1
|
Huang M, Yu J, Guo M, Zhang J, Ren L. Recent advances in the preservation effects of spice essential oils on fruits and vegetables. Food Chem 2025; 464:141827. [PMID: 39522378 DOI: 10.1016/j.foodchem.2024.141827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 10/13/2024] [Accepted: 10/27/2024] [Indexed: 11/16/2024]
Abstract
Spice essential oils (SEOs) are currently a prominent area of investigation in food preservation due to their natural, effective, and environmentally friendly properties. This review discussed the latest research progress concerning the application of SEO in fruits and vegetables preservation. The article commenced with an overview of the sources of SEOs and their main components, explored their bioactivities, antimicrobial mechanisms, and the microencapsulation and nanotechnology utilizing spice essential oils. Further research explored the applications of SEOs in culinary, pharmaceuticals, cosmetics, agriculture, and food industries, with a focus on evaluating their effectiveness in extending the shelf-life of fruits and vegetables. Additionally, it discusses limitations such as intense aroma and toxicity concerns, while also outlining prospects for future research and applications in the food sector. Overall, SEOs offer promising avenues for effectively prolonging the storage period of post-harvested fruits and vegetables while maintaining their quality attributes.
Collapse
Affiliation(s)
- Mingxin Huang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jia Yu
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Min Guo
- College of Food Science and Engineering, Jilin University, Changchun 130062, China
| | - Jie Zhang
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| | - Li Ren
- College of Food Science and Engineering, Jilin University, Changchun 130062, China..
| |
Collapse
|
2
|
Pandur E, Major B, Rák T, Sipos K, Csutak A, Horváth G. Linalool and Geraniol Defend Neurons from Oxidative Stress, Inflammation, and Iron Accumulation in In Vitro Parkinson's Models. Antioxidants (Basel) 2024; 13:917. [PMID: 39199163 PMCID: PMC11351228 DOI: 10.3390/antiox13080917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 09/01/2024] Open
Abstract
Parkinson's disease is one of the most prevalent neurological disorders affecting millions of people worldwide. There is a growing demand for novel and natural substances as complementary therapies. Essential oils and their various compounds are highly investigated natural plant-based products as potential treatment options for common human diseases, such as microbial infections, chronic diseases, and neurodegenerative disorders. The present study focuses on the beneficial effects of linalool and geraniol, the major compounds of lavender (Lavandula angustifolia L.) and geranium (Pelargonium graveolens L'Hér. in Aiton) essential oils, on oxidative stress, inflammation, and iron metabolism of the rotenone and 6-hydroxydopamine-induced in vitro Parkinson's models. The experiments were carried out on all-trans retinoic acid differentiated SH-SY5Y cells. The effects of linalool and geraniol were compared to rasagiline, an MAO-B inhibitor. The results revealed that both essential oil compounds reduce the level of reactive oxygen species and alter the antioxidant capacity of the cells. They lower the secretion of IL-6, IL-8, and IL-1β pro-inflammatory cytokines. Moreover, linalool and geraniol change the expression of iron-related genes, such as the iron importer transferrin receptor 1, heme-oxygenase-1, and ferroportin iron exporter, and influence the intracellular iron contents. In addition, it has been unveiled that iron availability is concatenated with the actions of the essential oil compounds. Based on the results, linalool and geraniol are vigorous candidates as an alternative therapy for Parkinson's disease.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
| | - Balázs Major
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
| | - Tibor Rák
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary; (E.P.); (B.M.); (K.S.)
| | - Adrienne Csutak
- Department of Ophthalmology, Medical School—Clinical Centre, University of Pécs, 7624 Pécs, Hungary; (T.R.); (A.C.)
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, 7624 Pécs, Hungary
| |
Collapse
|
3
|
Hao KX, Hao YF, Zhang J, Xu XL, Jiang JG. Comparative Anti-Cancer and Anti-Inflammatory Activities of Essential Oils from the Bark and Flower of Magnolia officinalis Rehd. et Wils. Foods 2024; 13:2074. [PMID: 38998580 PMCID: PMC11241728 DOI: 10.3390/foods13132074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/28/2024] [Accepted: 05/04/2024] [Indexed: 07/14/2024] Open
Abstract
This study was designed to compare the antioxidant, antitumor and anti-inflammatory effects of essential oils from the bark and flower of Magnolia officinalis Rehd. et Wils. Distillation extraction and steam distillation were used to extract EOs from the bark and flower. The results showed that the contents of EOs of SDE-F and SDE-B were much higher than that of SD-F and SD-B. EOs from the bark were rich in eudesmol (especially α-eudesmol) and exhibited a stronger antioxidant effect than the flower. The anti-tumor effects of SD-B and SD-F on HepG2 and MDA-MB-231 cells were better than that of SDE-B and SDE-F. The inhibitory rates of SD-B and SD-F on MDA-MB-231 cells were 59.21% and 48.27%, exceeding that of positive control 5-fluorouracil (47.04%) at 50 μg/mL. All four EOs exhibited excellent anti-inflammatory activities through the regulation of nitric oxide production and pro-inflammation cytokines in LPS-induced RAW 264.7 cells and they also remarkably suppressed the mRNA expressions of nitric oxide synthase, IL-6 and TNF-α at the concentration higher than that of positive control dexamethasone. These results indicated significant differences in the composition, and anti-inflammatory and anti-tumor activities of EOs extracted by different methods and provided a theoretical basis for their development and utilization.
Collapse
Affiliation(s)
- Ke-Xin Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Yun-Fang Hao
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
- Jiangmen Key Laboratory of Traditional Chinese Medicine Ingredients and Their Mechanisms of Action, Guangdong Jiangmen Chinese Medicine College, Jiangmen 529000, China
| | - Jie Zhang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Xi-Lin Xu
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| | - Jian-Guo Jiang
- College of Food and Bioengineering, South China University of Technology, Guangzhou 510640, China (X.-L.X.)
| |
Collapse
|
4
|
Becker L, Holtmann D. Anti-inflammatory effects of α-humulene on the release of pro-inflammatory cytokines in lipopolysaccharide-induced THP-1 cells. Cell Biochem Biophys 2024; 82:839-847. [PMID: 38388989 PMCID: PMC11344727 DOI: 10.1007/s12013-024-01235-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Accepted: 02/12/2024] [Indexed: 02/24/2024]
Abstract
While acute inflammation is an essential physical response to harmful external influences, the transition to chronic inflammation is problematic and associated with the development and worsening of many deadly diseases. Until now, established pharmaceutical agents have had many side effects when used for long periods. In this study, a possible anti-inflammatory effect of the sesquiterpene α-humulene on lipopolysaccharide (LPS) induction was tested. Herein, human THP-1-derived macrophages were used and their pro-inflammatory interleukin-6 (IL-6), tumor necrosis factor alpha (TNF-α), and interleukin-1β (IL-1β) cytokine release was measured by means of enzyme-linked immunosorbent assay. A dose-dependent effect of α-humulene on IL-6 release was observed at 0.5 and 100 µM α-humulene, with a maximum IL-6 inhibition of 60% compared to the LPS reference value after the addition of 100 µM α-humulene. TNF-α as well as IL-1β cytokine concentrations were not reduced by the addition of 0.5 and 100 µM α-humulene. This study suggests that α-humulene has potential as a promising natural alternative to established pharmaceuticals for the treatment of elevated IL-6 levels and chronic inflammation in humans.
Collapse
Affiliation(s)
- Lucas Becker
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany
| | - Dirk Holtmann
- Bioprocess Intensification, Institute of Bioprocess Engineering and Pharmaceutical Technology, University of Applied Sciences Mittelhessen, Wiesenstrasse 14, 35390, Giessen, Germany.
- Institute of Process Engineering in Life Sciences, Karlsruhe Institute of Technology, Fritz-Haber-Weg 4, 76131, Karlsruhe, Germany.
| |
Collapse
|
5
|
Stojanović NM, Ranđelović PJ, Simonović M, Radić M, Todorović S, Corrigan M, Harkin A, Boylan F. Essential Oil Constituents as Anti-Inflammatory and Neuroprotective Agents: An Insight through Microglia Modulation. Int J Mol Sci 2024; 25:5168. [PMID: 38791205 PMCID: PMC11121245 DOI: 10.3390/ijms25105168] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 04/30/2024] [Accepted: 05/07/2024] [Indexed: 05/26/2024] Open
Abstract
Microglia are key players in the brain's innate immune response, contributing to homeostatic and reparative functions but also to inflammatory and underlying mechanisms of neurodegeneration. Targeting microglia and modulating their function may have therapeutic potential for mitigating neuroinflammation and neurodegeneration. The anti-inflammatory properties of essential oils suggest that some of their components may be useful in regulating microglial function and microglial-associated neuroinflammation. This study, starting from the ethnopharmacological premises of the therapeutic benefits of aromatic plants, assessed the evidence for the essential oil modulation of microglia, investigating their potential pharmacological mechanisms. Current knowledge of the phytoconstituents, safety of essential oil components, and anti-inflammatory and potential neuroprotective effects were reviewed. This review encompasses essential oils of Thymus spp., Artemisia spp., Ziziphora clinopodioides, Valeriana jatamansi, Acorus spp., and others as well as some of their components including 1,8-cineole, β-caryophyllene, β-patchoulene, carvacrol, β-ionone, eugenol, geraniol, menthol, linalool, thymol, α-asarone, and α-thujone. Essential oils that target PPAR/PI3K-Akt/MAPK signalling pathways could supplement other approaches to modulate microglial-associated inflammation to treat neurodegenerative diseases, particularly in cases where reactive microglia play a part in the pathophysiological mechanisms underlying neurodegeneration.
Collapse
Affiliation(s)
- Nikola M. Stojanović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Pavle J. Ranđelović
- Department of Physiology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia; (N.M.S.); (P.J.R.)
| | - Maja Simonović
- Department of Psychiatry, Faculty of Medicine, University of Niš, 18000 Niš, Serbia;
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Milica Radić
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
- Department of Oncology, Faculty of Medicine, University of Niš, 18000 Niš, Serbia
| | - Stefan Todorović
- University Clinical Centre Niš, 18000 Niš, Serbia; (M.R.); (S.T.)
| | - Myles Corrigan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Andrew Harkin
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
| | - Fabio Boylan
- School of Pharmacy and Pharmaceutical Sciences, Trinity College Dublin, Dublin 2, Ireland; (M.C.); (A.H.)
- Trinity Biomedical Sciences Institute (TBSI) and The Trinity Centre for Natural Product Research (NatPro), D02 R590 Dublin, Ireland
| |
Collapse
|
6
|
Zuzarte M, Sousa C, Alves-Silva J, Salgueiro L. Plant Monoterpenes and Essential Oils as Potential Anti-Ageing Agents: Insights from Preclinical Data. Biomedicines 2024; 12:365. [PMID: 38397967 PMCID: PMC10886757 DOI: 10.3390/biomedicines12020365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Ageing is a natural process characterized by a time-dependent decline of physiological integrity that compromises functionality and inevitably leads to death. This decline is also quite relevant in major human pathologies, being a primary risk factor in neurodegenerative diseases, metabolic disorders, cardiovascular diseases and musculoskeletal disorders. Bearing this in mind, it is not surprising that research aiming at improving human health during this process has burst in the last decades. Importantly, major hallmarks of the ageing process and phenotype have been identified, this knowledge being quite relevant for future studies towards the identification of putative pharmaceutical targets, enabling the development of preventive/therapeutic strategies to improve health and longevity. In this context, aromatic plants have emerged as a source of potential bioactive volatile molecules, mainly monoterpenes, with many studies referring to their anti-ageing potential. Nevertheless, an integrated review on the current knowledge is lacking, with several research approaches studying isolated ageing hallmarks or referring to an overall anti-ageing effect, without depicting possible mechanisms of action. Herein, we aim to provide an updated systematization of the bioactive potential of volatile monoterpenes on recently proposed ageing hallmarks, and highlight the main mechanisms of action already identified, as well as possible chemical entity-activity relations. By gathering and categorizing the available scattered information, we also aim to identify important research gaps that could help pave the way for future research in the field.
Collapse
Affiliation(s)
- Mónica Zuzarte
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Cátia Sousa
- iNOVA4HEALTH, NOVA Medical School, Faculdade de Ciências Médicas (NMS/FCM), Universidade Nova de Lisboa, 1159-056 Lisboa, Portugal;
- Centro Clínico e Académico de Lisboa, 1156-056 Lisboa, Portugal
| | - Jorge Alves-Silva
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Coimbra Institute for Clinical and Biomedical Research (iCBR), Faculty of Medicine, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal
- Clinical Academic Centre of Coimbra (CACC), 3000-548 Coimbra, Portugal
| | - Lígia Salgueiro
- Univ Coimbra, Faculty of Pharmacy, Azinhaga de S. Comba, 3000-548 Coimbra, Portugal; (J.A.-S.); (L.S.)
- Univ Coimbra, Chemical Engineering and Renewable Resources for Sustainability (CERES), Department of Chemical Engineering, 3030-790 Coimbra, Portugal
| |
Collapse
|
7
|
Avola R, Furnari AG, Graziano ACE, Russo A, Cardile V. Management of the Brain: Essential Oils as Promising Neuroinflammation Modulator in Neurodegenerative Diseases. Antioxidants (Basel) 2024; 13:178. [PMID: 38397776 PMCID: PMC10886016 DOI: 10.3390/antiox13020178] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Neuroinflammation, a pivotal factor in the pathogenesis of various brain disorders, including neurodegenerative diseases, has become a focal point for therapeutic exploration. This review highlights neuroinflammatory mechanisms that hallmark neurodegenerative diseases and the potential benefits of essential oils in counteracting neuroinflammation and oxidative stress, thereby offering a novel strategy for managing and mitigating the impact of various brain disorders. Essential oils, derived from aromatic plants, have emerged as versatile compounds with a myriad of health benefits. Essential oils exhibit robust antioxidant activity, serving as scavengers of free radicals and contributing to cellular defense against oxidative stress. Furthermore, essential oils showcase anti-inflammatory properties, modulating immune responses and mitigating inflammatory processes implicated in various chronic diseases. The intricate mechanisms by which essential oils and phytomolecules exert their anti-inflammatory and antioxidant effects were explored, shedding light on their multifaceted properties. Notably, we discussed their ability to modulate diverse pathways crucial in maintaining oxidative homeostasis and suppressing inflammatory responses, and their capacity to rescue cognitive deficits observed in preclinical models of neurotoxicity and neurodegenerative diseases.
Collapse
Affiliation(s)
- Rosanna Avola
- Faculty of Medicine and Surgery, University of Enna “Kore”, 94100 Enna, Italy;
| | | | | | - Alessandra Russo
- Department of Drug and Health Sciences, University of Catania, 95123 Catania, Italy;
| | - Venera Cardile
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95123 Catania, Italy;
| |
Collapse
|
8
|
Cui X, Zong S, Song W, Wang C, Liu Y, Zhang L, Xia P, Wang X, Zhao H, Wang L, Lu Z. Omaveloxolone ameliorates cognitive dysfunction in APP/PS1 mice by stabilizing the STAT3 pathway. Life Sci 2023; 335:122261. [PMID: 37951537 DOI: 10.1016/j.lfs.2023.122261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 11/08/2023] [Accepted: 11/08/2023] [Indexed: 11/14/2023]
Abstract
AIMS To determine the availability and the potential molecular mechanisms underlying the therapeutic effect of omaveloxolone (RTA408) on Alzheimer's Disease (AD). MATERIALS AND METHODS This study employed network pharmacology to assess the feasibility of drug treatment of AD. To determine the cognitive status and emotional state of APPswe/PS1dE9 (APP/PS1) mice after the RTA408 treatment, three classical behavioral experiments (water maze, Y-maze, and open field test) were conducted. Immunofluorescence and immunohistochemical staining were utilized to evaluate hippocampal neuronal status and amyloid (Aβ) deposition in mice. RNA-seq and transcription factor prediction analyses were performed to explore the potential molecular mechanisms regulating the therapeutic effects of RTA408. Molecular docking was employed to predict the direct drug targets. To validate these molecular mechanisms, quantitative reverse transcription PCR (qRT-PCR), Western blotting, and immunofluorescence analyses were performed in two instrumental cell lines, i.e., mouse hippocampal neuronal cells (HT22) and microglia (BV2). RESULTS RTA408 was revealed with the capability to reduce Aβ plaque deposition and to restore damaged neurons in the hippocampal region of APP/PS1 mice, ultimately leading to an improvement in cognitive function. This beneficial effect was achieved by balancing the STAT3 pathway. Specifically, RTA408 facilitated the activations of both STAT3/OXR1 and NRF2/ARE axes, thereby enhancing the compromised resistance in neurons to oxidative stress. RTA408 inhibited the NFκB/IL6/STAT3 pathway, effectively countering the neuroinflammation triggered by microglial activation. CONCLUSION RTA408 is revealed with promising potential in the treatment of AD based on preclinical data.
Collapse
Affiliation(s)
- Xiaolin Cui
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Shuai Zong
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Wenao Song
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China
| | - Cuicui Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Yingchao Liu
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Li Zhang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Pengcheng Xia
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Xueying Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Hao Zhao
- Department of Otolaryngology, Head and Neck Surgery, People's Hospital, Peking University, Beijing 100044, China
| | - Le Wang
- Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China
| | - Zhiming Lu
- Department of Clinical Laboratory, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, Shandong, China; Department of Clinical Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong, China; Institute of Clinical Microbiology, Shandong Academy of Clinical Medicine, Jinan 250021, Shandong, China.
| |
Collapse
|
9
|
Grazul M, Kwiatkowski P, Hartman K, Kilanowicz A, Sienkiewicz M. How to Naturally Support the Immune System in Inflammation-Essential Oils as Immune Boosters. Biomedicines 2023; 11:2381. [PMID: 37760822 PMCID: PMC10525302 DOI: 10.3390/biomedicines11092381] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 08/10/2023] [Accepted: 08/16/2023] [Indexed: 09/29/2023] Open
Abstract
Efficient functionality of the immune system is needed to fight against the development of infectious diseases, including, among others, serious recurrent chronic infections. Research has shown that many modern common diseases, such as inflammatory bowel diseases and cardiovascular diseases, e.g., thromboembolism, cancer, obesity, or depression, are connected with inflammatory processes. Therefore, new, good stimulators of the immune system's response are sought. They include synthetic compounds as well as biological preparations such as lipopolysaccharides, enzymes, bacterial metabolites, and secondary metabolites of plants, demonstrating a multidirectional effect. Essential oils are characterized by many invaluable activities, including antimicrobial, antioxidant, anti-inflammatory, and immunostimulating. Essential oils may stimulate the immune system via the utilization of their constituents, such as antibodies, cytokines, and dendritic cells. Some essential oils may stimulate the proliferation of immune-competent cells, including polymorphonuclear leukocytes, macrophages, dendritic cells, natural killer cells, and B and T lymphocytes. This review is focused on the ability of essential oils to affect the immune system. It is also possible that essential oil components positively interact with recommended anti-inflammatory and antimicrobial drugs. Thus, there is a need to explore possible synergies between essential oils and their active ingredients for medical use.
Collapse
Affiliation(s)
- Magdalena Grazul
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Paweł Kwiatkowski
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Kacper Hartman
- Department of Diagnostic Immunology, Pomeranian Medical University in Szczecin, al. Powstancow Wlkp. 72, 70-111 Szczecin, Poland
| | - Anna Kilanowicz
- Department of Toxicology, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| | - Monika Sienkiewicz
- Department of Pharmaceutical Microbiology and Microbiological Diagnostic, Medical University of Lodz, Muszynskiego 1, 90-151 Lodz, Poland
| |
Collapse
|
10
|
Badaoui A, Fougerousse AC. Contact dermatitis to linalool and limonene: Unusual sources of exposure. Ann Dermatol Venereol 2023; 150:167-168. [PMID: 36890088 DOI: 10.1016/j.annder.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 10/10/2022] [Accepted: 01/30/2023] [Indexed: 03/08/2023]
Affiliation(s)
- A Badaoui
- Dermatology Department, Military Teaching Hospital, Saint-Mandé, France.
| | - A-C Fougerousse
- Dermatology Department, Military Teaching Hospital, Saint-Mandé, France
| |
Collapse
|
11
|
Warman DJ, Jia H, Kato H. Effects of Thyme ( Thymus vulgaris L.) Essential Oil on Aging-Induced Brain Inflammation and Blood Telomere Attrition in Chronologically Aged C57BL/6J Mice. Antioxidants (Basel) 2023; 12:1178. [PMID: 37371908 DOI: 10.3390/antiox12061178] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/23/2023] [Accepted: 05/25/2023] [Indexed: 06/29/2023] Open
Abstract
Chronological aging is commonly accompanied by chronic low-grade inflammation (or "inflammaging"), a contributor to the development of age-related chronic diseases. Aging increases oxidative stress that accelerates telomere shortening, leading to cell senescence and the generation of senescence-associated secretory phenotype (SASP) that exacerbates inflammation. Dietary antioxidants may help protect telomeres and attenuate inflammation. Thyme essential oil (TEO), reported for its potency against neuroinflammation, was fed to chronologically aged C57BL/6J mice for 24 weeks. The TEO diet showed notable impacts on the hippocampus, indicated by lower expression of the aging-related gene p16INK4A (p = 0.0783) and significantly lower expression of cyclin D kinase Cdk4 and Cdk6 (p < 0.05) compared to the age-matched control mice. The TEO group also showed significantly lower gene expression of the pro-inflammatory cytokine Il6 (p < 0.05) in the hippocampus and lower Il1b expression in the liver and cerebellum (p < 0.05). In vitro experiments conducted on NIH-3T3 cells expressing SASP revealed the dose-dependent anti-inflammatory activity of TEO. Remarkably, TEO diet-fed mice showed higher survival rates and significantly longer blood telomere lengths than the control mice. Monoterpene antioxidants in TEO, particularly thymol and p-cymene, may primarily contribute to the anti-inflammatory and telomere-protecting activities of TEO.
Collapse
Affiliation(s)
- Dwina Juliana Warman
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Huijuan Jia
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
| | - Hisanori Kato
- Health Nutrition, Department of Applied Biological Chemistry, Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo 113-8657, Japan
- Department of Applied Nutrition, School of Nutrition, Kagawa Nutrition University, 3-9-21 Chiyoda, Sakado-shi 350-0288, Japan
| |
Collapse
|
12
|
Bakó C, Balázs VL, Kerekes E, Kocsis B, Nagy DU, Szabó P, Micalizzi G, Mondello L, Krisch J, Pethő D, Horváth G. Flowering phenophases influence the antibacterial and anti-biofilm effects of Thymus vulgaris L. essential oil. BMC Complement Med Ther 2023; 23:168. [PMID: 37226152 DOI: 10.1186/s12906-023-03966-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 04/19/2023] [Indexed: 05/26/2023] Open
Abstract
BACKGROUND Essential oils are becoming increasingly popular in medicinal applications because of their antimicrobial effect. Thymus vulgaris L. (Lamiaceae) is a well-known and widely cultivated medicinal plant, which is used as a remedy for cold, cough and gastrointestinal symptoms. Essential oil content of thyme is responsible for its antimicrobial activity, however, it has been reported that the chemical composition of essential oils influences its biological activity. In order to explore flowering phenophases influence on the chemical composition of thyme essential oil and its antibacterial and anti-biofilm activity, plant materials were collected at the beginning of flowering, in full bloom and at the end of flowering periods in 2019. METHODS Essential oils from fresh and dried plant materials were distilled and analyzed with gas chromatography-mass spectrometry (GC-MS) and gas chromatography-flame ionization detection (GC-FID). The antibacterial activity was performed by broth microdilution and thin layer chromatography-direct bioautography (TLC-DB) assays and the anti-biofilm effect by crystal violet assay, respectively. Scanning electron microscopy was applied to illustrate the cellular changes of bacterial cells after essential oil treatment. RESULTS Thymol (52.33-62.46%) was the main component in the thyme essential oils. Thyme oil distilled from fresh plant material and collected at the beginning of flowering period exerted the highest antibacterial and anti-biofilm activity against Haemophilus influenzae, H. parainfluenzae and Pseudomonas aeruginosa. CONCLUSION The different flowering periods of Thymus vulgaris influence the antibacterial and anti-biofilm activity of its essential oils, therefore, the collection time has to be taken into consideration and not only the full bloom, but the beginning of flowering period may provide biological active thyme essential oil.
Collapse
Affiliation(s)
- Csongor Bakó
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary
| | - Viktória Lilla Balázs
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary
| | - Erika Kerekes
- Department of Microbiology, Faculty of Science and Informatics, University of Szeged, Szeged, H-6726, Hungary
| | - Béla Kocsis
- Department of Medical Microbiology and Immunology, Medical School, University of Pécs, Pécs, H-7624, Hungary
| | - Dávid U Nagy
- Institute of Geobotany and Plant Ecology, Martin-Luther University, D-06108, Halle, Germany
| | - Péter Szabó
- Institute of Geography and Earth Sciences, Faculty of Sciences, University of Pécs, Pécs, H-7624, Hungary
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, 98168, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, Rome, 00128, Italy
| | - Judit Krisch
- Department of Food Engineering, Faculty of Engineering, University of Szeged, Szeged, H-6724, Hungary
| | - Dóra Pethő
- Department of MOL Hydrocarbon and Coal Processing, University of Pannonia, Veszprém, H-8200, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, Pécs, H-7624, Hungary.
| |
Collapse
|
13
|
Zhao Q, Zhu L, Wang S, Gao Y, Jin F. Molecular mechanism of the anti-inflammatory effects of plant essential oils: A systematic review. JOURNAL OF ETHNOPHARMACOLOGY 2023; 301:115829. [PMID: 36252876 DOI: 10.1016/j.jep.2022.115829] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/05/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Plant essential oils (PEOs) extracted from aromatic compounds of the plant contain complex mixtures of volatile and lipophilic bioactive compounds. In ancient Egypt, Arabia, Greece, and China, PEOs were traditional used in aromatherapy for various health disorders, including pain and inflammation. AIM OF THE STUDY In this review, we provide an overview of the anti-inflammatory effects of PEOs and the underlying mechanisms associated with anti-inflammatory effects using in vitro and in vivo models. Further, clinical trials associated with PEOs were explored. MATERIALS AND METHODS The literature search was performed using various web-based tools and databases like Google Scholar, Web of Science, PubMed, CNKI and SCOPUS. The keywords used for conducting the literature review were general terms like "essential oils" followed by (AND) the subject of interest like "in vitro and/or in vivo anti-inflammatory models," "inflammatory response," "inflammatory indicators," "pro-inflammatory cytokines," "signaling pathway," "anti-inflammatory mechanism," "toxicology and side effects" and "clinical trials." The articles selected were published between 2017 and 2022. The articles prior to 2017 were only considered if they were associated with molecular mechanisms or signaling pathways involved in the inflammatory responses. RESULTS In vitro and in vivo inflammation models have been used to study the anti-inflammatory effects of 48 PEOs. Studies have reported that PEOs targets and inhibit multiple dysregulated signaling pathways associated with inflammation, including Toll-like receptors, nuclear transcription factor-κ B, mitogen-activated protein kinases, Nod-like receptor family pyrin domain containing 3, and auxiliary pathways like the nuclear factor erythroid 2-related factor 2/antioxidant response element and Janus kinase/signal transducers and activators of transcription) signaling pathways. CONCLUSION PEOs extracted from different plant materials had varied qualitative and quantitative compositions of biologically active compounds. Different anti-inflammatory potentials and different molecular signal transduction have been attributed to PEOs-derived bioactive compounds with different chemical structures. The data on therapeutic efficacy and the long-term side effects of PEOs as an anti-inflammatory drug are still unknown due to the lack of clinical trials on PEOs. There is still insufficient evidence to draw conclusions on anti-inflammatory properties of PEOs without promising outcomes from clinical trials.
Collapse
Affiliation(s)
- Qian Zhao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China.
| | - Liyun Zhu
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China.
| | - Sunan Wang
- Canadian Food and Wine Institute, Niagara College Canada, 135 Taylor Road, Niagara-on-the-Lake, Ontario, L0S1J0, Canada
| | - Yongsheng Gao
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China; Anhui Hanfang Biotechnology Co., Ltd, Huaibei, 23500, China
| | - Fei Jin
- College of Life Sciences, China Jiliang University, Aroma Engineering Technology Research and Development Center, Hangzhou, 310018, China
| |
Collapse
|
14
|
Immune Defences: A View from the Side of the Essential Oils. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010435. [PMID: 36615625 PMCID: PMC9824899 DOI: 10.3390/molecules28010435] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 12/27/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
The use of essential oils is increasingly being investigated among new therapeutic approaches based on medicinal plants and their extracts. With the wide use of synthetic and semi-synthetic antimicrobial drugs, the spread of drug-resistant clinical isolates has increased, and research is directed towards natural products, such as essential oils, as useful antimicrobial resources. In the context of a prospective infection, we compared the impact of essential oils and common antimicrobial agents on the microbicidal activity of human phagocytes. Here, we present the results of our decades-long investigation into the effectiveness of thyme red oil (26.52% thymol chemotype), tea tree oil (TTO), and Mentha of Pancalieri [(Mentha x piperita (Huds) var. officinalis (Sole), form rubescens (Camus) (Lamiaceae)] essential oils on human polymorphonuclear leukocytes (PMNs) capacity to kill clinical strains of Candida albicans and C. krusei when compared to three antifungal drugs used to treat candidiasis (fluconazole, anidulafungin, and caspofungin) These essential oils demonstrate antifungal drug-like and/or superior efficacy in enhancing intracellular killing by PMNs, even at subinhibitory concentrations. Our results are compared with data in the literature on essential oils and immune system interactions. This comparison would aid in identifying therapeutic solutions to the increasingly prevalent antibiotic resistance as well as filling in any remaining knowledge gaps on the bioactivity of essential oils.
Collapse
|
15
|
Unveiling Antimicrobial and Antioxidant Compositional Differences between Dukkah and Za'atar via SPME-GCMS and HPLC-DAD. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27196471. [PMID: 36235006 PMCID: PMC9572683 DOI: 10.3390/molecules27196471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/19/2022] [Accepted: 09/26/2022] [Indexed: 11/09/2022]
Abstract
Interest in plant-based diets has been on the rise in recent years owing to the potential health benefits of their individual components and the notion that plant-based diets might reduce the incidence of several diseases. Egyptian dukkah and Syrian za’atar are two of the most historic and famous Middle Eastern herbal blends used for their anti-inflammatory, hypolipidemic, and antidiabetic effects. Headspace SPME-GCMS and HPLC-DAD were adopted for characterizing the aroma profile and phenolic compounds of both herbal blends, respectively. Further, vapor-phase minimum inhibitory concentration was employed for assessing each blend’s antibacterial potential, while their antioxidant potential was estimated via in vitro antioxidant assays. SPME headspace analysis indicated the abundance of ethers and monoterpene hydrocarbons, while HPLC revealed the presence of several phenolics including rosmarinic acid, ferulic acid, and rutin. Biological investigations affirmed that vapor-phase of the tested blends exhibited antibacterial activities against Gram-positive and Gram-negative pathogens, while the antioxidant potential of the blends was investigated and expressed as Trolox (125.15 ± 5.92 to 337.26 ± 13.84 μM T eq/mg) and EDTA (18.08 ± 1.62 to 51.69 41 ± 5.33 μM EDTA eq/mg) equivalent. The presented study offers the first insight into the chemical profile and biological activities of both dukkah and za’atar.
Collapse
|
16
|
Antioxidant and Anti-Inflammatory Effects of Thyme (Thymus vulgaris L.) Essential Oils Prepared at Different Plant Phenophases on Pseudomonas aeruginosa LPS-Activated THP-1 Macrophages. Antioxidants (Basel) 2022; 11:antiox11071330. [PMID: 35883820 PMCID: PMC9311800 DOI: 10.3390/antiox11071330] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2022] [Revised: 06/30/2022] [Accepted: 07/01/2022] [Indexed: 02/04/2023] Open
Abstract
Thyme (Thymus vulgaris L.) essential oil (TEO) is widely used as an alternative therapy especially for infections of the upper respiratory tract. TEO possesses antiviral, antibacterial, and antifungal properties. The emerging antibiotic resistance of bacterial strains, including Pseudomonas aeruginosa, has prompted the urge to find alternative treatments. In the present study, we examined the anti-inflammatory and antioxidant effects of thymol, the main compound of TEO, and two TEOs prepared at the beginning and at the end of the flowering period that may make these oils promising candidates as complementary or alternative therapies against P. aeruginosa infections. The activity measurements of the antioxidant enzymes peroxidase (PX), catalase (CAT), and superoxide dismutase (SOD) as well as the determination of total antioxidant capacity of P. aeruginosa-activated THP-1 cells revealed that thymol and both TEOs increased CAT and SOD activity as well as the antioxidant capacity of the THP-1 cells. The measurements of the proinflammatory cytokine mRNA expression and secreted protein level of LPS-activated THP-1 cells showed that from the two TEOs, only TEO prepared at the beginning of the flowering period acted as a potent inhibitor of the synthesis of IL-6, IL-8, IL-β, and TNF-α. Our results suggest that not only thymol, but also the synergism or the antagonistic effects of the additional compounds of the essential oils are responsible for the anti-inflammatory activity of TEOs.
Collapse
|
17
|
Horváth A, Pandur E, Sipos K, Micalizzi G, Mondello L, Böszörményi A, Birinyi P, Horváth G. Anti-inflammatory effects of lavender and eucalyptus essential oils on the in vitro cell culture model of bladder pain syndrome using T24 cells. BMC Complement Med Ther 2022; 22:119. [PMID: 35490236 PMCID: PMC9055718 DOI: 10.1186/s12906-022-03604-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Accepted: 04/18/2022] [Indexed: 01/16/2023] Open
Abstract
BACKGROUND Interstitial cystitis (IC) has a chronic chemical irritation and inflammation of non-bacterial origin in the bladder wall leading to various severe symptoms. There is evidence that chronic inflammation is significantly associated with abnormal urothelial barrier function, epithelial dysfunction. This is the underlying cause of urothelial apoptosis and sterile inflammation. METHOD The anti-inflammatory effects of lavender and eucalyptus essential oils (EOs) and their main components (linalool and eucalyptol) were investigated in the T24 human bladder epithelial cell line on TNFα stimulated inflammation, at 3 types of treatment schedule. The mRNA of pro-inflammatory cytokines (IL-1β, IL-6, IL-8) were measured by Real Time PCR. Human IL-8 ELISA measurement was performed as well at 3 types of treatment schedule. The effects of lavender and eucalyptus EOs and their main components were compared to the response to NFκB inhibitor ACHP (2-amino-6-[2-(cyclopropylmethoxy)-6-hydroxyphenyl]-4-(4-piperidinyl)-3-pyridinecarbonitrile). RESULT There is no significant difference statistically, but measurements show that lavender EOs are more effective than eucalyptus EO. Long time treatment (24 h) of both lavender EO and linalool showed higher effect in decreasing pro-inflammatory cytokine mRNA expression than ACHP inhibitor following TNFα pre-treatment. Moreover, both lavender EOs were found to be significantly more effective in decreasing IL-8 secretion of T24 cells after TNFα pre-treatment compared to the ACHP NFκB-inhibitor. CONCLUSION The lavender EOs may be suitable for use as an adjunct to intravesical therapy of IC. Their anti-inflammatory effect could well complement glycosaminoglycan-regenerative therapy in the urinary bladder after appropriate pharmaceutical formulation.
Collapse
Affiliation(s)
- Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Giuseppe Micalizzi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
| | - Luigi Mondello
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168 Messina, Italy
- Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128 Rome, Italy
| | - Andrea Böszörményi
- Institute of Pharmacognosy, Faculty of Pharmacy, Semmelweis University, H-1085 Üllői út 26, Budapest, Hungary
| | - Péter Birinyi
- Mikszáth Pharmacy, H-1088, Mikszát Kálmán tér 4, Budapest, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| |
Collapse
|
18
|
Pandur E, Balatinácz A, Micalizzi G, Mondello L, Horváth A, Sipos K, Horváth G. Anti-inflammatory effect of lavender (Lavandula angustifolia Mill.) essential oil prepared during different plant phenophases on THP-1 macrophages. BMC Complement Med Ther 2021; 21:287. [PMID: 34819075 PMCID: PMC8611982 DOI: 10.1186/s12906-021-03461-5] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 11/02/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Pseudomonas aeruginosa is the most common Gram-negative bacterium associated with nosocomial respiratory infections. Lavender essential oil is mainly used in aromatherapy, but it has several pharmacological and therapeutic properties. Furthermore, it possesses antifungal and antibacterial activities. The anti-inflammatory activity of essential oils may depend on the composition and the ratio of the compounds. The constitution of the essential oils extracted from the different stages of flowering period varies, which makes it plausible that the collection time of the flowers influences the anti-inflammatory effects. Different types of essential oils reduce inflammation acting similarly by modulating the activity and action of the NFκB signalling pathway, which is the major regulator of the transcription of pro-inflammatory cytokines. METHODS Lavender essential oils were distilled from lavender plant cultivated in Hungary and the flowers were harvested at the beginning and at the end of flowering period. The experiments were carried out on THP-1 human monocyte/macrophage cell line as in vitro cell culture model for monitoring the effects of lavender essential oils and the main compound linalool on P. aeruginosa LPS stimulated inflammation. The mRNA and protein levels of four pro-inflammatory cytokines, IL-6, IL-1β, IL-8 and TNFα were determined by Real Time PCR and ELISA measurements. The effects of essential oils were compared to the response to two NFκB inhibitors, luteolin and ACHP. RESULTS Linalool and lavender essential oil extracted from plants at the beginning of flowering period were successful in decreasing pro-inflammatory cytokine production following LPS pretreatment. In case of IL-8 and IL-1β lavender oil showed stronger effect compared to linalool and both of them acted similarly to NFκB inhibitors. Pretreatments with linalool and lavender essential oil/beginning of flowering period prevented pro-inflammatory cytokine production compared to LPS treatment alone. Although lavender essential oil/end of flowering period decreased IL-6, IL-1β and IL-8 mRNA expression in case of LPS pretreatment, it was not capable to reduce cytokine secretion. CONCLUSION Based on our results it has been proven that lavender essential oil extracted at the beginning of flowering period is a potent inhibitor of the synthesis of four pro-inflammatory cytokines IL-6, IL-8, IL-β and TNFα of THP-1 cells. This supports the relevance of the collection of the lavender flowers from early blooming period for essential oil production and for the utilization as an anti-inflammatory treatment.
Collapse
Affiliation(s)
- Edina Pandur
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Alex Balatinácz
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Giuseppe Micalizzi
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy
| | - Luigi Mondello
- Chromaleont s.r.l., c/o Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98168, Messina, Italy.,Unit of Food Science and Nutrition, Department of Medicine, University Campus Bio-Medico of Rome, 00128, Rome, Italy
| | - Adrienn Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Katalin Sipos
- Department of Pharmaceutical Biology, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary
| | - Györgyi Horváth
- Department of Pharmacognosy, Faculty of Pharmacy, University of Pécs, H-7624, Rókus u. 2, Pécs, Hungary.
| |
Collapse
|