1
|
Rathnayake SS, Erramilli SK, Kossiakoff AA, Vecchio AJ. Cryo-EM structures of Clostridium perfringens enterotoxin bound to its human receptor, claudin-4. Structure 2024; 32:1936-1951.e5. [PMID: 39383874 PMCID: PMC11560561 DOI: 10.1016/j.str.2024.09.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 08/09/2024] [Accepted: 09/12/2024] [Indexed: 10/11/2024]
Abstract
Clostridium perfringens enterotoxin (CpE) causes prevalent and deadly gastrointestinal disorders. CpE binds to receptors called claudins on the apical surfaces of small intestinal epithelium. Claudins normally regulate paracellular transport but are hijacked from doing so by CpE and are instead led to form claudin/CpE complexes. Claudin/CpE complexes are the building blocks of oligomeric β-barrel pores that penetrate the plasma membrane and induce gut cytotoxicity. Here, we present the structures of CpE in complex with its native claudin receptor in humans, claudin-4, using cryogenic electron microscopy. The structures reveal the architecture of the claudin/CpE complex, the residues used in binding, the orientation of CpE relative to the membrane, and CpE-induced changes to claudin-4. Further, structures and modeling allude to the biophysical procession from claudin/CpE complexes to cytotoxic β-barrel pores during pathogenesis. In full, this work proposes a model of claudin/CpE assembly and provides strategies to obstruct its formation to treat CpE diseases.
Collapse
Affiliation(s)
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL 60637, USA
| | - Alex J Vecchio
- Department of Structural Biology, University at Buffalo, Buffalo, NY 14203, USA.
| |
Collapse
|
2
|
Patel NM, Patel PH, Bhogal RH, Harrington KJ, Singanayagam A, Kumar S. Altered Microbiome Promotes Pro-Inflammatory Pathways in Oesophago-Gastric Tumourigenesis. Cancers (Basel) 2024; 16:3426. [PMID: 39410045 PMCID: PMC11476036 DOI: 10.3390/cancers16193426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/27/2024] [Accepted: 10/04/2024] [Indexed: 10/20/2024] Open
Abstract
INTRODUCTION The upper gastrointestinal microbiome is a dynamic entity that is involved in numerous processes including digestion, production of vitamins and protection against pathogens. Many external and intrinsic factors may cause changes in the proportions of bacteria within the microbial community, termed 'dysbiosis'. A number of these have been identified as risk factors for a range of diseases, including oesophago-gastric carcinoma. MATERIALS AND METHODS A narrative review was conducted to elucidate the current evidence on the role of the microbiome in promoting oesophago-gastric tumourigenesis. Significant causes of dysbiosis including age, medications and GORD were examined and key pro-inflammatory pathways implicated in tumourigenesis and their interaction with the microbiome were described. RESULTS AND DISCUSSION An association between microbial dysbiosis and development of oesophago-gastric cancer may be mediated via activation of pro-inflammatory pathways, the inflammasome and the innate immune system. Advances in sequencing technology allow microbial communities to be fingerprinted by sequencing the 16S rRNA gene, enabling a deeper understanding of the genera that may be implicated in driving tumourigenesis. CONCLUSIONS Developing a greater understanding of the influence of the microbiota on oesophago-gastric tumourigenesis may enable advances to be made in the early detection of malignancy and in the development of novel systemic therapies, leading to improved rates of survival.
Collapse
Affiliation(s)
- Nikhil Manish Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Pranav Harshad Patel
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Ricky Harminder Bhogal
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Kevin Joseph Harrington
- Targeted Therapy Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
| | - Aran Singanayagam
- Centre for Bacterial Resistance Biology, Department of Infectious Disease, Imperial College London, London SW7 2AZ, UK
| | - Sacheen Kumar
- Department of Upper GI Surgery, The Royal Marsden NHS Foundation Trust, London SW3 6JJ, UK; (N.M.P.)
- The Upper Gastrointestinal Surgical Oncology Research Group, Division of Radiotherapy and Imaging, The Institute of Cancer Research, London SW7 3RP, UK
- Department of Upper Gastrointestinal Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic London Hospital, London SW1X 7HY, UK
| |
Collapse
|
3
|
Guevara-Ramírez P, Cadena-Ullauri S, Paz-Cruz E, Ruiz-Pozo VA, Tamayo-Trujillo R, Cabrera-Andrade A, Zambrano AK. Gut Microbiota Disruption in Hematologic Cancer Therapy: Molecular Insights and Implications for Treatment Efficacy. Int J Mol Sci 2024; 25:10255. [PMID: 39408584 PMCID: PMC11476909 DOI: 10.3390/ijms251910255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 09/13/2024] [Accepted: 09/18/2024] [Indexed: 10/20/2024] Open
Abstract
Hematologic malignancies (HMs), including leukemia, lymphoma, and multiple myeloma, involve the uncontrolled proliferation of abnormal blood cells, posing significant clinical challenges due to their heterogeneity and varied treatment responses. Despite recent advancements in therapies that have improved survival rates, particularly in chronic lymphocytic leukemia and acute lymphoblastic leukemia, treatments like chemotherapy and stem cell transplantation often disrupt gut microbiota, which can negatively impact treatment outcomes and increase infection risks. This review explores the complex, bidirectional interactions between gut microbiota and cancer treatments in patients with HMs. Gut microbiota can influence drug metabolism through mechanisms such as the production of enzymes like bacterial β-glucuronidases, which can alter drug efficacy and toxicity. Moreover, microbial metabolites like short-chain fatty acids can modulate the host immune response, enhancing treatment effectiveness. However, therapy often reduces the diversity of beneficial bacteria, such as Bifidobacterium and Faecalibacterium, while increasing pathogenic bacteria like Enterococcus and Escherichia coli. These findings highlight the critical need to preserve microbiota diversity during treatment. Future research should focus on personalized microbiome-based therapies, including probiotics, prebiotics, and fecal microbiota transplantation, to improve outcomes and quality of life for patients with hematologic malignancies.
Collapse
Affiliation(s)
- Patricia Guevara-Ramírez
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Santiago Cadena-Ullauri
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Elius Paz-Cruz
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Viviana A. Ruiz-Pozo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Rafael Tamayo-Trujillo
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| | - Alejandro Cabrera-Andrade
- Escuela de Enfermería, Facultad de Ciencias de la Salud, Universidad de Las Américas, Quito 170124, Ecuador
- Grupo de Bio-Quimioinformática, Universidad de Las Américas, Quito 170124, Ecuador
| | - Ana Karina Zambrano
- Centro de Investigación Genética y Genómica, Facultad de Ciencias de la Salud Eugenio Espejo, Universidad UTE, Quito 170129, Ecuador
| |
Collapse
|
4
|
Liu D, Yu L, Rong H, Liu L, Yin J. Engineering Microorganisms for Cancer Immunotherapy. Adv Healthc Mater 2024; 13:e2304649. [PMID: 38598792 DOI: 10.1002/adhm.202304649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 04/02/2024] [Indexed: 04/12/2024]
Abstract
Cancer immunotherapy presents a promising approach to fight against cancer by utilizing the immune system. Recently, engineered microorganisms have emerged as a potential strategy in cancer immunotherapy. These microorganisms, including bacteria and viruses, can be designed and modified using synthetic biology and genetic engineering techniques to target cancer cells and modulate the immune system. This review delves into various microorganism-based therapies for cancer immunotherapy, encompassing strategies for enhancing efficacy while ensuring safety and ethical considerations. The development of these therapies holds immense potential in offering innovative personalized treatments for cancer.
Collapse
Affiliation(s)
- Dingkang Liu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Lichao Yu
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| | - Haibo Rong
- Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research & Nanjing Medical University Affiliated Cancer Hospital, Nanjing, 210009, China
| | - Lubin Liu
- Department of Obstetrics and Gynecology, Women and Children's Hospital of Chongqing Medical University, No. 120 Longshan Road, Chongqing, 401147, China
| | - Jun Yin
- Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, No. 639 Longmian Avenue, Nanjing, 211198, China
| |
Collapse
|
5
|
Ren M, Yang L, He L, Wang J, Zhao W, Yang C, Yang S, Cheng H, Huang M, Gou M. Non-viral Gene Therapy for Melanoma Using Lysenin from Eisenia Foetida. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2306076. [PMID: 38445883 PMCID: PMC11077637 DOI: 10.1002/advs.202306076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 02/01/2024] [Indexed: 03/07/2024]
Abstract
Earthworms, long utilized in traditional medicine, serve as a source of inspiration for modern therapeutics. Lysenin, a defensive factor in the coelom fluid of the earthworm Eisenia fetida, has multiple bioactivities. However, the inherent toxicity of Lysenin as a pore-forming protein (PFP) restricts its application in therapy. Here, a gene therapy strategy based on Lysenin for cancer treatment is presented. The formulation consists of polymeric nanoparticles complexed with the plasmid encoding Lysenin. After transfection in vitro, melanoma cells can express Lysenin, resulting in necrosis, autophagy, and immunogenic cell death. The secretory signal peptide alters the intracellular distribution of the expressed product of Lysenin, thereby potentiating its anticancer efficacy. The intratumor injection of Lysenin gene formulation can efficiently kill the transfected melanoma cells and activate the antitumor immune response. Notably, no obvious systemic toxicity is observed during the treatment. Non-viral gene therapy based on Lysenin derived from Eisenia foetida exhibits potential in cancer therapy, which can inspire future cancer therapeutics.
Collapse
Affiliation(s)
- Min Ren
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Ling Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Liming He
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Jie Wang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Wei Zhao
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Chunli Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Shuai Yang
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Hao Cheng
- Huahang Microcreate Technology Co., LtdChengduSichuan610041China
| | - Meijuan Huang
- Division of Thoracic Tumor Multimodality Treatment and Department of Medical OncologyCancer CenterWest China HospitalSichuan UniversityChengduSichuan610041China
| | - Maling Gou
- Department of BiotherapyCancer Center and State Key Laboratory of BiotherapyWest China HospitalSichuan UniversityChengduSichuan610041China
| |
Collapse
|
6
|
Wankhede NL, Kale MB, Bawankule AK, Taksande BG, Umekar MJ, Upaganlawar AB. Bacteriotherapy in colorectal cancer. COLORECTAL CANCER 2024:307-328. [DOI: 10.1016/b978-0-443-13870-6.00008-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
7
|
Han J, Zhang B, Zhang Y, Yin T, Cui Y, Liu J, Yang Y, Song H, Shang D. Gut microbiome: decision-makers in the microenvironment of colorectal cancer. Front Cell Infect Microbiol 2023; 13:1299977. [PMID: 38156313 PMCID: PMC10754537 DOI: 10.3389/fcimb.2023.1299977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 11/20/2023] [Indexed: 12/30/2023] Open
Abstract
Colorectal cancer (CRC) is a common malignancy of the gastrointestinal tract, accounting for the second most common cause of gastrointestinal tumors. As one of the intestinal barriers, gut bacteria form biofilm, participate in intestinal work, and form the living environment of intestinal cells. Metagenomic next-generation sequencing (mNGS) of the gut bacteria in a large number of CRC patients has been established, enabling specific microbial signatures to be associated with colorectal adenomato-carcinoma. Gut bacteria are involved in both benign precursor lesions (polyps), in situ growth and metastasis of CRC. Therefore, the term tumorigenic bacteria was proposed in 2018, such as Escherichia coli, Fusobacterium nucleatum, enterotoxigenic Bacteroides fragilis, etc. Meanwhile, bacteria toxins (such as cytolethal distending toxin (CDT), Colibactin (Clb), B. fragilis toxin) affect the tumor microenvironment and promote cancer occurrence and tumor immune escape. It is important to note that there are differences in the bacteria of different types of CRC. In this paper, the role of tumorigenic bacteria in the polyp-cancer transformation and the effects of their secreted toxins on the tumor microenvironment will be discussed, thereby further exploring new ideas for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Jingrun Han
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Biao Zhang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yongnian Zhang
- Departments of Gastrointestinal Surgery, The Second Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Tianyi Yin
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yuying Cui
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Jinming Liu
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yanfei Yang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Huiyi Song
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| | - Dong Shang
- Department of General Surgery, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Laboratory of Integrative Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, China
- Institute (College) of Integrative Medicine, Dalian Medical University, Dalian, China
| |
Collapse
|
8
|
Fooladi S, Rabiee N, Iravani S. Genetically engineered bacteria: a new frontier in targeted drug delivery. J Mater Chem B 2023; 11:10072-10087. [PMID: 37873584 DOI: 10.1039/d3tb01805a] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2023]
Abstract
Genetically engineered bacteria (GEB) have shown significant promise to revolutionize modern medicine. These engineered bacteria with unique properties such as enhanced targeting, versatility, biofilm disruption, reduced drug resistance, self-amplification capabilities, and biodegradability represent a highly promising approach for targeted drug delivery and cancer theranostics. This innovative approach involves modifying bacterial strains to function as drug carriers, capable of delivering therapeutic agents directly to specific cells or tissues. Unlike synthetic drug delivery systems, GEB are inherently biodegradable and can be naturally eliminated from the body, reducing potential long-term side effects or complications associated with residual foreign constituents. However, several pivotal challenges such as safety and controllability need to be addressed. Researchers have explored novel tactics to improve their capabilities and overcome existing challenges, including synthetic biology tools (e.g., clustered regularly interspaced short palindromic repeats (CRISPR) and bioinformatics-driven design), microbiome engineering, combination therapies, immune system interaction, and biocontainment strategies. Because of the remarkable advantages and tangible progress in this field, GEB may emerge as vital tools in personalized medicine, providing precise and controlled drug delivery for various diseases (especially cancer). In this context, future directions include the integration of nanotechnology with GEB, the focus on microbiota-targeted therapies, the incorporation of programmable behaviors, the enhancement in immunotherapy treatments, and the discovery of non-medical applications. In this way, careful ethical considerations and regulatory frameworks are necessary for developing GEB-based systems for targeted drug delivery. By addressing safety concerns, ensuring informed consent, promoting equitable access, understanding long-term effects, mitigating dual-use risks, and fostering public engagement, these engineered bacteria can be employed as promising delivery vehicles in bio- and nanomedicine. In this review, recent advances related to the application of GEB in targeted drug delivery and cancer therapy are discussed, covering crucial challenging issues and future perspectives.
Collapse
Affiliation(s)
- Saba Fooladi
- Yale Cardiovascular Research Center, Section of Cardiovascular Medicine, Department of Internal Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| | - Navid Rabiee
- Centre for Molecular Medicine and Innovative Therapeutics, Murdoch University, Perth, WA 6150, Australia.
- School of Engineering, Macquarie University, Sydney, New South Wales, 2109, Australia
| | - Siavash Iravani
- Independent Researcher, W Nazar ST, Boostan Ave, Isfahan, Iran.
| |
Collapse
|
9
|
Zhao LY, Mei JX, Yu G, Lei L, Zhang WH, Liu K, Chen XL, Kołat D, Yang K, Hu JK. Role of the gut microbiota in anticancer therapy: from molecular mechanisms to clinical applications. Signal Transduct Target Ther 2023; 8:201. [PMID: 37179402 PMCID: PMC10183032 DOI: 10.1038/s41392-023-01406-7] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 02/21/2023] [Accepted: 03/12/2023] [Indexed: 05/15/2023] Open
Abstract
In the past period, due to the rapid development of next-generation sequencing technology, accumulating evidence has clarified the complex role of the human microbiota in the development of cancer and the therapeutic response. More importantly, available evidence seems to indicate that modulating the composition of the gut microbiota to improve the efficacy of anti-cancer drugs may be feasible. However, intricate complexities exist, and a deep and comprehensive understanding of how the human microbiota interacts with cancer is critical to realize its full potential in cancer treatment. The purpose of this review is to summarize the initial clues on molecular mechanisms regarding the mutual effects between the gut microbiota and cancer development, and to highlight the relationship between gut microbes and the efficacy of immunotherapy, chemotherapy, radiation therapy and cancer surgery, which may provide insights into the formulation of individualized therapeutic strategies for cancer management. In addition, the current and emerging microbial interventions for cancer therapy as well as their clinical applications are summarized. Although many challenges remain for now, the great importance and full potential of the gut microbiota cannot be overstated for the development of individualized anti-cancer strategies, and it is necessary to explore a holistic approach that incorporates microbial modulation therapy in cancer.
Collapse
Affiliation(s)
- Lin-Yong Zhao
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Jia-Xin Mei
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Gang Yu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Lei Lei
- State Key Laboratory of Oral Diseases, West China Hospital of Stomatology, Sichuan University; Frontier Innovation Center for Dental Medicine Plus, Sichuan University, Chengdu, China
| | - Wei-Han Zhang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Kai Liu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiao-Long Chen
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Damian Kołat
- Department of Experimental Surgery, Medical University of Lodz, Lodz, Poland
| | - Kun Yang
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| | - Jian-Kun Hu
- Department of General Surgery & Laboratory of Gastric Cancer, State Key Laboratory of Biotherapy/Collaborative Innovation Center of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
- Gastric Cancer Center, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
10
|
Effects of Soybean and Tempeh Water Extracts on Regulation of Intestinal Flora and Prevention of Colon Precancerous Lesions in Rats. Processes (Basel) 2023. [DOI: 10.3390/pr11010257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023] Open
Abstract
Soybean bioactivity is significantly enhanced during tempeh fermentation. This study aimed to evaluate the efficacy of tempeh on colorectal cancer cells in vitro and colon precancerous lesions (aberrant crypt foci, ACF) in vivo. In the in vitro assay, tempeh water extract (WET) could inhibit the proliferation of Caco-2 cells. In the animal assay using 1,2-dimethylhydrazine (DMH)-induced Sprague–Dawley (SD) rats, 12-weeks daily feeding of tempeh could decrease the level of Clostridium perfringens in cecum contents and reduce the number of large (≥4 foci) ACF in the colon of treated rats, compared to the DMH control. By the results of TOF-MS and Edman degradation, the isolated antioxidant dipeptide, tripeptides, and tetrapeptides from WET might contain methionine, proline, and lysine. The bioactive peptides in tempeh might inhibit colon cancer by suppressing the growth of C. perfringens in the intestinal tract.
Collapse
|
11
|
Nehme Z, Roehlen N, Dhawan P, Baumert TF. Tight Junction Protein Signaling and Cancer Biology. Cells 2023; 12:243. [PMID: 36672179 PMCID: PMC9857217 DOI: 10.3390/cells12020243] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/29/2022] [Accepted: 01/02/2023] [Indexed: 01/11/2023] Open
Abstract
Tight junctions (TJs) are intercellular protein complexes that preserve tissue homeostasis and integrity through the control of paracellular permeability and cell polarity. Recent findings have revealed the functional role of TJ proteins outside TJs and beyond their classical cellular functions as selective gatekeepers. This is illustrated by the dysregulation in TJ protein expression levels in response to external and intracellular stimuli, notably during tumorigenesis. A large body of knowledge has uncovered the well-established functional role of TJ proteins in cancer pathogenesis. Mechanistically, TJ proteins act as bidirectional signaling hubs that connect the extracellular compartment to the intracellular compartment. By modulating key signaling pathways, TJ proteins are crucial players in the regulation of cell proliferation, migration, and differentiation, all of which being essential cancer hallmarks crucial for tumor growth and metastasis. TJ proteins also promote the acquisition of stem cell phenotypes in cancer cells. These findings highlight their contribution to carcinogenesis and therapeutic resistance. Moreover, recent preclinical and clinical studies have used TJ proteins as therapeutic targets or prognostic markers. This review summarizes the functional role of TJ proteins in cancer biology and their impact for novel strategies to prevent and treat cancer.
Collapse
Affiliation(s)
- Zeina Nehme
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
| | - Natascha Roehlen
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Department of Medicine II (Gastroenterology, Hepatology, Endocrinology and Infectious Diseases), Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, 79098 Freiburg, Germany
| | - Punita Dhawan
- Department of Biochemistry and Molecular Biology, University of Nebraska Medical Center, Omaha, 68198 NE, USA
- Buffet Cancer Center, University of Nebraska Medical Center, Omaha, 68105 NE, USA
- VA Nebraska-Western Iowa Health Care System, Omaha, 68105-1850 NE, USA
| | - Thomas F. Baumert
- Université de Strasbourg, Inserm, Institut de Recherche sur les Maladies Virales et Hépatiques UMR_S1110, 67000 Strasbourg, France
- Institut Hospitalo-Universitaire (IHU), Pôle Hépato-Digestif, Hôpitaux Universitaires de Strasbourg, 67000 Strasbourg, France
- Institut Universitaire de France, 75006 Paris, France
| |
Collapse
|
12
|
Wang C, Wu N, Pei B, Ma X, Yang W. Claudin and pancreatic cancer. Front Oncol 2023; 13:1136227. [PMID: 36959784 PMCID: PMC10027734 DOI: 10.3389/fonc.2023.1136227] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/20/2023] [Indexed: 03/09/2023] Open
Abstract
Due to the lack of timely and accurate screening modalities and treatments, most pancreatic cancer (PCa) patients undergo fatal PCa progression within a short period since diagnosis. The claudin(CLDN) family is expressed specifically as tight junction structure in a variety of tumors, including PCa, and affects tumor progression by changing the cell junctions. Thus far, many of the 27 members of the claudin family, including claudin-18.2 and claudin-4, have significantly aberrantly expression in pancreatic tumors. In addition, some studies have confirmed the role of some claudin proteins in the diagnosis and treatment of pancreatic tumors. By targeting different targets of claudin protein and combining chemotherapy, further enhance tumor cell necrosis and inhibit tumor invasion and metastasis. Claudins can either promote or inhibit the development of pancreatic cancer, which indicates that the diagnosis and treatment of different kinds of claudins require to consider different biological characteristics. This literature summarizes the functional characteristics and clinical applications of various claudin proteins in Pca cells, with a focus on claudin-18.2 and claudin-4.
Collapse
Affiliation(s)
- Chen Wang
- Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Gastroenterology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Na Wu
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Beibei Pei
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Xiaoyan Ma
- Third Hospital of Shanxi Medical University, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Tongji Shanxi Hospital, Taiyuan, China
| | - Wenhui Yang
- Department of Gastroenterology, Shanxi Province Cancer Hospital/ Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
- *Correspondence: Wenhui Yang,
| |
Collapse
|
13
|
Dicks LMT, Vermeulen W. Do Bacteria Provide an Alternative to Cancer Treatment and What Role Does Lactic Acid Bacteria Play? Microorganisms 2022; 10:microorganisms10091733. [PMID: 36144335 PMCID: PMC9501580 DOI: 10.3390/microorganisms10091733] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Revised: 08/17/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Cancer is one of the leading causes of mortality and morbidity worldwide. According to 2022 statistics from the World Health Organization (WHO), close to 10 million deaths have been reported in 2020 and it is estimated that the number of cancer cases world-wide could increase to 21.6 million by 2030. Breast, lung, thyroid, pancreatic, liver, prostate, bladder, kidney, pelvis, colon, and rectum cancers are the most prevalent. Each year, approximately 400,000 children develop cancer. Treatment between countries vary, but usually includes either surgery, radiotherapy, or chemotherapy. Modern treatments such as hormone-, immuno- and antibody-based therapies are becoming increasingly popular. Several recent reports have been published on toxins, antibiotics, bacteriocins, non-ribosomal peptides, polyketides, phenylpropanoids, phenylflavonoids, purine nucleosides, short chain fatty acids (SCFAs) and enzymes with anticancer properties. Most of these molecules target cancer cells in a selective manner, either directly or indirectly through specific pathways. This review discusses the role of bacteria, including lactic acid bacteria, and their metabolites in the treatment of cancer.
Collapse
|
14
|
From Immunotoxins to Suicide Toxin Delivery Approaches: Is There a Clinical Opportunity? Toxins (Basel) 2022; 14:toxins14090579. [PMID: 36136517 PMCID: PMC9506092 DOI: 10.3390/toxins14090579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Suicide gene therapy is a relatively novel form of cancer therapy in which a gene coding for enzymes or protein toxins is delivered through targeting systems such as vesicles, nanoparticles, peptide or lipidic co-adjuvants. The use of toxin genes is particularly interesting since their catalytic activity can induce cell death, damaging in most cases the translation machinery (ribosomes or protein factors involved in protein synthesis) of quiescent or proliferating cells. Thus, toxin gene delivery appears to be a promising tool in fighting cancer. In this review we will give an overview, describing some of the bacterial and plant enzymes studied so far for their delivery and controlled expression in tumor models.
Collapse
|
15
|
Orlando BJ, Dominik PK, Roy S, Ogbu CP, Erramilli SK, Kossiakoff AA, Vecchio AJ. Development, structure, and mechanism of synthetic antibodies that target claudin and Clostridium perfringens enterotoxin complexes. J Biol Chem 2022; 298:102357. [PMID: 35952760 PMCID: PMC9463536 DOI: 10.1016/j.jbc.2022.102357] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 08/01/2022] [Accepted: 08/03/2022] [Indexed: 11/15/2022] Open
Abstract
Strains of Clostridium perfringens produce a two-domain enterotoxin (CpE) that afflicts humans and domesticated animals, causing prevalent gastrointestinal illnesses. CpE’s C-terminal domain (cCpE) binds cell surface receptors, followed by a restructuring of its N-terminal domain to form a membrane-penetrating β-barrel pore, which is toxic to epithelial cells of the gut. The claudin family of membrane proteins are known receptors for CpE and also control the architecture and function of cell-cell contacts (tight junctions) that create barriers to intercellular molecular transport. CpE binding and assembly disables claudin barrier function and induces cytotoxicity via β-pore formation, disrupting gut homeostasis; however, a structural basis of this process and strategies to inhibit the claudin–CpE interactions that trigger it are both lacking. Here, we used a synthetic antigen-binding fragment (sFab) library to discover two sFabs that bind claudin-4 and cCpE complexes. We established these sFabs’ mode of molecular recognition and binding properties and determined structures of each sFab bound to claudin-4–cCpE complexes using cryo-EM. The structures reveal that the sFabs bind a shared epitope, but conform distinctly, which explains their unique binding equilibria. Mutagenesis of antigen/sFab interfaces observed therein result in binding changes, validating the structures, and uncovering the sFab’s targeting mechanism. From these insights, we generated a model for CpE’s claudin-bound β-pore that predicted sFabs would not prevent cytotoxicity, which we then verified in vivo. Taken together, this work demonstrates the development and mechanism of claudin/cCpE-binding sFabs that provide a framework and strategy for obstructing claudin/CpE assembly to treat CpE-linked gastrointestinal diseases.
Collapse
Affiliation(s)
- Benjamin J Orlando
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, MI, 48824 USA
| | - Pawel K Dominik
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Sourav Roy
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Chinemerem P Ogbu
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA
| | - Satchal K Erramilli
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Anthony A Kossiakoff
- Department of Biochemistry and Molecular Biology, University of Chicago, Chicago, IL, 60637 USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, 68588 USA.
| |
Collapse
|
16
|
Kvakova M, Kamlarova A, Stofilova J, Benetinova V, Bertkova I. Probiotics and postbiotics in colorectal cancer: Prevention and complementary therapy. World J Gastroenterol 2022; 28:3370-3382. [PMID: 36158273 PMCID: PMC9346452 DOI: 10.3748/wjg.v28.i27.3370] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 03/22/2022] [Accepted: 06/16/2022] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a leading cause of human mortality worldwide. As conventional anticancer therapy not always being effective, there is growing interest in innovative “drug-free” cancer treatments or interventions that improve the efficacy of established therapy. CRC is associated with microbiome alterations, a process known as dysbiosis that involves depletion and/or enrichment of particular gut bacterial species and their metabolic functions. Supplementing patient treatment with traditional probiotics (with or without prebiotics), next-generation probiotics (NGP), or postbiotics represents a potentially effective and accessible complementary anticancer strategy by restoring gut microbiota composition and/or by signaling to the host. In this capacity, restoration of the gut microbiota in cancer patients can stabilize and enhance intestinal barrier function, as well as promote anticarcinogenic, anti-inflammatory, antimutagenic or other biologically important biochemical pathways that show high specificity towards tumor cells. Potential benefits of traditional probiotics, NGP, and postbiotics include modulating gut microbiota composition and function, as well as the host inflammatory response. Their application in CRC prevention is highlighted in this review, where we consider supportive in vitro, animal, and clinical studies. Based on emerging research, NGP and postbiotics hold promise in establishing innovative treatments for CRC by conferring physiological functions via the production of dominant natural products and metabolites that provide new host-microbiota signals to combat CRC. Although favorable results have been reported, further investigations focusing on strain and dose specificity are required to ensure the efficacy and safety of traditional probiotics, NGP, and postbiotics in CRC prevention and treatment.
Collapse
Affiliation(s)
- Monika Kvakova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Anna Kamlarova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Jana Stofilova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Veronika Benetinova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| | - Izabela Bertkova
- Center of Clinical and Preclinical Research MEDIPARK, Faculty of Medicine, P.J. Safarik University in Kosice, Kosice 04011, Slovakia
| |
Collapse
|
17
|
Mueller AL, Brockmueller A, Fahimi N, Ghotbi T, Hashemi S, Sadri S, Khorshidi N, Kunnumakkara AB, Shakibaei M. Bacteria-Mediated Modulatory Strategies for Colorectal Cancer Treatment. Biomedicines 2022; 10:biomedicines10040832. [PMID: 35453581 PMCID: PMC9026499 DOI: 10.3390/biomedicines10040832] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Revised: 03/27/2022] [Accepted: 03/31/2022] [Indexed: 12/09/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common tumors worldwide, with a higher rate of distant metastases than other malignancies and with regular occurrence of drug resistance. Therefore, scientists are forced to further develop novel and innovative therapeutic treatment strategies, whereby it has been discovered microorganisms, albeit linked to CRC pathogenesis, are able to act as highly selective CRC treatment agents. Consequently, researchers are increasingly focusing on bacteriotherapy as a novel therapeutic strategy with less or no side effects compared to standard cancer treatment methods. With multiple successful trials making use of various bacteria-associated mechanisms, bacteriotherapy in cancer treatment is on its way to become a promising tool in CRC targeting therapy. In this study, we describe the anti-cancer effects of bacterial therapy focusing on the treatment of CRC as well as diverse modulatory mechanisms and techniques that bacteriotherapy offers such as bacterial-related biotherapeutics including peptides, toxins, bacteriocins or the use of bacterial carriers and underlying molecular processes to target colorectal tumors.
Collapse
Affiliation(s)
- Anna-Lena Mueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Aranka Brockmueller
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
| | - Niusha Fahimi
- Faculty of Pharmacy, Comenius University, 83232 Bratislava, Slovakia;
| | - Tahere Ghotbi
- Department of Nursing, Shiraz University of Medical Sciences, Shiraz 7134814336, Iran;
| | - Sara Hashemi
- Central Tehran Branch, Islamic Azad University, Tehran 1955847881, Iran;
| | - Sadaf Sadri
- Department of Microbiology, University of Mazandaran, Babolsar 4741613534, Iran;
| | - Negar Khorshidi
- Department of Medicinal Chemistry, Medical Sciences Branch, Islamic Azad University, Tehran 1913674711, Iran;
| | - Ajaikumar B. Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Center for Translational and Environmental Research (DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology (IIT) Guwahati, Guwahati 781039, India;
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumor Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Faculty of Medicine, Ludwig-Maximilian-University Munich, 80336 Munich, Germany; (A.-L.M.); (A.B.)
- Correspondence: ; Tel.: +49-98-2180-72624
| |
Collapse
|
18
|
Disruption of Claudin-Made Tight Junction Barriers by Clostridium perfringens Enterotoxin: Insights from Structural Biology. Cells 2022; 11:cells11050903. [PMID: 35269525 PMCID: PMC8909277 DOI: 10.3390/cells11050903] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/26/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Claudins are a family of integral membrane proteins that enable epithelial cell/cell interactions by localizing to and driving the formation of tight junctions. Via claudin self-assembly within the membranes of adjoining cells, their extracellular domains interact, forming barriers to the paracellular transport of small molecules and ions. The bacterium Clostridium perfringens causes prevalent gastrointestinal disorders in mammals by employing an enterotoxin (CpE) that targets claudins. CpE binds to claudins at or near tight junctions in the gut and disrupts their barrier function, potentially by disabling their assembly or via cell signaling means—the mechanism(s) remain unclear. CpE ultimately destroys claudin-expressing cells through the formation of a cytotoxic membrane-penetrating β-barrel pore. Structures obtained by X-ray crystallography of CpE, claudins, and claudins in complex with CpE fragments have provided the structural bases of claudin and CpE functions, revealing potential mechanisms for the CpE-mediated disruption of claudin-made tight junctions. This review highlights current progress in this space—what has been discovered and what remains unknown—toward efforts to elucidate the molecular mechanism of CpE disruption of tight junction barriers. It further underscores the key insights obtained through structure that are being applied to develop CpE-based therapeutics that combat claudin-overexpressing cancers or modulate tight junction barriers.
Collapse
|
19
|
Doocey CM, Finn K, Murphy C, Guinane CM. The impact of the human microbiome in tumorigenesis, cancer progression, and biotherapeutic development. BMC Microbiol 2022; 22:53. [PMID: 35151278 PMCID: PMC8840051 DOI: 10.1186/s12866-022-02465-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 02/03/2022] [Indexed: 02/08/2023] Open
Abstract
Abstract
Background
Cancer impacts millions of lives globally each year, with approximately 10 million cancer-related deaths recorded worldwide in 2020. Mounting research has recognised the human microbiome as a key area of interest in the pathophysiology of various human diseases including cancer tumorigenesis, progression and in disease outcome. It is suggested that approximately 20% of human cancers may be linked to microbes. Certain residents of the human microbiome have been identified as potentially playing a role, including: Helicobacter pylori, Fusobacterium nucleatum, Escherichia coli, Bacteroides fragilis and Porphyromonas gingivalis.
Main body
In this review, we explore the current evidence that indicate a link between the human microbiome and cancer. Microbiome compositional changes have been well documented in cancer patients. Furthermore, pathogenic microbes harbouring specific virulence factors have been implicated in driving the carcinogenic activity of various malignancies including colorectal, gastric and pancreatic cancer. The associated genetic mechanisms with possible roles in cancer will be outlined. It will be indicated which microbes have a potential direct link with cancer cell proliferation, tumorigenesis and disease progression. Recent studies have also linked certain microbial cytotoxins and probiotic strains to cancer cell death, suggesting their potential to target the tumour microenvironment given that cancer cells are integral to its composition. Studies pertaining to such cytotoxic activity have suggested the benefit of microbial therapies in oncological treatment regimes. It is also apparent that bacterial pathogenic protein products encoded for by certain loci may have potential as oncogenic therapeutic targets given their possible role in tumorigenesis.
Conclusion
Research investigating the impact of the human microbiome in cancer has recently gathered pace. Vast amounts of evidence indicate the human microbiome as a potential player in tumorigenesis and progression. Promise in the development of cancer biomarkers and in targeted oncological therapies has also been demonstrated, although more studies are needed. Despite extensive in vitro and in vivo research, clinical studies involving large cohorts of human patients are lacking. The current literature suggests that further intensive research is necessary to validate both the role of the human microbiome in cancer, and the use of microbiome modification in cancer therapy.
Collapse
|
20
|
Abstract
Gene therapy has started in the late 1980s as novel, clinically applicable therapeutic option. It revolutionized the treatment of genetic diseases with the initial intent to repair or replace defective genes. Gene therapy has been adapted for treatment of malignant diseases to improve the outcome of cancer patients. In fact, cancer gene therapy has rapidly gained great interest and evolved into a research field with highest proportion of research activities in gene therapy. In this context, cancer gene therapy has long entered translation into clinical trials and therefore more than two-thirds of all gene therapy trials worldwide are aiming at the treatment of cancer disease using different therapeutic strategies. During the decades in cancer gene therapy, tremendous knowledge has accumulated. This led to significant improvements in vector design, transgene repertoire, more targeted interventions, use of novel gene therapeutic technologies such as CRISPR/Cas, sleeping beauty vectors, and development of effective cancer immunogene therapies. In this chapter, a brief overview of current key developments in cancer gene therapy is provided to gain insights into the recent directions in research as well as in clinical application of cancer gene therapy.
Collapse
Affiliation(s)
- Dennis Kobelt
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany
| | - Jessica Pahle
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Wolfgang Walther
- Max-Delbrück-Center for Molecular Medicine, Berlin, Germany.
- Experimental and Clinical Research Center, Charité - Universitätsmedizin Berlin, Berlin, Germany.
- German Cancer Consortium (DKTK), Deutsches Krebsforschungzentrum (DKFZ), Heidelberg, Germany.
| |
Collapse
|
21
|
Ma Y, Qu R, Zhang Y, Jiang C, Zhang Z, Fu W. Progress in the Study of Colorectal Cancer Caused by Altered Gut Microbiota After Cholecystectomy. Front Endocrinol (Lausanne) 2022; 13:815999. [PMID: 35282463 PMCID: PMC8907136 DOI: 10.3389/fendo.2022.815999] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 02/01/2022] [Indexed: 12/26/2022] Open
Abstract
Epidemiological studies have found an increased incidence of colorectal cancer (CRC) in people who undergo cholecystectomy compared to healthy individuals. After cholecystectomy, bile enters the duodenum directly, unregulated by the timing of meals. Disruption of the balance of bile acid metabolism and increased production of primary bile acids, which in turn affects the composition and abundance of intestinal microorganisms. The link among cholecystectomy, the gut microbiota, and the occurrence and development of CRC is becoming clearer. However, due to the complexity of the microbial community, the mechanistic connections are less well understood. In this review, we summarize the changes of gut microbiota after cholecystectomy and illuminate the potential mechanisms on CRC, such as inflammation and immune regulation, production of genotoxins, metabolism of dietary ingredients, activation of signaling pathways, and so on. By reviewing these, we aimed to unravel the interactions between the gut microbiota and its host and be better positioned to develop treatments for CRC after cholecystectomy.
Collapse
Affiliation(s)
- Yanpeng Ma
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
| | - Changtao Jiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Peking University, Beijing, China
- Key Laboratory of Molecular Cardiovascular Science (Peking University), Ministry of Education, Beijing, China
- Center of Basic Medical Research, Institute of Medical Innovation and Research, Third Hospital, Peking University, Beijing, China
- Center for Obesity and Metabolic Disease Research, School of Basic Medical Sciences, Peking University, Beijing, China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing, China
- Cancer Center, Peking University Third Hospital, Beijing, China
- *Correspondence: Zhipeng Zhang, ; Wei Fu,
| |
Collapse
|
22
|
Afzali S, Doosti A, Heidari M, Babaei N, Keshavarz P, Nadem Z, Kahnamoei A. Effects of Staphylococcus aureus enterotoxin type A on inducing the apoptosis in cervical cancer cell line. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
23
|
Effective Oncoleaking Treatment of Pancreatic Cancer by Claudin-Targeted Suicide Gene Therapy with Clostridium perfringens Enterotoxin (CPE). Cancers (Basel) 2021; 13:cancers13174393. [PMID: 34503203 PMCID: PMC8431234 DOI: 10.3390/cancers13174393] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/20/2021] [Accepted: 08/25/2021] [Indexed: 02/07/2023] Open
Abstract
Simple Summary Current therapies for pancreas carcinoma (PC) are of limited efficacy due to tumor aggressiveness and therapy resistance. Bacterial toxins with pore-forming (oncoleaking) potential are promising tools in cancer therapy. We have developed a novel, suicide gene therapy treatment, based on Clostridium perfringens enterotoxin (CPE)-mediated oncoleaking. This is achieved by CPE suicide gene therapy to treat PC, which overexpresses the claudin-3 and -4 (Cldn3/4) tight junction proteins, which are targets of CPE action. This targeted gene therapy causes rapid eradication of Cldn3/4 overexpressing PC cells via oncoleaking and initiation of apoptotic/necrotic signaling. We demonstrate efficacy of this approach in vitro and after nonviral in vivo gene transfer in cell lines and in patient derived xenograft PC models. This therapy approach has translational potential for treatment of pancreas carcinomas and could also be translated into new combination settings with conventional chemotherapy. Abstract Pancreatic cancer (PC) is one of the most lethal cancers worldwide, associated with poor prognosis and restricted therapeutic options. Clostridium perfringens enterotoxin (CPE), is a pore-forming (oncoleaking) toxin, which binds to claudin-3 and -4 (Cldn3/4) causing selective cytotoxicity. Cldn3/4 are highly upregulated in PC and represent an effective target for oncoleaking therapy. We utilized a translation-optimized CPE vector (optCPE) for new suicide approach of PC in vitro and in cell lines (CDX) and patient-derived pancreatic cancer xenografts (PDX) in vivo. The study demonstrates selective toxicity in Cldn3/4 overexpressing PC cells by optCPE gene transfer, mediated by pore formation, activation of apoptotic/necrotic signaling in vitro, induction of necrosis and of bystander tumor cell killing in vivo. The optCPE non-viral intratumoral in vivo jet-injection gene therapy shows targeted antitumoral efficacy in different CDX and PDX PC models, leading to reduced tumor viability and induction of tumor necrosis, which is further enhanced if combined with chemotherapy. This selective oncoleaking suicide gene therapy improves therapeutic efficacy in pancreas carcinoma and will be of value for better local control, particularly of unresectable or therapy refractory PC.
Collapse
|
24
|
Menati Rashno M, Mehraban H, Naji B, Radmehr M. Microbiome in human cancers. Access Microbiol 2021; 3:000247. [PMID: 34888478 PMCID: PMC8650843 DOI: 10.1099/acmi.0.000247] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 06/17/2021] [Indexed: 12/19/2022] Open
Abstract
A microbiome is defined as the aggregate of all microbiota that reside in human digestive system and other tissues. This microbiota includes viruses, bacteria, fungi that live in various human organs and tissues like stomach, guts, oesophagus, mouth cavity, urinary tract, vagina, lungs, and skin. Almost 20 % of malignant cancers worldwide are related to microbial infections including bacteria, parasites, and viruses. The human body is constantly being attacked by microbes during its lifetime and microbial pathogens that have tumorigenic effects in 15-20 % of reported cancer cases. Recent scientific advances and the discovery of the effect of microbes on cancer as a pathogen or as a drug have significantly contributed to our understanding of the complex relationship between microbiome and cancer. The aim of this study is to overview some microbiomes that reside in the human body and their roles in cancer.
Collapse
Affiliation(s)
| | - Hamed Mehraban
- Department of Biology, Payame Noor University (PNU), Tehran, Iran
| | - Behnaz Naji
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| | - Mohadeseh Radmehr
- Department of Microbiology, Damghan Branch, Islamic Azad University, Damghan, Iran
| |
Collapse
|
25
|
Li J. Targeting claudins in cancer: diagnosis, prognosis and therapy. Am J Cancer Res 2021; 11:3406-3424. [PMID: 34354852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 06/18/2021] [Indexed: 11/09/2022] Open
Abstract
Increasing evidence has linked claudins to signal transduction and tumorigenesis. The expression of claudins is frequently dysregulated in the context of neoplastic transformation, suggesting their promise as biomarkers for diagnosis and prognosis or targets for treatment. Claudin binders (Clostridium perfringens enterotoxin and monoclonal antibody) have been tested in preclinical experiments, and some of them have progressed into clinical trials involving patients with certain cancers. However, the clinical development of many of these agents has not advanced to clinical applications. Herein, I review the current status of preclinical and clinical investigations of agents targeting claudins for diagnosis, prognosis and therapy. I also discuss the potential of combining claudin binders with other currently approved therapeutic agents.
Collapse
Affiliation(s)
- Jian Li
- Department of General Surgery, The Third Hospital of Mianyang, Sichuan Mental Health Center Mianyang 621000, Sichuan, China
| |
Collapse
|
26
|
Ebrahimzadeh S, Ahangari H, Soleimanian A, Hosseini K, Ebrahimi V, Ghasemnejad T, Soofiyani SR, Tarhriz V, Eyvazi S. Colorectal cancer treatment using bacteria: focus on molecular mechanisms. BMC Microbiol 2021; 21:218. [PMID: 34281519 PMCID: PMC8287294 DOI: 10.1186/s12866-021-02274-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 07/01/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND Colorectal cancer which is related to genetic and environmental risk factors, is among the most prevalent life-threatening cancers. Although several pathogenic bacteria are associated with colorectal cancer etiology, some others are considered as highly selective therapeutic agents in colorectal cancer. Nowadays, researchers are concentrating on bacteriotherapy as a novel effective therapeutic method with fewer or no side effects to pay the way of cancer therapy. The introduction of advanced and successful strategies in bacterial colorectal cancer therapy could be useful to identify new promising treatment strategies for colorectal cancer patients. MAIN TEXT In this article, we scrutinized the beneficial effects of bacterial therapy in colorectal cancer amelioration focusing on different strategies to use a complete bacterial cell or bacterial-related biotherapeutics including toxins, bacteriocins, and other bacterial peptides and proteins. In addition, the utilization of bacteria as carriers for gene delivery or other known active ingredients in colorectal cancer therapy are reviewed and ultimately, the molecular mechanisms targeted by the bacterial treatment in the colorectal cancer tumors are detailed. CONCLUSIONS Application of the bacterial instrument in cancer treatment is on its way through becoming a promising method of colorectal cancer targeted therapy with numerous successful studies and may someday be a practical strategy for cancer treatment, particularly colorectal cancer.
Collapse
Affiliation(s)
- Sara Ebrahimzadeh
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Hossein Ahangari
- Department of Food Science and Technology, Faculty of Nutrition and Food Science, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Alireza Soleimanian
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Kamran Hosseini
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vida Ebrahimi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Tohid Ghasemnejad
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Saiedeh Razi Soofiyani
- Clinical Research Development Unit of Sina Educational, Research and Treatment Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Vahideh Tarhriz
- Molecular Medicine Research Center, Biomedicine Institute, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Shirin Eyvazi
- Department of Biology, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
- Biotechnology Research Center, Tabriz Branch, Islamic Azad University, Tabriz, Iran.
| |
Collapse
|
27
|
Mughal MJ, Kwok HF. Multidimensional role of bacteria in cancer: Mechanisms insight, diagnostic, preventive and therapeutic potential. Semin Cancer Biol 2021; 86:1026-1044. [PMID: 34119644 DOI: 10.1016/j.semcancer.2021.06.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/28/2021] [Accepted: 06/08/2021] [Indexed: 02/08/2023]
Abstract
The active role of bacteria in oncogenesis has long been a topic of debate. Although, it was speculated to be a transmissible cause of cancer as early as the 16th-century, yet the idea about the direct involvement of bacteria in cancer development has only been explored in recent decades. More recently, several studies have uncovered the mechanisms behind the carcinogenic potential of bacteria which are inflammation, immune evasion, pro-carcinogenic metabolite production, DNA damage and genomic instability. On the other side, the recent development on the understanding of tumor microenvironment and technological advancements has turned this enemy into an ally. Studies using bacteria for cancer treatment and detection have shown noticeable effects. Therapeutic abilities of bioengineered live bacteria such as high specificity, selective cytotoxicity to cancer cells, responsiveness to external signals and control after ingestion have helped to overcome the challenges faced by conventional cancer therapies and highlighted the bacterial based therapy as an ideal approach for cancer treatment. In this review, we have made an effort to compile substantial evidence to support the multidimensional role of bacteria in cancer. We have discussed the multifaceted role of bacteria in cancer by highlighting the wide impact of bacteria on different cancer types, their mechanisms of actions in inducing carcinogenicity, followed by the diagnostic and therapeutic potential of bacteria in cancers. Moreover, we have also highlighted the existing gaps in the knowledge of the association between bacteria and cancer as well as the limitation and advantage of bacteria-based therapies in cancer. A better understanding of these multidimensional roles of bacteria in cancer can open up the new doorways to develop early detection strategies, prevent cancer, and develop therapeutic tactics to cure this devastating disease.
Collapse
Affiliation(s)
- Muhammad Jameel Mughal
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau
| | - Hang Fai Kwok
- Cancer Centre, Faculty of Health Sciences, University of Macau, Avenida de Universidade, Taipa, Macau; MOE Frontiers Science Center for Precision Oncology, University of Macau, Avenida de Universidade, Taipa, Macau.
| |
Collapse
|
28
|
Huang X, Pan J, Xu F, Shao B, Wang Y, Guo X, Zhou S. Bacteria-Based Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003572. [PMID: 33854892 PMCID: PMC8025040 DOI: 10.1002/advs.202003572] [Citation(s) in RCA: 131] [Impact Index Per Article: 32.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/03/2020] [Indexed: 05/24/2023]
Abstract
In the past decade, bacteria-based cancer immunotherapy has attracted much attention in the academic circle due to its unique mechanism and abundant applications in triggering the host anti-tumor immunity. One advantage of bacteria lies in their capability in targeting tumors and preferentially colonizing the core area of the tumor. Because bacteria are abundant in pathogen-associated molecular patterns that can effectively activate the immune cells even in the tumor immunosuppressive microenvironment, they are capable of enhancing the specific immune recognition and elimination of tumor cells. More attractively, during the rapid development of synthetic biology, using gene technology to enable bacteria to be an efficient producer of immunotherapeutic agents has led to many creative immunotherapy paradigms. The combination of bacteria and nanomaterials also displays infinite imagination in the multifunctional endowment for cancer immunotherapy. The current progress report summarizes the recent advances in bacteria-based cancer immunotherapy with specific foci on the applications of naive bacteria-, engineered bacteria-, and bacterial components-based cancer immunotherapy, and at the same time discusses future directions in this field of research based on the present developments.
Collapse
Affiliation(s)
- Xuehui Huang
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Jingmei Pan
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Funeng Xu
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Binfen Shao
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Yi Wang
- School of Life Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Xing Guo
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| | - Shaobing Zhou
- Key Laboratory of Advanced Technologies of MaterialsMinistry of EducationSchool of Materials Science and EngineeringSouthwest Jiaotong UniversityChengdu610031China
| |
Collapse
|
29
|
Safarpour-Dehkordi M, Doosti A, Jami MS. Impacts of the Staphylococcal Enterotoxin H on the Apoptosis and lncRNAs in PC3 and ACHN. MOLECULAR GENETICS MICROBIOLOGY AND VIROLOGY 2021; 35:180-188. [PMID: 33500599 PMCID: PMC7818696 DOI: 10.3103/s0891416820030076] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/18/2020] [Accepted: 01/31/2020] [Indexed: 11/30/2022]
Abstract
Cancer is considered as the most lethal disease for human beings, and up to now many attempts were failed for prevention and treatment of this tremendous health problem. Consequently, this study purpose was to investigate novel therapeutic methods for cancer. The bacterial toxin can result in cell death throughout the induction of apoptosis in cancer cell lines. We evaluated apoptosis and the expression levels of long non-coding RNAs (lncRNAs) in PC3, ACHN and HDF cell lines that were transfected with pCDNA3.1(+)-seh and empty plasmid. pCDNA3.1(+)-seh treatment showed overexpression of GAS5 (p = 0.0033 and p = 0.0033) in PC3 and ACHN cells, down regulation of PCA3 and NEAT1 (p = 0.0092 and p = 0.0097) in the PC3 cells, and down regulation of PVT1 and MALAT1 (p = 0.0239 and p = 0.0133) in the ACHN cells in comparison with the empty plasmid, but there was no significant effect on HDF normal cells. Additionally, this study data demonstrated that the cell adhesion was down regulated. The flow cytometry data showed transfection by pCDNA3.1 (+)-seh could elevate PC3 and ACHN cell apoptosis levels in comparison with empty plasmid. This study findings propose that SEH toxin of S. aureus could be a useful candidate for therapeutic researches in cancer vaccine development.
Collapse
Affiliation(s)
- M Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - A Doosti
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - M S Jami
- Department of Neurology, David Geffen School of Medicine, University of California, CA 90095 Los Angeles (UCLA), United States.,Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
| |
Collapse
|
30
|
Li F, Egea PF, Vecchio AJ, Asial I, Gupta M, Paulino J, Bajaj R, Dickinson MS, Ferguson-Miller S, Monk BC, Stroud RM. Highlighting membrane protein structure and function: A celebration of the Protein Data Bank. J Biol Chem 2021; 296:100557. [PMID: 33744283 PMCID: PMC8102919 DOI: 10.1016/j.jbc.2021.100557] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 02/10/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022] Open
Abstract
Biological membranes define the boundaries of cells and compartmentalize the chemical and physical processes required for life. Many biological processes are carried out by proteins embedded in or associated with such membranes. Determination of membrane protein (MP) structures at atomic or near-atomic resolution plays a vital role in elucidating their structural and functional impact in biology. This endeavor has determined 1198 unique MP structures as of early 2021. The value of these structures is expanded greatly by deposition of their three-dimensional (3D) coordinates into the Protein Data Bank (PDB) after the first atomic MP structure was elucidated in 1985. Since then, free access to MP structures facilitates broader and deeper understanding of MPs, which provides crucial new insights into their biological functions. Here we highlight the structural and functional biology of representative MPs and landmarks in the evolution of new technologies, with insights into key developments influenced by the PDB in magnifying their impact.
Collapse
Affiliation(s)
- Fei Li
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA; Department of Neurology, University of California San Francisco, San Francisco, California, USA
| | - Pascal F Egea
- Department of Biological Chemistry, School of Medicine, University of California Los Angeles, Los Angeles, California, USA
| | - Alex J Vecchio
- Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, Nebraska, USA
| | | | - Meghna Gupta
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Joana Paulino
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Ruchika Bajaj
- Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, California, USA
| | - Miles Sasha Dickinson
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA
| | - Shelagh Ferguson-Miller
- Department of Biochemistry and Molecular Biology, Michigan State University, East Lansing, Michigan, USA
| | - Brian C Monk
- Sir John Walsh Research Institute and Department of Oral Sciences, University of Otago, North Dunedin, Dunedin, New Zealand
| | - Robert M Stroud
- Department of Biochemistry and Biophysics, University of California San Francisco, San Francisco, California, USA.
| |
Collapse
|
31
|
Kong C, Cheng L, Krenning G, Fledderus J, de Haan BJ, Walvoort MTC, de Vos P. Human Milk Oligosaccharides Mediate the Crosstalk Between Intestinal Epithelial Caco-2 Cells and Lactobacillus PlantarumWCFS1in an In Vitro Model with Intestinal Peristaltic Shear Force. J Nutr 2020; 150:2077-2088. [PMID: 32542361 PMCID: PMC7398781 DOI: 10.1093/jn/nxaa162] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 05/01/2020] [Accepted: 05/18/2020] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The intestinal epithelial cells, food molecules, and gut microbiota are continuously exposed to intestinal peristaltic shear force. Shear force may impact the crosstalk of human milk oligosaccharides (hMOs) with commensal bacteria and intestinal epithelial cells. OBJECTIVES We investigated how hMOs combined with intestinal peristaltic shear force impact intestinal epithelial cells and crosstalk with a commensal bacterium. METHODS We applied the Ibidi system to mimic intestinal peristaltic shear force. Caco-2 cells were exposed to a shear force (5 dynes/cm2) for 3 d, and then stimulated with the hMOs, 2'-fucosyllactose (2'-FL), 3-FL, and lacto-N-triose II (LNT2). In separate experiments, Lactobacillus plantarumWCFS1 adhesion to Caco-2 cells was studied with the same hMOs and shear force. Effects were tested on gene expression of glycocalyx-related molecules (glypican 1 [GPC1], hyaluronan synthase 1 [HAS1], HAS2, HAS3, exostosin glycosyltransferase 1 [EXT1], EXT2), defensin β-1 (DEFB1), and tight junction (tight junction protein 1 [TJP1], claudin 3 [CLDN3]) in Caco-2 cells. Protein expression of tight junctions was also quantified. RESULTS Shear force dramatically decreased gene expression of the main enzymes for making glycosaminoglycan side chains (HAS3 by 43.3% and EXT1 by 68.7%) (P <0.01), but did not affect GPC1 which is the gene responsible for the synthesis of glypican 1 which is a major protein backbone of glycocalyx. Expression of DEFB1, TJP1, and CLDN3 genes was decreased 60.0-94.9% by shear force (P <0.001). The presence of L. plantarumWCFS1 increased GPC1, HAS2, HAS3, and ZO-1 expression by 1.78- to 3.34-fold (P <0.05). Under shear force, all hMOs significantly stimulated DEFB1 and ZO-1, whereas only 3-FL and LNT2 enhanced L. plantarumWCFS1 adhesion by 1.85- to 1.90-fold (P <0.01). CONCLUSIONS 3-FL and LNT2 support the crosstalk between the commensal bacterium L. plantarumWCFS1 and Caco-2 intestinal epithelial cells, and shear force can increase the modulating effects of hMOs.
Collapse
Affiliation(s)
- Chunli Kong
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Lianghui Cheng
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Guido Krenning
- Laboratory for Cardiovascular Regenerative Medicine, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Jolien Fledderus
- Laboratory for Cardiovascular Regenerative Medicine, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Bart J de Haan
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| | - Marthe T C Walvoort
- Stratingh Institute for Chemistry, University of Groningen, Groningen, The Netherlands
| | - Paul de Vos
- Immunoendocrinology, Division of Medical Biology, Department of Pathology and Medical Biology, University of Groningen and University Medical Center Groningen, Groningen, The Netherlands
| |
Collapse
|
32
|
Safarpour-Dehkordi M, Doosti A, Jami MS. Integrative Analysis of lncRNAs in Kidney Cancer to Discover A New lncRNA ( LINC00847) as A Therapeutic Target for Staphylococcal Enterotoxin tst Gene. CELL JOURNAL 2020; 22:101-109. [PMID: 32779439 PMCID: PMC7481890 DOI: 10.22074/cellj.2020.6996] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/04/2019] [Accepted: 09/28/2019] [Indexed: 01/11/2023]
Abstract
OBJECTIVE Bacterial toxin can cause cell death through induction of apoptosis in cancer cell lines as well as changes in the expression patterns of long non-coding RNAs (lncRNAs) and genes. In the present study, the effect of tst gene on ACHN cell lines was reported along with proposing a novel pathway of apoptosis in kidney cancer. MATERIALS AND METHODS In this experimental study, effective lncRNAs and genes were predicted from different criteria for renal cell carcinoma (RCC) by bioinformatics methods and lncRNA-miRNA-mRNA interaction was constructed; then the effect of Staphylococcus aureus tst gene on induction of apoptosis pathways on ACHN and HDF cell lines was investigated. RESULTS After creation of lncRNA-miRNA-mRNA interaction, changes in expression levels of lncRNA LINC00847 (P=0.0024) and PTEN gene (P=0.0027) were identified, as potential apoptosis biomarkers for kidney cancer, after treating ACHN cell line by pCDNA3.1 (+)-tst compared to the empty vector. In contrast, there was no statistically significant difference in DICER1 expression levels in ACHN-tst cell (P≥0.05). In addition, transfection by pcDNA3.1 (+)-tst could increase ACHN cell apoptosis level (P<0.0001) compared to the pcDNA3.1 (+) group; but no significant effect was observed on normal cells. CONCLUSION It is suggested that lncRNA LINC00847, discovered in this study, could provide a new landscape for researches aimed to determine relationship between functional lncRNA and RCC pathways. pcDNA3.1 (+)-tst was found to increase apoptosis in the transfected cells.
Collapse
Affiliation(s)
- Maryam Safarpour-Dehkordi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad-Saied Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department of Neurology, David Geffen School of Medicine, University of California Los Angeles (UCLA), USA
| |
Collapse
|
33
|
Yaghoubi A, Khazaei M, Jalili S, Hasanian SM, Avan A, Soleimanpour S, Cho WC. Bacteria as a double-action sword in cancer. Biochim Biophys Acta Rev Cancer 2020; 1874:188388. [PMID: 32589907 DOI: 10.1016/j.bbcan.2020.188388] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/09/2020] [Accepted: 06/18/2020] [Indexed: 01/10/2023]
Abstract
Bacteria have long been known as one of the primary causative agents of cancer, however, recent studies suggest that they can be used as a promising agent in cancer therapy. Because of the limitations that conventional treatment faces due to the specific pathophysiology and the tumor environment, there is a great need for the new anticancer therapeutic agents. Bacteriotherapy utilizes live, attenuated strains or toxins, peptides, bacteriocins of the bacteria in the treatment of cancer. Moreover, they are widely used as a vector for delivering genes, peptides, or drugs to the tumor target. Interestingly, it was found that their combination with the conventional therapeutic approaches may enhance the treatment outcome. In the genome editing era, it is feasible to develop a novel generation of therapeutic bacteria with fewer side effects and more efficacy for cancer therapy. Here we review the current knowledge on the dual role of bacteria in the development of cancer as well as cancer therapy.
Collapse
Affiliation(s)
- Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saba Jalili
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong, SAR, China.
| |
Collapse
|
34
|
Ganesan K, Jayachandran M, Xu B. Diet-Derived Phytochemicals Targeting Colon Cancer Stem Cells and Microbiota in Colorectal Cancer. Int J Mol Sci 2020; 21:E3976. [PMID: 32492917 PMCID: PMC7312951 DOI: 10.3390/ijms21113976] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 05/28/2020] [Accepted: 05/30/2020] [Indexed: 02/06/2023] Open
Abstract
Colorectal cancer (CRC) is a fatal disease caused by the uncontrolled propagation and endurance of atypical colon cells. A person's lifestyle and eating pattern have significant impacts on the CRC in a positive and/or negative way. Diet-derived phytochemicals modulate the microbiome as well as targeting colon cancer stem cells (CSCs) that are found to offer significant protective effects against CRC, which were organized in an appropriate spot on the paper. All information on dietary phytochemicals, gut microbiome, CSCs, and their influence on CRC were accessed from the various databases and electronic search engines. The effectiveness of CRC can be reduced using various dietary phytochemicals or modulating microbiome that reduces or inverses the progression of a tumor as well as CSCs, which could be a promising and efficient way to reduce the burden of CRC. Phytochemicals with modulation of gut microbiome continue to be auspicious investigations in CRC through noticeable anti-tumorigenic effects and goals to CSCs, which provides new openings for cancer inhibition and treatment.
Collapse
Affiliation(s)
- Kumar Ganesan
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
- Laboratory and Clinical Research Institute for Pain, Department of Anesthesiology, The University of Hong Kong, Hong Kong SAR, China
| | - Muthukumaran Jayachandran
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| | - Baojun Xu
- Food Science and Technology Programme, Beijing Normal University-Hong Kong Baptist University United International College, Zhuhai 519087, China; (K.G.); (M.J.)
| |
Collapse
|
35
|
Soleimanpour S, Hasanian SM, Avan A, Yaghoubi A, Khazaei M. Bacteriotherapy in gastrointestinal cancer. Life Sci 2020; 254:117754. [PMID: 32389833 DOI: 10.1016/j.lfs.2020.117754] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 04/27/2020] [Accepted: 05/04/2020] [Indexed: 01/13/2023]
Abstract
The most prevalent gastrointestinal (GI) cancers include colorectal cancer, stomach cancer, and liver cancer, known as the most common causes of cancer-related death in both men and women populations in the world. Traditional therapeutic approaches, including surgery, radiotherapy, and chemotherapy have failed in the effective treatment of cancer. Therefore, there is an urgent need for finding new effective anticancer agents. The available evidence and also the promising results of using bacteria as the anticancer agents on numerous cancer cell lines have attracted the attention of scientists for the therapeutic role of bacteria in the field of cancer therapy. Moreover, several studies on the bacteriotherapy agents have used genetic engineering to overcome the challenges and enhance the efficacy with the least drawbacks. Numerous bacterial species that can specifically target and internalize into the tumor cells are used live, attenuated, or genetically as compared to selectively consider the hypoxic condition of tumor, which results in the tumor suppression. The present study is a comprehensive review of the current literature on the use of bacteria and their substances such as bacteriocins and toxins in the treatment of different types of gastrointestinal cancers.
Collapse
Affiliation(s)
- Saman Soleimanpour
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Seyed Mahdi Hasanian
- Department of Medical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad, Iran; Student Research Committee, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Atieh Yaghoubi
- Antimicrobial Resistance Research Center, Bu-Ali Research Institute, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Microbiology and Virology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Majid Khazaei
- Department of Physiology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
36
|
Abstract
OBJECTIVE Colon cancer is a great health concern worldwide, as it is the second leading cause of cancer-related death. Conventional treatment of cancer such as surgery, radiotherapy, and chemotherapy are faced with limitations and side effects. Therefore, strategies for the treatment of cancer need to be modified or new strategies replacing the old one. AIMS The aim of this study is to review the role of bacteria or their products (such as peptides, bacteriocins, and toxins) as a therapeutic agent for colon cancer. RESULTS AND CONCLUSION Recently, the therapeutic role of bacteria and their products in colon cancer treatment holds promise as emerging novel anti-cancer agents. Unlike the conventional treatments, targeted therapy based on the use of bacteria that are able to directly target tumor cells without affecting normal cells is evolving as an alternative strategy. Moreover, several bacterial species were used in live, attenuated or genetically modified that are able to multiply selectively in tumors and inhibiting their growth.
Collapse
|
37
|
Nakashima C, Yamamoto K, Kishi S, Sasaki T, Ohmori H, Fujiwara-Tani R, Mori S, Kawahara I, Nishiguchi Y, Mori T, Kondoh M, Luo Y, Kirita T, Kuniyasu H. Clostridium perfringens enterotoxin induces claudin-4 to activate YAP in oral squamous cell carcinomas. Oncotarget 2020; 11:309-321. [PMID: 32064037 PMCID: PMC6996904 DOI: 10.18632/oncotarget.27424] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2019] [Accepted: 12/21/2019] [Indexed: 12/12/2022] Open
Abstract
Claudin (CLDN)-4 expression has been associated with malignancy in various cancers. When CLDN4 expression was examined in oral squamous cell carcinoma (OSCC), 22 out of 57 (39%) cases showed immunoreactivity in the nucleus. Nuclear CLDN4-positive cases showed a stronger correlation with cancer progression than the negative cases. Intratumoral anaerobic bacterial DNA examination revealed nuclear CLDN4 expression in 81% of Clostridium perfringens-positive cases. Treatment of human oral squamous cell carcinoma cell lines HSC3 and HSC4 with Clostridium perfringens enterotoxin (CPE), induced CLDN4 nuclear translocation to enhance epithelial-mesenchymal transition (EMT), stemness, cell proliferation and invasive ability. In addition, CPE treatment suppressed phosphorylation of yes-associated protein-1 (YAP1) and promoted YAP1 nuclear translocation, resulting in increased expression of YAP1 target genes; cyclin D1 and connective tissue growth factor. Moreover, it was revealed that the complex of YAP1, CLDN4 and zona occludens-2 (ZO-2) was formed by CPE treatment, further suppressing YAP1 phosphorylation by LATS1 and activating it. Thus YAP activation in OSCC was regarded important in promoting malignant phenotypes. Our research suggested that the control of oral anaerobic bacteria may suppress YAP activation and in turn tumor progression.
Collapse
Affiliation(s)
- Chie Nakashima
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan.,Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Kazuhiko Yamamoto
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Shingo Kishi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takamitsu Sasaki
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Hitoshi Ohmori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Rina Fujiwara-Tani
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Shiori Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Isao Kawahara
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Yukiko Nishiguchi
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Takuya Mori
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| | - Masuo Kondoh
- Drug Innovation Center, Graduate School of Pharmaceutical Sciences, Osaka University, Suita, Osaka 565-0871, Japan
| | - Yi Luo
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-Innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province 226001, China
| | - Tadaaki Kirita
- Department of Oral and Maxillofacial Surgery, Nara Medical University, Kashihara, Nara 634-8522, Japan
| | - Hiroki Kuniyasu
- Department of Molecular Pathology, Nara Medical University, Kashihara, Nara 634-8521, Japan
| |
Collapse
|
38
|
Piontek A, Eichner M, Zwanziger D, Beier L, Protze J, Walther W, Theurer S, Schmid KW, Führer‐Sakel D, Piontek J, Krause G. Targeting claudin-overexpressing thyroid and lung cancer by modified Clostridium perfringens enterotoxin. Mol Oncol 2020; 14:261-276. [PMID: 31825142 PMCID: PMC6998413 DOI: 10.1002/1878-0261.12615] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/22/2019] [Accepted: 12/09/2019] [Indexed: 01/04/2023] Open
Abstract
Clostridium perfringens enterotoxin (CPE) can be used to eliminate carcinoma cells that overexpress on their cell surface CPE receptors - a subset of claudins (e.g., Cldn3 and Cldn4). However, CPE cannot target tumors expressing solely CPE-insensitive claudins (such as Cldn1 and Cldn5). To overcome this limitation, structure-guided modifications were used to generate CPE variants that can strongly bind to Cldn1, Cldn2 and/or Cldn5, while maintaining the ability to bind Cldn3 and Cldn4. This enabled (a) targeting of the most frequent endocrine malignancy, namely, Cldn1-overexpressing thyroid cancer, and (b) improved targeting of the most common cancer type worldwide, non-small-cell lung cancer (NSCLC), which is characterized by high expression of several claudins, including Cldn1 and Cldn5. Different CPE variants, including the novel mutant CPE-Mut3 (S231R/S313H), were applied on thyroid cancer (K1 cells) and NSCLC (PC-9 cells) models. In vitro, CPE-Mut3, but not CPEwt, showed Cldn1-dependent binding and cytotoxicity toward K1 cells. For PC-9 cells, CPE-Mut3 improved claudin-dependent cytotoxic targeting, when compared to CPEwt. In vivo, intratumoral injection of CPE-Mut3 in xenograft models bearing K1 or PC-9 tumors induced necrosis and reduced the growth of both tumor types. Thus, directed modification of CPE enables eradication of tumor entities that cannot be targeted by CPEwt, for instance, Cldn1-overexpressing thyroid cancer by using the novel CPE-Mut3.
Collapse
Affiliation(s)
- Anna Piontek
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Miriam Eichner
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Denise Zwanziger
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Laura‐Sophie Beier
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Jonas Protze
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| | - Wolfgang Walther
- Experimental and Clinical Research CenterCharitè and Max‐Delbrück‐Center for Molecular MedicineBerlinGermany
| | - Sarah Theurer
- Institute of PathologyUniversity Hospital EssenGermany
| | | | - Dagmar Führer‐Sakel
- Department of Endocrinology, Diabetes and Metabolism and Clinical Chemistry – Division of Laboratory ResearchUniversity Hospital EssenGermany
| | - Jörg Piontek
- Institute of Clinical Physiology / Nutritional Medicine, Medical DepartmentDivision of Gastroenterology, Infectiology, Rheumatology, Charitè – Universitätsmedizin BerlinGermany
| | - Gerd Krause
- Leibniz‐Forschungsinstitut für Molekulare Pharmakologie (FMP)BerlinGermany
| |
Collapse
|
39
|
Role of Claudin Proteins in Regulating Cancer Stem Cells and Chemoresistance-Potential Implication in Disease Prognosis and Therapy. Int J Mol Sci 2019; 21:ijms21010053. [PMID: 31861759 PMCID: PMC6982342 DOI: 10.3390/ijms21010053] [Citation(s) in RCA: 46] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Revised: 12/11/2019] [Accepted: 12/13/2019] [Indexed: 12/11/2022] Open
Abstract
Claudins are cell–cell adhesion proteins, which are expressed in tight junctions (TJs), the most common apical cell-cell adhesion. Claudin proteins help to regulate defense and barrier functions, as well as differentiation and polarity in epithelial and endothelial cells. A series of studies have now reported dysregulation of claudin proteins in cancers. However, the precise mechanisms are still not well understood. Nonetheless, studies have clearly demonstrated a causal role of multiple claudins in the regulation of epithelial to mesenchymal transition (EMT), a key feature in the acquisition of a cancer stem cell phenotype in cancer cells. In addition, claudin proteins are known to modulate therapy resistance in cancer cells, a feature associated with cancer stem cells. In this review, we have focused primarily on highlighting the causal link between claudins, cancer stem cells, and therapy resistance. We have also contemplated the significance of claudins as novel targets in improving the efficacy of cancer therapy. Overall, this review provides a much-needed understanding of the emerging role of claudin proteins in cancer malignancy and therapeutic management.
Collapse
|
40
|
Abedi S, Doosti A, Jami MS. Evaluation of the preventive and therapeutic effects of a recombinant vector co-expressing prostate-specific stem cell antigen and Clostridium perfringens enterotoxin on prostate cancer in rats. Biotechnol Prog 2019; 36:e2906. [PMID: 31513734 DOI: 10.1002/btpr.2906] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2019] [Revised: 08/23/2019] [Accepted: 09/09/2019] [Indexed: 12/21/2022]
Abstract
The effects of Clostridium perfringens enterotoxin (CPE) and prostate stem cell antigen (PSCA) on cancer prevention or treatment have been previously studied separately. For the first time, here we have elaborated a recombinant vector to co-express and study the cumulative effects of both of these factors on prostate cancer (PCa) in an animal model. The recombinant pBudCE4.1-cpe-PSCA vector was constructed in large scale. Rats were vaccinated by vector or vector plus chitosan nanoparticles before or after induction of PCa (preventive or therapeutic studies) by N-methyl N-nitrosurea and testosterone. Prostate tumors were weighed and histologically examined. Tumors and infusion site tissues as well as blood samples of all rats were collected and assessed by serological and molecular tests. We showed that vaccination with vector (along with or without nanoparticles) led to lower PCa incidence and tumor weight. The L-1β, IL6, and TNF-α serum levels and their gene expression accompanied by C-CAM1 gene expression in vaccinated groups were significantly higher than controls while no difference was seen in CK20 expression among all groups. Our findings showed that vector could effectively stimulate the immune system of rats to either prevent or suppress the PCa tumors. Adding chitosan nanoparticles did not affect the results significantly.
Collapse
Affiliation(s)
- Saied Abedi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad-Saied Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran.,Department Neurology, David Geffen School of Medicine, University of California, Los Angeles, California
| |
Collapse
|
41
|
The role of bacterial toxins and spores in cancer therapy. Life Sci 2019; 235:116839. [PMID: 31499068 DOI: 10.1016/j.lfs.2019.116839] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Revised: 08/21/2019] [Accepted: 09/04/2019] [Indexed: 12/16/2022]
Abstract
Cancer is one of the leading causes of human death worldwide. Conventional anticancer therapies are ineffective in treating cancer patients due to various reasons. Thus, more effective and accessible alternative anticancer strategies have been evolved with time with high specificity towards tumor cells and with less or no adverse effects to normal cells. One such promising therapy is the use of bacterial toxins and spores to treat advanced solid tumors. Initially, Coley paved the way towards the bacterial anticancer therapy several decades ago and now it has emerged as a potential tool to eliminate tumor cells. Bacterial spores of obligate anaerobes exclusively germinate in the hypoxic/necrotic areas and not in the well-oxygenated areas of the body. This unique phenomenon has been exploited in using bacterial spores as a remedy for cancer. Bacterial toxins also play a significant role in either directly killing tumor cells or altering the cellular processes of the tumor cells which ultimately leads to the inhibition and regression of the solid tumor. With the advancement of molecular techniques, a number of genetically-modified non-pathogenic bacteria have been developed to use in bacterial anticancer strategies. Although promising results have shown so far, further investigations are required to ensure the efficacy and the safety of the bacterial spores and toxins in treating cancer.
Collapse
|
42
|
Abedi S, Doosti A, Jami MS. Impacts of the prostate stem cell antigen (PSCA) andClostridium perfringensenterotoxin (CPE) on the apoptosis and cell cycle regulatory genes in PC3. Prep Biochem Biotechnol 2019; 50:47-55. [DOI: 10.1080/10826068.2019.1660892] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Saied Abedi
- Department of Biology, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Abbas Doosti
- Biotechnology Research Center, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
| | - Mohammad-Saied Jami
- Cellular and Molecular Research Center, Basic Health Sciences Institute, Shahrekord University of Medical Sciences, Shahrekord, Iran
- Department Neurology, David Geffen School of Medicine, Los Angeles, CA, USA
| |
Collapse
|
43
|
Jiménez-Martínez Y, Griñán-Lisón C, Khaldy H, Martín A, Cambrils A, Ibáñez Grau A, Jiménez G, Marchal JA, Boulaiz H. LdrB Toxin with In Vitro and In Vivo Antitumor Activity as a Potential Tool for Cancer Gene Therapy. Cancers (Basel) 2019; 11:cancers11071016. [PMID: 31330822 PMCID: PMC6678987 DOI: 10.3390/cancers11071016] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Revised: 07/16/2019] [Accepted: 07/18/2019] [Indexed: 01/03/2023] Open
Abstract
Due to the high prevalence of cancer in recent years, it is necessary to develop new and more effective therapies that produce fewer side effects. Development of gene therapy for cancer based on the use of suicide genes that can damage the tumor cell, without requiring a prodrug for its lethal effect, is one of the recent foci of gene therapy strategies. We evaluated the cytotoxic impact of the LdrB toxin from Escherichia coli k12 as a possible tool for cancer gene therapy. For that, colorectal and breast cancer cells were transfected under the control of a TRE3G promoter inducible by doxycycline. Our results showed that ldrB gene expression induced a drastic inhibition of proliferation in vitro, in both 2D and 3D experimental models. Moreover, unlike conventional chemotherapy, the ldrB gene induced a severe loss of proliferation in vivo without any side effects in our animal model. This antitumor outcome was modulated by cell cycle arrest in the G0/G1 phase and apoptotic death. Scanning electronic microscopy demonstrates that the LdrB toxin conserves its pore-forming ability in HCT-116 cells as in E. coli k12. Taken together, our results provide, for the first time, a proof of concept of the antitumor capacity of the ldrB gene in colorectal and breast cancer.
Collapse
Affiliation(s)
- Yaiza Jiménez-Martínez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
| | - Carmen Griñán-Lisón
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Hoda Khaldy
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain
| | - Ana Martín
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Alba Cambrils
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Andrea Ibáñez Grau
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
| | - Gema Jiménez
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
| | - Juan A Marchal
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain
| | - Houria Boulaiz
- Biopathology and Regenerative Medicine Institute (IBIMER), Centre for Biomedical Research, University of Granada, E-18100 Granada, Spain.
- Department of Human Anatomy and Embryology, Faculty of Medicine, University of Granada, E-18012 Granada, Spain.
- Instituto de Investigación Biosanitaria ibs.GRANADA, University Hospitals of Granada-University of Granada, 18012 Granada, Spain.
- Research Unit "Modeling Nature" (MNat), University of Granada, 18016 Granada, Spain.
- Fundamental Biology Service, Scientific Instrument Center, University of Granada, 18071 Granada, Spain.
| |
Collapse
|
44
|
Lin G, Li L, Panwar N, Wang J, Tjin SC, Wang X, Yong KT. Non-viral gene therapy using multifunctional nanoparticles: Status, challenges, and opportunities. Coord Chem Rev 2018. [DOI: 10.1016/j.ccr.2018.07.001] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
45
|
Functionalization of gold-nanoparticles by the Clostridium perfringens enterotoxin C-terminus for tumor cell ablation using the gold nanoparticle-mediated laser perforation technique. Sci Rep 2018; 8:14963. [PMID: 30297847 PMCID: PMC6175838 DOI: 10.1038/s41598-018-33392-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2018] [Accepted: 09/27/2018] [Indexed: 12/12/2022] Open
Abstract
A recombinant produced C-terminus of the C. perfringens enterotoxin (C-CPE) was conjugated to gold nanoparticles (AuNPs) to produce a C-CPE-AuNP complex (C-CPE-AuNP). By binding to claudins, the C- CPE should allow to target the AuNPs onto the claudin expressing tumor cells for a subsequent cell killing by application of the gold nanoparticle-mediated laser perforation (GNOME-LP) technique. Using qPCR and immunocytochemistry, we identified the human Caco-2, MCF-7 and OE-33 as well as the canine TiHoDMglCarc1305 as tumor cells expressing claudin-3, -4 and -7. Transepithelial electrical resistance (TEER) measurements of Caco-2 cell monolayer showed that the recombinant C-CPE bound to the claudins. GNOME-LP at a laser fluence of 60 mJ/cm2 and a scanning speed of 0.5 cm/s specifically eliminated more than 75% of claudin expressing human and canine cells treated with C-CPE-AuNP. The same laser fluence did not affect the cells when non-functionalized AuNPs were used. Furthermore, most of the claudin non-expressing cells treated with C-CPE-AuNP were not killed by GNOME-LP. Additionally, application of C-CPE-AuNP to spheroids formed by MCF-7 and OE-33 cells grown in Matrigel reduced spheroid area. The results demonstrate that specific ablation of claudin expressing tumor cells is efficiently increased by activated C-CPE functionalized AuNPs using optical methods.
Collapse
|
46
|
Mushtaq S, Abbasi BH, Uzair B, Abbasi R. Natural products as reservoirs of novel therapeutic agents. EXCLI JOURNAL 2018; 17:420-451. [PMID: 29805348 PMCID: PMC5962900 DOI: 10.17179/excli2018-1174] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/04/2018] [Accepted: 04/13/2018] [Indexed: 12/16/2022]
Abstract
Since ancient times, natural products from plants, animals, microbial and marine sources have been exploited for treatment of several diseases. The knowledge of our ancestors is the base of modern drug discovery process. However, due to the presence of extensive biodiversity in natural sources, the percentage of secondary metabolites screened for bioactivity is low. This review aims to provide a brief overview of historically significant natural therapeutic agents along with some current potential drug candidates. It will also provide an insight into pros and cons of natural product discovery and how development of recent approaches has answered the challenges associated with it.
Collapse
Affiliation(s)
- Sadaf Mushtaq
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan
| | - Bilal Haider Abbasi
- Department of Biotechnology, Faculty of Biological Sciences, Quaid-i-Azam University Islamabad-45320, Pakistan.,EA2106 Biomolécules et Biotechnologies Végétales, Université de Tours, 37200 Tours, France
| | - Bushra Uzair
- Department of Bioinformatics & Biotechnology, Faculty of Basic & Applied Sciences, International Islamic University, Sector H-8, Islamabad, Pakistan
| | - Rashda Abbasi
- Institute of Biomedical & Genetic Engineering (IBGE), Sector G-9/1, Islamabad, Pakistan
| |
Collapse
|
47
|
Zitvogel L, Ma Y, Raoult D, Kroemer G, Gajewski TF. The microbiome in cancer immunotherapy: Diagnostic tools and therapeutic strategies. Science 2018; 359:1366-1370. [PMID: 29567708 DOI: 10.1126/science.aar6918] [Citation(s) in RCA: 476] [Impact Index Per Article: 68.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The fine line between human health and disease can be driven by the interplay between host and microbial factors. This "metagenome" regulates cancer initiation, progression, and response to therapies. Besides the capacity of distinct microbial species to modulate the pharmacodynamics of chemotherapeutic drugs, symbiosis between epithelial barriers and their microbial ecosystems has a major impact on the local and distant immune system, markedly influencing clinical outcome in cancer patients. Efficacy of cancer immunotherapy with immune checkpoint antibodies can be diminished with administration of antibiotics, and superior efficacy is observed with the presence of specific gut microbes. Future strategies of precision medicine will likely rely on novel diagnostic and therapeutic tools with which to identify and correct defects in the microbiome that compromise therapeutic efficacy.
Collapse
Affiliation(s)
- Laurence Zitvogel
- Gustave Roussy Cancer Campus (GRCC), Equipe Labellisée-Ligue Nationale contre le Cancer, Villejuif, France. .,Institut National de la Santé et de la Recherche Medicale (INSERM) U1015, Villejuif, France.,Université Paris-Sud, Université Paris-Saclay, Gustave Roussy, Villejuif, France.,Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
| | - Yuting Ma
- Center for Systems Medicine, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, 100005 Beijing, China.,Suzhou Institute of Systems Medicine, Suzhou, Jiangsu 215123, China
| | - Didier Raoult
- Unité de Recherche sur les Maladies Infectieuses et Tropicales Emergentes, Aix Marseille Université, UM63, CNRS 7278, IRD 198, INSERM 1095, Institut Hospitalo-Universitaire (IHU)-Méditerranée Infection, 19-21 Boulevard Jean Moulin, 13005 Marseille
| | - Guido Kroemer
- Centre de Recherche des Cordeliers, Université Paris Descartes, Sorbonne Paris Cité, Université Pierre et Marie Curie, Paris, France.,Metabolomics and Cell Biology Platforms, GRCC, Villejuif, France.,Equipe 11 Labellisée-Ligue Nationale Contre le Cancer, UMRS 1138, Paris, France
| | - Thomas F Gajewski
- Department of Pathology, Department of Medicine, and the Ben May Department of Cancer, University of Chicago, Chicago, IL 60615, USA.
| |
Collapse
|