1
|
Tong J, Subbiah SK, Rampal S, Ramasamy R, Wu X, You Y, Wang J, Mok PL. Effect of 660-nm LED photobiomodulation on the proliferation and chondrogenesis of meniscus-derived stem cells (MeSCs). Sci Rep 2024; 14:19735. [PMID: 39183213 PMCID: PMC11345413 DOI: 10.1038/s41598-024-70258-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 08/14/2024] [Indexed: 08/27/2024] Open
Abstract
Meniscus-derived stem cells (MeSCs), a unique type of MSC, have outstanding advantages in meniscal cytotherapy and tissue engineering, but the effects and molecular mechanisms of PBM on MeSCs are still unclear. We used 660-nm LED light with different energy densities to irradiate six human MeSC samples and tested their proliferation rate via cell counting, chondrogenic differentiation capacity via the DMMB assay, mitochondrial activity via the MTT assay, and gene expression via qPCR. The proliferation ability, chondrogenic capacity and mitochondrial activity of the 18 J/cm2 group were greater than those of the 4 J/cm2 and control groups. The mRNA expression levels of Akt, PI3K, TGF-β3, Ki67 and Notch-1 in the 18 J/cm2 group were greater than those in the other groups in most samples. After chondrogenic induction, the expression of Col2A1, Sox9 and Aggrecan in the 18 J/cm2 group was significantly greater than that in the 4 J/cm2 and control groups in most of the samples. The variation in the MTT values and Src, PI3K, Akt, mTOR and GSK3β levels decreased with time. The results showed that 660-nm LED red light promoted proliferation and chondrogenic differentiation and affected the gene expression of MeSCs, and the effects on gene expression and mitochondrial activity decreased with time.
Collapse
Affiliation(s)
- Jiabei Tong
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
- The Fifth People's Hospital of Luoyang (The Fifth Affiliated Hospital of Henan University of Science and Technology), No.505 Taikang East Road, Luolong District, Luoyang City, 471000, Henan Province, China.
| | - Suresh Kumar Subbiah
- Center for Global Health Research, Saveetha Medical College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Chennai, Tamil Nadu, 602105, India
| | - Sanjiv Rampal
- Orthopaedic Department, School of Medicine, International Medical University, 57000, Kuala Lumpur, Malaysia
- Department of Orthopaedic and Traumatology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Rajesh Ramasamy
- Department of Pathology, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia
| | - Xiaoyun Wu
- Department of Technology, Inner Mongolia Stem Cell (ProterCell) Biotechnology Co., Ltd., Hohhot, China
| | - Yanyan You
- Pharmacy Department, Tongliao Hospital, Tongliao, 028000, Inner Mongolia, China
| | - Jiaojiao Wang
- Department of Obstetrics and Gynecology, Maternal and Child Health Hospital of Haidian District, Beijing, 100080, China
| | - Pooi Ling Mok
- Department of Biomedical Science, Faculty of Medicine and Health Sciences, Universiti Putra Malaysia, 43400, Serdang, Selangor, Malaysia.
| |
Collapse
|
2
|
Meng C, Ren Y, Kong L, Guo J, Zhao Y, Han C. Arthroscopic Lateral Meniscus Root Repair With Reverse Suture Anchor Technique. Arthrosc Tech 2024; 13:102857. [PMID: 38435270 PMCID: PMC10907916 DOI: 10.1016/j.eats.2023.09.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 09/30/2023] [Indexed: 03/05/2024] Open
Abstract
The stability of the knee joint is crucially dependent on the integrity of the lateral meniscus posterior root, which is often accompanied by anterior cruciate ligament injury. Anchor suture repair for lateral meniscus posterior root injury not only achieves better biomechanical effects but also ensures favorable prognosis. However, the placement of anchors often requires the establishment of a posterior approach, and the insertion of an anchor is a technical challenge. In light of this, we have applied the technique of reverse anchor fixation for repairing the lateral meniscus posterior root, which not only simplifies the procedure but also effectively reduces the "bungee effect."
Collapse
Affiliation(s)
- Chenyang Meng
- Department of Sport Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yizhong Ren
- Department of Sport Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Lingyue Kong
- Department of Sport Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Jiantao Guo
- Department of Surgical, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Yunan Zhao
- Department of Sport Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| | - Changxu Han
- Department of Sport Medicine, The Second Affiliated Hospital of Inner Mongolia Medical University, Hohhot, China
| |
Collapse
|
3
|
Modina SC, Aidos L, Millar VRH, Pallaoro M, Polito U, Veronesi MC, Peretti GM, Mangiavini L, Carnevale L, Boschetti F, Abbate F, Di Giancamillo A. Postnatal morpho-functional development of a dog's meniscus. Ann Anat 2023; 250:152141. [PMID: 37499701 DOI: 10.1016/j.aanat.2023.152141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 07/04/2023] [Accepted: 07/10/2023] [Indexed: 07/29/2023]
Abstract
This study evaluates the morpho-functional modifications that characterize meniscal development from neonatal to adult dogs. Even if menisci are recognized as essential structures for the knee joint, poor information is available about their morphogenesis, in particular in dog models. Menisci from a group of Dobermann Pinchers aged 0, 10, 30 days, and 4 years (T0, T10, T30, adult, respectively) were analyzed by SEM, histochemistry (Safranin O and Picro Sirius Red Staining analyzed under a polarized light microscope), immunofluorescences (collagen type I and II), biomechanical (compression) and biochemical analyses (glycosaminoglycans, GAGs, and DNA content). SEM analyses revealed that the T0 meniscus is a bulgy structure that during growth tends to flatten, firstly in the inner zone (T10) and then even in the outer zone (T30), until the achievement of the completely smooth adult final shape. These results were further supported by the histochemistry analyses in which the deposition of GAGs started from T30, and the presence of type I birefringent collagen fibers was observed from T0 to T30, while poorly refringent type III collagen fibers were observed in the adult dogs. Double immunofluorescence analyses also evidenced that the neonatal meniscus contains mainly type I collagen fibers, as well as the T10 meniscus, and demonstrated a more evident regionalization and crimping in the T30 and adult meniscus. Young's elastic modulus of the meniscus in T0 and T10 animals was lower than the T30 animals, and this last group was also lower than adult ones (T0-T10 vs T30 vs adult). Biochemical analysis confirmed that cellularity decreases over time from neonatal to adult (p < 0.01). The same decreasing trend was observed in GAGs deposition. These results may suggest that the postnatal development of canine meniscus may be related to the progressive functional locomotory development: after birth, the meniscus acquires its functionality over time, through movement, load, and growth itself.
Collapse
Affiliation(s)
- Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Lucia Aidos
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | | | - Margherita Pallaoro
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Umberto Polito
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Maria Cristina Veronesi
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy; IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy
| | - Liliana Carnevale
- Department of Veterinary Medicine and Animal Science, University of Milan, Via dell'Università, 6, 26900 Lodi, Italy
| | - Federica Boschetti
- IRCCS, Ospedale Galeazzi - Sant'Ambrogio, Via Cristina Belgioioso 173, 20157, Milan, Italy; Department of Chemistry, Materials and Chemical Engineering "Giulio Natta", Polytechnic University of Milan, 20133 Milan, Italy
| | - Francesco Abbate
- Department of Veterinary Sciences, University of Messina, Polo Universitario S.S. Annunziata, 98168 Messina, Italy
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, University of Milan, Via Mangiagalli, 31, 20133 Milan, Italy.
| |
Collapse
|
4
|
Zhao X, Chen C, Luo Y, Li D, Wang Q, Fang Y, Kang P. Connexin43 overexpression promotes bone regeneration by osteogenesis and angiogenesis in rat glucocorticoid-induced osteonecrosis of the femoral head. Dev Biol 2023; 496:73-86. [PMID: 36805498 DOI: 10.1016/j.ydbio.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 01/30/2023] [Accepted: 02/12/2023] [Indexed: 02/21/2023]
Abstract
Glucocorticoids induced osteonecrosis of the femoral head (GIONFH) is a devastating orthopedic disease. Previous studies suggested that connexin43 is involved in the process of osteogenesis and angiogenesis. However, the role of Cx43 potentiates in the osteogenesis and angiogenesis of bone marrow-derived stromal stem cells (BMSCs) in GIONFH is still not investigated. In this study, BMSCs were isolated and transfected with green fluorescent protein or the fusion gene encoding GFP and Cx43. The osteogenic differentiation of BMSCs were detected after transfected with Cx43. In addition, the migration abilities and angiogenesis of human umbilical vein endothelial cells (HUVECs) were been detected after induced by transfected BMSCs supernatants in vitro. Finally, we established GC-ONFH rat model, then, a certain amount of transfected or controlled BMSCs were injected into the tibia of the rats. Immunohistological staining and micro-CT scanning results showed that the transplanted experiment group had significantly promoted more bone regeneration and vessel volume when compared with the effects of the negative or control groups. This study demonstrated for the first time that the Cx43 overexpression in BMSCs could promote bone regeneration as seen in the osteogenesis and angiogenesis process, suggesting that Cx43 may serve as a therapeutic gene target for GIONFH treatment.
Collapse
Affiliation(s)
- Xin Zhao
- Department of Orthopaedics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, People's Republic of China; Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Changjun Chen
- Department of Orthopedics, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, People's Republic of China
| | - Yue Luo
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Donghai Li
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Qiuru Wang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China
| | - Yuying Fang
- Shandong Provincial Maternal and Child Health Care Hospital Affiliated to Qingdao University, Jinan, 250014, Shandong, People's Republic of China.
| | - Pengde Kang
- Department of Orthopaedics, West China Hospital, Sichuan University, No. 37 Wainan Guoxue Road, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
5
|
Cui P, Sun B, Dai Y, Cui T, Sun J, Shen K, Zhang L, Shi C, Wang X. Healing of the Torn Anterior Horn of Rabbit Medial Meniscus to Bone after Transtibial Pull-Out Repair and Autologous Platelet-Rich Plasma Gel Injection. Orthop Surg 2022; 15:617-627. [PMID: 36573287 PMCID: PMC9891914 DOI: 10.1111/os.13622] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 11/06/2022] [Accepted: 11/13/2022] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES The transtibial pull-out repair (TP) is a relatively new method for treating meniscal root tear; however, the clinical evaluation of its healing effect remains controversial. Due to ethical constraints and limitations of imaging techniques in humans, here we dynamically observe the healing effects of TP and TP with platelet-rich plasma gel (PRG) at the histological level using an animal model. METHODS Platelet-rich plasma (PRP) and PRG of rabbits were prepared. Platelet-derived growth factor (PDGF) and transforming growth factor-β1 (TGF-β1) levels in PRP and PRG were determined using an enzyme-linked immunosorbent assay. A rabbit model of anterior horn tear of the medial meniscus and TP surgery were created. PRG was injected between the anterior horn of the medial meniscus and the tibial tunnel. Rabbits were divided into three groups: the anterior horn tear group (Tear group), the anterior horn tear + TP group (TP group), and the anterior horn tear + TP + PRG group (TP + PRG group). The healing effect was observed dynamically using histopathological studies and biomechanical experiments. RESULTS The platelet content in PRP significantly increased to approximately 4.57 times that of whole blood. PDGF and TGF-β1 concentrations in PRG increased to 2.46 and 4.15 times those in PRP, respectively. Hematoxylin and eosin (H&E) and Masson staining showed that the number of inflammatory cells in healing tissue decreased and the collagen fibers significantly increased in TP and TP + PRG groups at 4, 8, and 12 weeks postoperatively compared to those in Tear group. Neatly arranged, interlaced, and dense collagen fibers were found between the anterior horn and bone at 12 weeks. H&E and toluidine blue staining showed that the injury to the femoral condyle cartilage was alleviated. The healing performance in TP + PRG group was better and faster than that in TP group. The maximum tensile fracture strength of the meniscus progressively increased at 8 and 12 weeks postoperatively. CONCLUSIONS Anterior horn injury of the medial meniscus in rabbits can be repaired using the TP technique, and the addition of autologous PRG to the bone tunnel promotes early healing of the meniscus and bone postoperatively. Meanwhile, both treatments can reduce the secondary damage to the cartilage due to osteoarthritis.
Collapse
Affiliation(s)
- Peng Cui
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Bai‐hai Sun
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Ya‐feng Dai
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Tian‐yi Cui
- School of Basic Medical SciencesHenan UniversityKaifengChina
| | - Jing‐lei Sun
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Ke Shen
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| | - Lian‐shan Zhang
- Department of PathologyHebei Medical UniversityShijiazhuangChina
| | - Chen‐xia Shi
- Department of PharmacologyHebei Medical UniversityShijiazhuangChina
| | - Xiao‐feng Wang
- Department of OrthopaedicsThe Third Hospital of Hebei Medical UniversityShijiazhuangChina
| |
Collapse
|
6
|
Qi L, Wang J, Chen X, Ding Y, Ling B, Wang W, Xu J, Xue Z. Single-cell transcriptomics reveals variable trajectories of CSPCs in the progression of osteoarthritis. Heliyon 2022; 8:e11148. [PMID: 36339749 PMCID: PMC9634280 DOI: 10.1016/j.heliyon.2022.e11148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 05/05/2022] [Accepted: 10/13/2022] [Indexed: 01/15/2023] Open
Abstract
Osteoarthritis (OA) is characterised by cartilage destruction; however, there are no specific drugs available for its treatment. Cartilage-derived stem/progenitor cells (CSPCs) are multipotent cells that play an essential role in cartilage renewal and may provide critical insights into the medical needs for OA treatment. However, alterations in cell function and fate of CSPCs during OA progression have seldom been analysed, especially at the single-cell level. Additionally, it has been reported that CSPCs can migrate to the cartilage injury area, although the mechanism of migration remains elusive. Thus, understanding the changing patterns of CSPCs in the pathological process of OA is important in the effort to develop stem cell therapy for OA. Here, we downloaded single-cell transcriptomic data of patients with OA from the Gene Expression Omnibus (GEO) database and performed unbiased clustering of the cells based on gene expression patterns using the Seurat package. Using common stem cell markers and chondrogenic transcription factors, we traced CSPCs throughout all stages of OA. We further explored the dynamics of CSPCs in OA progression and validated the single-cell RNA sequencing data in vitro using qPCR, immunofluorescence, and western blotting. Specifically, we primarily explored the heterogeneity of CSPCs at the single-cell level and found that it was closely associated with OA progression. Our results indicate significantly reduced chondrogenic differentiation capacity in CSPCs during the late stage of OA, while their proliferation capacity tended to increase. We also found that genes implicated in fibrosis, cell motility, and extracellular matrix remodelling were upregulated in CSPCs during the progression of OA. Our study revealed the dynamics of stem cells in OA progression and may inform the development of stem cell therapy for OA.
Collapse
Affiliation(s)
- Lingbin Qi
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Jian Wang
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
| | - Xian Chen
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Yanhui Ding
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
| | - Bin Ling
- The Second People’s Hospital of Yunnan Province, Kunming, China
| | - Wenjun Wang
- Stem Cell and Regenerative Medicine Engineering Research Center of Hunan Province, Hunan Yuanpin Cell Technology Co. Ltd, 102 Dongwu Road, Changsha City 410100, Hunan Province, China
- Corresponding author.
| | - Jun Xu
- Shanghai East Hospital, Tongji University School of Medicine, Shanghai 200120, China
- Corresponding author.
| | - Zhigang Xue
- Tongji Hospital, School of Medicine, Tongji University, Shanghai 200092, China
- Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Orthopaedic Department of Tongji Hospital, School of Medicine, Tongji University, 200065 Shanghai, China
- Corresponding author.
| |
Collapse
|
7
|
Wang J, Roberts S, Li W, Wright K. Phenotypic characterization of regional human meniscus progenitor cells. Front Bioeng Biotechnol 2022; 10:1003966. [PMID: 36338137 PMCID: PMC9629835 DOI: 10.3389/fbioe.2022.1003966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 09/28/2022] [Indexed: 10/31/2023] Open
Abstract
Stimulating meniscus regeneration using meniscal progenitor cells has been suggested as a promising new strategy. However, there is a lack of studies which decisively identify and characterize progenitor cell populations in human meniscus tissues. In this study, donor-matched progenitor cells were isolated via selective fibronectin adhesion from the avascular and vascular regions of the meniscus and chondroprogenitors from articular cartilage (n = 5). The mixed populations of cells from these regions were obtained by standard isolation techniques for comparison. The colony formation efficacy of avascular progenitors, vascular progenitors and chondroprogenitors was monitored using Cell-IQ® live cell imaging. Proliferation rates of progenitors were compared with their mixed population counterparts. Cell surface markers indicative of mesenchymal stromal cells profile and progenitor markers were characterized by flow cytometry in all populations. The fibrochondrogenic capacity was assessed via fibrochondrogenic differentiation and measuring GAG/DNA content and morphology. All meniscal progenitor and chondroprogenitor populations showed superior colony forming efficacy and faster proliferation rates compare to their mixed populations. Progenitor populations showed significantly higher positivity for CD49b and CD49c compared to their mixed population counterparts and chondroprogenitors had a higher positivity level of CD166 compared to mixed chondrocytes. GAG/DNA analysis demonstrated that progenitor cells generally produced more GAG than mixed populations. Our study demonstrates that the human meniscus contains meniscal progenitor populations in both the avascular and vascular regions. Meniscal progenitors derived from the vascular region exhibit enhanced proliferative and fibrochondrogenic characteristics compared to those from the avascular region; this may associate with the enhanced meniscal healing potential in the vascular region. These findings build on the body of evidence which suggests that meniscal progenitors represent an attractive cell therapy strategy for meniscal regeneration.
Collapse
Affiliation(s)
- Jingsong Wang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Sally Roberts
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| | - Weiping Li
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Karina Wright
- Spinal Studies & Cartilage Research Group, Robert Jones and Agnes Hunt Orthopaedic Hospital NHS Trust, Oswestry, United Kingdom
- School of Pharmacy and Bioengineering, Keele University, Staffordshire, United Kingdom
| |
Collapse
|
8
|
Aidos L, Modina SC, Millar VRH, Peretti GM, Mangiavini L, Ferroni M, Boschetti F, Di Giancamillo A. Meniscus Matrix Structural and Biomechanical Evaluation: Age-Dependent Properties in a Swine Model. Bioengineering (Basel) 2022; 9:bioengineering9030117. [PMID: 35324808 PMCID: PMC8945511 DOI: 10.3390/bioengineering9030117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 03/11/2022] [Accepted: 03/12/2022] [Indexed: 11/16/2022] Open
Abstract
The analysis of the morphological, structural, biochemical, and mechanical changes of the Extracellular Matrix (ECM), which occur during meniscus development, represents the goal of the present study. Medial fully developed menisci (FD, 9-month-old pigs), partially developed menisci (PD, 1-month-old piglets), and not developed menisci (ND, from stillbirths) were collected. Cellularity and glycosaminoglycans (GAGs) deposition were evaluated by ELISA, while Collagen 1 and aggrecan were investigated by immunohistochemistry and Western blot analyses in order to be compared to the biomechanical properties of traction and compression tensile forces, respectively. Cellularity decreased from ND to FD and GAGs showed the opposite trend (p < 0.01 both). Collagen 1 decreased from ND to FD, as well as the ability to resist to tensile traction forces (p < 0.01), while aggrecan showed the opposite trend, in accordance with the biomechanics: compression test showed that FD meniscus greatly resists to deformation (p < 0.01). This study demonstrated that in swine meniscus, clear morphological and biomechanical changes follow the meniscal maturation and specialization during growth, starting with an immature pattern (ND) to the mature organized meniscus of the FD, and they could be useful to understand the behavior of this structure in the light of its tissue bioengineering.
Collapse
Affiliation(s)
- Lucia Aidos
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
| | - Silvia Clotilde Modina
- Department of Veterinary Medicine and Animal Science, Università degli Studi di Milano, 26900 Lodi, Italy;
| | - Valentina Rafaela Herrera Millar
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
| | - Giuseppe Maria Peretti
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
| | - Laura Mangiavini
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
| | - Marco Ferroni
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Federica Boschetti
- IRCCS, Istituto Ortopedico Galeazzi, 20161 Milano, Italy;
- Department of Chemistry, Material and Chemical Engineering “Giulio Natta”, Politecnico di Milano, 20133 Milano, Italy;
| | - Alessia Di Giancamillo
- Department of Biomedical Sciences for Health, Università degli Studi di Milano, 20133 Milano, Italy; (L.A.); (V.R.H.M.); (G.M.P.); (L.M.)
- Correspondence: ; Tel.: +39-02503-34606
| |
Collapse
|
9
|
Zhou YF, Zhang D, Yan WT, Lian K, Zhang ZZ. Meniscus Regeneration With Multipotent Stromal Cell Therapies. Front Bioeng Biotechnol 2022; 10:796408. [PMID: 35237572 PMCID: PMC8883323 DOI: 10.3389/fbioe.2022.796408] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2021] [Accepted: 01/11/2022] [Indexed: 12/20/2022] Open
Abstract
Meniscus is a semilunar wedge-shaped structure with fibrocartilaginous tissue, which plays an essential role in preventing the deterioration and degeneration of articular cartilage. Lesions or degenerations of it can lead to the change of biomechanical properties in the joints, which ultimately accelerate the degeneration of articular cartilage. Even with the manual intervention, lesions in the avascular region are difficult to be healed. Recent development in regenerative medicine of multipotent stromal cells (MSCs) has been investigated for the significant therapeutic potential in the repair of meniscal injuries. In this review, we provide a summary of the sources of MSCs involved in repairing and regenerative techniques, as well as the discussion of the avenues to utilizing these cells in MSC therapies. Finally, current progress on biomaterial implants was reviewed.
Collapse
Affiliation(s)
- Yun-Feng Zhou
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Di Zhang
- Department of Obstetrics-Gynecology, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
| | - Wan-Ting Yan
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- School of Medicine, Sun Yat-sen University, Shenzhen, China
| | - Kai Lian
- Department of Orthopedics, Xiangyang No.1 People’s Hospital, Hubei University of Medicine, Xiangyang, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| | - Zheng-Zheng Zhang
- Department of Orthopedics, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
- *Correspondence: Zheng-Zheng Zhang, ; Kai Lian,
| |
Collapse
|
10
|
Xu M, Zhang X, He Y. An updated view on Temporomandibular Joint degeneration: insights from the cell subsets of mandibular condylar cartilage. Stem Cells Dev 2022; 31:445-459. [PMID: 35044232 DOI: 10.1089/scd.2021.0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The high prevalence of temporomandibular joint osteoarthritis (TMJOA), which causes joint dysfunction, indicates the need for more effective methods for treatment and repair. Mandibular condylar cartilage (MCC), a typical fibrocartilage that experiences degenerative changes during the development of TMJOA, has become a research focus and therapeutic target in recent years. MCC is composed of four zones of cells at various stages of differentiation. The cell subsets in MCC exhibit different physiological and pathological characteristics during development and in TMJOA. Most studies of TMJOA are mainly concerned with gene regulation of pathological changes. The corresponding treatment targets with specific cell subsets in MCC may provide more accurate and reliable results for cartilage repair and TMJOA treatment. In this review, we summarized the current research progress on the cell subsets of MCC from the perspective of MCC development and degeneration. We hope to provide a reference for further exploration of the pathological process of TMJOA and improvement of TMJOA treatment.
Collapse
Affiliation(s)
- Minglu Xu
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Xuyang Zhang
- Chongqing Medical University, 12550, Chongqing, Chongqing, China;
| | - Yao He
- Chongqing Medical University, 12550, Chongqing, China, 400016;
| |
Collapse
|
11
|
Korpershoek JV, Rikkers M, de Windt TS, Tryfonidou MA, Saris DBF, Vonk LA. Selection of Highly Proliferative and Multipotent Meniscus Progenitors through Differential Adhesion to Fibronectin: A Novel Approach in Meniscus Tissue Engineering. Int J Mol Sci 2021; 22:ijms22168614. [PMID: 34445320 PMCID: PMC8395239 DOI: 10.3390/ijms22168614] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2021] [Revised: 08/05/2021] [Accepted: 08/07/2021] [Indexed: 12/26/2022] Open
Abstract
Meniscus injuries can be highly debilitating and lead to knee osteoarthritis. Progenitor cells from the meniscus could be a superior cell type for meniscus repair and tissue-engineering. The purpose of this study is to characterize meniscus progenitor cells isolated by differential adhesion to fibronectin (FN-prog). Human osteoarthritic menisci were digested, and FN-prog were selected by differential adhesion to fibronectin. Multilineage differentiation, population doubling time, colony formation, and MSC surface markers were assessed in the FN-prog and the total meniscus population (Men). Colony formation was compared between outer and inner zone meniscus digest. Chondrogenic pellet cultures were performed for redifferentiation. FN-prog demonstrated multipotency. The outer zone FN-prog formed more colonies than the inner zone FN-prog. FN-prog displayed more colony formation and a higher proliferation rate than Men. FN-prog redifferentiated in pellet culture and mostly adhered to the MSC surface marker profile, except for HLA-DR receptor expression. This is the first study that demonstrates differential adhesion to fibronectin for the isolation of a progenitor-like population from the meniscus. The high proliferation rates and ability to form meniscus extracellular matrix upon redifferentiation, together with the broad availability of osteoarthritis meniscus tissue, make FN-prog a promising cell type for clinical translation in meniscus tissue-engineering.
Collapse
Affiliation(s)
- Jasmijn V. Korpershoek
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.V.K.); (M.R.); (T.S.d.W.); (D.B.F.S.)
| | - Margot Rikkers
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.V.K.); (M.R.); (T.S.d.W.); (D.B.F.S.)
| | - Tommy S. de Windt
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.V.K.); (M.R.); (T.S.d.W.); (D.B.F.S.)
| | - Marianna A. Tryfonidou
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands;
| | - Daniel B. F. Saris
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.V.K.); (M.R.); (T.S.d.W.); (D.B.F.S.)
- Department of Orthopedic Surgery and Sports Medicine, Mayo Clinic, Rochester, MN 55905, USA
- Department of Reconstructive medicine, University of Twente, 7522 NB Enschede, The Netherlands
| | - Lucienne A. Vonk
- Department of Orthopedics, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands; (J.V.K.); (M.R.); (T.S.d.W.); (D.B.F.S.)
- Correspondence: ; Tel.: +49-0-3328-4346-25
| |
Collapse
|
12
|
SSEA-4 Antigen Is Expressed on Rabbit Lymphocyte Subsets. MAGNETOCHEMISTRY 2021. [DOI: 10.3390/magnetochemistry7070094] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
SSEA-4 antigen can be mainly found in embryos and embryonic stem cells. However, its expression has been observed also in adult stem and progenitor cells, or even in some differentiated cells. Moreover, we found a considerable number of SSEA-4 positive (SSEA-4+) cells within the rabbit peripheral blood and bone marrow mononuclear cells (PBMCs and BMMCs) in our previous study. Since no information about such cells can be found anywhere in the literature, the aim of this study was to identify their origin. At first, phenotypic analyses of fresh rabbit PBMCs and BMMCs were performed using flow cytometry and specific antibodies against SSEA-4 and leukocyte subsets. Then, SSEA-4+ were enriched using magnetic activated cell sorting (MACS) and analyzed for their phenotype using qPCR. We found significant SSEA-4+ cell population in PBMCs (~50%) and BMMCs (~20%). All those cells co-expressed CD45 and a majority of them also expressed B-cell marker (IgM; 50% of SSEA-4+ PBMCs and 60% of SSEA-4+ BMMCs). Increased (p < 0.05) expression of SSEA-4, CD45 and B-cell markers (IgM, CD79α and MHCII) were also noticed by qPCR in SSEA-4+ cells enriched via MACS (with efficiency over 80%). Both methods did not detect significant expression of monocyte or T-cell markers. In conclusion, SSEA-4+ cells in rabbit blood and bone marrow are of hematopoietic origin and probably belong to B-lineage cells as possessing the phenotype of B lymphocytes. However, the true function of SSEA-4 antigen in these cells should be explored by further studies.
Collapse
|
13
|
Jeong HJ, Lee SW, Hong MW, Kim YY, Seo KD, Cho YS, Lee SJ. Total Meniscus Reconstruction Using a Polymeric Hybrid-Scaffold: Combined with 3D-Printed Biomimetic Framework and Micro-Particle. Polymers (Basel) 2021; 13:polym13121910. [PMID: 34201327 PMCID: PMC8229034 DOI: 10.3390/polym13121910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 11/21/2022] Open
Abstract
The meniscus has poor intrinsic regenerative capability, and its injury inevitably leads to articular cartilage degeneration. Although there are commercialized off-the-shelf alternatives to achieve total meniscus regeneration, each has its own shortcomings such as individualized size matching issues and inappropriate mechanical properties. We manufactured a polycaprolactone-based patient-specific designed framework via a Computed Tomography scan images and 3D-printing technique. Then, we completed the hybrid-scaffold by combining the 3D-printed framework and mixture micro-size composite which consists of polycaprolactone and sodium chloride to create a cell-friendly microenvironment. Based on this hybrid-scaffold with an autograft cell source (fibrochondrocyte), we assessed mechanical and histological results using the rabbit total meniscectomy model. At postoperative 12-week, hybrid-scaffold achieved neo-meniscus tissue formation, and its shape was maintained without rupture or break away from the knee joint. Histological and immunohistochemical analysis results showed obvious ingrowth of the fibroblast-like cells and chondrocyte cells as well as mature lacunae that were embedded in the extracellular matrix. Hybrid-scaffolding resulted in superior shape matching as compared to original meniscus tissue. Histological analysis showed evidence of extensive neo-meniscus cell ingrowth. Additionally, the hybrid-scaffold did not induce osteoarthritis on the femoral condyle surface. The 3D-printed hybrid-scaffold may provide a promising approach that can be applied to those who received total meniscal resection, using patient-specific design and autogenous cell source.
Collapse
Affiliation(s)
- Hun-Jin Jeong
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
| | - Se-Won Lee
- Department of Orthopedic Surgery, Yeouido St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 10, 63-ro, Yeongdeungpo-gu, Seoul 07345, Korea;
| | - Myoung Wha Hong
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Young Yul Kim
- Department of Orthopedic Surgery, Daejeon St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, 64, Daeheung-ro, Jung-gu, Daejeon 34943, Korea; (M.W.H.); (Y.Y.K.)
| | - Kyoung Duck Seo
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Young-Sam Cho
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| | - Seung-Jae Lee
- Department of Mechanical Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea;
- Department of Mechanical and Design Engineering, College of Engineering, Wonkwang University, 460 Iksandae-ro, Iksan, Jeonbuk 54538, Korea
- Correspondence: (K.D.S.); (Y.-S.C.); (S.-J.L.)
| |
Collapse
|
14
|
Evolution of Meniscal Biomechanical Properties with Growth: An Experimental and Numerical Study. Bioengineering (Basel) 2021; 8:bioengineering8050070. [PMID: 34065530 PMCID: PMC8160968 DOI: 10.3390/bioengineering8050070] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2021] [Revised: 05/03/2021] [Accepted: 05/17/2021] [Indexed: 11/17/2022] Open
Abstract
The menisci of the knee are complex fibro-cartilaginous tissues that play important roles in load bearing, shock absorption, joint lubrication, and stabilization. The objective of this study was to evaluate the interaction between the different meniscal tissue components (i.e., the solid matrix constituents and the fluid phase) and the mechanical response according to the developmental stage of the tissue. Menisci derived from partially and fully developed pigs were analyzed. We carried out biochemical analyses to quantify glycosaminoglycan (GAG) and DNA content according to the developmental stage. These values were related to tissue mechanical properties that were measured in vitro by performing compression and tension tests on meniscal specimens. Both compression and tension protocols consisted of multi-ramp stress-relaxation tests comprised of increasing strains followed by stress-relaxation to equilibrium. To better understand the mechanical response to different directions of mechanical stimulus and to relate it to the tissue structural composition and development, we performed numerical simulations that implemented different constitutive models (poro-elasticity, viscoelasticity, transversal isotropy, or combinations of the above) using the commercial software COMSOL Multiphysics. The numerical models also allowed us to determine several mechanical parameters that cannot be directly measured by experimental tests. The results of our investigation showed that the meniscus is a non-linear, anisotropic, non-homogeneous material: mechanical parameters increase with strain, depend on the direction of load, and vary among regions (anterior, central, and posterior). Preliminary numerical results showed the predominant role of the different tissue components depending on the mechanical stimulus. The outcomes of biochemical analyses related to mechanical properties confirmed the findings of the numerical models, suggesting a specific response of meniscal cells to the regional mechanical stimuli in the knee joint. During maturation, the increase in compressive moduli could be explained by cell differentiation from fibroblasts to metabolically active chondrocytes, as indicated by the found increase in GAG/DNA ratio. The changes of tensile mechanical response during development could be related to collagen II accumulation during growth. This study provides new information on the changes of tissue structural components during maturation and the relationship between tissue composition and mechanical response.
Collapse
|
15
|
Fan Y, Cui C, Li P, Bi R, Lyu P, Li Y, Zhu S. Fibrocartilage Stem Cells in the Temporomandibular Joint: Insights From Animal and Human Studies. Front Cell Dev Biol 2021; 9:665995. [PMID: 33987185 PMCID: PMC8111285 DOI: 10.3389/fcell.2021.665995] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Accepted: 04/06/2021] [Indexed: 02/05/2023] Open
Abstract
Temporomandibular disorders (TMD) are diseases involving the temporomandibular joint (TMJ), masticatory muscles, and osseous components. TMD has a high prevalence, with an estimated 4.8% of the U.S. population experiencing signs and symptoms, and represents a financial burden to both individuals and society. During TMD progression, the most frequently affected site is the condylar cartilage. Comprising both fibrous and cartilaginous tissues, condylar cartilage has restricted cell numbers but lacks a vascular supply and has limited regenerative properties. In 2016, a novel stem cell niche containing a reservoir of fibrocartilage stem cells (FCSCs) was discovered in the condylar cartilage of rats. Subsequently, FCSCs were identified in mouse, rabbit, and human condylar cartilage. Unlike mesenchymal stem cells or other tissue-specific stem/progenitor cells, FCSCs play a unique role in the development and regeneration of fibrocartilage. More importantly, engraftment treatment of FCSCs has been successfully applied in animal models of TMD. In this context, FCSCs play a major role in the regeneration of newly formed cartilage. Furthermore, FCSCs participate in the regeneration of intramembranous bone by interacting with endothelial cells in bone defects. This evidence highlights the potential of FCSCs as an ideal stem cell source for the regeneration of oral maxillofacial tissue. This review is intended to detail the current knowledge of the characteristics and function of FCSCs in the TMJ, as well as the potential therapeutic applications of FCSCs. A deep understanding of the properties of FCSCs can thus inform the development of promising, biologically based strategies for TMD in the future.
Collapse
Affiliation(s)
- Yi Fan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Chen Cui
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China.,Hospital of Stomatology, Guanghua School of Stomatology, Sun Yat-sen University, Guangdong Province Key Laboratory of Stomatology, Guangzhou, China
| | - Peiran Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ruiye Bi
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Ping Lyu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Cariology and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Yanxi Li
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| | - Songsong Zhu
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, Department of Orthognathic and TMJ Surgery, West China Hospital of Stomatology, Sichuan University, Chengdu, China
| |
Collapse
|
16
|
Kara A, Koçtürk S, Bilici G, Havitcioglu H. Development of biological meniscus scaffold: Decellularization method and recellularization with meniscal cell population derived from mesenchymal stem cells. J Biomater Appl 2021; 35:1192-1207. [PMID: 33444085 DOI: 10.1177/0885328220981189] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Tissue engineering approaches which include a combination of cells and scaffold materials provide an alternative treatment for meniscus regeneration. Decellularization and recellularization techniques are potential treatment options for transplantation. Maintenance of the ultrastructure composition of the extracellular matrix and repopulation with cells are important factors in constructing a biological scaffold and eliminating immunological reactions.The aim of the study is to develop a method to obtain biological functional meniscus scaffolds for meniscus regeneration. For this purpose, meniscus tissue was decellularized by our modified method, a combination of physical, chemical, and enzymatic methods and then recellularized with a meniscal cell population composed of fibroblasts, chondrocytes and fibrochondrocytes that obtained from mesenchymal stem cells. Decellularized and recellularized meniscus scaffolds were analysed biochemically, biomechanically and histologically. Our results revealed that cellular components of the meniscus were successfully removed by preserving collagen and GAG structures without any significant loss in biomechanical properties. Recellularization results showed that the meniscal cells were localized in the empty lacuna on the decellularized meniscus, and also well distributed and proliferated consistently during the cell culture period (p < 0.05). Furthermore, a high amount of DNA, collagen, and GAG contents (p < 0.05) were obtained with the meniscal cell population in recellularized meniscus tissue.The study demonstrates that our decellularization and recellularization methods were effective to develop a biological functional meniscus scaffold and can mimic the meniscus tissue with structural and biochemical features. We predict that the obtained biological meniscus scaffolds may provide avoidance of adverse immune reactions and an appropriate microenvironment for allogeneic or xenogeneic recipients in the transplantation process. Therefore, as a promising candidate, the obtained biological meniscus scaffolds might be verified with a transplantation experiment.
Collapse
Affiliation(s)
- Aylin Kara
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| | - Semra Koçtürk
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Gokcen Bilici
- Faculty of Medicine, Department of Biochemistry, Dokuz Eylül University, İzmir, Turkey
| | - Hasan Havitcioglu
- Department of Bioengineering, İzmir Institute of Technology, İzmir, Turkey
| |
Collapse
|
17
|
Elkhenany HA, Szojka ARA, Mulet-Sierra A, Liang Y, Kunze M, Lan X, Sommerfeldt M, Jomha NM, Adesida AB. Bone Marrow Mesenchymal Stem Cell-Derived Tissues are Mechanically Superior to Meniscus Cells. Tissue Eng Part A 2020; 27:914-928. [PMID: 32940137 DOI: 10.1089/ten.tea.2020.0183] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Bone marrow-derived mesenchymal stem cells (BMSCs) have the potential to form the mechanically responsive matrices of joint tissues, including the menisci of the knee joint. The purpose of this study is to assess BMSC's potential to engineer meniscus-like tissue relative to meniscus fibrochondrocytes (MFCs). MFCs were isolated from castoffs of partial meniscectomy from nonosteoarthritic knees. BMSCs were developed from bone marrow aspirates of the iliac crest. All cells were of human origin. Cells were cultured in type I collagen scaffolds under normoxia (21% O2) for 2 weeks followed by hypoxia (3% O2) for 3 weeks. The structural and functional assessment of the generated meniscus constructs were based on glycosaminoglycan (GAG) content, histological appearance, gene expression, and mechanical properties. The tissues formed by both cell types were histologically positive for Safranin O stain and appeared more intense in the BMSC constructs. This observation was confirmed by a 2.7-fold higher GAG content. However, there was no significant difference in collagen I (COL1A2) expression in BMSC- and MFC-based constructs (p = 0.17). The expression of collagen II (COL2A1) and aggrecan (ACAN) were significantly higher in BMSCs than MFC (p ≤ 0.05). Also, the gene expression of the hypertrophic marker collagen X (COL10A1) was 199-fold higher in BMSCs than MFC (p < 0.001). Moreover, relaxation moduli were significantly higher in BMSC-based constructs at 10-20% strain step than MFC-based constructs. BMSC-based constructs expressed higher COL2A1, ACAN, COL10A1, contained higher GAG content, and exhibited higher relaxation moduli at 10-20% strain than MFC-based construct. Impact statement Cell-based tissue engineering (TE) has the potential to produce functional tissue replacements for irreparably damaged knee meniscus. But the source of cells for the fabrication of the tissue replacements is currently unknown and of research interest in orthopedic TE. In this study, we fabricated tissue-engineered constructs using type I collagen scaffolds and two candidate cell sources in meniscus TE. We compared the mechanical properties of the tissues formed from human meniscus fibrochondrocytes and bone marrow-derived mesenchymal stem cells (BMSCs). Our data show that the tissues engineered from the BMSC are mechanically superior in relaxation modulus.
Collapse
Affiliation(s)
- Hoda A Elkhenany
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Surgery, Faculty of Veterinary Medicine, Alexandria University, Alexandria, Egypt
| | - Alexander R A Szojka
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Aillette Mulet-Sierra
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Yan Liang
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Melanie Kunze
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Xiaoyi Lan
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Department of Civil and Environmental Engineering, Faculty of Engineering, University of Alberta, Edmonton, Canada
| | - Mark Sommerfeldt
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada.,Glen Sather Sports Medicine Clinic, University of Alberta, Edmonton, Canada
| | - Nadr M Jomha
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| | - Adetola B Adesida
- Divisions of Orthopedic Surgery and Surgical Research, Department of Surgery, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Canada
| |
Collapse
|
18
|
Desai S, Jayasuriya CT. Implementation of Endogenous and Exogenous Mesenchymal Progenitor Cells for Skeletal Tissue Regeneration and Repair. Bioengineering (Basel) 2020; 7:E86. [PMID: 32759659 PMCID: PMC7552784 DOI: 10.3390/bioengineering7030086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2020] [Revised: 07/25/2020] [Accepted: 07/30/2020] [Indexed: 02/06/2023] Open
Abstract
Harnessing adult mesenchymal stem/progenitor cells to stimulate skeletal tissue repair is a strategy that is being actively investigated. While scientists continue to develop creative and thoughtful ways to utilize these cells for tissue repair, the vast majority of these methodologies can ultimately be categorized into two main approaches: (1) Facilitating the recruitment of endogenous host cells to the injury site; and (2) physically administering into the injury site cells themselves, exogenously, either by autologous or allogeneic implantation. The aim of this paper is to comprehensively review recent key literature on the use of these two approaches in stimulating healing and repair of different skeletal tissues. As expected, each of the two strategies have their own advantages and limitations (which we describe), especially when considering the diverse microenvironments of different skeletal tissues like bone, tendon/ligament, and cartilage/fibrocartilage. This paper also discusses stem/progenitor cells commonly used for repairing different skeletal tissues, and it lists ongoing clinical trials that have risen from the implementation of these cells and strategies. Lastly, we discuss our own thoughts on where the field is headed in the near future.
Collapse
Affiliation(s)
| | - Chathuraka T. Jayasuriya
- Department of Orthopaedics, Warren Alpert Medical School of Brown University and the Rhode Island Hospital, Providence, RI 02903, USA;
| |
Collapse
|
19
|
Expression and function of cartilage-derived pluripotent cells in joint development and repair. Stem Cell Res Ther 2020; 11:111. [PMID: 32160923 PMCID: PMC7066750 DOI: 10.1186/s13287-020-01604-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2019] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 02/08/2023] Open
Abstract
Cartilage-derived pluripotent cells reside in hyaline cartilage and fibrocartilage. These cells have the potential for multidirectional differentiation; can undergo adipogenesis, osteogenesis, and chondrogenesis; and have been classified as mesenchymal stem cells (MSCs) conforming to the minimal criteria of the International Society for Cellular Therapy. Cartilage tissue is prone to injury and is difficult to repair. As cartilage-derived pluripotent cells are the closest cell source to cartilage tissue, they are expected to have the strongest ability to differentiate into cartilage compared to other MSCs. This review focuses on the organizational distribution, expression, and function of cartilage-derived pluripotent cells in joint development and repair to help explore the therapeutic potential of in situ cartilage-derived pluripotent cells for joint cartilage repair.
Collapse
|
20
|
Twomey-Kozak J, Jayasuriya CT. Meniscus Repair and Regeneration: A Systematic Review from a Basic and Translational Science Perspective. Clin Sports Med 2020; 39:125-163. [PMID: 31767102 DOI: 10.1016/j.csm.2019.08.003] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Meniscus injuries are among the most common athletic injuries and result in functional impairment in the knee. Repair is crucial for pain relief and prevention of degenerative joint diseases like osteoarthritis. Current treatments, however, do not produce long-term improvements. Thus, recent research has been investigating new therapeutic options for regenerating injured meniscal tissue. This review comprehensively details the current methodologies being explored in the basic sciences to stimulate better meniscus injury repair. Furthermore, it describes how these preclinical strategies may improve current paradigms of how meniscal injuries are clinically treated through a unique and alternative perspective to traditional clinical methodology.
Collapse
Affiliation(s)
- John Twomey-Kozak
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA
| | - Chathuraka T Jayasuriya
- Department of Orthopaedics, Brown University/Rhode Island Hospital, Box G-A1, Providence, RI 02912, USA.
| |
Collapse
|
21
|
He S, Ruan D, Chen Y, Ran J, Chen X, Yin Z, Tang C, Huang J, Heng BC, Chen J, Chen W, Shen W, Ouyang H. Characterization and Comparison of Postnatal Rat Meniscus Stem Cells at Different Developmental Stages. Stem Cells Transl Med 2019; 8:1318-1329. [PMID: 31638337 PMCID: PMC6877772 DOI: 10.1002/sctm.19-0125] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/24/2019] [Indexed: 11/25/2022] Open
Abstract
Meniscus‐derived stem cells (MeSCs) are a potential cell source for meniscus tissue engineering. The stark morphological and structural changes of meniscus tissue during development indicate the complexity of MeSCs at different tissue regions and stages of development. In this study, we characterized and compared postnatal rat meniscus tissue and MeSCs at different tissue regions and stages of development. We observed that the rat meniscus tissue exhibited marked changes in tissue morphology during development, with day 7 being the most representative time point of different developmental stages. All rat MeSCs displayed typical stem cell characteristics. Rat MeSCs derived from day 7 inner meniscus tissue exhibited the highest self‐renewal capacity, cell proliferation, differentiation potential toward various mesenchymal lineage and the highest expression levels of chondrogenic genes and proteins. Transplantation of rat MeSCs derived from day 7 inner meniscus tissue promoted neo‐tissue formation and effectively protected joint surface cartilage in vivo. Our results demonstrated for the first time that rat MeSCs are not necessarily better at earlier developmental stages, and that rat MeSCs derived from day 7 inner meniscus tissue may be a superior cell source for effective meniscus regeneration and articular cartilage protection. This information could make a significant contribution to human meniscus tissue engineering in the future. stem cells translational medicine2019;8:1318&1329 (A): Meniscus tissue at different tissue regions and stages of development. (B): MeSCs at different tissue regions and stages of development. (C): Intra‐articular injection of MeSCs for meniscus regeneration and OA suppression. *Significant difference between two groups at p < .05. **Significant difference between two groups at p < .01. ***Significant difference between two groups at p < .001. ****Significant difference between two groups at p < .0001. N.S., No significant difference between two groups at p ≥ .05.![]()
Collapse
Affiliation(s)
- Shaoqi He
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Orthopedic Surgery, Third Affiliated Hospital of Wenzhou Medical University, Wenzhou, People's Republic of China
| | - Dengfeng Ruan
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Yangwu Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jisheng Ran
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Xiao Chen
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Zi Yin
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Chenqi Tang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Jiayun Huang
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China
| | - Boon Chin Heng
- Peking University School of Stomatology, Beijing, People's Republic of China
| | - Jialin Chen
- School of Medicine, Southeast University, Nanjing, People's Republic of China
| | - Weishan Chen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, People's Republic of China
| | - Weiliang Shen
- Department of Orthopedic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,Department of Orthopedics, Research Institute of Zhejiang University, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| | - Hongwei Ouyang
- Department of Sports Medicine, Zhejiang University School of Medicine, Hangzhou, People's Republic of China.,China Orthopaedic Regenerative Medicine (CORMed), Hangzhou, People's Republic of China
| |
Collapse
|
22
|
Vašíček J, Kováč M, Baláži A, Kulíková B, Tomková M, Olexiková L, Čurlej J, Bauer M, Schnabl S, Hilgarth M, Hubmann R, Shehata M, Makarevich AV, Chrenek P. Combined approach for characterization and quality assessment of rabbit bone marrow-derived mesenchymal stem cells intended for gene banking. N Biotechnol 2019; 54:1-12. [PMID: 31400479 DOI: 10.1016/j.nbt.2019.08.001] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Revised: 07/16/2019] [Accepted: 08/01/2019] [Indexed: 01/05/2023]
Abstract
Rabbit mesenchymal stem cells (rMSCs) are promising agents for the preservation of genetic biodiversity in domestic rabbit breeds. However, rMSCs must meet certain requirements to be used for cryopreservation in animal gene banks. Currently, there are numerous discrepancies in the published data regarding the rMSC phenotype, which may complicate efforts to evaluate their purity and suitability for reuse after cryopreservation in gene and tissue banks. We propose a combined approach (flow cytometry, PCR, differentiation and ultrastructure studies) for the characterization and recovery of rMSCs after cryopreservation. Flow cytometric analyses of rMSCs confirmed the expression of CD29, CD44, vimentin, desmin and α-SMA. RT-PCR revealed the expression of other markers at the mRNA level (SSEA-4, CD73, CD90, CD105, CD146 and CD166). rMSCs showed efficient multilineage differentiation into adipo-, chondro- and osteogenic lineages, SOX2 expression (pluripotency) and typical MSC morphology and ultrastructure. The confirmed rMSCs were subsequently used for cryopreservation. Efficient recovery of rMSCs after cryogenic freezing was demonstrated by high cell viability, normal ultrastructure of reseeded rMSCs, high expression of CD29 and CD44 and lineage differentiation capacity. The proposed combined approach could be used for characterization, cryopreservation and recovery of rMSCs as genetic resources for native rabbit breeds.
Collapse
Affiliation(s)
- Jaromír Vašíček
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Research Centre AgroBioTech, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic.
| | - Michal Kováč
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Andrej Baláži
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Barbora Kulíková
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Mária Tomková
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Lucia Olexiková
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Jozef Čurlej
- Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic
| | - Miroslav Bauer
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Natural Sciences, Constantine the Philosopher University in Nitra, Nábrežie mládeže 91, 949 74 Nitra, Slovak Republic
| | - Susanne Schnabl
- Department, of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Martin Hilgarth
- Department, of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Rainer Hubmann
- Department, of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Medhat Shehata
- Department, of Internal Medicine I, Division of Haematology and Haemostaseology, Comprehensive Cancer Centre Vienna, Drug and Target Screening Unit DTSU, Medical University of Vienna, Waehringer Guertel 18-20, Vienna, A-1090, Austria
| | - Alexander V Makarevich
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic
| | - Peter Chrenek
- NPPC - Research Institute for Animal Production in Nitra, Hlohovecká 2, 951 41 Lužianky, Slovak Republic; Faculty of Biotechnology and Food Science, Slovak University of Agriculture in Nitra, Tr. A. Hlinku 2, 949 76 Nitra, Slovak Republic; Faculty of Animal Breeding and Biology, UTP University of Science and Technology, Mazowiecka 28, 85-084 Bydgoszcz, Poland
| |
Collapse
|
23
|
Xie X, Zhu J, Hu X, Dai L, Fu X, Zhang J, Duan X, Ao Y. A co-culture system of rat synovial stem cells and meniscus cells promotes cell proliferation and differentiation as compared to mono-culture. Sci Rep 2018; 8:7693. [PMID: 29769537 PMCID: PMC5955983 DOI: 10.1038/s41598-018-25709-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Accepted: 03/09/2018] [Indexed: 12/25/2022] Open
Abstract
A meniscus tear often happens during active sports. It needs to be repaired or replaced surgically to avoid further damage to the articular cartilage. To address the shortage of autologous meniscal cells, we designed a co-culture system of synovial stem cells (SMSCs) and meniscal cells (MCs) to produce a large cell number and to maintain characteristics of MCs. Different ratios of SMSCs and MCs at 3:1, 1:1, and 1:3 were tested. Mono-culture of SMSCs or MCs served as control groups. Proliferation and differentiation abilities were compared. The expression of extracellular matrix (ECM) genes in MCs was assessed using an ECM array to reveal the mechanism at the gene level. The co-culture system of SMSCs/MCs at the ratio of 1:3 showed better results than the control groups or those at other ratios. This co-culture system may be a promising strategy for meniscus repair with tissue engineering.
Collapse
Affiliation(s)
- Xing Xie
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Jingxian Zhu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xiaoqing Hu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Linghui Dai
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xin Fu
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Jiying Zhang
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Xiaoning Duan
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China
| | - Yingfang Ao
- Institute of Sports Medicine, Beijing Key Laboratory of Sports Injury, Third Hospital of Peking University, Beijing, China.
| |
Collapse
|
24
|
Koch M, Ehrenreich T, Koehl G, Pattappa G, Pfeifer C, Loibl M, Müller M, Nerlich M, Angele P, Zellner J. Do cell based tissue engineering products for meniscus regeneration influence vascularization? Clin Hemorheol Microcirc 2017; 67:125-140. [DOI: 10.3233/ch-17085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Matthias Koch
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Tobias Ehrenreich
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Gudrun Koehl
- Department of Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Girish Pattappa
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Christian Pfeifer
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Markus Loibl
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Müller
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Michael Nerlich
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| | - Peter Angele
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
- Sporthopaedicum Regensburg/Straubing, Regensburg, Germany
| | - Johannes Zellner
- Department of Trauma Surgery, University Medical Center Regensburg, Regensburg, Germany
| |
Collapse
|
25
|
Liang Y, Idrees E, Andrews SHJ, Labib K, Szojka A, Kunze M, Burbank AD, Mulet-Sierra A, Jomha NM, Adesida AB. Plasticity of Human Meniscus Fibrochondrocytes: A Study on Effects of Mitotic Divisions and Oxygen Tension. Sci Rep 2017; 7:12148. [PMID: 28939894 PMCID: PMC5610182 DOI: 10.1038/s41598-017-12096-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2017] [Accepted: 09/04/2017] [Indexed: 02/07/2023] Open
Abstract
Meniscus fibrochondrocytes (MFCs) may be the optimal cell source to repair non-healing meniscus injuries using tissue engineering strategies. In this study, we investigated the effects of mitotic divisions and oxygen tension on the plasticity of adult human MFCs. Our assessment techniques included gene expression, biochemical, histological, and immunofluorescence assays. MFCs were expanded in monolayer culture with combined growth factors TGFβ1 and FGF-2 (T1F2) under normoxia (21% O2). Trilineage (adipogenesis, chondrogenesis and osteogenesis) differentiation was performed under both normoxic (21% O2) and hypoxic (3% O2) conditions. The data demonstrated that MFCs with a mean total population doubling of 10 can undergo adipogenesis and chondrogenesis. This capability was enhanced under hypoxic conditions. The MFCs did not undergo osteogenesis. In conclusion, our findings suggest that extensively expanded human MFCs have the capacity to generate tissues with the functional matrix characteristics of avascular meniscus. To this end, expanded MFCs may be an ideal cell source for engineering functional constructs for the replacement or repair of avascular meniscus.
Collapse
Affiliation(s)
- Yan Liang
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
- Division of Burn and Reconstructive Surgery, Second Affiliated Hospital, Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Enaam Idrees
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Stephen H J Andrews
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Kirollos Labib
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Alexander Szojka
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Melanie Kunze
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Andrea D Burbank
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Aillette Mulet-Sierra
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Nadr M Jomha
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada
| | - Adetola B Adesida
- University of Alberta, Department of Surgery, Divisions of Orthopaedic Surgery and Surgical Research, Edmonton, T6G 2E1, Canada.
| |
Collapse
|
26
|
Narayanan G, Bhattacharjee M, Nair LS, Laurencin CT. Musculoskeletal Tissue Regeneration: the Role of the Stem Cells. REGENERATIVE ENGINEERING AND TRANSLATIONAL MEDICINE 2017. [DOI: 10.1007/s40883-017-0036-9] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
27
|
Yuan X, Wei Y, Villasante A, Ng JJD, Arkonac DE, Chao PHG, Vunjak-Novakovic G. Stem cell delivery in tissue-specific hydrogel enabled meniscal repair in an orthotopic rat model. Biomaterials 2017; 132:59-71. [PMID: 28407495 PMCID: PMC5473162 DOI: 10.1016/j.biomaterials.2017.04.004] [Citation(s) in RCA: 67] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Revised: 03/28/2017] [Accepted: 04/03/2017] [Indexed: 01/21/2023]
Abstract
Interest in non-invasive injectable therapies has rapidly risen due to their excellent safety profile and ease of use in clinical settings. Injectable hydrogels can be derived from the extracellular matrix (ECM) of specific tissues to provide a biomimetic environment for cell delivery and enable seamless regeneration of tissue defects. We investigated the in situ delivery of human mesenchymal stem cells (hMSCs) in decellularized meniscus ECM hydrogel to a meniscal defect in a nude rat model. First, decellularized meniscus ECM hydrogel retained tissue-specific proteoglycans and collagens, and significantly upregulated expression of fibrochondrogenic markers by hMSCs versus collagen hydrogel alone in vitro. The meniscus ECM hydrogel in turn supported delivery of hMSCs for integrative repair of a full-thickness defect model in meniscal explants after in vitro culture and in vivo subcutaneous implantation. When applied to an orthotopic model of meniscal injury in nude rat, hMSCs in meniscus ECM hydrogel were retained out to eight weeks post-injection, contributing to tissue regeneration and protection from joint space narrowing, pathologic mineralization, and osteoarthritis development, as evidenced by macroscopic and microscopic image analysis. Based on these findings, we propose the use of tissue-specific meniscus ECM-derived hydrogel for the delivery of therapeutic hMSCs to treat meniscal injury.
Collapse
Affiliation(s)
- Xiaoning Yuan
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Yiyong Wei
- Department of Biomedical Engineering, Columbia University, New York, NY, USA; Department of Orthopaedics, Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Aránzazu Villasante
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Johnathan J D Ng
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Derya E Arkonac
- Department of Biomedical Engineering, Columbia University, New York, NY, USA
| | - Pen-Hsiu Grace Chao
- Institute of Biomedical Engineering, School of Medicine and School of Engineering, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
28
|
Korpershoek JV, de Windt TS, Hagmeijer MH, Vonk LA, Saris DBF. Cell-Based Meniscus Repair and Regeneration: At the Brink of Clinical Translation?: A Systematic Review of Preclinical Studies. Orthop J Sports Med 2017; 5:2325967117690131. [PMID: 28321424 PMCID: PMC5347439 DOI: 10.1177/2325967117690131] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Meniscus damage can be caused by trauma or degeneration and is therefore common among patients of all ages. Repair or regeneration of the menisci could be of great importance not only for pain relief or regaining function but also to prevent degenerative disease and osteoarthritis. Current treatment does not offer consistent long-term improvement. Although preclinical research focusing on augmentation of meniscal tear repair and regeneration after meniscectomy is encouraging, clinical translation remains difficult. Purpose: To systematically evaluate the literature on in vivo meniscus regeneration and explore the optimal cell sources and conditions for clinical translation. We aimed at thorough evaluation of current evidence as well as clarifying the challenges for future preclinical and clinical studies. Study Design: Systematic review. Methods: A search was conducted using the electronic databases of MEDLINE, Embase, and the Cochrane Collaboration. Search terms included meniscus, regeneration, and cell-based. Results: After screening 81 articles based on title and abstract, 51 articles on in vivo meniscus regeneration could be included; 2 additional articles were identified from the references. Repair and regeneration of the meniscus has been described by intra-articular injection of multipotent mesenchymal stromal (stem) cells from adipose tissue, bone marrow, synovium, or meniscus or the use of these cell types in combination with implantable or injectable scaffolds. The use of fibrochondrocytes, chondrocytes, and transfected myoblasts for meniscus repair and regeneration is limited to the combination with different scaffolds. The comparative in vitro and in vivo studies mentioned in this review indicate that the use of allogeneic cells is as successful as the use of autologous cells. In addition, the implantation or injection of cell-seeded scaffolds increased tissue regeneration and led to better structural organization compared with scaffold implantation or injection of a scaffold alone. None of the studies mentioned in this review compare the effectiveness of different (cell-seeded) scaffolds. Conclusion: There is heterogeneity in animal models, cell types, and scaffolds used, and limited comparative studies are available. The comparative in vivo research that is currently available is insufficient to draw strong conclusions as to which cell type is the most promising. However, there is a vast amount of in vivo research on the use of different types of multipotent mesenchymal stromal (stem) cells in different experimental settings, and good results are reported in terms of tissue formation. None of these studies compare the effectiveness of different cell-scaffold combinations, making it hard to conclude which scaffold has the greatest potential.
Collapse
Affiliation(s)
- Jasmijn V Korpershoek
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Tommy S de Windt
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Michella H Hagmeijer
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Lucienne A Vonk
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands
| | - Daniel B F Saris
- Department of Orthopaedics, University Medical Center Utrecht, Utrecht, The Netherlands.; MIRA Institute for Biomedical Technology and Technical Medicine, University of Twente, Enschede, The Netherlands
| |
Collapse
|
29
|
Gamer LW, Shi RR, Gendelman A, Mathewson D, Gamer J, Rosen V. Identification and characterization of adult mouse meniscus stem/progenitor cells. Connect Tissue Res 2016; 58:238-245. [PMID: 28005443 DOI: 10.1080/03008207.2016.1271797] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Meniscal damage is a common problem that accelerates the onset of knee osteoarthritis. Stem cell-based tissue engineering treatment approaches have shown promise in preserving meniscal tissue and restoring meniscal function. The purpose of our study was to identify meniscus-derived stem/progenitor cells (MSPCs) from mouse, a model system that allows for in vivo analysis of the mechanisms underlying meniscal injury and healing. MSPCs were isolated from murine menisci grown in explant culture and characterized for stem cell properties. Flow cytometry was used to detect the presence of surface antigens related to stem cells, and qRT-PCR was used to examine the gene expression profile of MSPCs. Major proteins associated with MSPCs were localized in the adult mouse knee using immunohistochemistry. Our data show that MSPCs have universal stem cell-like properties including clonogenicity and multi-potentiality. MSPCs expressed the mesenchymal stem cell markers CD44, Sca-1, CD90, and CD73 and when cultured had elevated levels of biglycan and collagen type I, important extracellular matrix components of adult meniscus. MSPC also expressed significant levels of Lox and Igf-1, genes associated with the embryonic meniscus. Localization studies showed staining for these same proteins in the superficial and outer zones of the adult mouse meniscus, regions thought to harbor endogenous repair cells. MSPCs represent a novel resident stem cell population in the murine meniscus. Analysis of MSPCs in mice will allow for a greater understanding of the cell biology of the meniscus, essential information for enhancing therapeutic strategies for treating knee joint injury and disease.
Collapse
Affiliation(s)
- Laura W Gamer
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - Rui Rui Shi
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - Ashira Gendelman
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - Dylan Mathewson
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - Jackson Gamer
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| | - Vicki Rosen
- a Department of Developmental Biology , Harvard School of Dental Medicine , Boston , MA , USA
| |
Collapse
|
30
|
Numpaisal PO, Rothrauff BB, Gottardi R, Chien CL, Tuan RS. Rapidly dissociated autologous meniscus tissue enhances meniscus healing: An in vitro study. Connect Tissue Res 2016; 58:355-365. [PMID: 27726454 DOI: 10.1080/03008207.2016.1245727] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
PURPOSE Treatment of meniscus tears is a persistent challenge in orthopedics. Although cell therapies have shown promise in promoting fibrocartilage formation in in vitro and preclinical studies, clinical application has been limited by the paucity of autologous tissue and the need for ex vivo cell expansion. Rapid dissociation of the free edges of the anterior and posterior meniscus with subsequent implantation in a meniscus lesion may overcome these limitations. The purpose of this study was to explore the effect of rapidly dissociated meniscus tissue in enhancing neotissue formation in a radial meniscus tear, as simulated in an in vitro explant model. MATERIALS AND METHODS All experiments in this study, performed at minimum with biological triplicates, utilized meniscal tissues from hind limbs of young cows. The effect of varying collagenase concentration (0.1%, 0.2% and 0.5% w/v) and treatment duration (overnight and 30 minutes) on meniscus cell viability, organization of the extracellular matrix (ECM), and gene expression was assessed through a cell metabolism assay, microscopic examination, and quantitative real-time reverse transcription polymerase chain reaction analysis, respectively. Thereafter, an explant model of a radial meniscus tear was used to evaluate the effect of a fibrin gel seeded with one of the following: (1) fibrin alone, (2) isolated and passaged (P2) meniscus cells, (3) overnight digested tissue, and (4) rapidly dissociated tissue. The quality of in vitro healing was determined through histological analysis and derivation of an adhesion index. RESULTS Rapid dissociation in 0.2% collagenase yielded cells with higher levels of metabolism than either 0.1% or 0.5% collagenase. When seeded in a three-dimensional fibrin hydrogel, both overnight digested and rapidly dissociated cells expressed greater levels of collagens type I and II than P2 meniscal cells at 1 week. At 4 and 8 weeks, collagen type II expression remained elevated only in the rapid dissociation group. Histological examination revealed enhanced healing in all cell-seeded treatment groups over cell-free fibrin controls at weeks 1, 4, and 8, but there were no significant differences across the treatment groups. CONCLUSIONS Rapid dissociation of meniscus tissue may provide a single-step approach to augment regenerative healing of meniscus repairs.
Collapse
Affiliation(s)
- Piya-On Numpaisal
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,b Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan.,c Institute of Medicine, Suranaree University of Technology , Nakhon Ratchasima , Thailand
| | - Benjamin B Rothrauff
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,d McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh , PA , USA
| | - Riccardo Gottardi
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,e Ri.MED Foundation , Palermo , Italy
| | - Chung-Liang Chien
- b Department of Anatomy and Cell Biology , College of Medicine, National Taiwan University , Taipei , Taiwan
| | - Rocky S Tuan
- a Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery , University of Pittsburgh School of Medicine , Pittsburgh , PA , USA.,d McGowan Institute for Regenerative Medicine, University of Pittsburgh , Pittsburgh , PA , USA
| |
Collapse
|
31
|
Hofer HR, Tuan RS. Secreted trophic factors of mesenchymal stem cells support neurovascular and musculoskeletal therapies. Stem Cell Res Ther 2016; 7:131. [PMID: 27612948 PMCID: PMC5016979 DOI: 10.1186/s13287-016-0394-0] [Citation(s) in RCA: 226] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Adult mesenchymal stem cells (MSCs) represent a subject of intense experimental and biomedical interest. Recently, trophic activities of MSCs have become the topic of a number of revealing studies that span both basic and clinical fields. In this review, we focus on recent investigations that have elucidated trophic mechanisms and shed light on MSC clinical efficacy relevant to musculoskeletal applications. Innate differences due to MSC sourcing may play a role in the clinical utility of isolated MSCs. Pain management, osteochondral, nerve, or blood vessel support by MSCs derived from both autologous and allogeneic sources have been examined. Recent mechanistic insights into the trophic activities of these cells point to ultimate regulation by nitric oxide, nuclear factor-kB, and indoleamine, among other signaling pathways. Classic growth factors and cytokines-such as VEGF, CNTF, GDNF, TGF-β, interleukins (IL-1β, IL-6, and IL-8), and C-C ligands (CCL-2, CCL-5, and CCL-23)-serve as paracrine control molecules secreted or packaged into extracellular vesicles, or exosomes, by MSCs. Recent studies have also implicated signaling by microRNAs contained in MSC-derived exosomes. The response of target cells is further regulated by their microenvironment, involving the extracellular matrix, which may be modified by MSC-produced matrix metalloproteinases (MMPs) and tissue inhibitor of MMPs. Trophic activities of MSCs, either resident or introduced exogenously, are thus intricately controlled, and may be further fine-tuned via implant material modifications. MSCs are actively being investigated for the repair and regeneration of both osteochondral and other musculoskeletal tissues, such as tendon/ligament and meniscus. Future rational and effective MSC-based musculoskeletal therapies will benefit from better mechanistic understanding of MSC trophic activities, for example using analytical "-omics" profiling approaches.
Collapse
Affiliation(s)
- Heidi R Hofer
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA
| | - Rocky S Tuan
- Center for Cellular and Molecular Engineering, Department of Orthopaedic Surgery, University of Pittsburgh School of Medicine, 450 Technology Drive, Room 221, Pittsburgh, PA, 15219, USA.
| |
Collapse
|
32
|
Aboul-Fotouh GI, Zickri MB, Metwally HG, Ibrahim IR, Kamar SS, Sakr W. Therapeutic Effect of Adipose Derived Stem Cells versus Atorvastatin on Amiodarone Induced Lung Injury in Male Rat. Int J Stem Cells 2015; 8:170-80. [PMID: 26634065 PMCID: PMC4651281 DOI: 10.15283/ijsc.2015.8.2.170] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Background and Objectives Amiodarone (AM), a class 3 antiarrhythmic drug, has been associated with variety of adverse effects, the most serious of which is pulmonary toxicity. Ator (A) is a statin, known for their immunomodulatory and anti-inflammatory activities. Recent studies provide evidence of potential therapeutic effect of statins on lung injury. Adipose derived stem cells (ADSCs) have shown great promise in the repair of various tissues. The present study aimed at investigating and comparing the possible therapeutic effect of A and ADSCs on AM induced lung injury in albino rats. Methods and Results 34 adult male albino rats were divided into 5 groups: control group (Gp I), A group (Gp II) received 10 mg/kg of A orally 6 days (d)/week (w) for 4 weeks (ws), AM group (Gp III) received 30 mg/kg of AM orally 6 d/w for 4 ws, AM&A group (Gp IV) received AM for 4ws then A for other 4 ws and AM&SCs group (Gp V) received AM for 4 ws then injected with 0.5 ml ADSCs on 2 successive days intravenously (IV). Histological, histochemical, immunohistochemical and morphometric studies were performed. Group III displayed bronchiolitis obliterans, thickened interalveolar septa (IAS) and thickened vascular wall which were proven morphometrically. Increased area% of collagen fibers and apoptotic changes were recorded. All findings regressed on A administration and ADSCs therapy. Conclusion Ator proved a definite ameliorating effect on the degenerative, inflammatory, apoptotic and fibrotic changes induced by AM. ADSCs administration denoted more remarkable therapeutic effect compared to A.
Collapse
Affiliation(s)
| | - Maha Baligh Zickri
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Hala Gabr Metwally
- Department of Clinical Pathology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Ihab Refaat Ibrahim
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Samaa Samir Kamar
- Department of Histology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Wael Sakr
- Department of Plastic Surgery, Faculty of Medicine, Beni-Suef University, Beni-Suef, Egypt
| |
Collapse
|