1
|
Feng T, Guo X, Chen W, Zhang Y, Dai R, Zhang Y, Liu Y, Liu Y, Song P, Fan J. The protective role of muscone in the development of COPD. Front Immunol 2025; 16:1508879. [PMID: 40034710 PMCID: PMC11872711 DOI: 10.3389/fimmu.2025.1508879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Accepted: 01/27/2025] [Indexed: 03/05/2025] Open
Abstract
Background Muscone, a key component of musk, exhibits anti-inflammatory properties. However, its therapeutic potential in inflammatory lung diseases, such as chronic obstructive pulmonary disease (COPD), remains largely unexplored. This study aimed to investigate whether Muscone could exert a protective effect in a mouse model of COPD in vivo. Methods A COPD animal model was established by exposing mice to cigarette smoke (CS) and administering lipopolysaccharide (LPS) intranasally. After 4 weeks, mice were treated daily with dexamethasone (DEX) or different doses of Muscone for 3 weeks. Mouse body weight, lung function, and histopathology were determined. Serum levels of cytokines (IL-38, IL-1β, IL-17, TGF-β, IFN-γ) were measured using ELISA and qRT-PCR. Lung expression of CXCR3, IFN-γ, IL-17A, and RORγt was assessed by immunofluorescence. Results The body weight of COPD mice was significantly lower than that of Muscone-treated COPD mice, consistent with decreased lung function, accompanied by reduced circulating and lung IL-38 levels. After Muscone administration, lung function was significantly improved, accompanied by upregulation of circulating and lung anti-inflammatory cytokines, including IL-38, in a dose-dependent manner, while the expression of pro-inflammatory cytokines was significantly reduced. Additionally, Muscone significantly inhibited the protein expression of CXCR3, IFN-γ, IL-17A, and RORγt in lung tissues of COPD mice. Conclusion This study demonstrates that Muscone improves lung function in mice with COPD, potentially through a mechanism that may involve the modulation of cytokine expression, including the potential upregulation of anti-inflammatory cytokines such as IL-38. The precise underlying mechanisms of Muscone's therapeutic effects in COPD remain to be fully elucidated. Further research is needed to investigate the correlation between COPD lung pathophysiology and the specific effects of Muscone treatment, including a more detailed analysis of the balance between pro- and anti-inflammatory mediators in COPD animal models, particularly utilizing IL-38 GKO mice to further investigate the role of IL-38 in mediating the therapeutic effects of Muscone.
Collapse
Affiliation(s)
- Tiantian Feng
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Xiaolong Guo
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Wei Chen
- Quality Assurance Department, Lanzhou Institute of Biological Products Co., Ltd, Lanzhou, Gansu, China
| | - Yanying Zhang
- First Clinical Medical College, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Runjing Dai
- Hospital Infection‐Control Department, Xi’an Aerospace General Hospital, Xi’an, Shanxi, China
| | - Yinfang Zhang
- Experiment and Achievement Transformation Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yongqi Liu
- Key Laboratory of Dunhuang Medicine, Ministry of Education, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Yiya Liu
- School of Public Health, Gansu Medical College, Pingliang, Gansu, China
| | - Peng Song
- Experiment and Achievement Transformation Center, Affiliated Hospital of Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| | - Jingchun Fan
- School of Public Health, Centre for Evidence-Based Medicine, Gansu University of Chinese Medicine, Lanzhou, Gansu, China
| |
Collapse
|
2
|
Xie G, Huang C, Jiang S, Li H, Gao Y, Zhang T, Zhang Q, Pavel V, Rahmati M, Li Y. Smoking and osteoimmunology: Understanding the interplay between bone metabolism and immune homeostasis. J Orthop Translat 2024; 46:33-45. [PMID: 38765605 PMCID: PMC11101877 DOI: 10.1016/j.jot.2024.04.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 03/07/2024] [Accepted: 04/10/2024] [Indexed: 05/22/2024] Open
Abstract
Smoking continues to pose a global threat to morbidity and mortality in populations. The detrimental impact of smoking on health and disease includes bone destruction and immune disruption in various diseases. Osteoimmunology, which explores the communication between bone metabolism and immune homeostasis, aims to reveal the interaction between the osteoimmune systems in disease development. Smoking impairs the differentiation of mesenchymal stem cells and osteoblasts in bone formation while promoting osteoclast differentiation in bone resorption. Furthermore, smoking stimulates the Th17 response to increase inflammatory and osteoclastogenic cytokines that promote the receptor activator of NF-κB ligand (RANKL) signaling in osteoclasts, thus exacerbating bone destruction in periodontitis and rheumatoid arthritis. The pro-inflammatory role of smoking is also evident in delayed bone fracture healing and osteoarthritis development. The osteoimmunological therapies are promising in treating periodontitis and rheumatoid arthritis, but further research is still required to block the smoking-induced aggravation in these diseases. Translational potential This review summarizes the adverse effect of smoking on mesenchymal stem cells, osteoblasts, and osteoclasts and elucidates the smoking-induced exacerbation of periodontitis, rheumatoid arthritis, bone fracture healing, and osteoarthritis from an osteoimmune perspective. We also propose the therapeutic potential of osteoimmunological therapies for bone destruction aggravated by smoking.
Collapse
Affiliation(s)
- Guangyang Xie
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Cheng Huang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Shide Jiang
- The Central Hospital of Yongzhou, Yongzhou, 425000, China
| | - Hengzhen Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Yihan Gao
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- Xiangya School of Medicine, Central South University, Changsha 410083, Hunan, China
| | - Tingwei Zhang
- Department of Orthopaedics, Wendeng Zhenggu Hospital of Shandong Province, Weihai, 264400, China
| | - Qidong Zhang
- Department of Orthopeadics, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Masoud Rahmati
- Department of Physical Education and Sport Sciences, Faculty of Literature and Human Sciences, Lorestan University, Khoramabad, Iran
- Department of Physical Education and Sport Sciences, Faculty of Literature and Humanities, Vali-E-Asr University of Rafsanjan, Rafsanjan, Iran
| | - Yusheng Li
- Deparment of Orthopedics, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| |
Collapse
|
3
|
Stone JK, von Muhlinen N, Zhang C, Robles AI, Flis AL, Vega-Valle E, Miyanaga A, Matsumoto M, Greathouse KL, Cooks T, Trinchieri G, Harris CC. Acidovorax temperans skews neutrophil maturation and polarizes Th17 cells to promote lung adenocarcinoma development. Oncogenesis 2024; 13:13. [PMID: 38570533 PMCID: PMC10991269 DOI: 10.1038/s41389-024-00513-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 04/05/2024] Open
Abstract
Change within the intratumoral microbiome is a common feature in lung and other cancers and may influence inflammation and immunity in the tumor microenvironment, affecting growth and metastases. We previously characterized the lung cancer microbiome in patients and identified Acidovorax temperans as enriched in tumors. Here, we instilled A. temperans in an animal model driven by mutant K-ras and Tp53. This revealed A. temperans accelerates tumor development and burden through infiltration of proinflammatory cells. Neutrophils exposed to A. temperans displayed a mature, pro-tumorigenic phenotype with increased cytokine signaling, with a global shift away from IL-1β signaling. Neutrophil to monocyte and macrophage signaling upregulated MHC II to activate CD4+ T cells, polarizing them to an IL-17A+ phenotype detectable in CD4+ and γδ populations (T17). These T17 cells shared a common gene expression program predictive of poor survival in human LUAD. These data indicate bacterial exposure promotes tumor growth by modulating inflammation.
Collapse
Affiliation(s)
- Joshua K Stone
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Natalia von Muhlinen
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Chenran Zhang
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Ana I Robles
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Amy L Flis
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Eleazar Vega-Valle
- Laboratory Animal Science Program, Laboratory of Human Carcinogenesis, Leidos Biomedical Research, Frederick National Laboratory for Cancer Research, Frederick, MD, 21702, USA
| | - Akihiko Miyanaga
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Masaru Matsumoto
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - K Leigh Greathouse
- Human Science and Design, Robbins College of Health and Human Sciences, Baylor University, Waco, TX, 76798, USA
| | - Tomer Cooks
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Giorgio Trinchieri
- Laboratory of Integrative Cancer Immunology, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Curtis C Harris
- Laboratory of Human Carcinogenesis, Center for Cancer Research, National Cancer Institute, Bethesda, MD, 20892, USA.
| |
Collapse
|
4
|
Xiong K, Ao K, Wei W, Dong J, Li J, Yang Y, Tang B, Li Y. Periodontitis aggravates COPD through the activation of γδ T cell and M2 macrophage. mSystems 2024; 9:e0057223. [PMID: 38214520 PMCID: PMC10878042 DOI: 10.1128/msystems.00572-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 12/04/2023] [Indexed: 01/13/2024] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is a chronic systemic inflammatory disease with high morbidity and mortality. Periodontitis exacerbates COPD progression; however, the immune mechanisms by which periodontitis affects COPD remain unclear. Here, by constructing periodontitis and COPD mouse models, we demonstrated that periodontitis and COPD could mutually aggravate disease progression. For the first time, we found that the progression was associated with the activation of γδ T cells and M2 macrophages, and M2 polarization of macrophages was affected by γδ T cells activation. In the lung tissues of COPD with periodontitis, the activation of γδ T cells finally led to the increase of IL 17 and IFN γ expression and M2 macrophage polarization. Furthermore, we found that the periodontitis-associated bacteria Porphyromonas gingivalis (P. gingivalis) promoted the activation of γδ T cells and M2 macrophages ex vivo. The data from clinical bronchoalveolar lavage fluid (BALF) samples were consistent with the in vivo and ex vivo experiments. For the first time, our results identified the crucial role of γδ T-M2 immune mechanism in mediating periodontitis-promoted COPD progression. Therefore, targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.IMPORTANCEPeriodontitis exacerbates chronic obstructive pulmonary disease (COPD) progression. For the first time, the current study identified that the impact of periodontitis on COPD progression was associated with the activation of γδ T cells and M2 macrophages and that M2 polarization of macrophages was affected by γδ T cells activation. The results indicated that targeting at periodontitis treatment and the γδ T-M2 immune mechanism might provide a new practical strategy for COPD prevention or control.
Collapse
Affiliation(s)
- Kaixin Xiong
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Keping Ao
- Department of Laboratory Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Wei Wei
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Prosthodontics, Beijing Stomatological Hospital, School of Stomatology, Capital Medical University, Beijing, China
| | - Jiajia Dong
- Department of Pulmonary and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Jia Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yutao Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Boyu Tang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
- Department of Conservation Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yan Li
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
5
|
Najar M, Rahmani S, Faour WH, Alsabri SG, Lombard CA, Fayyad-Kazan H, Sokal EM, Merimi M, Fahmi H. Umbilical Cord Mesenchymal Stromal/Stem Cells and Their Interplay with Th-17 Cell Response Pathway. Cells 2024; 13:169. [PMID: 38247860 PMCID: PMC10814115 DOI: 10.3390/cells13020169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Revised: 12/30/2023] [Accepted: 01/09/2024] [Indexed: 01/23/2024] Open
Abstract
As a form of immunomodulatory therapeutics, mesenchymal stromal/stem cells (MSCs) from umbilical cord (UC) tissue were assessed for their dynamic interplay with the Th-17 immune response pathway. UC-MSCs were able to modulate lymphocyte response by promoting a Th-17-like profile. Such modulation depended on the cell ratio of the cocultures as well as the presence of an inflammatory setting underlying their plasticity. UC-MSCs significantly increased the expression of IL-17A and RORγt but differentially modulated T cell expression of IL-23R. In parallel, the secretion profile of the fifteen factors (IL1β, IL-4, IL-6, IL-10, IL-17A, IL-17F, IL-22, IL-21, IL-23, IL-25, IL-31, IL-33, INF-γ, sCD40, and TNF-α) involved in the Th-17 immune response pathway was substantially altered during these cocultures. The modulation of these factors demonstrates the capacity of UC-MSCs to sense and actively respond to tissue challenges. Protein network and functional enrichment analysis indicated that several biological processes, molecular functions, and cellular components linked to distinct Th-17 signaling interactions are involved in several trophic, inflammatory, and immune network responses. These immunological changes and interactions with the Th-17 pathway are likely critical to tissue healing and may help to identify molecular targets that will improve therapeutic strategies involving UC-MSCs.
Collapse
Affiliation(s)
- Mehdi Najar
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
- Faculty of Medicine, Université Libre de Bruxelles, 1070 Brussels, Belgium
| | - Saida Rahmani
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Wissam H. Faour
- Gilbert and Rose-Marie Chagoury School of Medicine, Lebanese American University, P.O. Box 36, Byblos 5053, Lebanon
| | - Sami G. Alsabri
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| | - Catherine A. Lombard
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Hussein Fayyad-Kazan
- Laboratory of Cancer Biology and Molecular Immunology, Faculty of Sciences-I, Lebanese University, P.O. Box 6573/14, Beirut 1103, Lebanon
| | - Etienne M. Sokal
- Laboratory of Pediatric Hepatology and Cell Therapy, Institut de Recherche Expérimentale et Clinique (IREC), Université Catholique de Louvain, 1200 Brussels, Belgium
| | - Makram Merimi
- LBBES Laboratory, Genetics and Immune Cell Therapy Unit, Faculty of Sciences, University Mohammed Premier, Oujda 60000, Morocco
| | - Hassan Fahmi
- Osteoarthritis Research Unit, Department of Medicine, University of Montreal Hospital Research Center (CRCHUM), Montreal, QC H2X 0A9, Canada
| |
Collapse
|
6
|
Zhang X, Li X, Ma W, Liu F, Huang P, Wei L, Li L, Qian Y. Astragaloside IV restores Th17/Treg balance via inhibiting CXCR4 to improve chronic obstructive pulmonary disease. Immunopharmacol Immunotoxicol 2023; 45:682-691. [PMID: 37417915 DOI: 10.1080/08923973.2023.2228479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 06/18/2023] [Indexed: 07/08/2023]
Abstract
BACKGROUND Chronic obstructive pulmonary disease (COPD) has a high fatality rate and poses a great threat to human health. Astragaloside IV (AS-IV) is proven to attenuate cigarette smoke (CS)-induced pulmonary inflammation, based on which this research focuses on the mechanism of AS-IV in COPD. METHODS To evaluate the effects of AS-IV, CD4+ T cells received different concentrations of AS-IV. CD4+ T cell viability, T helper 17 (Th17)/regulatory T (Treg) markers and CXCR4 expressions in CD4+ T cells or spleen/lung tissues were detected by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide assay, quantitative real-time polymerase chain reaction and Western blot. The proportions of Treg and Th17 cells were assessed by flow cytometry. Enzyme-linked immune sorbent assay was employed to determine cytokine contents in serum and lung tissues. RESULTS AS-IV with concentration exceeding 40 µM inhibited CD4+ T cell viability. In vitro, AS-IV suppressed the expressions of CXCR4, retinoid-related orphan receptor γt (RORγt), and interleukin (IL)-17A as well as Th17 cells but promoted the expressions of forkhead box p3 (Foxp3) and IL-10 as well as Treg cells, while CXCR4 overexpression reversed the effects of AS-IV. In vivo, AS-IV alleviated COPD, and CS-induced Th17/Treg imbalance in mice and reduced CS-induced down-regulation of IL-10 in serum and lung tissues and Foxp3 and up-regulation of IL-1β, tumor necrosis factor alpha (TNF-α), IL-6, and IL-17A in serum and lung tissues and RORγt. AS-IV mitigated CS-induced CXCR4 up-regulation. Above effects of AS-IV on mice were offset by CXCR4 overexpression. CONCLUSIONS AS-IV restores Th17/Treg balance via impeding CXCR4 to ameliorate COPD.
Collapse
Affiliation(s)
- Xiulian Zhang
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xueliang Li
- Department of Internal Medicine of Traditional Chinese Medicine, Baoshan Branch of Renji Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wei Ma
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fangying Liu
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Pinxian Huang
- School of Basic Medical, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lei Wei
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Li Li
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yechang Qian
- Department of Respiratory Medicine, Baoshan Branch of Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
7
|
Yin Y, Ouyang S, Li Q, Du Y, Xiong S, Zhang M, Wang W, Zhang T, Liu C, Gao Y. Salivary interleukin-17A and interferon-γ levels are elevated in children with food allergies in China. Front Immunol 2023; 14:1232187. [PMID: 38090557 PMCID: PMC10715589 DOI: 10.3389/fimmu.2023.1232187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Introduction Food allergies have a substantial impact on patient health, but their mechanisms are poorly understood, and strategies for diagnosing, preventing, and treating food allergies are not optimal. This study explored the levels of and relationship between IL-17A and IFN-γ in the saliva of children with food allergies, which will form the basis for further mechanistic discoveries as well as prevention and treatment measures for food allergies. Methods A case-control study with 1:1 matching was designed. Based on the inclusion criteria, 20 case-control pairs were selected from patients at the Skin and Allergy Clinic and children of employees. IL-17A and IFN-γ levels in saliva were measured with a Luminex 200 instrument. A general linear model was used to analyze whether the salivary IL-17A and IFN-γ levels in the food allergy group differed from those in the control group. Results The general linear model showed a significant main effect of group (allergy vs. healthy) on the levels of IL-17A and IFN-γ. The mean IL-17A level (0.97 ± 0.09 pg/ml) in the food allergy group was higher than that in the healthy group (0.69 ± 0.09 pg/ml). The mean IFN-γ level (3.0 ± 0.43 pg/ml) in the food allergy group was significantly higher than that in the healthy group (1.38 ± 0.43 pg/ml). IL-17A levels were significantly positively related to IFN-γ levels in children with food allergies (r=0.79) and in healthy children (r=0.98). Discussion The salivary IL-17A and IFN-γ levels in children with food allergies were higher than those in healthy children. This finding provides a basis for research on new methods of diagnosing food allergies and measuring the effectiveness of treatment.
Collapse
Affiliation(s)
- Yan Yin
- Department of Integrated Early Childhood Development, Capital Institute of Pediatrics, Beijing, China
| | - Shengrong Ouyang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Qin Li
- Environmental Standards Institute, Chinese Research Academy of Environmental Sciences, Beijing, China
| | - Yuyang Du
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Shiqiu Xiong
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Min Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Wei Wang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Ting Zhang
- Department of Biochemistry and Immunology, Capital Institute of Pediatrics, Beijing, China
| | - Chuanhe Liu
- Department of Allergy, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| | - Ying Gao
- Department of Dermatology, Affiliated Children’s Hospital of Capital Institute of Pediatrics, Beijing, China
| |
Collapse
|
8
|
Mannion JM, McLoughlin RM, Lalor SJ. The Airway Microbiome-IL-17 Axis: a Critical Regulator of Chronic Inflammatory Disease. Clin Rev Allergy Immunol 2023; 64:161-178. [PMID: 35275333 PMCID: PMC10017631 DOI: 10.1007/s12016-022-08928-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/11/2022] [Indexed: 02/07/2023]
Abstract
The respiratory tract is home to a diverse microbial community whose influence on local and systemic immune responses is only beginning to be appreciated. Increasing reports have linked changes in this microbiome to a range of pulmonary and extrapulmonary disorders, including asthma, chronic obstructive pulmonary disease and rheumatoid arthritis. Central to many of these findings is the role of IL-17-type immunity as an important driver of inflammation. Despite the crucial role played by IL-17-mediated immune responses in protection against infection, overt Th17 cell responses have been implicated in the pathogenesis of several chronic inflammatory diseases. However, our knowledge of the influence of bacteria that commonly colonise the respiratory tract on IL-17-driven inflammatory responses remains sparse. In this article, we review the current knowledge on the role of specific members of the airway microbiota in the modulation of IL-17-type immunity and discuss how this line of research may support the testing of susceptible individuals and targeting of inflammation at its earliest stages in the hope of preventing the development of chronic disease.
Collapse
Affiliation(s)
- Jenny M Mannion
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Rachel M McLoughlin
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College Dublin, Dublin, Ireland
| | - Stephen J Lalor
- UCD School of Medicine, Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland.
| |
Collapse
|
9
|
Islam M, Sevak JK, Sharma MK, Jindal A, Vyas AK, Bajpai M, Ramakrishna G, Sarin SK, Trehanpati N. Immune predictors of hepatitis B surface antigen seroconversion in patients with hepatitis B reactivation. Aliment Pharmacol Ther 2023; 57:689-708. [PMID: 36411952 DOI: 10.1111/apt.17306] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 09/16/2022] [Accepted: 11/03/2022] [Indexed: 11/23/2022]
Abstract
BACKGROUND Hepatitis B surface antigen (HBsAg) seroconversion is sometimes observed in hepatitis B reactivation (rHBV), probably due to immune resetting and differentiation. AIMS To investigate sequential immune differentiation and abrogation of tolerance in patients with rHBV who achieved HBsAg seroconversion. METHODS We included 19 patients with chronic hepatitis B (CHBV; HBV DNA log103-8 ), 67 with rHBV (raised ALT [>5XULN], HBV DNAlog104-8 ) and 10 healthy controls. Immune differentiation, tolerance and functional status of CD4, CD8, T regulatory cells (Tregs), B cells and follicular T helper (Tfh) cells were assessed at baseline and 24 weeks. RESULTS At 24 weeks, 81% rHBV (n = 67) lost HBV DNA and HBeAg (41%), and 12 (19%) lost HBsAg and made anti-HBs titers >10 IU/ml. rHBV patients had higher Th1/17, TEM , Tfh, Tfh1/17, plasma and ATM B cells, and lower Tregs, Th2, Th17 and TEMRA expression. rHBV showed lower PD1, TIM3, LAG3, SLAM and TOX compared to CHBV. There was a significant increase in CD8, CD8EM, Tfh, Tfh1/17 and plasma B cells in seroconverters than non-seroconverters. At 24 weeks, we also observed increased plasma B cell frequency in seroconverters. While non-seroconverters showed higher expression of PD1, TIM3, LAG3, SLAM and TOX on CD4/CD8 T cells, blockade of PD1, TIM3, LAG3 and CTLA4 significantly enhanced IFN-γ, TNF-α, IL-4 and IL-21 expression on CD4/CD8 and Tfh cells in non-seroconverters. CONCLUSIONS Non-seroconverters have increased inhibitory markers on CD4/CD8 T cells. There is a critical play of CD8, Tfh and B cells and subsets in seroclearance, along with checkpoint molecules as a potential therapy for non-seroconverters in HBV infection.
Collapse
Affiliation(s)
- Mojahidul Islam
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Jayesh Kumar Sevak
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Manoj Kumar Sharma
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ankur Jindal
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Ashish Kumar Vyas
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Meenu Bajpai
- Department of Transfusion Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Gayatri Ramakrishna
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Shiv Kumar Sarin
- Department of Hepatology, Institute of Liver & Biliary Sciences, New Delhi, India
| | - Nirupma Trehanpati
- Departments of Molecular and Cellular Medicine, Institute of Liver & Biliary Sciences, New Delhi, India
| |
Collapse
|
10
|
Gaurav R, Poole JA. Interleukin (IL)-33 immunobiology in asthma and airway inflammatory diseases. J Asthma 2022; 59:2530-2538. [PMID: 34928757 PMCID: PMC9234100 DOI: 10.1080/02770903.2021.2020815] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Revised: 12/14/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022]
Abstract
OBJECTIVE Identify key features of IL-33 immunobiology important in allergic and nonallergic airway inflammatory diseases and potential therapeutic strategies to reduce disease burden. DATA SOURCES PubMed, clinicaltrials.gov. STUDY SELECTIONS A systematic and focused literature search was conducted of PubMed from March 2021 to December 2021 using keywords to either PubMed or BioMed Explorer including IL-33/ST2, genetic polymorphisms, transcription, translation, post-translation modification, nuclear protein, allergy, asthma, and lung disease. Clinical trial information on IL-33 was extracted from clinicaltrials.gov in August 2021. RESULTS In total, 72 publications with relevance to IL-33 immunobiology and/or clinical lung disease were identified (allergic airway inflammation/allergic asthma n = 26, non-allergic airway inflammation n = 9, COPD n = 8, lung fibrosis n = 10). IL-33 levels were higher in serum, BALF and/or lungs across inflammatory lung diseases. Eight studies described viral infections and IL-33 and 4 studies related to COVID-19. Mechanistic studies (n = 39) including transcript variants and post-translational modifications related to the immunobiology of IL-33. Single nucleotide polymorphism in IL-33 or ST2 were described in 9 studies (asthma n = 5, inflammatory bowel disease n = 1, mycosis fungoides n = 1, ankylosing spondylitis n = 1, coronary artery disease n = 1). Clinicaltrials.gov search yielded 84 studies of which 17 were related to therapeutic or biomarker relevance in lung disease. CONCLUSION An integral role of IL-33 in the pathogenesis of allergic and nonallergic airway inflammatory disease is evident with several emerging clinical trials investigating therapeutic approaches. Current data support a critical role of IL-33 in damage signaling, repair and regeneration of lungs.
Collapse
Affiliation(s)
- Rohit Gaurav
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| | - Jill A. Poole
- Division of Allergy and Immunology, Department of Internal Medicine, University of Nebraska Medical Center, Omaha, USA
| |
Collapse
|
11
|
Balasa R, Maier S, Hutanu A, Voidazan S, Andone S, Oiaga M, Manu D. Cytokine Secretion Dynamics of Isolated PBMC after Cladribine Exposure in RRMS Patients. Int J Mol Sci 2022; 23:ijms231810262. [PMID: 36142168 PMCID: PMC9499495 DOI: 10.3390/ijms231810262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/03/2022] [Accepted: 09/04/2022] [Indexed: 11/17/2022] Open
Abstract
Cladribine (CLD) treats multiple sclerosis (MS) by selectively and transiently depleting B and T cells with a secondary long-term reconstruction of the immune system. This study provides evidence of CLD’s immunomodulatory role in peripheral blood mononuclear cells (PBMCs) harvested from 40 patients with untreated relapsing-remitting MS (RRMS) exposed to CLD. We quantified cytokine secretion from PBMCs isolated by density gradient centrifugation with Ficoll−Paque using xMAP technology on a FlexMap 3D analyzer with a highly sensitive multiplex immunoassay kit. The PBMC secretory profile was evaluated with and without CLD exposure. PBMCs isolated from patients with RRMS for ≤12 months had significantly higher IL-4 but significantly lower IFN-γ and TNF-α secretion after CLD exposure. PBMCs isolated from patients with RRMS for >12 months had altered inflammatory ratios toward an anti-inflammatory profile and increased IL-4 but decreased TNF-α secretion after CLD exposure. CLD induced nonsignificant changes in IL-17 secretion in both RRMS groups. Our findings reaffirm CLD’s immunomodulatory effect that induces an anti-inflammatory phenotype.
Collapse
Affiliation(s)
- Rodica Balasa
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Smaranda Maier
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Correspondence:
| | - Adina Hutanu
- Department of Laboratory Medicine, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
- Laboratory Medicine, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Septimiu Voidazan
- Department of Epidemiology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| | - Sebastian Andone
- Ist Neurology Clinic, Emergency Clinical County Hospital, 540136 Targu Mures, Romania
- Department of Neurology, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
- Doctoral School, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540142 Targu Mures, Romania
| | - Mirela Oiaga
- Anaesthesiology and Intensive Care Clinic, Emergency Clinical County Hospital Targu Mures, 540136 Targu Mures, Romania
| | - Doina Manu
- Center for Advanced Medical and Pharmaceutical Research, ‘George Emil Palade’ University of Medicine, Pharmacy, Science, and Technology of Targu Mures, 540136 Targu Mures, Romania
| |
Collapse
|
12
|
Fukasawa T, Yoshizaki-Ogawa A, Enomoto A, Miyagawa K, Sato S, Yoshizaki A. Involvement of Molecular Mechanisms between T/B Cells and IL-23: From Palmoplantar Pustulosis to Autoimmune Diseases. Int J Mol Sci 2022; 23:8261. [PMID: 35897837 PMCID: PMC9332852 DOI: 10.3390/ijms23158261] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
Palmoplantar pustulosis (PPP) is a disease that causes recurrent blisters and aseptic pustules on the palms and soles. It has been suggested that both innate and acquired immunity are involved. In particular, based on the tonsils and basic experiments, it has been assumed that T and B cells are involved in its pathogenesis. In addition, the results of clinical trials have suggested that IL-23 is closely related to the pathogenesis. This review describes PPP and the genetic background, the factors involved in the onset and exacerbation of disease and its relation to the molecular mechanism. In addition, we describe the usefulness of biological therapy and its implications in relation to the importance in pathology, the pathogenesis of PPP, the importance of the role of the IL-23-Th17 axis and IL-36 in PPP. Furthermore, we describe an animal experimental model of PPP, the efficacy and mechanism of action of guselkumab, an anti-IL-23 antibody, the latest research, and finally the possibility for it to be effective for other autoimmune diseases.
Collapse
Affiliation(s)
- Takemichi Fukasawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Asako Yoshizaki-Ogawa
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Atsushi Enomoto
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Kiyoshi Miyagawa
- Laboratory of Molecular Radiology, Center for Disease Biology and Integrative Medicine, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (A.E.); (K.M.)
| | - Shinichi Sato
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| | - Ayumi Yoshizaki
- Department of Dermatology, The University of Tokyo Graduate School of Medicine, Tokyo 113-8655, Japan; (T.F.); (A.Y.-O.); (S.S.)
| |
Collapse
|
13
|
Role of CD4+ T and CD8+ T Lymphocytes-Mediated Cellular Immunity in Pathogenesis of Chronic Obstructive Pulmonary Disease. J Immunol Res 2022; 2022:1429213. [PMID: 35785027 PMCID: PMC9242747 DOI: 10.1155/2022/1429213] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 05/11/2022] [Indexed: 11/17/2022] Open
Abstract
This work was to explore the changes of T lymphocyte subsets in peripheral blood of patients with acute exacerbation of chronic obstructive pulmonary disease (COPD) (AECOPD) and the role of cellular immunity mediated in the disease process. Eighty-six patients with AECOPD who visited Qingdao Hiser Medical Center from June 2020 to December 2021 and 30 healthy people (controls) who underwent health examination in the same period were selected. The differences of pulmonary function (PF), arterial blood gas (ABG), blood routine inflammatory indexes, T lymphocyte and T lymphocyte subsets were compared between the two groups, and the correlation between T lymphocyte subsets and each index was analyzed. There were clear differences in PF, ABG, and PB inflammation indexes between AECOPD patients and the controls (P <0.05). Compared with the controls, the CD4+ and CD4+/CD8+ ratio in PB of AECOPD group were obviously decreased, and the CD8+ level was clearly increased (P <0.05); Th1 of CD4+ cell subsets and Tc1 of CD8+ cell subsets were significantly increased, while Th2 of CD4+ cell subsets and Tc2 of CD8+ cell subsets were obviously decreased (P <0.05). However, CD4+ was significantly positively correlated with lung function indexes, and significantly negatively correlated with neutrophils/lymphocytes and high-sensitivity C-reactive protein (P <0.05) and significantly positively correlated with Hs-CRP (P <0.05). In summary, CD4+ and CD8+ T lymphocytes were involved in the occurrence and occurrence of AECOPD, the decrease of CD4+ and the increase of CD8+ may promote the deterioration of COPD.
Collapse
|
14
|
McCluskey D, Benzian-Olsson N, Mahil SK, Hassi NK, Wohnhaas CT, Burden AD, Griffiths CE, Ingram JR, Levell NJ, Parslew R, Pink AE, Reynolds NJ, Warren RB, Visvanathan S, Baum P, Barker JN, Smith CH, Capon F. Single-cell analysis implicates Th17 to Th2 cell plasticity in the pathogenesis of palmoplantar pustulosis. J Allergy Clin Immunol 2022; 150:882-893. [PMID: 35568077 DOI: 10.1016/j.jaci.2022.04.027] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 03/04/2022] [Accepted: 04/20/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND Palmoplantar pustulosis (PPP) is a severe inflammatory skin disorder, characterised by eruptions of painful, neutrophil-filled pustules on the palms and soles. While PPP has a profound effect on quality of life, it remains poorly understood and notoriously difficult to treat. OBJECTIVE We sought to investigate the immune pathways that underlie the pathogenesis of PPP. METHODS We applied bulk- and single-cell RNA-sequencing methods to the analysis of skin biopsies and peripheral blood mononuclear cells. We validated our results by flow cytometry and immune fluorescence microscopy RESULTS: Bulk RNA-sequencing of patient skin detected an unexpected signature of T-cell activation, with a significant overexpression of several Th2 genes typically upregulated in atopic dermatitis. To further explore these findings, we carried out single-cell RNA-sequencing in peripheral blood mononuclear cells of healthy and affected individuals. We found that the memory CD4+T-cells of PPP patients were skewed towards a Th17 phenotype, a phenomenon that was particularly significant among CLA+ skin-homing cells. We also identified a subset of memory CD4+ T-cells which expressed both Th17 (KLRB1/CD161) and Th2 (GATA3) markers, with pseudo-time analysis suggesting that the population was the result of Th17 to Th2 plasticity. Interestingly, the GATA3+/CD161+ cells were over-represented among the PBMCs of affected individuals, both in the scRNA-seq dataset and in independent flow-cytometry experiments. Dual positive cells were also detected in patient skin by means of immune fluorescence microscopy. CONCLUSIONS These observations demonstrate that PPP is associated with complex T-cell activation patterns and may explain why biologics that target individual T-helper populations have shown limited therapeutic efficacy. CLINICAL IMPLICATIONS The simultaneous activation of Th17 and Th2 responses in PPP supports the therapeutic use of agents that inhibit multiple T-cell pathways.
Collapse
Affiliation(s)
- Daniel McCluskey
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Natashia Benzian-Olsson
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Satveer K Mahil
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nina Karoliina Hassi
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | | | | | - A David Burden
- Institute of Infection Immunity and Inflammation, University of Glasgow, Glasgow, UK
| | - Christopher Em Griffiths
- Dermatology Centre, Salford Royal NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK
| | - John R Ingram
- Department of Dermatology, Division of Infection & Immunity, Cardiff University, Cardiff, UK
| | - Nick J Levell
- Norwich Medical School, University of East Anglia, Norwich, UK
| | - Richard Parslew
- Department of Dermatology, Royal Liverpool Hospitals, Liverpool, UK
| | - Andrew E Pink
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Nick J Reynolds
- Translational and Clinical Research Institute, Newcastle University and Department of Dermatology and NIHR Newcastle Biomedical Research Centre, Newcastle Hospitals NHS Foundation Trust, Newcastle upon Tyne, UK
| | - Richard B Warren
- Dermatology Centre, Salford Royal NHS Foundation Trust, NIHR Manchester Biomedical Research Centre, University of Manchester, Manchester, UK
| | | | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Jonathan N Barker
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Catherine H Smith
- St John's Institute of Dermatology, Faculty of Life Sciences and Medicine, King's College London, London, UK
| | - Francesca Capon
- Department of Medical and Molecular Genetics, Faculty of Life Sciences and Medicine, King's College London, London, UK.
| |
Collapse
|
15
|
Littlefield KM, Watson RO, Schneider JM, Neff CP, Yamada E, Zhang M, Campbell TB, Falta MT, Jolley SE, Fontenot AP, Palmer BE. SARS-CoV-2-specific T cells associate with inflammation and reduced lung function in pulmonary post-acute sequalae of SARS-CoV-2. PLoS Pathog 2022; 18:e1010359. [PMID: 35617421 PMCID: PMC9176759 DOI: 10.1371/journal.ppat.1010359] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 06/08/2022] [Accepted: 05/04/2022] [Indexed: 12/05/2022] Open
Abstract
As of January 2022, at least 60 million individuals are estimated to develop post-acute sequelae of SARS-CoV-2 (PASC) after infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). While elevated levels of SARS-CoV-2-specific T cells have been observed in non-specific PASC, little is known about their impact on pulmonary function which is compromised in the majority of these individuals. This study compares frequencies of SARS-CoV-2-specific T cells and inflammatory markers with lung function in participants with pulmonary PASC and resolved COVID-19 (RC). Compared to RC, participants with respiratory PASC had between 6- and 105-fold higher frequencies of IFN-γ- and TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells in peripheral blood, and elevated levels of plasma CRP and IL-6. Importantly, in PASC participants the frequency of TNF-α-producing SARS-CoV-2-specific CD4+ and CD8+ T cells, which exhibited the highest levels of Ki67 indicating they were activity dividing, correlated positively with plasma IL-6 and negatively with measures of lung function, including forced expiratory volume in one second (FEV1), while increased frequencies of IFN-γ-producing SARS-CoV-2-specific T cells associated with prolonged dyspnea. Statistical analyses stratified by age, number of comorbidities and hospitalization status demonstrated that none of these factors affect differences in the frequency of SARS-CoV-2 T cells and plasma IL-6 levels measured between PASC and RC cohorts. Taken together, these findings demonstrate elevated frequencies of SARS-CoV-2-specific T cells in individuals with pulmonary PASC are associated with increased systemic inflammation and decreased lung function, suggesting that SARS-CoV-2-specific T cells contribute to lingering pulmonary symptoms. These findings also provide mechanistic insight on the pathophysiology of PASC that can inform development of potential treatments to reduce symptom burden.
Collapse
Affiliation(s)
- Katherine M. Littlefield
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Renée O. Watson
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Jennifer M. Schneider
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Charles P. Neff
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Eiko Yamada
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Min Zhang
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Thomas B. Campbell
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Michael T. Falta
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Sarah E. Jolley
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Andrew P. Fontenot
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- Department of Immunology and Microbiology, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Brent E. Palmer
- Department of Medicine, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
16
|
Yang Z, Wei F, Zhang B, Luo Y, Xing X, Wang M, Chen R, Sun G, Sun X. Cellular Immune Signal Exchange From Ischemic Stroke to Intestinal Lesions Through Brain-Gut Axis. Front Immunol 2022; 13:688619. [PMID: 35432368 PMCID: PMC9010780 DOI: 10.3389/fimmu.2022.688619] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Accepted: 03/16/2022] [Indexed: 12/24/2022] Open
Abstract
As a vital pivot for the human circulatory system, the brain-gut axis is now being considered as an important channel for many of the small immune molecules’ transductions, including interleukins, interferons, neurotransmitters, peptides, and the chemokines penetrating the mesentery and blood brain barrier (BBB) during the development of an ischemic stroke (IS). Hypoxia-ischemia contributes to pituitary and neurofunctional disorders by interfering with the molecular signal release and communication then providing feedback to the gut. Suffering from such a disease on a long-term basis may cause the peripheral system’s homeostasis to become imbalanced, and it can also lead to multiple intestinal complications such as gut microbiota dysbiosis (GMD), inflammatory bowel disease (IBD), necrotizing enterocolitis (NEC), and even the tumorigenesis of colorectal carcinoma (CRC). Correspondingly, these complications will deteriorate the cerebral infarctions and, in patients suffering with IS, it can even ruin the brain’s immune system. This review summarized recent studies on abnormal immunological signal exchange mediated polarization subtype changes, in both macrophages and microglial cells as well as T-lymphocytes. How gut complications modulate the immune signal transduction from the brain are also elucidated and analyzed. The conclusions drawn in this review could provide guidance and novel strategies to benefit remedies for both IS and relative gut lesions from immune-prophylaxis and immunotherapy aspects.
Collapse
Affiliation(s)
- Zizhao Yang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, National University of Singapore, Singapore, Singapore
| | - Fei Wei
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bin Zhang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yun Luo
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaoyan Xing
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Min Wang
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rongchang Chen
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Guibo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| | - Xiaobo Sun
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Guibo Sun, ; Xiaobo Sun,
| |
Collapse
|
17
|
Abstract
INTRODUCTION New targets are needed to enable more accurate diagnosis, monitoring and effective therapy in uncontrolled asthma and chronic obstructive pulmonary disease (COPD), two disorders characterized by pathogenic alterations in the innate immune response. Interestingly, the IL-10-related cytokine IL-26 has been found to be abundantly expressed in human airways and alterations in its expression have been linked to reduced lung function and markers of neutrophilic inflammation in patients with uncontrolled asthma or COPD. AREAS COVERED Literature search was conducted on PubMed to identify articles in the field of IL-26 immunology, as well as clinical studies on IL-26 in asthma and COPD, published between 2000 and 2021. We outline the main sources of IL-26 in human airways, as well as the effect of this cytokine on relevant immune and structural cells. Finally, we discuss the potential involvement of IL-26 in the pathophysiology of uncontrolled asthma and COPD. EXPERT OPINION IL-26 constitutes a potential target for diagnostic purposes and therapeutic modulation of the innate immune response in the airways of patients with asthma and COPD. It seems reasonable to expect more conclusive evidence of its clinical utility for personalized medicine within the coming 5-year period.
Collapse
Affiliation(s)
- Eduardo I Cardenas
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Karlhans Fru Che
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Jon R Konradsen
- Division of Clinical Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Sweden.,Center for Allergy Research, Karolinska Institute, Stockholm, Sweden.,Astrid Lindgren Children's Hospital, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Aihua Bao
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Department of Respiratory and Critical Care Medicine, Shanghai General Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P. R. China
| | - Anders Lindén
- Division of Lung and Airway Research, Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden.,Karolinska Severe COPD Center, Department of Respiratory Medicine and Allergy, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
18
|
Lourenço JD, Ito JT, Martins MDA, Tibério IDFLC, Lopes FDTQDS. Th17/Treg Imbalance in Chronic Obstructive Pulmonary Disease: Clinical and Experimental Evidence. Front Immunol 2021; 12:804919. [PMID: 34956243 PMCID: PMC8695876 DOI: 10.3389/fimmu.2021.804919] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 11/22/2021] [Indexed: 12/28/2022] Open
Abstract
The imbalance between pro- and anti-inflammatory immune responses mediated by Th17 and Treg cells is deeply involved in the development and progression of inflammation in chronic obstructive pulmonary disease (COPD). Several clinical and experimental studies have described the Th17/Treg imbalance in COPD progression. Due to its importance, many studies have also evaluated the effect of different treatments targeting Th17/Treg cells. However, discrepant results have been observed among different lung compartments, different COPD stages or local and systemic markers. Thus, the data must be carefully examined. In this context, this review explores and summarizes the recent outcomes of Th17/Treg imbalance in COPD development and progression in clinical, experimental and in vitro studies.
Collapse
Affiliation(s)
- Juliana Dias Lourenço
- Laboratory of Experimental Therapeutics (LIM-20), Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Juliana Tiyaki Ito
- Laboratory of Experimental Therapeutics (LIM-20), Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | - Milton de Arruda Martins
- Laboratory of Experimental Therapeutics (LIM-20), Department of Clinical Medicine, School of Medicine, University of Sao Paulo, Sao Paulo, Brazil
| | | | | |
Collapse
|
19
|
Kammerl IE, Hardy S, Flexeder C, Urmann A, Peierl J, Wang Y, Vosyka O, Frankenberger M, Milger K, Behr J, Koch A, Merl-Pham J, Hauck SM, Pilette C, Schulz H, Meiners S. Activation of immune cell proteasomes in peripheral blood of smokers and COPD patients - implications for therapy. Eur Respir J 2021; 59:13993003.01798-2021. [PMID: 34561290 PMCID: PMC8891681 DOI: 10.1183/13993003.01798-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Accepted: 07/19/2021] [Indexed: 11/05/2022]
Abstract
Immune cells contain a specialised type of proteasome, i.e. the immunoproteasome, which is required for intracellular protein degradation. Immunoproteasomes are key regulators of immune cell differentiation, inflammatory activation and autoimmunity. Immunoproteasome function in peripheral immune cells might be altered by smoking and in COPD thereby affecting immune cell responses.We here analysed the expression and activity of proteasome complexes in peripheral blood mononuclear cells (PBMC) isolated from healthy male young smokers as well as from patients with severe COPD and compared them to matching controls. Proteasome expression was upregulated in COPD patients as assessed by RT-qPCR and mass spectrometry-based proteomics analysis. Proteasome activity was quantified using activity-based probes and native gel analysis. We observed distinct activation of immunoproteasomes in the peripheral blood cells of young male smokers and severely ill COPD patients. Native gel analysis and linear regression modeling confirmed robust activation and elevated assembly of 20S proteasomes, which correlated significantly with reduced lung function parameters in COPD patients. The immunoproteasome was distinctly activated in COPD patients upon inflammatory cytokine stimulation of PBMCs in vitro Inhibition of the immunoproteasome reduced proinflammatory cytokine expression in COPD-derived blood immune cells.Given the crucial role of chronic inflammatory signalling and the emerging involvement of autoimmune responses in COPD, therapeutic targeting of the immunoproteasome might represent a novel therapeutic concept for COPD.
Collapse
Affiliation(s)
- Ilona E Kammerl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Sophie Hardy
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Claudia Flexeder
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Andrea Urmann
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Julia Peierl
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Yuqin Wang
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Oliver Vosyka
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Marion Frankenberger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Institute of Lung Biology and Disease and Comprehensive Pneumology Center with the CPC-M bioArchive, Helmholtz Zentrum Muenchen, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Katrin Milger
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Jürgen Behr
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Department of Medicine V, University Hospital, LMU, Member of the German Center for Lung Research (DZL), Munich, Germany
| | - Andrea Koch
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany.,Dept. of Pneumology, Teaching Hospital Pyhrn-Eisenwurzen Klinikum Steyr, Austria
| | - Juliane Merl-Pham
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Stefanie M Hauck
- Research Unit Protein Science, Metabolomics and Proteomics Core, Helmholtz Zentrum München, Munich, Germany
| | - Charles Pilette
- Cliniques universitaires Saint-Luc, department of pulmonology, and Institute of Experimental and Clinical Research (IREC), Pole of pulmonology, ENT and dermatology, Université catholique de Louvain, Brussels, Belgium
| | - Holger Schulz
- Institute of Epidemiology, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Neuherberg, Germany
| | - Silke Meiners
- Comprehensive Pneumology Center (CPC), University Hospital, Ludwig-Maximilians- University, Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
20
|
Oxidative Stress Promotes Corticosteroid Insensitivity in Asthma and COPD. Antioxidants (Basel) 2021; 10:antiox10091335. [PMID: 34572965 PMCID: PMC8471691 DOI: 10.3390/antiox10091335] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 08/18/2021] [Accepted: 08/23/2021] [Indexed: 02/06/2023] Open
Abstract
Corticosteroid insensitivity is a key characteristic of patients with severe asthma and COPD. These individuals experience greater pulmonary oxidative stress and inflammation, which contribute to diminished lung function and frequent exacerbations despite the often and prolonged use of systemic, high dose corticosteroids. Reactive oxygen and nitrogen species (RONS) promote corticosteroid insensitivity by disrupting glucocorticoid receptor (GR) signaling, leading to the sustained activation of pro-inflammatory pathways in immune and airway structural cells. Studies in asthma and COPD models suggest that corticosteroids need a balanced redox environment to be effective and to reduce airway inflammation. In this review, we discuss how oxidative stress contributes to corticosteroid insensitivity and the importance of optimizing endogenous antioxidant responses to enhance corticosteroid sensitivity. Future studies should aim to identify how antioxidant-based therapies can complement corticosteroids to reduce the need for prolonged high dose regimens in patients with severe asthma and COPD.
Collapse
|
21
|
Liu P, Zhang H, Zeng H, Meng Y, Gao H, Zhang M, Zhao L. LncRNA CASC2 is involved in the development of chronic obstructive pulmonary disease via targeting miR-18a-5p/IGF1 axis. Ther Adv Respir Dis 2021; 15:17534666211028072. [PMID: 34266334 PMCID: PMC8290508 DOI: 10.1177/17534666211028072] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
AIMS Chronic obstructive pulmonary disease (COPD) is a systemic disease. Several long non-coding RNAs (lncRNAs) have been identified to be aberrantly expressed in COPD patients. This study investigated the role of lncRNA cancer susceptibility candidate 2 (CASC2) in COPD, as well as its potential mechanism. METHODS Fifty smokers with COPD and another 50 smokers without COPD were recruited. Receiver operating characteristic curve was constructed to assess the diagnostic value of CASC2 in COPD patients. 16HBE cells were treated with cigarette smoke extract (CSE) to establish a cell model. qRT-PCR was used for the measurement of mRNA levels. The cell viability and apoptosis were detected by using Cell Counting Kit-8 and flow cytometry assay. Enzyme-linked immunosorbent assay was performed to detect the levels of proinflammatory cytokines. Luciferase reporter assay was performed for the target gene analysis. RESULTS Serum CASC2 was dramatically decreased in COPD patients compared with smokers without COPD, and was positively associated with FEV1 (forced expiratory volume in one second). Serum CASC2 was overexpressed in severe COPD patients, and had the diagnostic accuracy to distinguish COPD patients from smokers. CASC2 overexpression alleviated CSE-induced apoptosis and inflammation in 16HBE cells. CASC2 functions as a ceRNA of miR-18a-5p. Upregulation of miR-18a-5p reversed the influence of CASC2 on cell apoptosis and inflammation in 16HBE cells. IGF1 was the target gene of miR-18a-5p. CONCLUSION CASC2 was downregulated in COPD patients and it might be a promising biomarker for the disease diagnosis. Overexpression of CASC2 might inhibit the bronchial epithelial cell apoptosis and inflammation via targeting miR-18a-5p/IGF1 axis.The reviews of this paper are available via the supplemental material section.
Collapse
Affiliation(s)
- Panpan Liu
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Huali Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Haizhu Zeng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Yingxia Meng
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Hongchang Gao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Meilan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, Shanghai, PR China
| | - Lei Zhao
- Department of Pulmonary and Critical Care Medicine, Shanghai Pudong New Area Gongli Hospital, 219 Miao-Pu Road, Shanghai 200315, PR China
| |
Collapse
|
22
|
Cui Z, Feng R, Liu Z, Gong Y, Zhang Y. Receptor Activator of Nuclear Factor (Nf)-kb Ligand Promotes T Helper 17 Cell Differentiation through Fas. Immunol Invest 2021; 51:1385-1397. [PMID: 34238108 DOI: 10.1080/08820139.2021.1948050] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
T helper 17 (Th17) cells play important role in the defense against pathogens and autoimmune diseases. Many cytokines can induce Th17 cell differentiation. However, the mechanism of Th17 cell differentiation is not well clarified. RankL, a member of the TNF superfamily, binds with Rank and then participates in the proliferation and differentiation of many kinds of cells. Recent studies showed that RankL-Rank signaling is closely related to Th17 differentiation and function. The detail of the Rank-RankL pathway in Th17 cell differentiation is still unclear. To illustrate the role of Rank-RankL in Th17 differentiation, naive CD4 + T cells were differentiated into Th17 cells with or without RankL stimulation. During Th17 differentiation, the expression of Rank obviously increased. The RankL stimulation significantly increased Th17 cell differentiation indicated by increased IL-17-positive cell number, highly expressed IL-17 and IL-22 and elevated IL-17 secretion. These effects were canceled by Rank-Fc addition. In further study, RankL treatment during Th17 differentiation up-regulated Fas expression. Fas knockdown inhibited the Th17 differentiation promoted by RankL. In this study, it was confirmed that Rank-RankL signaling could promote Th17 cell differentiation through Fas induction.
Collapse
Affiliation(s)
- Zilin Cui
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Rui Feng
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Zirong Liu
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| | - Yehong Gong
- Department of General Surgery, Xincheng Hospital of Tianjin University, Tianjin, China
| | - Yamin Zhang
- Department of Hepatobiliary Surgery, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
23
|
Singh PP, Yu C, Mathew R, Perez VL, Saban DR. Meibomian gland dysfunction is suppressed via selective inhibition of immune responses by topical LFA-1/ICAM antagonism with lifitegrast in the allergic eye disease (AED) model. Ocul Surf 2021; 21:271-278. [PMID: 33812087 PMCID: PMC8606044 DOI: 10.1016/j.jtos.2021.03.009] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 03/17/2021] [Accepted: 03/18/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE The etiology of meibomian gland dysfunction (MGD) is incompletely understood, despite being a common ophthalmic condition and an area of unmet medical need. It is characterized by an insufficiency in glandular provision of specialized lipids (meibum) to the tear film and is a major cause of dry eye. Work in the allergic eye disease (AED) mouse model has revealed an immunopathogenic role in MGD causation, now raising interest in the applicability of immunomodulatory therapies. As such, we herein ask whether inhibition of lymphocyte function associated antigen (LFA)-1/intracellular adhesion molecules (ICAM)-1 signaling via topical lifitegrast administration has a therapeutic effect on MGD in AED mice. METHODS Mice were induced with AED by i.p. injection of ovalbumin (OVA) mixed with alum and pertussis toxin, followed 2 weeks later by once daily topical OVA challenges for 7 days. Mice were treated topically with 5% lifitegrast ophthalmic solution or vehicle (PBS) 30 min prior to challenge. We developed a clinical ranking method to assess MGD severity, and also scored clinical allergy. Conjunctivae and draining lymph nodes were collected for flow cytometry. RESULTS Topical lifitegrast significantly inhibited clinical MGD severity, which was associated with diminished pathogenic TH17 cell and neutrophil numbers in the conjunctiva. No significant change in conjunctival TH2 cells or eosinophils, and only marginal differences in ocular allergy were observed. CONCLUSIONS In AED mice, lifitegrast inhibited MGD severity marked by a reduction in select immune populations in the conjunctiva. Our findings warrant future examination of lifitegrast in the treatment of patients with forms of MGD.
Collapse
Affiliation(s)
- Pali P Singh
- Duke University School of Medicine, Durham, NC, USA
| | - Chen Yu
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Rose Mathew
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA
| | - Victor L Perez
- Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA
| | - Daniel R Saban
- Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC 27710, USA; Foster Center for Ocular Immunology, Department of Ophthalmology, Duke Eye Center, Duke University School of Medicine, Durham, NC, 27710, USA; Department of Immunology, Duke University School of Medicine, Durham, NC, 27710, USA.
| |
Collapse
|
24
|
Blomme EE, Provoost S, De Smet EG, De Grove KC, Van Eeckhoutte HP, De Volder J, Hansbro PM, Bonato M, Saetta M, Wijnant SR, Verhamme F, Joos GF, Bracke KR, Brusselle GG, Maes T. Quantification and role of innate lymphoid cell subsets in Chronic Obstructive Pulmonary Disease. Clin Transl Immunology 2021; 10:e1287. [PMID: 34136217 PMCID: PMC8178740 DOI: 10.1002/cti2.1287] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 03/30/2021] [Accepted: 04/26/2021] [Indexed: 01/02/2023] Open
Abstract
Objectives Innate lymphoid cells (ILCs) secrete cytokines, such as IFN‐γ, IL‐13 and IL‐17, which are linked to chronic obstructive pulmonary disease (COPD). Here, we investigated the role of pulmonary ILCs in COPD pathogenesis. Methods Lung ILC subsets in COPD and control subjects were quantified using flow cytometry and associated with clinical parameters. Tissue localisation of ILC and T‐cell subsets was determined by immunohistochemistry. Mice were exposed to air or cigarette smoke (CS) for 1, 4 or 24 weeks to investigate whether pulmonary ILC numbers and activation are altered and whether they contribute to CS‐induced innate inflammatory responses. Results Quantification of lung ILC subsets demonstrated that ILC1 frequency in the total ILC population was elevated in COPD and was associated with smoking and severity of respiratory symptoms (COPD Assessment Test [CAT] score). All three ILC subsets localised near lymphoid aggregates in COPD. In the COPD mouse model, CS exposure in C57BL/6J mice increased ILC numbers at all time points, with relative increases in ILC1 in bronchoalveolar lavage (BAL) fluid. Importantly, CS exposure induced increases in neutrophils, monocytes and dendritic cells that remained elevated in Rag2/Il2rg‐deficient mice that lack adaptive immune cells and ILCs. However, CS‐induced CXCL1, IL‐6, TNF‐α and IFN‐γ levels were reduced by ILC deficiency. Conclusion The ILC1 subset is increased in COPD patients and correlates with smoking and severity of respiratory symptoms. ILCs also increase upon CS exposure in C57BL/6J mice. In the absence of adaptive immunity, ILCs contribute to CS‐induced pro‐inflammatory mediator release, but are redundant in CS‐induced innate inflammation.
Collapse
Affiliation(s)
- Evy E Blomme
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Sharen Provoost
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Elise G De Smet
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Katrien C De Grove
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Hannelore P Van Eeckhoutte
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Joyceline De Volder
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Philip M Hansbro
- Centre for Inflammation Centenary Institute Sydney NSW Australia.,Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Matteo Bonato
- Faculty of Science University of Technology Sydney Ultimo NSW Australia
| | - Marina Saetta
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health University of Padova Padova Italy
| | - Sara Ra Wijnant
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium.,Department of Epidemiology Erasmus Medical Center Rotterdam The Netherlands.,Department of Bioanalysis Faculty of Pharmaceutical Sciences Ghent University Ghent Belgium
| | - Fien Verhamme
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Guy F Joos
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Ken R Bracke
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Guy G Brusselle
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| | - Tania Maes
- Department of Respiratory Medicine Laboratory for Translational Research in Obstructive Pulmonary Diseases Ghent University Hospital Ghent Belgium
| |
Collapse
|
25
|
Woo J, Koziol-White C, Panettieri R, Jude J. TGF-β: The missing link in obesity-associated airway diseases? CURRENT RESEARCH IN PHARMACOLOGY AND DRUG DISCOVERY 2021; 2:100016. [PMID: 34909651 PMCID: PMC8663968 DOI: 10.1016/j.crphar.2021.100016] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 01/15/2021] [Accepted: 01/20/2021] [Indexed: 01/19/2023] Open
Abstract
Obesity is emerging as a global public health epidemic. The co-morbidities associated with obesity significantly contribute to reduced quality of life, mortality, and global healthcare burden. Compared to other asthma comorbidities, obesity prominently engenders susceptibility to inflammatory airway diseases such as asthma and chronic obstructive pulmonary disease (COPD), contributes to greater disease severity and evokes insensitivity to current therapies. Unlike in other metabolic diseases associated with obesity, the mechanistic link between obesity and airway diseases is only poorly defined. Transforming growth factor-β (TGF-β) is a pleiotropic inflammatory cytokine belonging to a family of growth factors with pivotal roles in asthma. In this review, we summarize the role of TGF-β in major obesity-associated co-morbidities to shed light on mechanisms of the diseases. Literature evidence shows that TGF-β mechanistically links many co-morbidities with obesity through its profibrotic, remodeling, and proinflammatory functions. We posit that TGF-β plays a similar mechanistic role in obesity-associated inflammatory airway diseases such as asthma and COPD. Concerning the role of TGF-β on metabolic effects of obesity, we posit that TGF-β has a similar mechanistic role in obesity-associated inflammatory airway diseases in interplay with different comorbidities such as hypertension, metabolic diseases like type 2 diabetes, and cardiomyopathies. Future studies in TGF-β-dependent mechanisms in obesity-associated inflammatory airway diseases will advance our understanding of obesity-induced asthma and help find novel therapeutic targets for prevention and treatment.
Collapse
Affiliation(s)
- Joanna Woo
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Cynthia Koziol-White
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Reynold Panettieri
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| | - Joseph Jude
- Rutgers Institute for Translational Medicine & Science, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Robert Wood Johnson Medical School, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
- Ernest Mario School of Pharmacy, The State University of New Jersey, 89 French Street, Rutgers, 160 Frelinghuysen Road, Piscataway, NJ08854, United States
| |
Collapse
|
26
|
Zhang J, Zhu C, Gao H, Liang X, Fan X, Zheng Y, Chen S, Wan Y. Identification of biomarkers associated with clinical severity of chronic obstructive pulmonary disease. PeerJ 2020; 8:e10513. [PMID: 33354437 PMCID: PMC7733647 DOI: 10.7717/peerj.10513] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 11/17/2020] [Indexed: 11/20/2022] Open
Abstract
We sought to identify the biomarkers related to the clinical severity of stage I to stage IV chronic obstructive pulmonary disease (COPD). Gene expression profiles from the blood samples of COPD patients at each of the four stages were acquired from the Gene Expression Omnibus Database (GEO, accession number: GSE54837). Genes showing expression changes among the different stages were sorted by soft clustering. We performed functional enrichment, protein-protein interaction (PPI), and miRNA regulatory network analyses for the differentially expressed genes. The biomarkers associated with the clinical classification of COPD were selected from logistic regression models and the relationships between TLR2 and inflammatory factors were verified in clinical blood samples by qPCR and ELISA. Gene clusters demonstrating continuously rising or falling changes in expression (clusters 1, 2, and 7 and clusters 5, 6, and 8, respectively) from stage I to IV were defined as upregulated and downregulated genes, respectively, and further analyzed. The upregulated genes were enriched in functions associated with defense, inflammatory, or immune responses. The downregulated genes were associated with lymphocyte activation and cell activation. TLR2, HMOX1, and CD79A were hub proteins in the integrated network of PPI and miRNA regulatory networks. TLR2 and CD79A were significantly correlated with clinical classifications. TLR2 was closely associated with inflammatory responses during COPD progression. Functions associated with inflammatory and immune responses as well as lymphocyte activation may play important roles in the progression of COPD from stage I to IV. TLR2 and CD79A may serve as potential biomarkers for the clinical severity of COPD. TLR2 and CD79A may also serve as independent biomarkers in the clinical classification in COPD. TLR2 may play an important role in the inflammatory responses of COPD.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Changli Zhu
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Hong Gao
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Xun Liang
- College of Nursing and Midwifery, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Xiaoqian Fan
- Department of Emergency Medicine, Suqian First Hospital, Suqian, Jiangsu, China
| | - Yulong Zheng
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| | - Song Chen
- Institute of Medicinal Biotechnology, Jiangsu College of Nursing, Huai'an, Jiangsu, China
| | - Yufeng Wan
- Department of Respiratory Diseases, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, Jiangsu, China
| |
Collapse
|
27
|
Immunomodulatory Effects of Hydrolyzed Seawater Pearl Tablet (HSPT) on Th1/Th2 Functionality in a Mice Model of Chronic Obstructive Pulmonary Disease (COPD) Induced by Cigarette Smoke. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2020; 2020:5931652. [PMID: 33281913 PMCID: PMC7688355 DOI: 10.1155/2020/5931652] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 10/09/2020] [Accepted: 10/30/2020] [Indexed: 11/17/2022]
Abstract
Chronic obstructive pulmonary disease (COPD) is predicted to become the third leading cause of death around the world. The present study is designed to investigate whether hydrolyzed seawater pearl tablet (HSPT) has immunoregulatory effects on the Th1/Th2 functionality in cigarette smoke-induced COPD model mice. The determination of the amino acid composition of HSPT was carried out by high-performance liquid chromatography (HPLC) with precolumn phenylisothiocyanate (PITC) derivatization. COPD model mice were constructed by cigarette smoking (CS) treatment and HSPT was administered. HSPT inhibited the infiltration of inflammation in the airway of the lung, reduced influx of eosinophils (EOSs), lymphocytes (LYMs), neutrophils (NEUs), and macrophages (MACs) in the bronchoalveolar lavage fluid (BALF), decreased the levels of IFN-γ, IL-2, IL-4, and IL-10 in the serum and lung, and decreased the expression of aforementioned cytokines in the spleen and lung in CS-treated mice. Besides, HSPT also had the ability to reduce the amount of CD3+CD4+ T cells and modulate the Th1/Th2 balance. Taken together, this study supports the consensus that CS is a critical factor to induce and aggravate COPD. HSPT could regulate the balance of Th1/Th2 in CS-induced COPD model mice, indicating its effects on inhibiting the development of COPD.
Collapse
|
28
|
Uzeloto JS, de Toledo-Arruda AC, Silva BSDA, Golim MDA, Braz AMM, de Lima FF, Grigoletto I, Ramos EMC. Systemic Cytokine Profiles of CD4+ T Lymphocytes Correlate with Clinical Features and Functional Status in Stable COPD. Int J Chron Obstruct Pulmon Dis 2020; 15:2931-2940. [PMID: 33223825 PMCID: PMC7671532 DOI: 10.2147/copd.s268955] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Accepted: 08/20/2020] [Indexed: 12/12/2022] Open
Abstract
Aims To evaluate the expressions of intracellular cytokines in CD4+ T lymphocytes and to investigate the correlation between biomarker expressions and clinical and functional characteristics of stable COPD patients. Patients and Methods Peripheral blood was collected from 36 COPD patients, and the expression of cytokines (IL-8, IL-13, IL-17, IL-6, IL-2, IL-10, and TNF-α) in T lymphocytes CD4 + was investigated. In addition, lung function, dyspnea symptoms, quality of life, vital signs, body composition, level of physical activity, peripheral muscle strength, and functional capacity were assessed. Results Individuals with greater bronchial obstruction present a higher proportion of CD4 + IL-2 + lymphocytes compared to individuals with less severe bronchial obstruction. We found a positive correlation between the expression of the cytokines IL-13, IL-17, IL-6, IL-2, IL-10, and TNF-α in CD4+ T lymphocytes. In addition, we found a positive correlation between CD4+ IL-10+ T lymphocytes and lower limb muscle strength and a negative correlation between CD4+ IL-8+ T lymphocytes and peripheral oxygen saturation and steps per day. Conclusion Systemic CD4+IL-2+, IL-8+, and IL-10+ T lymphocytes presented a correlation with clinical characteristics and functional status in stable COPD.
Collapse
Affiliation(s)
- Juliana Souza Uzeloto
- São Paulo State University (UNESP), Faculty of Science and Technology, Department of Physiotherapy, Postgraduate Program in Physiotherapy, Presidente Prudente, São Paulo, Brazil
| | | | - Bruna Spolador de Alencar Silva
- São Paulo State University (UNESP), Faculty of Science and Technology, Department of Physiotherapy, Postgraduate Program in Physiotherapy, Presidente Prudente, São Paulo, Brazil
| | - Marjorie de Assis Golim
- São Paulo State University (UNESP), Botucatu Medical School, Postgraduate Program in Research & Development: Medical Biotechnology, Blood Center, Flow Cytometry Laboratory, Botucatu, São Paulo, Brazil
| | - Aline Márcia Marques Braz
- São Paulo State University (UNESP), Botucatu Medical School, Postgraduate Program in Research & Development: Medical Biotechnology, Blood Center, Flow Cytometry Laboratory, Botucatu, São Paulo, Brazil
| | - Fabiano Francisco de Lima
- São Paulo State University (UNESP), Faculty of Science and Technology, Department of Physiotherapy, Postgraduate Program in Physiotherapy, Presidente Prudente, São Paulo, Brazil
| | - Isis Grigoletto
- São Paulo State University (UNESP), Faculty of Science and Technology, Department of Physiotherapy, Postgraduate Program in Physiotherapy, Presidente Prudente, São Paulo, Brazil
| | - Ercy Mara Cipulo Ramos
- São Paulo State University (UNESP), Faculty of Science and Technology, Department of Physiotherapy, Postgraduate Program in Physiotherapy, Presidente Prudente, São Paulo, Brazil
| |
Collapse
|