1
|
Paquette B, Oweida A. Combination of radiotherapy and immunotherapy in duality with the protumoral action of radiation. Cancer Radiother 2024; 28:484-492. [PMID: 39304400 DOI: 10.1016/j.canrad.2024.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/09/2024] [Accepted: 07/10/2024] [Indexed: 09/22/2024]
Abstract
Radiotherapy is widely used to treat various cancers. Its combination with immune checkpoint inhibitors is intensively studied preclinically and clinically. Although the first results were very encouraging, the number of patients who respond positively remains low, and the therapeutic benefit is often temporary. This review summarizes how radiation can stimulate an antitumor immune response and its combination with immunotherapy based on inhibiting immune checkpoints. We will provide an overview of radiotherapy parameters that should be better controlled to avoid downregulating the antitumor immune response. The low response rate of combining radiotherapy and immunotherapy could, at least in part, be caused by the stimulation of cancer cell invasion and metastasis development that occur at similar doses and number of radiation fractions. To end on a positive note, we explore how a targeted inhibition of the inflammatory cytokines induced by radiation with a cyclooxygenase-2 inhibitor could both support an antitumor immune response and block radiation-induced metastasis formation.
Collapse
Affiliation(s)
- Benoît Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada.
| | - Ayman Oweida
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| |
Collapse
|
2
|
Pan T, Peng L, Dong J, Li L. Pterostilbene Induces Pyroptosis in Breast Cancer Cells through Pyruvate Kinase 2/Caspase-8/Gasdermin C Signaling Pathway. Int J Mol Sci 2024; 25:10509. [PMID: 39408842 PMCID: PMC11476961 DOI: 10.3390/ijms251910509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 09/26/2024] [Accepted: 09/27/2024] [Indexed: 10/20/2024] Open
Abstract
The incidence and mortality of breast cancer increase year by year, and it is urgent to find high-efficiency and low-toxicity anti-cancer drugs. Pterostilbene (PTE) is a natural product with antitumor activity, but the specific antitumor mechanism is not very clear. Aerobic glycolysis is the main energy supply for cancer cells. Pyroptosis is an inflammatory, programmed cell death. The aim of this study was to investigate the effect of PTE on glycolysis and pyroptosis in EMT6 and 4T1 cells and the specific mechanism, and to elucidate the role of pyruvate kinase 2 (PKM2), a key enzyme in glycolysis, in the antitumor role of PTE. Our study suggested that PTE induced pyroptosis by inhibiting tumor glycolysis. PKM2 played an important role in both the inhibition of glycolysis and the induction of pyroptosis by PTE.
Collapse
Affiliation(s)
| | | | - Jing Dong
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| | - Lin Li
- College of Animal Science and Veterinary Medicine, Shenyang Agricultural University, Shenyang 110866, China; (T.P.); (L.P.)
| |
Collapse
|
3
|
Liu Y, Meng Y, Zhang J, Gu L, Shen S, Zhu Y, Wang J. Pharmacology Progresses and Applications of Chloroquine in Cancer Therapy. Int J Nanomedicine 2024; 19:6777-6809. [PMID: 38983131 PMCID: PMC11232884 DOI: 10.2147/ijn.s458910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Accepted: 05/07/2024] [Indexed: 07/11/2024] Open
Abstract
Chloroquine is a common antimalarial drug and is listed in the World Health Organization Standard List of Essential Medicines because of its safety, low cost and ease of use. Besides its antimalarial property, chloroquine also was used in anti-inflammatory and antivirus, especially in antitumor therapy. A mount of data showed that chloroquine mainly relied on autophagy inhibition to exert its antitumor effects. However, recently, more and more researches have revealed that chloroquine acts through other mechanisms that are autophagy-independent. Nevertheless, the current reviews lacked a comprehensive summary of the antitumor mechanism and combined pharmacotherapy of chloroquine. So here we focused on the antitumor properties of chloroquine, summarized the pharmacological mechanisms of antitumor progression of chloroquine dependent or independent of autophagy inhibition. Moreover, we also discussed the side effects and possible application developments of chloroquine. This review provided a more systematic and cutting-edge knowledge involved in the anti-tumor mechanisms and combined pharmacotherapy of chloroquine in hope of carrying out more in-depth exploration of chloroquine and obtaining more clinical applications.
Collapse
Affiliation(s)
- Yanqing Liu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yuqing Meng
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Junzhe Zhang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Liwei Gu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Shengnan Shen
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Yongping Zhu
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
| | - Jigang Wang
- State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-Di Herbs, Artemisinin Research Center, and Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, 100700, People's Republic of China
- Department of Pharmacological Sciences, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore
| |
Collapse
|
4
|
Srinivasan MK, Premnath BJ, Parimelazhagan R, Namasivayam N. Synthesis, characterization, and evaluation of the anticancer properties of pH-responsive carvacrol-zinc oxide quantum dots on breast cancer cell line (MDA-MB-231). Cell Biochem Funct 2024; 42:e4062. [PMID: 38807490 DOI: 10.1002/cbf.4062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 05/16/2024] [Accepted: 05/18/2024] [Indexed: 05/30/2024]
Abstract
Since most solid tumors have a low pH value, a pH-responsive drug delivery system may offer a broad method for tumor-targeting treatment. The present study is used to analyze the anticancer activity of carvacrol-zinc oxide quantum dots (CVC-ZnO QDs) against breast cancer cells (MDA-MB-231). CVC-ZnO QDs demonstrate pH responsive and are specifically released within the acidic pH tumor microenvironment. This property enables targeted drug delivery exclusively to cancer cells while minimizing the impact on normal cells. To the synthesized ZnO QDs, the CVC was loaded and then examined by X-ray diffraction, ultraviolet-visible, Fourier transform infrared spectrophotometer, scanning electron microscopy-energy dispersive X-ray, and transmission electron microscopy. For up to 20 h, CVC release was examined in different pH-buffered solutions. The results showed that carvacrol release was stable in an acidic pH solution. Further, cytotoxicity assay, antioxidant, and lipid peroxidation activity, reactive oxygen species, mitochondrial membrane potential, nuclear damage, and the ability of CVC-ZnO QDs to cause apoptosis were all examined. Apoptosis markers such as Bcl2, Bax, caspase-3, and caspase-9, were also studied. In conclusion, the CVC-ZnO QDs destabilized the MDA-MB-231cells under its acidic tumor microenvironment and regulated apoptosis.
Collapse
Affiliation(s)
- Manoj Kumar Srinivasan
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Briska Jifrina Premnath
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| | - Ramya Parimelazhagan
- Department of Biochemistry, Faculty of Medicine, Sri Lakshmi Narayana Institute of Medical Sciences (SLIMS), Puducherry, India
| | - Nalini Namasivayam
- Department of Biochemistry and Biotechnology, Faculty of Science, Annamalai University, Chidambaram, India
| |
Collapse
|
5
|
Anselmino LE, Baglioni MV, Reynoso G, Rozados VR, Scharovsky OG, Rico MJ, Menacho-Márquez M. Potential effect of chloroquine and propranolol combination to treat colorectal and triple-negative breast cancers. Sci Rep 2023; 13:7923. [PMID: 37193722 DOI: 10.1038/s41598-023-34793-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 05/08/2023] [Indexed: 05/18/2023] Open
Abstract
Drug repositioning explores the reuse of non-cancer drugs to treat tumors. In this work, we evaluated the effect of the combination of chloroquine and propranolol on colorectal and triple-negative breast cancers. Using as in vitro models the colorectal cancer cell lines HCT116, HT29, and CT26, and as triple-negative breast cancer models the 4T1, M-406, and MDA-MB-231 cell lines, we evaluated the effect of the drugs combination on the viability, apoptosis, clonogenicity, and cellular migratory capacity. To explore the in vivo effects of the combination on tumor growth and metastasis development we employed graft models in BALB/c, nude, and CBi mice. In vitro studies showed that combined treatment decreased cell viability in a dose-dependent manner and increased apoptosis. Also, we demonstrated that these drugs act synergically and that it affects clonogenicity and migration. In vivo studies indicated that this drug combination was effective on colorectal models but only partially on breast cancer. These results contributed to the search for new and safe treatments for colorectal and triple-negative carcinomas.
Collapse
Affiliation(s)
- L E Anselmino
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), 3100, Rosario, Santa Fe, Argentina
- CONICET, Rosario, Argentina
| | - M V Baglioni
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - G Reynoso
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - V R Rozados
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - O G Scharovsky
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - M J Rico
- CONICET, Rosario, Argentina
- Instituto de Genética Experimental, Facultad de Ciencias Médicas, 3100, Rosario, Santa Fe, Argentina
| | - M Menacho-Márquez
- Instituto de Inmunología Clínica y Experimental de Rosario (IDICER, CONICET-UNR), Facultad de Ciencias Médicas (UNR), 3100, Rosario, Santa Fe, Argentina.
- CONICET, Rosario, Argentina.
- Centro de Investigación y Producción de Reactivos Biológicos (CIPReB), Facultad de Ciencias Médicas, Suipacha, 660, Rosario, Argentina.
| |
Collapse
|
6
|
The Role of Autophagy in Breast Cancer Metastasis. Biomedicines 2023; 11:biomedicines11020618. [PMID: 36831154 PMCID: PMC9953203 DOI: 10.3390/biomedicines11020618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Revised: 02/07/2023] [Accepted: 02/16/2023] [Indexed: 02/22/2023] Open
Abstract
Patient morbidity and mortality is significantly increased in metastatic breast cancer. The metastasis process of breast cancer is very complicated and is delicately controlled by various factors. Autophagy is one of the important regulatory factors affecting metastasis in breast cancer by engaging in cell mobility, metabolic adaptation, tumor dormancy, and cancer stem cells. Here, we discuss the effects of autophagy on metastasis in breast cancer and assess the potential use of autophagy modulators for metastasis treatment.
Collapse
|
7
|
Hedyotis diffusae Herba-Andrographis Herba inhibits the cellular proliferation of nasopharyngeal carcinoma and triggers DNA damage through activation of p53 and p21. Cancer Gene Ther 2022; 29:973-983. [PMID: 34754077 DOI: 10.1038/s41417-021-00385-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 08/08/2021] [Accepted: 08/27/2021] [Indexed: 12/25/2022]
Abstract
Dysregulation of the cell cycle and the resulting aberrant cellular proliferation has been highlighted as a hallmark of cancer. Certain traditional Chinese medicines can inhibit cancer growth by inducing cell cycle arrest. In this study we explore the effect of Hedyotis diffusae Herba-Andrographis Herba on the cell cycle of nasopharyngeal carcinoma (NPC). Hedyotis diffusae Herba-Andrographis Herba-containing serum was prepared and then added to the cell culture medium. BrdU, comet, and FUCCI assays, western blot analysis and flow cytometry analysis revealed that Hedyotis diffusae Herba-Andrographis Herba treatment significantly alters cell proliferation, DNA damage, and cell cycle distribution. Xenograft mouse model experiments were performed, confirming these in vitro findings in vivo. Treatment with Hedyotis diffusae Herba-Andrographis Herba inhibited cell proliferation, promoted DNA damage, and arrested NPC cells progression from G1 to S phase. Further examination of the underlying molecular mechanisms revealed that treatment with Hedyotis diffusae Herba-Andrographis Herba increased the expression of p53 and p21, while reducing that of CCND1, Phospho-Rb, E2F1, γH2AX, and Ki-67 both in vivo and in vitro. Conversely, the inhibition of p53 and p21 could abolish the promoting effect of Hedyotis diffusae Herba-Andrographis Herba on the NPC cell cycle arrest at the G1 phase, contributing to the proliferation of NPC cells. Hedyotis diffusae Herba-Andrographis Herba suppressed the tumor growth in vivo. Overall, these findings suggest that Hedyotis Diffusae Herba-Andrographis prevent the progression of NPC by inducing NPC cell cycle arrest at the G1 phase through a p53/p21-dependent mechanism, providing a novel potential therapeutic treatment against NPC.
Collapse
|
8
|
Moon EJ, Petersson K, Oleina MM. The importance of hypoxia in radiotherapy for the immune response, metastatic potential and FLASH-RT. Int J Radiat Biol 2022; 98:439-451. [PMID: 34726575 PMCID: PMC7612434 DOI: 10.1080/09553002.2021.1988178] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
PURPOSE Hypoxia (low oxygen) is a common feature of solid tumors that has been intensely studied for more than six decades. Here we review the importance of hypoxia to radiotherapy with a particular focus on the contribution of hypoxia to immune responses, metastatic potential and FLASH radiotherapy, active areas of research by leading women in the field. CONCLUSION Although hypoxia-driven metastasis and immunosuppression can negatively impact clinical outcome, understanding these processes can also provide tumor-specific vulnerabilities that may be therapeutically exploited. The different oxygen tensions present in tumors and normal tissues may underpin the beneficial FLASH sparing effect seen in normal tissue and represents a perfect example of advances in the field that can leverage tumor hypoxia to improve future radiotherapy treatments.
Collapse
Affiliation(s)
- Eui Jung Moon
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Kristoffer Petersson
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Radiation Physics, Department of Haematology, Oncology and Radiation Physics, Skåne University Hospital, Sweden,Equal Contribution and to whom correspondence should be addressed. ; :
| | - Monica M. Oleina
- MRC Oxford Institute for Radiation Oncology, Department of Oncology, University of Oxford, Oxford, OX3 7DQ, UK,Equal Contribution and to whom correspondence should be addressed. ; :
| |
Collapse
|
9
|
Abd El-Aziz YS, Gillson J, Jansson PJ, Sahni S. Autophagy: A promising target for triple negative breast cancers. Pharmacol Res 2021; 175:106006. [PMID: 34843961 DOI: 10.1016/j.phrs.2021.106006] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 11/16/2021] [Accepted: 11/23/2021] [Indexed: 01/18/2023]
Abstract
Triple negative breast cancer (TNBC) is the most aggressive type of breast cancers which constitutes about 15% of all breast cancer cases and characterized by negative expression of hormonal receptors and human epidermal growth factor receptor 2 (HER2). Thus, endocrine and HER2 targeted therapies are not effective toward TNBCs, and they mainly rely on chemotherapy and surgery for treatment. Despite recent advances in chemotherapy, 40% of TNBC patients develop a metastatic relapse and recurrence. Therefore, understanding the molecular profile of TNBC is warranted to identify targets that can be selected for the development of a new and effective therapeutic approach. Autophagy is an internal defensive mechanism that allows the cells to survive under different stressors. It has been well known that autophagy exerts a crucial role in cancer progression. The critical role of autophagy in TNBC progression is emerging in recent years. This review will discuss autophagic pathway, how autophagy affects TNBC progression and recent therapeutic approaches that can target autophagy as a new treatment modality.
Collapse
Affiliation(s)
- Yomna S Abd El-Aziz
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Oral Pathology Department, Faculty of Dentistry, Tanta University, Tanta, Egypt
| | - Josef Gillson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia
| | - Patric J Jansson
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia; Cancer Drug Resistance and Stem Cell Program, University of Sydney, Sydney, NSW 2006, Australia
| | - Sumit Sahni
- Faculty of Medicine and Health, University of Sydney, Sydney, NSW, Australia; Kolling Institute of Medical Research, St Leonards, NSW, Australia.
| |
Collapse
|
10
|
Mei J, Böhland C, Geiger A, Baur I, Berner K, Heuer S, Liu X, Mataite L, Melo-Narváez MC, Özkaya E, Rupp A, Siebenwirth C, Thoma F, Kling MF, Friedl AA. Development of a model for fibroblast-led collective migration from breast cancer cell spheroids to study radiation effects on invasiveness. Radiat Oncol 2021; 16:159. [PMID: 34412654 PMCID: PMC8375131 DOI: 10.1186/s13014-021-01883-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 08/12/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasiveness is a major factor contributing to metastasis of tumour cells. Given the broad variety and plasticity of invasion mechanisms, assessing potential metastasis-promoting effects of irradiation for specific mechanisms is important for further understanding of potential adverse effects of radiotherapy. In fibroblast-led invasion mechanisms, fibroblasts produce tracks in the extracellular matrix in which cancer cells with epithelial traits can follow. So far, the influence of irradiation on this type of invasion mechanisms has not been assessed. METHODS By matrix-embedding coculture spheroids consisting of breast cancer cells (MCF-7, BT474) and normal fibroblasts, we established a model for fibroblast-led invasion. To demonstrate applicability of this model, spheroid growth and invasion behaviour after irradiation with 5 Gy were investigated by microscopy and image analysis. RESULTS When not embedded, irradiation caused a significant growth delay in the spheroids. When irradiating the spheroids with 5 Gy before embedding, we find comparable maximum migration distance in fibroblast monoculture and in coculture samples as seen in unirradiated samples. Depending on the fibroblast strain, the number of invading cells remained constant or was reduced. CONCLUSION In this spheroid model and with the cell lines and fibroblast strains used, irradiation does not have a major invasion-promoting effect. 3D analysis of invasiveness allows to uncouple effects on invading cell number and maximum invasion distance when assessing radiation effects.
Collapse
Affiliation(s)
- Jia Mei
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.,Department of Physics, LMU Munich, 85748, Garching, Germany
| | - Claudia Böhland
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anika Geiger
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Iris Baur
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Kristina Berner
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Steffen Heuer
- Research Unit of Radiation Cytogenetics, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,Clinical Cooperation Group 'Personalized Radiotherapy in Head and Neck Cancer', Helmholtz Zentrum München, 85764, Neuherberg, Germany
| | - Xue Liu
- RG Adipocytes & Metabolism, Institute for Diabetes and Obesity, Helmholtz Diabetes Center, Helmholtz Zentrum München, 85764, Neuherberg, Germany.,German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Laura Mataite
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Erdem Özkaya
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Anna Rupp
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | | | - Felix Thoma
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany
| | - Matthias F Kling
- Department of Physics, LMU Munich, 85748, Garching, Germany.,Center for Advanced Laser Applications, 85748, Garching, Germany
| | - Anna A Friedl
- Department of Radiation Oncology, LMU Klinikum, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
11
|
Oweida A, Paquette B. Reconciling two opposing effects of radiation therapy: stimulation of cancer cell invasion and activation of anti-cancer immunity. Int J Radiat Biol 2021; 99:951-963. [PMID: 34264178 DOI: 10.1080/09553002.2021.1956005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
PURPOSE The damage caused by radiation therapy to cancerous and normal cells inevitably leads to changes in the secretome profile of pro and anti-inflammatory mediators. The inflammatory response depends on the dose of radiation and its fractionation, while the inherent radiosensitivity of each patient dictates the intensity and types of adverse reactions. This review will present an overview of two apparently opposite reactions that may occur after radiation treatment: induction of an antitumor immune response and a protumoral response. Emphasis is placed on the molecular and cellular mechanisms involved. CONCLUSIONS By understanding how radiation changes the balance between anti- and protumoral effects, these forces can be manipulated to optimize radiation oncology treatments.
Collapse
Affiliation(s)
- Ayman Oweida
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| | - Benoit Paquette
- Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Universite de Sherbrooke, Sherbrooke, Canada
| |
Collapse
|
12
|
Ashrafizadeh M, Mohammadinejad R, Tavakol S, Ahmadi Z, Sahebkar A. New Insight into Triple-Negative Breast Cancer Therapy: The Potential Roles of Endoplasmic Reticulum Stress and Autophagy Mechanisms. Anticancer Agents Med Chem 2021; 21:679-691. [PMID: 32560613 DOI: 10.2174/1871520620666200619180716] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2019] [Revised: 07/27/2019] [Accepted: 10/03/2019] [Indexed: 12/24/2022]
Abstract
BACKGROUND Breast cancer is accounted as the fifth leading cause of mortality among the other cancers. Notwithstanding, Triple Negative Breast Cancer (TNBC) is responsible for 15-20% of breast cancer mortality. Despite many investigations, it remains incurable in part due to insufficient understanding of its exact mechanisms. METHODS A literature search was performed in PubMed, SCOPUS and Web of Science databases using the keywords autophagy, Endoplasmic Reticulum (ER) stress, apoptosis, TNBC and the combinations of these keywords. RESULTS It was found that autophagy plays a dual role in cancer, so that it may decrease the viability of tumor cells or act as a cytoprotective mechanism. It then appears that using compounds having modulatory effects on autophagy is of importance in terms of induction of autophagic cell death and diminishing the proliferation and metastasis of tumor cells. Also, ER stress can be modulated in order to stimulate apoptotic and autophagic cell death in tumor cells. CONCLUSION Perturbation in the signaling pathways related to cell survival leads to the initiation and progression of cancer. Regarding the advancement in the cancer pathology, it seems that modulation of autophagy and ER stress are promising.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of Basic Science, Faculty of Veterinary Medicine, University of Tabriz, Tabriz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Shima Tavakol
- Cellular and Molecular Research Center, Iran University of Medical Sciences, Tehran, Iran
| | - Zahra Ahmadi
- Department of Basic Science, Faculty of Veterinary Medicine, Islamic Azad Branch, University of Shushtar, Khuzestan, Iran
| | | |
Collapse
|
13
|
Wang J, Dang MN, Day ES. Inhibition of Wnt signaling by Frizzled7 antibody-coated nanoshells sensitizes triple-negative breast cancer cells to the autophagy regulator chloroquine. NANO RESEARCH 2020; 13:1693-1703. [PMID: 33304449 PMCID: PMC7723362 DOI: 10.1007/s12274-020-2795-8] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 05/06/2023]
Abstract
Despite improvements in our understanding of the biology behind triple-negative breast cancer (TNBC), it remains a devastating disease due to lack of an effective targeted therapy. Inhibiting Wnt signaling is a promising strategy to combat TNBC because Wnt signaling drives TNBC progression, chemoresistance, and stemness. However, Wnt inhibition can lead to upregulation of autophagy, which confers therapeutic resistance. This provides an opportunity for combination therapy, as autophagy inhibitors applied concurrently with Wnt inhibitors could increase treatment efficacy. Here, we applied the autophagy inhibitor chloroquine (CQ) to TNBC cells in combination with Frizzled7 antibody-coated nanoshells (FZD7-NS) that suppress Wnt signaling by blocking Wnt ligand/FZD7 receptor interactions, and evaluated this dual treatment in vitro. We found that FZD7-NS can inhibit Axin2 and CyclinD1, two targets of canonical Wnt signaling, and increase the expression of LC3, an autophagy marker. When FZD7-NS and CQ are applied together, they reduce the expression of several stemness genes in TNBC cells, leading to inhibition of TNBC cell migration and self-renewal. Notably, co-delivery of FZD7-NS and CQ is more effective than either therapy alone or the combination of CQ with free FZD7 antibodies. This demonstrates that the nanocarrier design is important to its therapeutic utility. Overall, these findings indicate that combined regulation of Wnt signaling and autophagy by FZD7-NS and CQ is a promising strategy to combat TNBC.
Collapse
Affiliation(s)
- Jianxin Wang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Megan N Dang
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
| | - Emily S Day
- Department of Biomedical Engineering, University of Delaware, Newark, DE 19716, USA
- Department of Materials Science and Engineering, University of Delaware, Newark, DE 19716, USA
- Helen F. Graham Cancer Center & Research Institute, Newark, DE 19713, USA
| |
Collapse
|
14
|
Targeting lysyl oxidase (LOX) overcomes chemotherapy resistance in triple negative breast cancer. Nat Commun 2020; 11:2416. [PMID: 32415208 PMCID: PMC7229173 DOI: 10.1038/s41467-020-16199-4] [Citation(s) in RCA: 174] [Impact Index Per Article: 43.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2019] [Accepted: 04/20/2020] [Indexed: 12/31/2022] Open
Abstract
Chemoresistance is a major obstacle in triple negative breast cancer (TNBC), the most aggressive breast cancer subtype. Here we identify hypoxia-induced ECM re-modeler, lysyl oxidase (LOX) as a key inducer of chemoresistance by developing chemoresistant TNBC tumors in vivo and characterizing their transcriptomes by RNA-sequencing. Inhibiting LOX reduces collagen cross-linking and fibronectin assembly, increases drug penetration, and downregulates ITGA5/FN1 expression, resulting in inhibition of FAK/Src signaling, induction of apoptosis and re-sensitization to chemotherapy. Similarly, inhibiting FAK/Src results in chemosensitization. These effects are observed in 3D-cultured cell lines, tumor organoids, chemoresistant xenografts, syngeneic tumors and PDX models. Re-expressing the hypoxia-repressed miR-142-3p, which targets HIF1A, LOX and ITGA5, causes further suppression of the HIF-1α/LOX/ITGA5/FN1 axis. Notably, higher LOX, ITGA5, or FN1, or lower miR-142-3p levels are associated with shorter survival in chemotherapy-treated TNBC patients. These results provide strong pre-clinical rationale for developing and testing LOX inhibitors to overcome chemoresistance in TNBC patients. The development of chemoresistance is a major hurdle in triple negative breast cancer (TNBC). Here, the authors show that lysyl oxidase (LOX) is overexpressed in chemoresistant TNBCs, and when inhibited reduces collagen cross-linking, fibronectin fibril assembly, and downstream integrin signalling, overcoming resistance.
Collapse
|
15
|
Jing X, Shao S, Zhang Y, Luo A, Zhao L, Zhang L, Gu S, Zhao X. BRD4 inhibition suppresses PD-L1 expression in triple-negative breast cancer. Exp Cell Res 2020; 392:112034. [PMID: 32339606 DOI: 10.1016/j.yexcr.2020.112034] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2019] [Revised: 04/20/2020] [Accepted: 04/21/2020] [Indexed: 12/19/2022]
Abstract
Programmed death-ligand 1 (PD-L1) expression on the surface of tumour cells can cause tumour immune evasion. Benefits of combining anti-PD-L1 therapy with nab-paclitaxel in patients with advanced triple-negative breast cancer (TNBC) have been reported. However, some patients cannot tolerate the immune-related adverse effects (irAEs) caused by antibody-based immunotherapy. BRD4 is a member of the bromodomain and extra-terminal domain (BET) family. BRD4 inhibition has shown antitumour effects in many tumours, but its role in TNBC has not been definitively concluded. In particular, the immune regulation of BRD4 in TNBC has been rarely studied. In this study, we used JQ1, a BET inhibitor, and small interfering RNAs (siRNAs) targeting BRD4 to explore the influence of BRD4 on PD-L1 expression in TNBC. The results indicated that BRD4 inhibition suppressed PD-L1 expression and the PD-L1 upregulation induced by interferon-γ (IFN-γ). In the in vivo experiments, we found that JQ1 not only reduced the PD-L1 expression level but also changed the proportions of T lymphocyte subsets in the spleens of tumour-bearing mice, which helped to relieve immunosuppression. Briefly, our study reveals that BRD4 regulates PD-L1 expression and may provide a potential method for blocking the programmed death 1 (PD-1)/PD-L1 immune checkpoint in TNBC.
Collapse
Affiliation(s)
- Xin Jing
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shan Shao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Yujiao Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Anqi Luo
- Department of Nuclear Medicine, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Lin Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Lifen Zhang
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Shanzhi Gu
- Department of College of Forensic Medicine, Xi'an Jiaotong University, Xi'an, 710061, China.
| | - Xinhan Zhao
- Department of Medical Oncology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China.
| |
Collapse
|
16
|
Rafat M, Aguilera TA, Vilalta M, Bronsart LL, Soto LA, von Eyben R, Golla MA, Ahrari Y, Melemenidis S, Afghahi A, Jenkins MJ, Kurian AW, Horst KC, Giaccia AJ, Graves EE. Macrophages Promote Circulating Tumor Cell-Mediated Local Recurrence following Radiotherapy in Immunosuppressed Patients. Cancer Res 2018; 78:4241-4252. [PMID: 29880480 PMCID: PMC6072588 DOI: 10.1158/0008-5472.can-17-3623] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Revised: 04/09/2018] [Accepted: 05/25/2018] [Indexed: 01/07/2023]
Abstract
Although radiotherapy (RT) decreases the incidence of locoregional recurrence in breast cancer, patients with triple-negative breast cancer (TNBC) have increased risk of local recurrence following breast-conserving therapy. The relationship between RT and local recurrence is unknown. Here, we tested the hypothesis that recurrence in some instances is due to the attraction of circulating tumor cells to irradiated tissues. To evaluate the effect of absolute lymphocyte count on local recurrence after RT in patients with TNBC, we analyzed radiation effects on tumor and immune cell recruitment to tissues in an orthotopic breast cancer model. Recurrent patients exhibited a prolonged low absolute lymphocyte count when compared with nonrecurrent patients following RT. Recruitment of tumor cells to irradiated normal tissues was enhanced in the absence of CD8+ T cells. Macrophages (CD11b+F480+) preceded tumor cell infiltration and were recruited to tissues following RT. Tumor cell recruitment was mitigated by inhibiting macrophage infiltration using maraviroc, an FDA-approved CCR5 receptor antagonist. Our work poses the intriguing possibility that excessive macrophage infiltration in the absence of lymphocytes promotes local recurrence after RT. This combination thus defines a high-risk group of patients with TNBC.Significance: This study establishes the importance of macrophages in driving tumor cell recruitment to sites of local radiation therapy and suggests that this mechanism contributes to local recurrence in women with TNBC that are also immunosuppressed.Graphical Abstract: http://cancerres.aacrjournals.org/content/canres/78/15/4241/F1.large.jpg Cancer Res; 78(15); 4241-52. ©2018 AACR.
Collapse
Affiliation(s)
- Marjan Rafat
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Todd A Aguilera
- Department of Radiation Oncology, Harold C. Simmons Comprehensive Cancer Center, U.T. Southwestern Medical Center, Dallas, Texas
| | - Marta Vilalta
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Laura L Bronsart
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Luis A Soto
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Rie von Eyben
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Meghana A Golla
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Yasaman Ahrari
- Department of Radiation Oncology, Stanford University, Stanford, California
| | | | - Anosheh Afghahi
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Melissa J Jenkins
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Allison W Kurian
- Department of Medicine, Stanford University School of Medicine, Stanford, California
| | - Kathleen C Horst
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Amato J Giaccia
- Department of Radiation Oncology, Stanford University, Stanford, California
| | - Edward E Graves
- Department of Radiation Oncology, Stanford University, Stanford, California.
| |
Collapse
|
17
|
Abu N, Zamberi NR, Yeap SK, Nordin N, Mohamad NE, Romli MF, Rasol NE, Subramani T, Ismail NH, Alitheen NB. Subchronic toxicity, immunoregulation and anti-breast tumor effect of Nordamnacantal, an anthraquinone extracted from the stems of Morinda citrifolia L. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 18:31. [PMID: 29374471 PMCID: PMC5787285 DOI: 10.1186/s12906-018-2102-3] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2017] [Accepted: 01/17/2018] [Indexed: 11/10/2022]
Abstract
BACKGROUND Morinda citrifolia L. that was reported with immunomodulating and cytotoxic effects has been traditionally used to treat multiple illnesses including cancer. An anthraquinone derived from fruits of Morinda citrifolia L., nordamnacanthal, is a promising agent possessing several in vitro biological activities. However, the in vivo anti-tumor effects and the safety profile of nordamnacanthal are yet to be evaluated. METHODS In vitro cytotoxicity of nordamnacanthal was tested using MTT, cell cycle and Annexin V/PI assays on human MCF-7 and MDA-MB231 breast cancer cells. Mice were orally fed with nordamnacanthal daily for 28 days for oral subchronic toxicity study. Then, the in vivo anti-tumor effect was evaluated on 4T1 murine cancer cells-challenged mice. Changes of tumor size and immune parameters were evaluated on the untreated and nordamnacanthal treated mice. RESULTS Nordamnacanthal was found to possess cytotoxic effects on MDA-MB231, MCF-7 and 4T1 cells in vitro. Moreover, based on the cell cycle and Annexin V results, nordamnacanthal managed to induce cell death in both MDA-MB231 and MCF-7 cells. Additionally, no mortality, signs of toxicity and changes of serum liver profile were observed in nordamnacanthal treated mice in the subchronic toxicity study. Furthermore, 50 mg/kg body weight of nordamncanthal successfully delayed the progression of 4T1 tumors in Balb/C mice after 28 days of treatment. Treatment with nordamnacanthal was also able to increase tumor immunity as evidenced by the immunophenotyping of the spleen and YAC-1 cytotoxicity assays. CONCLUSION Nordamnacanthal managed to inhibit the growth and induce cell death in MDA-MB231 and MCF-7 cell lines in vitro and cease the tumor progression of 4T1 cells in vivo. Overall, nordamnacanthal holds interesting anti-cancer properties that can be further explored.
Collapse
|
18
|
Lemay R, Lepage M, Tremblay L, Therriault H, Charest G, Paquette B. Tumor Cell Invasion Induced by Radiation in Balb/C Mouse is Prevented by the Cox-2 Inhibitor NS-398. Radiat Res 2017; 188:605-614. [PMID: 28956695 DOI: 10.1667/rr14716.1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Radiation stimulates the expression of inflammatory mediators known to increase cancer cell invasion. Therefore, it is important to determine whether anti-inflammatory drugs can prevent this adverse effect of radiation. Since cyclooxygenase-2 (COX-2) is a central player in the inflammatory response, we performed studies to determine whether the COX-2 inhibitor NS-398 can reduce the radiation enhancement of cancer cell invasion. Thighs of Balb/c mice treated with NS-398 were irradiated with either daily fractions of 7.5 Gy for five consecutive days or a single 30 Gy dose prior to subcutaneous injection of nonirradiated MC7-L1 mammary cancer cells. Five weeks later, tumor invasion, blood vessel permeability and interstitial volumes were assessed using magnetic resonance imaging (MRI). Matrix metalloproteinase-2 (MMP-2) was measured in tissues by zymography at 21 days postirradiation. Cancer cell invasion in the mouse thighs was increased by 12-fold after fractionated irradiations (5 × 7.5 Gy) and by 17-fold after a single 30 Gy dose of radiation. This stimulation of cancer cell invasion was accompanied by a significant increase in the interstitial volume and a higher level of the protease MMP-2. NS-398 treatment largely prevented the stimulation of cancer cell invasion, which was associated with a reduction in interstitial volume in the irradiated thighs and a complete suppression of MMP-2 stimulation. In conclusion, this animal model using MC7-L1 cells demonstrates that radiation-induced cancer cell invasion can be largely prevented with the COX-2 inhibitor NS-398.
Collapse
Affiliation(s)
| | - Martin Lepage
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | - Luc Tremblay
- b Centre d'imagerie moléculaire de Sherbrooke, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada, J1H 5N4
| | | | | | | |
Collapse
|
19
|
Zhang N, Xie H, Lu W, Li F, Li J, Guo Z. Chloroquine sensitizes hepatocellular carcinoma cells to chemotherapy via blocking autophagy and promoting mitochondrial dysfunction. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2017; 10:10056-10065. [PMID: 31966896 PMCID: PMC6965955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/02/2017] [Indexed: 06/10/2023]
Abstract
Cisplatin/cisplatin-based combination chemotherapy is the main therapy strategy against hepatocellular carcinoma. However, the cisplatin efficiency is dimmed by the development of drug resistance. Numerous clinical trials are now revealing the promising role of chloroquine, an autophagy inhibitor, as a novel antitumor drug. In the present study, we investigated the regulation by chloroquine on the autophagy and on the sensitivity of hepatocellular carcinoma cells in vitro. Reverse transcription quantitative-polymerase chain reaction (RT-qPCR), western blotting assay, confocal microscopy and flow cytometry (FCM) were used to analyze the autophagy induction by cisplatin in hepatocellular carcinoma HepG2 cells, to examine the chloroquine-mediated autophagy inhibition on the cisplatin-induced apoptosis in HepG2 cells, and to explore the possible involvement of mitochondrial dysfunction in such process. Our results found the autophagy induction by cisplatin in HepG2 cells, basing on such results as increased induction of autophagic vesicles and upregulated conversion of A subunit (LC3-A) to B (LC3-B) subunit of microtubule-associated protein 1 light chain 3. Flow cytometry analysis results demonstrated that the cisplatin-induced apoptosis was aggravated by chloroquine. In addition, the mitochondrial function was downregulated by cisplatin and was deteriorated by chloroquine in HepG2 cells; the mitochondrial membrane potential (MMP) downregulation, the accumulation of reactive oxygen species (ROS) and the mitochondrial superoxide were markedly higher in the chloroquine/cisplatin-treated HepG2 cells than in the cisplatin-treated cells. In conclusion, we concluded that chloroquine sensitized the chemotherapy efficiency of cisplatin against hepatocellular carcinoma HepG2 cells, probably via blocking autophagy and via deteriorating the mitochondrial dysfunction. Chloroquine might be a potential adjuvant agent for overcoming chemotherapy resistance in hepatocellular carcinoma.
Collapse
Affiliation(s)
- Ningning Zhang
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital (National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy)Tianjin, P. R. China
- Tianjin Second People’s HospitalTianjin, P. R. China
| | - Hui Xie
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital (National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy)Tianjin, P. R. China
| | - Wei Lu
- Tianjin Second People’s HospitalTianjin, P. R. China
| | - Fei Li
- Tianjin Second People’s HospitalTianjin, P. R. China
| | - Jianfeng Li
- The Second Affiliated Hospital of Inner Mongolia Medical UniversityHohhot, P. R. China
| | - Zhi Guo
- Department of Interventional Therapy, Tianjin Medical University Cancer Institute and Hospital (National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy)Tianjin, P. R. China
| |
Collapse
|
20
|
Wei Z, Shaikh ZA. Cadmium stimulates metastasis-associated phenotype in triple-negative breast cancer cells through integrin and β-catenin signaling. Toxicol Appl Pharmacol 2017; 328:70-80. [PMID: 28527916 DOI: 10.1016/j.taap.2017.05.017] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Revised: 04/21/2017] [Accepted: 05/16/2017] [Indexed: 12/15/2022]
Abstract
Cadmium (Cd) is a carcinogenic heavy metal which is implicated in breast cancer development. While the mechanisms of Cd-induced breast cancer initiation and promotion have been studied, the molecular processes involved in breast cancer progression remain to be investigated. The purpose of the present study was to evaluate the influence of Cd on metastasis-associated phenotypes, such as cell adhesion, migration, and invasion in triple-negative breast cancer cells. Treatment of MDA-MB-231 cells with 1μM Cd increased cell spreading and cell migration. This was associated with the activation of integrin β1, FAK, Src, and Rac1. Treatment with Cd also inhibited GSK3β activity and induced T-cell factor/lymphoid enhancer factor (TCF/LEF) transcription, indicating the involvement of β-catenin signaling. Furthermore, treatment with 3μM Cd for 4weeks increased the expression of β-catenin and enhanced TCF/LEF-mediated transcription. Furthermore, enhanced expressions of integrins α5 and β1, paxillin, and vimentin indicated that prolonged Cd treatment reorganized the cytoskeleton, which aided malignancy, as evidenced by enhanced matrix metalloprotease 2/9 (MMP2/9) secretion and cell invasion. Prolonged Cd treatment also caused an increase in cell growth. Together, these results indicate that Cd alters key signaling processes involved in the regulation of cytoskeleton to enhance cancer cell migration, invasion, adhesion, and proliferation.
Collapse
Affiliation(s)
- Zhengxi Wei
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA
| | - Zahir A Shaikh
- Center for Molecular Toxicology, Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, University of Rhode Island, Kingston, RI 02881, USA.
| |
Collapse
|
21
|
Begnini KR, Duarte WR, da Silva LP, Buss JH, Goldani BS, Fronza M, Segatto NV, Alves D, Savegnago L, Seixas FK, Collares T. Apoptosis induction by 7-chloroquinoline-1,2,3-triazoyl carboxamides in triple negative breast cancer cells. Biomed Pharmacother 2017; 91:510-516. [PMID: 28482288 DOI: 10.1016/j.biopha.2017.04.098] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 04/09/2017] [Accepted: 04/13/2017] [Indexed: 12/31/2022] Open
Abstract
Breast cancer is a major public health burden in both developed and developing countries and there is still a need to screen new molecules with different modes of actions. The aims of this study were to evaluate the selectivity profile, apoptotic cell death and cell cycle arrest induced by 7-chloroquinoline-1,2,3-triazoyl carboxamides derivatives in hormonal-dependent and hormonal-independent breast cancer cells. Results showed significantly decreased MCF-7 and MDA-MB-231 cells viability in vitro in a dose dependent manner after treatment with 7-chloroquinoline derivatives QTCA-1, QTCA-2 and QTCA-3. QTCA-1 displayed the highest cytotoxic activity from all the tested compounds in MDA-MB-231 with IC50 values of 20.60, 20.42 and 19.91μM in 24, 48 and 72h of treatment respectively. Apoptosis induction was also significantly higher in the hormonal-independent breast cancer cells, with 80.4% of dead cells in MDA-MB-231 and only 16.8% of dead in MCF-7 cells. As a result, G0/G1 cycle arrest was observed in MCF-7 cells and no cell cycle arrest at all was observed in MDA-MB-231 cells. Molecular docking showed a high affinity of QTCA-1 to PARP-1, Scr and PI3K/mTOR targets. These results suggest a strong activity of the 7-chloroquinoline derivative QTCA-1 in independent-hormonal cells and suggest selectivity for triple negative cells.
Collapse
Affiliation(s)
- Karine Rech Begnini
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Wladimir R Duarte
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Liziane Pereira da Silva
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Julieti H Buss
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Bruna S Goldani
- Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Mariana Fronza
- Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Natália Vieira Segatto
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Diego Alves
- Laboratório de Síntese Orgânica Limpa (LASOL), CCQFA, Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Lucielli Savegnago
- Grupo de Pesquisa em Neurobiotecnologia (GPN), Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Fabiana Kömmling Seixas
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil
| | - Tiago Collares
- Grupo de Pesquisa em Oncologia Celular e Molecular (GPO), Laboratório de Biotecnologia do Câncer, Biotecnologia/Centro de Desenvolvimento Tecnológico (CDTec), Universidade Federal de Pelotas, Pelotas, RS, Brazil.
| |
Collapse
|
22
|
Bouchard G, Therriault H, Geha S, Bujold R, Saucier C, Paquette B. Radiation-induced lung metastasis development is MT1-MMP-dependent in a triple-negative breast cancer mouse model. Br J Cancer 2017; 116:479-488. [PMID: 28103615 PMCID: PMC5318978 DOI: 10.1038/bjc.2016.448] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Revised: 12/05/2016] [Accepted: 12/15/2016] [Indexed: 12/02/2022] Open
Abstract
Background: The prognosis of triple-negative breast cancer (TNBC) is still difficult to establish. Some TNBC benefit from radiotherapy (RT) and are cured, while in other patients metastases appear during the first 3 years after treatment. In this study, an animal model of TNBC was used to determine whether the expression of the cell membrane protease MT1-MMP in cancer cells was associated with radiation-stimulated development of lung metastases. Methods: Using invasion chambers, irradiated fibroblasts were used as chemoattractants to assess the invasiveness of TNBC D2A1 cell lines showing downregulated expression of MT1-MMP, which were compared with D2A1-wt (wild-type) and D2A1 shMT1-mock (empty vector) cell lines. In a mouse model, a mammary gland was irradiated followed by the implantation of the downregulated MT1-MMP D2A1, D2A1-wt or D2A1 shMT1-mock cell lines. Migration of D2A1 cells in the mammary gland, number of circulating tumour cells and development of lung metastases were assessed. Results: The reduction of MT1-MMP expression decreased the invasiveness of D2A1 cells and blocked the radiation enhancement of cancer cell invasion. In BALB/c mice, irradiation of the mammary gland has stimulated the invasion of cancer cells, which was associated with a higher number of circulating tumour cells and of lung metastases. These adverse effects of radiation were prevented by downregulating the MT1-MMP. Conclusions: This study shows that the MT1-MMP is necessary for the radiation enhancement of lung metastasis development, and that its expression level and/or localisation could be evaluated as a biomarker for predicting the early recurrence observed in some TNBC patients.
Collapse
Affiliation(s)
- Gina Bouchard
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| | - Hélène Therriault
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| | - Sameh Geha
- Department of Pathology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Rachel Bujold
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada.,Service of Radiation Oncology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, Québec, Canada
| | - Caroline Saucier
- Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | - Benoit Paquette
- Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences, Sherbrooke, Québec, Canada
| |
Collapse
|
23
|
Bouchard G, Therriault H, Bujold R, Saucier C, Paquette B. Induction of interleukin-1β by mouse mammary tumor irradiation promotes triple negative breast cancer cells invasion and metastasis development. Int J Radiat Biol 2017; 93:507-516. [PMID: 27935337 DOI: 10.1080/09553002.2017.1270471] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
PURPOSE Radiotherapy increases the level of inflammatory cytokines, some of which are known to promote metastasis. In a mouse model of triple negative breast cancer (TNBC), we determined whether irradiation of the mammary tumor increases the level of key cytokines and favors the development of lung metastases. MATERIALS AND METHODS D2A1 TNBC cells were implanted in the mammary glands of a Balb/c mouse and then 7 days old tumors were irradiated (4 × 6 Gy). The cytokines IL-1β, IL-4, IL-6, IL-10, IL-17 and MIP-2 were quantified in plasma before, midway and after irradiation. The effect of tumor irradiation on the invasion of cancer cells, the number of circulating tumor cells (CTC) and lung metastases were also measured. RESULTS TNBC tumor irradiation significantly increased the plasma level of IL-1β, which was associated with a greater number of CTC (3.5-fold) and lung metastases (2.3-fold), compared to sham-irradiated animals. Enhancement of D2A1 cell invasion in mammary gland was associated with an increase of the matrix metalloproteinases-2 and -9 activity (MMP-2, -9). The ability of IL-1β to stimulate the invasiveness of irradiated D2A1 cells was confirmed by in vitro invasion chamber assays. CONCLUSION Irradiation targeting a D2A1 tumor and its microenvironment increased the level of the inflammatory cytokine IL-1β and was associated with the promotion of cancer cell invasion and lung metastasis development.
Collapse
Affiliation(s)
- Gina Bouchard
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Hélène Therriault
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Rachel Bujold
- b Service of Radiation Oncology , Centre Hospitalier Universitaire de Sherbrooke, Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Caroline Saucier
- c Department of Anatomy and Cellular Biology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| | - Benoit Paquette
- a Centre for Research in Radiotherapy, Department of Nuclear Medicine and Radiobiology, Faculty of Medicine and Health Sciences , Université de Sherbrooke , Sherbrooke , Québec , Canada
| |
Collapse
|