1
|
Shoji M, Esumi T, Masuda T, Tanaka N, Okamoto R, Sato H, Watanabe M, Takahashi E, Kido H, Ohtsuki S, Kuzuhara T. Bakuchiol targets mitochondrial proteins, prohibitins and voltage-dependent anion channels: New insights into developing antiviral agents. J Biol Chem 2024; 300:105632. [PMID: 38199573 PMCID: PMC10862021 DOI: 10.1016/j.jbc.2024.105632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 12/11/2023] [Accepted: 12/26/2023] [Indexed: 01/12/2024] Open
Abstract
We previously reported that bakuchiol, a phenolic isoprenoid anticancer compound, and its analogs exert anti-influenza activity. However, the proteins targeted by bakuchiol remain unclear. Here, we investigated the chemical structures responsible for the anti-influenza activity of bakuchiol and found that all functional groups and C6 chirality of bakuchiol were required for its anti-influenza activity. Based on these results, we synthesized a molecular probe containing a biotin tag bound to the C1 position of bakuchiol. With this probe, we performed a pulldown assay for Madin-Darby canine kidney cell lysates and purified the specific bakuchiol-binding proteins with SDS-PAGE. Using nanoLC-MS/MS analysis, we identified prohibitin (PHB) 2, voltage-dependent anion channel (VDAC) 1, and VDAC2 as binding proteins of bakuchiol. We confirmed the binding of bakuchiol to PHB1, PHB2, and VDAC2 in vitro using Western blot analysis. Immunofluorescence analysis showed that bakuchiol was bound to PHBs and VDAC2 in cells and colocalized in the mitochondria. The knockdown of PHBs or VDAC2 by transfection with specific siRNAs, along with bakuchiol cotreatment, led to significantly reduced influenza nucleoprotein expression levels and viral titers in the conditioned medium of virus-infected Madin-Darby canine kidney cells, compared to the levels observed with transfection or treatment alone. These findings indicate that reducing PHBs or VDAC2 protein, combined with bakuchiol treatment, additively suppressed the growth of influenza virus. Our findings indicate that bakuchiol exerts anti-influenza activity via a novel mechanism involving these mitochondrial proteins, providing new insight for developing anti-influenza agents.
Collapse
Affiliation(s)
- Masaki Shoji
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| | - Tomoyuki Esumi
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Takeshi Masuda
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan; Institute for Advanced Biosciences, Keio University, Tsuruoka, Japan
| | - Narue Tanaka
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Risa Okamoto
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Hinako Sato
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Institute of Pharmacognosy Attached to Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Hiroshi Kido
- Division of Enzyme Chemistry, Institute for Enzyme Research, Tokushima University, Tokushima, Japan
| | - Sumio Ohtsuki
- Department of Pharmaceutical Microbiology, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Takashi Kuzuhara
- Laboratory of Biochemistry, Faculty of Pharmaceutical Sciences, Tokushima Bunri University, Tokushima, Japan.
| |
Collapse
|
2
|
Ali SI, Salama A. Natural Immunomodulatory Agents as a Complementary Therapy for Poxviruses. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1451:337-354. [PMID: 38801589 DOI: 10.1007/978-3-031-57165-7_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
Poxviruses target innate immunity mediators such as tumor necrosis factors, interleukins, interferons, complement, and chemokines. It also targets adaptive immunity such as CD4+ T cells, CD4+ T cells, and B cells. Emerging of the recent epidemic of monkeypox virus (MPXV), a zoonotic disease native to Central and Western Africa, besides the lack of permitted treatments for poxviruses infections, encouraged researchers to identify effective inhibitors to help in preventing and treating poxviruses infections. Natural bioactive components, particularly polyphenolics, are promising for creating powerful antioxidants, anti-inflammatory, immune-stimulating, and antiviral agents. As a result, they are potentially effective therapies for preventing and treating viral diseases, such as infections caused by poxviruses including the recent pandemic MPXV. Polyphenolics: rosmarinic acid, caffeic acid, resveratrol, quercitrin, myricitrin, gingerol, gallotannin, and propolis-benzofuran A, as well as isoquinoline alkaloids: galanthamine and thalimonine represent prospective antiviral agents against MPXV, they can inhibit MPXV and other poxviruses via targeting different viral elements including DNA Topoisomerase I (TOP1), Thymidine Kinase (TK), serine/threonine protein kinase (Ser/Thr kinase), and protein A48R. The bioactive extracts of different traditional plants including Guiera senegalensis, Larrea tridentata, Sarracenia purpurea, Kalanchoe pinnata (Lam.) Pers., Zingiber officinale Roscoe, Quercus infectoria, Rhus chinensis, Prunella vulgaris L., Salvia rosmarinus, and Origanum vulgare also can inhibit the growth of different poxviruses including MPXV, vaccinia virus (VACV), variola virus, buffalopox virus, fowlpox virus, and cowpox virus. There is an urgent need for additional molecular studies to identify and confirm the anti-poxviruses properties of various natural bioactive components, especially those that showed potent antiviral activity against other viruses.
Collapse
Affiliation(s)
- Sami I Ali
- Plant Biochemistry Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt.
| | - Abeer Salama
- Pharmacology Department, National Research Centre (NRC), 33 El Buhouth St. (Former El-Tahrir St.), Dokki, Cairo, 12622, Egypt
| |
Collapse
|
3
|
Gabbianelli R, Shahar E, de Simone G, Rucci C, Bordoni L, Feliziani G, Zhao F, Ferrati M, Maggi F, Spinozzi E, Mahajna J. Plant-Derived Epi-Nutraceuticals as Potential Broad-Spectrum Anti-Viral Agents. Nutrients 2023; 15:4719. [PMID: 38004113 PMCID: PMC10675658 DOI: 10.3390/nu15224719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 10/29/2023] [Accepted: 10/31/2023] [Indexed: 11/26/2023] Open
Abstract
Although the COVID-19 pandemic appears to be diminishing, the emergence of SARS-CoV-2 variants represents a threat to humans due to their inherent transmissibility, immunological evasion, virulence, and invulnerability to existing therapies. The COVID-19 pandemic affected more than 500 million people and caused over 6 million deaths. Vaccines are essential, but in circumstances in which vaccination is not accessible or in individuals with compromised immune systems, drugs can provide additional protection. Targeting host signaling pathways is recommended due to their genomic stability and resistance barriers. Moreover, targeting host factors allows us to develop compounds that are effective against different viral variants as well as against newly emerging virus strains. In recent years, the globe has experienced climate change, which may contribute to the emergence and spread of infectious diseases through a variety of factors. Warmer temperatures and changing precipitation patterns can increase the geographic range of disease-carrying vectors, increasing the risk of diseases spreading to new areas. Climate change may also affect vector behavior, leading to a longer breeding season and more breeding sites for disease vectors. Climate change may also disrupt ecosystems, bringing humans closer to wildlife that transmits zoonotic diseases. All the above factors may accelerate the emergence of new viral epidemics. Plant-derived products, which have been used in traditional medicine for treating pathological conditions, offer structurally novel therapeutic compounds, including those with anti-viral activity. In addition, plant-derived bioactive substances might serve as the ideal basis for developing sustainable/efficient/cost-effective anti-viral alternatives. Interest in herbal antiviral products has increased. More than 50% of approved drugs originate from herbal sources. Plant-derived compounds offer diverse structures and bioactive molecules that are candidates for new drug development. Combining these therapies with conventional drugs could improve patient outcomes. Epigenetics modifications in the genome can affect gene expression without altering DNA sequences. Host cells can use epigenetic gene regulation as a mechanism to silence incoming viral DNA molecules, while viruses recruit cellular epitranscriptomic (covalent modifications of RNAs) modifiers to increase the translational efficiency and transcript stability of viral transcripts to enhance viral gene expression and replication. Moreover, viruses manipulate host cells' epigenetic machinery to ensure productive viral infections. Environmental factors, such as natural products, may influence epigenetic modifications. In this review, we explore the potential of plant-derived substances as epigenetic modifiers for broad-spectrum anti-viral activity, reviewing their modulation processes and anti-viral effects on DNA and RNA viruses, as well as addressing future research objectives in this rapidly emerging field.
Collapse
Affiliation(s)
- Rosita Gabbianelli
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Ehud Shahar
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| | - Gaia de Simone
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Chiara Rucci
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Laura Bordoni
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Giulia Feliziani
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Fanrui Zhao
- Unit of Molecular Biology and Nutrigenomics, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (R.G.); (G.d.S.); (L.B.); (G.F.); (F.Z.)
| | - Marta Ferrati
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Filippo Maggi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Eleonora Spinozzi
- Chemistry Interdisciplinary Project (ChIP) Research Centre, School of Pharmacy, University of Camerino, Via Madonna delle Carceri, 62032 Camerino, Italy; (M.F.); (F.M.); (E.S.)
| | - Jamal Mahajna
- Department of Nutrition and Natural Products, Migal—Galilee Research Institute, Kiryat Shmona 11016, Israel;
- Department of Biotechnology, Tel-Hai College, Kiryat Shmona 1220800, Israel
| |
Collapse
|
4
|
Mohanty SS, Sahoo CR, Paidesetty SK, Padhy RN. Role of phytocompounds as the potential anti-viral agent: an overview. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2023; 396:2311-2329. [PMID: 37160482 PMCID: PMC10169142 DOI: 10.1007/s00210-023-02517-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 04/28/2023] [Indexed: 05/11/2023]
Abstract
Viral diseases are the most notorious infective agent(s) causing morbidity and mortality in every nook and corner for ages; viruses are active in host cells, and specific anti-virus medicines' developments remain uncanny. In this century of the biological era, human viruses act predominantly as versatile spreaders. The infection of the present COVID-19 virus is up in the air; blithely, the integument of medicinal chemistry approaches, particularly bioactive derived phytocompounds could be helpful to control those human viruses, recognized in the last 100 years. Indeed, natural products are being used for various therapeutic purposes. The major bioactive phytocompounds are chemically containing coumarin, thiosulfonate, steroid, polysaccharide, tannin, lignin, proanthocyanidin, terpene, quinone, saponin, flavonoid, alkaloid, and polyphenol, that are documented for inhibitory action against several viral infections. Mostly, about 20-30% of plants from tropical or temperate regions are known to have some antiviral activity. This comprehensive analysis of bioactive-derived phytocompounds would represent a significant impact and might be helpful for antiviral research and the current state of viral treatments.
Collapse
Affiliation(s)
- Swati Sucharita Mohanty
- Department of Medical Oncology, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Chita Ranjan Sahoo
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
- Present Address: Department of Health Research, Ministry of Health & Family Welfare, Govt. of India, ICMR-Regional Medical Research Centre, 751023 Bhubaneswar, India
| | - Sudhir Kumar Paidesetty
- Department of Medicinal Chemistry, School of Pharmaceutical Science, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| | - Rabindra Nath Padhy
- Central Research Laboratory, IMS & Sum Hospital, Siksha ‘O’ Anusandhan Deemed to Be University, Bhubaneswar, 751003 Odisha India
| |
Collapse
|
5
|
Dah-Nouvlessounon D, Chokki M, Agossou EA, Houédanou JB, Nounagnon M, Sina H, Vulturar R, Heghes SC, Cozma A, Mavoungou JF, Fodor A, Baba-Moussa F, Suharoschi R, Baba-Moussa L. Polyphenol Analysis via LC-MS-ESI and Potent Antioxidant, Anti-Inflammatory, and Antimicrobial Activities of Jatropha multifida L. Extracts Used in Benin Pharmacopoeia. Life (Basel) 2023; 13:1898. [PMID: 37763302 PMCID: PMC10532662 DOI: 10.3390/life13091898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/08/2023] [Accepted: 09/09/2023] [Indexed: 09/29/2023] Open
Abstract
Jatropha multifida L., a plant from the Euphorbiaceae family, is commonly used in Benin's traditional medicine due to its therapeutic benefits. This study aims to explore the medicinal efficacy of Jatropha multifida L. by evaluating its various biological activities. An initial phytochemical analysis was conducted, following which the polyphenols and flavonoids were quantified and identified using LC-MS-ESI. The antimicrobial efficacy of the extracts was tested using agar diffusion. Their antioxidant capacity was assessed using several methods: DPPH radical reduction, ABTS radical cation reduction, ferric ion (FRAP) reduction, and lipid peroxidation (LPO). Anti-inflammatory activity was determined based on the inhibition of protein (specifically albumin) denaturation. The study identified several phenolic and flavonoid compounds, including 2-Hydroxybenzoic acid, o-Coumaroylquinic acid, Apigenin-apiosyl-glucoside, and luteolin-galactoside. Notably, the extracts of J. multifida demonstrated bactericidal effects against a range of pathogens, with Concentration Minimally Bactericidal (CMB) values ranging from 22.67 mg/mL (for organisms such as S. aureus and C. albicans) to 47.61 mg/mL (for E. coli). Among the extracts, the ethanolic variant displayed the most potent DPPH radical scavenging activity, with an IC50 value of 0.72 ± 0.03 mg/mL. In contrast, the methanolic extract was superior in ferric ion reduction, registering 46.23 ± 1.10 µgEAA/g. Interestingly, the water-ethanolic extract surpassed others in the ABTS reduction method with a score of 0.49 ± 0.11 mol ET/g and also showcased the highest albumin denaturation inhibition rate of 97.31 ± 0.35% at a concentration of 1000 µg/mL. In conclusion, the extracts of Jatropha multifida L. are enriched with bioactive compounds that exhibit significant biological activities, underscoring their therapeutic potential.
Collapse
Affiliation(s)
- Durand Dah-Nouvlessounon
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin; (D.D.-N.); (J.-B.H.); (M.N.); (H.S.)
| | - Michaelle Chokki
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
- Laboratoire de Microbiologie et de Technologie Alimentaire, FAST, Université d’Abomey-Calavi, 01BP: 526 ISBA-Champ de Foire, Cotonou 01BP188, Benin;
| | - Essé A. Agossou
- Laboratory of Pharmacology and Improved Traditional Medicines, FAST, Department of Animal Physiology, University of Abomey-Calavi, Cotonou 01BP526, Benin;
| | - Jean-Baptiste Houédanou
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin; (D.D.-N.); (J.-B.H.); (M.N.); (H.S.)
| | - Martial Nounagnon
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin; (D.D.-N.); (J.-B.H.); (M.N.); (H.S.)
| | - Haziz Sina
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin; (D.D.-N.); (J.-B.H.); (M.N.); (H.S.)
| | - Romana Vulturar
- Department of Molecular Sciences, “luliu Hatieganu” University of Medicine and Pharmacy, 8 Victor Babes, 400012 Cluj-Napoca, Romania;
| | - Simona Codruta Heghes
- Department of Drug Analysis, “luliu Hatieganu” University of Medicine and Pharmacy, 6 Louis Pasteur Street, 400012 Cluj-Napoca, Romania;
| | - Angela Cozma
- Internal Medicine Department, 4th Medical Clinic “luliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Jacques François Mavoungou
- Department of Microbiology, International University of Libreville, ESSASSA-Libreville Campus, Essassa BP 20411, Gabon;
| | - Adriana Fodor
- Clinical Center of Diabetes, Nutrition and Metabolic Diseases, “luliu Hatieganu” University of Medicine and Pharmacy, 400012 Cluj-Napoca, Romania;
| | - Farid Baba-Moussa
- Laboratoire de Microbiologie et de Technologie Alimentaire, FAST, Université d’Abomey-Calavi, 01BP: 526 ISBA-Champ de Foire, Cotonou 01BP188, Benin;
| | - Ramona Suharoschi
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine Cluj-Napoca, 3-5 Calea Manastur Street, 400372 Cluj-Napoca, Romania;
| | - Lamine Baba-Moussa
- Laboratory of Biology and Molecular Typing in Microbiology, Department of Biochemistry and Cell Biology, Faculty of Sciences and Techniques, University of Abomey-Calavi, Cotonou 05BP1604, Benin; (D.D.-N.); (J.-B.H.); (M.N.); (H.S.)
| |
Collapse
|
6
|
Anti-influenza A virus activity by Agrimonia pilosa and Galla rhois extract mixture. Biomed Pharmacother 2022; 155:113773. [DOI: 10.1016/j.biopha.2022.113773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 09/19/2022] [Accepted: 09/27/2022] [Indexed: 11/24/2022] Open
|
7
|
Khan MAS, Parveen R, Hoque SA, Ahmed MF, Rouf ASS, Rahman SR. Implementing in vitro and in silico approaches to evaluate anti-influenza virus activity of different Bangladeshi plant extracts. ADVANCES IN TRADITIONAL MEDICINE 2022. [DOI: 10.1007/s13596-022-00669-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
8
|
Bagde H, Dhopte A. Effects of Plant Metabolites on the Growth of COVID-19 (Coronavirus Disease-19) Including Omicron Strain. Cureus 2022; 14:e26549. [PMID: 35936126 PMCID: PMC9348519 DOI: 10.7759/cureus.26549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/04/2022] [Indexed: 11/10/2022] Open
Abstract
According to recent reports out of India, a new strain of Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) B1.1.529 Omicron virus has emerged. In comparison to the Wuhan (WHU) strain and the delta variant, this variant showed a far stronger effect on the angiotensin converting enzyme2 (ACE2) receptor. There are several medicinal compounds in plant metabolites, and their diverse chemical structures make them ideal for the treatment of serious illnesses. It's possible that some of these could be useful alternative pharmaceuticals, as well as a starting point for the repurposing of existing medications and new chemical discoveries. SARS-CoV-2 infection triggered a worldwide epidemic of the severe acute respiratory syndrome (SARS). There have been trials for different therapies for SARS-CoV-2 and so also there are recent announcements of extensive research into the development of viable medicines for this global health calamity. After a thorough examination of plant-derived treatments for COVID-19, investigators in the current study decided to focus on plant-derived secondary metabolites (PSMs). According to some researchers, new MDR (Multi-Drug Resistant) antibiotics may one day be developed due to the adaptability of secondary metabolites. Identifying plant metabolites that can treat a wide range of viral infections was one of the study's aims. Many natural medications that could be recommended for the treatment of COVID-19 were discovered as a result of this research, including remedies from plant families, viral candidates that are susceptible, antiviral assays, and mechanisms of therapeutic action. The findings of this study will inspire further research and speed up the development of new antiviral plant-based medications.
Collapse
|
9
|
Sarker A, Gu Z, Mao L, Ge Y, Hou D, Fang J, Wei Z, Wang Z. Influenza-existing drugs and treatment prospects. Eur J Med Chem 2022; 232:114189. [DOI: 10.1016/j.ejmech.2022.114189] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 01/24/2022] [Accepted: 02/06/2022] [Indexed: 01/03/2023]
|
10
|
Narusaka M, Hatanaka T, Narusaka Y. Inactivation of plant and animal viruses by proanthocyanidins from Alpinia zerumbet extract. PLANT BIOTECHNOLOGY (TOKYO, JAPAN) 2021; 38:453-455. [PMID: 35087311 PMCID: PMC8761592 DOI: 10.5511/plantbiotechnology.21.0925a] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 09/25/2021] [Indexed: 06/14/2023]
Abstract
Alpinia zerumbet (Pers.) B.L. Burtt and R.M. Smith belongs to the Alpinia genus in the Zingiberaceae family. In East Asia, Alpinia zerumbet has been widely used as food and traditional medicine. Previously, we identified proanthocyanidins (PACs), an anti-plant-virus molecule in A. zerumbet, using Nicotiana benthamiana and tomato mosaic virus (ToMV). Here, we found that PACs from A. zerumbet, apple, and green tea effectively inhibited ToMV infection. Additionally, the PACs from A. zerumbet exhibited greater antiviral activity than those from apple and green tea. The PACs from A. zerumbet also effectively inactivated influenza A virus and porcine epidemic diarrhea virus (PEDV), which acts as a surrogate for human coronaviruses, in a dose-dependent manner. The results from the cytopathic effect assays indicated that 0.1 mg/ml PACs from A. zerumbet decreased the titer of influenza A virus and PEDV by >3 log. These findings suggested that the direct treatment of viruses with PACs from A. zerumbet before inoculation reduced viral activity; thus, PACs might inhibit infections by an influenza virus, coronaviruses, and plant viruses.
Collapse
Affiliation(s)
- Mari Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama 716-1241, Japan
| | - Tadashi Hatanaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama 716-1241, Japan
| | - Yoshihiro Narusaka
- Okayama Prefectural Technology Center for Agriculture, Forestry, and Fisheries, Research Institute for Biological Sciences, Okayama 716-1241, Japan
| |
Collapse
|
11
|
Ratnadass A, Deguine JP. Crop protection practices and viral zoonotic risks within a One Health framework. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 774:145172. [PMID: 33610983 DOI: 10.1016/j.scitotenv.2021.145172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 01/10/2021] [Accepted: 01/10/2021] [Indexed: 06/12/2023]
Abstract
Recent viral zoonotic epidemics have been attributed partially to the negative impact of human activities on ecosystem biodiversity. Agricultural activities, particularly conventional crop protection (CP) practices, are a major threat to global biodiversity, ecosystem health and human health. Here we review interactions between CP practices and viral zoonoses (VZs), the first time this has been done. It should be noted that a) VZs stand at the interface between human, animal and ecosystem health; b) some VZs involve arthropod vectors that are affected by CP practices; and c) some crop pests, or their natural enemies are vertebrate reservoirs/carriers of certain VZs, and their contact with humans or domestic animals is affected by CP practices. Our review encompasses examples highlighting interactions between VZs and CP practices, both efficiency improvement-based (i.e. conventional with agrochemical insecticides and rodenticides), substitution-based (i.e. mainly with physical/mechanical or biopesticidal pest control), and redesign-based (i.e. mainly with conservation biological pest control, including some forms of crop-livestock integration). These CP practices mainly target arthropod and vertebrate pests. They also target, to a lesser extent, weeds and plant pathogens. Conventional and some physical/mechanical control methods and some forms of biopesticidal and crop-livestock integration practices were found to have mixed outcomes in terms of VZ risk management. Conversely, practices based on biological control by habitat conservation of arthropod or vertebrate natural enemies, falling within the Agroecological Crop Protection (ACP) framework, result in VZ prevention at various scales (local to global, and short-term to long-term). ACP addresses major global challenges including climate resilience, biodiversity conservation and animal welfare, and helps integrate plant health within the extended "One Health" concept.
Collapse
Affiliation(s)
- Alain Ratnadass
- CIRAD, UPR HortSys, F-97455 Saint-Pierre, Réunion, France; HortSys, Univ Montpellier, CIRAD, Montpellier, France.
| | | |
Collapse
|
12
|
Ti H. Phytochemical Profiles and their Anti-inflammatory Responses Against Influenza from Traditional Chinese Medicine or Herbs. Mini Rev Med Chem 2021; 20:2153-2164. [PMID: 32767941 DOI: 10.2174/1389557520666200807134921] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Revised: 06/04/2020] [Accepted: 06/04/2020] [Indexed: 11/22/2022]
Abstract
Traditional Chinese medicine (TCM) or herbs are widely used in the prevention and treatment of viral infectious diseases. However, the underlying mechanisms of TCMs remain largely obscure due to complicated material basis and multi-target therapeutics. TCMs have been reported to display anti-influenza activity associated with immunoregulatory mechanisms by enhancing host antiinfluenza immune responses. Previous studies have helped us understand the direct harm caused by the virus itself. In this review, we have tried to summarize recent progress in TCM-based anti-influenza research on the indirect harmful immune responses caused by influenza viruses. In particular, the phytochemicals from TCMs responsible for molecular mechanisms of action belonging to different classes, including phenolic compounds, flavonoids, alkaloids and polysaccharides, have been identified and demonstrated. In addition, this review focuses on the pharmacological mechanism, e.g., inflammatory responses and the interferon (IFN) signaling pathway, which can provide a theoretical basis and approaches for TCM based anti-influenza treatment.
Collapse
Affiliation(s)
- Huihui Ti
- School of Clinical Pharmacy, Guangdong Pharmaceutical University, Guangzhou, 510006, China
| |
Collapse
|
13
|
Shoji M, Esumi T, Tanaka N, Takeuchi M, Yamaji S, Watanabe M, Takahashi E, Kido H, Yamamoto M, Kuzuhara T. Organic synthesis and anti-influenza A virus activity of cyclobakuchiols A, B, C, and D. PLoS One 2021; 16:e0248960. [PMID: 33770117 PMCID: PMC7997032 DOI: 10.1371/journal.pone.0248960] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Accepted: 03/09/2021] [Indexed: 12/01/2022] Open
Abstract
Novel antiviral agents for influenza, which poses a substantial threat to humans, are required. Cyclobakuchiols A and B have been isolated from Psoralea glandulosa, and cyclobakuchiol C has been isolated from P. corylifolia. The structural differences between cyclobakuchiol A and C arise due to the oxidation state of isopropyl group, and these compounds can be derived from (+)-(S)-bakuchiol, a phenolic isoprenoid compound present in P. corylifolia seeds. We previously reported that bakuchiol induces enantiospecific anti-influenza A virus activity involving nuclear factor erythroid 2-related factor 2 (Nrf2) activation. However, it remains unclear whether cyclobakuchiols A–C induce anti-influenza A virus activity. In this study, cyclobakuchiols A, B, and C along with cyclobakuchiol D, a new artificial compound derived from cyclobakuchiol B, were synthesized and examined for their anti-influenza A virus activities using Madin-Darby canine kidney cells. As a result, cyclobakuchiols A–D were found to inhibit influenza A viral infection, growth, and the reduction of expression of viral mRNAs and proteins in influenza A virus-infected cells. Additionally, these compounds markedly reduced the mRNA expression of the host cell influenza A virus-induced immune response genes, interferon-β and myxovirus-resistant protein 1. In addition, cyclobakuchiols A–D upregulated the mRNA levels of NAD(P)H quinone oxidoreductase 1, an Nrf2-induced gene, in influenza A virus-infected cells. Notably, cyclobakuchiols A, B, and C, but not D, induced the Nrf2 activation pathway. These findings demonstrate that cyclobakuchiols have anti-influenza viral activity involving host cell oxidative stress response. In addition, our results suggest that the suitably spatial configuration between oxidized isopropyl group and phenol moiety in the structure of cyclobakuchiols is required for their effect.
Collapse
Affiliation(s)
- Masaki Shoji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Tokushima, Japan
- * E-mail: (MS); (TE); (TK)
| | - Tomoyuki Esumi
- Faculty of Pharmaceutical Sciences, Institute of Pharmacognosy, Tokushima Bunri University, Tokushima, Japan
- * E-mail: (MS); (TE); (TK)
| | - Narue Tanaka
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Tokushima, Japan
| | - Misa Takeuchi
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Tokushima, Japan
| | - Saki Yamaji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Tokushima, Japan
| | - Mihiro Watanabe
- Faculty of Pharmaceutical Sciences, Institute of Pharmacognosy, Tokushima Bunri University, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Hiroshi Kido
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Tokushima, Japan
| | - Masayuki Yamamoto
- Department of Integrative Genomics, Tohoku University Tohoku Medical Megabank Organization, Sendai, Japan
- Department of Medical Biochemistry, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Tokushima, Japan
- * E-mail: (MS); (TE); (TK)
| |
Collapse
|
14
|
Ali SI, Sheikh WM, Rather MA, Venkatesalu V, Muzamil Bashir S, Nabi SU. Medicinal plants: Treasure for antiviral drug discovery. Phytother Res 2021; 35:3447-3483. [PMID: 33590931 PMCID: PMC8013762 DOI: 10.1002/ptr.7039] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2020] [Revised: 01/04/2021] [Accepted: 01/12/2021] [Indexed: 12/11/2022]
Abstract
The pandemic of viral diseases like novel coronavirus (2019-nCoV) prompted the scientific world to examine antiviral bioactive compounds rather than nucleic acid analogous, protease inhibitors, or other toxic synthetic molecules. The emerging viral infections significantly associated with 2019-nCoV have challenged humanity's survival. Further, there is a constant emergence of new resistant viral strains that demand novel antiviral agents with fewer side effects and cell toxicity. Despite significant progress made in immunization and regenerative medicine, numerous viruses still lack prophylactic vaccines and specific antiviral treatments that are so often influenced by the generation of viral escape mutants. Of importance, medicinal herbs offer a wide variety of therapeutic antiviral chemotypes that can inhibit viral replication by preventing viral adsorption, adhering to cell receptors, inhibiting virus penetration in the host cell, and competing for pathways of activation of intracellular signals. The present review will comprehensively summarize the promising antiviral activities of medicinal plants and their bioactive molecules. Furthermore, it will elucidate their mechanism of action and possible implications in the treatment/prevention of viral diseases even when their mechanism of action is not fully understood, which could serve as the base for the future development of novel or complementary antiviral treatments.
Collapse
Affiliation(s)
- Sofi Imtiyaz Ali
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Wajid Mohammad Sheikh
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Muzafar Ahmad Rather
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | | | - Showkeen Muzamil Bashir
- Biochemistry & Molecular Biology Lab, Division of veterinary Biochemistry, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| | - Showkat Ul Nabi
- Large Animal Diagnostic Laboratory, Department of Clinical Veterinary Medicine, Ethics & Jurisprudence, Faculty of Veterinary Sciences and Animal Husbandry, SKUAST-K, Srinagar, India
| |
Collapse
|
15
|
Kyaw YMM, Bi Y, Oo TN, Yang X. Traditional medicinal plants used by the Mon people in Myanmar. JOURNAL OF ETHNOPHARMACOLOGY 2021; 265:113253. [PMID: 32891817 DOI: 10.1016/j.jep.2020.113253] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 07/30/2020] [Accepted: 08/04/2020] [Indexed: 05/20/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Myanmar's Mon people largely depend on a traditional medical system for health care, however, information about their medical plants is rare in the current literature. In this first ethnobotanical study of Mon traditional medicinal plants (MTMs), we attempt to answer three research questions: 1) What species are used as MTMs by the Mon people and what diseases can be treated with these MTMs? 2) What are the general characteristics of these MTMs? 3) Which species and their usages have high consensus of knowledge? AIM OF THE STUDY We aimed (1) to document both the diversity of medicinal plants used by the Mon people and their knowledge of the therapeutic usages of these plants; and (2) to quantitatively identify the most well-known medicinal plant species and prevalent diseases treated by these species, and to evaluate the status of scientific research and application for each of these species. MATERIALS AND METHODS Ethnobotanical surveys and interviews were carried out in 10 villages in four townships of Mon State, Myanmar in 2018. Data were collected from interviews with 131 informants, chosen via the snowball sampling method. Therapeutic uses of medicinal plants were categorized according to the ICPC-2 standard. Voucher specimens of plant species were collected and identified by experts. To evaluate the consensus of knowledge, we applied use reports (URs) using the R package of ethnobotanyR. RESULTS In total, we recorded 158 medicinal plant species belonging to 64 families as being used by the Mon people, with 13 species being newly recorded as medicinal plants in Myanmar. The people listed 78 therapeutic uses for these plants, which could be classified into 16 ICPC-2 disease categories. Digestive, urological and respiratory diseases ranked as the most prevalent diseases based on use reports. Fabaceae was the most represented family and the leaf was the most commonly used plant part. Decoction and oral administration ranked top in preparation and administration methods, respectively. Tinospora sinensis (Lour.) Merr, the introduced species Chromolaena odorata (L.) R. M. King & H. Rob., Mimosa pudica L., Tadehagi triquetrum (L.) H. Ohashi, and Alysicarpus vaginalis (L.) DC were the five most cited medicinal plant species, and were used to treat dysuria, cuts and wounds, cough, diabetes and gall stones respectively, with high consensus. CONCLUSION The Mon people of Myanmar have a rich and diverse knowledge of traditional medicinal plants. The list of medicinal plants in Myanmar can be renewed, with the addition of 13 species. MTMs still function as an important component of the health care of the Mon people in Myanmar, and a systematic documentation of the local knowledge of MTMs would be of great value in the future. Resource monitoring, phytochemical and pharmacological research and evidence-based drug development are suggested to promote the use of MTMs and aid drug discovery.
Collapse
Affiliation(s)
- Yunn Mi Mi Kyaw
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar; University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Yingfeng Bi
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Thaung Naing Oo
- Forest Research Institute, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Xuefei Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China; Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
| |
Collapse
|
16
|
Shoji M, Sugimoto M, Matsuno K, Fujita Y, Mii T, Ayaki S, Takeuchi M, Yamaji S, Tanaka N, Takahashi E, Noda T, Kido H, Tokuyama T, Tokuyama T, Tokuyama T, Kuzuhara T. A novel aqueous extract from rice fermented with Aspergillus oryzae and Saccharomyces cerevisiae possesses an anti-influenza A virus activity. PLoS One 2021; 16:e0244885. [PMID: 33449947 PMCID: PMC7810313 DOI: 10.1371/journal.pone.0244885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 12/17/2020] [Indexed: 11/24/2022] Open
Abstract
Human influenza virus infections occur annually worldwide and are associated with high morbidity and mortality. Hence, development of novel anti-influenza drugs is urgently required. Rice Power® extract developed by the Yushin Brewer Co. Ltd. is a novel aqueous extract of rice obtained via saccharization and fermentation with various microorganisms, such as Aspergillus oryzae, yeast [such as Saccharomyces cerevisiae], and lactic acid bacteria, possessing various biological and pharmacological properties. In our previous experimental screening with thirty types of Rice Power® extracts, we observed that the 30th Rice Power® (Y30) extract promoted the survival of influenza A virus-infected Madin-Darby canine kidney (MDCK) cells. Therefore, to identify compounds for the development of novel anti-influenza drugs, we aimed to investigate whether the Y30 extract exhibits anti-influenza A virus activity. In the present study, we demonstrated that the Y30 extract strongly promoted the survival of influenza A H1N1 Puerto Rico 8/34 (A/PR/8/34), California 7/09, or H3N2 Aichi 2/68 (A/Aichi/2/68) viruses-infected MDCK cells and inhibited A/PR/8/34 or A/Aichi/2/68 viruses infection and growth in the co-treatment and pre-infection experiments. The pre-treatment of Y30 extract on MDCK cells did not induce anti-influenza activity in the cell. The Y30 extract did not significantly affect influenza A virus hemagglutination, and neuraminidase and RNA-dependent RNA polymerase activities. Interestingly, the electron microscopy experiment revealed that the Y30 extract disrupts the integrity of influenza A virus particles by permeabilizing the viral membrane envelope, suggesting that Y30 extract has a direct virucidal effect against influenza A virus. Furthermore, we observed that compared to the ethyl acetate (EtOAc) extract, the water extract of Y30 extract considerably promoted the survival of cells infected with A/PR/8/34 virus. These results indicated that more anti-influenza components were present in the water extract of Y30 extract than in the EtOAc extract. Our results highlight the potential of a rice extract fermented with A. oryzae and S. cerevisiae as an anti-influenza medicine and a drug source for the development of anti-influenza compounds.
Collapse
Affiliation(s)
- Masaki Shoji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| | - Minami Sugimoto
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Kosuke Matsuno
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Yoko Fujita
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Tomohiro Mii
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Satomi Ayaki
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Misa Takeuchi
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Saki Yamaji
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Narue Tanaka
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
| | - Etsuhisa Takahashi
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takeshi Noda
- Laboratory of Ultrastructural Virology, Graduate School of Biostudies, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
- Laboratory of Ultrastructural Virology, Institute for Frontier Life and Medical Sciences, Kyoto University, Shogoin Kawahara-cho, Sakyo-ku, Kyoto, Japan
| | - Hiroshi Kido
- Division of Pathology and Metabolome Research for Infectious Disease and Host Defense, Institute for Enzyme Research, University of Tokushima, Kuramoto-cho, Tokushima, Japan
| | - Takaaki Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | | | - Takashi Tokuyama
- Yushin Brewer Co. Ltd., Ono, Ayagawa-cho, Ayauta-gun, Kagawa, Japan
| | - Takashi Kuzuhara
- Faculty of Pharmaceutical Sciences, Laboratory of Biochemistry, Tokushima Bunri University, Yamashiro-cho, Tokushima, Japan
- * E-mail: (MS); (TK)
| |
Collapse
|
17
|
Bioactive Compounds from Medicinal Plants in Myanmar. PROGRESS IN THE CHEMISTRY OF ORGANIC NATURAL PRODUCTS 2021; 114:135-251. [PMID: 33792861 DOI: 10.1007/978-3-030-59444-2_2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myanmar is a country with rich natural resources and of these, medicinal plants play a vital role in the primary health care of its population. The people of Myanmar have used their own system of traditional medicine inclusive of the use of medicinal plants for 2000 years. However, systematic and scientific studies have only recently begun to be reported. Researchers from Japan, Germany, and Korea have collaborated with researchers in Myanmar on medicinal plants since 2000. During the past two decades, over 50 publications have been published in peer-reviewed journals. Altogether, 433 phytoconstituents, including 147 new and 286 known compounds from 26 plant species consisting of 29 samples native to Myanmar, have been collated. In this contribution, phytochemical and biological investigations of these plants, including information on traditional knowledge are compiled and discussed.
Collapse
|
18
|
Mohan S, Elhassan Taha MM, Makeen HA, Alhazmi HA, Al Bratty M, Sultana S, Ahsan W, Najmi A, Khalid A. Bioactive Natural Antivirals: An Updated Review of the Available Plants and Isolated Molecules. Molecules 2020; 25:E4878. [PMID: 33105694 PMCID: PMC7659943 DOI: 10.3390/molecules25214878] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/12/2020] [Accepted: 10/14/2020] [Indexed: 12/17/2022] Open
Abstract
Viral infections and associated diseases are responsible for a substantial number of mortality and public health problems around the world. Each year, infectious diseases kill 3.5 million people worldwide. The current pandemic caused by COVID-19 has become the greatest health hazard to people in their lifetime. There are many antiviral drugs and vaccines available against viruses, but they have many disadvantages, too. There are numerous side effects for conventional drugs, and active mutation also creates drug resistance against various viruses. This has led scientists to search herbs as a source for the discovery of more efficient new antivirals. According to the World Health Organization (WHO), 65% of the world population is in the practice of using plants and herbs as part of treatment modality. Additionally, plants have an advantage in drug discovery based on their long-term use by humans, and a reduced toxicity and abundance of bioactive compounds can be expected as a result. In this review, we have highlighted the important viruses, their drug targets, and their replication cycle. We provide in-depth and insightful information about the most favorable plant extracts and their derived phytochemicals against viral targets. Our major conclusion is that plant extracts and their isolated pure compounds are essential sources for the current viral infections and useful for future challenges.
Collapse
MESH Headings
- Antiviral Agents/chemistry
- Antiviral Agents/classification
- Antiviral Agents/isolation & purification
- Antiviral Agents/therapeutic use
- Betacoronavirus/drug effects
- Betacoronavirus/pathogenicity
- Betacoronavirus/physiology
- COVID-19
- Coronavirus Infections/drug therapy
- Coronavirus Infections/pathology
- Coronavirus Infections/virology
- Drug Discovery
- HIV/drug effects
- HIV/pathogenicity
- HIV/physiology
- HIV Infections/drug therapy
- HIV Infections/pathology
- HIV Infections/virology
- Hepacivirus/drug effects
- Hepacivirus/pathogenicity
- Hepacivirus/physiology
- Hepatitis C, Chronic/drug therapy
- Hepatitis C, Chronic/pathology
- Hepatitis C, Chronic/virology
- Herpes Simplex/drug therapy
- Herpes Simplex/pathology
- Herpes Simplex/virology
- Humans
- Influenza, Human/drug therapy
- Influenza, Human/pathology
- Influenza, Human/virology
- Orthomyxoviridae/drug effects
- Orthomyxoviridae/pathogenicity
- Orthomyxoviridae/physiology
- Pandemics
- Phytochemicals/chemistry
- Phytochemicals/classification
- Phytochemicals/isolation & purification
- Phytochemicals/therapeutic use
- Plants, Medicinal
- Pneumonia, Viral/drug therapy
- Pneumonia, Viral/pathology
- Pneumonia, Viral/virology
- SARS-CoV-2
- Simplexvirus/drug effects
- Simplexvirus/pathogenicity
- Simplexvirus/physiology
- Virus Internalization/drug effects
- Virus Replication/drug effects
Collapse
Affiliation(s)
- Syam Mohan
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Manal Mohamed Elhassan Taha
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| | - Hafiz A. Makeen
- Department of Clinical Pharmacy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Hassan A. Alhazmi
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Mohammed Al Bratty
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Shahnaz Sultana
- Department of Pharmacognosy, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia;
| | - Waquar Ahsan
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asim Najmi
- Department of Pharmaceutical Chemistry, College of Pharmacy, Jazan University, Jazan 45142, Saudi Arabia; (M.A.B.); (W.A.); (A.N.)
| | - Asaad Khalid
- Substance Abuse and Toxicology Research Centre, Jazan University, Jazan 45142, Saudi Arabia; (M.M.E.T.); (H.A.A.); (A.K.)
| |
Collapse
|
19
|
Bhuiyan FR, Howlader S, Raihan T, Hasan M. Plants Metabolites: Possibility of Natural Therapeutics Against the COVID-19 Pandemic. Front Med (Lausanne) 2020; 7:444. [PMID: 32850918 PMCID: PMC7427128 DOI: 10.3389/fmed.2020.00444] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Accepted: 07/06/2020] [Indexed: 12/16/2022] Open
Abstract
COVID-19, a disease induced by SARS-CoV-2 (Severe Acute Respiratory Syndrome Coronavirus-2), has been the cause of a worldwide pandemic. Though extensive research works have been reported in recent days on the development of effective therapeutics against this global health crisis, there is still no approved therapy against SARS-CoV-2. In the present study, plant-synthesized secondary metabolites (PSMs) have been prioritized to make a review focusing on the efficacy of plant-originated therapeutics for the treatment of COVID-19. Plant metabolites are a source of countless medicinal compounds, while the diversity of multidimensional chemical structures has made them superior to treat serious diseases. Some have already been reported as promising alternative medicines and lead compounds for drug repurposing and discovery. The versatility of secondary metabolites may provide novel antibiotics to tackle MDR (Multi-Drug Resistant) microbes too. This review attempted to find out plant metabolites that have the therapeutic potential to treat a wide range of viral pathogens. The study includes the search of remedies belonging to plant families, susceptible viral candidates, antiviral assays, and the mode of therapeutic action; this attempt resulted in the collection of an enormous number of natural therapeutics that might be suggested for the treatment of COVID-19. About 219 plants from 83 families were found to have antiviral activity. Among them, 149 plants from 71 families were screened for the identification of the major plant secondary metabolites (PSMs) that might be effective for this pandemic. Our investigation revealed that the proposed plant metabolites can serve as potential anti- SARS-CoV-2 lead molecules for further optimization and drug development processes to combat COVID-19 and future pandemics caused by viruses. This review will stimulate further analysis by the scientific community and boost antiviral plant-based research followed by novel drug designing.
Collapse
Affiliation(s)
- Farhana Rumzum Bhuiyan
- Department of Botany, University of Chittagong, Chittagong, Bangladesh
- Laboratory of Biotechnology and Molecular Biology, Department of Botany, University of Chittagong, Chittagong, Bangladesh
| | - Sabbir Howlader
- Department of Applied Chemistry and Chemical Engineering, University of Chittagong, Chittagong, Bangladesh
| | - Topu Raihan
- Department of Genetic Engineering and Biotechnology, Shahjalal University of Science and Technology, Sylhet, Bangladesh
| | - Mahmudul Hasan
- Department of Pharmaceuticals and Industrial Biotechnology, Sylhet Agricultural University, Sylhet, Bangladesh
| |
Collapse
|
20
|
Silva-Jara J, Angulo C, Macias ME, Velazquez C, Guluarte C, Reyes-Becerril M. First screening report of immune and protective effect of non-toxic Jatropha vernicosa stem bark against Vibrio parahaemolyticus in Longfin yellowtail Seriola rivoliana leukocytes. FISH & SHELLFISH IMMUNOLOGY 2020; 101:106-114. [PMID: 32222403 DOI: 10.1016/j.fsi.2020.03.048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2020] [Revised: 02/12/2020] [Accepted: 03/22/2020] [Indexed: 06/10/2023]
Abstract
In México, the infusion of Jatropha vernicosa stem bark has been used in folk medicine for many clinical situations, but no reports were available about this particular species of Jatropha in fish of mammals. In this first screening report, the phytochemical, antioxidant profile and antimicrobial properties of aqueous J. vernicosa stem bark extract were explored against Vibrio parahaemolyticus, an opportunist fish pathogen. To evaluate the cytotoxicity and immunological effect for the possible application of aqueous J. vernicosa stem bark in aquaculture, this study assessed it by using Longfin yellowtail Seriola rivoliana leukocytes. The results showed that phytochemical composition of the J. vernicosa extract was rich in phenol, flavonoid, saponin, and coumarin compounds. The antioxidant capacity of hydroxyl radical and superoxide anion scavenging activities, iron-chelation activity and β-carotene bleaching coupled to linoleic acid showed that J. vernicosa extracts had a moderate antioxidant effect compared with synthetic antioxidants (BHT, BHA and EDTA). No adverse effects were observed on spleen leukocytes (viability > 98%). Interestingly, J. vernicosa stem bark extract has immunostimulant and antioxidant effects, increasing phagocytosis, respiratory burns activity, and nitric oxide production, as well as superoxide dismutase and catalase activities. Additionally, J. vernicosa extract increased pro-inflammatory cytokine IL-1β and suppressed anti-inflammatory IL-10 gene expression upon stimuli and V. parahaemolyticus challenge. Finally, the data confirms that J. vernicosa stem bark extract is non-cytotoxic, rich in bioactive compounds with antioxidant effects, capable of enhancing the immune system in leukocytes and with great potential to fight against opportunistic diseases, such as vibriosis in fish.
Collapse
Affiliation(s)
- Jorge Silva-Jara
- Universidad de Guadalajara, University Center of Science and Engineering (CUCEI) Department of Pharmacobiology. 1421 Blvd. Marcelino García Barragan, Guadalajara, 44430, Jalisco, Mexico
| | - Carlos Angulo
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico
| | - María Esther Macias
- Universidad de Guadalajara, University Center of Science and Engineering (CUCEI) Department of Pharmacobiology. 1421 Blvd. Marcelino García Barragan, Guadalajara, 44430, Jalisco, Mexico
| | - Carlos Velazquez
- Universidad de Guadalajara, University Center of Science and Engineering (CUCEI) Department of Pharmacobiology. 1421 Blvd. Marcelino García Barragan, Guadalajara, 44430, Jalisco, Mexico
| | - Crystal Guluarte
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico
| | - Martha Reyes-Becerril
- Immunology & Vaccinology Group. Centro de Investigaciones Biológicas del Noroeste (CIBNOR), Av. Instituto Politécnico Nacional 195, Playa Palo de Santa Rita, La Paz, B.C.S., 23096, Mexico.
| |
Collapse
|
21
|
Denaro M, Smeriglio A, Barreca D, De Francesco C, Occhiuto C, Milano G, Trombetta D. Antiviral activity of plants and their isolated bioactive compounds: An update. Phytother Res 2019; 34:742-768. [DOI: 10.1002/ptr.6575] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Revised: 10/13/2019] [Accepted: 11/14/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Marcella Denaro
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Antonella Smeriglio
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Davide Barreca
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Clara De Francesco
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Cristina Occhiuto
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Giada Milano
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| | - Domenico Trombetta
- Department of Chemical, Biological, Pharmaceutical and Environmental SciencesUniversity of Messina Messina Italy
| |
Collapse
|
22
|
Anti-herpes simplex type-1 (HSV-1) activity from the roots of Jatropha multifida L. Med Chem Res 2019. [DOI: 10.1007/s00044-019-02484-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
23
|
Tun NL, Hu DB, Xia MY, Zhang DD, Yang J, Oo TN, Wang YH, Yang XF. Chemical Constituents from Ethanoic Extracts of the Aerial Parts of Leea aequata L., a Traditional Folk Medicine of Myanmar. NATURAL PRODUCTS AND BIOPROSPECTING 2019; 9:243-249. [PMID: 31065939 PMCID: PMC6538738 DOI: 10.1007/s13659-019-0209-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/21/2019] [Accepted: 04/21/2019] [Indexed: 05/29/2023]
Abstract
We aimed at reporting the chemical constituents and antimicrobial activities of Leea aequata L., a traditional folk medicine used in Myanmar for the treatment of wounds and skin diseases. A new neolignan, (7S,8R)-9'-O-acetylcedrusin (1), a new lactam, (3S,4S)-4-chloro-3-hydroxypiperidin-2-one (2), along with 21 known compounds, including five lignans (3-7), four flavonoid glycosides (8-11), and others (12-23), were isolated from the ethanoic extract of the aerial parts of L. aequata. The structures of the new compounds were determined by NMR, MS, and ECD spectra. For all the antimicrobial tests of the 23 compounds, only 3,4,5-trihydroxybenzoic acid ethyl ester (17) showed weak inhibitory activities against Escherichia coli and Salmonella enterica subsp. enterica.
Collapse
Affiliation(s)
- Nay Lin Tun
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Dong-Bao Hu
- College of Resources and Environment, Yuxi Normal University, Yuxi, 653100, People's Republic of China
| | - Meng-Yuan Xia
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Dong-Dong Zhang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Jun Yang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China
| | - Thaung Naing Oo
- Forest Research Institute, Yezin, Nay Pyi Taw, 05282, Myanmar
| | - Yue-Hu Wang
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
| | - Xue-Fei Yang
- Southeast Asia Biodiversity Research Institute, Chinese Academy of Sciences, Yezin, Nay Pyi Taw, 05282, Myanmar.
- Key Laboratory of Economic Plants and Biotechnology and the Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650201, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China.
| |
Collapse
|
24
|
Woo SY, Wong CP, Win NN, Lae KZW, Woo B, Elsabbagh SA, Liu QQ, Ngwe H, Morita H. Anti-melanin deposition activity and active constituents of Jatropha multifida stems. J Nat Med 2019; 73:805-813. [DOI: 10.1007/s11418-019-01314-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2019] [Accepted: 04/22/2019] [Indexed: 01/01/2023]
|
25
|
Antiviral Activities of Mulberry ( Morus alba) Juice and Seed against Influenza Viruses. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2018; 2018:2606583. [PMID: 30515232 PMCID: PMC6236660 DOI: 10.1155/2018/2606583] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Revised: 10/02/2018] [Accepted: 10/16/2018] [Indexed: 12/22/2022]
Abstract
Antiviral activities of Morus alba (MA) juice and seed were examined using time-of-addition plaque assays against influenza viruses, A/Brisbane/59/2007 (H1N1) (BR59), pandemic A/Korea/01/2009(H1N1) (KR01), A/Brisbane/10/2007(H3N2) (BR10), and B/Florida/4/2006 (FL04). MA juice (MAJ) showed much higher antiviral activity than MA seed (MAS). In the pre- and cotreatment of virus, MAJ showed antiviral effects against BR59, KR01, and FL04 in a dose-dependent manner. In particular, MAJ at 4% concentration exhibited 1.3 log inhibition in the pre- and cotreatment of the virus against FL04, a type B virus. However, little or weak inhibition was observed in the posttreatment of MAJ. GSH levels in the virus-infected cells were also examined. The decreased levels by the viral infection were restored significantly by the addition of MAJ. MAJ also exhibited significant DPPH radical scavenging and ferric ion-reducing activities in a dose-dependent manner. Cyanidin-3-rutinoside, the most abundant polyphenol compound of MAJ identified by LC-MS in this study, showed weak inhibitory effects against FL04 in the pretreatment, whereas gallic acid, a minor compound of MAJ, revealed significant antiviral effect. These results suggest that MAJ can be developed as a novel plant-derived antiviral against influenza viruses.
Collapse
|
26
|
Silva T, S Salomon P, Hamerski L, Walter J, B Menezes R, Siqueira JE, Santos A, Santos JAM, Ferme N, Guimarães T, O Fistarol G, I Hargreaves P, Thompson C, Thompson F, Souza TM, Siqueira M, Miranda M. Inhibitory effect of microalgae and cyanobacteria extracts on influenza virus replication and neuraminidase activity. PeerJ 2018; 6:e5716. [PMID: 30386690 PMCID: PMC6204821 DOI: 10.7717/peerj.5716] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Accepted: 09/10/2018] [Indexed: 12/29/2022] Open
Abstract
Background The influenza virus can cause seasonal infections with mild to severe symptoms, circulating worldwide, and it can affect people in any age group. Therefore, this infection is a serious public health problem that causes severe illness and death in high-risk populations. Every year, 0.5% of the world’s population is infected by this pathogen. This percentage can increase up to ten times during pandemics. Influenza vaccination is the most effective way to prevent disease. In addition, anti-influenza drugs are essential for prophylactic and therapeutic interventions. The oseltamivir (OST, a neuraminidase inhibitor) is the primary antiviral used in clinics during outbreaks. However, OST resistant viruses may emerge naturally or due to antiviral pressure, with a prevalence of 1–2% worldwide. Thus, the search for new anti-influenza drugs is extremely important. Currently, several groups have been developing studies describing the biotechnological potential of microalgae and cyanobacteria, including antiviral activity of their extracts. In Brazil, this potential is poorly known and explored. Methods With the aim of increasing the knowledge on this topic, 38 extracts from microalgae and cyanobacteria isolated from marine and freshwater biomes in Brazil were tested against: cellular toxicity; OST-sensitive and resistant influenza replications; and neuraminidase activity. Results For this purpose, Madin-Darby Canine Kidney (MDCK)-infected cells were treated with 200 μg/mL of each extract. A total of 17 extracts (45%) inhibited influenza A replication, with seven of them resulting in more than 80% inhibition. Moreover, functional assays performed with viral neuraminidase revealed two extracts (from Leptolyngbya sp. and Chlorellaceae) with IC50 mean < 210 μg/mL for influenza A and B, and also OST-sensitive and resistant strains. Furthermore, MDCK cells exposed to 1 mg/mL of all the extracts showed viability higher than 80%. Discussion Our results suggest that extracts of microalgae and cyanobacteria have promising anti-influenza properties. Further chemical investigation should be conducted to isolate the active compounds for the development of new anti-influenza drugs. The data generated contribute to the knowledge of the biotechnological potential of Brazilian biomes that are still little explored for this purpose.
Collapse
Affiliation(s)
- Thauane Silva
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Paulo S Salomon
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Lidilhone Hamerski
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Juline Walter
- Laboratório de Microbiologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Rafael B Menezes
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - José Edson Siqueira
- Instituto de Pesquisas de Produtos Naturais, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Aline Santos
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | | | - Natália Ferme
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Thaise Guimarães
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Giovana O Fistarol
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Paulo I Hargreaves
- Laboratório de Fitoplâncton Marinho, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Cristiane Thompson
- Laboratório de Microbiologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fabiano Thompson
- Laboratório de Microbiologia Marinha, Instituto de Biologia, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Thiago Moreno Souza
- Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil.,Centro de Desenvolvimento Tecnológico em Saúde, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Marilda Siqueira
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| | - Milene Miranda
- Laboratório de Vírus Respiratórios e do Sarampo, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
| |
Collapse
|