB1 and MAFB as candidate regulators of Alzheimer's disease-specific cis-regulatory elements. CELL GENOMICS 2023; 3:100263. [PMID: 36950385 PMCID: PMC10025452 DOI: 10.1016/j.xgen.2023.100263] [Citation(s) in RCA: 30] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 12/06/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023]
Abstract
Cell type-specific transcriptional differences between brain tissues from donors with Alzheimer's disease (AD) and unaffected controls have been well documented, but few studies have rigorously interrogated the regulatory mechanisms responsible for these alterations. We performed single nucleus multiomics (snRNA-seq plus snATAC-seq) on 105,332 nuclei isolated from cortical tissues from 7 AD and 8 unaffected donors to identify candidate cis-regulatory elements (CREs) involved in AD-associated transcriptional changes. We detected 319,861 significant correlations, or links, between gene expression and cell type-specific transposase accessible regions enriched for active CREs. Among these, 40,831 were unique to AD tissues. Validation experiments confirmed the activity of many regions, including several candidate regulators of APP expression. We identified ZEB1 and MAFB as candidate transcription factors playing important roles in AD-specific gene regulation in neurons and microglia, respectively. Microglia links were globally enriched for heritability of AD risk and previously identified active regulatory regions.
Collapse
Affiliation(s)
| | - Brianne B. Rogers
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
- University of Alabama at Birmingham, Birmingham, AL, USA
| | - Jacob M. Loupe
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | | | - Lauren M. White
- HudsonAlpha Institute for Biotechnology, Huntsville, AL, USA
| | | | - William E. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Blynn G. Bunney
- Department of Psychiatry and Human Behavior, College of Medicine, University of California, Irvine, Irvine, CA, USA
| | - Stanley J. Watson
- Mental Health Research Institute, University of Michigan, Ann Arbor, MI, USA
| | | | | | | |
Collapse
|
21
|
Oatman SR, Reddy JS, Quicksall Z, Carrasquillo MM, Wang X, Liu CC, Yamazaki Y, Nguyen TT, Malphrus K, Heckman M, Biswas K, Nho K, Baker M, Martens YA, Zhao N, Kim JP, Risacher SL, Rademakers R, Saykin AJ, DeTure M, Murray ME, Kanekiyo T, Dickson DW, Bu G, Allen M, Ertekin-Taner N. Genome-wide association study of brain biochemical phenotypes reveals distinct genetic architecture of Alzheimer's disease related proteins. Mol Neurodegener 2023; 18:2. [PMID: 36609403 PMCID: PMC9825010 DOI: 10.1186/s13024-022-00592-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Accepted: 12/19/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Alzheimer's disease (AD) is neuropathologically characterized by amyloid-beta (Aβ) plaques and neurofibrillary tangles. The main protein components of these hallmarks include Aβ40, Aβ42, tau, phosphor-tau, and APOE. We hypothesize that genetic variants influence the levels and solubility of these AD-related proteins in the brain; identifying these may provide key insights into disease pathogenesis. METHODS Genome-wide genotypes were collected from 441 AD cases, imputed to the haplotype reference consortium (HRC) panel, and filtered for quality and frequency. Temporal cortex levels of five AD-related proteins from three fractions, buffer-soluble (TBS), detergent-soluble (Triton-X = TX), and insoluble (Formic acid = FA), were available for these same individuals. Variants were tested for association with each quantitative biochemical measure using linear regression, and GSA-SNP2 was used to identify enriched Gene Ontology (GO) terms. Implicated variants and genes were further assessed for association with other relevant variables. RESULTS We identified genome-wide significant associations at seven novel loci and the APOE locus. Genes and variants at these loci also associate with multiple AD-related measures, regulate gene expression, have cell-type specific enrichment, and roles in brain health and other neuropsychiatric diseases. Pathway analysis identified significant enrichment of shared and distinct biological pathways. CONCLUSIONS Although all biochemical measures tested reflect proteins core to AD pathology, our results strongly suggest that each have unique genetic architecture and biological pathways that influence their specific biochemical states in the brain. Our novel approach of deep brain biochemical endophenotype GWAS has implications for pathophysiology of proteostasis in AD that can guide therapeutic discovery efforts focused on these proteins.
Collapse
Affiliation(s)
- Stephanie R. Oatman
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Joseph S. Reddy
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Zachary Quicksall
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | | | - Xue Wang
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Chia-Chen Liu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yu Yamazaki
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Thuy T. Nguyen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kimberly Malphrus
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Michael Heckman
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
| | - Kristi Biswas
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Kwangsik Nho
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
| | - Matthew Baker
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Yuka A. Martens
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Na Zhao
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Jun Pyo Kim
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Shannon L. Risacher
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
| | - Rosa Rademakers
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
| | - Andrew J. Saykin
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
| | - Michael DeTure
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Melissa E. Murray
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Takahisa Kanekiyo
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - for the Alzheimer’s Disease Neuroimaging Initiative
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Quantitative Health Sciences, Mayo Clinic, Jacksonville, FL USA
- Indiana Alzheimer Disease Center, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Radiology and Imaging Sciences, Indiana University School of Medicine, Indianapolis, IN USA
- School of Informatics and Computing, Indiana University School of Medicine, Indianapolis, IN USA
- VIB-UA Center for Molecular Neurology, VIB, University of Antwerp, Antwerp, Belgium
- Department of Medical and Molecular Genetics, Indiana University School of Medicine, Indianapolis, IN USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| | - Dennis W. Dickson
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Guojun Bu
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Mariet Allen
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
| | - Nilüfer Ertekin-Taner
- Department of Neuroscience, Mayo Clinic, 4500 San Pablo Road, Jacksonville, FL 32224 USA
- Department of Neurology, Mayo Clinic, 4500 San Pablo Road, Birdsall 3, Jacksonville, FL 32224 USA
| |
Collapse
|
22
|
Biomarker Genes Discovery of Alzheimer’s Disease by Multi-Omics-Based Gene Regulatory Network Construction of Microglia. Brain Sci 2022; 12:brainsci12091196. [PMID: 36138932 PMCID: PMC9496783 DOI: 10.3390/brainsci12091196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 08/15/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Microglia, the major immune cells in the brain, mediate neuroinflammation, increased oxidative stress, and impaired neurotransmission in Alzheimer’s disease (AD), in which most AD risk genes are highly expressed. In microglia, due to the limitations of current single-omics data analysis, risk genes, the regulatory mechanisms, the mechanisms of action of immune responses and the exploration of drug targets for AD immunotherapy are still unclear. Therefore, we proposed a method to integrate multi-omics data based on the construction of gene regulatory networks (GRN), by combining weighted gene co-expression network analysis (WGCNA) with single-cell regulatory network inference and clustering (SCENIC). This enables snRNA-seq data and bulkRNA-seq data to obtain data on the deeper intermolecular regulatory relationships, related genes, and the molecular mechanisms of immune-cell action. In our approach, not only were central transcription factors (TF) STAT3, CEBPB, SPI1, and regulatory mechanisms identified more accurately than with single-omics but also immunotherapy targeting central TFs to drugs was found to be significantly different between patients. Thus, in addition to providing new insights into the potential regulatory mechanisms and pathogenic genes of AD microglia, this approach can assist clinicians in making the most rational treatment plans for patients with different risks; it also has significant implications for identifying AD immunotherapy targets and targeting microglia-associated immune drugs.
Collapse
|
23
|
Pfundstein G, Nikonenko AG, Sytnyk V. Amyloid precursor protein (APP) and amyloid β (Aβ) interact with cell adhesion molecules: Implications in Alzheimer’s disease and normal physiology. Front Cell Dev Biol 2022; 10:969547. [PMID: 35959488 PMCID: PMC9360506 DOI: 10.3389/fcell.2022.969547] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 07/07/2022] [Indexed: 11/16/2022] Open
Abstract
Alzheimer’s disease (AD) is an incurable neurodegenerative disorder in which dysfunction and loss of synapses and neurons lead to cognitive impairment and death. Accumulation and aggregation of neurotoxic amyloid-β (Aβ) peptides generated via amyloidogenic processing of amyloid precursor protein (APP) is considered to play a central role in the disease etiology. APP interacts with cell adhesion molecules, which influence the normal physiological functions of APP, its amyloidogenic and non-amyloidogenic processing, and formation of Aβ aggregates. These cell surface glycoproteins also mediate attachment of Aβ to the neuronal cell surface and induce intracellular signaling contributing to Aβ toxicity. In this review, we discuss the current knowledge surrounding the interactions of cell adhesion molecules with APP and Aβ and analyze the evidence of the critical role these proteins play in regulating the processing and physiological function of APP as well as Aβ toxicity. This is a necessary piece of the complex AD puzzle, which we should understand in order to develop safe and effective therapeutic interventions for AD.
Collapse
Affiliation(s)
- Grant Pfundstein
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
| | | | - Vladimir Sytnyk
- School of Biotechnology and Biomolecular Sciences, University of New South Wales, Sydney, NSW, Australia
- *Correspondence: Vladimir Sytnyk,
| |
Collapse
|
24
|
Consens ME, Chen Y, Menon V, Wang Y, Schneider JA, De Jager PL, Bennett DA, Tripathy SJ, Felsky D. Bulk and Single-Nucleus Transcriptomics Highlight Intra-Telencephalic and Somatostatin Neurons in Alzheimer's Disease. Front Mol Neurosci 2022; 15:903175. [PMID: 35754708 PMCID: PMC9231610 DOI: 10.3389/fnmol.2022.903175] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 05/16/2022] [Indexed: 11/13/2022] Open
Abstract
Cortical neuron loss is a pathological hallmark of late-onset Alzheimer's disease (AD). However, it remains unclear which neuronal subtypes beyond broad excitatory and inhibitory classes are most vulnerable. Here, we analyzed cell subtype proportion differences in AD compared to non-AD controls using 1037 post-mortem brain samples from six neocortical regions. We identified the strongest associations of AD with fewer somatostatin (SST) inhibitory neurons (β = -0.48, p bonf = 8.98 × 10-9) and intra-telencephalic (IT) excitatory neurons (β = -0.45, p bonf = 4.32 × 10-7). Replication in three AD case-control single-nucleus RNAseq datasets most strongly supported the bulk tissue association of fewer SST neurons in AD. In depth analyses of cell type proportions with specific AD-related neuropathological and cognitive phenotypes revealed fewer SST neurons with greater brain-wide post-mortem tau and beta amyloid, as well as a faster rate of antemortem cognitive decline. In contrast, greater IT neuron proportions were associated with a slower rate of cognitive decline as well as greater residual cognition-a measure of cognitive resilience-but not canonical AD neuropathology. Our findings implicate somatostatin inhibitory and intra-telencephalic excitatory neuron subclasses in the pathogenesis of AD and in cognitive resilience to AD pathology, respectively.
Collapse
Affiliation(s)
- Micaela E. Consens
- The Krembil Centre for Neuroinformatics (KCNI), Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Yuxiao Chen
- The Krembil Centre for Neuroinformatics (KCNI), Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
| | - Vilas Menon
- The Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - Yanling Wang
- The Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, United States
| | - Julie A. Schneider
- The Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, United States
| | - Philip L. De Jager
- The Center for Translational and Computational Neuroimmunology, Department of Neurology, Columbia University Irving Medical Center, New York, NY, United States
- The Taub Institute for Research on Alzheimer’s Disease and the Aging Brain, Columbia University Irving Medical Center, New York, NY, United States
| | - David A. Bennett
- The Rush Alzheimer’s Disease Center, Rush University, Chicago, IL, United States
| | - Shreejoy J. Tripathy
- The Krembil Centre for Neuroinformatics (KCNI), Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Department of Physiology, University of Toronto, Toronto, ON, Canada
| | - Daniel Felsky
- The Krembil Centre for Neuroinformatics (KCNI), Centre for Addiction and Mental Health (CAMH), Toronto, ON, Canada
- Department of Psychiatry, University of Toronto, Toronto, ON, Canada
- Institute of Medical Science, University of Toronto, Toronto, ON, Canada
- Dalla Lana School of Public Health, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
25
|
Jishi A, Qi X. Altered Mitochondrial Protein Homeostasis and Proteinopathies. Front Mol Neurosci 2022; 15:867935. [PMID: 35571369 PMCID: PMC9095842 DOI: 10.3389/fnmol.2022.867935] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 03/25/2022] [Indexed: 12/13/2022] Open
Abstract
Increasing evidence implicates mitochondrial dysfunction as key in the development and progression of various forms of neurodegeneration. The multitude of functions carried out by mitochondria necessitates a tight regulation of protein import, dynamics, and turnover; this regulation is achieved via several, often overlapping pathways that function at different levels. The development of several major neurodegenerative diseases is associated with dysregulation of these pathways, and growing evidence suggests direct interactions between some pathogenic proteins and mitochondria. When these pathways are compromised, so is mitochondrial function, and the resulting deficits in bioenergetics, trafficking, and mitophagy can exacerbate pathogenic processes. In this review, we provide an overview of the regulatory mechanisms employed by mitochondria to maintain protein homeostasis and discuss the failure of these mechanisms in the context of several major proteinopathies.
Collapse
Affiliation(s)
| | - Xin Qi
- Department of Physiology and Biophysics, Case Western Reserve University School of Medicine, Cleveland, OH, United States
| |
Collapse
|
26
|
Sirin S, Nigdelioglu Dolanbay S, Aslim B. The relationship of early- and late-onset Alzheimer’s disease genes with COVID-19. J Neural Transm (Vienna) 2022; 129:847-859. [PMID: 35429259 PMCID: PMC9012910 DOI: 10.1007/s00702-022-02499-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2021] [Accepted: 04/02/2022] [Indexed: 12/13/2022]
Abstract
Individuals with Alzheimer’s disease and other neurodegenerative diseases have been exposed to excess risk by the COVID-19 pandemic. COVID-19’s main manifestations include high body temperature, dry cough, and exhaustion. Nevertheless, some affected individuals may have an atypical presentation at diagnosis but suffer neurological signs and symptoms as the first disease manifestation. These findings collectively show the neurotropic nature of SARS-CoV-2 virus and its ability to involve the central nervous system. In addition, Alzheimer’s disease and COVID-19 has a number of common risk factors and comorbid conditions including age, sex, hypertension, diabetes, and the expression of APOE ε4. Until now, a plethora of studies have examined the COVID-19 disease but only a few studies has yet examined the relationship of COVID-19 and Alzheimer’s disease as risk factors of each other. This review emphasizes the recently published evidence on the role of the genes of early- or late-onset Alzheimer’s disease in the susceptibility of individuals currently suffering or recovered from COVID-19 to Alzheimer’s disease or in the susceptibility of individuals at risk of or with Alzheimer’s disease to COVID-19 or increased COVID-19 severity and mortality. Furthermore, the present review also draws attention to other uninvestigated early- and late-onset Alzheimer’s disease genes to elucidate the relationship between this multifactorial disease and COVID-19.
Collapse
|