1
|
Peng Z, Liao Y, Yang W, Liu L. Metal(loid)-gut microbiota interactions and microbiota-related protective strategies: A review. ENVIRONMENT INTERNATIONAL 2024; 192:109017. [PMID: 39317009 DOI: 10.1016/j.envint.2024.109017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 09/14/2024] [Accepted: 09/16/2024] [Indexed: 09/26/2024]
Abstract
Human exposure to metal(loid)s has dramatically increased over the past five decades, which has triggered public concern worldwide. Recently, gut microbiota has been considered a target for metal(loid)s, and some literature has reviewed the interactions between gut microbiota and heavy metal(loid)s (HMs) with high toxicity. However, whether there is an interaction between gut microbiota and metal(loid)s with essential roles or some normal functions are far from clear to date. Importantly, in addition to traditional probiotics that have been clarified to alleviate the adverse effect of HMs on the body, some novel probiotics, prebiotics, synbiotics, and postbiotics may also exhibit comparable or even better abilities of metal(loid) remediation. In this review, we mainly outline and discuss recent research findings on the metal(loid)-gut microbiota interactions and microbiota-related protective strategies.
Collapse
Affiliation(s)
- Zhao Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Yuxiao Liao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Wei Yang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China
| | - Liegang Liu
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China; Ministry of Education Key Lab of Environment and Health, School of Public Health, Tongji Medical College, Huazhong University of Science & Technology, Wuhan, China.
| |
Collapse
|
2
|
Song Y, Zhang J, Li Y, Wang Y, Wan Y. Potential Protective Effect of Selenium-Enriched Lactobacillus plantarum on Cadmium-Induced Liver Injury in Mice. J Microbiol Biotechnol 2024; 34:1328-1339. [PMID: 38754999 PMCID: PMC11239402 DOI: 10.4014/jmb.2312.12051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 03/25/2024] [Accepted: 04/05/2024] [Indexed: 05/18/2024]
Abstract
Cadmium (Cd) is a prevalent environmental contaminant that poses a potential hazard to the health of both humans and animals. In this study, biosynthesized selenium-enriched Lactobacillus plantarum and selenium nanoparticles (SeNPs) were developed and evaluated for their protective effects against Cd-induced hepatic injury in mice through oral administration for 4 weeks. Cadmium exposure resulted in severe impairment of liver function, as evidenced by increased levels of serum markers of liver injury and, oxidative stress and significant damage to liver tissue, and a notable decrease in the diversity of the intestinal microbiota. Oral administration of Se-enriched L. plantarum (LS) reduced cadmium accumulation in the liver by 49.5% and, restored other cadmium-induced damage markers to normal levels. A comparison of the effects with those of L. plantarum (L) and SeNPs isolated from LS revealed that LS could more effectively alleviate hepatic oxidative stress and reduce the intrahepatic inflammatory responses of the liver, further protecting against cadmium-induced liver injury. These findings suggest that the development of LS may be effective at protecting the liver and intestinal tract from cadmium-induced damage.
Collapse
Affiliation(s)
- Yanyan Song
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, P.R. China
| | - Jing Zhang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, P.R. China
| | - Yidan Li
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, P.R. China
| | - Yuxuan Wang
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, P.R. China
| | - Yingxin Wan
- College of Biochemical Engineering, Beijing Union University, Beijing 100023, P.R. China
| |
Collapse
|
3
|
Dahiya P, Kumari S, Behl M, Kashyap A, Kumari D, Thakur K, Devi M, Kumari N, Kaushik N, Walia A, Bhatt AK, Bhatia RK. Guardians of the Gut: Harnessing the Power of Probiotic Microbiota and Their Exopolysaccharides to Mitigate Heavy Metal Toxicity in Human for Better Health. Probiotics Antimicrob Proteins 2024:10.1007/s12602-024-10281-9. [PMID: 38733461 DOI: 10.1007/s12602-024-10281-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/26/2024] [Indexed: 05/13/2024]
Abstract
Heavy metal pollution is a significant global health concern, posing risks to both the environment and human health. Exposure to heavy metals happens through various channels like contaminated water, food, air, and workplaces, resulting in severe health implications. Heavy metals also disrupt the gut's microbial balance, leading to dysbiosis characterized by a decrease in beneficial microorganisms and proliferation in harmful ones, ultimately exacerbating health problems. Probiotic microorganisms have demonstrated their ability to adsorb and sequester heavy metals, while their exopolysaccharides (EPS) exhibit chelating properties, aiding in mitigating heavy metal toxicity. These beneficial microorganisms aid in restoring gut integrity through processes like biosorption, bioaccumulation, and biotransformation of heavy metals. Incorporating probiotic strains with high affinity for heavy metals into functional foods and supplements presents a practical approach to mitigating heavy metal toxicity while enhancing gut health. Utilizing probiotic microbiota and their exopolysaccharides to address heavy metal toxicity offers a novel method for improving human health through modulation of the gut microbiome. By combining probiotics and exopolysaccharides, a distinctive strategy emerges for mitigating heavy metal toxicity, highlighting promising avenues for therapeutic interventions and health improvements. Further exploration in this domain could lead to groundbreaking therapies and preventive measures, underscoring probiotic microbiota and exopolysaccharides as natural and environmentally friendly solutions to heavy metal toxicity. This, in turn, could enhance public health by safeguarding the gut from environmental contaminants.
Collapse
Affiliation(s)
- Pushpak Dahiya
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Sangeeta Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Manya Behl
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Aakash Kashyap
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Deeksha Kumari
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Kalpana Thakur
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Mamta Devi
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kumari
- Department of Biosciences, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Neelam Kaushik
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Abhishek Walia
- Department of Microbiology, College of Basic Sciences, CSK HPKV, Palampur, HP, 176062, India
| | - Arvind Kumar Bhatt
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India
| | - Ravi Kant Bhatia
- Department of Biotechnology, Himachal Pradesh University, Summer Hill, Shimla, 171005, Himachal Pradesh, India.
| |
Collapse
|
4
|
Saleh SM, El-Tawil OS, Mahmoud MB, Abd El-Rahman SS, El-Saied EM, Noshy PA. Do Nanoparticles of Calcium Disodium EDTA Minimize the Toxic Effects of Cadmium in Female Rats? Biol Trace Elem Res 2024; 202:2228-2240. [PMID: 37721680 PMCID: PMC10955038 DOI: 10.1007/s12011-023-03842-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 09/01/2023] [Indexed: 09/19/2023]
Abstract
The present study aims to investigate the ability of CaNa2EDTA (ethylenediaminetetraacetic acid) macroparticles and nanoparticles to treat cadmium-induced toxicity in female rats and to compare their efficacies. Forty rats were divided into 4 equal groups: control, cadmium, cadmium + CaNa2EDTA macroparticles and Cd + CaNa2EDTA nanoparticles. Cadmium was added to the drinking water in a concentration of 30 ppm for 10 weeks. CaNa2EDTA macroparticles and nanoparticles (50 mg/kg) were intraperitoneally injected during the last 4 weeks of the exposure period. Every two weeks, blood and urine samples were collected for determination of urea, creatinine, metallothionein and cadmium concentrations. At the end of the experiment, the skeleton of rats was examined by X-ray and tissue samples from the kidney and femur bone were collected and subjected to histopathological examination. Exposure to cadmium increased the concentrations of urea and creatinine in the serum and the concentrations of metallothionein and cadmium in serum and urine of rats. A decrease in bone mineralization by X-ray examination in addition to various histopathological alterations in the kidney and femur bone of Cd-intoxicated rats were also observed. Treatment with both CaNa2EDTA macroparticles and nanoparticles ameliorated the toxic effects induced by cadmium on the kidney and bone. However, CaNa2EDTA nanoparticles showed a superior efficacy compared to the macroparticles and therefore can be used as an effective chelating antidote for treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Safa M Saleh
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Osama S El-Tawil
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Manal B Mahmoud
- Immune Section, Research Institute for Animal Reproduction, Giza, Egypt
| | - Sahar S Abd El-Rahman
- Department of Pathology, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Eiman M El-Saied
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt
| | - Peter A Noshy
- Department of Toxicology, Forensic Medicine and Veterinary Regulations, Faculty of Veterinary Medicine, Cairo University, Giza, Egypt.
| |
Collapse
|
5
|
Ceramella J, De Maio AC, Basile G, Facente A, Scali E, Andreu I, Sinicropi MS, Iacopetta D, Catalano A. Phytochemicals Involved in Mitigating Silent Toxicity Induced by Heavy Metals. Foods 2024; 13:978. [PMID: 38611284 PMCID: PMC11012104 DOI: 10.3390/foods13070978] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 01/30/2024] [Accepted: 03/18/2024] [Indexed: 04/14/2024] Open
Abstract
Heavy metals (HMs) are natural elements present in the Earth's crust, characterised by a high atomic mass and a density more than five times higher than water. Despite their origin from natural sources, extensive usage and processing of raw materials and their presence as silent poisons in our daily products and diets have drastically altered their biochemical balance, making them a threat to the environment and human health. Particularly, the food chain polluted with toxic metals represents a crucial route of human exposure. Therefore, the impact of HMs on human health has become a matter of concern because of the severe chronic effects induced by their excessive levels in the human body. Chelation therapy is an approved valid treatment for HM poisoning; however, despite the efficacy demonstrated by chelating agents, various dramatic side effects may occur. Numerous data demonstrate that dietary components and phytoantioxidants play a significant role in preventing or reducing the damage induced by HMs. This review summarises the role of various phytochemicals, plant and herbal extracts or probiotics in promoting human health by mitigating the toxic effects of different HMs.
Collapse
Affiliation(s)
- Jessica Ceramella
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Azzurra Chiara De Maio
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Giovanna Basile
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Anastasia Facente
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Elisabetta Scali
- Unit of Dermatology, Spoke Hospital, Locri, 89044 Reggio Calabria, Italy;
| | - Inmaculada Andreu
- Departamento de Química, Universitat Politècnica de València, Camino de Vera s/n, 46022 Valencia, Spain
- Unidad Mixta de Investigación UPV-IIS La Fe, Hospital Universitari i Politècnic La Fe, Avenida de Fernando, Abril Martorell 106, 46026 Valencia, Spain
| | - Maria Stefania Sinicropi
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Domenico Iacopetta
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Cosenza, Italy; (J.C.); (A.C.D.M.); (G.B.); (A.F.); (D.I.)
| | - Alessia Catalano
- Department of Pharmacy-Drug Sciences, University of Bari “Aldo Moro”, 70126 Bari, Italy;
| |
Collapse
|
6
|
Bekele GG, Woldeyes BS, Taye GM, Kebede EM, Gebremichael DY. Use of herbal medicine during pregnancy and associated factors among pregnant women with access to public healthcare in west Shewa zone, Central Ethiopia: sequential mixed-method study. BMJ Open 2024; 14:e076303. [PMID: 38316582 PMCID: PMC10860084 DOI: 10.1136/bmjopen-2023-076303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 01/18/2024] [Indexed: 02/07/2024] Open
Abstract
OBJECTIVE This study was aimed at assessing the prevalence of herbal drug use among pregnant women with access to modern medicine and associated factors in public health facilities in the west Shewa zone, Oromia regional state, Ethiopia. DESIGN A sequential mixed-method study approach was carried out among pregnant women and other stakeholders. SETTING This study was conducted at public health facilities, including 3 public hospitals and 20 health centres, in the west Shewa zone of Ethiopia. PARTICIPANTS A systematically selected sample of 411 pregnant women was participated in the quantitative study. For the qualitative method, focus group discussions and in-depth interviews were conducted among pregnant women attending antenatal care and key informants using an interview guide until data saturation was achieved. PRIMARY OUTCOME For outcome variables, the respondents were asked if they used any herbal medicine during their current pregnancy. It was then recorded as 0=no and 1=yes. RESULTS The prevalence of herbal medicines was found to be 19.7%. The most commonly used herbal medicines were Zingiber officinale, Ocimum gratissimum, Eucalyptus globules, Allium sativum and Rutacha lepensis. Herbal medicine use during pregnancy was significantly associated with older maternal age (adjusted OR (AOR) 2.4, 95% CI 1.2 to 5.1), urban residence (AOR 2.3, 95% CI 1.3 to 3.7) and second trimester of pregnancy (AOR 2.3, 95% CI 1.3 to 4.5). CONCLUSIONS In this study, one in five pregnant women uses herbal medicine, which is relatively low. Sociodemographic factors and the duration of pregnancy affected the utilisation of herbal drugs during pregnancy. The most common herbals used by pregnant women were intended to treat minor disorders of pregnancy and medical disorders such as hypertension.
Collapse
|
7
|
Li L, Zhao J, Wang J, Xiong Q, Lin X, Guo X, Peng F, Liang W, Zuo X, Ying C. The arsenic-lowering effect of inulin-type prebiotics in end-stage renal disease: a randomized crossover trial. Food Funct 2024; 15:355-371. [PMID: 38093628 DOI: 10.1039/d3fo01843a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Background: Circulatory imbalance of trace elements is frequent in end-stage renal disease (ESRD), leading to a deficiency of essential elements and excess of toxic elements. The present study aimed to investigate whether inulin-type fructans (ITFs) could ameliorate the circulatory imbalance by modulating gut microbiota and regulating the absorption and elimination of trace elements. Methods: Peritoneal dialysis patients were enrolled in a randomized crossover trial, undergoing interventions with ITFs (10 g d-1) and maltodextrin (placebo) over a 9-month period (with a 3-month washout). The primary outcomes included essential elements Mn, Fe, Co, Cu, Zn, Se, Sr, and Mo and potential toxic elements V, Cr, Ni, As, Cd, Ba, Tl, Pb, Th, and U in plasma. Secondary outcomes included the gut microbiome, short chain fatty acids (SCFAs), bile acids (BAs), and daily removal of trace elements through urine, dialysate and feces. Results: Among the 44 participants initially randomized, 29 completed the prebiotic, placebo or both interventions. The daily dietary intake of macronutrients and trace elements remained consistent throughout the study. The administration of 10 g d-1 ITFs significantly reduced plasma arsenic (As) by 1.03 μg L-1 (95%CI: -1.74, -0.33) (FDR-adjusted P = 0.045) down from the baseline of 3.54 μg L-1 (IQRs: 2.61-4.40) and increased the As clearance rate by urine and dialysis (P = 0.033). Positive changes in gut microbiota were also observed, including an increase in the Firmicutes/Bacteroidetes ratio (P = 0.050), a trend towards higher fecal SCFAs (P = 0.082), and elevated excretion of primary BAs (P = 0.035). However, there were no significant changes in plasma concentrations of other trace elements or their daily removal by urine, dialysis and feces. Conclusions: The daily administration of 10 g d-1 ITFs proved to be effective in reducing the circulating retention of As but demonstrated to be ineffective for other trace elements in ESRD. These sentences are ok to include but as "The clinical trial registry number is ChiCTR-INR-17013739 (https://www.chictr.org.cn/showproj.aspx?proj=21228)".
Collapse
Affiliation(s)
- Li Li
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jing Zhao
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Jinxue Wang
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Qianqian Xiong
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xuechun Lin
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Xiaolei Guo
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Fan Peng
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Wangqun Liang
- Division of Nephrology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Xuezhi Zuo
- Department of Clinical Nutrition, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| | - Chenjiang Ying
- Department of Nutrition and Food Hygiene, Hubei Key Laboratory of Food Nutrition and Safety, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, China.
| |
Collapse
|
8
|
Guo GJ, Yao F, Lu WP, Xu HM. Gut microbiome and metabolic-associated fatty liver disease: Current status and potential applications. World J Hepatol 2023; 15:867-882. [PMID: 37547030 PMCID: PMC10401411 DOI: 10.4254/wjh.v15.i7.867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/11/2023] [Accepted: 06/30/2023] [Indexed: 07/21/2023] Open
Abstract
Metabolic-associated fatty liver disease (MAFLD) is one of the most common chronic liver diseases worldwide. In recent years, the occurrence rate of MAFLD has been on the rise, mainly due to lifestyle changes, high-calorie diets, and imbalanced dietary structures, thereby posing a threat to human health and creating heavy social and economic burdens. With the development of 16S sequencing and integrated multi-omics analysis, the role of the gut microbiota (GM) and its metabolites in MAFLD has been further recognized. The GM plays a role in digestion, energy metabolism, vitamin synthesis, the prevention of pathogenic bacteria colonisation, and immunoregulation. The gut-liver axis is one of the vital links between the GM and the liver. Toxic substances in the intestine can enter the liver through the portal vascular system when the intestinal barrier is severely damaged. The liver also influences the GM in various ways, such as bile acid circulation. The gut-liver axis is essential in maintaining the body’s normal physiological state and plays a role in the onset and prognosis of many diseases, including MAFLD. This article reviews the status of the GM and MAFLD and summarizes the GM characteristics in MAFLD. The relationship between the GM and MAFLD is discussed in terms of bile acid circulation, energy metabolism, micronutrients, and signalling pathways. Current MAFLD treatments targeting the GM are also listed.
Collapse
Affiliation(s)
- Gong-Jing Guo
- Gastroenterology Department of The Second Affiliated Hospital, School of Medicine, The Chinese University of Hong Kong, Shenzhen & Longgang District People’s Hospital of Shenzhen, Shenzhen 518172, Guangdong Province, China
| | - Fei Yao
- Department of Science and Education, The Affiliated Brain Hospital of Guangzhou Medical University, Guangzhou 510370, Guangdong Province, China
| | - Wei-Peng Lu
- The First Clinical School, Guangzhou Medical University, Guangzhou 510120, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
| |
Collapse
|
9
|
Chou LC, Tsai CC. Assessing the Effectiveness of Fermented Banana Peel Extracts for the Biosorption and Removal of Cadmium to Mitigate Inflammation and Oxidative Stress. Foods 2023; 12:2632. [PMID: 37444370 DOI: 10.3390/foods12132632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/27/2023] [Accepted: 07/06/2023] [Indexed: 07/15/2023] Open
Abstract
This study identified 11 lactic acid bacteria (LAB) strains that exhibited tolerance to heavy metal cadmium concentrations above 50 ppm for 48 h. Among these strains, T126-1 and T40-1 displayed the highest tolerance, enduring cadmium concentrations up to 500 ppm while still inhibiting bacterial growth by 50%. Moreover, the fermentation of banana peel using LAB significantly enhanced the clearance rate of cadmium (p < 0.05) compared to nonfermented banana peel. Additionally, the LAB-fermented banana peel exhibited higher 1,1-diphenyl-2-picryl-hydrazyl (DPPH) and reduced power values. Strain T40-1 exhibited a significant improvement in its ability to chelate ferrous ions (p < 0.05). Regarding antibiotic resistance, both the T40-1 and TH3 strains demonstrated high resistance with a third-level inhibition rate against ampicillin and tetracycline. Cell viability tests revealed that incubation with the T40-1 and TH3 strains for a duration of 24 h did not result in any cellular damage. Moreover, these LAB strains effectively mitigated oxidative stress markers, such as reactive oxygen species (ROS), glutathione (GSH), and lactate dehydrogenase (LDH), caused by 2 ppm cadmium on cells. Furthermore, the LAB strains were able to reduce the inflammatory response, as evidenced by a decrease in interleukin-8 (IL-8) levels (p < 0.05). The use of Fourier transform infrared (FT-IR) spectroscopy analysis provided valuable insight into the interaction between metal ions and the organic functional groups present on the cell wall of fermented banana peel. In summary, this study highlights the potential of the LAB strains T40-1 and TH3 in terms of their tolerance to the cadmium, ability to enhance cadmium clearance rates, and their beneficial effects on oxidative stress, inflammation, and cell viability.
Collapse
Affiliation(s)
- Lan-Chun Chou
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| | - Cheng-Chih Tsai
- Department of Food Science and Technology, HungKuang University, Shalu District, Taichung City 43302, Taiwan
| |
Collapse
|
10
|
Dong A, Dong H, He H, Dong A, Yan J, Huo J. Effects of Cadmium on Kidney Function of the Freshwater Turtles Mauremys reevesii. Biol Trace Elem Res 2023; 201:3000-3005. [PMID: 35986187 DOI: 10.1007/s12011-022-03397-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2022] [Accepted: 08/15/2022] [Indexed: 11/02/2022]
Abstract
This research studied the effects of cadmium on kidney function of the freshwater turtles Mauremys reevesii. Turtles were injected intraperitoneally with 0, 7.5, 15, and 30 mg kg-1 cadmium separately for once. The samples were gathered to check the kidney index, the contents of TP in kidney tissue, and the levels of CRE and BUN in the plasma of the turtles. Results showed that the concentration of TP was overall decreased with the extension of cadmium exposure time and the increasing of the exposure dose of cadmium. The CRE content in the plasma of each treatment group increased with the prolongation of exposure time in a dose-dependent, and the BUN levels of all poisoned groups showed a trend of increasing. The kidney index of treated turtles increased. In summary, cadmium could induce the increase of turtle kidney index, the content of CRE and BUN in plasma, and the decrease of TP content in the kidney.
Collapse
Affiliation(s)
- Aiguo Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Huidong Dong
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Hui He
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Ailing Dong
- Bureau of Agriculture and Rural Affairs of Qianan, Tangshan, Hebei Province, China
| | - Juanjuan Yan
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China
| | - Junfeng Huo
- Shanxi University of Chinese Medicine, Taiyuan, Shanxi Province, China.
| |
Collapse
|
11
|
Application of Weizmannia coagulans in the medical and livestock industry. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-022-01687-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Purpose
Products enriched with probiotics have always been fashionable. Weizmannia coagulans has become a hot research topic in the academic community due to their multiple functional properties and high resistance to stress, which can retain their activity in a variety of harsh environments. This review aims to evaluate the probiotic effects of different strains of Weizmannia coagulans in animals and humans and to inspire better exploitation of the value of this strain.
Methods
This review summarizes the latest research progress of Weizmannia coagulans from two major applications in animal breeding and human health.
Results
The functional properties of Weizmannia coagulans are extensively recognized. In animals, the strain can promote nutrient absorption, reduce mortality, and enhance the slaughter rate in livestock and poultry. In humans, the strain can be used to treat gastrointestinal disorders, immunomodulation, depressive symptoms, and non-alcoholic fatty liver. Weizmannia coagulans is projected as an ideal substitute for antibiotics and other chemical drugs.
Conclusion
Despite the outstanding functional properties of Weizmannia coagulans, there are numerous strains of Weizmannia coagulans and significant differences between strains in functional and physiological properties. Currently, there are few literature reports on the probiotic mechanism and functional gene identification of Weizmannia coagulans, which is crucial for the commercialization of Weizmannia coagulans and the benefit of human society.
Collapse
|
12
|
Lactobacillus-fermented yogurt exerts hypoglycemic, hypocholesterolemic, and anti-inflammatory activities in STZ-induced diabetic Wistar rats. Nutr Res 2022; 108:22-32. [PMID: 36395709 DOI: 10.1016/j.nutres.2022.10.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Revised: 10/06/2022] [Accepted: 10/09/2022] [Indexed: 11/07/2022]
Abstract
Hyperglycemia is a symptom of type 2 diabetes mellitus, a chronic metabolic disease characterized by elevated blood glucose concentrations. Antidiabetic drugs are common treatments for this metabolic disorder; however, they may have unpleasant side effects. This study hypothesized that probiotic fermented products could preserve nutritional value, maintain metabolic homeostasis, and attenuate the inflammatory response associated with diabetes while reducing side effects. Lactobacillus plantarum KU985438 and Lactobacillus rhamnosus KU985439 showed the lowest alfa-amylase enzyme (α-amylase) activity among 8 lactobacilli tested. These 2 strains were used to develop functional fermented milk products, and their antidiabetic efficacy was tested in induced diabetic Wistar rats. The treatment of diabetic rats with L. plantarum KU985438 or L. rhamnosus KU985439 fermented yogurt resulted in a considerable reduction in blood glucose concentrations (136.79% and 145.17%, respectively) and α-amylase concentrations (56.84% and 56.84%, respectively) compared with conventional treatments. Diabetes relief began after 4 days of yogurt consumption compared with drug-based treatment. Significant improvements in both liver and kidney enzyme concentrations were also observed, in addition to a significant increase in high-density lipoprotein cholesterol concentrations and improved lipid profiles. Inhibition in nuclear factor κB and an increase in Bcl-2 concentrations were also detected. Histopathological examination of both hepatic and pancreatic cells revealed the positive effects of the studied treatment compared with standard treatment. Therefore, the selected Lactobacilli, which has hypoglycemic potential, could be used to produce functional nutraceutical antidiabetic supplements.
Collapse
|
13
|
Tesfaye M, Solomon N, Getachew D, Biru YB. Prevalence of harmful traditional practices during pregnancy and associated factors in Southwest Ethiopia: a community-based cross-sectional study. BMJ Open 2022; 12:e063328. [PMID: 36332962 PMCID: PMC9639088 DOI: 10.1136/bmjopen-2022-063328] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 10/12/2022] [Indexed: 11/06/2022] Open
Abstract
OBJECTIVE To assess the prevalence of harmful traditional practices during pregnancy and associated factors in Southwest Ethiopia. DESIGN A community-based cross-sectional study. SETTING Southwest Ethiopia. PARTICIPANTS 667 women who were pregnant at the time of the study or gave birth 2 years prior to the study have participated. OUTCOME OF THE STUDY Harmful traditional practices during pregnancy (yes/no). Harmful traditional practices during pregnancy include abdominal massage, herbal intake or food taboos done on/by pregnant women without health professionals' instruction. RESULTS The prevalence of harmful traditional practices in the study area was 37%, 95% CI (33.4% to 40.8%). The most commonly practised activities were abdominal massage (72.9%), intake of herbs (63.9%) and food taboos (48.6%). Monthly income (AOR=3.13, 95% CI (1.83 to 5.37), p<0.001), having had no history of child death (AOR=2.74, 95% CI (1.75 to 4.29), p<0.001), women with no formal education (AOR=4.81, 95% CI (2.50 to 9.23), p<0.001), women who had antenatal care (ANC) visits during their last pregnancy (AOR=0.24, 95% CI (0.10 to 0.59), p=0.002) and being multipara (AOR=0.47, 95% CI (0.27 to 0.80), p=0.003) were significantly associated with harmful traditional practices during pregnancy. CONCLUSION Our study showed that more than one-third of women in Southwest Ethiopia practised harmful traditional practices while they were pregnant. The practices were more common among primiparas, women who had lower educational and financial status, women with no ANC visits, and women with no history of child death. Health education should be given to the community about the complications of harmful traditional practices during pregnancy.
Collapse
Affiliation(s)
| | - Nahom Solomon
- Public Health, Mizan-Tepi University, Mizzan, Ethiopia
| | | | | |
Collapse
|
14
|
Hasan MS, Islam MZ, Liza RI, Sarker MAH, Islam MA, Harun-ur-Rashid M. Novel Probiotic Lactic Acid Bacteria with In Vitro Bioremediation Potential of Toxic Lead and Cadmium. Curr Microbiol 2022; 79:387. [DOI: 10.1007/s00284-022-03059-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2022] [Accepted: 09/26/2022] [Indexed: 11/06/2022]
|
15
|
Chen DW, Li HJ, Liu Y, Ma LN, Pu JH, Lu J, Tang XJ, Gao YS. Protective effects of fowl-origin cadmium-tolerant lactobacillus against sub-chronic cadmium-induced toxicity in chickens. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:76036-76049. [PMID: 35665891 DOI: 10.1007/s11356-022-19113-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Accepted: 02/03/2022] [Indexed: 06/15/2023]
Abstract
Cadmium (Cd) directly endangers poultry health and indirectly causes harm to human health by food chain. Numerous studies have focused on removing Cd using lactic acid bacteria (LAB). However, there is still a lack of in vivo studies to validate whether Cd can be absorbed successfully by LAB to alleviate Cd toxicity. Here, we aimed to isolated and screened poultry-derived Cd-tolerant LAB with the strongest adsorption capacity in vitro and investigate the protective effect of which on sub-chronic Cd toxicity in chickens. First, nine Cd-tolerant LAB strains were selected preliminarily by isolating, screening, and identifying from poultry farms. Next, four strains with the strongest adsorption capacity were used to explore the influence of different physical and chemical factors on the ability of LAB to adsorb Cd as well as its probiotic properties in terms of acid tolerance, bile salt tolerance, drug resistance, and antibacterial effects. Resultantly, the CLF9-1 strain with the best comprehensive ability was selected for further animal protection test. The Cd-tolerant LAB treatment promoted the growth performance of chickens and reduced the Cd-elevated liver and kidney coefficients. Moreover, Cd-induced liver, kidney, and duodenum injuries were alleviated significantly by high-dose LAB treatment. Furthermore, LAB treatment also increased the elimination of Cd in feces and markedly reduced the Cd buildup in the liver and kidney. In summary, these findings determine that screened Cd-tolerant LAB strain exerts a protective effect on chickens against sub-chronic cadmium poisoning, thus providing an essential guideline for the public health and safety of livestock and poultry.
Collapse
Affiliation(s)
- Da-Wei Chen
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Hui-Jia Li
- College of Animal Science and Veterinary Medicine, Shandong Agricultural University, Tai'an, Shandong, 271018, People's Republic of China
| | - YinYin Liu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Li-Na Ma
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Jun-Hua Pu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - JunXian Lu
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Xiu-Jun Tang
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China
| | - Yu-Shi Gao
- Poultry Institute, Chinese Academy of Agricultural Sciences, Yangzhou, Jiangsu, 225125, People's Republic of China.
| |
Collapse
|
16
|
Harnett JE, Desselle S, Ung COL. Towards consensus: defining and supporting a professional role for pharmacists associated with traditional and complementary medicines - a protocol of implementing an international e-survey. BMJ Open 2022; 12:e061352. [PMID: 35902196 PMCID: PMC9341198 DOI: 10.1136/bmjopen-2022-061352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
INTRODUCTION Traditional and complementary medicines (T&CM) are predominantly self-selected from retail outlets including pharmacies as part of self-care practices. Concerns about the appropriate and safe use of T&CM products raises questions about 'should' and 'how' pharmacists could adopt professional responsibilities. There lacks a consensus about the scope of these responsibilities, or the initiatives required to execute them. The aim of this study is to identify an international set of core responsibilities that support pharmacists' contribution to ensuring the quality and safe use of T&CMs to promote public health. METHODS AND ANALYSIS An international cross-sectional e-survey of pharmacists representing the six WHO regions will be conducted over a 12-month period. Pharmacists will be invited via representative organisations and professional networks within their respective country. Survey responses to statements about the relevance of T&CM to day-to-day practice; opinions about the bioethical and practice responsibilities; and support required to build their scope of practice associated with T&CM will be collected centrally via the online survey platform Survey Monkey and analysed using the Statistical Package for Social Sciences V.27 software for Windows. Bivariate statistical analysis will be conducted to examine the associations between agreement to statements within each section with key demographic variables, country of practice, pharmacy type, age, gender, qualification and years in practice. Cronbach's alpha will be used to test the internal consistency of items from certain sections of the survey and evince their clarity to respondents of the questionnaire. ETHICS AND DISSEMINATION Ethics approval has been obtained from the University of Macau (approval number SSHRE21-APP068-ICMS-01). The results of this survey will be used to inform key discussion points in a consensus process and a step towards developing an agreed and defined professional role for pharmacists in T&CMs.
Collapse
Affiliation(s)
- Joanna E Harnett
- Faculty of Medicine and Health Pharmacy School, The University of Sydney, Sydney, New South Wales, Australia
| | | | - Carolina Oi Lam Ung
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Taipa, Macau
| |
Collapse
|
17
|
Soheili M, Alinaghipour A, Salami M. Good bacteria, oxidative stress and neurological disorders: Possible therapeutical considerations. Life Sci 2022; 301:120605. [DOI: 10.1016/j.lfs.2022.120605] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/27/2022] [Accepted: 04/27/2022] [Indexed: 12/11/2022]
|
18
|
Mirza Alizadeh A, Hosseini H, Mollakhalili Meybodi N, Hashempour-Baltork F, Alizadeh-Sani M, Tajdar-Oranj B, Pirhadi M, Mousavi Khaneghah A. Mitigation of potentially toxic elements in food products by probiotic bacteria: A comprehensive review. Food Res Int 2022; 152:110324. [PMID: 35181105 DOI: 10.1016/j.foodres.2021.110324] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2020] [Revised: 03/08/2021] [Accepted: 03/11/2021] [Indexed: 12/17/2022]
Abstract
Potentially toxic elements (PTEs) as non-degradable elements (especially carcinogenic types for humans such as lead (Pb), cadmium (Cd), mercury (Hg), and arsenic (As)) are widely distributed in the environment. They are one of the most concerned pollutants that can be absorbed and accumulated in the human body, primarily via contaminated water and foods. Acute or chronic poisoning of humans to PTEs can pose some serious risks for human health even at low concentrations. In this context, some methods are introduced to eliminate or reduce their concentration. While the biological treatment by bacterial strains, particularly probiotic bacteria, is considered as an effective method for reducing or eliminating of them. The consumption of probiotics as nonpathogenic microorganisms at regular and adequate dose offer some beneficial health impacts, it can also be applied to remove PTEs in both alive and non-alive states. This review aimed to provide an overview regarding the efficacy of different types of probiotic bacteria for PTEs removal from various environments such as food, water, in vitro, and in vivo conditions.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran; Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Neda Mollakhalili Meybodi
- Department of Food Sciences and Technology, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Fataneh Hashempour-Baltork
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mahmood Alizadeh-Sani
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Behrouz Tajdar-Oranj
- Student Research Committee, Department of Food Science and Technology, National Nutrition and Food Technology Research Institute, Faculty of Nutrition Science and Food Technology, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohadeseh Pirhadi
- Division of Food Safety and Hygiene, Environmental Health Department, School of Public Health, Tehran University of Medical Sciences, Tehran, Iran
| | - Amin Mousavi Khaneghah
- Department of Food Science, Faculty of Food Engineering, State University of Campinas (UNICAMP), 13083-862 Campinas, São Paulo, Brazil
| |
Collapse
|
19
|
Forero-Rodríguez LJ, Josephs-Spaulding J, Flor S, Pinzón A, Kaleta C. Parkinson's Disease and the Metal-Microbiome-Gut-Brain Axis: A Systems Toxicology Approach. Antioxidants (Basel) 2021; 11:71. [PMID: 35052575 PMCID: PMC8773335 DOI: 10.3390/antiox11010071] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Revised: 12/02/2021] [Accepted: 12/17/2021] [Indexed: 12/14/2022] Open
Abstract
Parkinson's Disease (PD) is a neurodegenerative disease, leading to motor and non-motor complications. Autonomic alterations, including gastrointestinal symptoms, precede motor defects and act as early warning signs. Chronic exposure to dietary, environmental heavy metals impacts the gastrointestinal system and host-associated microbiome, eventually affecting the central nervous system. The correlation between dysbiosis and PD suggests a functional and bidirectional communication between the gut and the brain. The bioaccumulation of metals promotes stress mechanisms by increasing reactive oxygen species, likely altering the bidirectional gut-brain link. To better understand the differing molecular mechanisms underlying PD, integrative modeling approaches are necessary to connect multifactorial perturbations in this heterogeneous disorder. By exploring the effects of gut microbiota modulation on dietary heavy metal exposure in relation to PD onset, the modification of the host-associated microbiome to mitigate neurological stress may be a future treatment option against neurodegeneration through bioremediation. The progressive movement towards a systems toxicology framework for precision medicine can uncover molecular mechanisms underlying PD onset such as metal regulation and microbial community interactions by developing predictive models to better understand PD etiology to identify options for novel treatments and beyond. Several methodologies recently addressed the complexity of this interaction from different perspectives; however, to date, a comprehensive review of these approaches is still lacking. Therefore, our main aim through this manuscript is to fill this gap in the scientific literature by reviewing recently published papers to address the surrounding questions regarding the underlying molecular mechanisms between metals, microbiota, and the gut-brain-axis, as well as the regulation of this system to prevent neurodegeneration.
Collapse
Affiliation(s)
- Lady Johanna Forero-Rodríguez
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Jonathan Josephs-Spaulding
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Stefano Flor
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| | - Andrés Pinzón
- Research Group Bioinformatics and Systems Biology, Instituto de Genetica, Universidad Nacional de Colombia, Bogotá 111321, Colombia; (L.J.F.-R.); (A.P.)
| | - Christoph Kaleta
- Research Group Medical Systems Biology, Christian-Albrechts-Universität Kiel, Brunswiker Straße 10, 24105 Kiel, Germany; (S.F.); (C.K.)
| |
Collapse
|
20
|
Muhammad Z, Ramzan R, Zhang R, Zhao D, Gul M, Dong L, Zhang M. Assessment of In Vitro and In Vivo Bioremediation Potentials of Orally Supplemented Free and Microencapsulated Lactobacillus acidophilus KLDS Strains to Mitigate the Chronic Lead Toxicity. Front Bioeng Biotechnol 2021; 9:698349. [PMID: 34796165 PMCID: PMC8592972 DOI: 10.3389/fbioe.2021.698349] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 09/21/2021] [Indexed: 11/23/2022] Open
Abstract
Lead (Pb) is a pestilent and relatively nonbiodegradable heavy metal, which causes severe health effects by inducing inflammation and oxidative stress in animal and human tissues. This is because of its significant tolerance and capability to bind Pb (430 mg/L) and thermodynamic fitness to sequester Pb in the Freundlich model (R2 = 0.98421) in vitro. Lactobacillus acidophilus KLDS1.1003 was selected for further in vivo study both in free and maize resistant starch (MRS)–based microencapsulated forms to assess its bioremediation aptitude against chronic Pb lethality using adult female BALB/c mice as a model animal. Orally administered free and microencapsulated KLDS 1.1003 provided significant protection by reducing Pb levels in the blood (127.92 ± 5.220 and 101.47 ± 4.142 µg/L), kidneys (19.86 ± 0.810 and 18.02 ± 0.735 µg/g), and liver (7.27 ± 0.296 and 6.42 ± 0.262 µg/g). MRS-microencapsulated KLDS 1.0344 improved the antioxidant index and inhibited changes in blood and serum enzyme concentrations and relieved the Pb-induced renal and hepatic pathological damages. SEM and EDS microscopy showed that the Pb covered the surfaces of cells and was chiefly bound due to the involvement of the carbon and oxygen elements. Similarly, FTIR showed that the amino, amide, phosphoryl, carboxyl, and hydroxyl functional groups of bacteria and MRS were mainly involved in Pb biosorption. Based on these findings, free and microencapsulated L. acidophilus KLDS 1.0344 could be considered a potential dietetic stratagem in alleviating chronic Pb toxicity.
Collapse
Affiliation(s)
- Zafarullah Muhammad
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Rabia Ramzan
- College of Food Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ruifen Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Dong Zhao
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mehak Gul
- Shaikh Khalifa Bin Zayed Al-Nahyan Medical & Dental College, Lahore, Pakistan
| | - Lihong Dong
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| | - Mingwei Zhang
- Key Laboratory of Functional Foods, Ministry of Agriculture and Rural Affairs/Guangdong Key Laboratory of Agricultural Products Processing, Sericultural & Agri-Food Research Institute, Guangdong Academy of Agricultural Sciences, Guangzhou, China
| |
Collapse
|
21
|
Chang X, Kang M, Shen Y, Yun L, Yang G, Zhu L, Meng X, Zhang J, Su X. Bacillus coagulans SCC-19 maintains intestinal health in cadmium-exposed common carp (Cyprinus carpio L.) by strengthening the gut barriers, relieving oxidative stress and modulating the intestinal microflora. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 228:112977. [PMID: 34781134 DOI: 10.1016/j.ecoenv.2021.112977] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/19/2021] [Accepted: 11/06/2021] [Indexed: 05/26/2023]
Abstract
Heavy metal cadmium (Cd) pollution is a serious problem affecting the sustainable development of aquaculture and the safety of aquatic foods. Research about the use of probiotics to attenuate toxic damage caused by Cd2+ in aquatic animals has received widespread attention. Bacillus coagulans (B. coagulans), a kind of probiotics commonly used in aquaculture, has been shown to adsorb Cd2+ both in vivo and vitro. Here, we aimed to determine the effects of B. coagulans on Cd2+ bioaccumulation, gut barrier function, oxidative stress and gut microbiota in common carp following Cd2+ exposure. The fish were exposure to Cd2+ at 0 and 0.5 mg/L and/or fed a B. coagulans-containing diet at 107, 108 and 109 CFU/g for 8 weeks. The results indicated that B. coagulans can maintain gut barrier function in Cd2+-exposed fish by reducing Cd2+ bioaccumulation, increasing the mRNA levels of tight junction protein genes (occludin, claudin-2 and zonula occludens-1), and decreasing the levels of diamine oxidase and D-lactic acid. In addition, B. coagulans could relieve oxidative stress in Cd2+-exposed fish by restoring the activities of glutathione peroxidase, catalase and superoxide dismutase. Moreover, Cd2+ exposure decreased the intestinal microbiota diversity and changed the intestinal microbiota compositions in common carp. However, supplementation with B. coagulans could reverse the altered intestinal microbiota diversity and composition after Cd2+ exposure, decrease the abundance of some pathogens (Shewanella and Vibrio), and increase the abundance of probiotics (Bacillus and Lactobacillus). These results indicate that B. coagulans may serve as a potential antidote for alleviating Cd2+ toxicity.
Collapse
Affiliation(s)
- Xulu Chang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Meiru Kang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Yihao Shen
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lili Yun
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Guokun Yang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Lei Zhu
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xiaolin Meng
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Jianxin Zhang
- College of Fisheries, Henan Normal University, Xinxiang 453007, PR China
| | - Xi Su
- Henan Mental Hospital, the Second Affiliated Hospital of Xinxiang Medical University, Xinxiang 453007, PR China.
| |
Collapse
|
22
|
Arun KB, Madhavan A, Sindhu R, Emmanual S, Binod P, Pugazhendhi A, Sirohi R, Reshmy R, Awasthi MK, Gnansounou E, Pandey A. Probiotics and gut microbiome - Prospects and challenges in remediating heavy metal toxicity. JOURNAL OF HAZARDOUS MATERIALS 2021; 420:126676. [PMID: 34329091 DOI: 10.1016/j.jhazmat.2021.126676] [Citation(s) in RCA: 59] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 07/02/2021] [Accepted: 07/15/2021] [Indexed: 05/26/2023]
Abstract
The gut microbiome, often referred to as "super organ", comprises up to a hundred trillion microorganisms, and the species diversity may vary from person to person. They perform a decisive role in diverse biological functions related to metabolism, immunity and neurological responses. However, the microbiome is sensitive to environmental pollutants, especially heavy metals. There is continuous interaction between heavy metals and the microbiome. Heavy metal exposure retards the growth and changes the structure of the phyla involved in the gut microbiome. Meanwhile, the gut microbiome tries to detoxify the heavy metals by altering the physiological conditions, intestinal permeability, enhancing enzymes for metabolizing heavy metals. This review summarizes the effect of heavy metals in altering the gut microbiome, the mechanism by which gut microbiota detoxifies heavy metals, diseases developed due to heavy metal-induced dysbiosis of the gut microbiome, and the usage of probiotics along with advancements in developing improved recombinant probiotic strains for the remediation of heavy metal toxicity.
Collapse
Affiliation(s)
- K B Arun
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Centre for Biotechnology, Trivandrum 695014, Kerala, India
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Shibitha Emmanual
- Department of Zoology, St. Joseph's College, Thrissur 680121, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Trivandrum 695019, Kerala, India
| | - Arivalagan Pugazhendhi
- School of Renewable Energy, Maejo University, Chiang Mai 50290, Thailand; College of Medical and Health Science, Asia University, Taichung, Taiwan ROC
| | - Ranjna Sirohi
- Department of Chemical & Biological Engineering, Korea University, Seoul 136713, Republic of Korea; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India
| | - R Reshmy
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690110, Kerala, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, North West A & F University, Yangling, Shaanxi 712100, China
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, ENAC GR-GN, CH-1015 Lausanne, Switzerland
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR, Indian Institute for Toxicology Research, Lucknow 226001, Uttar Pradesh, India; Centre for Energy and Environmental Sustainability, Lucknow 226029, Uttar Pradesh, India.
| |
Collapse
|
23
|
Zhu J, Yu L, Shen X, Tian F, Zhao J, Zhang H, Chen W, Zhai Q. Protective Effects of Lactobacillus plantarum CCFM8610 against Acute Toxicity Caused by Different Food-Derived Forms of Cadmium in Mice. Int J Mol Sci 2021; 22:ijms222011045. [PMID: 34681701 PMCID: PMC8537435 DOI: 10.3390/ijms222011045] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 10/06/2021] [Accepted: 10/11/2021] [Indexed: 12/02/2022] Open
Abstract
Cadmium (Cd) is an environmental pollutant that is toxic to almost every human organ. Oral supplementation with lactic acid bacteria (LAB) has been reported to alleviate cadmium toxicity. However, research on the mitigation of cadmium toxicity by LAB is still limited to inorganic cadmium, which is not representative of the varied forms of cadmium ingested daily. In this study, different foodborne forms of cadmium were adopted to establish an in vivo toxicity model, including cadmium–glutathione, cadmium–citrate, and cadmium–metallothionein. The ability of Lactobacillus plantarum CCFM8610 to reduce the toxic effects of these forms of cadmium was further investigated. The 16S rRNA gene sequencing and metabolomics technologies based on liquid chromatography with tandem mass spectrometry (LC–MS/MS) were adopted for the exploration of relevant protective mechanisms. The results demonstrated that the consumption of CCFM8610 can reduce the content of cadmium in mice and relieve the oxidative stress caused by different food–derived forms of cadmium, indicating that CCFM8610 has a promising effect on the remediation of the toxic effects of cadmium food poisoning. Meanwhile, protective effects on gut microflora and serum metabolites might be an important mechanism for probiotics to alleviate cadmium toxicity. This study provides a theoretical basis for the application of L. plantarum CCFM8610 to alleviate human cadmium poisoning.
Collapse
Affiliation(s)
- Jiamin Zhu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Leilei Yu
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Xudan Shen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Fengwei Tian
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Jianxin Zhao
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
| | - Hao Zhang
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
- Wuxi Translational Medicine Research Center and Jiangsu Translational Medicine Research Institute, Wuxi Branch, Wuxi 214122, China
| | - Wei Chen
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- National Engineering Research Center for Functional Food, Jiangnan University, Wuxi 214122, China
| | - Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (J.Z.); (L.Y.); (X.S.); (F.T.); (J.Z.); (H.Z.); (W.C.)
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
- Correspondence:
| |
Collapse
|
24
|
Yang J, Chen W, Sun Y, Liu J, Zhang W. Effects of cadmium on organ function, gut microbiota and its metabolomics profile in adolescent rats. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2021; 222:112501. [PMID: 34265528 DOI: 10.1016/j.ecoenv.2021.112501] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 07/03/2021] [Accepted: 07/06/2021] [Indexed: 06/13/2023]
Abstract
Cadmium (Cd) exposure in adult animals can result in multi-organ damages and gut microbiota disturbance. However, Cd's consequences on health and gut microbiota during adolescence are obscure. In the present study, three-week-old SD rats were exposed to Cd at doses of 0, 0.25, 1, and 4 mg/kg body weight for eight weeks, and the changes of liver, kidney, and ovary function, as well as gut microbiota and its metabolomics profile, were analyzed. After transplantation of fecal bacteria from the 4 mg/kg Cd-treated group into age-matched rats (4 mg/kg-Cd recipients), the organ function and inflammatory reaction were evaluated. The results indicated that Cd perturbed gut microbiota composition, significantly decreased the abundance of Prevotella and Lachnoclostridium but increased Escherichia coli_Shigella. The fecal metabolome profile was altered and was closely correlated with some specific genera. These changes were accompanied by the inflammatory response, dyslipidemia, kidney dysfunction, and abnormal estrogen level. In 4 mg/kg-Cd recipients, the serum triglyceride (TG), lipopolysaccharide (LPS), and inflammatory cytokines were increased with the expressions of IL-1β, IL-6, TNF-α genes up-regulated in liver and kidney. Overall, this study demonstrated that Cd exposure during adolescence could cause disturbance of gut microbiota, dysfunction of liver, kidney, and ovary, which may be correlated with the activation of Cd-induced inflammatory response.
Collapse
Affiliation(s)
- Jinsong Yang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Wei Chen
- Department for Prevention and Control of Infectious Diseases, Fujian Center for Disease Control and Prevention, Jintai Road No. 76, Fuzhou 350001, China
| | - Yi Sun
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Jin Liu
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China
| | - Wenchang Zhang
- Department of Preventive Medicine, Fujian Provincial Key Laboratory of Environmental Factors and Cancer, Key Laboratory of Environment and Health, School of Public Health, Fujian Medical University, Xueyan Road No. 1, Minhou Coudslanty, Fuzhou 350108, China.
| |
Collapse
|
25
|
Mirza Alizadeh A, Hosseini H, Mohseni M, Eskandari S, Sohrabvandi S, Hosseini MJ, Tajabadi-Ebrahimi M, Mohammadi-Kamrood M, Nahavandi S. Analytic and chemometric assessments of the native probiotic bacteria and inulin effects on bioremediation of lead salts. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2021; 101:5142-5153. [PMID: 33608880 DOI: 10.1002/jsfa.11160] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2020] [Revised: 01/02/2021] [Accepted: 02/19/2021] [Indexed: 05/26/2023]
Abstract
BACKGROUND Lead (Pb2+ ) is one of the most toxic heavy metals and can be found in various quantities in the environment. The five native probiotic bacteria and inulin were used to assess in vitro lead nitrate and lead acetate binding capacities, as well as removal potentials. RESULTS The highest decrease in media pH was seen for samples containing a combination of Lactobacillus paracasei IRBC-M 10784, lead nitrate and inulin (5.30 ± 0.012). The presence of inulin in the environment accelerated decreases in the pH of all samples with no significance. In all groups, lead nitrate-containing samples included maximum pH decreases. From the highest to the lowest, the ability of lead removal was linked to Lactobacillus acidophilus PTCC-1932 (88.48%), Bifidobacterium bifidum BIA-7 (85.32%), Bifidobacterium lactis BIA-6 (85.24%), Lactobacillus rhamnosus IBRC-M 10782 (83.18%) and L. paracasei IRBC-M 10784 (80.66%). Most species included the highest decrease in lead nitrate. Fourier-transform infrared spectroscopy (FTIR) analysis demonstrated that various functional groups (hydroxyl, carboxylic, carbonyl, amino and amide binds) on the bacterial cell wall were involved in lead ion binding during incubation. Principal component analysis of the FTIR results showed differences with respect to treated groups and control groups. CONCLUSION The results obtained in the present study reveal that the simultaneous use of native probiotics and inulin can be an effective and safe approach for removing various toxic substances, especially Pb. © 2021 Society of Chemical Industry.
Collapse
Affiliation(s)
- Adel Mirza Alizadeh
- Student Research Committee, Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hedayat Hosseini
- Department of Food Science and Technology, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Food Safety Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mehran Mohseni
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Soheyl Eskandari
- Food and Drug Laboratory Research Center (FDLRC), Food and Drug Administration (FDA), Ministry of Health and Medical Education (MOH+ME), Tehran, Iran
- Zoonotic Diseases Research Center, Department of Food Hygiene and Safety, School of Public Health, Shahid Sadoughi University of Medical Sciences, Yazd, Iran
| | - Sara Sohrabvandi
- Department of Food Technology Research, Faculty of Nutrition Sciences, Food Science and Technology/National Nutrition and Food Technology Research Institute, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mir-Jamal Hosseini
- Zanjan Applied Pharmacology Research Center, Zanjan University of Medical Sciences, Zanjan, Iran
| | | | | | - Saeedeh Nahavandi
- Department of Food and Drug Control, School of Pharmacy, Zanjan University of Medical Sciences, Zanjan, Iran
| |
Collapse
|
26
|
Fuhren J, Schwalbe M, Rösch C, Nijland R, Wels M, Schols HA, Kleerebezem M. Dietary Inulin Increases Lactiplantibacillus plantarum Strain Lp900 Persistence in Rats Depending on the Dietary-Calcium Level. Appl Environ Microbiol 2021; 87:e00122-21. [PMID: 33608291 PMCID: PMC8091021 DOI: 10.1128/aem.00122-21] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 02/12/2021] [Indexed: 12/20/2022] Open
Abstract
Synbiotics are food supplements that combine probiotics and prebiotics to synergistically elicit health benefits in the consumer. Lactiplantibacillus plantarum strains display high survival during transit through the mammalian gastrointestinal tract and were shown to have health-promoting properties. Growth on the fructose polysaccharide inulin is relatively uncommon in L. plantarum, and in this study we describe FosE, a plasmid-encoded β-fructosidase of L. plantarum strain Lp900 which has inulin-hydrolyzing properties. FosE contains an LPxTG-like motif involved in sortase-dependent cell wall anchoring but is also (partially) released in the culture supernatant. In addition, we examined the effect of diet supplementation with inulin on the intestinal persistence of Lp900 in adult male Wistar rats in diets with distinct calcium levels. Inulin supplementation in high-dietary-calcium diets significantly increased the intestinal persistence of L. plantarum Lp900, whereas this effect was not observed upon inulin supplementation of the low-calcium diet. Moreover, intestinal persistence of L. plantarum Lp900 was determined when provided as a probiotic (by itself) or as a synbiotic (i.e., in an inulin suspension) in rats that were fed unsupplemented diets containing the different calcium levels, revealing that the synbiotic administration increased bacterial survival and led to higher abundance of L. plantarum Lp900 in rats, particularly in a low-calcium-diet context. Our findings demonstrate that inulin supplementation can significantly enhance the intestinal delivery of L. plantarum Lp900 but that this effect strongly depends on calcium levels in the diet.IMPORTANCE Synbiotics combine probiotics with prebiotics to synergistically elicit a health benefit in the consumer. Previous studies have shown that prebiotics can selectively stimulate the growth in the intestine of specific bacterial strains. In synbiotic supplementations the prebiotics constituent could increase the intestinal persistence and survival of accompanying probiotic strain(s) and/or modulate the endogenous host microbiota to contribute to the synergistic enhancement of the health-promoting effects of the synbiotic constituents. Our study establishes a profound effect of dietary-calcium-dependent inulin supplementation on the intestinal persistence of inulin-utilizing L. plantarum Lp900 in rats. We also show that in rats on a low-dietary-calcium regime, the survival and intestinal abundance of L. plantarum Lp900 are significantly increased by administering it as an inulin-containing synbiotic. This study demonstrates that prebiotics can enhance the intestinal delivery of specific probiotics and that the prebiotic effect is profoundly influenced by the calcium content of the diet.
Collapse
Affiliation(s)
- Jori Fuhren
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Markus Schwalbe
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| | - Christiane Rösch
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Reindert Nijland
- Marine Animal Ecology Group, Wageningen University & Research, Wageningen, The Netherlands
| | | | - Henk A Schols
- Laboratory of Food Chemistry, Wageningen University & Research, Wageningen, The Netherlands
| | - Michiel Kleerebezem
- Host-Microbe Interactomics Group, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
27
|
Cheng D, Song Q, Ding Y, Yu Q, Liu Y, Tian X, Wang M, Wang G, Wang S. Comparative Study on the Protective Effect of Chlorogenic Acid and 3-(3-Hydroxyphenyl) Propionic Acid against Cadmium-Induced Erythrocyte Cytotoxicity: In Vitro and In Vivo Evaluation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:3859-3870. [PMID: 33570935 DOI: 10.1021/acs.jafc.0c04735] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The metabolism of chlorogenic acid (CGA) through the intestinal tract was studied. As cadmium is a well-known toxic heavy metal, this study was carried out to investigate the comparative protective effect of CGA and its representative intestinal metabolite (3-(3-hydroxyphenyl) propionic acid, HPPA) against Cd-induced erythrocyte cytotoxicity in vitro and in vivo. We found that CGA and its intestinal metabolite appreciably prevented erythrocyte hemolysis, osmotic fragility, and oxidative stress induced by Cd. Also, we found that HPPA had a stronger protective ability than CGA against Cd-induced erythrocyte injury in vivo, such as increasing the ratio of protein kinase C from 7.7% (CGA) to 12.0% (HPPA). Therefore, we hypothesized that CGA and its microbial metabolite had protective effects against Cd-induced erythrocyte damage via multiple actions including antioxidation and chelation. For humans, CGA supplementation may be favorable for avoiding Cd-induced biotoxicity.
Collapse
Affiliation(s)
- Dai Cheng
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| | - Qi Song
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yixin Ding
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Qianqian Yu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Yutong Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Xuena Tian
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Meng Wang
- Beijing Research Center for Agricultural Standards and Testing, No. 9 Middle Road of Shuguanghuayuan, Haidian District, Beijing 100097, China
| | - Guangliang Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
| | - Shuo Wang
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science & Technology, No. 29, 13th Avenue, Tianjin Economy Technological Development Area, Tianjin 300457, China
- Tianjin Key Laboratory of Food Science and Health, School of Medicine, Nankai University, Tianjin 300071, China
| |
Collapse
|
28
|
Lepczyński A, Herosimczyk A, Barszcz M, Ożgo M, Michałek K, Grabowska M, Tuśnio A, Szczerbińska D, Skomiał J. Diet supplemented either with dried chicory root or chicory inulin significantly influence kidney and liver mineral content and antioxidative capacity in growing pigs. Animal 2021; 15:100129. [PMID: 33573962 DOI: 10.1016/j.animal.2020.100129] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Revised: 10/19/2020] [Accepted: 10/20/2020] [Indexed: 01/06/2023] Open
Abstract
According to the Regulation No. 1831/2003 of the European Parliament and European Union Council, the use of antibiotics as a dietary supplements has been prohibited. It seems that the administration of prebiotics, instead of antibiotics, into the pig's diet, may regulate the intestinal microbiota and has a long-term health-related impact on the host. Inulin-type fructans can stimulate mineral absorption from the gut. Additionally, it may regulate energy metabolism and activate enzymatic mechanisms preventing oxidative stress. The goal of the present study was to estimate the influence of dietary supplementation with dried chicory root or native chicory inulin on 1) liver histology; 2) liver and kidney lipid metabolism indices, activity of selected enzymes, concentration of macro- and micronutrients and heavy metals; 3) blood plasma, liver and kidney oxidative stress biomarkers and 4) blood plasma water-electrolyte homeostasis indices in growing pigs. The nutritional study was conducted on 24 piglets assigned to 3 dietary groups (n = 8): control (C) fed a basal diet and two experimental groups receiving basal diet supplemented with 2% of inulin (IN) either 4% of dried chicory root (CR). The animals were fed with a group-specific diets for 40 days and then subjected to euthanasia. Subsequently, blood, liver and kidney samples were harvested for further processing. In the control and experimental groups, no apparent morphological abnormalities in the liver tissues were seen. The percent of periodic acid Schiff positive glycogen liver cells was significantly lower in the CR group as compared to C and IN groups (P < 0.001). Chicory root supplementation improved blood plasma prooxidative-antioxidative balance - PAB (P < 0.001) and liver PAB (P < 0.01) and thiobarbituric acid reactive substances - thiobarbituric acid-reactive substances (P < 0.05). Feeding the CR diet increased calcium (P < 0.001) and potassium (P < 0.05) and decreased cadmium (P ≥ 0.05) content in the liver when compared to the C group. Administration of the CR and IN diets increased selenium (Se) and sodium concentrations, whereas decreased zinc content both in the liver (P < 0.01; P < 0.05 and P < 0.05, respectively) and in the kidney (P < 0.01; P < 0.001 and P < 0.001, respectively) of pigs. Additionally, a higher concentration of lead (P < 0.05) was observed in the kidney of pigs fed the CR diet. In conclusion, both dietary supplements had a potential to significantly improve the Se status and oxidoreductive homeostasis in growing pigs.
Collapse
Affiliation(s)
- A Lepczyński
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland.
| | - A Herosimczyk
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - M Barszcz
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - M Ożgo
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - K Michałek
- Department of Physiology, Cytobiology and Proteomics, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - M Grabowska
- Department of Histology and Developmental Biology, Pomeranian Medical University, Żołnierska 48, 71-210 Szczecin, Poland
| | - A Tuśnio
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| | - D Szczerbińska
- Department of Monogastric Sciences, Faculty of Biotechnology and Animal Husbandry, West Pomeranian University of Technology Szczecin, Klemensa Janickiego 29, 71-270 Szczecin, Poland
| | - J Skomiał
- Department of Animal Nutrition, The Kielanowski Institute of Animal Physiology and Nutrition, Polish Academy of Sciences, Instytucka 3, 05-110 Jabłonna, Poland
| |
Collapse
|
29
|
Bhattacharya S. The Role of Probiotics in the Amelioration of Cadmium Toxicity. Biol Trace Elem Res 2020; 197:440-444. [PMID: 31933279 DOI: 10.1007/s12011-020-02025-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Accepted: 01/01/2020] [Indexed: 10/25/2022]
Abstract
Cadmium is extremely toxic heavy metal, and there is no specific, safe, and efficacious therapeutic management of cadmium toxicity. Scientific literature reveals several probiotic microorganisms which alleviate experimentally induced cadmium toxicity in animals. The present review attempts to collate the experimental studies on probiotics and probiotic-derived natural products with cadmium toxicity ameliorative effects. Literature survey revealed that seven (7) types of probiotic microorganisms exhibited significant protection from cadmium toxicity in experimental pre-clinical studies. Clinical study with significant outcome was not found in literature. From the outcomes of the pre-clinical studies, it appears that probiotics have the prospect for alleviation and treatment of cadmium toxicity.
Collapse
Affiliation(s)
- Sanjib Bhattacharya
- West Bengal Medical Services Corporation Ltd., GN 29, Sector V, Salt Lake City, Kolkata, West Bengal, 700091, India.
| |
Collapse
|
30
|
Liu T, Liang X, Lei C, Huang Q, Song W, Fang R, Li C, Li X, Mo H, Sun N, Lv H, Liu Z. High-Fat Diet Affects Heavy Metal Accumulation and Toxicity to Mice Liver and Kidney Probably via Gut Microbiota. Front Microbiol 2020; 11:1604. [PMID: 32849333 PMCID: PMC7399142 DOI: 10.3389/fmicb.2020.01604] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2019] [Accepted: 06/18/2020] [Indexed: 11/13/2022] Open
Abstract
Previous studies proved that heavy metals could increase the risk of disease by acting on the gut microbiota. Meanwhile, gut microbiota played important roles in detoxifying heavy metals. However, the response of gut microbiota to heavy metals and which microbes dominated this detoxification processes are still unclear. This study investigated the difference of high-fat-diet (HFD) and normal-diet (ND) gut microbiota and their response to and detoxification effects on arsenic (As), cadmium (Cd), and lead (Pb) exposure. Results showed that gut microbiota of ND and HFD was significantly different and responded to As, Pb, and Cd exposure differently, too. When exposed to 100 ppm As, Cd, or Pb, HFD-fed mice accumulated more heavy metals in the liver and kidney along with more severe functional damage than ND-fed mice, indicated by a more dramatic increase of alanine aminotransferase (ALT) and aspartate aminotransferase (AST) activities and urinary total protein (TPU), urinary uric acid (UUA), and urinary creatinine (Ucrea) content. Among ND gut microbiota, relative abundance of Bacteroides, Lactobacillus, Butyricimonas, and Dorea was significantly increased by arsenic (As) exposure; relative abundance of Faecoccus and Lactobacillus was significantly increased by Cd exposure; relative abundance of Desulfovibrio, Plasmodium, and Roseburia were significantly increased by Pb exposure. However, among HFD gut microbiota, those microbes were not significantly changed. Bivariate association analysis found weak positive correlations between content of fecal excreted heavy metals and richness of total fecal microbiota as well as abundance of some of the heavy metal-enriched microbes. Our study concluded that HFD increased disease risk of heavy metal exposure probably via its gut microbiota which excreted less heavy metal through feces.
Collapse
Affiliation(s)
- Ting Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xue Liang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Qinhong Huang
- The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Weiqi Song
- Department of Public Health, Guangzhou Medical University, Guangzhou, China
| | - Rong Fang
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hui Mo
- The Public Laboratory, South China Botanical Garden, Chinese Academy of Sciences, Guangzhou, China
| | - Ning Sun
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Research Institute of Chinese Medicine Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - Haoran Lv
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Zhihua Liu
- Guangzhou Key Laboratory of Enhanced Recovery after Abdominal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
31
|
Effect of Lyophilized, Encapsulated Lactobacillus fermentum and Lactulose Feeding on Growth Performance, Heavy Metals, and Trace Element Residues in Rainbow Trout (Oncorhynchus mykiss) Tissues. Probiotics Antimicrob Proteins 2020; 11:1257-1263. [PMID: 30456749 DOI: 10.1007/s12602-018-9487-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Heavy metals naturally occur in the environment and are causing great concern all around the world. Accumulation of heavy metals in fish tissues can lead to serious adverse effects in humans when consumed in the amounts exceeding the safe consumption levels. In this study, Lactobacillus fermentum 1744 (ATCC 14931) and lactulose were used in the fish diet in order to investigate their effects on growth performance, intestinal villous morphology, and heavy metals residues. Fishes were randomly allocated into three replicates of five different treatments. The control group received the basal diet, while the experimental groups were fed on the basal diet supplemented with encapsulated and lyophillized probiotic, lactulose (prebiotic) and L. fermentum, and lactulose as synbiotic. All the groups were fed three times daily for a period of 56 days. At the end of growth period, 10 fish per replicate were randomly collected in order to take the samples of the fillet, gills, and liver. Results showed that the encapsulated L. fermentum plus lactulose improve growth performance and exclude absorption and accumulation of heavy metals in rainbow trout liver and gills. The villous height were increased in all the samples except the group 2 fed on the lactulose (p < 0.05).
Collapse
|
32
|
Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: A microbiota-centered view. World J Gastroenterol 2020; 26:1901-1911. [PMID: 32390701 PMCID: PMC7201149 DOI: 10.3748/wjg.v26.i16.1901] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 03/26/2020] [Accepted: 04/04/2020] [Indexed: 02/06/2023] Open
Abstract
Non-alcoholic fatty liver disease (NAFLD) is a highly prevalent metabolic disorder with steadily increasing incidence rates worldwide, especially in the West. There are no drugs available at present to treat NAFLD, and the primary therapeutic options include weight loss and the combination of healthy diet and exercise. Therefore, novel interventions are required that can target the underlying risk factors. Gut microbiota is an "invisible organ" of the human body and vital for normal metabolism and immuno-modulation. The number and diversity of microbes differ across the gastrointestinal tract from the mouth to the anus, and is most abundant in the intestine. Since dysregulated gut microbiota is an underlying pathological factor of NAFLD, it is a viable therapeutic target that can be modulated by antibiotics, probiotics, prebiotics, synbiotics, fecal microbiota transplantation, and microbial metabolites. In this review, we summarize the most recent advances in gut microbiota-targeted therapies against NAFLD in clinical and experimental studies, and critically evaluate novel targets and strategies for treating NAFLD.
Collapse
Affiliation(s)
- Hui-Ting Chen
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hong-Li Huang
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Qiang Li
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Hao-Ming Xu
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| | - Yong-Jian Zhou
- Department of Gastroenterology and Hepatology, Guangzhou First People's Hospital, School of Medicine, South China University of Technology, Guangzhou 510180, Guangdong Province, China
- Department of Gastroenterology and Hepatology, Guangzhou Digestive Disease Center, Guangzhou First People’s Hospital, Guangzhou Medical University, Guangzhou 510180, Guangdong Province, China
| |
Collapse
|
33
|
Zhou Y, Zeng Z, Xu Y, Ying J, Wang B, Majeed M, Majeed S, Pande A, Li W. Application of Bacillus coagulans in Animal Husbandry and Its Underlying Mechanisms. Animals (Basel) 2020; 10:E454. [PMID: 32182789 PMCID: PMC7143728 DOI: 10.3390/ani10030454] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2020] [Revised: 02/24/2020] [Accepted: 03/02/2020] [Indexed: 12/23/2022] Open
Abstract
In recent decades, probiotics have attracted widespread attention and their application in healthcare and animal husbandry has been promising. Among many probiotics, Bacillus coagulans (B. coagulans) has become a key player in the field of probiotics in recent years. It has been demonstrated to be involved in regulating the balance of the intestinal microbiota, promoting metabolism and utilization of nutrients, improving immunity, and more importantly, it also has good industrial properties such as high temperature resistance, acid resistance, bile resistance, and the like. This review highlights the effects of B. coagulans in animal husbandry and its underlying mechanisms.
Collapse
Affiliation(s)
- Yuanhao Zhou
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Zihan Zeng
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Yibin Xu
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Jiafu Ying
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Baikui Wang
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| | - Muhammed Majeed
- Sami Labs Limited, Bangalore, Karnataka 560058, India;
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
- Sabinsa Corporation, Payson, UT 84651, USA
| | - Shaheen Majeed
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
- Sabinsa Corporation, Payson, UT 84651, USA
| | - Anurag Pande
- Sabinsa Corporation, East Windsor, NJ 08520, USA; (S.M.); (A.P.)
| | - Weifen Li
- Key Laboratory of Molecular Animal Nutrition of the Ministry of Education, Institute of Feed Science, College of Animal Sciences, Zhejiang University, Hangzhou 310058, China; (Y.Z.); (Z.Z.); (Y.X.); (J.Y.); (B.W.)
| |
Collapse
|
34
|
ALBASHER GADAH, ALBRAHIM TARFA, ALJARBA NADA, ALHARBI RAEDAHI, ALSULTAN NOUF, ALSAIARI JAWAHER, RIZWANA HUMAIRA. Involvement of redox status and the nuclear-related factor 2 in protecting against cadmium-induced renal injury with Sana Makki (Cassia senna L.) pre-treatment in male rats. AN ACAD BRAS CIENC 2020; 92:e20191237. [PMID: 32638872 DOI: 10.1590/0001-3765202020191237] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 12/01/2019] [Indexed: 12/19/2022] Open
Affiliation(s)
| | - TARFA ALBRAHIM
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | - NADA ALJARBA
- Princess Nourah bint Abdulrahman University, Saudi Arabia
| | | | | | | | | |
Collapse
|
35
|
Zhai Q, Wang J, Cen S, Zhao J, Zhang H, Tian F, Chen W. Modulation of the gut microbiota by a galactooligosaccharide protects against heavy metal lead accumulation in mice. Food Funct 2019; 10:3768-3781. [PMID: 31180403 DOI: 10.1039/c9fo00587k] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The heavy metal lead (Pb) is a toxic contaminant that induces a range of adverse effects in humans. The present study demonstrated for the first time that dietary supplementation with a galactooligosaccharide (GOS) promotes fecal Pb excretion and reduces Pb accumulation in the blood and tissues of mice. The effects against Pb exposure were also observed in mice that received the fecal microbiota from donors treated with GOS, but were diminished in gut microbiota-depleted mice that received antibiotic pre-treatment, indicating that the protection by GOS administration was dependent on the modulation of the gut microbiota. We also provide evidence that the protective mechanism of GOS supplementation was related to the enhanced abundance of intestinal bacteria with good Pb-binding ability, recovery of the gut barrier function, modulation of bile acid metabolism, and improved essential metal utilization. These results indicate that GOS can be considered a potentially protective prebiotic against Pb toxicity.
Collapse
Affiliation(s)
- Qixiao Zhai
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu 214122, China.
| | | | | | | | | | | | | |
Collapse
|
36
|
Kwon EK, Kang GD, Kim WK, Han MJ, Kim DH. Lactobacillus plantarum LC27 and Bifidobacterium longum LC67 simultaneously alleviate ethanol-induced gastritis and hepatic injury in mice. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.09.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
|
37
|
The Effects of Synbiotic Supplementation on Carotid Intima-Media Thickness, Biomarkers of Inflammation, and Oxidative Stress in People with Overweight, Diabetes, and Coronary Heart Disease: a Randomized, Double-Blind, Placebo-Controlled Trial. Probiotics Antimicrob Proteins 2017; 11:133-142. [DOI: 10.1007/s12602-017-9343-1] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|