1
|
Leonard M, Dickerson B, Estes L, Gonzalez DE, Jenkins V, Johnson S, Xing D, Yoo C, Ko J, Purpura M, Jäger R, Faries M, Kephart W, Sowinski R, Rasmussen CJ, Kreider RB. Acute and Repeated Ashwagandha Supplementation Improves Markers of Cognitive Function and Mood. Nutrients 2024; 16:1813. [PMID: 38931168 PMCID: PMC11207027 DOI: 10.3390/nu16121813] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/03/2024] [Accepted: 06/06/2024] [Indexed: 06/28/2024] Open
Abstract
BACKGROUND Ashwagandha has been reported to reduce stress and attenuate cognitive decline associated with inflammation and neurodegeneration in clinical populations. However, the effects as a potential nootropic nutrient in younger populations are unclear. This study examined the effects of liposomal ashwagandha supplementation on cognitive function, mood, and markers of health and safety in healthy young men and women. METHODS 59 men and women (22.7 ± 7 yrs., 74.9 ± 16 kg, 26.2 ± 5 BMI) fasted for 12 h, donated a fasting blood sample, and were administered the COMPASS cognitive function test battery (Word Recall, Word recognition, Choice Reaction Time Task, Picture Recognition, Digit Vigilance Task, Corsi Block test, Stroop test) and profile of mood states (POMS). In a randomized and double-blind manner, participants were administered 225 mg of a placebo (Gum Arabic) or ashwagandha (Withania somnifera) root and leaf extract coated with a liposomal covering. After 60-min, participants repeated cognitive assessments. Participants continued supplementation (225 mg/d) for 30 days and then returned to the lab to repeat the experiment. Data were analyzed using a general linear model (GLM) univariate analysis with repeated measures and pairwise comparisons of mean changes from baseline with 95% confidence intervals (CI). RESULTS Ashwagandha supplementation improved acute and/or 30-day measures of Word Recall (correct and recalled attempts), Choice Reaction Time (targets identified), Picture Recognition ("yes" correct responses, correct and overall reaction time), Digit Vigilance (correct reaction time), Stroop Color-Word (congruent words identified, reaction time), and POMS (tension and fatigue) from baseline more consistently with several differences observed between groups. CONCLUSION Results support contentions that ashwagandha supplementation (225 mg) may improve some measures of memory, attention, vigilance, attention, and executive function while decreasing perceptions of tension and fatigue in younger healthy individuals. Retrospectively registered clinical trial ISRCTN58680760.
Collapse
Affiliation(s)
- Megan Leonard
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Broderick Dickerson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Landry Estes
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Drew E. Gonzalez
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Victoria Jenkins
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Sarah Johnson
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Dante Xing
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Choongsung Yoo
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Joungbo Ko
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Martin Purpura
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Ralf Jäger
- Increnovo LLC, Whitefish Bay, WI 53217, USA; (M.P.); (R.J.)
| | - Mark Faries
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
- Texas A&M AgriLife Extension, Texas A&M University, College Station, TX 77843, USA
| | - Wesley Kephart
- Department of Kinesiology, University of Wisconsin—Whitewater, Whitewater, WI 53190, USA;
| | - Ryan Sowinski
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Christopher J. Rasmussen
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| | - Richard B. Kreider
- Exercise & Sport Nutrition Lab, Department of Kinesiology and Sports Management, Texas A&M University, College Station, TX 77843, USA; (M.L.); (B.D.); (L.E.); (D.E.G.); (V.J.); (S.J.); (D.X.); (C.Y.); (J.K.); (M.F.); (R.S.); (C.J.R.)
| |
Collapse
|
2
|
Abomosallam M, Hendam BM, Abdallah AA, Refaat R, El-Hak HNG. Neuroprotective effect of Withania somnifera leaves extract nanoemulsion against penconazole-induced neurotoxicity in albino rats via modulating TGF-β1/Smad2 signaling pathway. Inflammopharmacology 2024; 32:1903-1928. [PMID: 38630361 PMCID: PMC11136823 DOI: 10.1007/s10787-024-01461-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 03/12/2024] [Indexed: 05/30/2024]
Abstract
Penconazole (PEN) is a systemic triazole fungicide used to control various fungal diseases on grapes, stone fruits, cucurbits, and strawberries. Still, it leaves residues on treated crops after collection with many hazardous effects on population including neurotoxicity. Withania somnifera leaves extract (WSLE) is known for its memory and brain function enhancing ability. To evoke such action efficiently, WSLE bioactive metabolites are needed to cross the blood-brain barrier, that could limit the availability of such compounds to be localized within the brain. Therefore, in the present study, the association between PEN exposure and neurotoxicity was evaluated, and formulated WSLE nanoemulsion was investigated for improving the permeability of the plant extract across the blood-brain barrier. The rats were divided into five groups (n = 6). The control group was administered distilled water, group II was treated with W. somnifera leaves extract nanoemulsion (WSLE NE), group III received PEN, group IV received PEN and WSLE, and group V received PEN and WSLE NE. All rats were gavaged daily for 6 weeks. Characterization of compounds in WSLE using LC-MS/MS analysis was estimated. Neurobehavioral disorders were evaluated in all groups. Oxidative stress biomarkers, antioxidant enzyme activities, and inflammatory cytokines were measured in brain tissue. Furthermore, the gene expression patterns of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax were measured. Histopathological changes and immunohistochemical expression in the peripheral sciatic nerve and cerebral cortex were evaluated. A total of 91 compounds of different chemo-types were detected and identified in WSLE in both ionization modes. Our data showed behavioral impairment in the PEN-treated group, with significant elevation of oxidative stress biomarkers, proinflammatory cytokines, neuronal damage, and apoptosis. In contrast, the PEN-treated group with WSLE NE showed marked improvement in behavioral performance and histopathological alteration with a significant increase in antioxidant enzyme activity and anti-inflammatory cytokines compared to the group administered WSLE alone. The PEN-treated group with WSLE NE in turn significantly downregulated the expression levels of GFAP, APP, vimentin, TGF-β1, Smad2 and Bax in brain tissue. In conclusion, WSLE NE markedly enhanced the permeability of plant extract constituents through the blood brain barrier to boost its neuroprotective effect against PEN-induced neurotoxicity.
Collapse
Affiliation(s)
- Mohamed Abomosallam
- Forensic Medicine and Toxicology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Basma M Hendam
- Department of Husbandry and Development of Animal Wealth, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Amr A Abdallah
- Central Agricultural Pesticides Laboratory, Agricultural Research Center, Giza, Egypt
| | - Rasha Refaat
- Phytochemistry and Plant Systematics Department, National Research Centre, Dokki, Cairo, Egypt
| | - Heba Nageh Gad El-Hak
- Zoology Department, Faculty of Science, Suez Canal University, 10, Ismailia, 41522, Egypt.
| |
Collapse
|
3
|
Basudkar V, Gujrati G, Ajgaonkar S, Gandhi M, Mehta D, Nair S. Emerging Vistas for the Nutraceutical Withania somnifera in Inflammaging. Pharmaceuticals (Basel) 2024; 17:597. [PMID: 38794167 PMCID: PMC11123800 DOI: 10.3390/ph17050597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 04/26/2024] [Accepted: 05/03/2024] [Indexed: 05/26/2024] Open
Abstract
Inflammaging, a coexistence of inflammation and aging, is a persistent, systemic, low-grade inflammation seen in the geriatric population. Various natural compounds have been greatly explored for their potential role in preventing and treating inflammaging. Withania somnifera has been used for thousands of years in traditional medicine as a nutraceutical for its numerous health benefits including regenerative and adaptogenic effects. Recent preclinical and clinical studies on the role of Withania somnifera and its active compounds in treating aging, inflammation, and oxidative stress have shown promise for its use in healthy aging. We discuss the chemistry of Withania somnifera, the etiology of inflammaging and the protective role(s) of Withania somnifera in inflammaging in key organ systems including brain, lung, kidney, and liver as well as the mechanistic underpinning of these effects. Furthermore, we elucidate the beneficial effects of Withania somnifera in oxidative stress/DNA damage, immunomodulation, COVID-19, and the microbiome. We also delineate a putative protein-protein interaction network of key biomarkers modulated by Withania somnifera in inflammaging. In addition, we review the safety/potential toxicity of Withania somnifera as well as global clinical trials on Withania somnifera. Taken together, this is a synthetic review on the beneficial effects of Withania somnifera in inflammaging and highlights the potential of Withania somnifera in improving the health-related quality of life (HRQoL) in the aging population worldwide.
Collapse
Affiliation(s)
- Vivek Basudkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Gunjan Gujrati
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Saiprasad Ajgaonkar
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Manav Gandhi
- College of Medicine, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Dilip Mehta
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| | - Sujit Nair
- PhytoVeda Pvt. Ltd., Mumbai 400 022, India
- Viridis Biopharma Pvt. Ltd., Mumbai 400 022, India
| |
Collapse
|
4
|
Wróbel-Biedrawa D, Podolak I. Anti-Neuroinflammatory Effects of Adaptogens: A Mini-Review. Molecules 2024; 29:866. [PMID: 38398618 PMCID: PMC10891670 DOI: 10.3390/molecules29040866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 02/07/2024] [Accepted: 02/12/2024] [Indexed: 02/25/2024] Open
Abstract
Introduction: Adaptogens are a group of plants that exhibit complex, nonspecific effects on the human body, increasing its ability to adapt, develop resilience, and survive in stress conditions. They are found in many traditional medicinal systems and play a key role in restoring the body's strength and stamina. Research in recent years has attempted to elucidate the mechanisms behind their pharmacological effects, but it appears that these effects are difficult to define precisely and involve multiple molecular pathways. Neuroinflammation: In recent years, chronic inflammation has been recognized as one of the common features of many central nervous system disorders (dementia and other neurodegenerative diseases, depression, anxiety, ischemic stroke, and infections). Because of the specific nature of the brain, this process is called neuroinflammation, and its suppression can result in an improvement of patients' condition and may promote their recovery. Adaptogens as anti-inflammatory agents: As has been discovered, adaptogens display anti-inflammatory effects, which suggests that their application may be broader than previously thought. They regulate gene expression of anti- and proinflammatory cytokines (prostaglandins, leukotriens) and can modulate signaling pathways (e.g., NF-κB). Aim: This mini-review aims to present the anti-neuroinflammatory potential of the most important plants classified as adaptogens: Schisandra chinensis, Eleutherococcus senticosus, Rhodiola rosea and Withania somnifera.
Collapse
Affiliation(s)
| | - Irma Podolak
- Department of Pharmacognosy, Jagiellonian University Collegium Medicum, Medyczna 9, 30-688 Cracow, Poland;
| |
Collapse
|
5
|
Mohammed MA. Fighting cytokine storm and immunomodulatory deficiency: By using natural products therapy up to now. Front Pharmacol 2023; 14:1111329. [PMID: 37124230 PMCID: PMC10134036 DOI: 10.3389/fphar.2023.1111329] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 03/14/2023] [Indexed: 05/02/2023] Open
Abstract
A novel coronavirus strain (COVID-19) caused severe illness and mortality worldwide from 31 December 2019 to 21 March 2023. As of this writing, 761,071,826 million cases have been diagnosed worldwide, with 6,879,677 million deaths accorded by WHO organization and has spread to 228 countries. The number of deaths is closely connected to the growth of innate immune cells in the lungs, mainly macrophages, which generate inflammatory cytokines (especially IL-6 and IL-1β) that induce "cytokine storm syndrome" (CSS), multi-organ failure, and death. We focus on promising natural products and their biologically active chemical constituents as potential phytopharmaceuticals that target virus-induced pro-inflammatory cytokines. Successful therapy for this condition is currently rare, and the introduction of an effective vaccine might take months. Blocking viral entrance and replication and regulating humoral and cellular immunity in the uninfected population are the most often employed treatment approaches for viral infections. Unfortunately, no presently FDA-approved medicine can prevent or reduce SARS-CoV-2 access and reproduction. Until now, the most important element in disease severity has been the host's immune response activation or suppression. Several medicines have been adapted for COVID-19 patients, including arbidol, favipiravir, ribavirin, lopinavir, ritonavir, hydroxychloroquine, chloroquine, dexamethasone, and anti-inflammatory pharmaceutical drugs, such as tocilizumab, glucocorticoids, anakinra (IL-1β cytokine inhibition), and siltuximab (IL-6 cytokine inhibition). However, these synthetic medications and therapies have several side effects, including heart failure, permanent retinal damage in the case of hydroxyl-chloroquine, and liver destruction in the case of remdesivir. This review summarizes four strategies for fighting cytokine storms and immunomodulatory deficiency induced by COVID-19 using natural product therapy as a potential therapeutic measure to control cytokine storms.
Collapse
Affiliation(s)
- Mona A. Mohammed
- Medicinal and Aromatic Plants Research Department, Pharmaceutical and Drug Industries Research Institute, National Research Centre, Giza, Egypt
| |
Collapse
|
6
|
Gupta VS, Kale PP. Combinatory Approaches Targeting Cognitive Impairments and Memory Enhancement: A Review. Curr Drug Targets 2023; 24:55-70. [PMID: 36173073 DOI: 10.2174/1389450123666220928152743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 06/21/2022] [Accepted: 09/01/2022] [Indexed: 11/22/2022]
Abstract
The objective of this paper is to look at how natural medicines can improve cognition and memory when used with sildenafil, a popular erectile dysfunction medicine that also has nootropic properties. Newer treatment strategies to treat the early stages of these diseases need to be developed. Multiple factors lead to complex pathophysiological conditions, which are responsible for various long-term complications. In this review, a combination of treatments targeting these pathologies is discussed. These combinations may help manage early and later phases of cognitive impairments. The purpose of this article is to discuss a link between these pathologies and a combinational approach with the objective of considering newer therapeutic strategies in the treatment of cognitive impairments. The natural drugs and their ingredients play a major role in the management of disease progression. Additionally, their combination with sildenafil allows for more efficacy and better response. Studies showing the effectiveness of natural drugs and sildenafil are mentioned, and how these combinations could be beneficial for the treatment of cognitive impairments and amnesia are summarised. Furthermore, preclinical and clinical trials are required to explore the medicinal potential of these drug combinations.
Collapse
Affiliation(s)
- Varun Santosh Gupta
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| | - Pravin Popatrao Kale
- Department of Pharmacology, SVKM's Dr. Bhanuben Nanavati College of Pharmacy, V L M Road, Vile Parle (w), Mumbai 400056, India
| |
Collapse
|
7
|
Pahal S, Gupta A, Choudhary P, Chaudhary A, Singh S. Network pharmacological evaluation of Withania somnifera bioactive phytochemicals for identifying novel potential inhibitors against neurodegenerative disorder. J Biomol Struct Dyn 2022; 40:10887-10898. [PMID: 34278961 DOI: 10.1080/07391102.2021.1951355] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Neurodegenerative disorders are illnesses that are responsible for neuronal cell death and resulting in lifelong cognitive problems. Due to their unclear mechanism, there are no effective drugs available for the treatment. For a long time, herbal drugs have been used as a role model in the field of the drug discovery process. Withania somnifera (Ashwagandha) in the Indian medicinal system (Ayurveda) is used for several neuronal disorders like insomnia and memory loss for decades. This study aims to identify active components of W. somnifera (WS) as potential inhibitors for the treatment of neurodegenerative diseases (ND). To fulfill this objective, Network pharmacology approach, gene ontology, pharmacokinetics analysis, molecular docking, and molecular dynamics simulation (MDS) studies were performed. A total of 77 active components in WS, 175 predicted neurodegenerative targets of WS, and 8085 ND-related targets were identified from different databases. The network analysis showed that the top ten targets APP, EGFR, MAPK1, ESR1, HSPA4, PRKCD, MAPK3, ABL1, JUN, and GSK3B were found as significant target related to ND. On the basis of gene ontology and topology analysis results, APP was found as a significant target related to Alzheimer's disease pathways. Molecular docking results found that Anahygrine, Cuscohygrine, Isopelletierine, and Nicotine showed the best binding affinities -5.55, -4.73, -4.04, and -4.11 Kcal/mol. Further, MDS results suggested that Isopelletierine and Nicotine could be used as potential inhibitors against APP protein and could be useful for the treatment of Alzheimer's disease.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Sonu Pahal
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Ayushi Gupta
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Princy Choudhary
- Department of Applied Sciences, Indian Institute of Information Technology Allahabad, Prayagraj, India
| | - Amit Chaudhary
- Amity Institute of Biotechnology, Amity University, Noida, India
| | | |
Collapse
|
8
|
Kumar P, Sharma R, Garg N. Withania somnifera - a magic plant targeting multiple pathways in cancer related inflammation. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2022; 101:154137. [PMID: 35533610 DOI: 10.1016/j.phymed.2022.154137] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Revised: 03/31/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND Deregulated inflammatory responses are known to play a pivotal role in cancer initiation and progression. Tumor microenvironment is associated with the presence of a diverse array of inflammatory reactions, which further help tumor growth, metastasis and drug resistance. Withania somnifera is known to curb proliferation of cancer cells and lower inflammatory responses. PURPOSE In order to minimize the inflammation, cancer treatments often include immunomodulatory drugs. However, given the side effects of both of the cytotoxic cancer drugs and synthetic immunomodulatory agents, there is a need to develop novel anti-inflammatory agents for improved cancer therapy. A number of reports indicate that bioactive phytochemicals derived from W. somnifera exhibit anti-inflammatory capabilities in cancer. A deeper look into the underlying molecular mechanisms implicated in W. somnifera mediated anti inflammation is lacking, which is essential to fully understand the potential of this magical plant in cancer. Therefore, in the present review we are summarizing various reports, which describe mechanistic understanding of W. somnifera in cancer related inflammation. STUDY DESIGN AND METHODOLOGY In order to gather information on the molecular pathways affected by W. somnifera in cancer related inflammation, 'PubMed' and 'Science Direct' databases were searched using keywords Withania, cancer inflammation, and Withaferin A. Selected literature was analyzed to cover the role of inflammation in cancer, usage and side effects of anti-inflammatory drugs, W. somnifera as an immunomodulatory agent in cancer, molecular pathways modulated by W. somnifera in various preclinical models, and clinical trials using W. somnifera as an anti-inflammatory agent. RESULTS Upon literature survey we found that both W. somnifera extracts and Withaferin-A, exhibit anti inflammatory activities in various preclinical cancer models. W. somnifera modulates a number of signaling pathways such as NF-kB, JAK-STAT and AP1 to reduce cancer related inflammation. Anti inflammatory properties of W. somnifera might be effective in the treatment of drug resistance in cancers. Based on its promising effects against cancer associated inflammation in preclinical studies, W. somnifera derived products are being tested in clinical trials. CONCLUSION Several preclinical studies demonstrated anti-inflammatory potential of W. somnifera in a variety of cancers. While a few clinical trials are investigating the role of W. somnifera in various diseases, focused studies on its role in cancer related inflammation are lacking. Additionally, its anti-inflammatory effects offer targeting of senescence associated secretory phenotype (SASP), which is speculated to play a critical role in chemoresistance. Apart from targeting cancer cell proliferation, anti-inflammatory effects of Withania provide double advantage in cancer management. Therefore, clinical trials to target cancer related inflammation using W. somnifera as a drug, should be performed to validate its advantages in cancer therapy.
Collapse
Affiliation(s)
- Praveen Kumar
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India; Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Rohit Sharma
- Department of Rasa Shastra & Bhaishajya Kalpana, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India
| | - Neha Garg
- Department of Medicinal Chemistry, Faculty of Ayurveda, Institute of Medical Sciences, Banaras Hindu University, Varanasi, Uttar Pradesh 221005, India.
| |
Collapse
|
9
|
Srivastava V, Mathur D, Rout S, Mishra BK, Pannu V, Anand A, Anand A. Ayurvedic Herbal Therapies: A Review of Treatment and Management of Dementia. Curr Alzheimer Res 2022; 19:568-584. [PMID: 35929620 DOI: 10.2174/1567205019666220805100008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 01/27/2023]
Abstract
Dementia has been characterized by atypical neurological syndromes and several cognitive deficits, such as extended memory loss, strange behavior, unusual thinking, impaired judgment, impotence, and difficulty with daily living activities. Dementia is not a disease, but it is caused by several neurodegenerative diseases, such as Alzheimer's, Parkinson's, and Lewy's bodies. Several drugs and remedies are indicated for alleviating unusual cognitive decline, but no effective pharmacological treatment regimens are available without side effects. Herbal drugs or traditional medicines like Ayurveda have been known for facilitating and corroborating the balance between mind, brain, body, and environment. Ayurvedic therapy comprises 600 herbal formulas, 250 single plant remedies, and natural and holistic health-giving treatments that relieve dementia in patients and increase vitality. Ayurvedic Rasayana herbs [rejuvenating elements] strengthen the brain cells, enhance memory, and decrease stress. The current medicine scenario in the treatment of dementia has prompted the shift in exploring the efficacy of ayurvedic medicine, its safety, and its efficiency. This review presents the literature on several herbal treatments for improving dementia symptomatology and patients' quality of life.
Collapse
Affiliation(s)
- Vinod Srivastava
- College of Health and Behavioral Sciences, Fort Hays State University, Hays, Kansas 67601, USA
| | - Deepali Mathur
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | - Soumyashree Rout
- Department of Neurology, Apollo Hospitals, Bhubaneswar, Odisha, India
| | | | - Viraaj Pannu
- Department of Internal Medicine, Jersey Shore University Medical Center, Neptune, New Jersey, USA
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, Postgraduate Institute of Medical Education and Research (PGIMER), Chandigarh, India
| | - Akshay Anand
- Neuroscience Research Lab, Department of Neurology, PGIMER, Chandigarh, India
| |
Collapse
|
10
|
Liu Y, Li J, Wang X, Liu Y, Zhang C, Chabalala H, Tang M. Ginsenoside Rb1 attenuates lipopolysaccharide-induced chronic neuroinflammation in mice by tuning glial cell polarization. JOURNAL OF TRADITIONAL CHINESE MEDICAL SCIENCES 2022. [DOI: 10.1016/j.jtcms.2022.06.015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
|
11
|
Olaniran AF, Taiwo AE, Bamidele OP, Iranloye YM, Malomo AA, Olaniran OD. The role of nutraceutical fruit drink on neurodegenerative diseases: a review. Int J Food Sci Technol 2022. [DOI: 10.1111/ijfs.15106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Affiliation(s)
- Abiola Folakemi Olaniran
- Landmark University SDG 12 (Responsible Consumption and Production Group) Department of Food Science and Nutrition College of Agriculture Landmark University P.M.B. 1001 Omu‐Aran Kwara State Nigeria
| | - Abiola Ezekiel Taiwo
- Department of Chemical Engineering College of Engineering Landmark University PMB 1001 Omu Aran Nigeria
| | | | - Yetunde Mary Iranloye
- Landmark University SDG 12 (Responsible Consumption and Production Group) Department of Food Science and Nutrition College of Agriculture Landmark University P.M.B. 1001 Omu‐Aran Kwara State Nigeria
| | - Adekunbi Adetola Malomo
- Department of Food Science and Technology Faculty of Technology Obafemi Awolowo University Ile‐Ife Nigeria
| | | |
Collapse
|
12
|
Afewerky HK, Li H, Zhang T, Li X, Mahaman YAR, Duan L, Qin P, Zheng J, Pei L, Lu Y. Sodium-calcium exchanger isoform-3 targeted Withania somnifera (L.) Dunal therapeutic intervention ameliorates cognition in the 5xFAD mouse model of Alzheimer's disease. Sci Rep 2022; 12:1537. [PMID: 35087161 PMCID: PMC8795410 DOI: 10.1038/s41598-022-05568-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Accepted: 12/28/2021] [Indexed: 11/16/2022] Open
Abstract
The third isoform of the Na+-Ca2+ exchanger (NCX3) is crucial for a physiological fine-tuning of the Ca2+ fluxes in excitable tissues. In this view, the NCX3 accounts for the aberrant Ca2+ influx seen during neuronal excitotoxicity, such as in Alzheimer's disease (AD). However, little is known about NCX3 regulation and functional properties. Withania somnifera (L.) Dunal (W. somnifera), a traditional indigenous plant widely recognized for having numerous medicinal values, was undertaken to determine its potential therapeutic benefit against aggregated Aβ1-42-induced NCX3 dysregulation and the thereof cognition impairment in 5xFAD mice. The undertaken sourced dried roots of authenticated W. somnifera physicochemical compositional tests satisfied standards of pharmacognostic quality, and further phytochemical analysis of the roots methanol extract revealed the roots constitute several antioxidants. Following an intra-gastric gavage administration of synthesized W. somnifera roots methanolic extract from postnatal day 30 (P30) to P75, in vivo cognitional studies and then neurochemical examinations of the NCX3 expression level, Aβ plaque deposition, and antioxidant activities in the AD-associated brain regions of 4-month-old 5xFAD mice suggests that the oxidative stress normalizing effects of W. somnifera constituents, operating on the NCX3, may have a therapeutic role in the improvement of cognition in AD.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- School of Allied Health Professions, Asmara College of Health Sciences, Asmara, Eritrea.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
| | - Hao Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Tongmei Zhang
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xinyan Li
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yacoubou Abdoul Razak Mahaman
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Limin Duan
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Pengwei Qin
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiequn Zheng
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lei Pei
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China
| | - Youming Lu
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
- The Institute for Brain Research, Collaborative Innovation Center for Brain Science, Huazhong University of Science and Technology, Wuhan, China.
- Department of Physiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
13
|
Paul S, Chakraborty S, Anand U, Dey S, Nandy S, Ghorai M, Saha SC, Patil MT, Kandimalla R, Proćków J, Dey A. Withania somnifera (L.) Dunal (Ashwagandha): A comprehensive review on ethnopharmacology, pharmacotherapeutics, biomedicinal and toxicological aspects. Biomed Pharmacother 2021; 143:112175. [PMID: 34649336 DOI: 10.1016/j.biopha.2021.112175] [Citation(s) in RCA: 63] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 09/03/2021] [Accepted: 09/07/2021] [Indexed: 12/24/2022] Open
Abstract
Withania somnifera (L.) Dunal (Solanaceae) has been used as a traditional Rasayana herb for a long time. Traditional uses of this plant indicate its ameliorative properties against a plethora of human medical conditions, viz. hypertension, stress, diabetes, asthma, cancer etc. This review presents a comprehensive summary of the geographical distribution, traditional use, phytochemistry, and pharmacological activities of W. somnifera and its active constituents. In addition, it presents a detailed account of its presence as an active constituent in many commercial preparations with curative properties and health benefits. Clinical studies and toxicological considerations of its extracts and constituents are also elucidated. Comparative analysis of relevant in-vitro, in-vivo, and clinical investigations indicated potent bioactivity of W. somnifera extracts and phytochemicals as anti-cancer, anti-inflammatory, apoptotic, immunomodulatory, antimicrobial, anti-diabetic, hepatoprotective, hypoglycaemic, hypolipidemic, cardio-protective and spermatogenic agents. W. somnifera was found to be especially active against many neurological and psychological conditions like Parkinson's disease, Alzheimer's disease, Huntington's disease, ischemic stroke, sleep deprivation, amyotrophic lateral sclerosis, attention deficit hyperactivity disorder, bipolar disorder, anxiety, depression, schizophrenia and obsessive-compulsive disorder. The probable mechanism of action that imparts the pharmacological potential has also been explored. However, in-depth studies are needed on the clinical use of W. somnifera against human diseases. Besides, detailed toxicological analysis is also to be performed for its safe and efficacious use in preclinical and clinical studies and as a health-promoting herb.
Collapse
Affiliation(s)
- Subhabrata Paul
- School of Biotechnology, Presidency University (2nd Campus), Kolkata 700156, West Bengal, India
| | - Shreya Chakraborty
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Uttpal Anand
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | - Swarnali Dey
- Department of Botany, University of Calcutta, Kolkata 700019, West Bengal, India
| | - Samapika Nandy
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Mimosa Ghorai
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India
| | - Suchismita Chatterjee Saha
- Department of Zoology, Nabadwip Vidyasagar College (Affiliated to the University of Kalyani), Nabadwip 741302, West Bengal, India
| | - Manoj Tukaram Patil
- Post Graduate Department of Botany, SNJB's KKHA Arts, SMGL Commerce and SPHJ Science College (Affiliated to Savitribai Phule Pune University), Chandwad, Nashik 423101, Maharashtra, India
| | - Ramesh Kandimalla
- CSIR-Indian Institute of Chemical Technology, Uppal Road, Tarnaka, Hyderabad 500007, Telangana, India; Department of Biochemistry, Kakatiya Medical College, Warangal-506007, Telangana, India
| | - Jarosław Proćków
- Department of Plant Biology, Institute of Environmental Biology, Wrocław University of Environmental and Life Sciences, Kożuchowska 5b, 51-631 Wrocław, Poland.
| | - Abhijit Dey
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata 700073, West Bengal, India.
| |
Collapse
|
14
|
Ashwagandha (Withania somnifera) for the treatment and enhancement of mental and physical conditions: A systematic review of human trials. J Herb Med 2021. [DOI: 10.1016/j.hermed.2021.100434] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
|
15
|
Saggam A, Limgaokar K, Borse S, Chavan-Gautam P, Dixit S, Tillu G, Patwardhan B. Withania somnifera (L.) Dunal: Opportunity for Clinical Repurposing in COVID-19 Management. Front Pharmacol 2021; 12:623795. [PMID: 34012390 PMCID: PMC8126694 DOI: 10.3389/fphar.2021.623795] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 03/30/2021] [Indexed: 12/13/2022] Open
Abstract
As the COVID-19 pandemic is progressing, the therapeutic gaps in conventional management have highlighted the need for the integration of traditional knowledge systems with modern medicine. Ayurvedic medicines, especially Ashwagandha (Withania somnifera (L.) Dunal, WS), may be beneficial in the management of COVID-19. WS is a widely prescribed Ayurvedic botanical known as an immunomodulatory, antiviral, anti-inflammatory, and adaptogenic agent. The chemical profile and pharmacological activities of WS have been extensively reported. Several clinical studies have reported its safety for use in humans. This review presents a research synthesis of in silico, in vitro, in vivo, and clinical studies on Withania somnifera (L.) Dunal (WS) and discusses its potential for prophylaxis and management of COVID-19. We have collated the data from studies on WS that focused on viral infections (HIV, HSV, H1N1 influenza, etc.) and noncommunicable diseases (hypertension, diabetes, cancer, etc.). The experimental literature indicates that WS has the potential for 1) maintaining immune homeostasis, 2) regulating inflammation, 3) suppressing pro-inflammatory cytokines, 4) organ protection (nervous system, heart, lung, liver, and kidney), and 5) anti-stress, antihypertensive, and antidiabetic activities. Using these trends, the review presents a triangulation of Ayurveda wisdom, pharmacological properties, and COVID-19 pathophysiology ranging from viral entry to end-stage acute respiratory distress syndrome (ARDS). The review proposes WS as a potential therapeutic adjuvant for various stages of COVID-19 management. WS may also have beneficial effects on comorbidities associated with the COVID-19. However, systematic studies are needed to realize the potential of WS for improving clinical outcome of patients with COVID-19.
Collapse
Affiliation(s)
- Akash Saggam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Kirti Limgaokar
- Division of Biochemistry, Department of Chemistry, Fergusson College (Autonomous), Pune, India
| | - Swapnil Borse
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Preeti Chavan-Gautam
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | | | - Girish Tillu
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| | - Bhushan Patwardhan
- AYUSH Center of Excellence, Center for Complementary and Integrative Health, Interdisciplinary School of Health Sciences, Savitribai Phule Pune University, Pune, India
| |
Collapse
|
16
|
Auxtero MD, Chalante S, Abade MR, Jorge R, Fernandes AI. Potential Herb-Drug Interactions in the Management of Age-Related Cognitive Dysfunction. Pharmaceutics 2021; 13:124. [PMID: 33478035 PMCID: PMC7835864 DOI: 10.3390/pharmaceutics13010124] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2020] [Revised: 01/14/2021] [Accepted: 01/15/2021] [Indexed: 12/25/2022] Open
Abstract
Late-life mild cognitive impairment and dementia represent a significant burden on healthcare systems and a unique challenge to medicine due to the currently limited treatment options. Plant phytochemicals have been considered in alternative, or complementary, prevention and treatment strategies. Herbals are consumed as such, or as food supplements, whose consumption has recently increased. However, these products are not exempt from adverse effects and pharmacological interactions, presenting a special risk in aged, polymedicated individuals. Understanding pharmacokinetic and pharmacodynamic interactions is warranted to avoid undesirable adverse drug reactions, which may result in unwanted side-effects or therapeutic failure. The present study reviews the potential interactions between selected bioactive compounds (170) used by seniors for cognitive enhancement and representative drugs of 10 pharmacotherapeutic classes commonly prescribed to the middle-aged adults, often multimorbid and polymedicated, to anticipate and prevent risks arising from their co-administration. A literature review was conducted to identify mutual targets affected (inhibition/induction/substrate), the frequency of which was taken as a measure of potential interaction. Although a limited number of drugs were studied, from this work, interaction with other drugs affecting the same targets may be anticipated and prevented, constituting a valuable tool for healthcare professionals in clinical practice.
Collapse
Affiliation(s)
- Maria D. Auxtero
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Susana Chalante
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Mário R. Abade
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| | - Rui Jorge
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
- Polytechnic Institute of Santarém, School of Agriculture, Quinta do Galinheiro, 2001-904 Santarém, Portugal
- CIEQV, Life Quality Research Centre, IPSantarém/IPLeiria, Avenida Dr. Mário Soares, 110, 2040-413 Rio Maior, Portugal
| | - Ana I. Fernandes
- CiiEM, Interdisciplinary Research Centre Egas Moniz, Instituto Universitário Egas Moniz, Quinta da Granja, Monte de Caparica, 2829-511 Caparica, Portugal; (M.D.A.); (S.C.); (M.R.A.); (R.J.)
| |
Collapse
|
17
|
Afewerky HK, Ayodeji AE, Tiamiyu BB, Orege JI, Okeke ES, Oyejobi AO, Bate PNN, Adeyemi SB. Critical review of the Withania somnifera (L.) Dunal: ethnobotany, pharmacological efficacy, and commercialization significance in Africa. BULLETIN OF THE NATIONAL RESEARCH CENTRE 2021; 45:176. [PMID: 34697529 PMCID: PMC8529567 DOI: 10.1186/s42269-021-00635-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Accepted: 10/08/2021] [Indexed: 05/10/2023]
Abstract
BACKGROUND Withania somnifera (L.) Dunal (W. somnifera) is a herb commonly known by its English name as Winter Cherry. Africa is indigenous to many medicinal plants and natural products. However, there is inadequate documentation of medicinal plants, including W. somnifera, in Africa. There is, therefore, a need for a comprehensive compilation of research outcomes of this reviewed plant as used in traditional medicine in different regions of Africa. METHODOLOGY Scientific articles and publications were scooped and sourced from high-impact factor journals and filtered with relevant keywords on W. somnifera. Scientific databases, including GBIF, PubMed, NCBI, Google Scholar, Research Gate, Science Direct, SciFinder, and Web of Science, were accessed to identify the most influential articles and recent breakthroughs published on the contexts of ethnography, ethnomedicinal uses, phytochemistry, pharmacology, and commercialization of W. somnifera. RESULTS This critical review covers the W. somnifera ethnography, phytochemistry, and ethnomedicinal usage to demonstrate the use of the plant in Africa and elsewhere to prevent or alleviate several pathophysiological conditions, including cardiovascular, neurodegenerative, reproductive impotence, as well as other chronic diseases. CONCLUSION W. somnifera is reportedly safe for administration in ethnomedicine as several research outcomes confirmed its safety status. The significance of commercializing this plant in Africa for drug development is herein thoroughly covered to provide the much-needed highlights towards its cultivations economic benefit to Africa.
Collapse
Affiliation(s)
- Henok Kessete Afewerky
- Department of Neurobiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- Department of Pathology and Pathophysiology, School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030 China
- School of Allied Health Professions, Asmara College of Health Sciences, 00291 Asmara, Eritrea
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
| | - Ayeni Emmanuel Ayodeji
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Pharmacognosy and Drug Development, Ahmadu Bello University Zaria, PMB 1044, Kaduna, 800211 Nigeria
| | - Bashir Bolaji Tiamiyu
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
| | - Joshua Iseoluwa Orege
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Industrial Chemistry, Ekiti State University, PMB 5363, Ado-Ekiti, 362001 Nigeria
- Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116023 China
| | - Emmanuel Sunday Okeke
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Biochemistry, FBS and Natural Science Unit, SGS, University of Nigeria, Nsukka, 410001 Nigeria
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013 China
| | - Aanuoluwapo Opeyemi Oyejobi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan, 430074 China
| | - Petuel Ndip Ndip Bate
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Guangzhou Institute of Biomedicine and Health, Guangzhou, 510530 China
| | - Sherif Babatunde Adeyemi
- Organization of African Academic Doctors, Nairobi, 00100 Kenya
- Department of Plant Biology, Faculty of Life Sciences, University of Ilorin, Ilorin, 240001 Nigeria
- C.G. Bhakta Institute of Biotechnology, Uka Tarsadia University, Bardoli-Mahuva Road, Bardoli, Surat, Gujarat 394350 India
| |
Collapse
|
18
|
Singh P, Sivanandam TM, Konar A, Thakur MK. Role of nutraceuticals in cognition during aging and related disorders. Neurochem Int 2020; 143:104928. [PMID: 33285273 DOI: 10.1016/j.neuint.2020.104928] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 11/05/2020] [Accepted: 11/24/2020] [Indexed: 12/13/2022]
Abstract
Cognitive abilities are compromised with advancing age posing a great risk for the development of dementia and other related brain disorders. Genetic susceptibility as well as environmental exposures determine the fate of cognitive aging and its transition to pathological states. Emerging epidemiological and observational studies have revealed the importance of lifestyle factors including dietary patterns and nutritional intake in the maintenance of cognitive health and reducing the risk of neurodegenerative disorders. In this context, nutraceutical interventions have gained considerable attention in preventing age-related cognitive deficits and counteracting pathological processes. Nutraceuticals include dietary plants and derivatives, food supplements and processed foods with nutritional and pharmaceutical values. The present review highlights the importance of nutraceuticals in attenuating cognitive aging and its progression to dementia, with specific emphasis on chemical constituents, neurocognitive properties and mechanism of action.
Collapse
Affiliation(s)
- Padmanabh Singh
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Thamil Mani Sivanandam
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India
| | - Arpita Konar
- CSIR-Institute of Genomics & Integrative Biology, New Delhi, 110025, India.
| | - M K Thakur
- Centre of Advanced Study, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi, 221005, India.
| |
Collapse
|
19
|
Hannan MA, Dash R, Haque MN, Choi SM, Moon IS. Integrated System Pharmacology and In Silico Analysis Elucidating Neuropharmacological Actions of Withania somnifera in the Treatment of Alzheimer's Disease. CNS & NEUROLOGICAL DISORDERS-DRUG TARGETS 2020; 19:541-556. [PMID: 32748763 DOI: 10.2174/1871527319999200730214807] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Revised: 06/18/2020] [Accepted: 06/19/2020] [Indexed: 02/08/2023]
Abstract
BACKGROUND Withania somnifera (WS), also referred to as Medhya Rasayana (nootropic or rejuvenating), has traditionally been prescribed for various neurological ailments, including dementia. Despite substantial evidence, pharmacological roles of WS, neither as nootropic nor as an antidementia agent, are well-understood at the cellular and molecular levels. OBJECTIVES We aimed at elucidating the pharmacological action mechanisms of WS root constituents against Alzheimer's Disease (AD) pathology. METHODS Various bioinformatics tools and resources, including DAVID, Cytoscape, NetworkAnalyst and KEGG pathway database were employed to analyze the interaction of WS root bioactive molecules with the protein targets of AD-associated cellular processes. We also used a molecular simulation approach to validate the interaction of compounds with selected protein targets. RESULTS Network analysis revealed that β-sitosterol, withaferin A, stigmasterol, withanolide A, and withanolide D are the major constituents of WS root that primarily target the cellular pathways such as PI3K/Akt signaling, neurotrophin signaling and toll-like receptor signaling and proteins such as Tropomyosin receptor Kinase B (TrkB), Glycogen Synthase Kinase-3β (GSK-3β), Toll-Like Receptor 2/4 (TLR2/4), and β-secretase (BACE-1). Also, the in silico analysis further validated the interaction patterns and binding affinity of the major WS compounds, particularly stigmasterol, withanolide A, withanolide D and β-sitosterol with TrkB, GSK-3β, TLR2/4, and BACE-1. CONCLUSION The present findings demonstrate that stigmasterol, withanolide A, withanolide D and β-sitosterol are the major metabolites that are responsible for the neuropharmacological action of WS root against AD-associated pathobiology, and TrkB, GSK-3β, TLR2/4, and BACE-1 could be the potential druggable targets.
Collapse
Affiliation(s)
- Md Abdul Hannan
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea,Department of Biochemistry and Molecular Biology, Bangladesh Agricultural University, Mymensingh-2202, Bangladesh
| | - Raju Dash
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| | - Md Nazmul Haque
- Departement of Fisheries Biology and Genetics, Patuakhali Science and Technology University Patuakhali-8602, Bangladesh
| | - Sung Min Choi
- Department of Pediatrics, Dongguk University College of Medicine, Gyeongju 38066, Republic of Korea
| | - Il Soo Moon
- Department of Anatomy, Dongguk University College of Medicine, Gyeongju 38066, Korea
| |
Collapse
|
20
|
Kang K, Xu P, Wang M, Chunyu J, Sun X, Ren G, Xiao W, Li D. FGF21 attenuates neurodegeneration through modulating neuroinflammation and oxidant-stress. Biomed Pharmacother 2020; 129:110439. [PMID: 32768941 DOI: 10.1016/j.biopha.2020.110439] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/14/2020] [Accepted: 06/17/2020] [Indexed: 12/13/2022] Open
Abstract
Previous studies indicate that FGF21 has ability to repair nerve injury, but the specific mechanism is less studied. The present study was designed to investigate the effects of FGF21 on neurodegeneration changes in aging and diabetic mice and its mechanism. The diabetic and aging mice were used to study the effects of FGF21 on neurodegeneration and possible mechanisms. These mice were administrated with PBS, FGF21 or metformin once daily for 4 or 6 months, then the mechanism was studied in SH-SY5Y cells. The relevant gene expression for neurodegeneration was assessed by Quantitative Real Time-PCR, Western blot, H&E staining, immunohistochemistry and ELISA. The Western blot results of NeuN showed that FGF21 inhibited the loss of neurons in diabetic and aging mice. H&E staining results showed that the karyopyknosis and tissue edema around dentate gyrus and Cornu Amonis 3 (CA3) area of hippocampus were also inhibited by FGF21 in aging and diabetes mice. In vivo results revealed that administration of FGF21 suppressed the aggregation of tau and β-amyloid1-42 in the brains of diabetic and aging mice. The aggregation resulted in apoptosis of neurons. Meanwhile, FGF21 significantly reduced the expression of Iba1, NF-κB, IL6 and IL8 (p < 0.05) and enhanced anti-oxidant enzymes (p < 0.05) in aging and diabetic mice. In addition, the phosphorylation of AKT and AMPKα were increased by FGF21 treatment. In vitro experiment showed that the aggregation of tau and β-amyloid1-42 wereincreased by LPS in SH-SY5Y cells, and FGF21 inhibited the aggregation through inhibiting the expression of NF-κB and promoting the phosphorylation of AKT and AMPKα. In conclusion, FGF21 attenuates neurodegeneration by reducing neuroinflammation and oxidant stress through regulating the NF-κB pathway and AMPKα/AKT pathway, which enhances the protective effect on mitochondria in neurons.
Collapse
Affiliation(s)
- Kai Kang
- Northeast Agricultural University, Harbin, China.
| | - Pengfei Xu
- National Laboratory of Cardiovascular Diseases, Chinese Academy of Medical Sciences & Peking Union Medical College Fuwai Hospital, Beijing, China.
| | - Mengxia Wang
- Xinke College of Henan Institute of Science and Technology, China.
| | - Jian Chunyu
- Northeast Agricultural University, Harbin, China.
| | - Xu Sun
- Northeast Agricultural University, Harbin, China.
| | - Guiping Ren
- Northeast Agricultural University, Harbin, China.
| | - Wei Xiao
- Jiangsu Kanion Pharmaceutical CO. LTD, State Key Laboratory of New-tech for Chinese Medicine Pharmaceutical Process, Jiangsu, Lianyungang, China.
| | - Deshan Li
- Northeast Agricultural University, Harbin, China.
| |
Collapse
|
21
|
Wang F, Li J, Li L, Gao Y, Wang F, Zhang Y, Fan Y, Wu C. Protective effect of apple polyphenols on chronic ethanol exposure-induced neural injury in rats. Chem Biol Interact 2020; 326:109113. [PMID: 32360496 DOI: 10.1016/j.cbi.2020.109113] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 04/04/2020] [Accepted: 04/22/2020] [Indexed: 12/12/2022]
Abstract
Apple polyphenols (AP) have attracted much attention due to their various bioactivities. In this study, the protective effect of AP against chronic ethanol exposure-induced neural injury as well as the possible mechanisms were investigated. Body weight, daily average food intake and daily average fluid intake were measured and daily average ethanol consumption was calculated. The influences of AP on motor behavior and memory were detected by locomotor activity test, rotarod test, beam walking test, and Y maze test and novel object recognition test, respectively. The changes of blood ethanol concentration and the oxidative stress were also measured. AP improved chronic ethanol exposure-induced the inhibition of body weight and the decrease of daily average food intake, but did not influence the daily average fluid intake and the daily average ethanol intake, indicating that the improve effect of AP did not result from the decrease of ethanol intake. Motor activity and motor coordination were not influenced after chronic ethanol exposure though the blood ethanol concentration was higher than that in control group. AP improved significantly chronic ethanol-induced the memory impairment and the hippocampal CA1 neurons damage. Further studies found that AP decreased the contents of NO and MDA and increased the levels of T-AOC and GSH in the hippocampus of rats. These results suggest that AP exerts a protective effect against chronic ethanol-induced memory impairment through improving the oxidative stress in the hippocampus.
Collapse
Affiliation(s)
- Fang Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Jinghong Li
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Lingxi Li
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China; Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China
| | - Ying Gao
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Fei Wang
- School of Functional Food and Wine, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yan Zhang
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Yanxia Fan
- School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Chunfu Wu
- Research and Technology Development Center for Plant Polyphenols, Shenyang, 110016, China; School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang, 110016, China.
| |
Collapse
|