1
|
Wu P, Sawaki S, Yamauchi K, Yokota K, Hakamada M, Mabuchi M. Long range juxtacrine signalling through cadherin for collective cell orientation. Acta Biomater 2024:S1742-7061(24)00627-5. [PMID: 39454932 DOI: 10.1016/j.actbio.2024.10.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 10/28/2024]
Abstract
Many life phenomena, such as development, morphogenesis, tissue remodelling, and wound healing, are often driven by orderly and directional migration of collective cells. However, when cells are randomly oriented or localized disorder exists in orderly oriented collective cells, cell migration cannot occur in an orderly manner although various motion modes such as global rotation and local swirling and/or various motion patterns such as radial pattern and chiral pattern often occur. Therefore, it is important to control cell orientation to ensure the orderly migration of collective cells. Here, we show that it is not force transmission, but juxtacrine signalling through cadherin that plays a critical role in the orientation of collective cells. Surprisingly, juxtacrine signalling for cell orientation reached cells on a plastic dish that were not directly subjected to mechanical stimulation, up to 7 mm away from the actuator. The present study suggests that even weak mechanical stimulation is transmitted in a long range without force transmission through juxtacrine signalling. The long range juxtacrine signalling might play an important role in various life phenomena. STATEMENT OF SIGNIFICANCE: Juxtacrine signalling is direct cell-cell contact-dependent signalling, which plays a crucial role in cell behaviors such as mechanosensing, mechanotransduction and collective cell behaviors, however, there is not enough understanding about juxtacrine signalling. The present study has demonstrated that juxtacrine signalling for collective cell orientation is transmitted over a long range through cadherin. To the best of our knowledge, this is the first report of long range juxtacrine signalling. This finding may lead to the elucidation of various life phenomena such as development, morphogenesis, tissue remodelling, and wound healing.
Collapse
Affiliation(s)
- Peizheng Wu
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan.
| | - Shogo Sawaki
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Kei Yamauchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Kazuki Yokota
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Masataka Hakamada
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| | - Mamoru Mabuchi
- Graduate School of Energy Science, Kyoto University, Yoshidahonmachi, Sakyo, Kyoto 606-8501, Japan
| |
Collapse
|
2
|
Doppelt-Flikshtain O, Asbi T, Younis A, Ginesin O, Cohen Z, Tamari T, Berg T, Yanovich C, Aran D, Zohar Y, Assaraf YG, Zigdon-Giladi H. Inhibition of osteosarcoma metastasis in vivo by targeted downregulation of MMP1 and MMP9. Matrix Biol 2024:S0945-053X(24)00120-3. [PMID: 39278602 DOI: 10.1016/j.matbio.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 09/08/2024] [Accepted: 09/12/2024] [Indexed: 09/18/2024]
Abstract
Osteosarcoma (OS) mortality stems from lung metastases. Matrix metalloproteinases (MMPs) facilitate metastatic dissemination by degrading extracellular matrix components. Herein we studied the impact of targeted MMP downregulation on OS metastasis. Differential gene expression analysis of human OS cell lines revealed high MMP9 expression in the majority of OS cell lines. Furthermore, 143B, a metastatic OS cell line, exhibited increased MMP1 and MMP9 mRNA levels. Gene set enrichment analysis on metastatic and non-metastatic OS patient specimens indicated epithelial-mesenchymal transition as the most enriched gene set, with MMP9 displaying strong association to genes in this network. Using the same dataset, Kaplan-Meier analysis revealed a correlation between MMP1 expression and dismal patient survival. Hence, we undertook targeted suppression of MMP1 and MMP9 gene expression in OS cell lines. The ability of OS cells to migrate and form colonies was markedly reduced upon MMP1 and MMP9 downregulation, whereas their cell proliferation capacity remained intact. MMP9 downregulation decreased tumor growth and lung metastases area in an orthotopic mouse OS model. Consistently, human OS lung metastasis specimens displayed marked MMP9 protein expression. Our findings highlight the role of MMP1 and MMP9 in OS metastasis, warranting further exploration of simultaneous inhibition of MMPs for future OS therapeutics.
Collapse
Affiliation(s)
- Ofri Doppelt-Flikshtain
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Thabet Asbi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Amin Younis
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ofir Ginesin
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel
| | - Ziv Cohen
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Tal Tamari
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Tal Berg
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel
| | - Chen Yanovich
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Dvir Aran
- Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Yaniv Zohar
- Department of Pathology, Rambam Health Care Campus, Haifa, Israel
| | - Yehuda G Assaraf
- The Fred Wyszkowski Cancer Research Laboratory, Faculty of Biology, Technion-Israel Institute of Technology, Haifa, Israel
| | - Hadar Zigdon-Giladi
- Laboratory for Bone Repair, Rambam Health Care Campus, Haifa, Israel; The Ruth and Bruce Rappaport Faculty of Medicine, Haifa, Israel; Department of Periodontology, School of Graduate Dentistry, Rambam Health Care Campus, Haifa, Israel.
| |
Collapse
|
3
|
Baidya SK, Banerjee S, Ghosh B, Jha T, Adhikari N. Pinpointing prime structural attributes of potential MMP-2 inhibitors comprising alkyl/arylsulfonyl pyrrolidine scaffold: a ligand-based molecular modelling approach validated by molecular dynamics simulation analysis. SAR AND QSAR IN ENVIRONMENTAL RESEARCH 2024; 35:665-692. [PMID: 39193767 DOI: 10.1080/1062936x.2024.2389822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Accepted: 08/02/2024] [Indexed: 08/29/2024]
Abstract
MMP-2 overexpression is strongly related to several diseases including cancer. However, none of the MMP-2 inhibitors have been marketed as drug candidates due to various adverse effects. Here, a set of sulphonyl pyrrolidines was subjected to validation of molecular modelling followed by binding mode analysis to explore the crucial structural features required for the discovery of promising MMP-2 inhibitors. This study revealed the importance of hydroxamate as a potential zinc-binding group compared to the esters. Importantly, hydrophobic and sterical substituents were found favourable at the terminal aryl moiety attached to the sulphonyl group. The binding interaction study revealed that the S1' pocket of MMP-2 similar to 'a basketball passing through a hoop' allows the aryl moiety for proper fitting and interaction at the active site to execute potential MMP-2 inhibition. Again, the sulphonyl pyrrolidine moiety can be a good fragment necessary for MMP-2 inhibition. Moreover, some novel MMP-2 inhibitors were also reported. They showed the significance of the 3rd position substitution of the pyrrolidine ring to produce interaction inside S2' pocket. The current study can assist in the design and development of potential MMP-2 inhibitors as effective drug candidates for the management of several diseases including cancers in the future.
Collapse
Affiliation(s)
- S K Baidya
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - S Banerjee
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - B Ghosh
- Epigenetic Research Laboratory, Department of Pharmacy, Birla Institute of Technology and Science-Pilani, Hyderabad, India
| | - T Jha
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| | - N Adhikari
- Natural Science Laboratory, Division of Medicinal and Pharmaceutical Chemistry, Department of Pharmaceutical Technology, Jadavpur University, Kolkata, India
| |
Collapse
|
4
|
Pareek A, Kumar D, Pareek A, Gupta MM, Jeandet P, Ratan Y, Jain V, Kamal MA, Saboor M, Ashraf GM, Chuturgoon A. Retinoblastoma: An update on genetic origin, classification, conventional to next-generation treatment strategies. Heliyon 2024; 10:e32844. [PMID: 38975183 PMCID: PMC11226919 DOI: 10.1016/j.heliyon.2024.e32844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 05/23/2024] [Accepted: 06/10/2024] [Indexed: 07/09/2024] Open
Abstract
The most prevalent paediatric vision-threatening medical condition, retinoblastoma (RB), has been a global concern for a long time. Several conventional therapies, such as systemic chemotherapy and focal therapy, have been used for curative purposes; however, the search for tumour eradication with the least impact on surrounding tissues is still ongoing. This review focuses on the genetic origin, classification, conventional treatment modalities, and their combination with nano-scale delivery systems for active tumour targeting. In addition, the review also delves into ongoing clinical trials and patents, as well as emerging therapies such as gene therapy and immunotherapy for the treatment of RB. Understanding the role of genetics in the development of RB has refined its treatment strategy according to the genetic type. New approaches such as nanostructured drug delivery systems, galenic preparations, nutlin-3a, histone deacetylase inhibitors, N-MYC inhibitors, pentoxifylline, immunotherapy, gene therapy, etc. discussed in this review, have the potential to circumvent the limitations of conventional therapies and improve treatment outcomes for RB. In summary, this review highlights the importance and need for novel approaches as alternative therapies that would ultimately displace the shortcomings associated with conventional therapies and reduce the enucleation rate, thereby preserving global vision in the affected paediatric population.
Collapse
Affiliation(s)
- Ashutosh Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Deepanjali Kumar
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Aaushi Pareek
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Madan Mohan Gupta
- School of Pharmacy, Faculty of Medical Sciences, The University of the West Indies, St. Augustine 3303, Trinidad and Tobago
| | - Philippe Jeandet
- Research Unit Induced Resistance and Plant Bioprotection - USC INRAe 1488, University of Reims, PO Box 1039, 51687, Reims, France
| | - Yashumati Ratan
- Department of Pharmacy, Banasthali Vidyapith, Banasthali, 304022, Rajasthan, India
| | - Vivek Jain
- Department of Pharmaceutical Sciences, Mohan Lal Sukhadia University, Udaipur, 313001, India
| | - Mohammad Amjad Kamal
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, West China School of Nursing, Frontiers Science Centre for Disease-related Molecular Network, West China Hospital, Sichuan University, China
- King Fahd Medical Research Centre, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
- Department of Pharmacy, Faculty of Allied Health Sciences, Daffodil International University, Dhaka, 1207, Bangladesh
- Enzymoics, Novel Global Community Educational Foundation, 7 Peterlee Place, Hebersham, NSW, 2770, Australia
| | - Muhammad Saboor
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Ghulam Md Ashraf
- Department of Medical Laboratory Science, College of Health Sciences, and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, 27272, United Arab Emirates
| | - Anil Chuturgoon
- Discipline of Medical Biochemistry, School of Laboratory Medicine and Medical Sciences, University of KwaZulu-Natal, Durban, 4041, South Africa
| |
Collapse
|
5
|
Ibraheem Q. The Role of Matrix Metalloproteinase-2 (MMP2) in Colorectal Cancer Progression: Correlation With Clinicopathological Features and Impact on Cellular Processes. Cureus 2024; 16:e61941. [PMID: 38978899 PMCID: PMC11229389 DOI: 10.7759/cureus.61941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/07/2024] [Indexed: 07/10/2024] Open
Abstract
Background Colorectal cancer (CRC) is a prevalent and deadly disease characterized by significant molecular complexity. Matrix metalloproteinase-2 (MMP2) has been implicated in cancer progression due to its role in extracellular matrix degradation, yet comprehensive studies linking MMP2 expression to CRC progression and its molecular mechanisms remain needed. Methodology This study involved 90 CRC patients, with tumor and adjacent normal tissues analyzed via immunohistochemistry (IHC) to assess MMP2 expression. The human CRC cell line SW480 was treated with an MMP2 inhibitor, ARP100, and evaluated for changes in cell migration, invasion, proliferation, and apoptosis using various assays, including MTT, wound-healing, transwell, caspase activity, and western blot analysis. Results High MMP2 expression was significantly associated with advanced tumor stages, lymph node involvement, and metastasis in CRC patients. Compared to normal tissues, MMP2 expression was markedly higher in cancerous tissues. Inhibition of MMP2 in SW480 cells resulted in reduced migration, invasion, and proliferation, and induced apoptosis, evidenced by increased caspase 3 and 9 activities and higher levels of cleaved caspase proteins. Conclusion Elevated MMP2 expression is correlated with advanced CRC and aggressive tumor characteristics. MMP2 inhibition can suppress CRC cell invasiveness, migration, and proliferation while promoting apoptosis, suggesting its potential as a therapeutic target in CRC treatment.
Collapse
Affiliation(s)
- Qais Ibraheem
- Department of Anatomy, Biology and Histology, College of Medicine, University of Duhok, Duhok, IRQ
| |
Collapse
|
6
|
Jia Q, Wang X, Li X, Xie C, Zhang Q, Mu J, Yang W. Analysis of research hotspots and trends in pediatric ophthalmopathy based on 10 years of WoSCC literature. Front Pediatr 2024; 12:1405110. [PMID: 38873588 PMCID: PMC11171143 DOI: 10.3389/fped.2024.1405110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 05/20/2024] [Indexed: 06/15/2024] Open
Abstract
Background Ophthalmopathy occurring in childhood can easily lead to irreversible visual impairment, and therefore a great deal of clinical and fundamental researches have been conducted in pediatric ophthalmopathy. However, a few studies have been performed to analyze such large amounts of research using bibliometric methods. This study intended to apply bibliometric methods to analyze the research hotspots and trends in pediatric ophthalmopathy, providing a basis for clinical practice and scientific research to improve children's eye health. Methods Publications related to pediatric ophthalmopathy were searched and identified in the Web of Science Core Collection (WoSCC) database. Bibliometric and visualized analysis was performed using the WoSCC analysis system and CiteSpace.6.2.6 software, and high-impact publications were analyzed. Results This study included a total of 7,177 publications from 162 countries and regions. Of these, 2,269 from the United States and 1,298 from China. The centrality and H-index were highest in the United States at 0.27 and 66, respectively. The University of London and Harvard University had the highest H-index at 37. Freedman,Sharon F published 55 publications, with the highest H-index at 19. The emerging burst keyword in 2020-2023 was "eye tracking," and the burst keywords in 2021-2023 were "choroidal thickness," "pediatric ophthalmology," "impact" and "childhood glaucoma." Retinopathy of prematurity, myopia, retinoblastoma and uveitis in juvenile idiopathic arthritis were the main topics in the high-impact publications, with clinical studies in the majority, especially in retinopathy of prematurity. Conclusion Eye health in children is a research hotspot, with the United States publishing the largest number of papers and having the greatest influence in research on pediatric ophthalmopathy, and China coming in second. The University of London and Stanford University had the greatest influence. Freedman, Sharon F was the most influential author. Furthermore, "choroidal thickness," "pediatric ophthalmology," "impact," "childhood glaucoma" and "eye tracking"are the latest hotspots in the field of pediatric ophthalmopathy. These hotspots represent hot diseases, hot technologies and holistic concepts, which are exactly the research trends in the field of pediatric ophthalmopathy, providing guidance and grounds for clinical practice and scientific research on children's eye health.
Collapse
Affiliation(s)
- Qianfang Jia
- Department of Children Rehabilitation, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
- Xinxiang Autism Integration Education Engineering Technology Research Center, Xinxiang, China
| | - Xiaofang Wang
- Hebei University of Chinese Medicine, Shijiazhuang, China
| | - Xiwan Li
- Department of Children Rehabilitation, First Affiliated Hospital of Xinxiang Medical University, Xinxiang, China
| | - Cuijuan Xie
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Qing Zhang
- The Third Affiliated Hospital of Xinxiang Medical University, Xinxiang Medical University, Xinxiang, China
| | - Jingfeng Mu
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| | - Weihua Yang
- Shenzhen Eye Institute, Shenzhen Eye Hospital, Jinan University, Shenzhen, China
| |
Collapse
|
7
|
Wu D, Chan KE, Lim BXH, Lim DKA, Wong WM, Chai C, Manotosh R, Lim CHL. Management of corneal neovascularization: Current and emerging therapeutic approaches. Indian J Ophthalmol 2024; 72:S354-S371. [PMID: 38648452 PMCID: PMC467007 DOI: 10.4103/ijo.ijo_3043_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Revised: 12/16/2023] [Accepted: 12/25/2023] [Indexed: 04/25/2024] Open
Abstract
Corneal neovascularization (CoNV) is a sight-threatening condition affecting an estimated 1.4 million people per year, and the incidence is expected to rise. It is a complication of corneal pathological diseases such as infective keratitis, chemical burn, corneal limbal stem cell deficiency, mechanical trauma, and immunological rejection after keratoplasties. CoNV occurs due to a disequilibrium in proangiogenic and antiangiogenic mediators, involving a complex system of molecular interactions. Treatment of CoNV is challenging, and no therapy thus far has been curative. Anti-inflammatory agents such as corticosteroids are the mainstay of treatment due to their accessibility and well-studied safety profile. However, they have limited effectiveness and are unable to regress more mature neovascularization. With the advent of advanced imaging modalities and an expanding understanding of its pathogenesis, contemporary treatments targeting a wide array of molecular mechanisms and surgical options are gaining traction. This review aims to summarize evidence regarding conventional and emerging therapeutic options for CoNV.
Collapse
Affiliation(s)
- Duoduo Wu
- Department of Ophthalmology, National University Hospital, Singapore
| | - Kai En Chan
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Blanche Xiao Hong Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Dawn Ka-Ann Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Wendy Meihua Wong
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Charmaine Chai
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Ray Manotosh
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Chris Hong Long Lim
- Department of Ophthalmology, National University Hospital, Singapore
- Yong Loo Lin School of Medicine, National University of Singapore, Singapore
- School of Optometry and Vision Science, University of New South Wales, Sydney, Australia
- Singapore Eye Research Institute, Singapore
| |
Collapse
|
8
|
Xue P, Zheng J, Li R, Yan L, Wang Z, Jia Q, Zhang L, Li X. High Expression of KIFC1 in Glioma Correlates with Poor Prognosis. J Korean Neurosurg Soc 2024; 67:364-375. [PMID: 38720546 PMCID: PMC11079566 DOI: 10.3340/jkns.2023.0155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 09/06/2023] [Accepted: 10/19/2023] [Indexed: 05/12/2024] Open
Abstract
OBJECTIVE Kinesin family member C1 (KIFC1), a non-essential kinesin-like motor protein, has been found to serve a crucial role in supernumerary centrosome clustering and the progression of several human cancer types. However, the role of KIFC1 in glioma has been rarely reported. Thus, the present study aimed to investigate the role of KIFC1 in glioma progression. METHODS Online bioinformatics analysis was performed to determine the association between KIFC1 expression and clinical outcomes in glioma. Immunohistochemical staining was conducted to analyze the expression levels of KIFC1 in glioma and normal brain tissues. Furthermore, KIFC1 expression was knocked in the glioma cell lines, U251 and U87MG, and the functional roles of KIFC1 in cell proliferation, invasion and migration were analyzed using cell multiplication, wound healing and Transwell invasion assays, respectively. The autophagic flux and expression levels matrix metalloproteinase-2 (MMP2) were also determined using imaging flow cytometry, western blotting and a gelation zymography assay. RESULTS The results revealed that KIFC1 expression levels were significantly upregulated in glioma tissues compared with normal brain tissues, and the expression levels were positively associated with tumor grade. Patients with glioma with low KIFC1 expression levels had a more favorable prognosis compared with patients with high KIFC1 expression levels. In vitro, KIFC1 knockdown not only inhibited the proliferation, migration and invasion of glioma cells, but also increased the autophagic flux and downregulated the expression levels of MMP2. CONCLUSION Upregulation of KIFC1 expression may promote glioma progression and KIFC1 may serve as a potential prognostic biomarker and possible therapeutic target for glioma.
Collapse
Affiliation(s)
- Pengfei Xue
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Juan Zheng
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Rongrong Li
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Lili Yan
- Joint Laboratory for Translational Medicine Research, Liaocheng People's Hospital, Liaocheng, China
| | - Zhaohao Wang
- Department of Neurosurgery, Yantaishan Hospital Affiliated to Binzhou Medical University, Yantai, China
| | - Qingbin Jia
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Lianqun Zhang
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| | - Xin Li
- Department of Neurosurgery, Liaocheng People's Hospital, Liaocheng, China
| |
Collapse
|
9
|
Wen RM, Qiu Z, Marti GEW, Peterson EE, Marques FJG, Bermudez A, Wei Y, Nolley R, Lam N, Polasko AL, Chiu CL, Zhang D, Cho S, Karageorgos GM, McDonough E, Chadwick C, Ginty F, Jung KJ, Machiraju R, Mallick P, Crowley L, Pollack JR, Zhao H, Pitteri SJ, Brooks JD. AZGP1 deficiency promotes angiogenesis in prostate cancer. J Transl Med 2024; 22:383. [PMID: 38659028 PMCID: PMC11044612 DOI: 10.1186/s12967-024-05183-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 04/08/2024] [Indexed: 04/26/2024] Open
Abstract
BACKGROUND Loss of AZGP1 expression is a biomarker associated with progression to castration resistance, development of metastasis, and poor disease-specific survival in prostate cancer. However, high expression of AZGP1 cells in prostate cancer has been reported to increase proliferation and invasion. The exact role of AZGP1 in prostate cancer progression remains elusive. METHOD AZGP1 knockout and overexpressing prostate cancer cells were generated using a lentiviral system. The effects of AZGP1 under- or over-expression in prostate cancer cells were evaluated by in vitro cell proliferation, migration, and invasion assays. Heterozygous AZGP1± mice were obtained from European Mouse Mutant Archive (EMMA), and prostate tissues from homozygous knockout male mice were collected at 2, 6 and 10 months for histological analysis. In vivo xenografts generated from AZGP1 under- or over-expressing prostate cancer cells were used to determine the role of AZGP1 in prostate cancer tumor growth, and subsequent proteomics analysis was conducted to elucidate the mechanisms of AZGP1 action in prostate cancer progression. AZGP1 expression and microvessel density were measured in human prostate cancer samples on a tissue microarray of 215 independent patient samples. RESULT Neither the knockout nor overexpression of AZGP1 exhibited significant effects on prostate cancer cell proliferation, clonal growth, migration, or invasion in vitro. The prostates of AZGP1-/- mice initially appeared to have grossly normal morphology; however, we observed fibrosis in the periglandular stroma and higher blood vessel density in the mouse prostate by 6 months. In PC3 and DU145 mouse xenografts, over-expression of AZGP1 did not affect tumor growth. Instead, these tumors displayed decreased microvessel density compared to xenografts derived from PC3 and DU145 control cells, suggesting that AZGP1 functions to inhibit angiogenesis in prostate cancer. Proteomics profiling further indicated that, compared to control xenografts, AZGP1 overexpressing PC3 xenografts are enriched with angiogenesis pathway proteins, including YWHAZ, EPHA2, SERPINE1, and PDCD6, MMP9, GPX1, HSPB1, COL18A1, RNH1, and ANXA1. In vitro functional studies show that AZGP1 inhibits human umbilical vein endothelial cell proliferation, migration, tubular formation and branching. Additionally, tumor microarray analysis shows that AZGP1 expression is negatively correlated with blood vessel density in human prostate cancer tissues. CONCLUSION AZGP1 is a negative regulator of angiogenesis, such that loss of AZGP1 promotes angiogenesis in prostate cancer. AZGP1 likely exerts heterotypical effects on cells in the tumor microenvironment, such as stromal and endothelial cells. This study sheds light on the anti-angiogenic characteristics of AZGP1 in the prostate and provides a rationale to target AZGP1 to inhibit prostate cancer progression.
Collapse
Affiliation(s)
- Ru M Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| | - Zhengyuan Qiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - G Edward W Marti
- Department of Molecular and Cellular Physiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Eric E Peterson
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Fernando Jose Garcia Marques
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Abel Bermudez
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Yi Wei
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Rosalie Nolley
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Nathan Lam
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Alex LaPat Polasko
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sanghee Cho
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | | | | | - Chrystal Chadwick
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Fiona Ginty
- GE HealthCare Technology and Innovation Center, Niskayuna, NY, 12309, USA
| | - Kyeong Joo Jung
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Raghu Machiraju
- Department of Computer Science and Engineering, The Ohio State University, Columbus, OH, 43210, USA
| | - Parag Mallick
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Laura Crowley
- Department of Biochemistry, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Howard Hughes Medical Institute, Stanford University School of Medicine, Stanford, CA, USA
| | - Jonathan R Pollack
- Department of Pathology, Stanford University School of Medicine, Stanford, CA, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - Sharon J Pitteri
- Department of Radiology, Stanford University School of Medicine, Stanford, CA, 94305, USA
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA
| | - James D Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA, 94305, USA.
- Canary Center at Stanford for Cancer Early Detection, Stanford University School of Medicine, Stanford, CA, 94305, USA.
| |
Collapse
|
10
|
Baek JY, Kwak JE, Ahn MR. Eriocitrin Inhibits Angiogenesis by Targeting VEGFR2-Mediated PI3K/AKT/mTOR Signaling Pathways. Nutrients 2024; 16:1091. [PMID: 38613124 PMCID: PMC11013780 DOI: 10.3390/nu16071091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 04/02/2024] [Accepted: 04/07/2024] [Indexed: 04/14/2024] Open
Abstract
Eriocitrin, a flavanone found in peppermint and citrus fruits, is known to possess many physiological activities. However, the anti-angiogenic effects of eriocitrin are yet to be fully elucidated. Therefore, the objective of this research was to explore the anti-angiogenic effects of eriocitrin both in vitro and in vivo as well as its underlying mechanism. Anti-angiogenic effects of eriocitrin were evaluated utilizing in vitro models of angiogenesis, including inhibition of tube formation, and induction of apoptosis in human umbilical vein endothelial cells (HUVECs). A chorioallantoic membrane (CAM) assay in chick embryos was also performed to evaluate the in vivo effects of eriocitrin on angiogenesis. Results showed significant eriocitrin effects on proliferation, tube formation, migration, and apoptosis in HUVECs. Furthermore, in vivo analysis revealed that eriocitrin significantly suppressed the formation of new blood vessels. In particular, it regulated MAPK/ERK signaling pathway and VEGFR2, inhibited the downstream PI3K/AKT/mTOR signaling pathway, and activated apoptosis signals such as caspase cascades. In HUVECs, the expression of matrix metalloproteinases (MMP-2 and MMP-9) exhibited an inhibitory effect on angiogenesis through the suppression of the signaling pathway. Therefore, eriocitrin presents potential for development into an antiangiogenic therapeutic agent.
Collapse
Affiliation(s)
- Ji-Yoon Baek
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-Y.B.); (J.-E.K.)
| | - Jeong-Eun Kwak
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-Y.B.); (J.-E.K.)
| | - Mok-Ryeon Ahn
- Department of Health Sciences, The Graduate School of Dong-A University, Busan 49315, Republic of Korea; (J.-Y.B.); (J.-E.K.)
- Department of Food Science and Nutrition, College of Health Sciences, Dong-A University, Busan 49315, Republic of Korea
- Center for Food & Bio Innovation, Dong-A University, Busan 49315, Republic of Korea
| |
Collapse
|
11
|
Chi PL, Cheng CC, Wang MT, Liao JB, Kuo SH, Lin KC, Shen MC, Huang WC. Induced pluripotent stem cell-derived exosomes attenuate vascular remodelling in pulmonary arterial hypertension by targeting HIF-1α and Runx2. Cardiovasc Res 2024; 120:203-214. [PMID: 38252891 DOI: 10.1093/cvr/cvad185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Revised: 07/19/2023] [Accepted: 08/11/2023] [Indexed: 01/24/2024] Open
Abstract
AIMS Pulmonary arterial hypertension (PAH) is characterized by extensive pulmonary arterial remodelling. Although mesenchymal stem cell (MSC)-derived exosomes provide protective effects in PAH, MSCs exhibit limited senescence during in vitro expansion compared with the induced pluripotent stem cells (iPSCs). Moreover, the exact mechanism is not known. METHODS AND RESULTS In this study, we used murine iPSCs generated from mouse embryonic fibroblasts with triple factor (Oct4, Klf4, and Sox2) transduction to determine the efficacy and action mechanism of iPSC-derived exosomes (iPSC-Exo) in attenuating PAH in rats with monocrotaline (MCT)-induced pulmonary hypertension. Both early and late iPSC-Exo treatment effectively prevented the wall thickening and muscularization of pulmonary arterioles, improved the right ventricular systolic pressure, and alleviated the right ventricular hypertrophy in MCT-induced PAH rats. Pulmonary artery smooth muscle cells (PASMC) derived from MCT-treated rats (MCT-PASMC) developed more proliferative and pro-migratory phenotypes, which were attenuated by the iPSC-Exo treatment. Moreover, the proliferation and migration of MCT-PASMC were reduced by iPSC-Exo with suppression of PCNA, cyclin D1, MMP-1, and MMP-10, which are mediated via the HIF-1α and P21-activated kinase 1/AKT/Runx2 pathways. CONCLUSION IPSC-Exo are effective at reversing pulmonary hypertension by reducing pulmonary vascular remodelling and may provide an iPSC-free therapy for the treatment of PAH.
Collapse
Affiliation(s)
- Pei-Ling Chi
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Chin-Chang Cheng
- Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Mei-Tzu Wang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Shu-Hung Kuo
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kun-Chang Lin
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Min-Ci Shen
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Wei-Chun Huang
- Department of Critical Care Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Department of Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
- Department of Physical Therapy, Fooyin University, Kaohsiung, Taiwan
| |
Collapse
|
12
|
Raptania CN, Zakia S, Fahira AI, Amalia R. Article review: Brazilin as potential anticancer agent. Front Pharmacol 2024; 15:1355533. [PMID: 38515856 PMCID: PMC10955326 DOI: 10.3389/fphar.2024.1355533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Accepted: 02/14/2024] [Indexed: 03/23/2024] Open
Abstract
Brazilin is the main compound in Caesalpinia sappan and Haematoxylum braziletto, which is identified as a homoisoflavonoid based on its molecular structure. These plants are traditionally used as an anti-inflammatory to treat fever, hemorrhage, rheumatism, skin problems, diabetes, and cardiovascular diseases. Recently, brazilin has increased its interest in cancer studies. Several findings have shown that brazilin has cytotoxic effects on colorectal cancer, breast cancer, lung cancer, multiple myeloma, osteosarcoma, cervical cancer, bladder carcinoma, also other cancers, along with numerous facts about its possible mechanisms that will be discussed. Besides its flavonoid content, brazilin is able to chelate metal ions. A study has proved that brazilin could be used as an antituberculosis agent based on its ability to chelate iron. This possible iron-chelating of brazilin and all the studies discussed in this review will lead us to the statement that, in the future, brazilin has the potency to be a chemo-preventive and anticancer agent. The article review aimed to determine the brazilin mechanism and pathogenesis of cancer.
Collapse
Affiliation(s)
- Callista Najla Raptania
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Syifa Zakia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Alistia Ilmiah Fahira
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
| | - Riezki Amalia
- Department of Pharmacology and Clinical Pharmacy, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Laboratory of Cell and Molecular Biology, Faculty of Pharmacy, Universitas Padjadjaran, Bandung, Indonesia
- Center of Excellence in Pharmaceutical Care Innovation, Universitas Padjadjaran, Bandung, Indonesia
| |
Collapse
|
13
|
Tomkins-Netzer O, Niederer R, Greenwood J, Fabian ID, Serlin Y, Friedman A, Lightman S. Mechanisms of blood-retinal barrier disruption related to intraocular inflammation and malignancy. Prog Retin Eye Res 2024; 99:101245. [PMID: 38242492 DOI: 10.1016/j.preteyeres.2024.101245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 01/16/2024] [Accepted: 01/16/2024] [Indexed: 01/21/2024]
Abstract
Blood-retinal barrier (BRB) disruption is a common accompaniment of intermediate, posterior and panuveitis causing leakage into the retina and macular oedema resulting in vision loss. It is much less common in anterior uveitis or in patients with intraocular lymphoma who may have marked signs of intraocular inflammation. New drugs used for chemotherapy (cytarabine, immune checkpoint inhibitors, BRAF inhibitors, EGFR inhibitors, bispecific anti-EGFR inhibitors, MET receptor inhibitors and Bruton tyrosine kinase inhibitors) can also cause different types of uveitis and BRB disruption. As malignant disease itself can cause uveitis, particularly from breast, lung and gastrointestinal tract cancers, it can be clinically difficult to sort out the cause of BRB disruption. Immunosuppression due to malignant disease and/or chemotherapy can lead to infection which can also cause BRB disruption and intraocular infection. In this paper we address the pathophysiology of BRB disruption related to intraocular inflammation and malignancy, methods for estimating the extent and effect of the disruption and examine why some types of intraocular inflammation and malignancy cause BRB disruption and others do not. Understanding this may help sort and manage these patients, as well as devise future therapeutic approaches.
Collapse
Affiliation(s)
- Oren Tomkins-Netzer
- Department of Ophthalmology, Lady Davis Carmel Medical Centre, Haifa, Israel; Ruth and Bruce Rappaport Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| | - Rachael Niederer
- Department of Ophthalmology, Te Whatu Ora, Auckland, New Zealand; Department of Ophthalmology, University of Auckland, Auckland, New Zealand
| | - John Greenwood
- Institute of Ophthalmology, University College London, London, UK
| | - Ido Didi Fabian
- The Goldschleger Eye Institute, Sheba Medical Centre, Tel Hashomer, Tel Aviv University, Tel Aviv, Israel
| | - Yonatan Serlin
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada
| | - Alon Friedman
- Department of Medical Neuroscience and the Brain Repair Centre, Dalhousie University, Faculty of Medicine, Halifax, NS, Canada; Departments of Physiology and Cell Biology, Brain and Cognitive Sciences, Zlotowski Centre for Neuroscience, Ben- Gurion University of the Negev, Beer-Sheva, Israel
| | - Sue Lightman
- Institute of Ophthalmology, University College London, London, UK
| |
Collapse
|
14
|
Khalil HH, El-Sheshtawy MM, Khattab SN, Abu-Serie MM, Shehat MG, Teleb M, Haiba NS. Chemosensitization of non-small cell lung cancer to sorafenib via non-hydroxamate s-triazinedione-based MMP-9/10 inhibitors. Bioorg Chem 2024; 144:107155. [PMID: 38306827 DOI: 10.1016/j.bioorg.2024.107155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 01/03/2024] [Accepted: 01/24/2024] [Indexed: 02/04/2024]
Abstract
Non-small cell lung cancer (NSCLC) continues to be a leading cause of cancer death. Its fatality is associated with angiogenesis and metastasis. While VEGFR inhibitors are expected to be the central pillar for halting lung cancer, several clinical reports declared their subpar activities as monotherapy. These results directed combination studies of VEGFR inhibitors, especially sorafenib (Nexavar®), with various chemotherapeutic agents. Matrix metalloproteinase (MMP) inhibitors are seldom utilized in such combinations despite the expected complementary therapeutic outcome. This could be attributed to the clinical unsuitability of MMP inhibitors from the hydroxamate family. Herein, we report new non-hydroxamate s-triazinedione-based inhibitors of MMP-9 (6b; IC50 = 0.112 μM), and MMP-10 (6e; IC50 = 0.076 μM) surpassing the hydroxamate inhibitor NNGH for chemosensitization of NSCLC to sorafenib. MMPs inhibition profiling of the hits revealed MMP-9 over -2 and MMP-10 over -13 selectivity. 6b and 6e were potent (IC50 = 0.139 and 0.136 µM), safe (SI up to 6.77) and superior to sorafenib (IC50 = 0.506 µM, SI = 6.27) against A549 cells. When combined with sorafenib, the studied MMP inhibitors enhanced its cytotoxic efficacy up to 26 folds as confirmed by CI and DRI values for 6b (CI = 0.160 and DRI = 22.175) and 6e (CI = 0.096 and DRI = 29.060). 6b and 6e exerted anti-invasive activities in A549 cells as single agents (22.66 and 39.67 %) and in sorafenib combinations (29.96 and 91.83 %) compared to untreated control. Both compounds downregulated VEGF in A549 cells by approximately 70 % when combined with sorafenib, highlighting enhanced anti-angiogenic activities. Collectively, combinations of 6b and 6e with sorafenib demonstrated synergistic NSCLC cytotoxicity with pronounced anti-invasive and anti-angiogenic activities introducing a promising start point for preclinical studies.
Collapse
Affiliation(s)
- Hosam H Khalil
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Mohamed M El-Sheshtawy
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt
| | - Sherine N Khattab
- Chemistry Department, Faculty of Science, Alexandria University, Alexandria 21321, Egypt.
| | - Marwa M Abu-Serie
- Medical Biotechnology Department, Genetic Engineering and Biotechnology Research Institute, City of Scientific Research and Technological Applications (SRTA-City), Egypt
| | - Michael G Shehat
- Department of Microbiology and Immunology, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Mohamed Teleb
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt; Cancer Nanotechnology Research Laboratory (CNRL), Faculty of Pharmacy, Alexandria University, 21521 Alexandria, Egypt
| | - Nesreen S Haiba
- Department of Physics and Chemistry, Faculty of Education, Alexandria University, Egypt
| |
Collapse
|
15
|
Ngema L, Adeyemi SA, Marimuthu T, Ubanako PN, Ngwa W, Choonara YE. Short Antiangiogenic MMP-2 Peptide-Decorated Conjugated Linoleic Acid-Coated SPIONs for Targeted Paclitaxel Delivery in an A549 Cell Xenograft Mouse Tumor Model. ACS OMEGA 2024; 9:700-713. [PMID: 38222506 PMCID: PMC10785664 DOI: 10.1021/acsomega.3c06489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 10/28/2023] [Accepted: 10/31/2023] [Indexed: 01/16/2024]
Abstract
The design of targeted antiangiogenic nanovectors for the delivery of anticancer drugs presents a viable approach for effective management of nonsmall-cell lung carcinoma (NSCLC). Herein, we report on the fabrication of a targeted delivery nanosystem for paclitaxel (PTX) functionalized with a short antimatrix metalloproteinase 2 (MMP-2) CTT peptide for selective MMP-2 targeting and effective antitumor activity in NSCLC. The fabrication of the targeted nanosystem (CLA-coated PTX-SPIONs@CTT) involved coating of superparamagnetic iron-oxide nanoparticles (SPIONs) with conjugated linoleic acid (CLA) via chemisorption, onto which PTX was adsorbed, and subsequent surface functionalization with carboxylic acid groups for conjugation of the CTT peptide. CLA-coated PTX SPIONs@CTT had a mean particle size of 99.4 nm and a PTX loading efficiency of ∼98.5%. The nanosystem exhibited a site-specific in vitro PTX release and a marked antiproliferative action on lung adenocarcinoma cells. The CTT-functionalized nanosystem significantly inhibited MMP-2 secretion by almost 70% from endothelial cells, indicating specific anti-MMP-2 activity. Treatment of tumor-bearing mice with subcutaneous injection of the CTT-functionalized nanosystem resulted in 69.7% tumor inhibition rate, and the administration of the nanosystem subcutaneously prolonged the half-life of PTX and circulation time in vivo. As such, CLA-coated PTX-SPIONs@CTT presents with potential for application as a targeted nanomedicine in NSCLC management.
Collapse
Affiliation(s)
- Lindokuhle
M. Ngema
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Samson A. Adeyemi
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Thashree Marimuthu
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Philemon N. Ubanako
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| | - Wilfred Ngwa
- Sidney
Kimmel Comprehensive Cancer Center, Johns
Hopkins Medicine, Baltimore, Maryland 21218, United States
| | - Yahya E. Choonara
- Wits
Advanced Drug Delivery Platform Research Unit, Department of Pharmacy
and Pharmacology, School of Therapeutic Sciences, Faculty of Health
Sciences, University of the Witwatersrand, 7 York Road, Parktown, Johannesburg 2193, South Africa
| |
Collapse
|
16
|
Wang Q, Chen M, Tang X. Luteolin Inhibits Lung Cancer Cell Migration by Negatively Regulating TWIST1 and MMP2 Through Upregulation of miR-106a-5p. Integr Cancer Ther 2024; 23:15347354241247223. [PMID: 38646808 PMCID: PMC11034356 DOI: 10.1177/15347354241247223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 03/10/2024] [Accepted: 03/29/2024] [Indexed: 04/23/2024] Open
Abstract
BACKGROUND Luteolin, a common dietary flavonoid found in plants, has been shown to have anti-cancer properties. However, its exact mechanisms of action in non-small cell lung cancer (NSCLC) are still not fully understood, particularly its role in regulating broader genomic networks and specific gene targets. In this study, we aimed to elucidate the role of microRNAs (miRNAs) in NSCLC treated with luteolin, using A549 cells as a model system. MATERIALS AND METHODS miRNA profiling was conducted on luteolin-treated A549 cells using Exiqon microarrays, with validation of selected miRNAs by qRT-PCR. Bioinformatic analysis identified the regulatory roles of miRNAs in biological processes and pathways following luteolin treatment. Computational algorithms were employed to identify potential target genes. A549 cells were transfected with miR-106a-5p mimic and inhibitor or their corresponding controls. The expression levels of 2 genes, twist basic helix-loop-helix transcription factor 1 (TWIST1) and matrix metallopeptidase 2 (MMP2), and cell migration were assessed. RESULTS miRNA profiling identified 341 miRNAs, with 18 exhibiting significantly altered expression (P < 0.05). Subsequent qRT-PCR analysis confirmed altered expression of 6 selected miRNAs. KEGG and GO analyses revealed significant alterations in pathways and biological processes crucial for tumor biology. TWIST1 and MMP2, which both contain conserved miR-106a-5p binding sites, exhibited an inverse correlation with the expression levels of miR-106a-5p. Dual-luciferase reporter assays confirmed TWIST1 and MMP2 as direct targets of miR-106a-5p. Luteolin treatment led to a reduction in A549 cell migration, and this reduction was further amplified by the overexpression of miR-106a-5p. CONCLUSION Luteolin inhibits A549 cell migration by modulating the miRNA landscape, shedding light on its mechanisms and laying the foundation for miRNA-based therapeutic approaches for NSCLC.
Collapse
Affiliation(s)
- Qiang Wang
- Department of Clinical Laboratory, The Second Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310005, People’s Republic of China
| | - Mengyuan Chen
- The Second Clinical Medical College, Zhejiang Chinese Medical University, Hangzhou, People’s Republic of China
| | - Xiaofang Tang
- Department of Cadre Health Care, Zhejiang Hospital, Hangzhou, People’s Republic of China
| |
Collapse
|
17
|
Maybee DV, Cromwell CR, Hubbard BP, Ali MAM. MMP-2 regulates Src activation via repression of the CHK/MATK tumor suppressor in osteosarcoma. Cancer Rep (Hoboken) 2023; 7:e1946. [PMID: 38064181 PMCID: PMC10849928 DOI: 10.1002/cnr2.1946] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 08/22/2023] [Accepted: 09/14/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Doxorubicin, a first-line anticancer drug for osteosarcoma treatment, has been the subject of recent research exploring the mechanisms behind its chemoresistance and its ability to enhance cell migration at sublethal concentrations. Matrix metalloproteinase-2 (MMP-2), a type IV collagenase and zinc-dependent endopeptidase, is well-known for degrading the extracellular matrix and promoting cancer metastasis. Our previous work demonstrated that nuclear MMP-2 regulates ribosomal RNA transcription via histone clipping, thereby controlling gene expression. Additionally, MMP-2 activity is regulated by the non-receptor tyrosine kinase and oncogene, Src, which plays a crucial role in cell adhesion, invasion, and metastasis. Src kinase is primarily regulated by two endogenous inhibitors: C-terminal Src kinase (Csk) and Csk homologous kinase (CHK/MATK). AIM In this study, we reveal that the MMP-2 gene acts as an upstream regulator of Src kinase activity by suppressing its endogenous inhibitor, CHK/MATK, in osteosarcoma cells. METHODS AND RESULTS We show that enhanced osteosarcoma cell migration which is induced by sublethal concentrations of doxorubicin can be overcome by inactivating the MMP-2 gene or overexpressing CHK/MATK. Our findings highlight the MMP-2 gene as a promising additional target for combating cancer cell migration and metastasis. This is due to its role in suppressing on the gene and protein expression of the tumor suppressor CHK/MATK in osteosarcoma. CONCLUSION By targeting the MMP-2 gene, we can potentially enhance the effectiveness of doxorubicin treatment and reduce chemoresistance in osteosarcoma.
Collapse
Affiliation(s)
- Deanna V. Maybee
- Department of Pharmaceutical SciencesSUNY Binghamton University School of Pharmacy and Pharmaceutical SciencesBinghamtonNew YorkUSA
| | | | - Basil P. Hubbard
- Department of Pharmacology and ToxicologyUniversity of TorontoTorontoOntarioCanada
| | - Mohammad A. M. Ali
- Department of Pharmaceutical SciencesSUNY Binghamton University School of Pharmacy and Pharmaceutical SciencesBinghamtonNew YorkUSA
| |
Collapse
|
18
|
Tajvar Nasab N, Jalili-Nik M, Afshari AR, Rezaei Farimani A, Soukhtanloo M. Urolithin B inhibits proliferation and migration and promotes apoptosis and necrosis by inducing G2/M arrest and targeting MMP-2/-9 expression in osteosarcoma cells. J Biochem Mol Toxicol 2023; 37:e23486. [PMID: 37555500 DOI: 10.1002/jbt.23486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 07/14/2023] [Accepted: 07/28/2023] [Indexed: 08/10/2023]
Abstract
Osteosarcoma (OS) is the most prevalent primary bone cancer, with a high morbidity and mortality rate. Over the past decades, therapeutic approaches have not considerably improved patients' survival rates, and further research is required to find efficient treatments for OS. Data from several studies have shown that urolithin B (UB), the intestinal metabolite of polyphenolic ellagitannins, is emerging as a new class of anticancer compounds, yet its effect on OS cancer cells remains elusive. Herein, we investigated UB's antimetastatic, antiproliferative, and apoptotic effects on the MG-63 OS cell line. Cell viability assay, annexin V/propidium iodide staining, cell cycle arrest analysis, determination of the gene expression of MMP-2, MMP-9, Bax, Bcl-2, and p53 messenger RNA (mRNA), evaluation of reactive oxygen species (ROS) generation and migration, and MMP-2 and MMP-9 protein expression assessments were performed. UB caused late apoptosis, necrosis, G2/M arrest, and ROS generation in MG-63 cells. It increased the mRNA expression of the p53 tumor suppressor and Bax proapoptotic genes. UB also inhibited the migration and metastatic behavior of MG-63 OS cells by downregulating mRNA and MMP-2 and MMP-9 protein expression. In general, although further in vivo investigations are warranted, the current results showed that UB might be utilized as a potential novel natural compound for OS therapy due to its nontoxic, antiproliferative, and antimetastatic nature.
Collapse
Affiliation(s)
- Nahid Tajvar Nasab
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Jalili-Nik
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amir R Afshari
- Department of Physiology and Pharmacology, Faculty of Medicine, North Khorasan University of Medical Sciences, Bojnurd, Iran
| | - Azam Rezaei Farimani
- Department of Clinical Biochemistry, School of Medicine, Birjand University of Medical Sciences, Birjand, Iran
- Cardiovascular Diseases Research Center, Birjand University of Medical Sciences, Birjand, Iran
| | - Mohammad Soukhtanloo
- Department of Clinical Biochemistry, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Pharmacological Research Center of Medicinal Plants, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
19
|
Duerig I, Pylaeva E, Ozel I, Wainwright S, Thiel I, Bordbari S, Domnich M, Siakaeva E, Lakomek A, Toppe F, Schleupner C, Geisthoff U, Lang S, Droege F, Jablonska J. Nonfunctional TGF-β/ALK1/ENG signaling pathway supports neutrophil proangiogenic activity in hereditary hemorrhagic telangiectasia. J Leukoc Biol 2023; 114:639-650. [PMID: 37555392 DOI: 10.1093/jleuko/qiad090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/10/2023] [Accepted: 07/24/2023] [Indexed: 08/10/2023] Open
Abstract
The transforming growth factor β (TGF-β)/ALK1/ENG signaling pathway maintains quiescent state of endothelial cells, but at the same time, it regulates neutrophil functions. Importantly, mutations of this pathway lead to a rare autosomal disorder called hereditary hemorrhagic telangiectasia (HHT), characterized with abnormal blood vessel formation (angiogenesis). As neutrophils are potent regulators of angiogenesis, we investigated how disturbed TGF-β/ALK1/ENG signaling influences angiogenic properties of these cells in HHT. We could show for the first time that not only endothelial cells, but also neutrophils isolated from such patients are ENG/ALK1 deficient. This deficiency obviously stimulates proangiogenic switch of such neutrophils. Elevated proangiogenic activity of HHT neutrophils is mediated by the increased spontaneous degranulation of gelatinase granules, resulting in high release of matrix-degrading matrix metalloproteinase 9 (MMP9). In agreement, therapeutic disturbance of this process using Src tyrosine kinase inhibitors impaired proangiogenic capacity of such neutrophils. Similarly, inhibition of MMP9 activity resulted in significant impairment of neutrophil-mediated angiogenesis. All in all, deficiency in TGF-β/ALK1/ENG signaling in HHT neutrophils results in their proangiogenic activation and disease progression. Therapeutic strategies targeting neutrophil degranulation and MMP9 release and activity may serve as a potential therapeutic option for HHT.
Collapse
Affiliation(s)
- Inga Duerig
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ekaterina Pylaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Irem Ozel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sami Wainwright
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Ilona Thiel
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Sharareh Bordbari
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Maksim Domnich
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Elena Siakaeva
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Antonia Lakomek
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Felicia Toppe
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Carolin Schleupner
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Urban Geisthoff
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, University Hospital of Marburg, University of Gießen and Marburg, Baldingerstraße, 35043 Marburg, Germany
| | - Stephan Lang
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| | - Freya Droege
- VASCERN HHT Reference Centre and Department of Otorhinolaryngology, Head and Neck Surgery, Essen University Hospital, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
| | - Jadwiga Jablonska
- Translational Oncology, Department of Otorhinolaryngology, University Hospital Essen, University Duisburg-Essen, Hufelandstrasse 55, 45147 Essen, Germany
- German Cancer Consortium, Partner Site Düsseldorf/Essen, 45147 Essen, Germany
| |
Collapse
|
20
|
Kimura S, Sato H, Shimajiri S, Umehara T, Noguchi H, Niino D, Nakayama T. Association of troponin I and macrophages in cardiac tamponade with Stanford type A aortic dissection. Heliyon 2023; 9:e20791. [PMID: 37860537 PMCID: PMC10582508 DOI: 10.1016/j.heliyon.2023.e20791] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 09/08/2023] [Accepted: 10/06/2023] [Indexed: 10/21/2023] Open
Abstract
Background Acute aortic dissection has a high mortality rate, especially for Stanford type A with a dissected ascending aorta. Cardiac tamponade is one of the most common complications of acute type A aortic dissection (ATAAD) and can cause death. However, the pathogenesis is often unclear. We aimed to examine laboratory findings at the onset of disease and macrophage involvement. Methods Hematological and biochemical parameters, and D-dimer, brain natriuretic peptide (BNP), and high-sensitivity troponin I (hs-cTnI) levels in 70 patients with ATAAD at our hospital were investigated. Additionally, the myocardium and aorta after autopsy of an ATAAD case with cardiac tamponade were pathologically examined. Results Forty-four ATAAD cases were complicated by cardiac tamponade. The mean age of patients with cardiac tamponade and proportion of patients over 70 years of age were both significantly higher than for those without cardiac tamponade. Evaluable D-dimer values were higher than 0.5 μg/mL in all patients. Significantly elevated laboratory parameters in patients with cardiac tamponade included: lactate dehydrogenase, aspartate aminotransferase, C-reactive protein, lactate, BNP, and hs-cTnI. However, multivariate analysis showed only hs-cTnI was significantly associated with cardiac tamponade. Histological examination revealed numerous M2-like macrophages infiltrating the myocardium and dissecting aorta, expressing CC chemokine ligand (CCL)2 together with vascular endothelial growth factor-C and matrix metalloproteinase-9. The peripheral monocyte-to-neutrophil ratio (MNR) was also significantly higher in cardiac tamponade. Conclusions In ATAAD patients with cardiac tamponade, hs-cTnI was significantly elevated and CCL2 expression was observed, which may be involved in the expression of M2-like macrophages via an increased MNR.
Collapse
Affiliation(s)
- Satoshi Kimura
- Department of Clinical Pathology, Kitakyushu City Yahata Hospital, Kitakyushu, Japan
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hiroaki Sato
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Shohei Shimajiri
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Takahiro Umehara
- Department of Forensic Medicine, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| | - Hirotsugu Noguchi
- Department of Pathology, Field of Oncology, Graduate School of Medical and Dental Sciences, Kagoshima University, Kagoshima, Japan
| | - Daisuke Niino
- Pathology, Faculty of Medicine, Shimane University, Izumo, Japan
| | - Toshiyuki Nakayama
- Department of Pathology, School of Medicine, University of Occupational and Environmental Health, Kitakyushu, Japan
| |
Collapse
|
21
|
Shahi N, Yadav PN, Chaudhary U, Saad M, Mahiya K, Khan A, Shafi S, Pokharel YR. 5-Methoxyisatin N(4)-Pyrrolidinyl Thiosemicarbazone (MeOIstPyrd) Restores Mutant p53 and Inhibits the Growth of Skin Cancer Cells, In Vitro. ACS OMEGA 2023; 8:31998-32016. [PMID: 37692215 PMCID: PMC10483675 DOI: 10.1021/acsomega.3c03824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 08/10/2023] [Indexed: 09/12/2023]
Abstract
A series of novel thiosemicarbazone derivatives containing 5-methoxy isatin were designed and synthesized with modification on N(4) position. Derivatives considering structure-activity relationship have been designed and synthesized by condensing thiosemicarbazide with 5-methoxy isatin. The synthesized compounds were characterized by elemental analysis, FT-IR spectroscopy, UV-visible spectroscopy, NMR (1H, 13C) spectroscopy, mass spectrometry, and a single-crystal study. Biological evaluation of the synthesized compounds revealed that MeOIstPyrd is the most promising compound against skin cancer cell line, A431, with an IC50 value of 0.9 μM. In addition, MeOIstPyrd also exhibited low toxicity against the normal human fibroblast and the human embryonic kidney 293 cell line, HLF-1, and HEK293, respectively. Furthermore, the mechanistic study revealed that MeOIstPyrd efficiently inhibited cell proliferation, migration, and spheroid formation by activating the mitochondrial intrinsic apoptotic pathway. MeOIstPyrd also induces DNA damage and activates p53 irrespective of the p53 status. It increases the half-life of p53 and stabilizes p53 by phosphorylating it at ser15. Moreover, MeOIstPyrd was found to bind to MDM2 in the p53 sub-pocket and, therefore, block p53-MDM2 interaction. Our result exhibited potential anticancer activity of MeOIstPyrd in the A431 cell line and its ability in restoring mutant p53, which is an interesting and promising strategy for cancer therapeutics.
Collapse
Affiliation(s)
- Nerina Shahi
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Paras Nath Yadav
- Central
Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 700128, Nepal
| | - Upendra Chaudhary
- Central
Department of Chemistry, Tribhuvan University, Kirtipur, Kathmandu 700128, Nepal
| | - Mohd Saad
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| | - Kuldeep Mahiya
- Department
of Chemistry, F.G.M. Government College, Mandi Adampur, Hisar 125052, Haryana, India
| | - Arif Khan
- Department
of Chemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Syed Shafi
- Department
of Chemistry, Jamia Hamdard University, Hamdard Nagar, New Delhi 110062, India
| | - Yuba Raj Pokharel
- Cancer
Biology Laboratory, Faculty of Life Sciences and Biotechnology, South Asian University, New Delhi 110068, India
| |
Collapse
|
22
|
Tan X, Zou S, Chen H, Chen D. Comparison of paclitaxel liposomes combined with carboplatin versus paclitaxel combined with carboplatin in the treatment of advanced ovarian cancer. J Int Med Res 2023; 51:3000605231200267. [PMID: 37756606 PMCID: PMC10683573 DOI: 10.1177/03000605231200267] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/21/2023] [Indexed: 09/29/2023] Open
Abstract
OBJECTIVE To compare the efficacy of paclitaxel liposomes combined with carboplatin and paclitaxel combined with carboplatin in the treatment of advanced ovarian cancer and assess their effects on serum human epididymis protein 4 (HE4), CA125, CA199, matrix metalloproteinase-2 (MMP2), MMP-7, and MMP-9 levels. METHODS In this observational study, 102 patients with advanced ovarian cancer were assigned to receive paclitaxel liposomes combined with carboplatin (Group A) or paclitaxel combined with carboplatin (Group B). Clinical efficacy; serum HE4, CA125, CA199, MMP-2, MMP-7, and MMP-9 levels; and the occurrence of adverse reactions were compared between the groups. RESULTS The overall response rate was significantly higher in Group A than in Group B. After chemotherapy, serum HE4, CA125, CA199, MMP-2, MMP-7, and MMP-9 levels were lower in Group A than in Group B. The incidence of myalgia, dyspnea, nausea and vomiting, facial flushing, peripheral neuropathy, and skin rash was lower in Group A than in Group B. CONCLUSION Paclitaxel liposomes combined with carboplatin displayed better efficacy in the treatment of advanced ovarian cancer than paclitaxel combined with carboplatin, which might be attributable to reductions in serum marker levels and the occurrence of adverse events.
Collapse
Affiliation(s)
- Xiangbin Tan
- Department of Oncology, The 909th Hospital, School of Medicine, Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, Fujian, China
| | - Shuangyou Zou
- Department of Obstetrics and Gynecology, The 909th Hospital, School of Medicine, Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, Fujian, China
| | - Hui Chen
- Department of Obstetrics and Gynecology, The 909th Hospital, School of Medicine, Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, Fujian, China
| | - Dachao Chen
- Department of Oncology, The 909th Hospital, School of Medicine, Xiamen University, 269 Zhanghua Middle Road, Zhangzhou, Fujian, China
| |
Collapse
|
23
|
Nagaraj NR, Natarajan SK, Karunakaran C. The apoptotic and anti-proliferative effect of Lysyl oxidase propeptide in Y79 human retinoblastoma cells. Mol Vis 2023; 29:125-139. [PMID: 38222455 PMCID: PMC10784223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Accepted: 08/01/2023] [Indexed: 01/16/2024] Open
Abstract
Purpose Retinoblastoma (RB) caused by the mutation of the RB1 gene is one of the most common ocular malignancies in children The propeptide region of lysyl oxidase (LOX), the enzyme involved in the cross-linking of collagen and elastin, has been identified to be anti-tumorigenic in various cancers. However, this role of lysyl oxidase propeptide (LOX-PP) in RB is still elusive. This study aims to identify the anti-tumorigenic effect of LOX-PP in human Y79 RB cells. Methods LOX-PP was overexpressed in Y79 RB cells, and differential gene expression was assessed by microarray followed by pathway analysis using transcriptome analysis console (TAC) software. Additionally, cell proliferation was studied by PrestoBlue assay, and DNA content was evaluated by cell cycle and apoptosis assays. The pro-apoptotic and anti-proliferative mechanisms induced by the overexpression of/exogenously added LOX-PP was evaluated by western blotting and real-time PCR. Results The expression of the LOX-PP transcript was significantly decreased in Y79 RB cells compared to human retinal endothelial cells. Gene expression analysis in LOX-PP overexpressed Y79 RB cells showed deregulation of pathways involved in apoptosis, cell cycle, focal adhesion-PI3K-AKT signaling, and DNA repair mechanisms. Interestingly, LOX-PP overexpressed Y79 RB cells showed significantly increased apoptosis, decreased proliferation, and cell cycle arrest at S-phase with a concordant reduction of proliferative cell nuclear antigen and Cyclin D1 protein expressions. Moreover, pAKT (S473) was significantly downregulated in Y79 RB cells, which decreased NFκB leading to significantly reduced BCL2 expression. Conclusions Our results demonstrate the anti-tumorigenic effect of LOX-PP in Y79 RB cells by inducing apoptosis and decreasing proliferation. This effect was mediated by the downregulation of AKT signaling. These results suggest that LOX-PP can be explored as a therapeutic molecule in RB.
Collapse
Affiliation(s)
- Nareshkumar Ragavachetty Nagaraj
- RS Mehta Jain Department of Biochemistry and Cell biology, KBIRVO, Vision Research Foundation, Chennai
- School of Chemical and Biotechnology, SASTRA Deemed to be University, Thanjavur, India
| | | | - Coral Karunakaran
- RS Mehta Jain Department of Biochemistry and Cell biology, KBIRVO, Vision Research Foundation, Chennai
| |
Collapse
|
24
|
De S, Singh N. Collagen-alginate 3D microscaffolds for studying cellular migration. Int J Biol Macromol 2023; 245:125308. [PMID: 37315661 DOI: 10.1016/j.ijbiomac.2023.125308] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Revised: 05/08/2023] [Accepted: 05/31/2023] [Indexed: 06/16/2023]
Abstract
Metastasis is one of the major causes for cancer mortality. Its early steps comprise of invasion of basement membrane and migration. Thus, it is hypothesized that a platform, that allows quantification and grading of migration capability of cells can potentially be used for predicting metastatic potential. Two-dimensional (2D) models have been rendered inadequate for modelling in-vivo microenvironment due to various reasons. To attenuate homogeneity observed in 2D, three-dimensional (3D) platforms supplemented with bioinspired components have been designed. Unfortunately, till date there are no simple models to capture the migration of cells in 3D along with quantification of the process. In this study, we report an alginate-collagen based 3D model system, which can predict the migratory property of the cells within 72 h. The micron size of the scaffold enabled faster readout and the optimum pore-size provided conducive cellular growth environment. The platform's ability to allow observation of cellular migration was validated by encapsulating cells with transiently upregulated matrix metalloprotease 9 (MMP9), which has been reported to play a significant role in migration of cells during metastasis. The readout for migration was clustering of cells in the microscaffolds detected in a short span of 48 h. The observed clustering in MMP9 upregulated cells was validated by observing changes in the epithelial-mesenchymal transition (EMT) markers. Thus, this simple 3D platform can be used to study migration and predict the metastatic potential of cells.
Collapse
Affiliation(s)
- Shreemoyee De
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| | - Neetu Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India; Biomedical Engineering Unit, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
25
|
Alrumaihi F. A cheminformatics-biophysics correlate to identify promising lead molecules against matrix metalloproteinase-2 (MMP-2) enzyme: A promising anti-cancer target. Saudi Pharm J 2023; 31:1244-1253. [PMID: 37284415 PMCID: PMC10239696 DOI: 10.1016/j.jsps.2023.05.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/10/2023] [Indexed: 06/08/2023] Open
Abstract
Matrix metalloproteinase-2 (MMP-2) is an endopeptidase enzyme that is devoted to extracellular matrix proteins degradation. The enzyme is warranted as promising drugs target for different light threating diseases such as arthritis, cancer and fibrosis. Herein, in this study, three drug molecules: CMNPD8322, CMNPD8320, and CMNPD8318 were filtered as high affinity binding compounds with binding energy score of -9.75 kcal/mol, -9.11 kcal/mol, -9.05 kcal/mol, respectively. The control binding energy score was -9.01 kcal/mol. The compounds docked deeply inside the pocket interacting with S1 pocket residues. The docked complexes dynamics in real time at cellular environment was then done to decipher the stable binding conformation and intermolecular interactions network. The compounds complexes achieved very stable dynamics with root mean square deviation (RMSD) with mean value of around 2-3 Å compared to control complex that showed higher fluctuations of 5 Å. The simulation trajectories frames based binding free energy demonstrated all the compounds-MMP-2 complexes reported highly stable energy, particularly the van der Waals energy dominate the overall net energy. Similarly, the complexes revalidation of WaterSwap based energies also disclosed the complexes highly stable in term docked conformation. Also, the compounds illustrated the compounds favorable pharmacokinetics and were non-toxic and non-mutagenic. Thus, the compounds might be used thorough experimental assays to confirm compounds selective biological potency against MMP-2 enzyme.
Collapse
|
26
|
Bouslama R, Dumont V, Lindfors S, Paavolainen L, Tienari J, Nisen H, Mirtti T, Saleem MA, Gordin D, Groop PH, Suetsugu S, Lehtonen S. Phosphorylation of PACSIN2 at S313 Regulates Podocyte Architecture in Coordination with N-WASP. Cells 2023; 12:1487. [PMID: 37296607 PMCID: PMC10252800 DOI: 10.3390/cells12111487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 05/16/2023] [Accepted: 05/23/2023] [Indexed: 06/12/2023] Open
Abstract
Changes in the dynamic architecture of podocytes, the glomerular epithelial cells, lead to kidney dysfunction. Previous studies on protein kinase C and casein kinase 2 substrates in neurons 2 (PACSIN2), a known regulator of endocytosis and cytoskeletal organization, reveal a connection between PACSIN2 and kidney pathogenesis. Here, we show that the phosphorylation of PACSIN2 at serine 313 (S313) is increased in the glomeruli of rats with diabetic kidney disease. We found that phosphorylation at S313 is associated with kidney dysfunction and increased free fatty acids rather than with high glucose and diabetes alone. Phosphorylation of PACSIN2 emerged as a dynamic process that fine-tunes cell morphology and cytoskeletal arrangement, in cooperation with the regulator of the actin cytoskeleton, Neural Wiskott-Aldrich syndrome protein (N-WASP). PACSIN2 phosphorylation decreased N-WASP degradation while N-WASP inhibition triggered PACSIN2 phosphorylation at S313. Functionally, pS313-PACSIN2 regulated actin cytoskeleton rearrangement depending on the type of cell injury and the signaling pathways involved. Collectively, this study indicates that N-WASP induces phosphorylation of PACSIN2 at S313, which serves as a mechanism whereby cells regulate active actin-related processes. The dynamic phosphorylation of S313 is needed to regulate cytoskeletal reorganization.
Collapse
Affiliation(s)
- Rim Bouslama
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Vincent Dumont
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Sonja Lindfors
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Lassi Paavolainen
- Institute for Molecular Medicine Finland (FIMM), Helsinki Institute of Life Science (HiLIFE), University of Helsinki, 00290 Helsinki, Finland
| | - Jukka Tienari
- Department of Pathology, University of Helsinki, Helsinki, and Helsinki University Hospital, 05850 Hyvinkää, Finland
| | - Harry Nisen
- Department of Urology, Helsinki University Hospital, 00029 HUS, Finland
| | - Tuomas Mirtti
- Department of Pathology, Helsinki University Hospital, 00290 Helsinki, Finland
- Research Program in Systems Oncology, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
| | - Moin A. Saleem
- Children’s Renal Unit, Bristol Medical School, University of Bristol, Bristol BS8 1TS, UK
| | - Daniel Gordin
- Minerva Foundation Institute for Medical Research, 00290 Helsinki, Finland
- Abdominal Center, Nephrology, University of Helsinki and Helsinki University Hospital, 00290 Helsinki, Finland
- Joslin Diabetes Center, Harvard Medical School, Boston, MA 02215, USA
| | - Per-Henrik Groop
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Folkhälsan Institute of Genetics, Folkhälsan Research Center, 00290 Helsinki, Finland
- Department of Nephrology, University of Helsinki, Helsinki, and Helsinki University Hospital, 00290 Helsinki, Finland
- Department of Diabetes, Central Clinical School, Monash University, Melbourne, VIC 3800, Australia
| | - Shiro Suetsugu
- Division of Biological Science, Graduate School of Science and Technology, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Data Science Center, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
- Center for Digital Green-Innovation, Nara Institute of Science and Technology, Ikoma 630-0192, Japan
| | - Sanna Lehtonen
- Research Program for Clinical and Molecular Metabolism, Faculty of Medicine, University of Helsinki, 00290 Helsinki, Finland
- Department of Pathology, University of Helsinki, 00290 Helsinki, Finland
| |
Collapse
|
27
|
Subbaraj GK, Elangovan H, Chandramouli P, Yasam SK, Chandrasekaran K, Kulanthaivel L, Pandi S, Subramanian S. Antiangiogenic Potential of Troxerutin and Chitosan Loaded Troxerutin on Chorioallantoic Membrane Model. BIOMED RESEARCH INTERNATIONAL 2023; 2023:5956154. [PMID: 37260851 PMCID: PMC10229255 DOI: 10.1155/2023/5956154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/20/2023] [Accepted: 04/05/2023] [Indexed: 06/02/2023]
Abstract
Angiogenesis is crucial to the development of cancer because it allows the transport of oxygen, nutrients, and growth factors as well as the spread of tumors to distant organs. Inhibitors of angiogenesis prevent the formation of blood vessels that allow tumor cells to shrink, rather than promote tumor growth. Chitosan acts as a carrier for many drugs, since the compound has various properties such as biodegradable, less toxicity, more stable, simple, easy to prepare, and biocompatible. The aim of the current study was to evaluate the efficacy of chitosan nanoparticles encapsulated with troxerutin (Chi-Trox NPs) against angiogenesis and cancer in ova chick chorioallantoic membrane (CAM) model. Chi-Trox NPs were synthesized using a nanoprecipitation method and were characterized by various analyses. 24 hours' fertilized eggs (6 eggs/group) were treated with native Trox and Chi-Trox NPs for 5 days. The antiangiogenic activity was evaluated by morphometric, histopathological, immunohistochemical (CD104 and vimentin), and mRNA expression of MMP and FGF2 using RT-PCR. The anticancer activity was evaluated by histopathological, immunohistochmical (CD44), and mRNA expression of FGF2 and MMP. The synthesized chitosan NPs were successfully encapsulated with troxerutin, and the loading efficiency of chitosan NPs was found to be 86.4 ± 0.12% and 13.2 ± 0.16% respectively. Morphometric analysis of Chi-Trox NPs showed a considerable decrease in the number of blood vessels compared with control and native Trox. The histopathological observation of CAM confirmed that Chi-Trox NPs induce a significant reduction in inflammatory cells and the thickness of blood capillaries compared to control and native Trox. The immunohistochemical evaluation of CAM revealed Chi-Trox decreased CD104, vimentin and CD44 protein levels were compared with control and native Trox. Furthermore, the mRNA expression levels of FGF2 and MMP were significantly downregulated compared to their native forms. From the obtained results, Chi-Trox NPs possess significant inhibition of angiogenesis and can be used as therapeutic agents for cancer in the future.
Collapse
Affiliation(s)
- Gowtham Kumar Subbaraj
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam, 603 103 Tamil Nadu, India
| | - Harini Elangovan
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam, 603 103 Tamil Nadu, India
| | - Prema Chandramouli
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam, 603 103 Tamil Nadu, India
| | - Santhosh Kumar Yasam
- Faculty of Allied Health Sciences, Chettinad Hospital and Research Institute, Chettinad Academy of Research and Education (Deemed to be University), Kelambakkam, 603 103 Tamil Nadu, India
| | | | - Langeswaran Kulanthaivel
- Cancer Genetics & Molecular Biology Laboratory, Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | - Sangavi Pandi
- Cancer Genetics & Molecular Biology Laboratory, Department of Biotechnology, Science Campus, Alagappa University, Karaikudi, Tamil Nadu 630003, India
| | | |
Collapse
|
28
|
Li Z, Wei J, Chen B, Wang Y, Yang S, Wu K, Meng X. The Role of MMP-9 and MMP-9 Inhibition in Different Types of Thyroid Carcinoma. Molecules 2023; 28:molecules28093705. [PMID: 37175113 PMCID: PMC10180081 DOI: 10.3390/molecules28093705] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 04/06/2023] [Accepted: 04/11/2023] [Indexed: 05/15/2023] Open
Abstract
Matrix metalloproteinase-9 (MMP-9), one of the most investigated and studied biomarkers of the MMPs family, is a zinc-dependent proteolytic metalloenzyme whose primary function is degrading the extracellular matrix (ECM). It has been proved that MMP-9 expression elevates in multiple pathological conditions, including thyroid carcinoma. MMP-9 has a detectable higher level in malignant or metastatic thyroid tumor tissues than in normal or benign tissues and acts as an additional marker to distinguish different tumor stages because of its close correlations with clinical features, such as lymph node metastasis, TNM stage, tumor size and so on. Natural and non-natural MMP-9 inhibitors suppress its expression, block the progression of diseases, and play a role in therapy consequently. MMP-9 inhibitory molecules also assist in treating thyroid tumors by suppressing the proliferation, invasion, migration, metastasis, viability, adhesion, motility, epithelial-mesenchymal transition (EMT), and other risk factors of different thyroid cancer cells. In a word, discovering and designing MMP-9 inhibitors provide great therapeutic effects and promising clinical values in various types of thyroid carcinoma.
Collapse
Affiliation(s)
- Zhenshengnan Li
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Jia Wei
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Bowen Chen
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Yaoqi Wang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Shuai Yang
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Kehui Wu
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| | - Xianying Meng
- Department of Thyroid Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China
| |
Collapse
|
29
|
Lima LTFD, Ganzella FADO, Cardoso GC, Pires VDS, Chequin A, Santos GL, Braun-Prado K, Galindo CM, Braz Junior O, Molento MB, Acco A, Adami ER, Costa ET, Cavichiolo Franco CR, Klassen G, Ramos EADS. l-carvone decreases breast cancer cells adhesion, migration, and invasion by suppressing FAK activation. Chem Biol Interact 2023; 378:110480. [PMID: 37059214 DOI: 10.1016/j.cbi.2023.110480] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2021] [Revised: 03/24/2023] [Accepted: 04/06/2023] [Indexed: 04/16/2023]
Abstract
Breast cancer is one of the most common types of cancer in the world and current therapeutic strategies present severe drawbacks. l-carvone (CRV), a monoterpene found in Mentha spicata (spearmint), has been reported to have potent anti-inflammatory activity. Here, we examined the role of CRV in breast cancer cell adhesion, migration and invasion in vitro and how this component could suppress the growth of Ehrlich carcinoma-bearing mice. In vivo, treatment with CRV significantly decreased tumor growth, increased tumor necrosis area, and reduced the expression of VEGF and HIF-1α in Ehrlich carcinoma-bearing mice. Furthermore, the anticancer efficacy of CRV was similar to currently used chemotherapy (Methotrexate), and the combination of CRV with MTX potentiated the chemotherapy effects. Further mechanistic investigation in vitro revealed that CRV modulates the interaction of breast cancer cells with the extracellular matrix (ECM) by disrupting focal adhesion, which was shown by scanning electron microscopy (SEM) and immunofluorescence. Moreover, CRV caused a decrease in β1-integrin expression and inhibited focal adhesion kinase (FAK) activation. FAK is one of the most important downstream activators of several metastatic processes, including MMP-2 mediated invasion and HIF-1α/VEGF angiogenesis stimulus, both of which were found to be reduced in MDA-MB-231 cells exposed to CRV. Our results provide new insight about targeting β1-integrin/FAK signaling pathway with CRV, which could be a new potential agent in the treatment of breast cancer.
Collapse
Affiliation(s)
- Lucas Trevisan França de Lima
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Gabriela Casani Cardoso
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Verônica Dos Santos Pires
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Andressa Chequin
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Giulia Luiza Santos
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | - Karin Braun-Prado
- Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | | | - Odair Braz Junior
- Pos-graduate Program of Cellular and Molecular Biology, Federal University of Parana, Curitiba, PR, Brazil
| | - Marcelo Beltrão Molento
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Veterinary Medicine, Federal University of Parana, Curitiba, PR, Brazil
| | - Alexandra Acco
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Eliana Rezende Adami
- Pos-graduate Program of Pharmacology, Federal University of Parana, Curitiba, PR, Brazil
| | - Erico Tosoni Costa
- Molecular Oncology Center, Research and Education Institute, Hospital Sirio-Libanes, São Paulo, SP, Brazil
| | | | - Giseli Klassen
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil
| | - Edneia Amancio de Souza Ramos
- Pos-graduate Program of Microbiology, Parasitology and Pathology, Federal University of Parana, Curitiba, PR, Brazil; Department of Basic Pathology, Federal University of Parana, Curitiba, PR, Brazil.
| |
Collapse
|
30
|
Tamburello M, Abate A, Rossini E, Basnet RM, Zizioli D, Cosentini D, Hantel C, Laganà M, Tiberio GAM, Grisanti S, Memo M, Berruti A, Sigala S. Preclinical Evidence of Progesterone as a New Pharmacological Strategy in Human Adrenocortical Carcinoma Cell Lines. Int J Mol Sci 2023; 24:ijms24076829. [PMID: 37047801 PMCID: PMC10095539 DOI: 10.3390/ijms24076829] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/08/2023] Open
Abstract
Background: Adrenocortical cancer (ACC) is a rare malignancy with a dismal prognosis. The treatment includes mitotane and EDP chemotherapy (etoposide, doxorubicin, and cisplatin). However, new therapeutic approaches for advanced ACC are needed, particularly targeting the metastatic process. Here, we deepen the role of progesterone as a new potential drug for ACC, in line with its antitumoral effect in other cancers. Methods: NCI-H295R, MUC-1, and TVBF-7 cell lines were used and xenografted in zebrafish embryos. Migration and invasion were studied using transwell assays, and MMP2 activity was studied using zymography. Apoptosis and cell cycle were analyzed by flow cytometry. Results: Progesterone significantly reduced xenograft tumor area and metastasis formation in embryos injected with metastatic lines, MUC-1 and TVBF-7. These results were confirmed in vitro, where the reduction of invasion was mediated, at least in part, by the decrease in MMP2 levels. Progesterone exerted a long-lasting effect in metastaticcells. Progesterone caused apoptosis in NCI-H295R and MUC-1, inducing changes in the cell-cycle distribution, while autophagy was predominantly activated in TVBF-7 cells. Conclusion: Our results give support to the role of progesterone in ACC. The involvement of its analog (megestrol acetate) in reducing ACC progression in ACC patients undergoing EDP-M therapy is now under investigation in the PESETA phase II clinical study.
Collapse
Affiliation(s)
- Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Ram Manohar Basnet
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Daniela Zizioli
- Section of Biotechnology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Deborah Cosentini
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Constanze Hantel
- Department of Endocrinology, Diabetology and Clinical Nutrition, University Hospital Zurich (USZ) and University of Zurich (UZH), 8091 Zürich, Switzerland
- Medizinische Klinik und Poliklinik III, University Hospital Carl Gustav Carus Dresden, 01307 Dresden, Germany
| | - Marta Laganà
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Guido Alberto Massimo Tiberio
- Surgical Clinic, Department of Clinical and Experimental Sciences, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Salvatore Grisanti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Maurizio Memo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia and ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
31
|
Jang WY, Hwang JY, Cho JY. Ginsenosides from Panax ginseng as Key Modulators of NF-κB Signaling Are Powerful Anti-Inflammatory and Anticancer Agents. Int J Mol Sci 2023; 24:6119. [PMID: 37047092 PMCID: PMC10093821 DOI: 10.3390/ijms24076119] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 03/20/2023] [Accepted: 03/22/2023] [Indexed: 04/14/2023] Open
Abstract
Nuclear factor kappa B (NF-κB) signaling pathways progress inflammation and immune cell differentiation in the host immune response; however, the uncontrollable stimulation of NF-κB signaling is responsible for several inflammatory illnesses regardless of whether the conditions are acute or chronic. Innate immune cells, such as macrophages, microglia, and Kupffer cells, secrete pro-inflammatory cytokines, such as TNF-α, IL-6, and IL-1β, via the activation of NF-κB subunits, which may lead to the damage of normal cells, including neurons, cardiomyocytes, hepatocytes, and alveolar cells. This results in the occurrence of neurodegenerative disorders, cardiac infarction, or liver injury, which may eventually lead to systemic inflammation or cancer. Recently, ginsenosides from Panax ginseng, a historical herbal plant used in East Asia, have been used as possible options for curing inflammatory diseases. All of the ginsenosides tested target different steps of the NF-κB signaling pathway, ameliorating the symptoms of severe illnesses. Moreover, ginsenosides inhibit the NF-κB-mediated activation of cancer metastasis and immune resistance, significantly attenuating the expression of MMPs, Snail, Slug, TWIST1, and PD-L1. This review introduces current studies on the therapeutic efficacy of ginsenosides in alleviating NF-κB responses and emphasizes the critical role of ginsenosides in severe inflammatory diseases as well as cancers.
Collapse
Affiliation(s)
| | | | - Jae Youl Cho
- Department of Integrative Biotechnology, Sungkyunkwan University, Suwon 16419, Republic of Korea
| |
Collapse
|
32
|
Cui M, Nguyen D, Gaillez MP, Heiden S, Lin W, Thompson M, Reddavide FV, Chen Q, Zhang Y. Trio-pharmacophore DNA-encoded chemical library for simultaneous selection of fragments and linkers. Nat Commun 2023; 14:1481. [PMID: 36932079 PMCID: PMC10023787 DOI: 10.1038/s41467-023-37071-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 02/28/2023] [Indexed: 03/19/2023] Open
Abstract
The split-and-pool method has been widely used to synthesize chemical libraries of a large size for early drug discovery, albeit without the possibility of meaningful quality control. In contrast, a self-assembled DNA-encoded chemical library (DEL) allows us to construct an m x n-member library by mixing an m-member and an n-member pre-purified sub-library. Herein, we report a trio-pharmacophore DEL (T-DEL) of m x l x n members through assembling three pre-purified and validated sub-libraries. The middle sub-library is synthesized using DNA-templated synthesis with different reaction mechanisms and designed as a linkage connecting the fragments displayed on the flanking two sub-libraries. Despite assembling three fragments, the resulting compounds do not exceed the up-to-date standard of molecular weight regarding drug-likeness. We demonstrate the utility of T-DEL in linker optimization for known binding fragments against trypsin and carbonic anhydrase II and by de novo selections against matrix metalloprotease-2 and -9.
Collapse
Affiliation(s)
- Meiying Cui
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Michelle Patino Gaillez
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | - Weilin Lin
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany
| | | | | | - Qinchang Chen
- Research Institute of Intelligent Computing, Zhejiang Lab, Hangzhou, China.
- School of Life Sciences and Technology, Tongji University, Shanghai, China.
| | - Yixin Zhang
- B CUBE, Center for Molecular Bioengineering, Technische Universität Dresden, Dresden, Germany.
| |
Collapse
|
33
|
Wudtiwai B, Kodchakorn K, Shwe TH, Pothacharoen P, Phitak T, Suninthaboonrana R, Kongtawelert P. Brazilein inhibits epithelial-mesenchymal transition (EMT) and programmed death ligand 1 (PD-L1) expression in breast cancer cells. Int Immunopharmacol 2023; 118:109988. [PMID: 36933493 DOI: 10.1016/j.intimp.2023.109988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 02/13/2023] [Accepted: 03/02/2023] [Indexed: 03/18/2023]
Abstract
Triple-negative breast cancer (TNBC) exhibits high levels of Epithelial-mesenchymal transition (EMT) and Programmed death ligand 1 (PD-L1) expression, which promotes immune escape and metastasis. Brazilein is a natural compound extracted from Caesalpinia sappan L., and has been demonstrated to be an anti-inflammatory anti- proliferative and apoptosis-inducer in various cancer cells. Here, we investigated the effect of brazilein on EMT and PD-L1 expression in breast cancer cells and its related molecular mechanisms using MCF-7 and MDA-MB-231 cells as a model. Since the AKT, NF-κB, and GSK3β/β-catenin signaling were reported to be important mechanisms in immune escape and metastasis, the effect of brazilein on these signaling pathways were also found out in our study. Firstly, brazilein was treated on breast cancer cells at various concentrations to study cell viability, apoptosis, and apoptosis proteins. Then, breast cancer cells were treated with non-toxic concentrations of brazilein to study its influence on EMT and expression of PD-L1 protein using MTT, flow cytometry, western blot, and wound healing analysis, respectively. We found that brazilein exerts an anti-cancer effect by reducing cell viability via induction of apoptosis, while it also downregulated EMT and PD-L1 through suppression of phosphorylation of AKT, NF-κB, and GSK3β/β-catenin. Moreover, the migration ability was diminished by inhibiting the activation of MMP-9 and MMP-2. Taken together, brazilein might delay cancer progression through inhibition of EMT, PD-L1, and metastasis suggesting it might be a potential therapeutic option in breast cancer patients having a high level of EMT and PD-L1.
Collapse
Affiliation(s)
- Benjawan Wudtiwai
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Kanchanok Kodchakorn
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thuzar Hla Shwe
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Peraphan Pothacharoen
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | - Thanyaluck Phitak
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| | | | - Prachya Kongtawelert
- Thailand Excellence Center for Tissue Engineering and Stem Cells, Department of Biochemistry, Faculty of Medicine, Chiang Mai University, Chiang Mai 50200, Thailand.
| |
Collapse
|
34
|
Zhan X, Jiang L, Wang L, Liu J, Kang S, Liu H, Lin L. A novel angiogenic effect of PCSK9- regulated genes. Gene X 2023; 852:147051. [PMID: 36427678 DOI: 10.1016/j.gene.2022.147051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/02/2022] [Accepted: 11/09/2022] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Since the discovery of the Proprotein Convertase Subtilisin/Kexin Type 9(PCSK9) gene has been involved in regulating low-density lipoprotein metabolism and cardiovascular disease (CVD), many therapeutic strategies directly targeting PCSK9 have been introduced. PCSK9 gain of function (GoF) mutations are associated with autosomal dominant hypercholesterolemia (ADH) and premature atherosclerosis. In contrast, PCSK9 loss of function (LOF) mutations have cardioprotective effects and can lead to familial hypo cholesterol in some instances. However, its potential impacts beyond the typical effects on lipid metabolism have not been elucidated. Therefore the study aimed to identify and verify PCSK9's possible effects beyond its traditional role in lipid metabolism. METHODS The S127R is a PCSK9 gain of function mutation. Firstly, We used the data of the gene expression Omnibus(GEO) database to identify the differentially expressed genes between S127R mutation carriers and ordinary people. Secondly, the identification and analysis of significant genes were performed with various bioinformatics programs. Thirdly, to verify the possible effect and the potential pathways of PCSK9 on angiogenesis, we constructed PCSK9 low and high expression models by transfecting PCSK9-siRNA (small interfering RNA) and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. Furthermore, Wound-Healing Assay and Capillary tube formation assay were applied to measure the effect of PCSK9 on angiogenesis. Fourthly, the expression level of VEGFR2 and the significant genes between PCSK9 low and high expression models were verified by quantitative real-time PCR. All data were analysed by GraphPad Prism 8 software. RESULTS 88 DEGs were identified, including 45 up-regulated and 43 down-regulated DEGs. Furthermore, we identified the six genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) as significantly different genes between PCSK9-S127R and Control hiPSC. Further, we found that these significant difference genes were mainly associated with angiogenesis after enrichment analysis. To verify the possible effect of PCSK9 on angiogenesis, we constructed low and high-expression PCSK9 models by transfecting siRNA and PCSK9-plasmid complex into human umbilical vein endothelial cells (HUVECs), respectively. The tubule formation test and Wound healing assays showed that overexpression of PCSK9 had an inhibitory effect on angiogenesis, which could be reversed by decreasing the expression of PCSK9. Moreover, bioinformatics analysis indicated that the six hub genes (MMP9, CASP3, EGR1, NGFR, LEFTY1 and NODAL) might play a vital role in the biological function of PCSK9 in angiogenesis. Real-time quantitative PCR was applied to clarify the expression profiles of these critical genes in overexpression/knockdown PCSK9. Finally, the expression levels of MMP9, Caspase3, LEFTY1, and NODAL were suppressed by overexpression of PCSK9 and could be alleviated by PCSK9 knockdown. Otherwise, EGR1 had the opposite expression trend, and there was no specific trend of NGFR after repeated experiments. CONCLUSION PCSK9 might play an essential role in angiogenesis, unlike its typical role in lipid metabolism, and MMP9, Caspase3, LEFTY1, NODAL, and EGR1 may be involved in the regulation of angiogenesis as critical genes.
Collapse
Affiliation(s)
- Xiaopeng Zhan
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Li Jiang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Lufeng Wang
- Department of Neurology, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jiwen Liu
- Key Laboratory of Arrhythmias of the Ministry of Education of China, Research Center for Translational Medicine, Shanghai East Hospital, Tongji University School of Medicine, Shanghai, China
| | - Sheng Kang
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| | - Haibo Liu
- Department of Cardiology, Qingpu Branch of Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Li Lin
- Department of Cardiovascular Medicine, East Hospital, Tongji University School of Medicine, Shanghai
| |
Collapse
|
35
|
Jiang Y, Zheng G, Sun X. PRMT5 promotes retinoblastoma development. Hum Cell 2023; 36:329-341. [PMID: 36331723 DOI: 10.1007/s13577-022-00807-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/03/2022] [Indexed: 11/06/2022]
Abstract
Epigenetic mechanism, including DNA methylation and histone modifications, contributes to alterations in the expression patterns of genes regulating malignant phenotype of cancer cells. However, the epigenetic modulation of vascular endothelial growth factor-A (VEGFA) in retinoblastoma (RB) has not been clearly established. We aimed to examine the epigenetic regulation of VEGFA by protein arginine methyltransferase 5 (PRMT5) in RB. Using the GEO database, we identified VEGFA as a pathogenic gene in RB. Silencing of VEGFA in SO-RB50 and Y79 cells inhibited cell proliferation, angiogenesis, and migration, promoted apoptosis, and suppressed tumor growth in mice. Mechanistically, PRMT5 promoted H3K4me3 modification of the VEGFA promoter, thereby activating VEGFA expression. VEGFA could regulate the expression of MMP1, MMP2, and MMP9. Further silencing of VEGFA in RB cells overexpressing PRMT5 constrained the expression of MMP1, MMP2 and MMP9, and suppressed the growth of tumors in mice. In conclusion, this study clarifies that the depletion of PRMT5 reduces H3K4me3-mediated VEGFA transcription and retards the carcinogenesis of RB by suppressing the expression of MMPs.
Collapse
Affiliation(s)
- Yu Jiang
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| | - Guangying Zheng
- Department of Ophthalmology, The First Affiliated Hospital of Zhengzhou University, No. 1, Jianshe Road, Zhengzhou, 450000, Henan, People's Republic of China.
| | - Xiantao Sun
- Department of Ophthalmology, Children's Hospital Affiliated to Zhengzhou University, Zhengzhou, 450000, Henan, People's Republic of China
| |
Collapse
|
36
|
Biasella F, Plössl K, Baird PN, Weber BHF. The extracellular microenvironment in immune dysregulation and inflammation in retinal disorders. Front Immunol 2023; 14:1147037. [PMID: 36936905 PMCID: PMC10014728 DOI: 10.3389/fimmu.2023.1147037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 02/15/2023] [Indexed: 03/05/2023] Open
Abstract
Inherited retinal dystrophies (IRDs) as well as genetically complex retinal phenotypes represent a heterogenous group of ocular diseases, both on account of their phenotypic and genotypic characteristics. Therefore, overlaps in clinical features often complicate or even impede their correct clinical diagnosis. Deciphering the molecular basis of retinal diseases has not only aided in their disease classification but also helped in our understanding of how different molecular pathologies may share common pathomechanisms. In particular, these relate to dysregulation of two key processes that contribute to cellular integrity, namely extracellular matrix (ECM) homeostasis and inflammation. Pathological changes in the ECM of Bruch's membrane have been described in both monogenic IRDs, such as Sorsby fundus dystrophy (SFD) and Doyne honeycomb retinal dystrophy (DHRD), as well as in the genetically complex age-related macular degeneration (AMD) or diabetic retinopathy (DR). Additionally, complement system dysfunction and distorted immune regulation may also represent a common connection between some IRDs and complex retinal degenerations. Through highlighting such overlaps in molecular pathology, this review aims to illuminate how inflammatory processes and ECM homeostasis are linked in the healthy retina and how their interplay may be disturbed in aging as well as in disease.
Collapse
Affiliation(s)
- Fabiola Biasella
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Karolina Plössl
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
| | - Paul N. Baird
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Department of Surgery, Ophthalmology, University of Melbourne, Melbourne, VIC, Australia
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| | - Bernhard H. F. Weber
- Institute of Human Genetics, University of Regensburg, Regensburg, Germany
- Institute of Clinical Human Genetics, University Hospital Regensburg, Regensburg, Germany
- *Correspondence: Paul N. Baird, ; Bernhard H. F. Weber,
| |
Collapse
|
37
|
Simulated Microgravity Influences Immunity-Related Biomarkers in Lung Cancer. Int J Mol Sci 2022; 24:ijms24010155. [PMID: 36613598 PMCID: PMC9820811 DOI: 10.3390/ijms24010155] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/28/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Microgravity is a novel strategy that may serve as a complementary tool to develop future cancer therapies. In lung cancer, the influence of microgravity on cellular processes and the migratory capacity of cells is well addressed. However, its effect on the mechanisms that drive lung cancer progression remains in their infancy. In this study, 13 differentially expressed genes were shown to be associated with the prognosis of lung cancer under simulated microgravity (SMG). Using gene set enrichment analysis, these genes are enriched in humoral immunity pathways. In lieu, alveolar basal-epithelial (A549) cells were exposed to SMG via a 2D clinostat system in vitro. In addition to morphology change and decrease in proliferation rate, SMG reverted the epithelial-to-mesenchymal transition (EMT) phenotype of A549, a key mechanism in cancer progression. This was evidenced by increased epithelial E-cadherin expression and decreased mesenchymal N-cadherin expression, hence exhibiting a less metastatic state. Interestingly, we observed increased expression of FCGBP, BPIFB, F5, CST1, and CFB and their correlation to EMT under SMG, rendering them potential tumor suppressor biomarkers. Together, these findings reveal new opportunities to establish novel therapeutic strategies for lung cancer treatment.
Collapse
|
38
|
Sai S, Yamada T, Ito K, Kanematsu N, Suzuki M, Hayashi M, Koto M. Carbon-ion beam irradiation in combination with cisplatin effectively suppresses xenografted malignant pleural mesothelioma. Am J Cancer Res 2022; 12:5657-5667. [PMID: 36628287 PMCID: PMC9827089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/12/2023] Open
Abstract
Malignant pleural mesothelioma (MPM) is a rare aggressive cancer. This study investigated the growth-inhibitory effects of the combination of carbon ion beam irradiation (IR) and cisplatin (CDDP) on MPM xenografts. Carbon-ion beam IR at 15 Gy effectively inhibited tumor growth and decreased the tumor volume more than 90% after 9 weeks. However, tumor regrowth was observed after 17 weeks. The combination of carbon-ion beam IR (15 Gy) and CDDP significantly suppressed tumor growth after 9 weeks, with tumor regression being observed for more than 18 weeks. In contrast, X-ray IR (30 Gy) alone or in combination with CDDP effectively suppressed tumor growth and decreased the tumor volume after 11 weeks, but tumor growth was observed after 15 weeks. Carbon-ion beam IR at 25 Gy resulted in complete tumor regression without tumor regrowth in the 20-week follow-up period. Histopathological analysis revealed that combination of carbon-ion beam IR and CDDP exerted effective cytotoxic effects on MPM xenograft tumor cells and significantly promoted tumor cell necrosis, cavitation, and fibrosis when compared with individual treatment with carbon-ion beam, X-ray IR, or CDDP. Immunohistochemical analysis revealed that the expression levels of tumor cell migration and invasion-related proteins such as CXCL12, MMP2 and MMP9 were not significantly affected upon low dose (15 Gy) carbon-ion beam IR alone or in combination with CDDP but were markedly upregulated upon treatment with CDDP alone relative to control. However, IR with a high dose (25 Gy) carbon-ion beam inhibited tumor growth without upregulating these proteins. In conclusion, the combination of IR with a low dose (15 Gy) carbon ion beam and CDDP effectively suppressed MPM tumor in vivo without significantly upregulating CXCL12, MMP2 and MMP9, suggesting that combination therapy of carbon ion beam IR and chemotherapy is a promising therapeutic strategy for MPM.
Collapse
Affiliation(s)
- Sei Sai
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Taiju Yamada
- QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| | - Keiko Ito
- Department of Advanced Nuclear Medicine Sciences, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Nobuyuki Kanematsu
- Department of Accelerator and Medical Physics, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Masao Suzuki
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan
| | - Mitsuhiro Hayashi
- Syneos Health Clinical K.K.1-2-70 Konan, Minato-ku, Tokyo 108-0075, Japan
| | - Masashi Koto
- Department of Charged Particle Therapy Research, Institute of Quantum Medical Science, National Institutes for Quantum Science and TechnologyChiba, Japan,QST Hospital, National Institutes for Quantum and Radiological Science and TechnologyChiba, Japan
| |
Collapse
|
39
|
A Biflavonoid-Rich Extract from Selaginella doederleinii Hieron. against Throat Carcinoma via Akt/Bad and IKKβ/NF-κB/COX-2 Pathways. Pharmaceuticals (Basel) 2022; 15:ph15121505. [PMID: 36558956 PMCID: PMC9785591 DOI: 10.3390/ph15121505] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Revised: 11/28/2022] [Accepted: 11/30/2022] [Indexed: 12/12/2022] Open
Abstract
Selaginella doederleinii Hieron. is a common pharmacological plant, and this folk herbal medicine and its complex preparations have been widely used for the treatment of throat carcinoma (TC) and several associated complications in traditional Chinese medicine. This study was aimed at investigating the specific anti-throat carcinoma impacts and potential mechanisms of a biflavonoid-rich extract from S. doederleinii (SD-BFRE). The phytochemical profiling of SD-BFRE was performed by HPLC-ESI-QTOF-MS and UPLC-PDA, and the detailed pharmacological effects and mechanisms were respectively evaluated in vitro and in vivo. MTT assay, the Transwell assay and flow cytometry were performed to evaluate the abilities of SD-BFRE on inhibiting cell infiltrative growth in TC cells (Hep-2 and FaDu) in in vitro experiments. In vivo experiments used Hep-2 tumor-bearing nude mice to evaluate the anti-TC effect of SD-BFRE. Western blotting was used to explore the potential apoptotic pathway of TC cells. Here, we found that SD-BFRE exhibited anti-proliferation and pro-apoptotic effects in TC cells. Mechanistic studies have identified that SD-BFRE can suppress the activity of IKKβ and IκB-α kinase and then down-regulate the effector proteins of NF-κB/COX-2 signaling. Moreover, SD-BFRE induced apoptosis partly by regulating the Akt/Bad/caspase signaling pathway. Taken together, this study firstly demonstrated that SD-BFRE exerted its anti-TC effects by way of IKKβ/NF-κB/COX-2 and Akt/Bad pathways and might represent a potential chemotherapeutic agent for throat carcinoma.
Collapse
|
40
|
Shrestha A, Lahooti B, Mikelis CM, Mattheolabakis G. Chlorotoxin and Lung Cancer: A Targeting Perspective for Drug Delivery. Pharmaceutics 2022; 14:pharmaceutics14122613. [PMID: 36559106 PMCID: PMC9786857 DOI: 10.3390/pharmaceutics14122613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Revised: 11/11/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
Abstract
In the generational evolution of nano-based drug delivery carriers, active targeting has been a major milestone for improved and selective drug accumulation in tissues and cell types beyond the existing passive targeting capabilities. Among the various active targeting moieties, chlorotoxin, a peptide extracted from scorpions, demonstrated promising tumor cell accumulation and selection. With lung cancer being among the leading diagnoses of cancer-related deaths in both men and women, novel therapeutic methodologies utilizing nanotechnology for drug delivery emerged. Given chlorotoxin's promising biological activity, we explore its potential against lung cancer and its utilization for active targeting against this cancer's tumor cells. Our analysis indicates that despite the extensive chlorotoxin's research against glioblastoma, lung cancer research with the molecule has been limited, despite some promising early results.
Collapse
Affiliation(s)
- Archana Shrestha
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
| | - Behnaz Lahooti
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
| | - Constantinos M. Mikelis
- Department of Pharmaceutical Sciences, School of Pharmacy, Texas Tech University Health Sciences Center, Amarillo, TX 79106, USA
- Laboratory of Molecular Pharmacology, Department of Pharmacy, University of Patras, 26504 Patras, Greece
| | - George Mattheolabakis
- School of Basic Pharmaceutical and Toxicological Sciences, College of Pharmacy, University of Louisiana at Monroe, Monroe, LA 71209, USA
- Correspondence:
| |
Collapse
|
41
|
Machado ART, Tuttis K, Santos PWDS, Aissa AF, Antunes LMG. Diallyl Disulfide Induces Chemosensitization to Sorafenib, Autophagy, and Cell Cycle Arrest and Inhibits Invasion in Hepatocellular Carcinoma. Pharmaceutics 2022; 14:pharmaceutics14122582. [PMID: 36559076 PMCID: PMC9788602 DOI: 10.3390/pharmaceutics14122582] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/09/2022] [Accepted: 11/17/2022] [Indexed: 11/25/2022] Open
Abstract
Hepatocellular carcinoma is the seventh most common type of cancer in the world, with limited treatment options. A promising strategy to treat cancer is to associate chemotherapeutics and plant bioactive compounds. Here, we examined whether diallyl disulfide (DADS; 50-200 μM) and sorafenib (SORA; 8 μM), either alone or in combination, were toxic to hepatocellular carcinoma cells (HepG2) in vitro. We assessed whether DADS and/or SORA induced cell death (LIVE/DEAD assay and autophagy) and cell cycle changes (flow cytometry), altered expression of key genes and proteins (RT-qPCR and Western blot), and modulated tumorigenesis signatures, such as proliferation (clonogenic assay), migration (wound healing), and invasion (inserts). The DADS + SORA combination elicited autophagic cell death by upregulating LC3 and NRF2 expression and downregulating FOS and TNF expression; induced the accumulation of cells in the G1 phase which thereby upregulated the CHEK2 expression; and inhibited invasion by downregulating the MMP2 expression. Predictive analysis indicated the participation of the MAPK pathway in the reported results. The DADS + SORA combination suppressed both cell invasion and clonogenic survival, which indicated that it dampened tumor growth, proliferation, invasion, and metastatic potential. Therefore, the DADS + SORA combination is a promising therapy to develop new clinical protocols.
Collapse
Affiliation(s)
- Ana Rita Thomazela Machado
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Katiuska Tuttis
- Department of Genetics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Patrick Wellington da Silva Santos
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
| | - Alexandre Ferro Aissa
- Institute of Biomedical Sciences, Federal University of Alfenas, Alfenas 37130-001, MG, Brazil
| | - Lusânia Maria Greggi Antunes
- Department of Clinical Analyses, Toxicology and Food Science, School of Pharmaceutical Sciences of Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-904, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-4725
| |
Collapse
|
42
|
Zhang Y, Zhong Q, Luo X, Zhang W. Effects of Tegafur, Gimeracil and Oteracil Potassium Capsules combined with Calf Spleen Extractive Injection on serum VEGF and MMP-9 in patients with advanced gastric cancer. Am J Transl Res 2022; 14:7969-7976. [PMID: 36505301 PMCID: PMC9730097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 09/21/2022] [Indexed: 12/15/2022]
Abstract
OBJECTIVE To explore the effects of Tegafur, Gimeracil and Oteracil Potassium Capsules (TGOPC) combined with Calf Spleen Extractive Injection (CSEI) on vascular endothelial growth factor (VEGF) and matrix metalloproteinase-9 (MMP-9) in patients with advanced gastric cancer. METHODS A retrospective analysis was conducted on data of 118 patients with advanced gastric cancer treated in Anyang Tumor Hospital from January 2016 to September 2018. The patients were divided into two groups according to treatment modalities, with control group receiving Oxaliplatin and TGOPC and observation group receiving Oxaliplatin, TGOPC and CSEI. Clinical efficacy, changes of serum VEGF and MMP-9 before and after chemotherapy, survival rate and incidence of adverse reactions were compared between the two groups. RESULTS The number of responded patients was 36 (61.02%) in the observation group and was 18 (30.51%) in the control group (P<0.05). The levels of serum VEGF and MMP-9, and incidence of nausea and vomiting in the observation group were lower than those in the control group (P<0.05). The 1-year and 2-year survival rates in the observation group were higher than those in the control group (P<0.05). CONCLUSION The use of CSEI on the basis of Oxaliplatin combined with TGOPC chemotherapy for the treatment of advanced gastric cancer could further improve the clinical efficacy and survival rate, and reduce the incidence of adverse reactions.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Gastroenterology, Xiamen Humanity Hospital, Fujian Medical UniversityXiamen, Fujian, China,Department of Gastroenterology, Beijing Pinggu HospitalBeijing, China
| | - Qiang Zhong
- Department of Anesthesiology, Xiang’an Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Xiaochun Luo
- Center for Digestive Endoscopy, Xiang’an Hospital of Xiamen UniversityXiamen, Fujian, China
| | - Wei Zhang
- The First Department of Surgery, Anyang Tumor HospitalAnyang, Henan, China
| |
Collapse
|
43
|
Xu M, Zhang T, Xia R, Wei Y, Wei X. Targeting the tumor stroma for cancer therapy. Mol Cancer 2022; 21:208. [PMID: 36324128 PMCID: PMC9628074 DOI: 10.1186/s12943-022-01670-1] [Citation(s) in RCA: 93] [Impact Index Per Article: 46.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 10/13/2022] [Accepted: 10/13/2022] [Indexed: 11/06/2022] Open
Abstract
Tumors are comprised of both cancer cells and surrounding stromal components. As an essential part of the tumor microenvironment, the tumor stroma is highly dynamic, heterogeneous and commonly tumor-type specific, and it mainly includes noncellular compositions such as the extracellular matrix and the unique cancer-associated vascular system as well as a wide variety of cellular components including activated cancer-associated fibroblasts, mesenchymal stromal cells, pericytes. All these elements operate with each other in a coordinated fashion and collectively promote cancer initiation, progression, metastasis and therapeutic resistance. Over the past few decades, numerous studies have been conducted to study the interaction and crosstalk between stromal components and neoplastic cells. Meanwhile, we have also witnessed an exponential increase in the investigation and recognition of the critical roles of tumor stroma in solid tumors. A series of clinical trials targeting the tumor stroma have been launched continually. In this review, we introduce and discuss current advances in the understanding of various stromal elements and their roles in cancers. We also elaborate on potential novel approaches for tumor-stroma-based therapeutic targeting, with the aim to promote the leap from bench to bedside.
Collapse
Affiliation(s)
- Maosen Xu
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Tao Zhang
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Ruolan Xia
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Yuquan Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China
| | - Xiawei Wei
- Laboratory of Aging Research and Cancer Drug Target, State Key Laboratory of Biotherapy, West China Hospital, National Clinical Research Center for Geriatrics, Sichuan University, No. 17, Block 3, Southern Renmin Road, 610041, Chengdu, Sichuan, PR China.
| |
Collapse
|
44
|
Cruz-Gálvez CC, Ordaz-Favila JC, Villar-Calvo VM, Cancino-Marentes ME, Bosch-Canto V. Retinoblastoma: Review and new insights. Front Oncol 2022; 12:963780. [PMID: 36408154 PMCID: PMC9670800 DOI: 10.3389/fonc.2022.963780] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Retinoblastoma (Rb), the most frequent malignant intraocular tumor in childhood, is caused by mutations in the retinoblastoma gene (RB1) situated on chromosome 13q14.2. The incidence of retinoblastoma is approximately 1 in 17,000 live births with approximately 8,000 new cases diagnosed each year worldwide. Rb is the prototypical hereditary cancer in humans. Autosomal dominant inheritance is seen in 30-40% of cases whereas the non-inherited sporadic type accounts for the remaining 60-70%. Rb arises due to inactivation of both alleles of the Rb tumor suppressor gene, which results in a defective Rb protein (pRB) with subsequent cell cycle impairment and uncontrolled cell proliferation. Patients with Rb have survival rates higher than 95-98% in industrialized countries but mortality remains high in developing countries. For example, the mortality rate in Africa is 70%. In all cases of intraocular and extraocular retinoblastoma, there is a need for new therapies that are more effective and carry less risk of toxicity. The Bruckner test is a practical and easy test for the detection of Rb, this test consists of assessing the fundus reflex through the pupil (red reflex) in both eyes simultaneously with a bright coaxial light produced with the direct ophthalmoscope. Rb can be detected by the Bruckner test showing a pupil that shines white or “Leukocoria”. Although the diagnosis of Rb remains essentially clinical, the newly identified biomarkers could contribute to early molecular detection, timely detection of micrometastases and establish new therapeutic options for Rb.
Collapse
Affiliation(s)
- Claudia Carolina Cruz-Gálvez
- Physiology Department, Centro Universitario de Ciencias de la Salud, Universidad de Guadalajara, Guadalajara, Mexico
| | - Juan Carlos Ordaz-Favila
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
| | | | | | - Vanessa Bosch-Canto
- Pediatric Ophthalmology, Instituto Nacional de Pediatría, Universidad Autónoma de México, México City, Mexico
- *Correspondence: Vanessa Bosch-Canto,
| |
Collapse
|
45
|
Nerve Growth Factor and Burn Wound Healing: Update of Molecular Interactions with Skin Cells. Burns 2022:S0305-4179(22)00282-0. [DOI: 10.1016/j.burns.2022.11.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 10/19/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
|
46
|
Yu S, E C, Yang J. STAM binding protein regulated by hsa_circ_0007334 exerts oncogenic potential in pancreatic cancer. Pancreatology 2022; 22:1003-1012. [PMID: 36089485 DOI: 10.1016/j.pan.2022.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 08/12/2022] [Accepted: 08/18/2022] [Indexed: 12/24/2022]
Abstract
BACKGROUND Pancreatic cancer (PC) is a highly aggressive and metastatic malignancy. The molecular events related to PC have not yet been fully elucidated. The STAM binding protein (STAMBP), a deubiquitinase, contributes to carcinogenesis in several types of cancer. Our study aims to investigate the function of STAMBP in the progression of PC. METHODS Fifteen pairs of tumor and tumor-adjacent tissues were obtained from PC patients. Human pancreatic cancer cell lines, SW 1990 and BxPC-3, were transfected with short hairpin RNA targeting STAMBP or/and vectors overexpressing wild-type STAMBP or STAMBP D348A mutants (inactive mutants of STAMBP). SW 1990 cells were co-transfected with vectors overexpressing STAMBP and small interfering RNA targeting hsa_circ_0007334. RESULTS STAMBP was overexpressed in the tumor tissues as compared with the tumor-adjacent tissues from PC patients. Higher STAMBP expression in the tumor tissues showed worse prognosis. Loss/gain-of-function experiments revealed that STAMBP promoted the malignant behaviors of PC cells in vitro and xenograft tumor growth in vivo. Activation of NF-κB in PC cells was triggered by STAMBP. However, inactive mutants of STAMBP lost these biological functions in PC. hsa_circ_0007334, an oncogene in PC progression, was found to up-regulate STAMBP expression in PC cells. STAMBP up-regulation reversed the effects of hsa_circ_0007334 silencing on cell mobility. CONCLUSIONS These results indicated that STAMBP depended on its deubiquitinase activities to induce the malignant behaviors of PC cells and was involved in the regulatory mechanism of hsa_circ_0007334 on PC cell mobility. Our findings provide a novel insight into the molecular mechanism of PC.
Collapse
Affiliation(s)
- Shan Yu
- Department of Neurology, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Changyong E
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China
| | - Jinghui Yang
- Department of Hepatobiliary and Pancreatic Surgery, China-Japan Union Hospital of Jilin University, Changchun, Jilin, PR China.
| |
Collapse
|
47
|
Kang MS, Xin Khoo JY, Jia Z, Loh TP. Development of catalyst-free carbon-sulfur bond formation reactions under aqueous media and their applications. GREEN SYNTHESIS AND CATALYSIS 2022. [DOI: 10.1016/j.gresc.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
|
48
|
A synchronized dual drug delivery molecule targeting cancer stem cells in tumor heterogeneity and metastasis. Biomaterials 2022; 289:121781. [PMID: 36113331 DOI: 10.1016/j.biomaterials.2022.121781] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 08/17/2022] [Accepted: 08/28/2022] [Indexed: 11/20/2022]
Abstract
Cancer stem-like cells (CSCs) represent a key barrier to successful therapy for triple-negative breast cancer (TNBC). CSCs promote the emergence of chemoresistance, triggering relapse and resulting in a poor prognosis. We herein present CDF-TM, a new small molecule-based binary prodrug conjugated with SN-38 and 3,4-difluorobenzylidene curcumin (CDF) that is specifically activated in hypoxic conditions. CDF-TM treatment significantly induced apoptosis in TNBC-derived 3D spheroids, accompanied with caspase-3 activation as well as the attenuation of tumor stemness with evidence of reduction in aldehyde dehydrogenase 1 (ALDH1) activity and the CD44high/CD24low phenotype. An in vivo orthotopic allograft model was used to investigate its effects on tumor growth and metastasis. The dissemination of CSCs from primary allografts was impaired by CDF-TM, along with inhibition of tumor growth via eradication of CSCs and downregulation of multidrug resistance 1 (MDR1). This new small molecule-based binary prodrug offers a novel therapeutic option for metastatic TNBC.
Collapse
|
49
|
Singh AK, Kumar S. Naringin dihydrochalcone potentially binds to catalytic domain of matrix metalloproteinase-2: molecular docking, MM-GBSA, and molecular dynamics simulation approach. Nat Prod Res 2022. [DOI: https://doi.org/10.1080/14786419.2022.2118746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|
50
|
Singh AK, Kumar S. Naringin dihydrochalcone potentially binds to catalytic domain of matrix metalloproteinase-2: molecular docking, MM-GBSA, and molecular dynamics simulation approach. Nat Prod Res 2022; 37:1851-1855. [PMID: 36047975 DOI: 10.1080/14786419.2022.2118746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Matrix metalloproteinase-2 (MMP2), an extracellular matrix remodulating protein's increased activity causes cancer-metastasis. Potential MMP2 inhibitors showed sever side-effects in clinical trials. Present study is focused on identification natural MMP2 inhibitor by applying molecular docking, MM-GBSA binding energy estimation and molecular dynamics (MD) simulations. Commercially available flavonoid compound library was used to screen the molecules potentially binding with catalytic domain of MMP2 protein compared to standard MMP2 inhibitor ARP100. Naringin dihydrochalcone (NDC) showed interaction with the important residues (His120, Leu82 and Val117) present at the MMP2 catalytic domain in comparison to known inhibitor ARP100 (dock score ≈ -13 and -8 kcal/mole respectively). Lower ligand-protein binding energy (-67.31 kcal/mole) obtained in MM-GBSA and the MD simulation trajectory analysis showed significant stable and energetically favourable binding of NDC at the catalytic site of MMP2. In conclusion, anti-metastatic potential of NDC should be validated in in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Atul Kumar Singh
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| | - Shashank Kumar
- Molecular Signaling & Drug Discovery Laboratory, Department of Biochemistry, Central University of Punjab, Bathinda, Punjab, India
| |
Collapse
|