1
|
White NJ, Chotivanich K. Artemisinin-resistant malaria. Clin Microbiol Rev 2024:e0010924. [PMID: 39404268 DOI: 10.1128/cmr.00109-24] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
SUMMARYThe artemisinin antimalarials are the cornerstone of current malaria treatment. The development of artemisinin resistance in Plasmodium falciparum poses a major threat to malaria control and elimination. Recognized first in the Greater Mekong subregion of Southeast Asia nearly 20 years ago, artemisinin resistance has now been documented in Guyana, South America, in Papua New Guinea, and most recently, it has emerged de novo in East Africa (Rwanda, Uganda, South Sudan, Tanzania, Ethiopia, Eritrea, and eastern DRC) where it has now become firmly established. Artemisinin resistance is associated with mutations in the propeller region of the PfKelch gene, which play a causal role, although the parasites' genetic background also makes an important contribution to the phenotype. Clinically, artemisinin resistance manifests as reduced parasiticidal activity and slower parasite clearance and thus an increased risk of treatment failure following artemisinin-based combination therapy (ACT). This results from the loss of artemisinin activity against the younger circulating ring stage parasites. This loss of activity is likely to diminish the life-saving advantage of artesunate in the treatment of severe falciparum malaria. Gametocytocidal and thus transmission blocking activities are also reduced. At current levels of resistance, artemisinin-resistant parasites still remain susceptible at the trophozoite stage of asexual development, and so, artemisinin still contributes to the therapeutic response. As ACTs are the most widely used antimalarial drugs in the world, it is essential from a malaria control perspective that ACT cure rates remain high. Better methods of identifying uncomplicated hyperparasitemia, the main cause of ACT treatment failure, are required so that longer courses of treatment can be given to these high-risk patients. Reducing the use of artemisinin monotherapies will reduce the continued selection pressure which could lead potentially to higher levels of artemisinin resistance. Triple artemisinin combination therapies should be deployed as soon as possible to protect the ACT partner drugs and thereby delay the emergence of higher levels of resistance. As new affordable antimalarial drugs are still several years away, the control of artemisinin resistance must depend on the better use of available tools.
Collapse
Affiliation(s)
- N J White
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - K Chotivanich
- Mahidol Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| |
Collapse
|
2
|
Habtamu K, Getachew H, Abossie A, Demissew A, Tsegaye A, Degefa T, Wang X, Lee MC, Zhou G, Kibret S, King CL, Kazura JW, Petros B, Yewhalaw D, Yan G. The effect of single low-dose primaquine treatment for uncomplicated Plasmodium falciparum malaria on haemoglobin levels in Ethiopia: a longitudinal cohort study. Malar J 2024; 23:208. [PMID: 38997771 PMCID: PMC11245871 DOI: 10.1186/s12936-024-05021-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Accepted: 06/20/2024] [Indexed: 07/14/2024] Open
Abstract
BACKGROUND To interrupt residual malaria transmission and achieve successful elimination of Plasmodium falciparum in low-transmission settings, the World Health Organization (WHO) recommends the administration of a single dose of 0.25 mg/kg (or 15 mg/kg for adults) primaquine (PQ) combined with artemisinin-based combination therapy (ACT), without glucose-6-phosphate dehydrogenase (G6PD) testing. However, due to the risk of haemolysis in patients with G6PD deficiency (G6PDd), PQ use is uncommon. Thus, this study aimed to assess the safety of a single low dose of PQ administered to patients with G6PD deficiency. METHODS An observational cohort study was conducted with patients treated for uncomplicated P. falciparum malaria with either single-dose PQ (0.25 mg/kg) (SLD PQ) + ACT or ACT alone. Microscopy-confirmed uncomplicated P. falciparum malaria patients visiting public health facilities in Arjo Didessa, Southwest Ethiopia, were enrolled in the study from September 2019 to November 2022. Patients with uncomplicated P. falciparum malaria were followed up for 28 days through clinical and laboratory diagnosis, such as measurements of G6PD levels and haemoglobin (Hb) concentrations. G6PD levels were measured by a quantiative CareSTART™ POCT S1 biosensor machine. Patient interviews were also conducted, and the type and frequency of clinical complaints were recorded. Hb data were taken on days (D) 7, 14, 21, and 28 following treatment with SLD-PQ + ACT or ACT alone. RESULTS A total of 249 patients with uncomplicated P. falciparum malaria were enrolled in this study. Of these, 83 (33.3%) patients received ACT alone, and 166 (66.7%) received ACT combined with SLD-PQ treatment. The median age of the patients was 20 (IQR 28-15) years. G6PD deficiency was found in 17 (6.8%) patients, 14 males and 3 females. There were 6 (7.2%) and 11 (6.6%) phenotypic G6PD-deficient patients in the ACT alone and ACT + SLD-PQ arms, respectively. The mean Hb levels in patients treated with ACT + SLD-PQ were reduced by an average of 0.45 g/dl (95% CI = 0.39 to 0.52) in the posttreatment phase (D7) compared to a reduction of 0.30 g/dl (95% CI = 0.14 to - 0.47) in patients treated with ACT alone (P = 0.157). A greater mean Hb reduction was observed on day 7 in the G6PDd ACT + SLD-PQ group (- 0.60 g/dL) than in the G6PDd ACT alone group (- 0.48 g/dL); however, there was no statistically significant difference (P = 0.465). Overall, D14 losses were 0.10 g/dl (95% CI = - 0.00 to 0.20) and 0.05 g/dl (95% CI = - 0.123 to 0.22) in patients with and without SLD-PQ, respectively (P = 0.412). CONCLUSIONS This study's findings indicate that using SLD-PQ in combination with ACT is safe for uncomplicated P. falciparum malaria regardless of the patient's G6PD status in Ethiopian settings. Caution should be taken in extrapolating this finding in other settings with diverse G6DP phenotypes.
Collapse
Affiliation(s)
- Kassahun Habtamu
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia.
- Department of Medical Laboratory Sciences, Menelik II Medical and Health Science College, Addis Ababa, Ethiopia.
| | - Hallelujah Getachew
- Department of Medical Laboratory Sciences, Arbaminch College of Health Sciences, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Ashenafi Abossie
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Arba Minch University, Arbaminch, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Assalif Demissew
- Department of Medical Laboratory Sciences, College of Medicine and Health Sciences, Ambo University, Ambo, Ethiopia
| | - Arega Tsegaye
- College of Natural Science, Department of Biology, Jimma University, Jimma, Ethiopia
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Xiaoming Wang
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Ming-Chieh Lee
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Guofa Zhou
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| | - Solomon Kibret
- West Valley Mosquito and Vector Control District, Ontario, CA, USA
| | - Christopher L King
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - James W Kazura
- Center for Global Health & Diseases, School of Medicine, Case Western Reserve University, Cleveland, 44106 OH, USA
| | - Beyene Petros
- Department of Microbial, Cellular & Molecular Biology, Addis Ababa University, Addis Ababa, Ethiopia
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Faculty of Health Sciences, Jimma University, Jimma, Ethiopia
- Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Guiyun Yan
- Program in Public Health, University of California at Irvine, Irvine, CA, 92697, USA
| |
Collapse
|
3
|
Mahamar A, Smit MJ, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Dicko OM, Diallo M, Maguiraga SO, Sankaré Y, Keita S, Samake S, Dembele A, Lanke K, Ter Heine R, Bradley J, Dicko Y, Traore SF, Drakeley C, Dicko A, Bousema T, Stone W. Artemether-lumefantrine with or without single-dose primaquine and sulfadoxine-pyrimethamine plus amodiaquine with or without single-dose tafenoquine to reduce Plasmodium falciparum transmission: a phase 2, single-blind, randomised clinical trial in Ouelessebougou, Mali. THE LANCET. MICROBE 2024; 5:633-644. [PMID: 38705163 PMCID: PMC11217006 DOI: 10.1016/s2666-5247(24)00023-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2023] [Revised: 12/21/2023] [Accepted: 01/17/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Artemether-lumefantrine is widely used for uncomplicated Plasmodium falciparum malaria; sulfadoxine-pyrimethamine plus amodiaquine is used for seasonal malaria chemoprevention. We aimed to determine the efficacy of artemether-lumefantrine with and without primaquine and sulfadoxine-pyrimethamine plus amodiaquine with and without tafenoquine for reducing gametocyte carriage and transmission to mosquitoes. METHODS In this phase 2, single-blind, randomised clinical trial conducted in Ouelessebougou, Mali, asymptomatic individuals aged 10-50 years with P falciparum gametocytaemia were recruited from the community and randomly assigned (1:1:1:1) to receive either artemether-lumefantrine, artemether-lumefantrine with a single dose of 0·25 mg/kg primaquine, sulfadoxine-pyrimethamine plus amodiaquine, or sulfadoxine-pyrimethamine plus amodiaquine with a single dose of 1·66 mg/kg tafenoquine. All trial staff other than the pharmacist were masked to group allocation. Participants were not masked to group allocation. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. The primary outcome was the median within-person percent change in mosquito infection rate in infectious individuals from baseline to day 2 (artemether-lumefantrine groups) or day 7 (sulfadoxine-pyrimethamine plus amodiaquine groups) after treatment, assessed by direct membrane feeding assay. All participants who received any trial drug were included in the safety analysis. This study is registered with ClinicalTrials.gov, NCT05081089. FINDINGS Between Oct 13 and Dec 16, 2021, 1290 individuals were screened and 80 were enrolled and randomly assigned to one of the four treatment groups (20 per group). The median age of participants was 13 (IQR 11-20); 37 (46%) of 80 participants were female and 43 (54%) were male. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 2 days after treatment was 100·0% (IQR 100·0-100·0; n=19; p=0·0011) with artemether-lumefantrine and 100·0% (100·0-100·0; n=19; p=0·0001) with artemether-lumefantrine with primaquine. Only two individuals who were infectious at baseline infected mosquitoes on day 2 after artemether-lumefantrine and none at day 5. By contrast, the median percentage reduction in mosquito infection rate 7 days after treatment was 63·6% (IQR 0·0-100·0; n=20; p=0·013) with sulfadoxine-pyrimethamine plus amodiaquine and 100% (100·0-100·0; n=19; p<0·0001) with sulfadoxine-pyrimethamine plus amodiaquine with tafenoquine. No grade 3-4 or serious adverse events occurred. INTERPRETATION These data support the effectiveness of artemether-lumefantrine alone for preventing nearly all mosquito infections. By contrast, there was considerable post-treatment transmission after sulfadoxine-pyrimethamine plus amodiaquine; therefore, the addition of a transmission-blocking drug might be beneficial in maximising its community impact. FUNDING Bill & Melinda Gates Foundation.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali.
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Yaya Sankaré
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Samake
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Dembele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Rob Ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Yahia Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, Nijmegen, Netherlands
| | - Will Stone
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
4
|
Habtamu K, Getachew H, Abossie A, Demissew A, Tsegaye A, Degefa T, Wang X, Lee MC, Zhou G, Kibret S, King CL, Kazura JW, Petros B, Yewhalaw D, Yan G. The effect of single low-dose primaquine treatment for uncomplicated Plasmodium falciparum malaria on hemoglobin levels in Ethiopia: a longitudinal cohort study. RESEARCH SQUARE 2024:rs.3.rs-4095915. [PMID: 38559068 PMCID: PMC10980161 DOI: 10.21203/rs.3.rs-4095915/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Background To interrupt residual malaria transmission and achieve successful elimination of P. falciparum in low-transmission settings, the World Health Organization (WHO) recommends the administration of a single dose of 0.25 mg/kg (or 15 mg/kg for adults) primaquine (PQ) combined with artemisinin-based combination therapy (ACT) without glucose-6-phosphate dehydrogenase (G6PD) testing. However, due to the risk of hemolysis in patients with G6PD deficiency (G6PDd), PQ use is not as common. Thus, this study aimed to assess the safety of a single low dose of PQ administered to patients with G6PD deficiency. Methods An observational cohort study was conducted with patients treated for uncomplicated P. falciparum malaria with either single-dose PQ (0.25 mg/kg) (SLD PQ) + ACT or ACT alone. Microscopy-confirmed uncomplicated P. falciparum malaria patients visiting public health facilities in Arjo Didessa, Southwest Ethiopia, were enrolled in the study from September 2019 to November 2022. Patients with uncomplicated P. falciparum malaria were followed up for 28 days through clinical and laboratory diagnosis, such as measurements of G6PD levels and hemoglobin (Hb) concentrations. G6PD levels were masured by a quantiative biosensor machine. Patient interviews were also conducted, and the type and frequency of clinical complaints were recorded. Hb data were taken on days (D) 7, 14, 21, and 28 following treatment with SLD-PQ + ACT or ACT alone. Results A total of 249 patients with uncomplicated P. falciparum malaria were enrolled in this study. Of these, 83 (33.3%) patients received ACT alone, and 166 (66.7%) received ACT combined with SLD-PQ treatment. The median age of the patients was 20 (IQR 14) years. G6PD deficiency was found in 17 (6.8%) patients, 14 males and 3 females. There were 6 (7.2%) and 11 (6.6%) phenotypic G6PD-deficient patients in the ACT alone and ACT + SLD-PQ arms, respectively. The mean Hb levels in patients treated with ACT + SLD-PQ were reduced by an average of 0.45 g/dl (95% CI = 0.39 to 0.52) in the posttreatment phase (D7) compared to a reduction of 0.30 g/dl (95% CI = 0.14 to -0.47) in patients treated with ACT alone (P = 0.157). A greater mean Hb reduction was observed on day 7 in the G6PD deficiency group (-0.56 g/dL) than in the G6PD normal group (-0.39 g/dL); however, there was no statistically significant difference (P = 0.359). Overall, D14 losses were 0.10 g/dl (95% CI = -0.00 to 0.20) and 0.05 g/dl (95% CI = -0.123 to 0.22) in patients with and without SLD-PQ, respectively (P = 0.412). Conclusions Our findings showed that single low-dose primaquine (SLD-PQ) treatment for uncomplicated P. falciparum malaria is safe and does not increase the risk of hemolysis in G6PDd patients. This evidence suggests that the wider deployment of SLD-PQ for P. falciparum is part of a global strategy for eliminating P. falciparum malaria.
Collapse
|
5
|
Millat-Martínez P, Baro B, Kasian B, Lorry L, Sanz S, Wali C, Raulo S, Elizah A, Koleala T, Kaius-Ome M, Karl S, Mitjà O, Laman M, Pomat W, Bassat Q. A cross-sectional study to ascertain malaria prevalence among asymptomatic travellers arriving on the Lihir Group of Islands, Papua New Guinea: implications for elimination efforts. Malar J 2023; 22:364. [PMID: 38031175 PMCID: PMC10688477 DOI: 10.1186/s12936-023-04804-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 11/23/2023] [Indexed: 12/01/2023] Open
Abstract
BACKGROUND The Lihir Islands of Papua New Guinea host a mining operation that has resulted in a mine-impacted zone (MIZ) with reduced malaria transmission and a substantial influx of mine employees, informal cross-country traders, returning locals, and visitors. Prevalence of malaria parasites was assessed in travellers arriving on the Lihir Group of Islands to evaluate the risk of parasite importation. METHODS In 2018, a cross-sectional study at the airport and main wharf was conducted, targeting asymptomatic travellers who had been away from Lihir for at least 12 days. Microscopy, rapid diagnostic tests (RDTs), and quantitative PCR (qPCR) were used to determine Plasmodium parasite prevalence, employing logistic regression models to identify factors associated with qPCR positivity. RESULTS 398 travellers arriving by plane and 402 arriving by boat were included. Both cohorts were significantly different. Mean age among travellers arriving by plane was 40.1 years (SD ± 10.1), 93% were male and 96% were employed at the mine. In contrast, among travellers arriving by boat, the mean age was 31.7 years (SD ± 14.0), 68% were male and 36% were employed at the mine. The prevalence of malaria infection among travellers arriving by plane was 1% by RDT and microscopy, and increased to 5% by qPCR. In contrast, those arriving by boat showed a prevalence of 8% by RDT and microscopy, and 17% by qPCR. Risk factors for infection were arriving by boat (OR 4.2; 95%CI 2.45,7.21), arriving from nearby provinces with high malaria incidence (OR 5.02; 95%CI 1.80, 14.01), and having been away from Lihir for 91 days or more (OR 4.15; 95%CI 2.58, 6.66). Being mine worker staying at the mine accommodation was related with less infection risk (OR 0.24; 95% CI 0.14, 0.43); while Lihirian residents returning from a trip, VFRs, or people with trading unrelated to mining had higher risks (p = 0.0066). CONCLUSIONS Travellers arriving by boat faced increased risk of malaria infection than those arriving by plane. This subpopulation poses an import risk to the MIZ and the rest of Lihir Islands. Screening of high-risk groups at wharfs, and collaboration with nearby Islands, could sustain reduced transmission and facilitate malaria elimination strategies.
Collapse
Affiliation(s)
| | - Bàrbara Baro
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain.
| | - Bernadine Kasian
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Lina Lorry
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Sergi Sanz
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
| | - Chilaka Wali
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Sylvia Raulo
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Arthur Elizah
- Lihir Malaria Elimination Programme, Lihir Island, Papua New Guinea
| | - Tamarah Koleala
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Kaius-Ome
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Stephan Karl
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
- Australian Institute of Tropical Health and Medicine, James Cook University, Cairns, Australia
| | - Oriol Mitjà
- Fight Infectious Diseases Foundation, Hospital Germans Trias I Pujol, Badalona, Spain
- School of Medicine and Health Sciences, University of Papua New Guinea, Port Moresby, Papua New Guinea
- Centre for Health and Social Care Research (CESS), Faculty of Medicine, University of Vic - Central University of Catalonia (UVic - UCC), Vic, Catalonia, Spain
- Lihir Medical Centre, International SOS, Lihir Island, Papua New Guinea
| | - Moses Laman
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - William Pomat
- Vector-Borne Diseases Unit, Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Quique Bassat
- ISGlobal, Hospital Clínic-Universitat de Barcelona, Barcelona, Spain
- ICREA, Pg. Lluís Companys 23, 08010, Barcelona, Spain
- Pediatrics Department, Hospital Sant Joan de Déu, Universitat de Barcelona, Esplugues, Barcelona, Spain
- Centro de Investigação Em Saúde de Manhiça (CISM), Maputo, Mozambique
- CIBER de Epidemiología y Salud Pública, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
6
|
Looareesuwan P, Krudsood S, Lawpoolsri S, Tangpukdee N, Matsee W, Nguitragool W, Wilairatana P. Gametocyte prevalence and risk factors of P. falciparum malaria patients admitted at the Hospital for Tropical Diseases, Thailand: a 20-year retrospective study. Malar J 2023; 22:321. [PMID: 37872594 PMCID: PMC10591378 DOI: 10.1186/s12936-023-04728-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Accepted: 09/26/2023] [Indexed: 10/25/2023] Open
Abstract
BACKGROUND The incidence of malaria in Thailand has dramatically declined over the past two decades, and the goal is to eliminate malaria by 2025. Despite significant progress, one of the key challenges to malaria elimination are undetected gametocyte carriers. Human migration adds complexity to the malaria situation, as it not only sustains local transmission but also poses the risk of spreading drug-resistant parasites. Currently, no study has assessed the prevalence of gametocytes across multiple years in Plasmodium falciparum malaria patients in Thailand, and the risk factors for gametocyte carriage have not been fully explored. METHODS Medical records of all P. falciparum malaria patients admitted from January 1, 2001 to December 31, 2020 at the Hospital for Tropical Diseases, Thailand, were retrospectively examined and a total of 1962 records were included for analysis. Both P. falciparum parasites and gametocytes were diagnosed by microscopy. A regression model was used to evaluate predictors of gametocyte carriage. RESULTS The study demonstrated gametocyte prevalence in low malaria transmission areas. Nine risk factors for gametocyte carriage were identified: age between 15 and 24 years [adjusted odds ratio (aOR) = 1.96, 95% confidence interval (CI) 1.18-3.26], Karen ethnicity (aOR = 2.59, 95% CI 1.56-4.29), preadmission duration of fever > 7 days (aOR = 5.40, 95% CI 3.92-7.41), fever on admission (> 37.5 °C) (aOR = 0.61, 95% CI 0.48-0.77), haemoglobin ≤ 8 g/dL (aOR = 3.32, 95% CI 2.06-5.33), asexual parasite density > 5000-25,000/µL (aOR = 0.71, 95% CI 0.52-0.98), asexual parasite density > 25,000-100,000/µL (aOR = 0.74, 95% CI 0.53-1.03), asexual parasite density > 100,000/µL (aOR = 0.51, 95% CI 0.36-0.72), platelet count ≤ 100,000/µL (aOR = 0.65, 95% CI 0.50-0.85, clinical features of severe malaria (aOR = 2.33, 95% CI 1.76-3.10) and dry season (aOR = 1.41, 95% CI 1.10-1.80). An increasing incidence of imported transnational malaria cases was observed over the past two decades. CONCLUSIONS This is the first study to determine the prevalence of gametocytes among patients with symptomatic P. falciparum malaria, identify the risk factors for gametocyte carriage, and potential gametocyte carriers in Thailand. Blocking transmission is one of the key strategies for eliminating malaria in these areas. The results might provide important information for targeting gametocyte carriers and improving the allocation of resources for malaria control in Thailand. This study supports the already nationally recommended use of a single dose of primaquine in symptomatic P. falciparum malaria patients to clear gametocytes.
Collapse
Affiliation(s)
- Panita Looareesuwan
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Thai Travel Clinic, Hospital for Tropical Diseases, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Srivicha Krudsood
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
- Clinical Malaria Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| | - Saranath Lawpoolsri
- Department of Tropical Hygiene, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Noppadon Tangpukdee
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wasin Matsee
- Department of Social and Environmental Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Wang Nguitragool
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand
| | - Polrat Wilairatana
- Department of Clinical Tropical Medicine, Faculty of Tropical Medicine, Mahidol University, Bangkok, 10400, Thailand.
| |
Collapse
|
7
|
Makenga G, Baraka V, Francis F, Nakato S, Gesase S, Mtove G, Madebe R, Kyaruzi E, Minja DTR, Lusingu JPA, Geertruyden JPV. Effectiveness and safety of intermittent preventive treatment with dihydroartemisinin-piperaquine or artesunate-amodiaquine for reducing malaria and related morbidities in schoolchildren in Tanzania: a randomised controlled trial. Lancet Glob Health 2023; 11:e1277-e1289. [PMID: 37474234 DOI: 10.1016/s2214-109x(23)00204-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 04/15/2023] [Accepted: 04/18/2023] [Indexed: 07/22/2023]
Abstract
BACKGROUND In high transmission settings, most school-aged children harbour malaria parasites without showing symptoms, often leading to anaemia and possibly impaired psychomotor and cognitive abilities. We aimed to assess the effectiveness and safety of intermittent preventive treatment for malaria in school-aged children (IPTsc) living in highly endemic areas. METHODS We did an open-label randomised controlled trial in seven primary schools in northeastern Tanzania. Schoolchildren aged 5-15 years were individually randomly assigned (1:1:1) to receive dihydroartemisinin-piperaquine, artesunate-amodiaquine, or standard of care (control) using a balanced block design. Drugs were administered by schoolteachers, with supervision from study nurses, at months 0 (baseline), 4, and 8, and were given in line with manufacturer's recommendations with dose based on the child's bodyweight. The primary endpoints were change from baseline in mean haemoglobin concentration at months 12 and 20, and clinical incidence of malaria and prevalence of parasitaemia at months 12 and 20 in the intervention groups versus the control group. The outcome data were collected through longitudinal surveys conducted every 4 months. Data were analysed on the basis of intention to treat (including all randomised participants) and per protocol (comprising children who completed the full 3-day regimen of all three IPTsc treatment rounds as assigned). This study is registered with ClinicalTrials.gov (NCT03640403). FINDINGS Of the 1797 children scheduled for clinical screening, 1566 were enrolled and randomly allocated (526 to receive dihydroartemisinin-piperaquine, 527 to receive artesunate-amodiaquine, and 513 to receive standard of care). Due to COVID-19-related school closures, only two schools were visited at month 12 (135 children in the dihydroartemisinin-piperaquine group, 131 in the artesunate-amodiaquine group, and 118 in the control group). At month 12, compared with the control group, the change from baseline in mean haemoglobin concentration was increased by 0·5 g/dL (95% CI 0·2 to 0·8; p<0·0001) in the dihydroartemisinin-piperaquine group and 0·5 g/dL (0·2 to 0·7; p=0·0020) in the artesunate-amodiaquine group in the intention-to-treat analysis (with similar findings in the per protocol analysis). In the same period, in the intention-to-treat analysis, the prevalence of malaria parasitaemia increased from 28·5% (138 of 485 participants) to 33·6% (39 of 116) in the control group, but decreased from 28·0% (139 of 497) to 12·0% (15 of 125) in the dihydroartemisinin-piperaquine group (-21·6 percentage points [95% CI -31·9 to -11·3], p=0·0001 vs control at month 12) and from 24·7% (124 of 502) to 16·0% (20 of 125) in the artesunate-amodiaquine group (-17·6 percentage points [-28·4 to -6·9], p=0·0015). The decrease for artesunate-amodiaquine was larger in the per protocol analysis (-25·3 percentage points [-36·3 to -14·2], p<0·0001). The protective effect of IPTsc against malaria parasitaemia was 64% (95% CI 39 to 79; p<0·0001) for dihydroartemisinin-piperaquine and 52% (23 to 70; p=0·0015) for artesunate-amodiaquine in the intention-to-treat analysis, and was slightly higher on per protocol analysis. The protective effect against clinical malaria at month 12 was 20% (95% CI 9 to 29; p=0·0002) for dihydroartemisinin-piperaquine and 19% (8 to 28; p=0·0004) for artesunate-amodiaquine. No significant differences in any primary outcomes between the intervention and control groups were noted at month 20. Dihydroartemisinin-piperaquine and artesunate-amodiaquine were associated with a small number of mild adverse events, and there were no treatment-related serious adverse events or deaths. INTERPRETATION IPTsc with dihydroartemisinin-piperaquine or artesunate-amodiaquine is a safe and effective approach to reducing malaria parasitaemia, clinical malaria, and related morbidities, and is feasible to implement through programmes delivered by schoolteachers. FUNDING Flemish Interuniversity Council (VLIRUOS), EU EDCTP2 programme (MaReCa project), and Global Minds 2019. TRANSLATION For the Swahili translation of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Geofrey Makenga
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania; Global Health Institute, University of Antwerp, Antwerp, Belgium.
| | - Vito Baraka
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Filbert Francis
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Swabra Nakato
- Global Health Institute, University of Antwerp, Antwerp, Belgium
| | - Samwel Gesase
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - George Mtove
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Rashid Madebe
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - Edna Kyaruzi
- Dar es Salaam University College of Education, University of Dar es Salaam, Dar es Salaam, Tanzania
| | - Daniel T R Minja
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania
| | - John P A Lusingu
- National Institute for Medical Research, Tanga Centre, Tanga, Tanzania; Centre for Medical Parasitology, University of Copenhagen, Copenhagen, Denmark
| | | |
Collapse
|
8
|
B Henry N, Soulama I, S Sermé S, Bolscher JM, T G Huijs T, S Coulibaly A, Sombié S, Ouédraogo N, Diarra A, Zongo S, Guelbéogo WM, Nébié I, Sirima SB, Tiono AB, Pietro A, Collins KA, Dechering KJ, Bousema T. Assessment of the transmission blocking activity of antimalarial compounds by membrane feeding assays using natural Plasmodium falciparum gametocyte isolates from West-Africa. PLoS One 2023; 18:e0284751. [PMID: 37494413 PMCID: PMC10370769 DOI: 10.1371/journal.pone.0284751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Accepted: 04/07/2023] [Indexed: 07/28/2023] Open
Abstract
Antimalarial drugs that can block the transmission of Plasmodium gametocytes to mosquito vectors would be highly beneficial for malaria elimination efforts. Identifying transmission-blocking drugs currently relies on evaluation of their activity against gametocyte-producing laboratory parasite strains and would benefit from a testing pipeline with genetically diverse field isolates. The aims of this study were to develop a pipeline to test drugs against P. falciparum gametocyte field isolates and to evaluate the transmission-blocking activity of a set of novel compounds. Two assays were designed so they could identify both the overall transmission-blocking activity of a number of marketed and experimental drugs by direct membrane feeding assays (DMFA), and then also discriminate between those that are active against the gametocytes (gametocyte killing or sterilizing) or those that block development in the mosquito (sporontocidal). These DMFA assays used venous blood samples from naturally infected Plasmodium falciparum gametocyte carriers and locally reared Anopheles gambiae s.s. mosquitoes. Overall transmission-blocking activity was assessed following a 24 hour incubation of compound with gametocyte infected blood (TB-DMFA). Sporontocidal activity was evaluated following addition of compound directly prior to feeding, without incubation (SPORO-DMFA); Gametocyte viability was retained during 24-hour incubation at 37°C when gametocyte infected red blood cells were reconstituted in RPMI/serum. Methylene-blue, MMV693183, DDD107498, atovaquone and P218 showed potent transmission-blocking activity in the TB-DMFA, and both atovaquone and the novel antifolate P218 were potent inhibitors of sporogonic development in the SPORO-DMA. This work establishes a pipeline for the integral use of field isolates to assess the transmission-blocking capacity of antimalarial drugs to block transmission that should be validated in future studies.
Collapse
Affiliation(s)
- Noëlie B Henry
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
- Institut de Recherche en Sciences de la Santé (IRSS)/CNRST, Ouagadougou, Burkina Faso
| | - Samuel S Sermé
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | | | | | - Aboubacar S Coulibaly
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Salif Sombié
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Nicolas Ouédraogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Amidou Diarra
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Wamdaogo M Guelbéogo
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Issa Nébié
- Groupe de Recherche Action en Santé, Ouagadougou, Burkina Faso
| | | | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Alano Pietro
- Dipartimento di Malattie Infettive, Istituto Superiore di Sanità, Roma, Italy
| | - Katharine A Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| | | | - Teun Bousema
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, Netherland
| |
Collapse
|
9
|
Fornace KM, Topazian HM, Routledge I, Asyraf S, Jelip J, Lindblade KA, Jeffree MS, Ruiz Cuenca P, Bhatt S, Ahmed K, Ghani AC, Drakeley C. No evidence of sustained nonzoonotic Plasmodium knowlesi transmission in Malaysia from modelling malaria case data. Nat Commun 2023; 14:2945. [PMID: 37263994 PMCID: PMC10235043 DOI: 10.1038/s41467-023-38476-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2022] [Accepted: 05/02/2023] [Indexed: 06/03/2023] Open
Abstract
Reported incidence of the zoonotic malaria Plasmodium knowlesi has markedly increased across Southeast Asia and threatens malaria elimination. Nonzoonotic transmission of P. knowlesi has been experimentally demonstrated, but it remains unknown whether nonzoonotic transmission is contributing to increases in P. knowlesi cases. Here, we adapt model-based inference methods to estimate RC, individual case reproductive numbers, for P. knowlesi, P. falciparum and P. vivax human cases in Malaysia from 2012-2020 (n = 32,635). Best fitting models for P. knowlesi showed subcritical transmission (RC < 1) consistent with a large reservoir of unobserved infection sources, indicating P. knowlesi remains a primarily zoonotic infection. In contrast, sustained transmission (RC > 1) was estimated historically for P. falciparum and P. vivax, with declines in RC estimates observed over time consistent with local elimination. Together, this suggests sustained nonzoonotic P. knowlesi transmission is highly unlikely and that new approaches are urgently needed to control spillover risks.
Collapse
Affiliation(s)
- Kimberly M Fornace
- School of Biodiversity, One Health and Veterinary Medicine, University of Glasgow, Glasgow, UK.
- Saw Swee Hock School of Public Health, National University of, Singapore, Singapore.
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK.
| | - Hillary M Topazian
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Isobel Routledge
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- University of California, San Francisco, San Francisco, USA
| | - Syafie Asyraf
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Jenarun Jelip
- Vector-borne Disease Control Division, Ministry of Health Malaysia, Putrajaya, Malaysia
| | - Kim A Lindblade
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | - Pablo Ruiz Cuenca
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| | - Samir Bhatt
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
- Section of Epidemiology, University of Copenhagen, Copenhagen, Denmark
| | - Kamruddin Ahmed
- Faculty of Medicine and Health Sciences, Universiti Malaysia Sabah, Kota Kinabalu, Malaysia
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Chris Drakeley
- Faculty of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, London, UK
| |
Collapse
|
10
|
Falade CO, Orimadegun AE, Olusola FI, Michael OS, Anjorin OE, Funwei RI, Adedapo AD, Olusanya AL, Orimadegun BE, Mokuolu OA. Efficacy and safety of pyronaridine-artesunate versus artemether-lumefantrine in the treatment of acute uncomplicated malaria in children in South-West Nigeria: an open-labelled randomized controlled trial. Malar J 2023; 22:154. [PMID: 37179349 PMCID: PMC10182553 DOI: 10.1186/s12936-023-04574-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 04/24/2023] [Indexed: 05/15/2023] Open
Abstract
BACKGROUND In Nigeria, declining responsiveness to artemether-lumefantrine (AL), the artemisinin-based combination therapy (ACT) of choice since 2005, has been reported. Pyronaridine-artesunate (PA) is a newer fixed-dose ACT recently prequalified by the WHO for the treatment of uncomplicated falciparum malaria. However, PA data from the Nigerian pediatric population is scarce. Therefore, the efficacy and safety of PA and AL using the WHO 28-day anti-malarial therapeutic efficacy study protocol in Ibadan, southwest Nigeria, were compared. METHODS In an open-labelled, randomized, controlled clinical trial, 172 children aged 3-144 months with a history of fever and microscopically confirmed uncomplicated Plasmodium falciparum malaria were enrolled in southwest Nigeria. Enrollees were randomly assigned to receive PA or AL at standard dosages according to body weight for 3 days. Venous blood was obtained for hematology, blood chemistry, and liver function tests on days 0, 3, 7, and 28 as part of the safety evaluation. RESULTS 165 (95.9%) of the enrolled individuals completed the study. About half (52.3%; 90/172) of enrollees were male. Eighty-seven (50.6%) received AL, while 85 (49.4%) received PA. Day 28, adequate clinical and parasitological response for PA was 92.7% [(76/82) 95% CI 83.1, 95.9] and 71.1% [(59/83) 95% CI 60.4, 79.9] for AL (0.001). Fever and parasite clearance were similar in both groups. Two of six and eight of 24 parasite recurrences were observed among PA- and AL-treated children, respectively. PCR-corrected Day-28 cure rates for PA were 97.4% (76/78) and 88.1% (59/67) for AL (= 0.04) in the per-protocol population after new infections were censored. Hematological recovery at day 28 was significantly better among PA-treated patients (34.9% 2.8) compared to those treated with AL (33.1% 3.0) (0.002). Adverse events in both treatment arms were mild and similar to the symptoms of malaria infection. Blood chemistry and liver function tests were mostly within normal limits, with an occasional marginal rise. CONCLUSION PA and AL were well-tolerated. PA was significantly more efficacious than AL in both the PCR-uncorrected and PCR-corrected per-protocol populations during this study. The results of this study support the inclusion of PA in the anti-malarial treatment guidelines in Nigeria. RETROSPECTIVE TRIAL REGISTRATION Clinicaltrials.gov: NCT05192265.
Collapse
Affiliation(s)
- Catherine O Falade
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria.
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria.
| | - Adebola E Orimadegun
- Institute of Child Health, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Fiyinfoluwa I Olusola
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Obaro S Michael
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Oluwafunmibi E Anjorin
- Department of Accident and Emergency, Obafemi Awolowo University Teaching, Hospital, Ile-Ife, Nigeria
| | - Roland I Funwei
- Department of Pharmacology, Babcock University, Ilisan, Remo, Ogun State, Nigeria
| | - Aduragbenro D Adedapo
- Department of Pharmacology and Therapeutics, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Abiola L Olusanya
- Institute for Advanced Medical Research and Training, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Bose E Orimadegun
- Department of Chemical Pathology, College of Medicine, University of Ibadan, Ibadan, Nigeria
| | - Olugbenga A Mokuolu
- Department of Paediatrics, University of Ilorin Teaching Hospital, Ilorin, Nigeria
| |
Collapse
|
11
|
Cruz Camacho A, Kiper E, Oren S, Zaharoni N, Nir N, Soffer N, Noy Y, Ben David B, Rivkin A, Rotkopf R, Michael D, Carvalho TG, Regev-Rudzki N. High-throughput analysis of the transcriptional patterns of sexual genes in malaria. Parasit Vectors 2023; 16:14. [PMID: 36639683 PMCID: PMC9838061 DOI: 10.1186/s13071-022-05624-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 12/17/2022] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Plasmodium falciparum (Pf) is the leading protozoan causing malaria, the most devastating parasitic disease. To ensure transmission, a small subset of Pf parasites differentiate into the sexual forms (gametocytes). Since the abundance of these essential parasitic forms is extremely low within the human host, little is currently known about the molecular regulation of their sexual differentiation, highlighting the need to develop tools to investigate Pf gene expression during this fundamental mechanism. METHODS We developed a high-throughput quantitative Reverse-Transcription PCR (RT-qPCR) platform to robustly monitor Pf transcriptional patterns, in particular, systematically profiling the transcriptional pattern of a large panel of gametocyte-related genes (GRG). Initially, we evaluated the technical performance of the systematic RT-qPCR platform to ensure it complies with the accepted quality standards for: (i) RNA extraction, (ii) cDNA synthesis and (iii) evaluation of gene expression through RT-qPCR. We then used this approach to monitor alterations in gene expression of a panel of GRG upon treatment with gametocytogenesis regulators. RESULTS We thoroughly elucidated GRG expression profiles under treatment with the antimalarial drug dihydroartemisinin (DHA) or the metabolite choline over the course of a Pf blood cycle (48 h). We demonstrate that both significantly alter the expression pattern of PfAP2-G, the gametocytogenesis master regulator. However, they also markedly modify the developmental rate of the parasites and thus might bias the mRNA expression. Additionally, we screened the effect of the metabolites lactate and kynurenic acid, abundant in severe malaria, as potential regulators of gametocytogenesis. CONCLUSIONS Our data demonstrate that the high-throughput RT-qPCR method enables studying the immediate transcriptional response initiating gametocytogenesis of the parasites from a very low volume of malaria-infected RBC samples. The obtained data expand the current knowledge of the initial alterations in mRNA profiles of GRG upon treatment with reported regulators. In addition, using this method emphasizes that asexual parasite stage composition is a crucial element that must be considered when interpreting changes in GRG expression by RT-qPCR, specifically when screening for novel compounds that could regulate Pf sexual differentiation.
Collapse
Affiliation(s)
- Abel Cruz Camacho
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Edo Kiper
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Sonia Oren
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Nir Zaharoni
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Netta Nir
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Noam Soffer
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Yael Noy
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Bar Ben David
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Anna Rivkin
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Ron Rotkopf
- grid.13992.300000 0004 0604 7563Department of Life Sciences Core Facilities, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Dan Michael
- grid.13992.300000 0004 0604 7563Feinberg Graduate School, Weizmann Institute of Science, 7610001 Rehovot, Israel
| | - Teresa G. Carvalho
- grid.1018.80000 0001 2342 0938Department of Microbiology, Anatomy, Physiology and Pharmacology, La Trobe University, Melbourne, VIC 3086 Australia
| | - Neta Regev-Rudzki
- grid.13992.300000 0004 0604 7563Faculty of Biochemistry, Department of Biomolecular Sciences, Weizmann Institute of Science, 7610001 Rehovot, Israel
| |
Collapse
|
12
|
Implementation research of a cluster randomized trial evaluating the implementation and effectiveness of intermittent preventive treatment for malaria using dihydroartemisinin-piperaquine on reducing malaria burden in school-aged children in Tanzania: methodology, challenges, and mitigation. Malar J 2023; 22:7. [PMID: 36609279 PMCID: PMC9816525 DOI: 10.1186/s12936-022-04428-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 12/23/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND It has been more than 20 years since the malaria epidemiologic shift to school-aged children was noted. In the meantime, school-aged children (5-15 years) have become increasingly more vulnerable with asymptomatic malaria prevalence reaching up to 70%, making them reservoirs for subsequent transmission of malaria in the endemic communities. Intermittent Preventive Treatment of malaria in schoolchildren (IPTsc) has proven to be an effective tool to shrink this reservoir. As of 3rd June 2022, the World Health Organization recommends IPTsc in moderate and high endemic areas. Even so, for decision-makers, the adoption of scientific research recommendations has been stifled by real-world implementation challenges. This study presents methodology, challenges faced, and mitigations used in the evaluation of the implementation of IPTsc using dihydroartemisinin-piperaquine (DP) in three councils (Handeni District Council (DC), Handeni Town Council (TC) and Kilindi DC) of Tanga Region, Tanzania so as to understand the operational feasibility and effectiveness of IPTsc on malaria parasitaemia and clinical malaria incidence. METHODS The study deployed an effectiveness-implementation hybrid design to assess feasibility and effectiveness of IPTsc using DP, the interventional drug, against standard of care (control). Wards in the three study councils were the randomization unit (clusters). Each ward was randomized to implement IPTsc or not (control). In all wards in the IPTsc arm, DP was given to schoolchildren three times a year in four-month intervals. In each council, 24 randomly selected wards (12 per study arm, one school per ward) were chosen as representatives for intervention impact evaluation. Mixed design methods were used to assess the feasibility and acceptability of implementing IPTsc as part of a more comprehensive health package for schoolchildren. The study reimagined an existing school health programme for Neglected Tropical Diseases (NTD) control include IPTsc implementation. RESULTS The study shows IPTsc can feasibly be implemented by integrating it into existing school health and education systems, paving the way for sustainable programme adoption in a cost-effective manner. CONCLUSIONS Through this article other interested countries may realise a feasible plan for IPTsc implementation. Mitigation to any challenge can be customized based on local circumstances without jeopardising the gains expected from an IPTsc programme. Trial registration clinicaltrials.gov, NCT04245033. Registered 28 January 2020, https://clinicaltrials.gov/ct2/show/NCT04245033.
Collapse
|
13
|
Malaria parasite prevalence in Sub-Saharan African migrants screened in Sweden: a cross-sectional study. Lancet Reg Health Eur 2023; 27:100581. [PMID: 37069854 PMCID: PMC10105256 DOI: 10.1016/j.lanepe.2022.100581] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 12/22/2022] [Accepted: 12/23/2022] [Indexed: 01/15/2023] Open
Abstract
Background Asymptomatic infections with malaria parasites are common in populations in endemic areas. These infections may persist in migrants after arrival in a non-endemic area. Screening to find and clear these infections is generally not implemented in non-endemic countries, despite a potential negative health impact. We performed a study to evaluate the Plasmodium parasite prevalence in migrants living in Sweden. Methods Adults and children born in Sub-Saharan Africa (SSA) were invited in the study between April 2019 and June 2022 at 10 different sites, mainly as part of the national Migrant Health Assessment Program in Stockholm and Västerås, Sweden. Rapid diagnostic tests (RDT) and real-time PCR were used to detect malaria parasites. Prevalence and test sensitivity were calculated with 95% confidence intervals (CI). Univariate and multivariable logistic regression were used to evaluate associations with PCR positivity. Findings In total, 789 individuals were screened for Plasmodium spp. of which 71 (9.0%) were positive by PCR and 18 (2.3%) also by RDT. When performed during the national screening program, 10.4% was PCR positive. A high prevalence was detected in migrants with Uganda as the country of last residence, 53/187 (28.3%), and in this group the prevalence was highest in children, 29/81 (35.8%). Among the PCR positive, 47/71 (66.2%) belonged to families with at least one other member testing positive (odds ratio [OR] 43.4 (95% CI 19.0-98.9), and the time lived in Sweden ranged between 6 and 386 days. Interpretation A high malaria parasite prevalence was found in migrants from SSA, particularly in children offered screening in Stockholm, Sweden during the study period. Awareness of asymptomatic malaria infection is needed and screening for malaria in migrants arriving from high endemic countries should be considered. Funding The Swedish Research Council, Stockholm County Council and Centre for Clinical Research, Västmanland, Sweden.
Collapse
|
14
|
Oulton T, Mahamar A, Sanogo K, Diallo M, Youssouf A, Niambele SM, Samaké S, Keita S, Sinaba Y, Sacko A, Traore SF, Lanke K, Collins KA, Bradley J, Drakeley C, Stone WJR, Dicko A. Persistence of Plasmodium falciparum HRP-2 antigenaemia after artemisinin combination therapy is not associated with gametocytes. Malar J 2022; 21:372. [PMID: 36474274 PMCID: PMC9724264 DOI: 10.1186/s12936-022-04387-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 11/16/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND In some settings, sensitive field diagnostic tools may be needed to achieve elimination of falciparum malaria. To this end, rapid diagnostic tests (RDTs) based on the detection of the Plasmodium falciparum protein HRP-2 are being developed with increasingly lower limits of detection. However, it is currently unclear how parasite stages that are unaffected by standard drug treatments may contribute to HRP-2 detectability and potentially confound RDT results even after clearance of blood stage infection. This study assessed the detectability of HRP-2 in periods of post-treatment residual gametocytaemia. METHODS A cohort of 100 P. falciparum infected, gametocyte positive individuals were treated with or without the gametocytocidal drug primaquine (PQ), alongside standard artemisinin-based combination therapy (ACT), in the context of a randomised clinical trial in Ouelessebougou, Mali. A quantitative ELISA was used to measure levels of HRP-2, and compared time to test negativity using a standard and ultra-sensitive RDT (uRDT) between residual gametocyte positive and negative groups. RESULTS Time to test negativity was longest by uRDT, followed by ELISA and then standard RDT. No significant difference in time to negativity was found between the treatment groups with and without residual gametocytes: uRDT (HR 0.79 [95% CI 0.52-1.21], p = 0.28), RDT (HR 0.77 [95% CI 0.51-1.15], p = 0.20) or ELISA (HR 0.88 [95% CI 0.59-1.32], p = 0.53). Similarly, no difference was observed when adjusting for baseline asexual parasite density. Quantified levels of HRP-2 over time were similar between groups, with differences attributable to asexual parasite densities. Furthermore, no difference in levels of HRP-2 was found between individuals who were or were not infectious to mosquitoes (OR 1.19 [95% CI 0.98-1.46], p = 0.077). CONCLUSIONS Surviving sexual stage parasites after standard ACT treatment do not contribute to the persistence of HRP-2 antigenaemia, and appear to have little impact on RDT results.
Collapse
Affiliation(s)
- Tate Oulton
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Samaké
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - Katharine A Collins
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, The Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Will J R Stone
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
15
|
Lek D, Rachmat A, Harrison D, Chin G, Chaoratanakawee S, Saunders D, Menard D, Rogers WO. Efficacy of three anti-malarial regimens for uncomplicated Plasmodium falciparum malaria in Cambodia, 2009-2011: a randomized controlled trial and brief review. Malar J 2022; 21:259. [PMID: 36071520 PMCID: PMC9450427 DOI: 10.1186/s12936-022-04279-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Accepted: 08/28/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Anti-malarial resistance remains an important public health challenge in Cambodia. The effectiveness of three therapies for uncomplicated falciparum malaria was evaluated in Oddar Meanchey province in Northern Cambodia from 2009 to 2011. METHODS In this randomized, open-label, parallel group-controlled trial, 211 subjects at least 5 years old with uncomplicated falciparum malaria were treated with 3 days of directly observed therapy: 63 received artesunate-mefloquine (AS/MQ), 77 received dihydroartemisinin-piperaquine (DHA/PPQ), and 71 received atovaquone-proguanil (ATQ/PG). The subjects were followed for 42 days or until recurrent parasitaemia. Genotyping of msp1, msp2, and glurp among individual parasite isolates distinguished recrudescence from reinfection. Pfmdr1 copy number was measured by real-time PCR and half-maximal parasite inhibitory concentrations (IC50) were measured in vitro by 48-h isotopic hypoxanthine incorporation assay. RESULTS The per-protocol PCR-adjusted efficacy (95% confidence interval) at 42 days was 80.6% (70.8-90.5%) for AS/MQ, 97.2% (93.3-100%) for DHA/PPQ, and 92.9% (86.1-99.6%) for ATQ/PG. On day 3, 57.9% remained parasitaemic in the AS/MQ and DHA/PPQ arms. At baseline, 46.9% had microscopic Plasmodium falciparum gametocytaemia. Both recurrences in the DHA/PPQ arm lost Pfmdr1 copy number amplification at recrudescence. All four recurrences in the ATQ/PG arm were wild-type for cytochrome bc1. One subject withdrew from the ATQ/PG arm due to drug allergy. CONCLUSIONS This study was conducted at the epicentre of substantial multi-drug resistance that emerged soon thereafter. Occurring early in the national transition from AS/MQ to DHA/PPQ, both DHA/PPQ and ATQ/PG had acceptable efficacy against uncomplicated falciparum malaria. However, efficacy of AS/MQ was only 80% with apparent mefloquine resistance based on elevated Pfmdr1 copy number and IC50. By 2009, there was already significant evidence of artemisinin resistance not previously reported at the Northern Cambodia-Thai border. This study suggests the basis for early development of significant DHA/PPQ failures within 3 years of introduction. Artemisinin resistance likely occurred on the Northern border concurrently with that reported along the Western border in Pailin. Trial registration This legacy trial was conducted prior to International Committee of Medical Journal Editors' requirements for preregistration on ClinicalTrials.gov. The full protocol has been provided.
Collapse
Affiliation(s)
- Dysoley Lek
- National Centre for Parasitology, Entomology and Malaria Control, Phnom Penh, Cambodia.
| | - Agus Rachmat
- U.S. Naval Medical Research Unit 2, Phnom Penh, Cambodia
| | | | - Geoffrey Chin
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | - David Saunders
- Uniformed Services University of the Health Sciences, Bethesda, MD, USA
| | | | | |
Collapse
|
16
|
Portugaliza HP, Natama HM, Guetens P, Rovira-Vallbona E, Somé AM, Millogo A, Ouédraogo DF, Valéa I, Sorgho H, Tinto H, van Hong N, Sitoe A, Varo R, Bassat Q, Cortés A, Rosanas-Urgell A. Plasmodium falciparum sexual conversion rates can be affected by artemisinin-based treatment in naturally infected malaria patients. EBioMedicine 2022; 83:104198. [PMID: 35961203 PMCID: PMC9385555 DOI: 10.1016/j.ebiom.2022.104198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 10/25/2022] Open
|
17
|
Rek J, Blanken SL, Okoth J, Ayo D, Onyige I, Musasizi E, Ramjith J, Andolina C, Lanke K, Arinaitwe E, Olwoch P, Collins KA, Kamya MR, Dorsey G, Drakeley C, Staedke SG, Bousema T, Conrad MD. Asymptomatic School-Aged Children Are Important Drivers of Malaria Transmission in a High Endemicity Setting in Uganda. J Infect Dis 2022; 226:708-713. [PMID: 35578987 PMCID: PMC9441202 DOI: 10.1093/infdis/jiac169] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 05/06/2022] [Indexed: 12/24/2022] Open
Abstract
Achieving malaria elimination requires a better understanding of the transmissibility of human infections in different transmission settings. This study aimed to characterize the human infectious reservoir in a high endemicity setting in eastern Uganda, using gametocyte quantification and mosquito feeding assays. In asymptomatic infections, gametocyte densities were positively associated with the proportion of infected mosquitoes (β = 1.60; 95% CI, 1.32-1.92; P < .0001). Combining transmissibility and abundance in the population, symptomatic and asymptomatic infections were estimated to contribute to 5.3% and 94.7% of the infectious reservoir, respectively. School-aged children (5-15 years old) contributed to 50.4% of transmission events and were important drivers of malaria transmission.
Collapse
Affiliation(s)
| | | | - Joseph Okoth
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Daniel Ayo
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Ismail Onyige
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Eric Musasizi
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jordache Ramjith
- Department for Health Evidence, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Chiara Andolina
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Katharine A Collins
- Department of Medical Microbiology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | - Moses R Kamya
- Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, San Francisco General Hospital, University of California, San Francisco, USA
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Correspondence: Teun Bousema, PhD, Radboud University Nijmegen Medical Center, Nijmegen, The Netherlands ()
| | | |
Collapse
|
18
|
Pembet Singana B, Casimiro PN, Matondo Diassivi B, Kobawila SC, Youndouka JM, Basco LK, Ringwald P, Briolant S, Ndounga M. Prevalence of malaria among febrile patients and assessment of efficacy of artemether-lumefantrine and artesunate-amodiaquine for uncomplicated malaria in Dolisie, Republic of the Congo. Malar J 2022; 21:137. [PMID: 35501861 PMCID: PMC9063077 DOI: 10.1186/s12936-022-04143-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 03/28/2022] [Indexed: 01/13/2023] Open
Abstract
BACKGROUND In the Republic of the Congo, malaria represents a major public health problem affecting all age groups. A regular surveillance of the current efficacy of first-line anti-malarial drugs is required in the face of possible emergence and spread of artemisinin-resistant Plasmodium falciparum strains in Africa. The purpose of this study was to determine the prevalence of malaria among febrile patients of all ages and assess the efficacy of artemether-lumefantrine (AL) and artesunate-amodiaquine (ASAQ) in Congolese children. METHODS Febrile patients of all ages were initially screened for malaria by both rapid diagnostic test (RDT) and microscopy. Patients less than 12 years of age, with parasitaemia ≥ 1000 asexual parasites of P. falciparum/µL of blood, without any signs of severity, were enrolled in a therapeutic efficacy study and treated after obtaining their parents' (or legal guardian's) informed consent in two health centres in Dolisie. The patients were followed for 28 days in accordance with the 2009 World Health Organization standard protocol. If parasitaemia reappeared on or after day 7, the genetic profiles (genes expressing merozoite surface protein-1 [msp1], merozoite surface protein-2 [msp2], and glutamine-rich protein [glurp]) of pre-treatment and post-treatment isolates were compared by nested polymerase chain reaction (PCR) followed by capillary electrophoresis to make a distinction between recrudescence and re-infection. The clinical and parasitological outcome was analysed by the per-protocol method and Kaplan-Meier survival curves. RESULTS A total of 994 febrile patients of all ages were screened by RDT and microscopy. Of 994 patients, 323 (32.5%) presented a positive RDT, and 266 (26.8%) were microscopy-positive. Based on microscopy as the reference diagnostic method, the sensitivity and the specificity of the RDT were 98.9 and 91.8%, respectively. The Cohen's kappa coefficient was 0.86. A total of 121 children aged less than 12 years (61 in AL treatment group and 60 in ASAQ treatment group) were included in therapeutic efficacy study. Before PCR correction, the proportions of adequate clinical and parasitological response were 96.6% for AL and 86.0% for ASAQ in the per-protocol population (P < 0.05). The PCR-corrected efficacy rates were 98.2% and 94.2% for AL and ASAQ, respectively (P > 0.05). Both treatments were well tolerated. CONCLUSIONS AL and ASAQ remain highly effective for the first-line treatment of uncomplicated P. falciparum malaria in Dolisie. Despite high efficacy of first- and second-line treatment, there is a continuing need to scale up effective malaria preventive interventions and vector control strategies in the country. TRIAL REGISTRATION NUMBER ACTRN12616001422415.
Collapse
Affiliation(s)
- Brice Pembet Singana
- grid.442828.00000 0001 0943 7362Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, Republic of the Congo
| | - Prisca Nadine Casimiro
- Institut National de Recherche en Sciences de la Santé, Brazzaville, Republic of the Congo
| | | | - Simon Charles Kobawila
- grid.442828.00000 0001 0943 7362Faculté des Sciences et Techniques, Université Marien Ngouabi, BP 69 Brazzaville, Republic of the Congo
| | - Jean-Mermoz Youndouka
- Programme National de Lutte Contre le Paludisme, Direction Générale de l’Epidémiologie de la Maladie, Ministère de la Santé et de la Population, Brazzaville, Republic of the Congo
| | - Leonardo K. Basco
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France ,grid.483853.10000 0004 0519 5986IHU-Méditerranée Infection, Marseille, France
| | - Pascal Ringwald
- grid.3575.40000000121633745Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Sébastien Briolant
- Aix Marseille Univ., IRD, AP-HM, SSA, VITROME, Marseille, France ,grid.483853.10000 0004 0519 5986IHU-Méditerranée Infection, Marseille, France ,grid.418221.cUnité de Parasitologie Entomologie, Département de Microbiologie et Maladies Infectieuses, Institut de Recherche Biomédicale des Armées, Marseille, France
| | - Mathieu Ndounga
- Programme National de Lutte Contre le Paludisme, Direction Générale de l’Epidémiologie de la Maladie, Ministère de la Santé et de la Population, Brazzaville, Republic of the Congo
| |
Collapse
|
19
|
Stone W, Mahamar A, Smit MJ, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Keita S, Dicko OM, Diallo M, Maguiraga SO, Samake S, Attaher O, Lanke K, Ter Heine R, Bradley J, McCall MBB, Issiaka D, Traore SF, Bousema T, Drakeley C, Dicko A. Single low-dose tafenoquine combined with dihydroartemisinin-piperaquine to reduce Plasmodium falciparum transmission in Ouelessebougou, Mali: a phase 2, single-blind, randomised clinical trial. THE LANCET. MICROBE 2022; 3:e336-e347. [PMID: 35544095 PMCID: PMC9042793 DOI: 10.1016/s2666-5247(21)00356-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 12/07/2021] [Accepted: 12/15/2021] [Indexed: 11/20/2022]
Abstract
BACKGROUND Tafenoquine was recently approved as a prophylaxis and radical cure for Plasmodium vivax infection, but its Plasmodium falciparum transmission-blocking efficacy is unclear. We aimed to establish the efficacy and safety of three single low doses of tafenoquine in combination with dihydroartemisinin-piperaquine for reducing gametocyte density and transmission to mosquitoes. METHODS In this four-arm, single-blind, phase 2, randomised controlled trial, participants were recruited at the Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako in Mali. Eligible participants were aged 12-50 years, with asymptomatic P falciparum microscopy-detected gametocyte carriage, had a bodyweight of 80 kg or less, and had no clinical signs of malaria defined by fever. Participants were randomly assigned (1:1:1:1) to standard treatment with dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus a single dose of tafenoquine (in solution) at a final dosage of 0·42 mg/kg, 0·83 mg/kg, or 1·66 mg/kg. Randomisation was done with a computer-generated randomisation list and concealed with sealed, opaque envelopes. Dihydroartemisinin-piperaquine was administered as oral tablets over 3 days (day 0, 1, and 2), as per manufacturer instructions. A single dose of tafenoquine was administered as oral solution on day 0 in parallel with the first dose of dihydroartemisinin-piperaquine. Tafenoquine dosing was based on bodyweight to standardise efficacy and risk variance. The primary endpoint, assessed in the per-protocol population, was median percentage change in mosquito infection rate 7 days after treatment compared with baseline. Safety endpoints included frequency and incidence of adverse events. The final follow-up visit was on Dec 23, 2021; the trial is registered with ClinicalTrials.gov, NCT04609098. FINDINGS From Oct 29 to Nov 25, 2020, 1091 individuals were screened for eligibility, 80 of whom were enrolled and randomly assigned (20 per treatment group). Before treatment, 53 (66%) individuals were infectious to mosquitoes, infecting median 12·50% of mosquitoes (IQR 3·64-35·00). Within-group reduction in mosquito infection rate on day 7 was 79·95% (IQR 57·15-100; p=0·0005 for difference from baseline) following dihydroartemisinin-piperaquine only, 100% (98·36-100; p=0·0005) following dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg, 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg, and 100% (100-100; p=0·0001) following dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg. 55 (69%) of 80 participants had a total of 94 adverse events over the course of the trial; 86 (92%) adverse events were categorised as mild, seven (7%) as moderate, and one (1%) as severe. The most common treatment-related adverse event was mild or moderate headache, which occurred in 15 (19%) participants (dihydroartemisinin-piperaquine n=2; dihydroartemisinin-piperaquine plus tafenoquine 0·42 mg/kg n=6; dihydroartemisinin-piperaquine plus tafenoquine 0·83 mg/kg n=3; and dihydroartemisinin-piperaquine plus tafenoquine 1·66 mg/kg n=4). No serious adverse events occurred. No significant differences in the incidence of all adverse events (p=0·73) or treatment-related adverse events (p=0·62) were observed between treatment groups. INTERPRETATION Tafenoquine was well tolerated at all doses and accelerated P falciparum gametocyte clearance. All tafenoquine doses showed improved transmission reduction at day 7 compared with dihydroartemisinin-piperaquine alone. These data support the case for further research on tafenoquine as a transmission-blocking supplement to standard antimalarials. FUNDING Bill & Melinda Gates Foundation. TRANSLATIONS For the French, Portuguese, Spanish and Swahili translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- Will Stone
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK.
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Merel J Smit
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar M Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Seydina O Maguiraga
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Siaka Samake
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Oumar Attaher
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Rob Ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Matthew B B McCall
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Djibrilla Issiaka
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
20
|
O’Flaherty K, Chan JA, Cutts JC, Zaloumis SG, Ashley EA, Phyo AP, Drew DR, Dondorp AM, Day NP, Dhorda M, Fairhurst RM, Lim P, Amaratunga C, Pukrittayakamee S, Hien TT, Htut Y, Mayxay M, Faiz MA, Mokuolu OA, Onyamboko MA, Fanello C, Takashima E, Tsuboi T, Theisen M, Nosten F, Beeson JG, Simpson JA, White NJ, Fowkes FJI. Anti-Gametocyte Antigen Humoral Immunity and Gametocytemia During Treatment of Uncomplicated Falciparum Malaria: A Multi-National Study. Front Cell Infect Microbiol 2022; 12:804470. [PMID: 35463638 PMCID: PMC9022117 DOI: 10.3389/fcimb.2022.804470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 03/11/2022] [Indexed: 11/16/2022] Open
Abstract
Introduction Understanding the human immune response to Plasmodium falciparum gametocytes and its association with gametocytemia is essential for understanding the transmission of malaria as well as progressing transmission blocking vaccine candidates. Methods In a multi-national clinical efficacy trial of artemisinin therapies (13 sites of varying transmission over South-East Asia and Africa), we measured Immunoglobulin G (IgG) responses to recombinant P. falciparum gametocyte antigens expressed on the gametocyte plasma membrane and leading transmission blocking vaccine candidates Pfs230 (Pfs230c and Pfs230D1M) and Pfs48/45 at enrolment in 1,114 participants with clinical falciparum malaria. Mixed effects linear and logistic regression were used to determine the association between gametocyte measures (gametocytemia and gametocyte density) and antibody outcomes at enrolment. Results Microscopy detectable gametocytemia was observed in 11% (127/1,114) of participants at enrolment, and an additional 9% (95/1,114) over the follow-up period (up to day 42) (total 20% of participants [222/1,114]). IgG levels in response to Pfs230c, Pfs48/45 and Pfs230D1M varied across study sites at enrolment (p < 0.001), as did IgG seroprevalence for anti-Pfs230c and D1M IgG (p < 0.001), but not for anti-Pfs48/45 IgG (p = 0.159). In adjusted analyses, microscopy detectable gametocytemia at enrolment was associated with an increase in the odds of IgG seropositivity to the three gametocyte antigens (Pfs230c OR [95% CI], p: 1.70 [1.10, 2.62], 0.017; Pfs48/45: 1.45 [0.85, 2.46], 0.174; Pfs230D1M: 1.70 [1.03, 2.80], 0.037), as was higher gametocyte density at enrolment (per two-fold change in gametocyte density Pfs230c OR [95% CI], p: 1.09 [1.02, 1.17], 0.008; Pfs48/45: 1.05 [0.98, 1.13], 0.185; Pfs230D1M: 1.07 [0.99, 1.14], 0.071). Conclusion Pfs230 and Pfs48/45 antibodies are naturally immunogenic targets associated with patent gametocytemia and increasing gametocyte density across multiple malaria endemic settings, including regions with emerging artemisinin-resistant P. falciparum.
Collapse
Affiliation(s)
| | - Jo-Anne Chan
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
| | - Julia C. Cutts
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
| | - Sophie G. Zaloumis
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Elizabeth A. Ashley
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | | | - Damien R. Drew
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
| | - Arjen M. Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Nicholas P. Day
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- WorldWide Antimalarial Resistance Network, Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Rick M. Fairhurst
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Pharath Lim
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | - Chanaki Amaratunga
- Laboratory of Malaria and Vector Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Rockville, MD, United States
| | | | - Tran Tinh Hien
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Oxford University Clinical Research Unit, Hospital for Tropical Diseases, Ho Chi Minh City, Vietnam
| | - Ye Htut
- Department of Medical Research, Ministry of Health and Sports, Yangon, Myanmar
| | - Mayfong Mayxay
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Lao-Oxford-Mahosot Hospital-Wellcome Trust-Research Unit, Mahosot Hospital, Vientiane, Laos
- Institute of Research and Education Development, University of Health Sciences, Vientiane, Laos
| | - M. Abul Faiz
- Malaria Research Group and Dev Care Foundation, Chittagong, Bangladesh
| | - Olugbenga A. Mokuolu
- Department of Paediatrics and Child Health, University of Ilorin, Ilorin, Nigeria
| | - Marie A. Onyamboko
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Caterina Fanello
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Kinshasa School of Public Health, University of Kinshasa, Kinshasa, Democratic Republic of Congo
| | - Eizo Takashima
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Takafumi Tsuboi
- Division of Malaria Research, Proteo-Science Center, Ehime University, Matsuyama, Japan
| | - Michael Theisen
- Department for Congenital Disorders, Statens Serum Institut, Copenhagen, Denmark
- Centre for Medical Parasitology at Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, Denmark
| | - Francois Nosten
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Mae Sot, Thailand
| | - James G. Beeson
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Department of Medicine, The University of Melbourne, Melbourne, VIC, Australia
- Department of Immunology, Monash University, Melbourne, VIC, Australia
- Department of Microbiology and Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Julie A. Simpson
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Nicholas J. White
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
- Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Freya J. I. Fowkes
- Life Sciences, Burnet Institute, Melbourne, VIC, Australia
- Centre for Epidemiology and Biostatistics, School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
- Department of Infectious Diseases and Department of Epidemiology and Preventative Medicine, Monash University, Melbourne, VIC, Australia
- *Correspondence: Freya J. I. Fowkes,
| |
Collapse
|
21
|
Niba PTN, Nji AM, Ali IM, Akam LF, Dongmo CH, Chedjou JPK, Fomboh CT, Nana WD, Oben OLA, Selly-Ngaloumo AA, Moyeh MN, Ngu JA, Ludovic AJ, Aboh PM, Ambani MCE, Omgba PAM, Kotcholi GB, Adzemye LM, Nna DRA, Douanla A, Ango Z, Ewane MS, Ticha JT, Tatah FM, Dinza G, Ndikum VN, Fosah DA, Bigoga JD, Alifrangis M, Mbacham WF. Effectiveness and safety of artesunate-amodiaquine versus artemether-lumefantrine for home-based treatment of uncomplicated Plasmodium falciparum malaria among children 6-120 months in Yaoundé, Cameroon: a randomized trial. BMC Infect Dis 2022; 22:166. [PMID: 35189818 PMCID: PMC8862275 DOI: 10.1186/s12879-022-07101-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Accepted: 01/29/2022] [Indexed: 11/10/2022] Open
Abstract
Background Many studies have reported high efficacy and safety of artesunate-amodiaquine (AS-AQ) and artemether-lumefantrine (AL) when administered under direct observation in Cameroon. There is paucity of data to support their continuous use in home-based treatment of uncomplicated Plasmodium falciparum malaria in Cameroon. Hence, this study aimed to assess the effectiveness and safety of AS-AQ versus AL for home-based treatment of uncomplicated P. falciparum malaria among children 6–120 months in Yaoundé, Cameroon. Methods A two-arm, open-label, randomized, controlled trial comparing the equivalence of AS-AQ (experimental group) and AL (control group) was carried out from May 2019 to April 2020 at two secondary hospitals in Yaoundé. Participants were randomized to receive either AS-AQ or AL. After the first dose, antimalarial drugs were given at home, rather than under direct observation by a study staff. The conventional on-treatment and post-treatment laboratory and clinical evaluations were not done until day 3 of the full antimalarial treatment course. The evaluation of effectiveness was mainly based on per protocol polymerase chain reaction adjusted adequate clinical and parasitological response (PP PCR adjusted ACPR) on day 28 post-treatment. Safety was based on assessment of adverse events (AEs) and severe adverse events (SAEs) from day 1 to day 28. Results A total of 242 children were randomized to receive AS-AQ (n = 114) and AL (n = 128). The PP PCR adjusted day 28 cure rates were [AS-AQ = 96.9% (95% CI, 91.2–99.4) versus AL = 95.5% (95% CI, 89.9–98.5), P = 0.797]. Expected mild to moderate adverse events were reported in both arms [AS-AQ = 83 (84.7%) versus AL = 99 (86.1%), P = 0.774]. The most common adverse events included: transient changes of hematologic indices and fever. Conclusions This study demonstrated that AS-AQ and AL are effective and safe for home management of malaria in Yaoundé. The evidence from this study supports the parallel use of the two drugs in routine practice. However, the findings from this study do not describe the likely duration of antimalarial effectiveness in holoendemic areas where multiple courses of treatment might be required. Trial registration: This study is a randomized controlled trial and it was retrospectively registered on 23/09/2020 at ClinicalTrials.gov with registration number NCT04565184. Supplementary Information The online version contains supplementary material available at 10.1186/s12879-022-07101-2.
Collapse
Affiliation(s)
- Peter Thelma Ngwa Niba
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Akindeh Mbuh Nji
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Innocent Mbulli Ali
- The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Dschang, Dschang, Cameroon
| | - Lawrence Fonyonga Akam
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Cedric Hermann Dongmo
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Jean Paul Kengne Chedjou
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Calvino Tah Fomboh
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - William Dorian Nana
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Ornella Laetitia Ayem Oben
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Abdel Aziz Selly-Ngaloumo
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Marcel N Moyeh
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry and Molecular Biology, Faculty of Science, University of Buea, Buea, Cameroon
| | - Jude Achidi Ngu
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Ambassa Jean Ludovic
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon.,District Hospital, Cité Verte, Yaoundé, Cameroon
| | | | | | | | | | | | | | - Adèle Douanla
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon
| | - Ze Ango
- District Medical Center, Minkoa-Meyos, Yaoundé, Cameroon
| | | | - Joel Tewara Ticha
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Fritz Mbuh Tatah
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Golwa Dinza
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon
| | - Valentine Nchafor Ndikum
- Department of Pharmacology and African Traditional Medicine, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé, Cameroon
| | - Dorothy A Fosah
- National Malaria Control Program, Ministry of Public Health, Yaoundé, Cameroon
| | - Jude D Bigoga
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon.,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon.,Department of Biochemistry, Faculty of Science, University of Yaoundé I, Yaoundé, Cameroon
| | - Michael Alifrangis
- Centre for Medical Parasitology, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Infectious Diseases, Copenhagen University Hospital, Copenhagen, Denmark
| | - Wilfred F Mbacham
- MARCAD-DELTAS Program, Laboratory for Public Health Research Biotechnologies, University of Yaoundé I, Yaoundé, Cameroon. .,The Biotechnology Center, University of Yaoundé I, Yaoundé, Cameroon. .,Cameroon Coalition Against Malaria, P.O. Box 8094, Yaoundé, Cameroon.
| |
Collapse
|
22
|
Yu S, Wang J, Luo X, Zheng H, Wang L, Yang X, Wang Y. Transmission-Blocking Strategies Against Malaria Parasites During Their Mosquito Stages. Front Cell Infect Microbiol 2022; 12:820650. [PMID: 35252033 PMCID: PMC8889032 DOI: 10.3389/fcimb.2022.820650] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Accepted: 01/31/2022] [Indexed: 11/24/2022] Open
Abstract
Malaria is still the most widespread parasitic disease and causes the most infections globally. Owing to improvements in sanitary conditions and various intervention measures, including the use of antimalarial drugs, the malaria epidemic in many regions of the world has improved significantly in the past 10 years. However, people living in certain underdeveloped areas are still under threat. Even in some well-controlled areas, the decline in malaria infection rates has stagnated or the rates have rebounded because of the emergence and spread of drug-resistant malaria parasites. Thus, new malaria control methods must be developed. As the spread of the Plasmodium parasite is dependent on the part of its life cycle that occurs in mosquitoes, to eliminate the possibility of malaria infections, transmission-blocking strategies against the mosquito stage should be the first choice. In fact, after the gametocyte enters the mosquito body, it undergoes a series of transformation processes over a short period, thus providing numerous potential blocking targets. Many research groups have carried out studies based on targeting the blocking of transmission during the mosquito phase and have achieved excellent results. Meanwhile, the direct killing of mosquitoes could also significantly reduce the probability of malaria infections. Microorganisms that display complex interactions with Plasmodium, such as Wolbachia and gut flora, have shown observable transmission-blocking potential. These could be used as a biological control strategy and play an important part in blocking the transmission of malaria.
Collapse
Affiliation(s)
- Shasha Yu
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Jing Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xue Luo
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Hong Zheng
- Department of Thoracic Surgery, Xinqiao Hospital, Army Medical University, Chongqing, China
| | - Luhan Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Xuesen Yang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
| | - Ying Wang
- Department of Tropical Medicine, College of Military Preventive Medicine, Army Medical University, Chongqing, China
- *Correspondence: Ying Wang,
| |
Collapse
|
23
|
Dabira ED, Hachizovu S, Conteh B, Mendy A, Nyang H, Lawal B, Ndiath MO, Mulenga JM, Mwanza S, Borghini-Fuhrer I, Arbe-Barnes S, Miller R, Shin J, Duparc S, D'Alessandro U, Manyando C, Achan J. Efficacy, Safety and Tolerability of Pyronaridine-artesunate in Asymptomatic Malaria-infected Individuals: a Randomized Controlled Trial. Clin Infect Dis 2022; 74:180-188. [PMID: 33983371 PMCID: PMC8800175 DOI: 10.1093/cid/ciab425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Indexed: 11/21/2022] Open
Abstract
BACKGROUND Pyronaridine-artesunate (PA) is a registered artemisinin-based combination therapy, potentially useful for mass drug administration campaigns. However, further data are needed to evaluate its efficacy, safety and tolerability as full or incomplete treatment in asymptomatic Plasmodium falciparum-infected individuals. METHODS This phase II, multi-center, open label, randomized clinical trial was conducted in The Gambia and Zambia. Participants with microscopically confirmed asymptomatic P. falciparum infection were randomly assigned (1:1:1) to receive a 3-day, 2-day, or 1-day treatment regimen of PA (180:60 mg), dosed according to bodyweight. The primary efficacy outcome was polymerase chain reaction (PCR)-adjusted adequate parasitological response (APR) at day 28 in the per-protocol population. RESULTS A total of 303 participants were randomized. Day 28 PCR-adjusted APR was 100% for both the 3-day (98/98) and 2-day regimens (96/96), and 96.8% (89/94) for the 1-day regimen. Efficacy was maintained at 100% until day 63 for the 3-day and 2-day regimens but declined to 94.4% (84/89) with the 1-day regimen. Adverse event frequency was similar between the 3-day (51.5% [52/101]), 2-day (52.5% [52/99]), and 1-day (54.4% [56/103]) regimens; the majority of adverse events were of grade 1 or 2 severity (85% [136/160]). Asymptomatic, transient increases (>3 times the upper limit of normal) in alanine aminotransferase/aspartate aminotransferase were observed for 6/301 (2.0%) participants. CONCLUSIONS PA had high efficacy and good tolerability in asymptomatic P. falciparum-infected individuals, with similar efficacy for the full 3-day and incomplete 2-day regimens. Although good adherence to the 3-day regimen should be encouraged, these results support the further investigation of PA for mass drug administration campaigns. CLINICAL TRIALS REGISTRATION NCT03814616.
Collapse
Affiliation(s)
- Edgard D Dabira
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Bakary Conteh
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Alieu Mendy
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Haddy Nyang
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Bolarinde Lawal
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | - Mamadou Ousmane Ndiath
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | | | | | | | | | | | - Stephan Duparc
- Medicines for Malaria Venture (MMV), Geneva, Switzerland
| | - Umberto D'Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| | | | - Jane Achan
- Disease Control and Elimination Theme, Medical Research Council Unit, The Gambia at London School of Hygiene & Tropical Medicine, Fajara, The Gambia
| |
Collapse
|
24
|
Stone W, Mahamar A, Sanogo K, Sinaba Y, Niambele SM, Sacko A, Keita S, Youssouf A, Diallo M, Soumare HM, Kaur H, Lanke K, ter Heine R, Bradley J, Issiaka D, Diawara H, Traore SF, Bousema T, Drakeley C, Dicko A. Pyronaridine-artesunate or dihydroartemisinin-piperaquine combined with single low-dose primaquine to prevent Plasmodium falciparum malaria transmission in Ouélessébougou, Mali: a four-arm, single-blind, phase 2/3, randomised trial. THE LANCET. MICROBE 2022; 3:e41-e51. [PMID: 35028628 PMCID: PMC8721154 DOI: 10.1016/s2666-5247(21)00192-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Pyronaridine-artesunate is the most recently licensed artemisinin-based combination therapy. WHO has recommended that a single low dose of primaquine could be added to artemisinin-based combination therapies to reduce Plasmodium falciparum transmission in areas aiming for elimination of malaria or areas facing artemisinin resistance. We aimed to determine the efficacy of pyronaridine-artesunate and dihydroartemisinin-piperaquine with and without single low-dose primaquine for reducing gametocyte density and transmission to mosquitoes. METHODS We conducted a four-arm, single-blind, phase 2/3, randomised trial at the Ouélessébougou Clinical Research Unit of the Malaria Research and Training Centre of the University of Bamako (Bamako, Mali). Participants were aged 5-50 years, with asymptomatic P falciparum malaria mono-infection and gametocyte carriage on microscopy, haemoglobin density of 9·5 g/dL or higher, bodyweight less than 80 kg, and no use of antimalarial drugs over the past week. Participants were randomly assigned (1:1:1:1) to one of four treatment groups: pyronaridine-artesunate, pyronaridine-artesunate plus primaquine, dihydroartemisinin-piperaquine, or dihydroartemisinin-piperaquine plus primaquine. Treatment allocation was concealed to all study staff other than the trial pharmacist and treating physician. Dihydroartemisinin-piperaquine and pyronaridine-artesunate were administered as per manufacturer guidelines over 3 days; primaquine was administered as a single dose in oral solution according to bodyweight (0·25 mg/kg; in 1 kg bands). The primary endpoint was percentage reduction in mosquito infection rate (percentage of mosquitoes surviving to dissection that were infected with P falciparum) at 48 h after treatment compared with baseline (before treatment) in all treatment groups. Data were analysed per protocol. This trial is now complete, and is registered with ClinicalTrials.gov, NCT04049916. FINDINGS Between Sept 10 and Nov 19, 2019, 1044 patients were assessed for eligibility and 100 were enrolled and randomly assigned to one of the four treatment groups (n=25 per group). Before treatment, 66 (66%) of 100 participants were infectious to mosquitoes, with a median of 15·8% (IQR 5·4-31·9) of mosquitoes becoming infected. In individuals who were infectious before treatment, the median percentage reduction in mosquito infection rate 48 h after treatment was 100·0% (IQR 100·0 to 100·0) for individuals treated with pyronaridine-artesunate plus primaquine (n=18; p<0·0001) and dihydroartemisinin-piperaquine plus primaquine (n=15; p=0·0001), compared with -8·7% (-54·8 to 93·2) with pyronaridine-artesunate (n=17; p=0·88) and 50·4% (13·8 to 70·9) with dihydroartemisinin-piperaquine (n=16; p=0·13). There were no serious adverse events, and there were no significant differences between treatment groups at any point in the frequency of any adverse events (Fisher's exact test p=0·96) or adverse events related to study drugs (p=0·64). The most common adverse events were headaches (40 events in 32 [32%] of 100 participants), rhinitis (31 events in 30 [30%]), and respiratory infection (20 events in 20 [20%]). INTERPRETATION These data support the use of single low-dose primaquine as an effective supplement to dihydroartemisinin-piperaquine and pyronaridine-artesunate for blocking P falciparum transmission. The new pyronaridine-artesunate plus single low-dose primaquine combination is of immediate relevance to regions in which the containment of partial artemisinin and partner-drug resistance is a growing concern and in regions aiming to eliminate malaria. FUNDING The Bill & Melinda Gates Foundation. TRANSLATIONS For the French, Spanish and Swahilil translations of the abstract see Supplementary Materials section.
Collapse
Affiliation(s)
- William Stone
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Youssouf Sinaba
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sidi M Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Adama Sacko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekouba Keita
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Ahamadou Youssouf
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Makonon Diallo
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Harouna M Soumare
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Harparkash Kaur
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Kjerstin Lanke
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Rob ter Heine
- Department of Pharmacy and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, London, UK
| | - Djibrilla Issiaka
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Sekou F Traore
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Department of Medical Microbiology and Radboud Center for Infectious Diseases, Radboud University Medical Center, University of Nijmegen, Nijmegen, Netherlands
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, London, UK
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Sciences Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
25
|
Usui M, Williamson KC. Stressed Out About Plasmodium falciparum Gametocytogenesis. Front Cell Infect Microbiol 2021; 11:790067. [PMID: 34926328 PMCID: PMC8674873 DOI: 10.3389/fcimb.2021.790067] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/08/2021] [Indexed: 11/21/2022] Open
Abstract
Blocking malaria transmission is critical to malaria control programs but remains a major challenge especially in endemic regions with high levels of asymptomatic infections. New strategies targeting the transmissible sexual stages of the parasite, called gametocytes, are needed. This review focuses on P. falciparum gametocytogenesis in vivo and in vitro. Highlighting advances made elucidating genes required for gametocyte production and identifying key questions that remain unanswered such as the factors and regulatory mechanisms that contribute to gametocyte induction, and the mechanism of sequestration. Tools available to begin to address these issues are also described to facilitate advances in our understanding of this important stage of the life cycle.
Collapse
Affiliation(s)
- Miho Usui
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, MD, United States
| |
Collapse
|
26
|
Ahmad A, Soumare HM, Camara MM, Jadama L, Gaye PM, Bittaye H, Bradley J, Achan J, Bousema T, D'Alessandro U, Drakeley C, Moreno M. Infectivity of patent Plasmodium falciparum gametocyte carriers to mosquitoes: establishing capacity to investigate the infectious reservoir of malaria in a low-transmission setting in The Gambia. Trans R Soc Trop Med Hyg 2021; 115:1462-1467. [PMID: 34107048 PMCID: PMC8643495 DOI: 10.1093/trstmh/trab087] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 04/30/2021] [Accepted: 05/21/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Understanding the human malaria infectious reservoir is important for elimination initiatives. Here, we implemented mosquito membrane feeding experiments to prepare for larger studies to quantify the transmission potential and relative contribution of the human infectious reservoir. METHODS Patients with clinical malaria attending four health facilities with at least 16 Plasmodium falciparum gametocytes per μL were recruited during the 2018 transmission season. Infectiousness to mosquitoes was assessed by direct membrane feeding assay (DMFA). We compared our results with a Bayesian predictive model to investigate the relationship between infectiousness and gametocyte density and explore the impact of fever on gametocyte infectivity. RESULTS A total of 3177 suspected malaria cases were screened; 43.3% (1376) had microscopically patent P. falciparum parasites and 3.6% (114) of them had gametocytes. Out of 68 DMFAs, 38 (55.9%) resulted in at least one infected mosquito, with a total of 15.4% (1178/7667) of mosquitoes infected with 1-475 oocysts per gut. The relationship between mosquito infection prevalence and gametocytaemia was similar to other African settings and negatively associated with fever (OR: 0.188, 95% CI 0.0603 to 0.585, p=0.0039). CONCLUSIONS Among symptomatic malaria patients, fever is strongly associated with transmission failure. Future studies can use DMFA to better understand the human malaria reservoir in settings of low endemicity in The Gambia and inform malaria elimination initiatives.
Collapse
Affiliation(s)
- Abdullahi Ahmad
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
- Global Health Institute, Faculty of Medicine and Health Sciences, University of Antwerp, Doornstraat 331, 2610, Wilrijk, Belgium
| | - Harouna M Soumare
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Muhammed M Camara
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Lamin Jadama
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Pa Modou Gaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Haddy Bittaye
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Jane Achan
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, 6525 GA, Nijmegen, The Netherlands
| | - Umberto D'Alessandro
- Medical Research Council Unit The Gambia at the London School of Hygiene and Tropical Medicine, Atlantic Boulevard, Fajara, PO Box 273, Banjul, The Gambia
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| | - Marta Moreno
- Department of Infection Biology, London School of Hygiene & Tropical Medicine, Keppel Street, WC1E 7HT, London, UK
| |
Collapse
|
27
|
Andolina C, Rek JC, Briggs J, Okoth J, Musiime A, Ramjith J, Teyssier N, Conrad M, Nankabirwa JI, Lanke K, Rodriguez-Barraquer I, Meerstein-Kessel L, Arinaitwe E, Olwoch P, Rosenthal PJ, Kamya MR, Dorsey G, Greenhouse B, Drakeley C, Staedke SG, Bousema T. Sources of persistent malaria transmission in a setting with effective malaria control in eastern Uganda: a longitudinal, observational cohort study. THE LANCET. INFECTIOUS DISEASES 2021; 21:1568-1578. [PMID: 34146476 PMCID: PMC8554388 DOI: 10.1016/s1473-3099(21)00072-4] [Citation(s) in RCA: 76] [Impact Index Per Article: 25.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Revised: 11/27/2020] [Accepted: 02/03/2021] [Indexed: 01/14/2023]
Abstract
BACKGROUND Symptomatic malaria cases reflect only a small proportion of all Plasmodium spp infections. Many infected individuals are asymptomatic, and persistent asymptomatic Plasmodium falciparum infections are common in endemic settings. We aimed to quantify the contribution of symptomatic and asymptomatic infections to P falciparum transmission in Tororo, Uganda. METHODS We did a longitudinal, observational cohort study in Tororo district, Uganda. We recruited participants of all ages from randomly selected households within this district. Participants were eligible if the selected household had no more than nine permanent residents and at least two members younger than 10 years, and the household was their primary residence, and they agreed to come to the study clinic for any fever episode and avoid antimalarial medications outside the study. Participants were followed-up by continuous passive surveillance for the incidence of symptomatic infections; routine assessments (ie, standardised clinical evaluation and blood samples) were done at baseline and at routine visits every 4 weeks for 2 years. P falciparum parasite density, gametocyte density, and genetic composition were determined molecularly using quantitative PCR (qPCR), quantitative reverse transcriptase PCR (qRT-PCR), and amplicon deep sequencing, respectively. Membrane feeding assays were also done to assess infectivity to mosquitoes. The contribution of different populations to the infectious reservoir was estimated for symptomatic infections, asymptomatic but microscopically detected infections, and asymptomatic but qPCR-detected infections; and for age groups younger than 5 years, 5-15 years, and 16 years or older. FINDINGS Between Oct 4, 2017, and Oct 31, 2019, 531 individuals were enrolled from 80 randomly selected households and were followed-up for 2 years. At baseline, P falciparum was detected in 28 (5·3%) of 531 participants by microscopy and an additional 64 (12·1%) by qPCR and declined thereafter. In 538 mosquito feeding experiments on 107 individuals, 446 (1·2%) of 37 404 mosquitoes became infected, with mosquito infection rates being strongly associated with gametocyte densities (β=2·11, 95% CI 1·62-2·67; p<0·0001). Considering both transmissibility of infections and their relative frequency, the estimated human infectious reservoir consisted primarily of asymptomatic microscopy-detected infections (83·8%), followed by asymptomatic submicroscopic infections (15·6%), and symptomatic infections (0·6%). Children aged 5-15 years accounted for more than half of the infectious reservoir (58·7%); individuals younger than 5 years (25·8%) and those 16 years or older (15·6%) contributed less. Samples from four children contribued to 279 (62·6%) of 446 infected mosquitoes after multiple mosquito-feeding assays. INTERPRETATION Individuals with asymptomatic infections were important drivers of malaria transmission. School-aged children contributed to more than half of all mosquito infections, with a small minority of asymptomatic children being highly infectious. Demographically targeted interventions, aimed at school-aged children, could further reduce transmission in areas under effective vector control. FUNDING US National Institutes of Health, Bill & Melinda Gates Foundation, and the European Research Council.
Collapse
Affiliation(s)
- Chiara Andolina
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | - John C Rek
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jessica Briggs
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Joseph Okoth
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Alex Musiime
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Jordache Ramjith
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands; Department for Health Evidence, Radboud University Medical Centre, Nijmegen, Netherlands
| | - Noam Teyssier
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Melissa Conrad
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Kjerstin Lanke
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands
| | | | | | | | - Peter Olwoch
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | - Philip J Rosenthal
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Moses R Kamya
- Infectious Diseases Research Collaboration, Kampala, Uganda; Department of Medicine, Makerere University College of Health Sciences, Kampala, Uganda
| | - Grant Dorsey
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Bryan Greenhouse
- Department of Medicine, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- Department of Infection Biology, London School of Hygiene and Tropical Medicine, London, UK
| | - Sarah G Staedke
- Department of Clinical Research, London School of Hygiene and Tropical Medicine, London, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Centre, Nijmegen, Netherlands.
| |
Collapse
|
28
|
Walker M, Cools P, Albonico M, Ame SM, Ayana M, Dana D, Keiser J, Matoso LF, Montresor A, Mekonnen Z, Corrêa-Oliveira R, Pinto SA, Sayasone S, Vercruysse J, Vlaminck J, Levecke B. Individual responses to a single oral dose of albendazole indicate reduced efficacy against soil-transmitted helminths in an area with high drug pressure. PLoS Negl Trop Dis 2021; 15:e0009888. [PMID: 34665810 PMCID: PMC8555840 DOI: 10.1371/journal.pntd.0009888] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2021] [Revised: 10/29/2021] [Accepted: 10/08/2021] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Albendazole (ALB) is administered annually to millions of children through global deworming programs targeting soil-transmitted helminths (STHs: Ascaris lumbricoides, Trichuris trichiura and hookworms, Necator americanus and Ancylostoma duodenale). However, due to the lack of large individual patient datasets collected using standardized protocols and the application of population-based statistical methods, little is known about factors that may affect individual responses to treatment. METHODOLOGY/PRINCIPAL FINDINGS We re-analyzed 645 individual patient data from three standardized clinical trials designed to assess the efficacy of a single 400 mg oral dose of ALB against STHs in schoolchildren from different study sites, each with varying history of drug pressure based on duration of mass drug administration programs: Ethiopia, low; Lao People's Democratic Republic (PDR), moderate; Pemba Island (Tanzania), high. Using a Bayesian statistical modelling approach to estimate individual responses (individual egg reduction rates, ERRi), we found that efficacy was lower in Pemba Island, particularly for T. trichiura. For this STH, the proportion of participants with a satisfactory response (ERRi ≥50%), was 65% in Ethiopia, 61% in Lao PDR but only 29% in Pemba Island. There was a significant correlation between ERRi and infection intensity prior to drug administration (ERRi decreasing as a function of increasing infection intensity). Individual age and sex also affected the drug response, but these were of negligible clinical significance and not consistent across STHs and study sites. CONCLUSIONS/SIGNIFICANCE We found decreased efficacy of ALB against all the STHs analyzed in Pemba Island (Tanzania), an area with high drug pressure. This does not indicate causality, as this association may also be partially explained by differences in infection intensity prior to drug administration. Notwithstanding, our results indicate that without alternative treatment regimens, program targets will not be achievable on Pemba Island because of inadequate efficacy of ALB. TRIAL REGISTRATION The study was registered on Clinicaltrials.gov (ID: NCT03465488) on March 7, 2018.
Collapse
Affiliation(s)
- Martin Walker
- Department of Pathobiology and Population Sciences, Royal Veterinary College, Hatfield, United Kingdom
- London Centre for Neglected Tropical Disease Research, Imperial College London, London, United Kingdom
- * E-mail: (MW); (BL)
| | - Piet Cools
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Marco Albonico
- Center for Tropical Diseases, Sacro Cuore Don Calabria Hospital, Negrar, Italy
- Department of Life Sciences and Systems Biology, University of Turin, Turin, Italy
| | - Shaali M. Ame
- Laboratory Division, Public Health Laboratory-Ivo de Carneri, Chake Chake, United Republic of Tanzania
| | - Mio Ayana
- Jimma University Institute of Health, Jimma University, Jimma, Ethiopia
| | - Daniel Dana
- Jimma University Institute of Health, Jimma University, Jimma, Ethiopia
| | - Jennifer Keiser
- Department of Medical Parasitology and Infection Biology, Swiss Tropical and Public Health Institute, Basel, Switzerland
- University of Basel, Basel, Switzerland
| | - Leonardo F. Matoso
- Laboratory of Molecular and Cellular Immunology, Research Center René Rachou—FIOCRUZ, Belo Horizonte, Brazil
- Nursing school, Federal University of Minas Gerais, Brazil
| | - Antonio Montresor
- Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland
| | - Zeleke Mekonnen
- Jimma University Institute of Health, Jimma University, Jimma, Ethiopia
| | - Rodrigo Corrêa-Oliveira
- Laboratory of Molecular and Cellular Immunology, Research Center René Rachou—FIOCRUZ, Belo Horizonte, Brazil
| | - Simone A, Pinto
- Laboratory of Molecular and Cellular Immunology, Research Center René Rachou—FIOCRUZ, Belo Horizonte, Brazil
| | - Somphou Sayasone
- Lao Tropical and Public Health Institute, Ministry of Health, Vientiane, Lao People’s Democratic Republic
| | - Jozef Vercruysse
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Johnny Vlaminck
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
| | - Bruno Levecke
- Department of Virology, Parasitology and Immunology, Ghent University, Merelbeke, Belgium
- * E-mail: (MW); (BL)
| |
Collapse
|
29
|
Comparative effect of dihydroartemisinin-piperaquine and artemether-lumefantrine on gametocyte clearance and haemoglobin recovery in children with uncomplicated Plasmodium falciparum malaria in Africa: a systematic review and meta-analysis of randomized control trials. Int J Infect Dis 2021; 113:136-147. [PMID: 34653658 DOI: 10.1016/j.ijid.2021.10.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/04/2021] [Accepted: 10/06/2021] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Plasmodium falciparum gametocytaemia has been associated with anaemia. The aim of this review was to synthesize available evidence on the comparative effect of dihydroartemisinin-piperaquine (DHA-PQ) and artemether-lumefantrine (AL) on gametocyte clearance and haemoglobin recovery in children with uncomplicated P. falciparum malaria in Africa. METHODS A systematic literature search was undertaken to identify relevant articles from online databases. The search was performed from August 2020 to 30 April 2021. Extracted data from eligible studies were pooled as risk ratios with 95% confidence intervals (CI). RESULTS Gametocyte carriage was reduced in both treatment groups, with no significant difference found between the groups. However, on days 28 and 42, a significant increase in serum haemoglobin level from baseline was observed in the DHA-PQ group (standardized mean difference 0.15, 95% CI 0.05-0.26; participants=2715; studies=4; I2=32%, high quality of evidence) compared with the AL group (mean difference 0.35, 95% CI 0.12-0.59; participants=1434; studies=3; I2=35%, high quality of evidence). CONCLUSION DHA-PQ had a greater impact on haemoglobin recovery than AL on days 28 and 42; this difference was significant.
Collapse
|
30
|
Penna-Coutinho J, da Silva Araújo M, Campos Aguiar AC, Sá PM, Rios CT, Medeiros JF, Pereira DB, Boechat N, Krettli AU. MEFAS, a hybrid of artesunate-mefloquine active against asexual stages of Plasmodium vivax in field isolates, inhibits malaria transmission. INTERNATIONAL JOURNAL FOR PARASITOLOGY-DRUGS AND DRUG RESISTANCE 2021; 17:150-155. [PMID: 34637981 PMCID: PMC8503849 DOI: 10.1016/j.ijpddr.2021.09.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2020] [Revised: 09/09/2021] [Accepted: 09/15/2021] [Indexed: 12/02/2022]
Abstract
Human malaria continues to be a public health problem and an important cause of morbidity and mortality in the world. Malaria control is achieved through both individual protection against mosquito bites and drug treatment, which is hampered by the spread of Plasmodium falciparum resistance to most antimalarials, including artemisinin derivatives. One of the key pharmacological strategies for controlling malaria is to block transmission of the parasites to their mosquito vectors. Following this rational, MEFAS, a synthetic hybrid salt derived from artesunate (AS) and mefloquine has been previously reported for its activity against asexual P. falciparum parasites in vitro, in addition to a pronounced reduction in the viability of mature gametocytes. Herein, MEFAS was tested against asexual forms of Plasmodium vivax and for its ability to block malaria transmission in Anopheles darlingi mosquitoes in a membrane feeding assay using P. vivax field isolates. MEFAS demonstrated high potency, with a IC50 of 6.5 nM against asexual forms of P. vivax. At 50 μM, MEFAS completely blocked oocyst formation in mosquitoes, regardless of the oocyst number in the control group. At lower doses, MEFAS reduced oocyst prevalence by greater than 20%. At equivalent doses, AS irregularly reduced oocyst formation and caused only slight inhibition of mosquito infections. These results highlight the potential of MEFAS as a novel transmission-blocking molecule, as well as its high blood schizonticidal activity against P. vivax and P. falciparum field isolates, representing a starting point for further development of a new drug with dual antimalarial activity.
Collapse
Affiliation(s)
| | | | | | - Paula Miranda Sá
- Laboratório de Síntese de Fármacos LASFAR, Farmanguinhos, FIOCRUZ-RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | - Carlos Tong Rios
- Laboratorios de Investigacion y Desarrollo, Facultad de Ciencias y Filosofia, Universidad Peruana Cayetano Heredia, Lima, Peru
| | | | | | - Nubia Boechat
- Laboratório de Síntese de Fármacos LASFAR, Farmanguinhos, FIOCRUZ-RJ, Rio de Janeiro, Rio de Janeiro, Brazil
| | | |
Collapse
|
31
|
Salgado C, Ayodo G, Macklin MD, Gould MP, Nallandhighal S, Odhiambo EO, Obala A, O'Meara WP, John CC, Tran TM. The prevalence and density of asymptomatic Plasmodium falciparum infections among children and adults in three communities of western Kenya. Malar J 2021; 20:371. [PMID: 34535134 PMCID: PMC8447531 DOI: 10.1186/s12936-021-03905-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Accepted: 09/03/2021] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Further reductions in malaria incidence as more countries approach malaria elimination require the identification and treatment of asymptomatic individuals who carry mosquito-infective Plasmodium gametocytes that are responsible for furthering malaria transmission. Assessing the relationship between total parasitaemia and gametocytaemia in field surveys can provide insight as to whether detection of low-density, asymptomatic Plasmodium falciparum infections with sensitive molecular methods can adequately detect the majority of infected individuals who are potentially capable of onward transmission. METHODS In a cross-sectional survey of 1354 healthy children and adults in three communities in western Kenya across a gradient of malaria transmission (Ajigo, Webuye, and Kapsisywa-Kipsamoite), asymptomatic P. falciparum infections were screened by rapid diagnostic tests, blood smear, and quantitative PCR of dried blood spots targeting the varATS gene in genomic DNA. A multiplex quantitative reverse-transcriptase PCR assay targeting female and male gametocyte genes (pfs25, pfs230p), a gene with a transcriptional pattern restricted to asexual blood stages (piesp2), and human GAPDH was also developed to determine total parasite and gametocyte densities among parasitaemic individuals. RESULTS The prevalence of varATS-detectable asymptomatic infections was greatest in Ajigo (42%), followed by Webuye (10%). Only two infections were detected in Kapsisywa. No infections were detected in Kipsamoite. Across all communities, children aged 11-15 years account for the greatest proportion total and sub-microscopic asymptomatic infections. In younger age groups, the majority of infections were detectable by microscopy, while 68% of asymptomatically infected adults (> 21 years old) had sub-microscopic parasitaemia. Piesp2-derived parasite densities correlated poorly with microscopy-determined parasite densities in patent infections relative to varATS-based detection. In general, both male and female gametocytaemia increased with increasing varATS-derived total parasitaemia. A substantial proportion (41.7%) of individuals with potential for onward transmission had qPCR-estimated parasite densities below the limit of microscopic detection, but above the detectable limit of varATS qPCR. CONCLUSIONS This assessment of parasitaemia and gametocytaemia in three communities with different transmission intensities revealed evidence of a substantial sub-patent infectious reservoir among asymptomatic carriers of P. falciparum. Experimental studies are needed to definitively determine whether the low-density infections in communities such as Ajigo and Webuye contribute significantly to malaria transmission.
Collapse
Affiliation(s)
- Christina Salgado
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - George Ayodo
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Jaramogi Oginga Odinga University of Science and Technology, Bondo, Kenya
| | - Michael D Macklin
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | | | - Srinivas Nallandhighal
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Eliud O Odhiambo
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Andrew Obala
- School of Medicine, Moi University College of Health Sciences, Eldoret, Kenya
| | | | - Chandy C John
- Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.,Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya
| | - Tuan M Tran
- Division of Infectious Diseases, Department of Medicine, Indiana University School of Medicine, Indianapolis, IN, USA. .,Ryan White Center for Pediatric Infectious Diseases and Global Health, Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, USA.
| |
Collapse
|
32
|
Koepfli C, Nguitragool W, de Almeida ACG, Kuehn A, Waltmann A, Kattenberg E, Ome-Kaius M, Rarau P, Obadia T, Kazura J, Monteiro W, Darcy AW, Wini L, Bassat Q, Felger I, Sattabongkot J, Robinson LJ, Lacerda M, Mueller I. Identification of the asymptomatic Plasmodium falciparum and Plasmodium vivax gametocyte reservoir under different transmission intensities. PLoS Negl Trop Dis 2021; 15:e0009672. [PMID: 34449764 PMCID: PMC8428688 DOI: 10.1371/journal.pntd.0009672] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 09/09/2021] [Accepted: 07/21/2021] [Indexed: 11/25/2022] Open
Abstract
Background Understanding epidemiological variables affecting gametocyte carriage and density is essential to design interventions that most effectively reduce malaria human-to-mosquito transmission. Methodology/Principal findings Plasmodium falciparum and P. vivax parasites and gametocytes were quantified by qPCR and RT-qPCR assays using the same methodologies in 5 cross-sectional surveys involving 16,493 individuals in Brazil, Thailand, Papua New Guinea, and Solomon Islands. The proportion of infections with detectable gametocytes per survey ranged from 44–94% for P. falciparum and from 23–72% for P. vivax. Blood-stage parasite density was the most important predictor of the probability to detect gametocytes. In moderate transmission settings (prevalence by qPCR>5%), parasite density decreased with age and the majority of gametocyte carriers were children. In low transmission settings (prevalence<5%), >65% of gametocyte carriers were adults. Per survey, 37–100% of all individuals positive for gametocytes by RT-qPCR were positive by light microscopy for asexual stages or gametocytes (overall: P. falciparum 178/348, P. vivax 235/398). Conclusions/Significance Interventions to reduce human-to-mosquito malaria transmission in moderate-high endemicity settings will have the greatest impact when children are targeted. In contrast, all age groups need to be included in control activities in low endemicity settings to achieve elimination. Detection of infections by light microscopy is a valuable tool to identify asymptomatic blood stage infections that likely contribute most to ongoing transmission at the time of sampling. Plasmodium vivax and Plasmodium falciparum cause the vast majority of all human malaria cases. Across all transmission settings, a large proportion of infections of the two species remain asymptomatic. These infections are not diagnosed and treated by control programs focusing on clinical cases. They can carry gametocytes, the sexual stage of the parasite that establishes infections in mosquitos, thus asymptomatic infections contribute to transmission. In order to determine who is likely to contribute to transmission, gametocyte densities were measured by sensitive molecular methods in afebrile individuals in four countries. The proportion of infections with gametocytes varied greatly among surveys, and was higher in regions that had experienced low transmission for extended periods of time. In moderate-high transmission settings, gametocyte densities were particularly high in children below six years, highlighting the importance that interventions to reduce transmission include this age group. The majority of gametocyte carriers was positive by light microscopy. The comprehensive data on gametocyte carriage presented here lays the foundation for the development of more effective screen and treat activities to reduce malaria transmission.
Collapse
Affiliation(s)
- Cristian Koepfli
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- University of Notre Dame, Eck Institute for Global Health, Department of Biological Sciences, Notre Dame, Indiana, United States of America
- * E-mail:
| | - Wang Nguitragool
- Department of Molecular Tropical Medicine and Genetics, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Anne Cristine Gomes de Almeida
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrea Kuehn
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
| | - Andreea Waltmann
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
| | - Eline Kattenberg
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Maria Ome-Kaius
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Patricia Rarau
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Thomas Obadia
- Hub de Bioinformatique et Biostatistique, Département Biologie Computationnelle, Institut Pasteur, Paris, France
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| | - James Kazura
- Centre for Global Health & Diseases, Case Western Reserve University, Cleveland, Ohio, United States of America
| | - Wuelton Monteiro
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
- Universidade do Estado do Amazonas, Manaus, Brazil
| | - Andrew W. Darcy
- National Health Training and Research Institute, Ministry of Health, Honiara, Solomon Islands
| | - Lyndes Wini
- Vector Borne Diseases Program, Ministry of Health, Honiara, Solomon Islands
| | - Quique Bassat
- ISGlobal, Hospital Clínic—Universitat de Barcelona, Barcelona, Spain
- Centro de Investigação em Saúde de Manhiça (CISM), Maputo, Mozambique
- ICREA, Barcelona, Spain
- Pediatric Infectious Diseases Unit, Pediatrics Department, Hospital Sant Joan de Déu (University of Barcelona), Barcelona, Spain
- Consorcio de Investigación Biomédica en Red de Epidemiología y Salud Pública (CIBERESP), Madrid, Spain
| | - Ingrid Felger
- Swiss Tropical and Public Health Institute, Basel, Switzerland
| | - Jetsumon Sattabongkot
- Mahidol Vivax Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Leanne J. Robinson
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Papua New Guinea Institute of Medical Research, Madang, Papua New Guinea
| | - Marcus Lacerda
- Fundação de Medicina Tropical Dr. Heitor Vieira Dourado (FMT-HVD), Manaus, Brazil
| | - Ivo Mueller
- Population Health & Immunity Division, Walter & Eliza Hall Institute, Parkville, Australia
- Department of Medical Biology, University of Melbourne, Parkville, Australia
- Unité Malaria: parasites et Hôtes, Département Parasites et Insectes Vecteurs, Institut Pasteur, Paris, France
| |
Collapse
|
33
|
The Chagas disease study landscape: A systematic review of clinical and observational antiparasitic treatment studies to assess the potential for establishing an individual participant-level data platform. PLoS Negl Trop Dis 2021; 15:e0009697. [PMID: 34398888 PMCID: PMC8428795 DOI: 10.1371/journal.pntd.0009697] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 09/09/2021] [Accepted: 08/01/2021] [Indexed: 11/19/2022] Open
Abstract
Background Chagas disease (CD), caused by the parasite Trypanosoma cruzi, affects ~6–7 million people worldwide. Significant limitations still exist in our understanding of CD. Harnessing individual participant data (IPD) from studies could support more in-depth analyses to address the many outstanding research questions. This systematic review aims to describe the characteristics and treatment practices of clinical studies in CD and assess the breadth and availability of research data for the potential establishment of a data-sharing platform. Methodology/Principal findings This review includes prospective CD clinical studies published after 1997 with patients receiving a trypanocidal treatment. The following electronic databases and clinical trial registry platforms were searched: Cochrane Library, PubMed, Embase, LILACS, Scielo, Clintrials.gov, and WHO ICTRP. Of the 11,966 unique citations screened, 109 (0.9%) studies (31 observational and 78 interventional) representing 23,116 patients were included. Diagnosis for patient enrolment required 1 positive test result in 5 (4.6%) studies (2 used molecular method, 1 used molecular and serology, 2 used serology and parasitological methods), 2 in 60 (55.0%), 3 in 14 (12.8%) and 4 or more in 4 (3.7%) studies. A description of treatment regimen was available for 19,199 (83.1%) patients, of whom 14,605 (76.1%) received an active treatment and 4,594 (23.9%) were assigned to a placebo/no-treatment. Of the 14,605 patients who received an active treatment, benznidazole was administered in 12,467 (85.4%), nifurtimox in 825 (5.6%), itraconazole in 284 (1.9%), allopurinol in 251 (1.7%) and other drugs in 286 (1.9%). Assessment of efficacy varied largely and was based primarily on biological outcome; parasitological efficacy relied on serology in 67/85 (78.8%) studies, molecular methods in 52/85 (61.2%), parasitological in 34/85 (40.0%), microscopy in 3/85 (3.5%) and immunohistochemistry in 1/85 (1.2%). The median time at which parasitological assessment was carried out was 79 days [interquartile range (IQR): 30–180] for the first assessment, 180 days [IQR: 60–500] for second, and 270 days [IQR: 18–545] for the third assessment. Conclusions/Significance This review demonstrates the heterogeneity of clinical practice in CD treatment and in the conduct of clinical studies. The sheer volume of potential IPD identified demonstrates the potential for development of an IPD platform for CD and that such efforts would enable in-depth analyses to optimise the limited pharmacopoeia of CD and inform prospective data collection. Chagas disease, also known as American trypanosomiasis, is a neglected tropical disease transmitted by triatomine insects, first identified in 1909. Chagas disease affects approximately 6–7 million people globally and is highly prevalent in Latin America where most cases are reported. However, there is increasing evidence that Chagas disease is now an important public health issue outside the “classical” endemic countries due to population migration. Our understanding of Chagas disease, including its pathologies and factors relating to progression, remains to date limited, and is also challenged by lack of diagnosis and highly effective treatment. This systematic review aims to describe studies with Chagas patients receiving antiparasitic treatment. Databases were searched for relevant studies published after 1997, and the results of these searches were screened. Although a large volume of studies was identified in the review, heterogeneity was observed in study design, diagnostic methods, outcome assessment, and treatment regimens. While this aspect will be a limitation in pooling individual patient data, the volume of data available should allow sufficient comparison to form the basis of guidelines for future studies. The results of this review demonstrate that development of a Chagas disease data platform for clinical research would enable optimisation of existing data to strengthen evidence for the treatment and diagnosis of Chagas disease.
Collapse
|
34
|
Barry A, Bradley J, Stone W, Guelbeogo MW, Lanke K, Ouedraogo A, Soulama I, Nébié I, Serme SS, Grignard L, Patterson C, Wu L, Briggs JJ, Janson O, Awandu SS, Ouedraogo M, Tarama CW, Kargougou D, Zongo S, Sirima SB, Marti M, Drakeley C, Tiono AB, Bousema T. Higher gametocyte production and mosquito infectivity in chronic compared to incident Plasmodium falciparum infections. Nat Commun 2021; 12:2443. [PMID: 33903595 PMCID: PMC8076179 DOI: 10.1038/s41467-021-22573-7] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2020] [Accepted: 03/09/2021] [Indexed: 11/09/2022] Open
Abstract
Plasmodium falciparum gametocyte kinetics and infectivity may differ between chronic and incident infections. In the current study, we assess parasite kinetics and infectivity to mosquitoes among children (aged 5-10 years) from Burkina Faso with (a) incident infections following parasite clearance (n = 48) and (b) chronic asymptomatic infections (n = 60). In the incident infection cohort, 92% (44/48) of children develop symptoms within 35 days, compared to 23% (14/60) in the chronic cohort. All individuals with chronic infection carried gametocytes or developed them during follow-up, whereas only 35% (17/48) in the incident cohort produce gametocytes before becoming symptomatic and receiving treatment. Parasite multiplication rate (PMR) and the relative abundance of ap2-g and gexp-5 transcripts are positively associated with gametocyte production. Antibody responses are higher and PMR lower in chronic infections. The presence of symptoms and sexual stage immune responses are associated with reductions in gametocyte infectivity to mosquitoes. We observe that most incident infections require treatment before the density of mature gametocytes is sufficient to infect mosquitoes. In contrast, chronic, asymptomatic infections represent a significant source of mosquito infections. Our observations support the notion that malaria transmission reduction may be expedited by enhanced case management, involving both symptom-screening and infection detection.
Collapse
Affiliation(s)
- Aissata Barry
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - John Bradley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Will Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Moussa W Guelbeogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Alphonse Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issiaka Soulama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Issa Nébié
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Samuel S Serme
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Lynn Grignard
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Catriona Patterson
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Lindsey Wu
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, UK
| | - Jessica J Briggs
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Owen Janson
- Department of Medicine, University of California San Francisco, San Francisco, CA, USA
| | - Shehu S Awandu
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands
| | - Mireille Ouedraogo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Casimire W Tarama
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Désiré Kargougou
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Soumanaba Zongo
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Sodiomon B Sirima
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Matthias Marti
- Wellcome Centre for Integrative Parasitology, University of Glasgow, Glasgow, UK
| | - Chris Drakeley
- MRC International Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, London, UK
| | - Alfred B Tiono
- Centre National de Recherche et de Formation sur le Paludisme (CNRFP), Ouagadougou 01, Burkina Faso
| | - Teun Bousema
- Radboud Institute for Health Sciences and Radboud Center for Infectious Diseases, Radboud University Medical Centre, Nijmegen, The Netherlands.
| |
Collapse
|
35
|
Assefa DG, Zeleke ED, Bekele D, Tesfahunei HA, Getachew E, Joseph M, Manyazewal T. Efficacy and safety of dihydroartemisinin-piperaquine versus artemether-lumefantrine for treatment of uncomplicated Plasmodium falciparum malaria in Ugandan children: a systematic review and meta-analysis of randomized control trials. Malar J 2021; 20:174. [PMID: 33794897 PMCID: PMC8017896 DOI: 10.1186/s12936-021-03711-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Accepted: 03/24/2021] [Indexed: 12/02/2022] Open
Abstract
Background The emergence of artemisinin resistance in Southeast Asia and Plasmodium falciparum kelch13 propeller gene mutations in sub-Saharan African pose the greatest threat to global efforts to control malaria. This is a critical concern in Uganda, where artemisinin-based combination therapy (ACT) is the first-line treatment for uncomplicated falciparum. The objective of this study was to compare the efficacy and safety of dihydroartemisinin–piperaquine (DHA–PQ) and artemether–lumefantrine (AL) for the treatment of uncomplicated falciparum malaria in Ugandan children. Methods A search of PubMed and the Cochrane Central Register of Controlled Trials for retrieving randomized controlled trials comparing the efficacy and safety of DHA–PQ and AL for treatment of uncomplicated falciparum malaria in Ugandan children was done. The search was performed up to 31 August 2020. The data extracted from eligible studies and pooled as risk ratio (RR) with a 95% confidence interval (CI), using Rev Man Software (5.4). The protocol was registered in PROSPERO, ID: CRD42020182354. Results Eleven trials were included in this review and two of them only included under safety outcome. Total 3798 participants were enrolled. The PCR unadjusted treatment failure was significantly lower with DHA–PQ at day 28 (RR 0.30, 95% CI 0.19–0.49; participants = 7863; studies = 5; I2 = 93%, low quality evidence) and at day 42 (RR 0.53, 95% CI 0.38–0.76; participants = 1618; studies = 4; I2 = 79%, moderate quality of evidence). The PCR adjusted treatment failure at day 42 was significantly lower with DHA–PQ treatment group (RR 0.45, 95% CI 0.28 to 0.72; participants = 1370; studies = 5, high quality of evidence), and it was below 5% in both arms at day 28 (moderate quality of evidence). AL showed a longer prophylactic effect on new infections which may last for up to 63 days (PCR-adjusted treatment failure: RR 2.04, 95% CI 1.13–3.70; participants = 1311; studies = 2, moderate quality of evidence). Compared to AL, DHA–PQ was associated with a slightly higher frequency of cough (RR 1.07, 95% CI 1.01 to 1.13; 2575 participants; six studies; high quality of evidence). In both treatment groups, the risk of recurrent parasitaemia due to possible recrudescence was less than 5% at day 28. The appearance of gametocyte between 29 and 42 days was also significantly lower in DHA–PQ than AL (RR 0.26, 95% CI 0.12 to 0.56; participants = 623; studies = 2; I2 = 0%). Conclusion Compared to AL, DHA–PQ appeared to reduce treatment failure and gametocyte carriage in Ugandan children. This may trigger DHA–PQ to become the first-line treatment option. Both treatments were safe and well-tolerated. Supplementary Information The online version contains supplementary material available at 10.1186/s12936-021-03711-4.
Collapse
Affiliation(s)
- Dawit Getachew Assefa
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia. .,Department of Nursing, College of Health Science and Medicine, Dilla University, Dilla, Ethiopia.
| | - Eden Dagnachew Zeleke
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Department of Midwifery, College of Health Science, Bule-Hora University, Bule-Hora, Ethiopia
| | - Delayehu Bekele
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Department of Obstetrics and Gynecology, Saint Paul's Hospital Millennium Medical College, Addis Ababa, Ethiopia
| | - Hanna Amanuel Tesfahunei
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Hager Biomedical Research Institute, Asmara, Eritrea
| | - Emnet Getachew
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia.,Arsi University, Asella, Ethiopia
| | - Michele Joseph
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| | - Tsegahun Manyazewal
- College of Health Sciences, Center for Innovative Drug Development and Therapeutic Trials for Africa (CDT-Africa), Addis Ababa University, P.O. Box 9086, Addis Ababa, Ethiopia
| |
Collapse
|
36
|
Ahmad A, Prom A, Bradley J, Ndiath M, Etoketim B, Bah M, Van Geertruyden JP, Drakeley C, Bousema T, Achan J, D'Alessandro U. Gametocyte carriage after seasonal malaria chemoprevention in Plasmodium falciparum infected asymptomatic children. Malar J 2021; 20:169. [PMID: 33771166 PMCID: PMC7995796 DOI: 10.1186/s12936-021-03706-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 03/16/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Treatment of clinical Plasmodium falciparum malaria with sulfadoxine-pyrimethamine (SP) and amodiaquine (AQ) is associated with increased post-treatment gametocyte carriage. The effect of seasonal malaria chemoprevention (SMC) with SP and AQ on gametocyte carriage was assessed in asymptomatic P. falciparum infected children. METHODS The study was carried out in eastern Gambia. Asymptomatic P. falciparum malaria infected children aged 24-59 months old who were eligible to receive SMC (SMC group) and children 5-8 years that were not eligible to receive SMC (comparison group) were recruited. Gametocytaemia was determined by molecular methods before and after SMC administration. Gametocyte carriage between the groups was compared using the chi-squared test and within-person using conditional logistic regression. RESULTS During the 2017 and 2018 malaria transmission seasons, 65 and 75 children were recruited in the SMC and comparison groups, respectively. Before SMC administration, gametocyte prevalence was 10.7% (7/65) in the SMC group and 13.3% (10/75) in the comparison group (p = 0.64). At day 13 (IQR 12, 13) after SMC administration, this was 9.4% (5/53) in children who received at least the first dose of SMC treatment and 12.7% (9/71) for those in the comparison group (p = 0.57). Similarly, there was no difference in prevalence of gametocytes between children that adhered to all 3-day doses of SMC treatment 15.6% (5/32) and those in the comparison group (p = 0.68). In the SMC group, within-group gametocyte carriage was similar before and after SMC administration in children that received at least the first dose of SMC treatment (OR 0.6, 95% CI 0.14-2.51; p = 0.48) and in those that adhered to all 3-day doses of SMC treatment (OR 1.0, 95% CI 0.20-4.95; p = 1.0). CONCLUSION In this study with relative low gametocyte prevalence prior to SMC treatment, no evidence was observed that SMC treatment increased gametocyte carriage in asymptomatic P. falciparum malaria infected children.
Collapse
Affiliation(s)
- Abdullahi Ahmad
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia.
- Global Health Institute, University of Antwerp, Gouverneur Kinsbergencentrum, Campus Drie Eiken, Doornstraat 331, 2610, Wilrijk, Belgium.
| | - Aurelia Prom
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - John Bradley
- MRC Statistics and Epidemiology Group, London School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Mamadou Ndiath
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Blessed Etoketim
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Mamadou Bah
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Jean-Pierre Van Geertruyden
- Global Health Institute, University of Antwerp, Gouverneur Kinsbergencentrum, Campus Drie Eiken, Doornstraat 331, 2610, Wilrijk, Belgium
| | - Chris Drakeley
- Department of Immunology and Infection, School of Hygiene and Tropical Medicine, Keppel Street, London, WC1E 7HT, UK
| | - Teun Bousema
- Department of Medical Microbiology, Radboud University Medical Center, Geert Grooteplein 28, Microbiology 268, 6500 HB, Nijmegen, The Netherlands
| | - Jane Achan
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| | - Umberto D'Alessandro
- Disease Control and Elimination Theme, Medical Research Council Unit The Gambia At London, School of Hygiene and Tropical Medicine, P.O Box 273, Banjul, The Gambia
| |
Collapse
|
37
|
Chawla J, Oberstaller J, Adams JH. Targeting Gametocytes of the Malaria Parasite Plasmodium falciparum in a Functional Genomics Era: Next Steps. Pathogens 2021; 10:346. [PMID: 33809464 PMCID: PMC7999360 DOI: 10.3390/pathogens10030346] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 02/25/2021] [Accepted: 03/03/2021] [Indexed: 02/04/2023] Open
Abstract
Mosquito transmission of the deadly malaria parasite Plasmodium falciparum is mediated by mature sexual forms (gametocytes). Circulating in the vertebrate host, relatively few intraerythrocytic gametocytes are picked up during a bloodmeal to continue sexual development in the mosquito vector. Human-to-vector transmission thus represents an infection bottleneck in the parasite's life cycle for therapeutic interventions to prevent malaria. Even though recent progress has been made in the identification of genetic factors linked to gametocytogenesis, a plethora of genes essential for sexual-stage development are yet to be unraveled. In this review, we revisit P. falciparum transmission biology by discussing targetable features of gametocytes and provide a perspective on a forward-genetic approach for identification of novel transmission-blocking candidates in the future.
Collapse
Affiliation(s)
- Jyotsna Chawla
- Molecular Medicine, Morsani College of Medicine, University of South Florida, 12901 Bruce B Downs Blvd, MDC 7, Tampa, FL 33612, USA;
| | - Jenna Oberstaller
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| | - John H. Adams
- Center for Global Health and Infectious Diseases Research and USF Genomics Program, College of Public Health, University of South Florida, 3720 Spectrum Blvd, Suite 404, Tampa, FL 33612, USA;
| |
Collapse
|
38
|
Mahamar A, Lanke K, Graumans W, Diawara H, Sanogo K, Diarra K, Niambele SM, Gosling R, Drakeley C, Chen I, Dicko A, Bousema T, Roh ME. Persistence of mRNA indicative of Plasmodium falciparum ring-stage parasites 42 days after artemisinin and non-artemisinin combination therapy in naturally infected Malians. Malar J 2021; 20:34. [PMID: 33422068 PMCID: PMC7797096 DOI: 10.1186/s12936-020-03576-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2020] [Accepted: 12/31/2020] [Indexed: 11/10/2022] Open
Abstract
Background Malaria control in sub-Saharan Africa relies upon prompt case management with artemisinin-based combination therapy (ACT). Ring-stage parasite mRNA, measured by sbp1 quantitative reverse-transcriptase PCR (qRT-PCR), was previously reported to persist after ACT treatment and hypothesized to reflect temporary arrest of the growth of ring-stage parasites (dormancy) following exposure to artemisinins. Here, the persistence of ring-stage parasitaemia following ACT and non-ACT treatment was examined. Methods Samples were used from naturally infected Malian gametocyte carriers who received dihydroartemisinin–piperaquine (DP) or sulfadoxine–pyrimethamine (SP–AQ) with or without gametocytocidal drugs. Gametocytes and ring-stage parasites were quantified by qRT-PCR during 42 days of follow-up. Results At baseline, 89% (64/73) of participants had measurable ring-stage parasite mRNA. Following treatment, the proportion of ring-stage parasite-positive individuals and estimated densities declined for all four treatment groups. Ring-stage parasite prevalence and density was generally lower in arms that received DP compared to SP–AQ. This finding was most apparent days 1, 2, and 42 of follow-up (p < 0.01). Gametocytocidal drugs did not influence ring-stage parasite persistence. Ring-stage parasite density estimates on days 14 and 28 after initiation of treatment were higher among individuals who subsequently experienced recurrent parasitaemia compared to those who remained free of parasites until day 42 after initiation of treatment (pday 14 = 0.011 and pday 28 = 0.068). No association of ring-stage persistence with gametocyte carriage was observed. Conclusions The current findings of lower ring-stage persistence after ACT without an effect of gametocytocidal partner drugs affirms the use of sbp1 as ring-stage marker. Lower persistence of ring-stage mRNA after ACT treatment suggests the marker may not reflect dormant parasites whilst it was predictive of re-appearance of parasitaemia.
Collapse
Affiliation(s)
- Almahamoudou Mahamar
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kjerstin Lanke
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Wouter Graumans
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands
| | - Halimatou Diawara
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Koualy Sanogo
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Kalifa Diarra
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Sidi Mohamed Niambele
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Roly Gosling
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Chris Drakeley
- Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy, Medicine, and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Teun Bousema
- Radboud Institute for Health Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 26-28, PO Box 9101, 6525GA, Nijmegen, The Netherlands. .,Department of Infection & Immunity, London School of Hygiene & Tropical Medicine, London, UK.
| | - Michelle E Roh
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, CA, USA
| |
Collapse
|
39
|
McCann RS, Cohee LM, Goupeyou-Youmsi J, Laufer MK. Maximizing Impact: Can Interventions to Prevent Clinical Malaria Reduce Parasite Transmission? Trends Parasitol 2020; 36:906-913. [PMID: 32917511 PMCID: PMC7581555 DOI: 10.1016/j.pt.2020.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2020] [Revised: 06/19/2020] [Accepted: 07/20/2020] [Indexed: 10/23/2022]
Abstract
Malaria interventions may reduce the burden of clinical malaria disease, the transmission of malaria parasites, or both. As malaria interventions are developed and evaluated, including those interventions primarily targeted at reducing disease, they may also impact parasite transmission. Achieving global malaria eradication will require optimizing the transmission-reducing potential of all available interventions. Herein, we discuss the relationship between malaria parasite transmission and disease, including mechanisms by which disease-targeting interventions might also impact parasite transmission. We then focus on three malaria interventions with strong evidence for reducing the burden of clinical malaria disease and examine their potential for also reducing malaria parasite transmission.
Collapse
Affiliation(s)
- Robert S McCann
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA.
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jessy Goupeyou-Youmsi
- MAC Communicable Diseases Action Centre, College of Medicine, University of Malawi, Blantyre, Malawi
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| |
Collapse
|
40
|
Portugaliza HP, Miyazaki S, Geurten FJ, Pell C, Rosanas-Urgell A, Janse CJ, Cortés A. Artemisinin exposure at the ring or trophozoite stage impacts Plasmodium falciparum sexual conversion differently. eLife 2020; 9:60058. [PMID: 33084568 PMCID: PMC7577739 DOI: 10.7554/elife.60058] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 10/07/2020] [Indexed: 12/12/2022] Open
Abstract
Malaria transmission is dependent on the formation of gametocytes in the human blood. The sexual conversion rate, the proportion of asexual parasites that convert into gametocytes at each multiplication cycle, is variable and reflects the relative parasite investment between transmission and maintaining the infection. The impact of environmental factors such as drugs on sexual conversion rates is not well understood. We developed a robust assay using gametocyte-reporter parasite lines to accurately measure the impact of drugs on sexual conversion rates, independently from their gametocytocidal activity. We found that exposure to subcurative doses of the frontline antimalarial drug dihydroartemisinin (DHA) at the trophozoite stage resulted in a ~ fourfold increase in sexual conversion. In contrast, no increase was observed when ring stages were exposed or in cultures in which sexual conversion was stimulated by choline depletion. Our results reveal a complex relationship between antimalarial drugs and sexual conversion, with potential public health implications.
Collapse
Affiliation(s)
- Harvie P Portugaliza
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium.,Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands
| | - Shinya Miyazaki
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Fiona Ja Geurten
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Christopher Pell
- Department of Global Health, Amsterdam University Medical Centers, location Academic Medical Center, University of Amsterdam, Amsterdam, Netherlands.,Amsterdam Institute for Global Health and Development (AIGHD), Amsterdam, Netherlands
| | - Anna Rosanas-Urgell
- Department of Biomedical Sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Chris J Janse
- Department of Parasitology, Leiden University Medical Center, Leiden, Netherlands
| | - Alfred Cortés
- ISGlobal, Hospital Clinic - Universitat de Barcelona, Barcelona, Spain.,ICREA, Barcelona, Spain
| |
Collapse
|
41
|
Ippolito MM, Pringle JC, Siame M, Katowa B, Aydemir O, Oluoch PO, Huang L, Aweeka FT, Bailey JA, Juliano JJ, Meshnick SR, Shapiro TA, Moss WJ, Thuma PE. Therapeutic Efficacy of Artemether-Lumefantrine for Uncomplicated Falciparum Malaria in Northern Zambia. Am J Trop Med Hyg 2020; 103:2224-2232. [PMID: 33078701 DOI: 10.4269/ajtmh.20-0852] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Artemether-lumefantrine (AL) is a first-line agent for uncomplicated malaria caused by Plasmodium falciparum. The WHO recommends periodic therapeutic efficacy studies of antimalarial drugs for the detection of malaria parasite drug resistance and to inform national malaria treatment policies. We conducted a therapeutic efficacy study of AL in a high malaria transmission region of northern Zambia from December 2014 to July 2015. One hundred children of ages 6 to 59 months presenting to a rural health clinic with uncomplicated falciparum malaria were admitted for treatment with AL (standard 6-dose regimen) and followed weekly for 5 weeks. Parasite counts were taken every 6 hours during treatment to assess parasite clearance. Recurrent episodes during follow-up (n = 14) were genotyped to distinguish recrudescence from reinfection and to identify drug resistance single nucleotide polymorphisms (SNPs) and multidrug resistance protein 1 (mdr1) copy number variation. Day 7 lumefantrine concentrations were measured for correspondence with posttreatment reinfection. All children who completed the parasite clearance portion of the study (n = 94) were microscopy-negative by 72 hours. The median parasite elimination half-life was 2.7 hours (interquartile range: 2.1-3.3). Genotype-corrected therapeutic efficacy was 98.8% (95% CI: 97.6-100). Purported artemisinin and lumefantrine drug resistance SNPs in atp6, 3D7_1451200, and mdr1 were detected but did not correlate with parasite recurrence, nor did day 7 lumefantrine concentrations. In summary, AL was highly effective for the treatment of uncomplicated falciparum malaria in northern Zambia during the study period. The high incidence of recurrent parasitemia was consistent with reinfection due to high, perennial malaria transmission.
Collapse
Affiliation(s)
- Matthew M Ippolito
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland.,Division of Infectious Diseases, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Julia C Pringle
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Mwiche Siame
- Ministry of Health, Government of the Republic of Zambia, Lusaka, Zambia
| | | | - Ozkan Aydemir
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Peter O Oluoch
- Center for Global Health Research, Kenya Medical Research Institute, Kisumu, Kenya.,Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Liusheng Huang
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Francesca T Aweeka
- Department of Clinical Pharmacology, University of California San Francisco School of Pharmacy, San Francisco, California
| | - Jeffrey A Bailey
- Department of Pathology and Laboratory Medicine, Brown University, Providence, Rhode Island
| | - Jonathan J Juliano
- Department of Medicine, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Steven R Meshnick
- Department of Epidemiology, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Theresa A Shapiro
- The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,Division of Clinical Pharmacology, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - William J Moss
- Department of Epidemiology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland.,W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| | - Philip E Thuma
- Macha Research Trust, Macha, Zambia.,The Johns Hopkins Malaria Research Institute, Johns Hopkins University Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
42
|
van der Pluijm RW, Amaratunga C, Dhorda M, Dondorp AM. Triple Artemisinin-Based Combination Therapies for Malaria - A New Paradigm? Trends Parasitol 2020; 37:15-24. [PMID: 33060063 DOI: 10.1016/j.pt.2020.09.011] [Citation(s) in RCA: 52] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2020] [Revised: 09/18/2020] [Accepted: 09/19/2020] [Indexed: 01/31/2023]
Abstract
Recent gains in the fight against malaria are threatened by the emergence and spread of artemisinin and partner drug resistance in Plasmodium falciparum in the Greater Mekong Subregion (GMS). When artemisinins are combined with a single partner drug, all recommended artemisinin-based combination therapies have shown reduced efficacy in some countries in the GMS at some point. Novel drugs are not available for the near future. Triple artemisinin-based combination therapies, combining artemisinins with two currently available partner drugs, will provide one of the last remaining safe and effective treatments for falciparum malaria that can be deployed rapidly in the GMS, whereas their deployment beyond the GMS could delay or prevent the global emergence and spread of resistance to currently available drugs.
Collapse
Affiliation(s)
- Rob W van der Pluijm
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Chanaki Amaratunga
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK
| | - Mehul Dhorda
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK; WorldWide Antimalarial Resistance Network - Asia-Pacific Regional Centre, Bangkok, Thailand
| | - Arjen M Dondorp
- Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand; Centre for Tropical Medicine and Global Health, Nuffield Department of Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
43
|
Krishnan K, Ziniel P, Li H, Huang X, Hupalo D, Gombakomba N, Guerrero SM, Dotrang T, Lu X, Caridha D, Sternberg AR, Hughes E, Sun W, Bargieri DY, Roepe PD, Sciotti RJ, Wilkerson MD, Dalgard CL, Tawa GJ, Wang AQ, Xu X, Zheng W, Sanderson PE, Huang W, Williamson KC. Torin 2 Derivative, NCATS-SM3710, Has Potent Multistage Antimalarial Activity through Inhibition of P. falciparum Phosphatidylinositol 4-Kinase ( Pf PI4KIIIβ). ACS Pharmacol Transl Sci 2020; 3:948-964. [PMID: 33073193 DOI: 10.1021/acsptsci.0c00078] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Indexed: 12/25/2022]
Abstract
Drug resistance is a constant threat to malaria control efforts making it important to maintain a good pipeline of new drug candidates. Of particular need are compounds that also block transmission by targeting sexual stage parasites. Mature sexual stages are relatively resistant to all currently used antimalarials except the 8-aminoquinolines that are not commonly used due to potential side effects. Here, we synthesized a new Torin 2 derivative, NCATS-SM3710 with increased aqueous solubility and specificity for Plasmodium and demonstrate potent in vivo activity against all P. berghei life cycle stages. NCATS-SM3710 also has low nanomolar EC50s against in vitro cultured asexual P. falciparum parasites (0.38 ± 0.04 nM) and late stage gametocytes (5.77 ± 1 nM). Two independent NCATS-SM3710/Torin 2 resistant P. falciparum parasite lines produced by growth in sublethal Torin 2 concentrations both had genetic changes in PF3D7_0509800, annotated as a phosphatidylinositol 4 kinase (Pf PI4KIIIβ). One line had a point mutation in the putative active site (V1357G), and the other line had a duplication of a locus containing Pf PI4KIIIβ. Both lines were also resistant to other Pf PI4K inhibitors. In addition NCATS-SM3710 inhibited purified Pf PI4KIIIβ with an IC50 of 2.0 ± 0.30 nM. Together the results demonstrate that Pf PI4KIIIβ is the target of Torin 2 and NCATS-SM3710 and provide new options for potent multistage drug development.
Collapse
Affiliation(s)
- Karthik Krishnan
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Peter Ziniel
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Hao Li
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Xiuli Huang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Daniel Hupalo
- Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Nita Gombakomba
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Sandra Mendoza Guerrero
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Thoai Dotrang
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Xiao Lu
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Diana Caridha
- Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Anna R Sternberg
- Departments of Chemistry and of Biochemistry, Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States
| | - Emma Hughes
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wei Sun
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Daniel Y Bargieri
- Institute of Biomedical Sciences, University of Sao Paulo, Sao Paulo, 05508, Brazil
| | - Paul D Roepe
- Departments of Chemistry and of Biochemistry, Cellular and Molecular Biology, Georgetown University, Washington, DC 20057, United States
| | - Richard J Sciotti
- Walter Reed Army Institute of Research, Silver Spring, Maryland 20910, United States
| | - Matthew D Wilkerson
- Collaborative Health Initiative Research Program, Department of Anatomy, Physiology and Genetics Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Clifton L Dalgard
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States.,The American Genome Center, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| | - Gregory J Tawa
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Amy Q Wang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Xin Xu
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wei Zheng
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Philip E Sanderson
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Wenwei Huang
- National Center for Advancing Translational Science, National Institutes of Health, Rockville, Maryland 20892, United States
| | - Kim C Williamson
- Department of Microbiology and Immunology, Uniformed Services University of the Health Sciences, Bethesda, Maryland 20814, United States
| |
Collapse
|
44
|
Stepniewska K, Humphreys GS, Gonçalves BP, Craig E, Gosling R, Guerin PJ, Price RN, Barnes KI, Raman J, Smit MR, D’Alessandro U, Stone WJR, Bjorkman A, Samuels AM, Arroyo-Arroyo MI, Bastiaens GJH, Brown JM, Dicko A, El-Sayed BB, Elzaki SEG, Eziefula AC, Kariuki S, Kwambai TK, Maestre AE, Martensson A, Mosha D, Mwaiswelo RO, Ngasala BE, Okebe J, Roh ME, Sawa P, Tiono AB, Chen I, Drakeley CJ, Bousema T. Efficacy of Single-Dose Primaquine With Artemisinin Combination Therapy on Plasmodium falciparum Gametocytes and Transmission: An Individual Patient Meta-Analysis. J Infect Dis 2020; 225:1215-1226. [PMID: 32778875 PMCID: PMC8974839 DOI: 10.1093/infdis/jiaa498] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Accepted: 08/06/2020] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Since the World Health Organization recommended single low-dose (0.25 mg/kg) primaquine (PQ) in combination with artemisinin-based combination therapies (ACTs) in areas of low transmission or artemisinin-resistant Plasmodium falciparum, several single-site studies have been conducted to assess efficacy. METHODS An individual patient meta-analysis to assess gametocytocidal and transmission-blocking efficacy of PQ in combination with different ACTs was conducted. Random effects logistic regression was used to quantify PQ effect on (1) gametocyte carriage in the first 2 weeks post treatment; and (2) the probability of infecting at least 1 mosquito or of a mosquito becoming infected. RESULTS In 2574 participants from 14 studies, PQ reduced PCR-determined gametocyte carriage on days 7 and 14, most apparently in patients presenting with gametocytemia on day 0 (odds ratio [OR], 0.22; 95% confidence interval [CI], .17-.28 and OR, 0.12; 95% CI, .08-.16, respectively). Rate of decline in gametocyte carriage was faster when PQ was combined with artemether-lumefantrine (AL) compared to dihydroartemisinin-piperaquine (DP) (P = .010 for day 7). Addition of 0.25 mg/kg PQ was associated with near complete prevention of transmission to mosquitoes. CONCLUSIONS Transmission blocking is achieved with 0.25 mg/kg PQ. Gametocyte persistence and infectivity are lower when PQ is combined with AL compared to DP.
Collapse
Affiliation(s)
- Kasia Stepniewska
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Kasia Stepniewska, PhD, WorldWide Antimalarial Resistance Network (WWARN), Centre for Tropical Medicine and Global Health, Churchill Hospital, CCVTM, University of Oxford, Old Road, Oxford OX3 7LE, UK
| | - Georgina S Humphreys
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom,Green Templeton College, University of Oxford, Oxford, United Kingdom
| | - Bronner P Gonçalves
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Elaine Craig
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Roly Gosling
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Philippe J Guerin
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Infectious Diseases Data Observatory, Oxford, United Kingdom
| | - Ric N Price
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,Centre for Tropical Medicine and Global Health, Nuffield Department of Clinical Medicine, University of Oxford, Oxford, United Kingdom,Global and Tropical Health Division, Menzies School of Health Research and Charles Darwin University, Darwin, Norther Territory, Australia,Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Karen I Barnes
- WorldWide Antimalarial Resistance Network, Oxford, United Kingdom,University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jaishree Raman
- University of Cape Town/Medical Research Council Collaborating Centre for Optimising Antimalarial Therapy, University of Cape Town, Cape Town, South Africa,Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases, National Health Laboratory Services, Johannesburg, South Africa,Wits Research Institute for Malaria, Faculty of Health Sciences, University of Witwatersrand, Johannesburg, South Africa
| | - Menno R Smit
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Umberto D’Alessandro
- Medical Research Council Unit The Gambia, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Will J R Stone
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | - Anders Bjorkman
- Department of Microbiology Tumor and Cell Biology, Karolinska Institutet, Stockholm, Sweden
| | - Aaron M Samuels
- Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA,Centers for Disease Control and Prevention, Kisumu, Kenya
| | - Maria I Arroyo-Arroyo
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Guido J H Bastiaens
- Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Department of Microbiology and Immunology, Rijnstate Hospital, Arnhem, the Netherlands
| | - Joelle M Brown
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA
| | - Alassane Dicko
- Malaria Research and Training Centre, Faculty of Pharmacy and Faculty of Medicine and Dentistry, University of Science, Techniques, and Technologies of Bamako, Bamako, Mali
| | - Badria B El-Sayed
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Salah-Eldin G Elzaki
- Tropical Medicine Research Institute, National Centre for Research, Khartoum, Sudan
| | - Alice C Eziefula
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Global Health and Infection, Brighton and Sussex Medical School, Brighton, United Kingdom
| | | | - Titus K Kwambai
- Department of Clinical Sciences, Liverpool School of Tropical Medicine, Liverpool, United Kingdom,Kenya Medical Research Institute, Kisian, Kenya
| | - Amanda E Maestre
- Grupo Salud y Comunidad, Facultad de Medicina, Universidad de Antioquia, Medellin, Colombia
| | - Andreas Martensson
- Department of Women’s and Children’s Health, International Maternal and Child Health, Uppsala University, Uppsala, Sweden
| | - Dominic Mosha
- Bagamoyo Research and Training Centre, Ifakara Health Institute, Bagamoyo, Tanzania,Africa Academy for Public Health, Dar es Salaam, Tanzania
| | - Richard O Mwaiswelo
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Billy E Ngasala
- Department of Parasitology and Medical Entomology, Muhimbili University of Health and Allied Sciences, Dar es Salaam, Tanzania
| | - Joseph Okebe
- Department of International Public Health, Liverpool School of Tropical Medicine, Liverpool, United Kingdom
| | - Michelle E Roh
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California, USA,Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Patrick Sawa
- Human Health Division, International Centre for Insect Physiology and Ecology, Mbita Point, Kenya
| | - Alfred B Tiono
- Department of Biomedical Sciences, Centre National de Recherche et de Formation sur le Paludisme, Ouagadougou, Burkina Faso
| | - Ingrid Chen
- Global Health Group, Malaria Elimination Initiative, University of California, San Francisco, California, USA
| | - Chris J Drakeley
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom
| | - Teun Bousema
- Department of Immunology and Infection, London School of Hygiene and Tropical Medicine, London, United Kingdom,Department of Medical Microbiology, Radboud University Medical Center, Nijmegen, the Netherlands,Correspondence: Teun Bousema, PhD, Department of Medical Microbiology, Radboud Institute for Health Science, Radboudumc, PO Box 9101, 6500 HB Nijmegen, The Netherlands ()
| |
Collapse
|
45
|
Saito M, Mansoor R, Kennon K, Anvikar AR, Ashley EA, Chandramohan D, Cohee LM, D'Alessandro U, Genton B, Gilder ME, Juma E, Kalilani-Phiri L, Kuepfer I, Laufer MK, Lwin KM, Meshnick SR, Mosha D, Mwapasa V, Mwebaza N, Nambozi M, Ndiaye JLA, Nosten F, Nyunt M, Ogutu B, Parikh S, Paw MK, Phyo AP, Pimanpanarak M, Piola P, Rijken MJ, Sriprawat K, Tagbor HK, Tarning J, Tinto H, Valéa I, Valecha N, White NJ, Wiladphaingern J, Stepniewska K, McGready R, Guérin PJ. Efficacy and tolerability of artemisinin-based and quinine-based treatments for uncomplicated falciparum malaria in pregnancy: a systematic review and individual patient data meta-analysis. THE LANCET. INFECTIOUS DISEASES 2020; 20:943-952. [PMID: 32530424 PMCID: PMC7391007 DOI: 10.1016/s1473-3099(20)30064-5] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 01/17/2020] [Accepted: 01/30/2020] [Indexed: 02/07/2023]
Abstract
BACKGROUND Malaria in pregnancy affects both the mother and the fetus. However, evidence supporting treatment guidelines for uncomplicated (including asymptomatic) falciparum malaria in pregnant women is scarce and assessed in varied ways. We did a systematic literature review and individual patient data (IPD) meta-analysis to compare the efficacy and tolerability of different artemisinin-based or quinine-based treatments for malaria in pregnant women. METHODS We did a systematic review of interventional or observational cohort studies assessing the efficacy of artemisinin-based or quinine-based treatments in pregnancy. Seven databases (MEDLINE, Embase, Global Health, Cochrane Library, Scopus, Web of Science, and Literatura Latino Americana em Ciencias da Saude) and two clinical trial registries (International Clinical Trials Registry Platform and ClinicalTrials.gov) were searched. The final search was done on April 26, 2019. Studies that assessed PCR-corrected treatment efficacy in pregnancy with follow-up of 28 days or more were included. Investigators of identified studies were invited to share data from individual patients. The outcomes assessed included PCR-corrected efficacy, PCR-uncorrected efficacy, parasite clearance, fever clearance, gametocyte development, and acute adverse events. One-stage IPD meta-analysis using Cox and logistic regression with random-effects was done to estimate the risk factors associated with PCR-corrected treatment failure, using artemether-lumefantrine as the reference. This study is registered with PROSPERO, CRD42018104013. FINDINGS Of the 30 studies assessed, 19 were included, representing 92% of patients in the literature (4968 of 5360 episodes). Risk of PCR-corrected treatment failure was higher for the quinine monotherapy (n=244, adjusted hazard ratio [aHR] 6·11, 95% CI 2·57-14·54, p<0·0001) but lower for artesunate-amodiaquine (n=840, 0·27, 95% 0·14-0·52, p<0·0001), artesunate-mefloquine (n=1028, 0·56, 95% 0·34-0·94, p=0·03), and dihydroartemisinin-piperaquine (n=872, 0·35, 95% CI 0·18-0·68, p=0·002) than artemether-lumefantrine (n=1278) after adjustment for baseline asexual parasitaemia and parity. The risk of gametocyte carriage on day 7 was higher after quinine-based therapy than artemisinin-based treatment (adjusted odds ratio [OR] 7·38, 95% CI 2·29-23·82). INTERPRETATION Efficacy and tolerability of artemisinin-based combination therapies (ACTs) in pregnant women are better than quinine. The lower efficacy of artemether-lumefantrine compared with other ACTs might require dose optimisation. FUNDING The Bill & Melinda Gates Foundation, ExxonMobil Foundation, and the University of Oxford Clarendon Fund.
Collapse
Affiliation(s)
- Makoto Saito
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Dr Makoto Saito, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, UK
| | - Rashid Mansoor
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Kalynn Kennon
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Anupkumar R Anvikar
- Indian Council of Medical Research, National Institute of Malaria Research, New Delhi, India
| | - Elizabeth A Ashley
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Lao-Oxford-Mahosot Hospital-Wellcome Trust Research Unit, Vientiane, Laos
| | - Daniel Chandramohan
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Lauren M Cohee
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Umberto D'Alessandro
- Medical Research Council Unit, The Gambia at the London School of Hygiene & Tropical Medicine, Banjul, The Gambia
| | - Blaise Genton
- Department of Epidemiology and Public Health, Swiss Tropical and Public Health Institute, University of Basel, Basel, Switzerland,University Center of General Medicine and Public Health, Lausanne, Switzerland
| | - Mary Ellen Gilder
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | | | - Linda Kalilani-Phiri
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Irene Kuepfer
- Department of Disease Control, London School of Hygiene and Tropical Medicine, London, UK
| | - Miriam K Laufer
- Center for Vaccine Development and Global Health, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Khin Maung Lwin
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Steven R Meshnick
- Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina, NC, USA
| | | | - Victor Mwapasa
- Department of Medicine, University of Malawi College of Medicine, Blantyre, Malawi
| | - Norah Mwebaza
- Infectious Disease Research Collaboration, Makerere University, Kampala, Uganda
| | - Michael Nambozi
- Department of Clinical Sciences, Tropical Diseases Research Centre, Ndola, Zambia
| | | | - François Nosten
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Myaing Nyunt
- Duke Global Health Institute, Duke University, Durham, NC, USA
| | | | - Sunil Parikh
- Department of Epidemiology of Microbial Diseases, Yale School of Public Health, New Haven, CT, USA
| | - Moo Kho Paw
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Aung Pyae Phyo
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Myanmar–Oxford Clinical Research Unit, Yangon, Myanmar
| | - Mupawjay Pimanpanarak
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Patrice Piola
- Epidemiology and Public Health Unit, Institut Pasteur du Cambodge, Phnom Penh, Cambodia
| | - Marcus J Rijken
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand,Department of Obstetrics and Gynecology, Division of Woman and Baby, University Medical Center Utrecht, Utrecht, Netherlands
| | - Kanlaya Sriprawat
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Harry K Tagbor
- School of Medicine, University of Health and Allied Sciences, Ho, Ghana
| | - Joel Tarning
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Halidou Tinto
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Innocent Valéa
- Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso
| | - Neena Valecha
- Indian Council of Medical Research, National Institute of Malaria Research, New Delhi, India
| | - Nicholas J White
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Jacher Wiladphaingern
- Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Kasia Stepniewska
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK
| | - Rose McGready
- Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Shoklo Malaria Research Unit, Mahidol-Oxford Tropical Medicine Research Unit, Faculty of Tropical Medicine, Mahidol University, Bangkok, Thailand
| | - Philippe J Guérin
- WorldWide Antimalarial Resistance Network (WWARN), Oxford, UK,Infectious Diseases Data Observatory (IDDO), Oxford, UK,Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford, UK,Correspondence to: Prof Philippe J Guérin, Nuffield Department of Medicine, Centre for Tropical Medicine and Global Health, University of Oxford, Oxford OX3 7LG, UK
| |
Collapse
|
46
|
Olivera MJ, Guerra AP, Cortes LJ, Horth RZ, Padilla J, Novoa J, Ade MDLP, Ljolje D, Lucchi NW, Marquiño W, Renteria M, Yurgaky W, Macedo de Oliveira A. Artemether-Lumefantrine Efficacy for the Treatment of Uncomplicated Plasmodium falciparum Malaria in Choco, Colombia after 8 Years as First-Line Treatment. Am J Trop Med Hyg 2020; 102:1056-1063. [PMID: 32100686 DOI: 10.4269/ajtmh.19-0954] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Artemether-lumefantrine (AL) is the first-line treatment for uncomplicated Plasmodium falciparum infection in Colombia. To assess AL efficacy for uncomplicated falciparum malaria in Quibdo, Choco, Colombia, we conducted a 28-day therapeutic efficacy study (TES) following the WHO guidelines. From July 2018 to February 2019, febrile patients aged 5-65 years with microscopy-confirmed P. falciparum mono-infection and asexual parasite density of 250-100,000 parasites/µL were enrolled and treated with a supervised 3-day course of AL. The primary endpoint was adequate clinical and parasitological response (ACPR) on day 28. We attempted to use polymerase chain reaction (PCR) genotyping to differentiate reinfection and recrudescence, and conducted genetic testing for antimalarial resistance-associated genes. Eighty-eight patients consented and were enrolled; four were lost to follow-up or missed treatment doses. Therefore, 84 (95.5%) participants reached a valid endpoint: treatment failure or ACPR. No patient remained microscopy positive for malaria on day 3, evidence of delayed parasite clearance and artemisinin resistance. One patient had recurrent infection (12 parasites/µL) on day 28. Uncorrected ACPR rate was 98.8% (83/84) (95% CI: 93.5-100%). The recurrent infection sample did not amplify during molecular testing, giving a PCR-corrected ACPR of 100% (83/83) (95% CI: 95.7-100%). No P. falciparum kelch 13 polymorphisms associated with artemisinin resistance were identified. Our results support high AL efficacy for falciparum malaria in Choco. Because of the time required to conduct TESs in low-endemic settings, it is important to consider complementary alternatives to monitor antimalarial efficacy and resistance.
Collapse
Affiliation(s)
- Mario J Olivera
- Grupo de Parasitología, Instituto Nacional de Salud, Bogota, Colombia
| | | | | | - Roberta Z Horth
- Epidemic Intelligence Service, Center for Surveillance, Epidemiology, and Laboratory Services, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Julio Padilla
- Ministerio de Salud y Protección Social, Bogota, Colombia
| | | | - María de la Paz Ade
- Department of Communicable Diseases and Environmental Determinants of Health, Pan-American Health Organization, Washington, District of Columbia
| | - Dragan Ljolje
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | - Naomi W Lucchi
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| | | | - Martha Renteria
- Laboratorio Departamental de Salud Pública de Choco, Quibdo, Colombia
| | | | - Alexandre Macedo de Oliveira
- Malaria Branch, Division of Parasitic Diseases and Malaria, Center for Global Health, Centers for Disease Control and Prevention, Atlanta, Georgia
| |
Collapse
|
47
|
Significant Efficacy of a Single Low Dose of Primaquine Compared to Stand-Alone Artemisinin Combination Therapy in Reducing Gametocyte Carriage in Cambodian Patients with Uncomplicated Multidrug-Resistant Plasmodium falciparum Malaria. Antimicrob Agents Chemother 2020; 64:AAC.02108-19. [PMID: 32179526 PMCID: PMC7269483 DOI: 10.1128/aac.02108-19] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Accepted: 03/06/2020] [Indexed: 11/22/2022] Open
Abstract
Since 2012, a single low dose of primaquine (SLDPQ; 0.25 mg/kg of body weight) with artemisinin-based combination therapies has been recommended as the first-line treatment of acute uncomplicated Plasmodium falciparum malaria to interrupt its transmission, especially in low-transmission settings of multidrug resistance, including artemisinin resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and a lack of data on its efficacy. Since 2012, a single low dose of primaquine (SLDPQ; 0.25 mg/kg of body weight) with artemisinin-based combination therapies has been recommended as the first-line treatment of acute uncomplicated Plasmodium falciparum malaria to interrupt its transmission, especially in low-transmission settings of multidrug resistance, including artemisinin resistance. Policy makers in Cambodia have been reluctant to implement this recommendation due to primaquine safety concerns and a lack of data on its efficacy. In this randomized controlled trial, 109 Cambodians with acute uncomplicated P. falciparum malaria received dihydroartemisinin-piperaquine (DP) alone or combined with SLDPQ on the first treatment day. The transmission-blocking efficacy of SLDPQ was evaluated on days 0, 1, 2, 3, 7, 14, 21, and 28, and recrudescence by reverse transcriptase PCR (RT-PCR) (gametocyte prevalence) and membrane feeding assays with Anopheles minimus mosquitoes (gametocyte infectivity). Without the influence of recrudescent infections, DP-SLDPQ reduced gametocyte carriage 3-fold compared to that achieved with DP. Of 48 patients tested on day 0, only 3 patients were infectious to mosquitoes (∼6%). Posttreatment, three patients were infectious on day 14 (3.5%, 1/29) and on the 1st and 7th days of recrudescence (8.3%, 1/12 for each); this overall low infectivity precluded our ability to assess its transmission-blocking efficacy. Our study confirms the effective gametocyte clearance of SLDPQ when combined with DP in multidrug-resistant P. falciparum infections and the negative impact of recrudescent infections due to poor DP efficacy. Artesunate-mefloquine (ASMQ) has replaced DP, and ASMQ-SLDPQ has been deployed to treat all patients with symptomatic P. falciparum infections to further support the elimination of multidrug-resistant P. falciparum in Cambodia. (This study has been registered at ClinicalTrials.gov under identifier NCT02434952.)
Collapse
|
48
|
Gaye S, Kibler J, Ndiaye JL, Diouf MB, Linn A, Gueye AB, Fall FB, Ndiop M, Diallo I, Cisse M, Ba M, Thwing J. Proactive community case management in Senegal 2014-2016: a case study in maximizing the impact of community case management of malaria. Malar J 2020; 19:166. [PMID: 32334581 PMCID: PMC7183580 DOI: 10.1186/s12936-020-03238-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2020] [Accepted: 04/16/2020] [Indexed: 11/10/2022] Open
Abstract
The Senegal National Malaria Control Programme (NMCP) introduced home-based malaria management for all ages, with diagnosis by rapid diagnostic test (RDT) and treatment with artemisinin-based combination therapy (ACT) in 2008, expanding to over 2000 villages nationwide by 2014. With prise en charge à domicile (PECADOM), community health workers (CHWs) were available for community members to seek care, but did not actively visit households to find cases. A trial of a proactive model (PECADOM Plus), in which CHWs visited all households in their village weekly during transmission season to identify fever cases and offer case management, in addition to availability during the week for home-based management, found that CHWs detected and treated more cases in intervention villages, while the number of cases detected weekly decreased over the transmission season. The NMCP scaled PECADOM Plus to three districts in 2014 (132 villages), to a total of six districts in 2015 (246 villages), and to a total of 16 districts in 2016 (708 villages). A narrative case study with programmatic results is presented. During active sweeps over approximately 20 weeks, CHWs tested a mean of 77 patients per CHW in 2014, 89 patients per CHW in 2015, and 90 patients per CHW in 2016, and diagnosed a mean of 61, 61 and 43 patients with malaria per CHW in 2014, 2015 and 2016, respectively. The number of patients who sought care between sweeps increased, with a 104% increase in the number of RDTs performed and a 77% increase in the number of positive tests and patients treated with ACT during passive case detection. While the number of CHWs increased 7%, the number of patients receiving an RDT increased by 307% and the number of malaria cases detected and treated by CHWs increased 274%, from the year prior to PECADOM Plus introduction to its first year of implementation. Based on these results, approximately 700 additional CHWs in 24 new districts were added in 2017. This case study describes the process, results and lessons learned from Senegal’s implementation of PECADOM Plus, as well as guidance for other programmes considering introduction of this innovative strategy.
Collapse
Affiliation(s)
- Seynabou Gaye
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | - Jean Louis Ndiaye
- Laboratoire de Parasitologie et Mycologie Médicale, Université Cheikh Anta Diop, Dakar, Senegal
| | - Mame Birame Diouf
- United States Agency for International Development, Dakar, Senegal.,U.S. President's Malaria Initiative, Dakar, Senegal
| | - Annē Linn
- United States Agency for International Development, Washington, DC, USA.,U.S. President's Malaria Initiative, Washington, DC, USA
| | | | - Fatou Ba Fall
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Médoune Ndiop
- Senegal National Malaria Control Programme, Dakar, Senegal
| | | | | | - Mady Ba
- Senegal National Malaria Control Programme, Dakar, Senegal
| | - Julie Thwing
- Division of Parasitic Diseases and Malaria, Malaria Branch, Center for Global Health, Centers for Disease Control and Prevention (CDC) Atlanta, Atlanta, GA, USA.
| |
Collapse
|
49
|
Ebstie YA, Guedoung ART, Habluetzel A. A murine malaria protocol for characterizing transmission blocking benefits of antimalarial drug combinations. MALARIAWORLD JOURNAL 2020; 11:1. [PMID: 34532220 PMCID: PMC8415060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Figures] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
BACKGROUND Current efforts towards malaria elimination include the discovery of new transmission blocking (TB) drugs and identification of compounds suitable to replace primaquine, recommended as transmission blocking post treatment after artemisinin combination therapy (ACT). High through put screening of compound libraries has allowed to identify numerous compounds active in vitro against gametocytes and insect early sporogonic stages, but few studies have been performed to characterize TB compounds in vivo. Here we propose a double TB drug Direct Feeding Assay (2TB-DFA), suitable to assess the combined effects of TB compounds. MATERIALS AND METHODS Plasmodium berghei GFPcon (PbGFPcon), BALB/c mice and Anopheles stephensi mosquitoes were used. Artemisinin (ART) and artesunate (AS) served as examples of artemisinins, NeemAzal® (NA), as a known TB-product with sporontocidal activity. DFA experiments were performed to assess the appropriate time point of administration before mosquito feeding and estimate suitable sub-optimal doses of the three compounds that allow combination effects to be appreciated. RESULTS Suboptimal dosages, that reduce about 50% of oocyst development, were recorded with ART in the range of 16-30 mg/ kg, AS 14-28 mg/kg and NA 31-38mg/kg. Ten hours before mosquito feeding (corresponding to 3.5 days after mouse infection) was determined as a suitable time point for mouse treatment with ART and AS and 1 hour for post-treatment with NA. ART given at 35 mg/kg in combination with NA at 40 mg/kg reduced oocyst density by 94% and prevalence of infection by 59%. Similarly, the combination of ART at 25 mg/kg plus NA at 35 mg/kg decreased oocyst density by 95% and prevalence of infection by 34%. In the 2TB-DFA, conducted with AS (20 mg/kg) and NA (35 mg/kg) the combination treatment reduced oocyst density by 71% and did not affect prevalence of infection. Applying 'Highest Single Agent' analysis and considering as readout oocyst density and prevalence of infection, cooperative effects of the combination treatments, compared with the single compound treatments emerged. CONCLUSION This study suggests the 2TB-DFA to be suitable for the profiling of new TB candidates that could substitute primaquine as a post-treatment to ACT courses.
Collapse
Affiliation(s)
| | | | - Annette Habluetzel
- School of Pharmacy, University of Camerino, Camerino, Italy
- Centro Interuniversitario di Ricerca sulla Malaria/Italian Malaria Network, University of Milan, Milan, Italy
| |
Collapse
|
50
|
Guiguemde KT, Dieye Y, Lô AC, Ndiaye M, Lam A, Manga IA, Sow GD, Diop M, Souané T, Diouf MP, Tine RCK, Faye B. Molecular detection and quantification of Plasmodium falciparum gametocytes carriage in used RDTs in malaria elimination settings in northern Senegal. Malar J 2020; 19:123. [PMID: 32228599 PMCID: PMC7106854 DOI: 10.1186/s12936-020-03204-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Accepted: 03/23/2020] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND Malaria surveillance requires powerful tools and strategies to achieve malaria elimination. Rapid diagnostic tests for malaria (RDTs) are easily deployed on a large scale and are helpful sources of parasite DNA. The application of sensitive molecular techniques to these RDTs is a modern tool for improving malaria case detection and drug resistance surveillance. Several studies have made it possible to extract the DNA of Plasmodium falciparum from RDTs. The knowledge of gametocyte carriage in the population is important to better assess the level of parasite transmission in elimination settings. The aim of this study was to detect P. falciparum gametocytes from used RDTs by quantitative PCR for molecular monitoring of malaria transmission. METHODS DNA was extracted from 303 RDT devices (SD Bioline Malaria Pf) using the Chelex-100 protocol. qPCR was performed in a 20 μL reaction to detect and quantify transcripts of the pfs25 gene. The cycle threshold (Ct) was determined by the emission fluorescence corresponding to the initial amount of amplified DNA. RESULTS The study found an overall prevalence of 53.47% with an average Ct of 32.12 ± 4.28 cycles. In 2018, the prevalence of gametocytes was higher in the Ranérou district (76.24%) than in the Saint-Louis district (67.33%) where an increase in the number of gametocyte carriers in 2018 was noted, in comparison with 2017. CONCLUSIONS RDTs are a good source of DNA for molecular monitoring of gametocyte carriage. This method is a simple and effective tool to better understand the level of malaria transmission with a view to elimination.
Collapse
Affiliation(s)
| | - Yakou Dieye
- PATH, Malaria Control and Evaluation Partnership (MACEPA), Dakar, Senegal
| | - Aminata Collé Lô
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Magatte Ndiaye
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Aminata Lam
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Isaac Akhénaton Manga
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Gnagna Dieng Sow
- PATH, Malaria Control and Evaluation Partnership (MACEPA), Dakar, Senegal
| | - Moussa Diop
- PATH, Malaria Control and Evaluation Partnership (MACEPA), Dakar, Senegal
| | - Tamba Souané
- PATH, Malaria Control and Evaluation Partnership (MACEPA), Dakar, Senegal
| | - Marie Pièrre Diouf
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Roger Clément Kouly Tine
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| | - Babacar Faye
- Department of Medical Parasitology, Medical Faculty, Cheikh Anta Diop University, Dakar, Senegal
| |
Collapse
|