1
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs improve discovery of DNA methylation associations with complex traits. Nat Commun 2025; 16:368. [PMID: 39753567 PMCID: PMC11698866 DOI: 10.1038/s41467-024-55698-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 12/18/2024] [Indexed: 01/06/2025] Open
Abstract
We have developed the regionalpcs method, an approach for summarizing gene-level methylation. regionalpcs addresses the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease. In contrast to averaging, regionalpcs uses principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrates a 54% improvement in sensitivity over averaging in simulations, providing a robust framework for identifying subtle epigenetic variations. Applying regionalpcs to Alzheimer's disease brain methylation data, combined with cell type deconvolution, we uncover 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci with genome-wide association studies identified 17 genes with potential causal roles in Alzheimer's disease risk, including MS4A4A and PICALM. Available in the Bioconductor package regionalpcs, our approach facilitates a deeper understanding of the epigenetic landscape in Alzheimer's disease and opens avenues for research into complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA
- Stanford Center for Biomedical Informatics Research (BMIR), Department of Medicine, Stanford University, Stanford, CA, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, USA
| | | | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, USA.
| | - Stephen B Montgomery
- Department of Biomedical Data Science, Stanford University, Stanford, CA, USA.
- Department of Pathology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
2
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. Aging Cell 2024:e14439. [PMID: 39722190 DOI: 10.1111/acel.14439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 11/07/2024] [Accepted: 11/20/2024] [Indexed: 12/28/2024] Open
Abstract
Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased the risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD as they age.
Collapse
Affiliation(s)
- Artur Shvetcov
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Psychological Medicine, Sydney Children's Hospital Network, Sydney, NSW, Australia
- Discipline of Psychiatry and Mental Health, School of Clinical Medicine, Faculty of Medicine and Health, University of New South Wales, Sydney, NSW, Australia
| | - Shannon Thomson
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M Wilkins
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H Swerdlow
- University of Kansas Alzheimer's Disease Research Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Caitlin A Finney
- Translational Dementia Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
3
|
Domingo-Relloso A, McGraw KE, Heckbert SR, Luchsinger JA, Schilling K, Glabonjat RA, Martinez-Morata I, Mayer M, Liu Y, Wood AC, Goldsmith J, Hayden KM, Habes M, Nasrallah IM, Bryan RN, Rashid T, Post WS, Rotter JI, Palta P, Valeri L, Hughes TM, Navas-Acien A. Urinary Metal Levels, Cognitive Test Performance, and Dementia in the Multi-Ethnic Study of Atherosclerosis. JAMA Netw Open 2024; 7:e2448286. [PMID: 39621345 PMCID: PMC11612832 DOI: 10.1001/jamanetworkopen.2024.48286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Accepted: 10/09/2024] [Indexed: 12/06/2024] Open
Abstract
Importance Metals are established neurotoxicants, but evidence of their association with cognitive performance at low chronic exposure levels is limited. Objective To investigate the association of urinary metal levels, individually and as a mixture, with cognitive tests and dementia diagnosis, including effect modification by apolipoprotein ε4 allele (APOE4). Design, Setting, and Participants The multicenter prospective cohort Multi-Ethnic Study of Atherosclerosis (MESA) was started from July 2000 to August 2002, with follow-up through 2018. A total of 6303 MESA participants were included. Data analysis was performed from October 12, 2023, to June 13, 2024. Exposure Urine samples were collected at baseline (2000-2002), and arsenic, cadmium, cobalt, copper, lead, manganese, tungsten, uranium, and zinc levels were measured in 2020-2022. Main Outcomes and Measures Digit Symbol Coding (DSC) (n = 3819) (possible score range, 0-133), Cognitive Abilities Screening Instrument (CASI) (n = 3918) (possible score range, 0-100), and Digit Span (DS) (n = 4176) (possible score range, 0-30) cognitive tests were administered in 2010-2012; higher scores of each test indicate increasing levels of positive response. Results A total of 6303 participants were followed up for dementia diagnosis through 2018. The median age at baseline was 60 (IQR, 53-70) years, and 3303 participants (52.4%) were female. The median cognitive scores were 51 (IQR, 38-64) for DSC, 90 (IQR, 84-95) for CASI, and 15 (IQR, 12-18) for DS. There were 559 cases of dementia through the follow-up period. Inverse associations with DSC were identified: mean differences in z scores per IQR increase in metal levels were -0.03 (95% CI, -0.07 to 0.00) for arsenic, -0.05 (95% CI, -0.09 to -0.004) for cobalt, -0.05 (95% CI, -0.07 to -0.02) for copper, -0.04 (95% CI, -0.08 to -0.001) for uranium, and -0.03 (95% CI, -0.06 to -0.01) for zinc. Among 1058 APOE4 carriers, manganese was also inversely associated with DSC. The joint mean difference of DSC comparing percentile 95th with the 25th of the 9-metal mixture was -0.30 (95% CI, -0.47 to -0.14) for APOE4 carriers and -0.10 (95% CI, -0.19 to -0.01) for noncarriers. Arsenic, cadmium, cobalt, copper, tungsten, uranium, and zinc were individually associated with dementia, with hazard ratios per IQR of metal ranging from 1.15 (95% CI, 1.03-1.29) for tungsten to 1.46 (95% CI, 1.06-2.02) for uranium. The joint hazard ratio of dementia comparing percentiles 95th with the 25th of the 9-metal mixture was 1.71 (95% CI, 1.24-3.89), with no significant difference by APOE4 status. Conclusions and Relevance In this study, participants with higher concentrations of metals in their urine, compared with those with lower concentrations, had worse performance on cognitive tests and greater likelihood of developing dementia. The findings of this multicenter multiethnic cohort study might inform screening and potential interventions for prevention of dementia based on individuals' metal exposure levels and genetic profiles.
Collapse
Affiliation(s)
- Arce Domingo-Relloso
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Katlyn E. McGraw
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Susan R. Heckbert
- Department of Epidemiology, University of Washington School of Public Health, Seattle
| | - Jose A. Luchsinger
- Division of General Medicine, Columbia University Department of Medicine, New York, New York
| | - Kathrin Schilling
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Ronald A. Glabonjat
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Irene Martinez-Morata
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Melanie Mayer
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Yongmei Liu
- Department of Cardiology, Duke University School of Medicine, Durham, North Carolina
- Department of Medicine, Duke University School of Medicine, Durham, North Carolina
- Department of Neurology, Duke University School of Medicine, Durham, North Carolina
| | - Alexis C. Wood
- US Department of Agriculture/Agricultural Research Service Children's Nutrition Research Center, Children’s Nutrition Research Center, Baylor College of Medicine, Houston, Texas
| | - Jeff Goldsmith
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Kathleen M. Hayden
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Mohamad Habes
- Neuroimage Analytics Laboratory and the Biggs Institute Neuroimaging Core, Glenn Biggs Institute for Alzheimer’s and Neurodegenerative Diseases, University of Texas Health Science Center, San Antonio
| | | | - R. Nick Bryan
- Department of Radiology, University of Pennsylvania, Philadelphia
| | - Tanweer Rashid
- Neuroimage Analytics Laboratory, University of Texas, San Antonio, San Antonio
| | - Wendy S. Post
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Jerome I. Rotter
- The Institute for Translational Genomics and Population Sciences, Department of Pediatrics, The Lundquist Institute for Biomedical Innovation at Harbor-UCLA Medical Center, Torrance, California
| | - Priya Palta
- Department of Radiology, University of North Carolina School of Medicine, Chapell Hill
| | - Linda Valeri
- Department of Biostatistics, Columbia University Mailman School of Public Health, New York, New York
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| | - Timothy M. Hughes
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston-Salem, North Carolina
| | - Ana Navas-Acien
- Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, New York
| |
Collapse
|
4
|
Sin MK, Cheng Y, Ahmed A, Roseman JM, Dowling NM, Zamrini E. Cerebral Amyloid Angiopathy, Dementia, and Alzheimer Neuropathologic Changes: Findings From the ACT Autopsy Cohort. Neurology 2024; 103:e210009. [PMID: 39481068 PMCID: PMC11527483 DOI: 10.1212/wnl.0000000000210009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 09/04/2024] [Indexed: 11/02/2024] Open
Abstract
BACKGROUND AND OBJECTIVES Cerebral amyloid angiopathy (CAA) is common in older adults and is associated with dementia. Less is known whether this association is mediated by Alzheimer disease (AD) neuropathologic changes, the examination of which was the objective of this study. METHODS This was a retrospective cross-sectional examination of the Kaiser Permanente Washington database of the Adult Changes in Thought (ACT) autopsy cohort with information on CAA, dementia, the Consortium to Establish a Registry for Alzheimer's Disease (CERAD) (amyloid neuritic plaques), and Braak (tau neurofibrillary tangles). CAA was diagnosed by immunohistochemistry and dementia by ACT Consensus Diagnostic Conference. AD neuropathology was categorized by CERAD scores and Braak stages. Multivariable logistic regression models were used to estimate odds ratios (ORs) and 95% CIs of the associations of CAA with dementia, adjusting for age at death and sex, and with additional adjustments separately for CERAD scores (moderate-severe vs mild-absent), Braak stages (V-VI vs 0-IV), APOE ε4, and stroke. Formal mediation analyses were conducted to estimate age-sex-adjusted OR (95% CI) for natural indirect effects (NIEs) of CERAD scores and Braak stages. RESULTS The 848 participants had a mean age of 86.7 ± 4.6 years at death, and 57.6% were female. CAA was present in 322 participants (38.0%), of whom 152, 145, and 25 had mild, moderate, and severe CAA, respectively. Dementia was present in 384 participants (45.3%), of whom 317 had AD. Dementia was more common in those with CAA than without (53.7% vs 40.1%; age-sex-adjusted OR 1.57, 95% CI 1.18-2.10). This association remained significant after separate adjustment for other covariates but lost significance when adjusted for CERAD scores (OR 1.27, 95% CI 0.93-1.71) and Braak stages (OR 0.96, 95% CI 0.69-1.33). Findings from our formal mediation analyses show that ORs (95% CIs) for NIE of CERAD scores and Braak stages were 1.25 (1.13-1.37) and 1.63 (1.38-1.88), respectively, and CERAD scores and Braak stages mediated 53% and 111% of the total association, respectively. DISCUSSION We observed a significant association between CAA and dementia that disappeared when adjusted for CERAD or Braak stages. Findings from our mediation analyses suggest that the CAA-dementia association may be potentially mediated by AD neuropathologic changes. This hypothesis needs to be tested in future mechanistic studies in AD accounting for unmeasured confounders.
Collapse
Affiliation(s)
- Mo-Kyung Sin
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Yan Cheng
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Ali Ahmed
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Jeffrey M Roseman
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - N Maritza Dowling
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| | - Edward Zamrini
- From the Seattle University (M.-K.S.), Washington; George Washington University (Y.C., A.A., N.M.D., E.Z.), Washington, DC; DC VA Medical Center (A.A.), Washington, DC; University of Alabama at Birmingham (J.M.R.); Irvine Clinical Research (E.Z.), California
| |
Collapse
|
5
|
El Abiad E, Al-Kuwari A, Al-Aani U, Al Jaidah Y, Chaari A. Navigating the Alzheimer's Biomarker Landscape: A Comprehensive Analysis of Fluid-Based Diagnostics. Cells 2024; 13:1901. [PMID: 39594648 PMCID: PMC11593284 DOI: 10.3390/cells13221901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 11/12/2024] [Accepted: 11/14/2024] [Indexed: 11/28/2024] Open
Abstract
BACKGROUND Alzheimer's disease (AD) affects a significant portion of the aging population, presenting a serious challenge due to the limited availability of effective therapies during its progression. The disease advances rapidly, underscoring the need for early diagnosis and the application of preventative measures. Current diagnostic methods for AD are often expensive and invasive, restricting access for the general public. One potential solution is the use of biomarkers, which can facilitate early detection and treatment through objective, non-invasive, and cost-effective evaluations of AD. This review critically investigates the function and role of biofluid biomarkers in detecting AD, with a specific focus on cerebrospinal fluid (CSF), blood-based, and saliva biomarkers. RESULTS CSF biomarkers have demonstrated potential for accurate diagnosis and valuable prognostic insights, while blood biomarkers offer a minimally invasive and cost-effective approach for diagnosing cognitive issues. However, while current biomarkers for AD show significant potential, none have yet achieved the precision needed to replace expensive PET scans and CSF assays. The lack of a single accurate biomarker underscores the need for further research to identify novel or combined biomarkers to enhance the clinical efficacy of existing diagnostic tests. In this context, artificial intelligence (AI) and deep-learning (DL) tools present promising avenues for improving biomarker analysis and interpretation, enabling more precise and timely diagnoses. CONCLUSIONS Further research is essential to confirm the utility of all AD biomarkers in clinical settings. Combining biomarker data with AI tools offers a promising path toward revolutionizing the personalized characterization and early diagnosis of AD symptoms.
Collapse
Affiliation(s)
| | | | | | | | - Ali Chaari
- Weill Cornell Medicine–Qatar, Qatar Foundation, Education City, Doha P.O. Box 24144, Qatar; (E.E.A.); (A.A.-K.); (U.A.-A.); (Y.A.J.)
| |
Collapse
|
6
|
Ellis D, Watanabe K, Wilmanski T, Lustgarten MS, Korat AVA, Glusman G, Hadlock JJ, Fiehn O, Sebastiani P, Price ND, Hood L, Magis AT, Evans SJ, Pflieger L, Lovejoy JC, Gibbons SM, Funk CC, Baloni P, Rappaport N. APOE Genotype and Biological Age Impact Inter-Omic Associations Related to Bioenergetics. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.17.618322. [PMID: 39605362 PMCID: PMC11601402 DOI: 10.1101/2024.10.17.618322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Apolipoprotein E ( APOE ) modifies human aging; specifically, the ε2 and ε4 alleles are among the strongest genetic predictors of longevity and Alzheimer's disease (AD) risk, respectively. However, detailed mechanisms for their influence on aging remain unclear. Herein, we analyzed inter-omic, context-dependent association patterns across APOE genotypes, sex, and health axes in 2,229 community-dwelling individuals to test APOE genotypes for variation in metabolites and metabolite-associations tied to a previously-validated metric of biological aging (BA) based on blood biomarkers. Our analysis, supported by validation in an independent cohort, identified top APOE -associated plasma metabolites as diacylglycerols, which were increased in ε2-carriers and trended higher in ε4-carriers compared to ε3-homozygotes, despite the known opposing aging effects of the allele variants. 'Omics association patterns of ε2-carriers and increased biological age were also counter-intuitively similar, displaying increased associations between insulin resistance markers and energy-generating pathway metabolites. These results provide an atlas of APOE -related 'omic associations and support the involvement of bioenergetic pathways in mediating the impact of APOE on aging.
Collapse
|
7
|
Urich TJ, Tsiknia AA, Ali N, Park J, Mack WJ, Cortessis VK, Dinalo JE, Yassine HN. APOE ε4 and Dietary Patterns in Relation to Cognitive Function: An Umbrella Review of Systematic Reviews. Nutr Rev 2024:nuae156. [PMID: 39499795 DOI: 10.1093/nutrit/nuae156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2024] Open
Abstract
CONTEXT Carrying the apolipoprotein ε4 allele (APOE ε4) is the strongest genetic risk factor for late-onset Alzheimer's disease. There is some evidence suggesting that APOE ε4 may modulate the influence of diet on cognitive function. OBJECTIVE This umbrella review of systematic reviews evaluates the existing literature on the effect of dietary interventions on cognitive and brain-imaging outcomes by APOE status. DATA SOURCES PubMed, EMBASE, Web of Science, and Scopus were searched using terms appropriate to each area of research, from their respective starting dates of coverage until March 2023. DATA EXTRACTION Two independent reviewers conducted data extraction and performed a quality appraisal using the Measurement Tool to Assess Systematic Reviews (AMSTAR) 2. DATA ANALYSIS Six total reviews were included in the final analysis. Four reviews evaluated randomized controlled trials on individuals aged 50-93 years ranging the entire cognitive continuum. One review combined observational studies and clinical trials conducted on both cognitively healthy and cognitively impaired individuals (age range: 50-90), and 1 review included observational studies of both cognitively healthy and cognitively impaired adults (age range: 50-75). RESULTS Both observational studies and clinical trials yielded inconclusive results attributed to both practical limitations associated with longitudinal follow-up and issues of methodological quality. Except for the Mediterranean diet, dietary interventions, such as the ketogenic diet, nutraceuticals, and supplements, were generally not effective in older APOE ε4 carriers. This review considers plausible biological mechanisms that might explain why older and cognitively impaired APOE ε4 carriers were less likely to benefit. CONCLUSION This review identifies notable gaps in the literature, such as a shortage of studies conducted in middle-aged and cognitively healthy APOE ε4 carriers assessing the impact of dietary interventions and provides suggestions for novel trial designs.
Collapse
Affiliation(s)
- Thomas J Urich
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Amaryllis A Tsiknia
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, United States
| | - Nada Ali
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Jackson Park
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
| | - Wendy J Mack
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Victoria K Cortessis
- Department of Population and Public Health Sciences, University of Southern California, Los Angeles, CA 90033, United States
| | - Jennifer E Dinalo
- Norris Medical Library, University of Southern California, Los Angeles, CA 90033, United States
| | - Hussein N Yassine
- Department of Medicine, University of Southern California, Los Angeles, CA 90033, United States
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, University of Southern California, Los Angeles, CA 90033, United States
| |
Collapse
|
8
|
Min JH, Sarlus H, Harris RA. MAD-microbial (origin of) Alzheimer's disease hypothesis: from infection and the antimicrobial response to disruption of key copper-based systems. Front Neurosci 2024; 18:1467333. [PMID: 39416952 PMCID: PMC11480022 DOI: 10.3389/fnins.2024.1467333] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024] Open
Abstract
Microbes have been suspected to cause Alzheimer's disease since at least 1908, but this has generally remained unpopular in comparison to the amyloid hypothesis and the dominance of Aβ and Tau. However, evidence has been accumulating to suggest that these earlier theories are but a manifestation of a common cause that can trigger and interact with all the major molecular players recognized in AD. Aβ, Tau and ApoE, in particular appear to be molecules with normal homeostatic functions but also with alternative antimicrobial functions. Their alternative functions confer the non-immune specialized neuron with some innate intracellular defenses that appear to be re-appropriated from their normal functions in times of need. Indeed, signs of infection of the neurons by biofilm-forming microbial colonies, in synergy with herpes viruses, are evident from the clinical and preclinical studies we discuss. Furthermore, we attempt to provide a mechanistic understanding of the AD landscape by discussing the antimicrobial effect of Aβ, Tau and ApoE and Lactoferrin in AD, and a possible mechanistic link with deficiency of vital copper-based systems. In particular, we focus on mitochondrial oxidative respiration via complex 4 and ceruloplasmin for iron homeostasis, and how this is similar and possibly central to neurodegenerative diseases in general. In the case of AD, we provide evidence for the microbial Alzheimer's disease (MAD) theory, namely that AD could in fact be caused by a long-term microbial exposure or even long-term infection of the neurons themselves that results in a costly prolonged antimicrobial response that disrupts copper-based systems that govern neurotransmission, iron homeostasis and respiration. Finally, we discuss potential treatment modalities based on this holistic understanding of AD that incorporates the many separate and seemingly conflicting theories. If the MAD theory is correct, then the reduction of microbial exposure through use of broad antimicrobial and anti-inflammatory treatments could potentially alleviate AD although this requires further clinical investigation.
Collapse
Affiliation(s)
- Jin-Hong Min
- Department of Clinical Neuroscience, Center for Molecular Medicine, Karolinska Institutet, Karolinska University Hospital at Solna, Stockholm, Sweden
| | | | | |
Collapse
|
9
|
Sweetat S, Shabat MB, Theotokis P, Suissa N, Karafoulidou E, Touloumi O, Abu-Fanne R, Abramsky O, Wolf G, Saada A, Lotan A, Grigoriadis N, Rosenmann H. Ovariectomy and High Fat-Sugar-Salt Diet Induced Alzheimer's Disease/Vascular Dementia Features in Mice. Aging Dis 2024; 15:2284-2300. [PMID: 38913044 PMCID: PMC11346392 DOI: 10.14336/ad.2024.03110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 05/21/2024] [Indexed: 06/25/2024] Open
Abstract
While the vast majority of Alzheimer's disease (AD) is non-familial, the animal models of AD that are commonly used for studying disease pathogenesis and development of therapy are mostly of a familial form. We aimed to generate a model reminiscent of the etiologies related to the common late-onset Alzheimer's disease (LOAD) sporadic disease that will recapitulate AD/dementia features. Naïve female mice underwent ovariectomy (OVX) to accelerate aging/menopause and were fed a high fat-sugar-salt diet to expose them to factors associated with increased risk of development of dementia/AD. The OVX mice fed a high fat-sugar-salt diet responded by dysregulation of glucose/insulin, lipid, and liver function homeostasis and increased body weight with slightly increased blood pressure. These mice developed AD-brain pathology (amyloid and tangle pathologies), gliosis (increased burden of astrocytes and activated microglia), impaied blood vessel density and neoangiogenesis, with cognitive impairment. Thus, OVX mice fed on a high fat-sugar-salt diet imitate a non-familial sporadic/environmental form of AD/dementia with vascular damage. This model is reminiscent of the etiologies related to the LOAD sporadic disease that represents a high portion of AD patients, with an added value of presenting concomitantly AD and vascular pathology, which is a common condition in dementia. Our model can, thereby, provide a valuable tool for studying disease pathogenesis and for the development of therapeutic approaches.
Collapse
Affiliation(s)
- Sahar Sweetat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Moti Ben Shabat
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Paschalis Theotokis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Nir Suissa
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| | - Eleni Karafoulidou
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Olga Touloumi
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Rami Abu-Fanne
- Department of Clinical Biochemistry, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Oded Abramsky
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
| | - Gilly Wolf
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
- Department of Psychology, School of Psychology and Social Sciences, Achva Academic College, Be'er Tuvia, Israel
| | - Ann Saada
- Department of Genetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel; Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Amit Lotan
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
- Biological Psychiatry Laboratory, Hadassah Hebrew University Medical Center, Jerusalem Israel Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Nikolaos Grigoriadis
- Department of Neurology, AHEPA University Hospital, Aristotle University of Thessaloniki, Greece
| | - Hanna Rosenmann
- Department of Neurology, The Agnes Ginges Center for Human Neurogenetics, Hadassah Hebrew University Medical Center, Jerusalem, Israel
- Faculty of Medicine, The Hebrew University of Jerusalem, Jerusalem, Israel. Hadassah BrainLabs-National Knowledge Center for Research on Brain Diseases, Hadassah-Hebrew University Medical Center, Jerusalem Israel
| |
Collapse
|
10
|
Tripathi A, Pandey VK, Sharma G, Sharma AR, Taufeeq A, Jha AK, Kim JC. Genomic Insights into Dementia: Precision Medicine and the Impact of Gene-Environment Interaction. Aging Dis 2024; 15:2113-2135. [PMID: 38607741 PMCID: PMC11346410 DOI: 10.14336/ad.2024.0322] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 03/22/2024] [Indexed: 04/14/2024] Open
Abstract
The diagnosis, treatment, and management of dementia provide significant challenges due to its chronic cognitive impairment. The complexity of this condition is further highlighted by the impact of gene-environment interactions. A recent strategy combines advanced genomics and precision medicine methods to explore the complex genetic foundations of dementia. Utilizing the most recent research in the field of neurogenetics, the importance of precise genetic data in explaining the variation seen in dementia patients can be investigated. Gene-environment interactions are important because they influence genetic susceptibilities and aid in the development and progression of dementia. Modified to each patient's genetic profile, precision medicine has the potential to detect groups at risk and make previously unheard-of predictions about the course of diseases. Precision medicine techniques have the potential to completely transform treatment and diagnosis methods. Targeted medications that target genetic abnormalities will probably appear, providing the possibility for more efficient and customized medical interventions. Investigating the relationship between genes and the environment may lead to preventive measures that would enable people to change their surroundings and minimize the risk of dementia, leading to the improved lifestyle of affected people. This paper provides a comprehensive overview of the genomic insights into dementia, emphasizing the pivotal role of precision medicine, and gene-environment interactions.
Collapse
Affiliation(s)
- Anjali Tripathi
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Vinay Kumar Pandey
- Division of Research & Innovation (DRI), School of Applied & Life Sciences, Uttaranchal University, Dehradun, Uttarakhand, India
| | - Garima Sharma
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| | - Ashish Ranjan Sharma
- Institute for Skeletal Aging & Orthopedic Surgery, Hallym University-Chuncheon Sacred Heart Hospital, Chuncheon-si, 24252, Gangwon-do, Republic of Korea
| | - Anam Taufeeq
- Department of Biotechnology, Faculty of Engineering and Technology, Rama University, Kanpur, Uttar Pradesh, India
| | - Abhimanyu Kumar Jha
- Department of Biotechnology, Sharda School of Engineering and Technology, Sharda University, Greater Noida, Uttar Pradesh, India
| | - Jin-Chul Kim
- Department of Biomedical Science & Institute of Bioscience and Biotechnology, Kangwon National University, Chuncheon 24341, Republic of Korea
| |
Collapse
|
11
|
Tang H, Shaaban CE, DeKosky ST, Smith GE, Hu X, Jaffee M, Salloum RG, Bian J, Guo J. Association of education attainment, smoking status, and alcohol use disorder with dementia risk in older adults: a longitudinal observational study. Alzheimers Res Ther 2024; 16:206. [PMID: 39294787 PMCID: PMC11412035 DOI: 10.1186/s13195-024-01569-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 09/02/2024] [Indexed: 09/21/2024]
Abstract
BACKGROUND Previous research on the risk of dementia associated with education attainment, smoking status, and alcohol use disorder (AUD) has yielded inconsistent results, indicating potential heterogeneous treatment effects (HTEs) of these factors on dementia risk. Thus, this study aimed to identify the important variables that may contribute to HTEs of these factors in older adults. METHODS Using 2005-2021 data from the National Alzheimer's Coordinating Center (NACC), we included older adults (≥ 65 years) with normal cognition at the first visit. The exposure of interest included college education or above, current smoking, and AUD and the outcome was all-cause dementia. We applied doubly robust learning to estimate risk differences (RD) and 95% confidence intervals (CI) between exposed and unexposed groups in the overall cohort and subgroups identified through a decision tree model. RESULTS Of 10,062 participants included, 929 developed all-cause dementia over a median 4.4-year follow-up. College education or above was associated with a lower risk of all-cause dementia in the overall population (RD, -1.5%; 95%CI, -2.8 to -0.3), especially among the subpopulations without hypertension, regardless of the APOE4 status. Current smoking was not related to increased dementia risk overall (2.8%; -1.5 to 7.2) but was significantly associated with increased dementia risk among men with (21.1%, 3.1 to 39.1) and without (8.4%, 0.9 to 15.8) cerebrovascular disease. AUD was not related to increased dementia risk overall (2.0%; -7.7 to 11.7) but was significantly associated with increased dementia risk among men with neuropsychiatric disorders (31.5%; 7.4 to 55.7). CONCLUSIONS Our studies identified important factors contributing to HTEs of education, smoking, and AUD on risk of all-cause dementia, suggesting an individualized approach is needed to address dementia disparities.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, 32606, USA
| | - C Elizabeth Shaaban
- Department of Epidemiology, School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA
- Alzheimer's Disease Research Center, University of Pittsburgh, Pittsburgh, PA, USA
| | - Steven T DeKosky
- Department of Neurology and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
| | - Glenn E Smith
- 1Florida Alzheimer's Disease Research Center (ADRC), University of Florida, Gainesville, FL, USA
- Department of Clinical and Health Psychology, College of Public Health and Health Professions, University of Florida, Gainesville, FL, USA
| | - Xia Hu
- DATA Lab, Department of Computer Science, Rice University, Texas, USA
| | - Michael Jaffee
- Department of Neurology and McKnight Brain Institute, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Ramzi G Salloum
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical Informatics, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and Policy, University of Florida College of Pharmacy, Gainesville, FL, 32606, USA.
- Center for Drug Evaluation and Safety, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
12
|
Cirincione A, Lynch K, Bennett J, Choupan J, Varghese B, Sheikh-Bahaei N, Pandey G. Prediction of future dementia among patients with mild cognitive impairment (MCI) by integrating multimodal clinical data. Heliyon 2024; 10:e36728. [PMID: 39281465 PMCID: PMC11399681 DOI: 10.1016/j.heliyon.2024.e36728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/18/2024] Open
Abstract
Efficiently and objectively analyzing the complex, diverse multimodal data collected from patients at risk for dementia can be difficult in the clinical setting, contributing to high rates of underdiagnosis or misdiagnosis of this serious disorder. Patients with mild cognitive impairment (MCI) are especially at risk of developing dementia in the future. This study evaluated the ability of multi-modal machine learning (ML) methods, especially the Ensemble Integration (EI) framework, to predict future dementia development among patients with MCI. EI is a machine learning framework designed to leverage complementarity and consensus in multimodal data, which may not be adequately captured by methods used by prior dementia-related prediction studies. We tested EI's ability to predict future dementia development among MCI patients using multimodal clinical and imaging data, such as neuroanatomical measurements from structural magnetic resonance imaging (MRI) and positron emission tomography (PET) scans, from The Alzheimer's Disease Prediction of Longitudinal Evolution (TADPOLE) challenge. For predicting future dementia development among MCI patients, on a held out test set, the EI-based model performed better (AUC = 0.81, F-measure = 0.68) than the more commonly used XGBoost (AUC = 0.68, F-measure = 0.57) and deep learning (AUC = 0.79, F-measure = 0.61) approaches. This EI-based model also suggested MRI-derived volumes of regions in the middle temporal gyrus, posterior cingulate gyrus and inferior lateral ventricle brain regions to be predictive of progression to dementia.
Collapse
Affiliation(s)
- Andrew Cirincione
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Kirsten Lynch
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Jamie Bennett
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| | - Jeiran Choupan
- Laboratory of Neuro Imaging (LONI), USC Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
- NeuroScope Inc., Scarsdale, NY, 10583, USA
| | - Bino Varghese
- Department of Radiology, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Nasim Sheikh-Bahaei
- Department of Radiology, Keck School of Medicine, University of Southern California, 1975 Zonal Ave, Los Angeles, CA, 90033, USA
| | - Gaurav Pandey
- Department of Genetics and Genomic Sciences, Icahn School of Medicine at Mount Sinai, 1 Gustave L. Levy Pl, New York, NY, 10029, USA
| |
Collapse
|
13
|
Dai W, Zhang H. AN INTEGRATIVE NETWORK-BASED MEDIATION MODEL (NMM) TO ESTIMATE MULTIPLE GENETIC EFFECTS ON OUTCOMES MEDIATED BY FUNCTIONAL CONNECTIVITY. Ann Appl Stat 2024; 18:2277-2294. [PMID: 39640845 PMCID: PMC11616023 DOI: 10.1214/24-aoas1880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2024]
Abstract
Functional connectivity of the brain, characterized by interconnected neural circuits across functional networks, is a cutting-edge feature in neuroimaging. It has the potential to mediate the effect of genetic variants on behavioral outcomes or diseases. Existing mediation analysis methods can evaluate the impact of genetics and brain structurefunction on cognitive behavior or disorders, but they tend to be limited to single genetic variants or univariate mediators, without considering cumulative genetic effects and the complex matrix and group and network structures of functional connectivity. To address this gap, the paper presents an integrative network-based mediation model (NMM) that estimates the effect of multiple genetic variants on behavioral outcomes or diseases mediated by functional connectivity. The model incorporates group information of inter-regions at broad network level and imposes low-rank and sparse assumptions to reflect the complex structures of functional connectivity and selecting network mediators simultaneously. We adopt block coordinate descent algorithm to implement a fast and efficient solution to our model. Simulation results indicate the efficacy of the model in selecting active mediators and reducing bias in effect estimation. With application to the Human Connectome Project Youth Adult (HCP-YA) study of 493 young adults, two genetic variants (rs769448 and rs769449) on the APOE4 gene are identified that lead to deficits in functional connectivity within visual networks and fluid intelligence.
Collapse
Affiliation(s)
- Wei Dai
- Department of Biostatistics, Yale University School of Public Health
| | - Heping Zhang
- Department of Biostatistics, Yale University School of Public Health
| |
Collapse
|
14
|
Matsuo K, Nshihara H. Rebuilding insight into the pathophysiology of Alzheimer's disease through new blood-brain barrier models. Neural Regen Res 2024; 19:1954-1960. [PMID: 38227521 DOI: 10.4103/1673-5374.390978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Accepted: 11/01/2023] [Indexed: 01/17/2024] Open
Abstract
The blood-brain barrier is a unique function of the microvasculature in the brain parenchyma that maintains homeostasis in the central nervous system. Blood-brain barrier breakdown is a common pathology in various neurological diseases, such as Alzheimer's disease, stroke, multiple sclerosis, and Parkinson's disease. Traditionally, it has been considered a consequence of neuroinflammation or neurodegeneration, but recent advanced imaging techniques and detailed studies in animal models show that blood-brain barrier breakdown occurs early in the disease process and may precede neuronal loss. Thus, the blood-brain barrier is attractive as a potential therapeutic target for neurological diseases that lack effective therapeutics. To elucidate the molecular mechanism underlying blood-brain barrier breakdown and translate them into therapeutic strategies for neurological diseases, there is a growing demand for experimental models of human origin that allow for functional assessments. Recently, several human induced pluripotent stem cell-derived blood-brain barrier models have been established and various in vitro blood-brain barrier models using microdevices have been proposed. Especially in the Alzheimer's disease field, the human evidence for blood-brain barrier dysfunction has been demonstrated and human induced pluripotent stem cell-derived blood-brain barrier models have suggested the putative molecular mechanisms of pathological blood-brain barrier. In this review, we summarize recent evidence of blood-brain barrier dysfunction in Alzheimer's disease from pathological analyses, imaging studies, animal models, and stem cell sources. Additionally, we discuss the potential future directions for blood-brain barrier research.
Collapse
Affiliation(s)
- Kinya Matsuo
- Yamaguchi University Graduate School of Medicine, Yamaguchi, Japan
| | - Hideaki Nshihara
- Department of Neurotherapeutics, Yamaguchi University, Ube, Japan
| |
Collapse
|
15
|
Wieg L, Ciola JC, Wasén CC, Gaba F, Colletti BR, Schroeder MK, Hinshaw RG, Ekwudo MN, Holtzman DM, Saito T, Sasaguri H, Saido TC, Cox LM, Lemere CA. Cognitive Effects of Simulated Galactic Cosmic Radiation Are Mediated by ApoE Status, Sex, and Environment in APP Knock-In Mice. Int J Mol Sci 2024; 25:9379. [PMID: 39273325 PMCID: PMC11394682 DOI: 10.3390/ijms25179379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 08/25/2024] [Accepted: 08/27/2024] [Indexed: 09/15/2024] Open
Abstract
Cosmic radiation experienced during space travel may increase the risk of cognitive impairment. While simulated galactic cosmic radiation (GCRsim) has led to memory deficits in wildtype (WT) mice, it has not been investigated whether GCRsim in combination with genetic risk factors for Alzheimer's disease (AD) worsens memory further in aging mice. Here, we investigated the central nervous system (CNS) effects of 0 Gy (sham) or 0.75 Gy five-ion GCRsim or 2 Gy gamma radiation (IRR) in 14-month-old female and male APPNL-F/NL-F knock-in (KI) mice bearing humanized ApoE3 or ApoE4 (APP;E3F and APP;E4F). As travel to a specialized facility was required for irradiation, both traveled sham-irradiated C57BL/6J WT and KI mice and non-traveled (NT) KI mice acted as controls for potential effects of travel. Mice underwent four behavioral tests at 20 months of age and were euthanized for pathological and biochemical analyses 1 month later. Fecal samples were collected pre- and post-irradiation at four different time points. GCRsim seemed to impair memory in male APP;E3F mice compared to their sham counterparts. Travel tended to improve cognition in male APP;E3F mice and lowered total Aβ in female and male APP;E3F mice compared to their non-traveled counterparts. Sham-irradiated male APP;E4F mice accumulated more fibrillar amyloid than their APP;E3F counterparts. Radiation exposure had only modest effects on behavior and brain changes, but travel-, sex-, and genotype-specific effects were seen. Irradiated mice had immediate and long-term differences in their gut bacterial composition that correlated to Alzheimer's disease phenotypes.
Collapse
Affiliation(s)
- Laura Wieg
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Jason C. Ciola
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Caroline C. Wasén
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Fidelia Gaba
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Brianna R. Colletti
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Maren K. Schroeder
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - Robert G. Hinshaw
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Harvard-MIT Division of Health Sciences and Technology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Millicent N. Ekwudo
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
| | - David M. Holtzman
- Department of Neurology, Hope Center for Neurological Disorders, Knight Alzheimer’s Disease Research Center, Washington University School of Medicine, St. Louis, MO 63110, USA;
| | - Takashi Saito
- Department of Neurocognitive Science, Institute of Brain Science, Nagoya City University Graduate School of Medical Science, Nagoya 467-8601, Aichi, Japan;
| | - Hiroki Sasaguri
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Takaomi C. Saido
- Laboratory for Proteolytic Neuroscience, RIKEN Center for Brain Science, Wako City 351-0198, Saitama, Japan; (H.S.); (T.C.S.)
| | - Laura M. Cox
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| | - Cynthia A. Lemere
- Department of Neurology, Ann Romney Center for Neurologic Diseases, Brigham and Women’s Hospital, Boston, MA 02115, USA; (L.W.); (J.C.C.); (C.C.W.); (F.G.); (B.R.C.); (M.K.S.); (R.G.H.); (M.N.E.); (L.M.C.)
- Department of Neurology, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
16
|
Fu M, Valiente-Banuet L, Wadhwa SS, Pasaniuc B, Vossel K, Chang TS. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. Commun Biol 2024; 7:1049. [PMID: 39183196 PMCID: PMC11345412 DOI: 10.1038/s42003-024-06742-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 08/16/2024] [Indexed: 08/27/2024] Open
Abstract
Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. We employ an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compare this model with APOE and polygenic risk score models across genetic ancestry groups (Hispanic Latino American sample: 610 patients with 126 cases; African American sample: 440 patients with 84 cases; East Asian American sample: 673 patients with 75 cases), using electronic health records from UCLA Health for discovery and the All of Us cohort for validation. Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 31-84% (Wilcoxon signed-rank test p-value <0.05) and the area-under-the-receiver-operating characteristic by 11-17% (DeLong test p-value <0.05) compared to the APOE and the polygenic risk score models. We identify shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. Our study highlights the benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Mingzhou Fu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90024, USA
| | - Leopoldo Valiente-Banuet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Satpal S Wadhwa
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA
| | - Timothy S Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, USA.
| |
Collapse
|
17
|
Sharma S, Gilberto VS, Rask J, Chatterjee A, Nagpal P. Inflammasome-Inhibiting Nanoligomers Are Neuroprotective against Space-Induced Pathology in Healthy and Diseased Three-Dimensional Human Motor and Prefrontal Cortex Brain Organoids. ACS Chem Neurosci 2024; 15:3009-3021. [PMID: 39084211 DOI: 10.1021/acschemneuro.4c00160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/02/2024] Open
Abstract
The microgravity and space environment has been linked to deficits in neuromuscular and cognitive capabilities, hypothesized to occur due to accelerated aging and neurodegeneration in space. While the specific mechanisms are still being investigated, spaceflight-associated neuropathology is an important health risk to astronauts and space tourists and is being actively investigated for the development of appropriate countermeasures. However, such space-induced neuropathology offers an opportunity for accelerated screening of therapeutic targets and lead molecules for treating neurodegenerative diseases. Here, we show a proof-of-concept high-throughput target screening (on Earth), target validation, and mitigation of microgravity-induced neuropathology using our Nanoligomer platform, onboard the 43-day SpaceX CRS-29 mission to the International Space Station. First, comparing 3D healthy and diseased prefrontal cortex (PFC, for cognition) and motor neuron (MN, for neuromuscular function) organoids, we assessed space-induced pathology using biomarkers relevant to Alzheimer's disease (AD), frontotemporal dementia (FTD), and amyotrophic lateral sclerosis (ALS). Both healthy and diseased PFC and MN organoids showed significantly enhanced neurodegeneration in space, as measured through relevant disease biomarkers, when compared to their respective Earth controls. Second, we tested the top two lead molecules, NI112 that targeted NF-κB and NI113 that targeted IL-6. We observed that these Nanoligomers significantly mitigate the AD, FTD, and ALS relevant biomarkers like amyloid beta-42 (Aβ42), phosphorylated tau (pTau), Kallikrein (KLK-6), Tar DNA-binding protein 43 (TDP-43), and others. Moreover, the 43-day Nanoligomer treatment of these brain organoids did not appear to cause any observable toxicity or safety issues in the target organoid tissue, suggesting good tolerability for these molecules in the brain at physiologically relevant doses. Together, these results show significant potential for both the development and translation of NI112 and NI113 molecules as potential neuroprotective countermeasures for safer space travel and demonstrate the usefulness of the space environment for rapid, high-throughput screening of targets and lead molecules for clinical translation. We assert that the use of microgravity in drug development and screening may ultimately benefit millions of patients suffering from debilitating neurodegenerative diseases on Earth.
Collapse
Affiliation(s)
- Sadhana Sharma
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Vincenzo S Gilberto
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Jon Rask
- NASA Ames Research Center, Moffett Field, California, California 94035, United States
| | - Anushree Chatterjee
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| | - Prashant Nagpal
- Sachi Bio, 685 S Arthur Avenue, Colorado Technology Center, Louisville, Colorado 80027, United States
| |
Collapse
|
18
|
Pradeepkiran JA, Baig J, Seman A, Reddy PH. Mitochondria in Aging and Alzheimer's Disease: Focus on Mitophagy. Neuroscientist 2024; 30:440-457. [PMID: 36597577 DOI: 10.1177/10738584221139761] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Alzheimer's disease (AD) is characterized by the accumulation of amyloid β and phosphorylated τ protein aggregates in the brain, which leads to the loss of neurons. Under the microscope, the function of mitochondria is uniquely primed to play a pivotal role in neuronal cell survival, energy metabolism, and cell death. Research studies indicate that mitochondrial dysfunction, excessive oxidative damage, and defective mitophagy in neurons are early indicators of AD. This review article summarizes the latest development of mitochondria in AD: 1) disease mechanism pathways, 2) the importance of mitochondria in neuronal functions, 3) metabolic pathways and functions, 4) the link between mitochondrial dysfunction and mitophagy mechanisms in AD, and 5) the development of potential mitochondrial-targeted therapeutics and interventions to treat patients with AD.
Collapse
Affiliation(s)
| | - Javaria Baig
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Ashley Seman
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Nutritional Sciences, College of Human Sciences, Texas Tech University, Lubbock, TX, USA
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
- Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
19
|
Tang H, Donahoo WT, Svensson M, Shaaban CE, Smith G, Jaffee MS, Huang Y, Hu X, Lu Y, Salloum RG, DeKosky ST, Bian J, Guo J. Heterogeneous treatment effects of sodium-glucose cotransporter 2 inhibitors on risk of dementia in people with type 2 diabetes: A population-based cohort study. Alzheimers Dement 2024; 20:5528-5539. [PMID: 38958394 PMCID: PMC11350016 DOI: 10.1002/alz.14048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 05/13/2024] [Accepted: 05/14/2024] [Indexed: 07/04/2024]
Abstract
INTRODUCTION Sodium-glucose cotransporter 2 (SGLT2) inhibitors exhibit potential benefits in reducing dementia risk, yet the optimal beneficiary subgroups remain uncertain. METHODS Individuals with type 2 diabetes (T2D) initiating either SGLT2 inhibitor or sulfonylurea were identified from OneFlorida+ Clinical Research Network (2016-2022). A doubly robust learning was deployed to estimate risk difference (RD) and 95% confidence interval (CI) of all-cause dementia. RESULTS Among 35,458 individuals with T2D, 1.8% in the SGLT2 inhibitor group and 4.7% in the sulfonylurea group developed all-cause dementia over a 3.2-year follow-up, yielding a lower risk for SGLT2 inhibitors (RD, -2.5%; 95% CI, -3.0% to -2.1%). Hispanic ethnicity and chronic kidney disease were identified as the two important variables to define four subgroups in which RD ranged from -4.3% (-5.5 to -3.2) to -0.9% (-1.9 to 0.2). DISCUSSION Compared to sulfonylureas, SGLT2 inhibitors were associated with a reduced risk of all-cause dementia, but the association varied among different subgroups. HIGHLIGHTS New users of sodium-glucose cotransporter 2 (SGLT2) inhibitors were significantly associated with a lower risk of all-cause dementia as compared to those of sulfonylureas. The association varied among different subgroups defined by Hispanic ethnicity and chronic kidney disease. A significantly lower risk of Alzheimer's disease and vascular dementia was observed among new users of SGLT2 inhibitors compared to those of sulfonylureas.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
| | - William T. Donahoo
- Department of MedicineUniversity of Florida College of MedicineGainesvilleFloridaUSA
| | - Mikael Svensson
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Alzheimer's Disease Research CenterUniversity of PittsburghPennsylvaniaUSA
| | - Glenn Smith
- Department of Clinical and Health PsychologyCollege of Public Health and Health ProfessionsUniversity of FloridaGainesvilleFloridaUSA
- 1Florida Alzheimer's Disease Research Center (ADRC)University of FloridaGainesvilleFloridaUSA
| | - Michael S. Jaffee
- 1Florida Alzheimer's Disease Research Center (ADRC)University of FloridaGainesvilleFloridaUSA
- Department of Neurology and McKnight Brain InstituteCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Yu Huang
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Xia Hu
- DATA Lab, Department of Computer ScienceRice UniversityHoustonTexasUSA
| | - Ying Lu
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
| | - Ramzi G. Salloum
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Steven T. DeKosky
- 1Florida Alzheimer's Disease Research Center (ADRC)University of FloridaGainesvilleFloridaUSA
- Department of Neurology and McKnight Brain InstituteCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
20
|
Prajapati SK, Pathak A, Samaiya PK. Alzheimer's disease: from early pathogenesis to novel therapeutic approaches. Metab Brain Dis 2024; 39:1231-1254. [PMID: 39046584 DOI: 10.1007/s11011-024-01389-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 07/15/2024] [Indexed: 07/25/2024]
Abstract
The mainstay behind Alzheimer's disease (AD) remains unknown due to the elusive pathophysiology of the disease. Beta-amyloid and phosphorylated Tau is still widely incorporated in various research studies while studying AD. However, they are not sufficient. Therefore, many scientists and researchers have dug into AD studies to deliver many innovations in this field. Many novel biomarkers, such as phosphoglycerate-dehydrogenase, clusterin, microRNA, and a new peptide ratio (Aβ37/Aβ42) in cerebral-spinal fluid, plasma glial-fibrillary-acidic-protein, and lipid peroxidation biomarkers, are mushrooming. They are helping scientists find breakthroughs and substantiating their research on the early detection of AD. Neurovascular unit dysfunction in AD is a significant discovery that can help us understand the relationship between neuronal activity and cerebral blood flow. These new biomarkers are promising and can take these AD studies to another level. There have also been big steps forward in diagnosing and finding AD. One example is self-administered-gerocognitive-examination, which is less expensive and better at finding AD early on than mini-mental-state-examination. Quantum brain sensors and electrochemical biosensors are innovations in the detection field that must be explored and incorporated into the studies. Finally, novel innovations in AD studies like nanotheranostics are the future of AD treatment, which can not only diagnose and detect AD but also offer treatment. Non-pharmacological strategies to treat AD have also yielded interesting results. Our literature review spans from 1957 to 2022, capturing research and trends in the field over six decades. This review article is an update not only on the recent advances in the search for credible biomarkers but also on the newer detection techniques and therapeutic approaches targeting AD.
Collapse
Affiliation(s)
- Santosh Kumar Prajapati
- Bhavdiya Institute of Pharmaceutical Sciences and Research, Ayodhya, UP, India
- Department of Neurosurgery and Brain Repair, University of South Florida, Tampa, FL, 33613, USA
| | - Arjit Pathak
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India
| | - Puneet K Samaiya
- Department of Pharmacy Shri G.S. Institute of Technology and Science, Indore, 452003, Madhya Pradesh, India.
| |
Collapse
|
21
|
Haddadi M, Haghi M, Rezaei N, Kiani Z, Akkülah T, Celik A. APOE and Alzheimer's disease: Pathologic clues from transgenic Drosophila melanogaster. Arch Gerontol Geriatr 2024; 123:105420. [PMID: 38537387 DOI: 10.1016/j.archger.2024.105420] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Revised: 02/03/2024] [Accepted: 03/19/2024] [Indexed: 06/06/2024]
Abstract
Alzheimer's disease (AD) is one of the most common forms of neurodegenerative diseases. Apolipoprotein E4 (ApoE4) is the main genetic risk factor in the development of late-onset AD. However, the exact mechanism underlying ApoE4-mediated neurodegeneration remains unclear. We utilized Drosophila melanogaster to examine the neurotoxic effects of various human APOE isoforms when expressed specifically in glial and neural cells. We assessed impacts on mitochondrial dynamics, ER stress, lipid metabolism, and bio-metal ion concentrations in the central nervous system (CNS) of the transgenic flies. Dachshund antibody staining revealed a reduction in the number of Kenyon cells. Behavioral investigations including ethanol tolerance and learning and memory performance demonstrated neuronal dysfunction in APOE4-expressing larvae and adult flies. Transcription level of marf and drp-1 were found to be elevated in APOE4 flies, while atf4, atf6, and xbp-1 s showed down regulation. Enhanced concentrations of triglyceride and cholesterol in the CNS were observed in APOE4 transgenic flies, with especially pronounced effects upon glial-specific expression of the gene. Spectrophotometry of brain homogenate revealed enhanced Fe++ and Zn++ ion levels in conjunction with diminished Cu++ levels upon APOE4 expression. To explore therapeutic strategies, we subjected the flies to heat-shock treatment, aiming to activate heat-shock proteins (HSPs) and assess their potential to mitigate the neurotoxic effects of APOE isoforms. The results showed potential therapeutic benefits for APOE4-expressing flies, hinting at an ability to attenuate memory deterioration. Overall, our findings suggest that APOE4 can alter lipid metabolism, bio metal ion homeostasis, and disrupt the harmonious fission-fusion balance of neuronal and glial mitochondria, ultimately inducing ER stress. These alterations mirror the main clinical manifestations of AD in patients. Therefore, our work underscores the suitability of Drosophila as a fertile model for probing the pathological roles of APOE and furthering our understanding of diverse isoform-specific functions.
Collapse
Affiliation(s)
- Mohammad Haddadi
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran; Genetics and Non-communicable Diseases Research Center, Zahedan University of Medical Sciences, Zahedan, Iran.
| | - Mehrnaz Haghi
- Department of Biology, College of Sciences, Shiraz University, Shiraz, Iran
| | - Niloofar Rezaei
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Zahra Kiani
- Department of Biology, Faculty of Basic Sciences, University of Zabol, Zabol, Iran
| | - Taha Akkülah
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| | - Arzu Celik
- Department of Molecular Biology and Genetics, Bogazici University, Istanbul, Turkiye; Center for Life Sciences and Technologies, Bogazici University, Istanbul, Turkiye
| |
Collapse
|
22
|
Wang L, Jackson VE, Fearnley LG, Bahlo M. UKB.COVID19: an R package for UK Biobank COVID-19 data processing and analysis. F1000Res 2024; 10:830. [PMID: 39193262 PMCID: PMC11347911 DOI: 10.12688/f1000research.55370.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/23/2024] [Indexed: 08/29/2024] Open
Abstract
COVID-19 caused by SARS-CoV-2 has resulted in a global pandemic with a rapidly developing global health and economic crisis. Variations in the disease have been observed and have been associated with the genomic sequence of either the human host or the pathogen. Worldwide scientists scrambled initially to recruit patient cohorts to try and identify risk factors. A resource that presented itself early on was the UK Biobank (UKBB), which is investigating the respective contributions of genetic predisposition and environmental exposure to the development of disease. To enable COVID-19 studies, UKBB is now receiving COVID-19 test data for their participants every two weeks. In addition, UKBB is delivering more frequent updates of death and hospital inpatient data (including critical care admissions) on the UKBB Data Portal. This frequently changing dataset requires a tool that can rapidly process and analyse up-to-date data. We developed an R package specifically for the UKBB COVID-19 data, which summarises COVID-19 test results, performs association tests between COVID-19 susceptibility/severity and potential risk factors such as age, sex, blood type, comorbidities and generates input files for genome-wide association studies (GWAS). By applying the R package to data released in April 2021, we found that age, body mass index, socioeconomic status and smoking are positively associated with COVID-19 susceptibility, severity, and mortality. Males are at a higher risk of COVID-19 infection than females. People staying in aged care homes have a higher chance of being exposed to SARS-CoV-2. By performing GWAS, we replicated the 3p21.31 genetic finding for COVID-19 susceptibility and severity. The ability to iteratively perform such analyses is highly relevant since the UKBB data is updated frequently. As a caveat, users must arrange their own access to the UKBB data to use the R package.
Collapse
Affiliation(s)
- Longfei Wang
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Victoria E Jackson
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Liam G Fearnley
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| | - Melanie Bahlo
- Department of Medical Biology, The University of Melbourne, Parkville, VIC, 3010, Australia
- Population Health and Immunity Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC, 3052, Australia
| |
Collapse
|
23
|
Yu M, Shen Z, Zhang S, Zhang Y, Zhao H, Zhang L. The active components of Erzhi wan and their anti-Alzheimer's disease mechanisms determined by an integrative approach of network pharmacology, bioinformatics, molecular docking, and molecular dynamics simulation. Heliyon 2024; 10:e33761. [PMID: 39027618 PMCID: PMC11255520 DOI: 10.1016/j.heliyon.2024.e33761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 06/21/2024] [Accepted: 06/26/2024] [Indexed: 07/20/2024] Open
Abstract
Erzhi Wan (EZW), a classic Traditional Chinese Medicine formula, has shown promise as a potential therapeutic option for Alzheimer's disease (AD), yet its mechanism remains elusive. Herein, we employed an integrative in-silico approach to investigate the active components and their mechanisms against AD. We screened four active components with blood-brain barrier permeabilities from TCMSP, along with 307 corresponding targets predicted by SwissTargetPrediction, PharmMapper, and TCMbank websites. Then, we retrieved 2260 AD-related targets from Genecards, OMIM, and NCBI databases. Furthermore, we constructed the protein-protein interaction (PPI) network of the intersected targets via the STRING database and performed the GO and KEGG enrichment analyses using the "clusterProfiler" R package. The results showed that the intersected targets were intimately related to the p53/PI3K/Akt signaling pathway, serotonergic synapse, and response to oxygen level. Subsequently, 25 core targets were found differentially expressed in brain regions by bioinformatics analyses of GEO datasets of clinical samples from the Alzdata database. The binding sites and stabilities between the active components and the core targets were investigated by the molecular docking approach using Autodock 4.2.6 software, followed by pocket detection and druggability assessment via the DoGSiteScorer server. The results showed that acacetin, β-sitosterol, and 3-O-acetyldammarenediol-II strongly interacted with the druggable pockets of AR, CASP8, POLB, and PREP. Eventually, the docking results were further cross-referenced with the literature research and validated by 100 ns of molecular dynamics simulations using GROMACS software. Binding free energies were calculated via MM/PBSA strategy combined with interaction entropy. The simulation results indicated stable bindings between four docking pairs including acacetin-AR, acacetin-CASP8, β-sitosterol-POLB, and 3-O-acetyldammarenediol-II-PREP. Overall, our study demonstrated a theoretical basis for how three active components of EZW confer efficacy against AD. It provides a promising reference for subsequent research regarding drug discoveries and clinical applications.
Collapse
Affiliation(s)
- Meng Yu
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Zhongqi Shen
- Institute of Chinese Medical Literature and Culture, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Shaozhi Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Yang Zhang
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Hongwei Zhao
- Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| | - Longfei Zhang
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, 250355, China
| |
Collapse
|
24
|
Faraji P, Kühn H, Ahmadian S. Multiple Roles of Apolipoprotein E4 in Oxidative Lipid Metabolism and Ferroptosis During the Pathogenesis of Alzheimer's Disease. J Mol Neurosci 2024; 74:62. [PMID: 38958788 PMCID: PMC11222241 DOI: 10.1007/s12031-024-02224-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/14/2024] [Indexed: 07/04/2024]
Abstract
Alzheimer's disease (AD) is the most prevalent neurodegenerative disease worldwide and has a great socio-economic impact. Modified oxidative lipid metabolism and dysregulated iron homeostasis have been implicated in the pathogenesis of this disorder, but the detailed pathophysiological mechanisms still remain unclear. Apolipoprotein E (APOE) is a lipid-binding protein that occurs in large quantities in human blood plasma, and a polymorphism of the APOE gene locus has been identified as risk factors for AD. The human genome involves three major APOE alleles (APOE2, APOE3, APOE4), which encode for three subtly distinct apolipoprotein E isoforms (APOE2, APOE3, APOE4). The canonic function of these apolipoproteins is lipid transport in blood and brain, but APOE4 allele carriers have a much higher risk for AD. In fact, about 60% of clinically diagnosed AD patients carry at least one APOE4 allele in their genomes. Although the APOE4 protein has been implicated in pathophysiological key processes of AD, such as extracellular beta-amyloid (Aβ) aggregation, mitochondrial dysfunction, neuroinflammation, formation of neurofibrillary tangles, modified oxidative lipid metabolism, and ferroptotic cell death, the underlying molecular mechanisms are still not well understood. As for all mammalian cells, iron plays a crucial role in neuronal functions and dysregulation of iron homeostasis has also been implicated in the pathogenesis of AD. Imbalances in iron homeostasis and impairment of the hydroperoxy lipid-reducing capacity induce cellular dysfunction leading to neuronal ferroptosis. In this review, we summarize the current knowledge on APOE4-related oxidative lipid metabolism and the potential role of ferroptosis in the pathogenesis of AD. Pharmacological interference with these processes might offer innovative strategies for therapeutic interventions.
Collapse
Affiliation(s)
- Parisa Faraji
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany
| | - Hartmut Kühn
- Department of Biochemistry, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt Universität zu Berlin, Charitéplatz 1, 10117, Berlin, Germany.
| | - Shahin Ahmadian
- Institute of Biochemistry and Biophysics, University of Tehran, Tehran, Iran.
| |
Collapse
|
25
|
Schweickart A, Batra R, Neth BJ, Martino C, Shenhav L, Zhang AR, Shi P, Karu N, Huynh K, Meikle PJ, Schimmel L, Dilmore AH, Blennow K, Zetterberg H, Blach C, Dorrestein PC, Knight R, Craft S, Kaddurah-Daouk R, Krumsiek J. Serum and CSF metabolomics analysis shows Mediterranean Ketogenic Diet mitigates risk factors of Alzheimer's disease. NPJ METABOLIC HEALTH AND DISEASE 2024; 2:15. [PMID: 38962750 PMCID: PMC11216994 DOI: 10.1038/s44324-024-00016-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 05/16/2024] [Indexed: 07/05/2024]
Abstract
Alzheimer's disease (AD) is influenced by a variety of modifiable risk factors, including a person's dietary habits. While the ketogenic diet (KD) holds promise in reducing metabolic risks and potentially affecting AD progression, only a few studies have explored KD's metabolic impact, especially on blood and cerebrospinal fluid (CSF). Our study involved participants at risk for AD, either cognitively normal or with mild cognitive impairment. The participants consumed both a modified Mediterranean Ketogenic Diet (MMKD) and the American Heart Association diet (AHAD) for 6 weeks each, separated by a 6-week washout period. We employed nuclear magnetic resonance (NMR)-based metabolomics to profile serum and CSF and metagenomics profiling on fecal samples. While the AHAD induced no notable metabolic changes, MMKD led to significant alterations in both serum and CSF. These changes included improved modifiable risk factors, like increased HDL-C and reduced BMI, reversed serum metabolic disturbances linked to AD such as a microbiome-mediated increase in valine levels, and a reduction in systemic inflammation. Additionally, the MMKD was linked to increased amino acid levels in the CSF, a breakdown of branched-chain amino acids (BCAAs), and decreased valine levels. Importantly, we observed a strong correlation between metabolic changes in the CSF and serum, suggesting a systemic regulation of metabolism. Our findings highlight that MMKD can improve AD-related risk factors, reverse some metabolic disturbances associated with AD, and align metabolic changes across the blood-CSF barrier.
Collapse
Affiliation(s)
- Annalise Schweickart
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Richa Batra
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| | - Bryan J. Neth
- Department of Neurology, Mayo Clinic, Rochester, MN USA
| | - Cameron Martino
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
| | - Liat Shenhav
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
| | - Anru R. Zhang
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Pixu Shi
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
| | - Naama Karu
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
| | - Kevin Huynh
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Peter J. Meikle
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
| | - Leyla Schimmel
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
| | | | - Kaj Blennow
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Henrik Zetterberg
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
| | - Colette Blach
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
| | - Pieter C. Dorrestein
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
| | - Rob Knight
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
| | - Alzheimer’s Gut Microbiome Project Consortium
- Tri-Institutional Program in Computational Biology & Medicine, Weill Cornell Medicine, New York, NY USA
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
- Department of Neurology, Mayo Clinic, Rochester, MN USA
- Department of Pediatrics, University of California San Diego, La Jolla, CA USA
- Department of Microbiology, New York University Grossman School of Medicine, New York, NY USA
- Department of Biostatistics and Bioinformatics, Duke University, Durham, NC USA
- Tasmanian Independent Metabolomics and Analytical Chemistry Solutions (TIMACS), Hobart, TAS Australia
- Baker Heart and Diabetes Institute, 75 Commercial Road, Melbourne, VIC Australia
- Baker Department of Cardiovascular Research Translation and Implementation, La Trobe University, Bundoora, VIC Australia
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Department of Psychiatry and Neurochemistry, University of Gothenburg, Gothenburg, Sweden
- Duke Molecular Physiology Institute, Duke University, Durham, NC USA
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA USA
- Departments of Pediatrics, Computer Science and Engineering, Bioengineering, University of California San Diego, La Jolla, CA USA
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Suzanne Craft
- Department of Gerontology and Geriatric Medicine, Wake Forest University School of Medicine, Winston Salem, NC USA
| | - Rima Kaddurah-Daouk
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC USA
- Duke Institute of Brain Sciences, Duke University, Durham, NC USA
- Department of Medicine, Duke University, Durham, NC USA
| | - Jan Krumsiek
- Department of Physiology and Biophysics, Weill Cornell Medicine, Institute for Computational Biomedicine, Englander Institute for Precision Medicine, New York, NY USA
| |
Collapse
|
26
|
Mejía-Guevara I, Periyakoil VS. Diverging Patterns of Cognitive Decline by Sex and Race-Ethnicity in Seriously Ill Older Americans. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.06.27.24309609. [PMID: 38978668 PMCID: PMC11230332 DOI: 10.1101/2024.06.27.24309609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Objectives Differences in Cognitive decline are common in older adults in the last years of life, but differences across sex and race-ethnicity are poorly understood. This study investigated if sex and/or race-ethnicity moderated changes in cognitive function in older adults in the last years of life. Methods Data from the Health and Retirement Study (HRS) from 1993 to 2016 were used to analyze imputed cognition summary scores for total word recall and mental status of older adults aged 60-99. Loss of cognitive function was estimated using a multilevel mixed-effects model and accelerated cognitive decline was approximated by incorporating a change-point model using a restricted sample of decedent respondents who died aged 65-99. Results Notable disparities were seen in the rates of cognitive decline across sex and race-ethnic groups in the last years of life. Women consistently scored lower than men in word recall but higher in mental status, regardless of race-ethnicity. Non-Hispanic White respondents, men and women, consistently outperformed Hispanic and Black respondents in word recall tasks and mental status. Conclusions Our study shows that sex and race-ethnicity moderate cognitive decline in older adults during the last years of life. Older adults from underserved communities are at higher risk of cognitive decline. Our study could inform clinical practice and policy focused on mitigating the adverse impact of cognitive decline experienced by marginalized populations of older adults in the last years of life.
Collapse
|
27
|
Shvetcov A, Thomson S, Cho AN, Wilkins HM, Reed JH, Swerdlow RH, Brown DA, Finney CA. Proteome profiling of cerebrospinal fluid using machine learning shows a unique protein signature associated with APOE4 genotype. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.18.590160. [PMID: 38915547 PMCID: PMC11195053 DOI: 10.1101/2024.04.18.590160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
INTRODUCTION Proteome changes associated with APOE4 variant carriage that are independent of Alzheimer's disease (AD) pathology and diagnosis are unknown. This study investigated APOE4 proteome changes in people with AD, mild cognitive impairment, and no impairment. METHODS Clinical, APOE genotype, and cerebrospinal fluid (CSF) proteome and AD biomarker data was sourced from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database. Proteome profiling was done using supervised machine learning. RESULTS We found an APOE4-specific proteome signature that was independent of cognitive diagnosis and AD pathological biomarkers, and increased risk of progression to cognitive impairment. Proteins were enriched in brain regions including the caudate and cortex and cells including endothelial cells, oligodendrocytes, and astrocytes. Enriched peripheral immune cells included T cells, macrophages, and B cells. DISCUSSION APOE4 carriers have a unique CSF proteome signature associated with a strong brain and peripheral immune and inflammatory phenotype that likely underlies APOE4 carriers' vulnerability to cognitive decline and AD.
Collapse
Affiliation(s)
- Artur Shvetcov
- Department of Psychological Medicine, Sydney Children’s Hospital Network, Sydney, NSW, Australia
| | - Shannon Thomson
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Ann-Na Cho
- Human Brain Microphysiology Systems Group, School of Biomedical Engineering, Faculty of Engineering, The University of Sydney, Sydney, NSW, Australia
| | - Heather M. Wilkins
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - Joanne H. Reed
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
- Autoimmunity and Amyloidosis Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
| | - Russell H. Swerdlow
- University of Kansas Alzheimer’s Disease Centre, Kansas City, KS, USA
- Department of Biochemistry and Molecular Biology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Neurology, University of Kansas Medical Centre, Kansas City, KS, USA
- Department of Molecular and Integrative Physiology, University of Kansas Medical Centre, Kansas City, KS, USA
| | - David A. Brown
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- Department of Immunopathology, Institute for Clinical Pathology and Medical Research-New South Wales Health Pathology, Sydney, NSW, Australia
- Westmead Clinical School, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| | - Alzheimer’s Disease Neuroimaging Initiative
- Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be found at: http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
| | - Caitlin A. Finney
- Neuroinflammation Research Group, Centre for Immunology and Allergy Research, Westmead Institute for Medical Research, Sydney, NSW, Australia
- School of Medical Sciences, Faculty of Medicine and Health, The University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
28
|
Eulalio T, Sun MW, Gevaert O, Greicius MD, Montine TJ, Nachun D, Montgomery SB. regionalpcs: improved discovery of DNA methylation associations with complex traits. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.05.01.590171. [PMID: 38746367 PMCID: PMC11092597 DOI: 10.1101/2024.05.01.590171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/16/2024]
Abstract
We have developed the regional principal components (rPCs) method, a novel approach for summarizing gene-level methylation. rPCs address the challenge of deciphering complex epigenetic mechanisms in diseases like Alzheimer's disease (AD). In contrast to traditional averaging, rPCs leverage principal components analysis to capture complex methylation patterns across gene regions. Our method demonstrated a 54% improvement in sensitivity over averaging in simulations, offering a robust framework for identifying subtle epigenetic variations. Applying rPCs to the AD brain methylation data in ROSMAP, combined with cell type deconvolution, we uncovered 838 differentially methylated genes associated with neuritic plaque burden-significantly outperforming conventional methods. Integrating methylation quantitative trait loci (meQTL) with genome-wide association studies (GWAS) identified 17 genes with potential causal roles in AD, including MS4A4A and PICALM. Our approach is available in the Bioconductor package regionalpcs, opening avenues for research and facilitating a deeper understanding of the epigenetic landscape in complex diseases.
Collapse
Affiliation(s)
- Tiffany Eulalio
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Min Woo Sun
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Olivier Gevaert
- Department of Biomedical Data Science, Stanford University, Stanford, CA, 94305, USA
| | - Michael D Greicius
- Department of Neurology & Neurological Sciences, Stanford University, Stanford, CA, 94305, USA
| | - Thomas J Montine
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | - Daniel Nachun
- Department of Pathology, Stanford University, Stanford, CA, 94305, USA
| | | |
Collapse
|
29
|
Siafarikas N. Personalized medicine in old age psychiatry and Alzheimer's disease. Front Psychiatry 2024; 15:1297798. [PMID: 38751423 PMCID: PMC11094449 DOI: 10.3389/fpsyt.2024.1297798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/21/2023] [Accepted: 04/15/2024] [Indexed: 05/18/2024] Open
Abstract
Elderly patients show us unfolded lives with unique individual characteristics. An increasing life span is associated with increasing physical and mental disease burden. Alzheimer's disease (AD) is an increasing challenge in old age. AD cannot be cured but it can be treated. The complexity of old age and AD offer targets for personalized medicine (PM). Targets for stratification of patients, detection of patients at risk for AD or for future targeted therapy are plentiful and can be found in several omic-levels.
Collapse
Affiliation(s)
- Nikias Siafarikas
- Department of Geriatric Psychiatry, Akershus University Hospital, Lørenskog, Norway
| |
Collapse
|
30
|
Ismail AB, Dundar MS, Erguzeloglu CO, Ergoren MC, Alemdar A, Ozemri Sag S, Temel SG. Alzheimer Disease Associated Loci: APOE Single Nucleotide Polymorphisms in Marmara Region. Biomedicines 2024; 12:968. [PMID: 38790930 PMCID: PMC11118074 DOI: 10.3390/biomedicines12050968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/26/2024] Open
Abstract
Alzheimer's disease (AD) is a major global health challenge, especially among individuals aged 65 or older. According to population health studies, Turkey has the highest AD prevalence in the Middle East and Europe. To accurately determine the frequencies of common and rare APOE single nucleotide polymorphisms (SNPs) in the Turkish population residing in the Marmara Region, we conducted a retrospective study analyzing APOE variants in 588 individuals referred to the Bursa Uludag University Genetic Diseases Evaluation Center. Molecular genotyping, clinical exome sequencing, bioinformatics analysis, and statistical evaluation were employed to identify APOE polymorphisms and assess their distribution. The study revealed the frequencies of APOE alleles as follows: ε4 at 9.94%, ε2 at 9.18%, and ε3 at 80.68%. The gender-based analysis in our study uncovered a tendency for females to exhibit a higher prevalence of mutant genotypes across various SNPs. The most prevalent haplotype observed was ε3/ε3, while rare APOE SNPs were also identified. These findings align with global observations, underscoring the significance of genetic diversity and gender-specific characteristics in comprehending health disparities and formulating preventive strategies.
Collapse
Affiliation(s)
- Aya Badeea Ismail
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus; (A.B.I.); (M.C.E.)
| | - Mehmet Sait Dundar
- Department of Electrıcal and Computer Engineering, Graduate School of Engineering and Sciences, Abdullah Gul University, 38000 Kayseri, Türkiye;
- Halil Bayraktar Health Services Vocational School, Erciyes University, 38030 Kayseri, Türkiye
| | - Cemre Ornek Erguzeloglu
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
| | - Mahmut Cerkez Ergoren
- Department of Medical Genetics, Faculty of Medicine, Near East University, 99138 Nicosia, Cyprus; (A.B.I.); (M.C.E.)
| | - Adem Alemdar
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
| | - Sebnem Ozemri Sag
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye;
| | - Sehime Gulsun Temel
- Department of Translational Medicine, Institute of Health Sciences, Bursa Uludag University, 16059 Bursa, Türkiye; (C.O.E.); (A.A.)
- Department of Medical Genetics, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye;
- Department of Histology & Embryology, Faculty of Medicine, Bursa Uludag University, 16059 Bursa, Türkiye
| |
Collapse
|
31
|
Zhang R, Wuerch E, Yong VW, Xue M. LXR agonism for CNS diseases: promises and challenges. J Neuroinflammation 2024; 21:97. [PMID: 38627787 PMCID: PMC11022383 DOI: 10.1186/s12974-024-03056-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Accepted: 02/27/2024] [Indexed: 04/19/2024] Open
Abstract
The unfavorable prognosis of many neurological conditions could be attributed to limited tissue regeneration in central nervous system (CNS) and overwhelming inflammation, while liver X receptor (LXR) may regulate both processes due to its pivotal role in cholesterol metabolism and inflammatory response, and thus receives increasing attentions from neuroscientists and clinicians. Here, we summarize the signal transduction of LXR pathway, discuss the therapeutic potentials of LXR agonists based on preclinical data using different disease models, and analyze the dilemma and possible resolutions for clinical translation to encourage further investigations of LXR related therapies in CNS disorders.
Collapse
Affiliation(s)
- Ruiyi Zhang
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Emily Wuerch
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - V Wee Yong
- Hotchkiss Brain Institute and Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada.
| | - Mengzhou Xue
- Department of Cerebrovascular Diseases, The Second Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
32
|
Kim J, Byun I, Kim DY, Joh H, Kim HJ, Lee MJ. Targeted protein degradation directly engaging lysosomes or proteasomes. Chem Soc Rev 2024; 53:3253-3272. [PMID: 38369971 DOI: 10.1039/d3cs00344b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Targeted protein degradation (TPD) has been established as a viable alternative to attenuate the function of a specific protein of interest in both biological and clinical contexts. The unique TPD mode-of-action has allowed previously undruggable proteins to become feasible targets, expanding the landscape of "druggable" properties and "privileged" target proteins. As TPD continues to evolve, a range of innovative strategies, which do not depend on recruiting E3 ubiquitin ligases as in proteolysis-targeting chimeras (PROTACs), have emerged. Here, we present an overview of direct lysosome- and proteasome-engaging modalities and discuss their perspectives, advantages, and limitations. We outline the chemical composition, biochemical activity, and pharmaceutical characteristics of each degrader. These alternative TPD approaches not only complement the first generation of PROTACs for intracellular protein degradation but also offer unique strategies for targeting pathologic proteins located on the cell membrane and in the extracellular space.
Collapse
Affiliation(s)
- Jiseong Kim
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Insuk Byun
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
| | - Do Young Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hyunhi Joh
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Hak Joong Kim
- Department of Chemistry, College of Science, Korea University, Seoul 02841, Korea.
| | - Min Jae Lee
- Department of Biochemistry & Molecular Biology, Seoul National University College of Medicine, Seoul 03080, Korea.
- Department of Biomedical Sciences, Seoul National University Graduate School, Seoul 03080, Korea
- Department of Pathology and Laboratory Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
33
|
Korczyn AD, Grinberg LT. Is Alzheimer disease a disease? Nat Rev Neurol 2024; 20:245-251. [PMID: 38424454 DOI: 10.1038/s41582-024-00940-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/01/2024] [Indexed: 03/02/2024]
Abstract
Dementia, a prevalent condition among older individuals, has profound societal implications. Extensive research has resulted in no cure for what is perceived as the most common dementing illness: Alzheimer disease (AD). AD is defined by specific brain abnormalities - amyloid-β plaques and tau protein neurofibrillary tangles - that are proposed to actively influence the neurodegenerative process. However, conclusive evidence of amyloid-β toxicity is lacking, the mechanisms leading to the accumulation of plaques and tangles are unknown, and removing amyloid-β has not halted neurodegeneration. So, the question remains, are we making progress towards a solution? The complexity of AD is underscored by numerous genetic and environmental risk factors, and diverse clinical presentations, suggesting that AD is more akin to a syndrome than to a traditional disease, with its pathological manifestation representing a convergence of pathogenic pathways. Therefore, a solution requires a multifaceted approach over a single 'silver bullet'. Improved recognition and classification of conditions that converge in plaques and tangle accumulation and their treatment requires the use of multiple strategies simultaneously.
Collapse
Affiliation(s)
- Amos D Korczyn
- Departments of Neurology, Physiology and Pharmacology, Tel Aviv University, Tel Aviv, Israel.
| | - Lea T Grinberg
- Departments of Neurology and Pathology, UCSF, San Francisco, CA, USA
- Global Brain Health Institute, UCSF, San Francisco, CA, USA
- Department of Pathology, University of Sao Paulo Medical School, Sao Paulo, Brazil
| |
Collapse
|
34
|
Rymbai E, Sugumar D, Chakkittukandiyil A, Kothandan R, Selvaraj D. Molecular insights into the potential effects of selective estrogen receptor β agonists in Alzheimer's and Parkinson's diseases. Cell Biochem Funct 2024; 42:e4014. [PMID: 38616346 DOI: 10.1002/cbf.4014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 03/19/2024] [Accepted: 04/03/2024] [Indexed: 04/16/2024]
Abstract
Alzheimer's disease (AD) and Parkinson's disease (PD) are the most common neurodegenerative disorders. Pathologically, AD and PD are characterized by the accumulation of misfolded proteins. Hence, they are also called as proteinopathy diseases. Gender is considered as one of the risk factors in both diseases. Estrogens are widely accepted to be neuroprotective in several neurodegenerative disorders. Estrogens can be produced in the central nervous system, where they are called as neurosteroids. Estrogens mediate their neuroprotective action mainly through their actions on estrogen receptor alpha (ERα) and estrogen receptor beta (ERβ). However, ERα is mainly involved in the growth and development of the primary and secondary sexual organs in females. Hence, the activation of ERα is associated with undesired side effects such as gynecomastia and increase in the risk of breast cancer, thromboembolism, and feminization. Therefore, selective activation of ERβ is often considered to be safer. In this review, we explore the role of ERβ in regulating the expression and functions of AD- and PD-associated genes. Additionally, we discuss the association of these genes with the amyloid-beta peptide (Aβ) and α-synuclein mediated toxicity. Ultimately, we established a correlation between the importance of ERβ activation and the process underlying ERβ's neuroprotective mechanisms in AD and PD.
Collapse
Affiliation(s)
- Emdormi Rymbai
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Deepa Sugumar
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Amritha Chakkittukandiyil
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| | - Ram Kothandan
- Department of Biotechnology, Kumaraguru College of Technology, Coimbatore, Tamil Nadu, India
| | - Divakar Selvaraj
- Department of Pharmacology, JSS College of Pharmacy, JSS Academy of Higher Education & Research, Ooty, Tamil Nadu, India
| |
Collapse
|
35
|
Wang K, Hua W, Wang M, Xu Y. A Bayesian semi-parametric model for learning biomarker trajectories and changepoints in the preclinical phase of Alzheimer's disease. Biometrics 2024; 80:ujae048. [PMID: 38775703 PMCID: PMC11110494 DOI: 10.1093/biomtc/ujae048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/25/2024]
Abstract
It has become consensus that mild cognitive impairment (MCI), one of the early symptoms onset of Alzheimer's disease (AD), may appear 10 or more years after the emergence of neuropathological abnormalities. Therefore, understanding the progression of AD biomarkers and uncovering when brain alterations begin in the preclinical stage, while patients are still cognitively normal, are crucial for effective early detection and therapeutic development. In this paper, we develop a Bayesian semiparametric framework that jointly models the longitudinal trajectory of the AD biomarker with a changepoint relative to the occurrence of symptoms onset, which is subject to left truncation and right censoring, in a heterogeneous population. Furthermore, unlike most existing methods assuming that everyone in the considered population will eventually develop the disease, our approach accounts for the possibility that some individuals may never experience MCI or AD, even after a long follow-up time. We evaluate the proposed model through simulation studies and demonstrate its clinical utility by examining an important AD biomarker, ptau181, using a dataset from the Biomarkers of Cognitive Decline Among Normal Individuals (BIOCARD) study.
Collapse
Affiliation(s)
- Kunbo Wang
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - William Hua
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, United States
| | - MeiCheng Wang
- Department of Biostatistics, Johns Hopkins University, Baltimore, MD 21205, United States
| | - Yanxun Xu
- Department of Applied Mathematics and Statistics, Johns Hopkins University, Baltimore, MD 21218, United States
| |
Collapse
|
36
|
Ho K, Bodi NE, Sharma TP. Normal-Tension Glaucoma and Potential Clinical Links to Alzheimer's Disease. J Clin Med 2024; 13:1948. [PMID: 38610712 PMCID: PMC11012506 DOI: 10.3390/jcm13071948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/21/2024] [Accepted: 03/25/2024] [Indexed: 04/14/2024] Open
Abstract
Glaucoma is a group of optic neuropathies and the world's leading cause of irreversible blindness. Normal-tension glaucoma (NTG) is a subtype of glaucoma that is characterized by a typical pattern of peripheral retinal loss, in which the patient's intraocular pressure (IOP) is considered within the normal range (<21 mmHg). Currently, the only targetable risk factor for glaucoma is lowering IOP, and patients with NTG continue to experience visual field loss after IOP-lowering treatments. This demonstrates the need for a better understanding of the pathogenesis of NTG and underlying mechanisms leading to neurodegeneration. Recent studies have found significant connections between NTG and cerebral manifestations, suggesting NTG as a neurodegenerative disease beyond the eye. Gaining a better understanding of NTG can potentially provide new Alzheimer's Disease diagnostics capabilities. This review identifies the epidemiology, current biomarkers, altered fluid dynamics, and cerebral and ocular manifestations to examine connections and discrepancies between the mechanisms of NTG and Alzheimer's Disease.
Collapse
Affiliation(s)
- Kathleen Ho
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Nicole E. Bodi
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
| | - Tasneem P. Sharma
- Eugene and Marilyn Glick Eye Institute, Department of Ophthalmology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Pharmacology and Toxicology, Indiana University School of Medicine, Indianapolis, IN 46202, USA;
- Stark Neurosciences Research Institute, Indianapolis, IN 46202, USA
| |
Collapse
|
37
|
Reyes-Reyes EM, Brown J, Trial MD, Chinnasamy D, Wiegand JP, Bradford D, Brinton RD, Rodgers KE. Vivaria housing conditions expose sex differences in brain oxidation, microglial activation, and immune system states in aged hAPOE4 mice. Exp Brain Res 2024; 242:543-557. [PMID: 38206365 PMCID: PMC10894770 DOI: 10.1007/s00221-023-06763-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Accepted: 12/04/2023] [Indexed: 01/12/2024]
Abstract
Apolipoprotein E ε4 allele (APOE4) is the predominant genetic risk factor for late-onset Alzheimer's disease (AD). APOE4 mouse models have provided advances in the understanding of disease pathogenesis, but unaccounted variables like rodent housing status may hinder translational outcomes. Non-sterile aspects like food and bedding can be major sources of changes in rodent microflora. Alterations in intestinal microbial ecology can cause mucosal barrier impairment and increase pro-inflammatory signals. The present study examined the role of sterile and non-sterile food and housing on redox indicators and the immune status of humanized-APOE4 knock-in mice (hAPOe4). hAPOE4 mice were housed under sterile conditions until 22 months of age, followed by the transfer of a cohort of mice to non-sterile housing for 2 months. At 24 months of age, the redox/immunologic status was evaluated by flow cytometry/ELISA. hAPOE4 females housed under non-sterile conditions exhibited: (1) higher neuronal and microglial oxygen radical production and (2) lower CD68+ microglia (brain) and CD8+ T cells (periphery) compared to sterile-housed mice. In contrast, hAPOE4 males in non-sterile housing exhibited: (1) higher MHCII+ microglia and CD11b+CD4+ T cells (brain) and (2) higher CD11b+CD4+ T cells and levels of lipopolysaccharide-binding protein and inflammatory cytokines in the periphery relative to sterile-housed mice. This study demonstrated that sterile vs. non-sterile housing conditions are associated with the activation of redox and immune responses in the brain and periphery in a sex-dependent manner. Therefore, housing status may contribute to variable outcomes in both the brain and periphery.
Collapse
Affiliation(s)
- E M Reyes-Reyes
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J Brown
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - M D Trial
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Chinnasamy
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - J P Wiegand
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
| | - D Bradford
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - R D Brinton
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA
| | - K E Rodgers
- Center for Innovation in Brain Science, University of Arizona, 1230 N. Cherry Ave, PO Box 210242, Tucson, AZ, 85721-0242, USA.
- Department of Pharmacology, College of Medicine, University of Arizona, Tucson, AZ, USA.
| |
Collapse
|
38
|
Ganesan K, Rentsch P, Langdon A, Milham LT, Vissel B. Modeling sporadic Alzheimer's disease in mice by combining Apolipoprotein E4 risk gene with environmental risk factors. Front Aging Neurosci 2024; 16:1357405. [PMID: 38476659 PMCID: PMC10927790 DOI: 10.3389/fnagi.2024.1357405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 02/12/2024] [Indexed: 03/14/2024] Open
Abstract
Introduction Developing effective treatment for Alzheimer's disease (AD) remains a challenge. This can be partially attributed to the fact that the mouse models used in preclinical research largely replicate familial form of AD, while majority of human cases are sporadic; both forms differ widely in the onset and origin of pathology, therefore requiring specific/targeted treatments. Methods In this study, we aimed to model sporadic AD in mice by combining two of the many risk factors that are strongly implicated in AD: ApoE4, a major genetic risk factor, together with an inflammatory stimuli. Accordingly, we subjected ApoE4 knock in (KI) mice, expressing humanized ApoE4, to low doses of Lipopolysaccharide (LPS) injections (i.p, weekly, for 4 months). Results We assessed these animals for behavioral impairments at 6 months of age using Open Field, Y-maze, and Barnes Maze Test. LPS induced hypoactivity was observed in the Open Field and Y-maze test, whereas spatial learning and memory was intact. We then quantified differences in dendritic spine density, which is a strong correlate of AD. ApoE4KI mice showed a significant reduction in the number of spines after treatment with LPS, whereas there were no obvious differences in the total number of microglia and astrocytes. Discussion To conclude, in the current study the APoEe4 risk gene increases the vulnerability of hippocampal neurons to inflammation induced spine loss, laying a foundation for an early sporadic AD mouse model.
Collapse
Affiliation(s)
- Kiruthika Ganesan
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Peggy Rentsch
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Alexander Langdon
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, Australia
| | - Luke T. Milham
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| | - Bryce Vissel
- Centre for Neuroscience and Regenerative Medicine, St. Vincent’s Centre for Applied Medical Research, St Vincent’s Hospital, Sydney, NSW, Australia
- UNSW St. Vincent’s Clinical School, Faculty of Medicine, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
39
|
Ye S, Roccati E, Wang W, Zhu Z, Kiburg K, Huang Y, Zhang X, Zhang X, Liu J, Tang S, Hu Y, Ge Z, Yu H, He M, Shang X. Leading determinants of incident dementia among individuals with and without the apolipoprotein E ε4 genotype: a retrospective cohort study. BMC Neurol 2024; 24:71. [PMID: 38378514 PMCID: PMC10877929 DOI: 10.1186/s12883-024-03557-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/30/2024] [Indexed: 02/22/2024] Open
Abstract
BACKGROUND Little is known regarding the leading risk factors for dementia/Alzheimer's disease (AD) in individuals with and without APOE4. The identification of key risk factors for dementia/Alzheimer's disease (AD) in individuals with and without the APOE4 gene is of significant importance in global health. METHODS Our analysis included 110,354 APOE4 carriers and 220,708 age- and sex-matched controls aged 40-73 years at baseline (between 2006-2010) from UK Biobank. Incident dementia was ascertained using hospital inpatient, or death records until January 2021. Individuals of non-European ancestry were excluded. Furthermore, individuals without medical record linkage were excluded from the analysis. Moderation analysis was tested for 134 individual factors. RESULTS During a median follow-up of 11.9 years, 4,764 cases of incident all-cause dementia and 2065 incident AD cases were documented. Hazard ratios (95% CIs) for all-cause dementia and AD associated with APOE4 were 2.70(2.55-2.85) and 3.72(3.40-4.07), respectively. In APOE4 carriers, the leading risk factors for all-cause dementia included low self-rated overall health, low household income, high multimorbidity risk score, long-term illness, high neutrophil percentage, and high nitrogen dioxide air pollution. In non-APOE4 carriers, the leading risk factors included high multimorbidity risk score, low overall self-rated health, low household income, long-term illness, high microalbumin in urine, high neutrophil count, and low greenspace percentage. Population attributable risk for these individual risk factors combined was 65.1%, and 85.8% in APOE4 and non-APOE4 carriers, respectively. For 20 risk factors including multimorbidity risk score, unhealthy lifestyle habits, and particulate matter air pollutants, their associations with incident dementia were stronger in non-APOE4 carriers. For only 2 risk factors (mother's history of dementia, low C-reactive protein), their associations with incident all-cause dementia were stronger in APOE4 carriers. CONCLUSIONS Our findings provide evidence for personalized preventative approaches to dementia/AD in APOE4 and non-APOE4 carriers. A mother's history of dementia and low levels of C-reactive protein were more important risk factors of dementia in APOE4 carriers whereas leading risk factors including unhealthy lifestyle habits, multimorbidity risk score, inflammation and immune-related markers were more predictive of dementia in non-APOE4 carriers.
Collapse
Affiliation(s)
- Siting Ye
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
- Department of Ultrasound, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Eddy Roccati
- Wicking Dementia Research and Education Centre, University of Tasmania, Hobart, TAS, 7001, Australia
| | - Wei Wang
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China
| | - Zhuoting Zhu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Katerina Kiburg
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Yu Huang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Xueli Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Xiayin Zhang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China
| | - Jiahao Liu
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia
| | - Shulin Tang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Yijun Hu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Zongyuan Ge
- Monash e-Research Center, Faculty of Engineering, Airdoc Research, Nvidia AI Technology Research Center, Monash University, Melbourne, VIC, 3800, Australia
| | - Honghua Yu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
| | - Mingguang He
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- State Key Laboratory of Ophthalmology, Zhongshan Ophthalmic Center, Sun Yat-Sen University, Guangzhou, 510060, China.
| | - Xianwen Shang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China.
- Guangdong Cardiovascular Institute, Guangdong Provincial People's Hospital, Guangdong Academy of Medical Sciences, Guangzhou, 510080, China.
- Centre for Eye Research Australia, Melbourne, VIC, 3002, Australia.
- Department of Medicine (Royal Melbourne Hospital), University of Melbourne, Melbourne, VIC, 3050, Australia.
| |
Collapse
|
40
|
Chang T, Fu M, Valiente-Banuet L, Wadhwa S, Pasaniuc B, Vossel K. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. RESEARCH SQUARE 2024:rs.3.rs-3911508. [PMID: 38410460 PMCID: PMC10896371 DOI: 10.21203/rs.3.rs-3911508/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/28/2024]
Abstract
BACKGROUND Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOEand the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Timothy Chang
- David Geffen School of Medicine, University of California, Los Angeles
| | | | | | | | | | | |
Collapse
|
41
|
Lee A, Shah S, Atha K, Indoe P, Mahmoud N, Niblett G, Pradhan V, Roberts N, Malouf RS, Topiwala A. Brain health measurement: a scoping review. BMJ Open 2024; 14:e080334. [PMID: 38341202 PMCID: PMC10862273 DOI: 10.1136/bmjopen-2023-080334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
OBJECTIVES Preservation of brain health is an urgent priority for the world's ageing population. The evidence base for brain health optimisation strategies is rapidly expanding, but clear recommendations have been limited by heterogeneity in measurement of brain health outcomes. We performed a scoping review to systematically evaluate brain health measurement in the scientific literature to date, informing development of a core outcome set. DESIGN Scoping review. DATA SOURCES Medline, APA PsycArticles and Embase were searched through until 25 January 2023. ELIGIBILITY CRITERIA FOR SELECTING STUDIES Studies were included if they described brain health evaluation methods in sufficient detail in human adults and were in English language. DATA EXTRACTION AND SYNTHESIS Two reviewers independently screened titles, abstracts and full texts for inclusion and extracted data using Covidence software. RESULTS From 6987 articles identified by the search, 727 studies met inclusion criteria. Study publication increased by 22 times in the last decade. Cohort study was the most common study design (n=609, 84%). 479 unique methods of measuring brain health were identified, comprising imaging, cognitive, mental health, biological and clinical categories. Seven of the top 10 most frequently used brain health measurement methods were imaging based, including structural imaging of grey matter and hippocampal volumes and white matter hyperintensities. Cognitive tests such as the trail making test accounted for 286 (59.7%) of all brain health measurement methods. CONCLUSIONS The scientific literature surrounding brain health has increased exponentially, yet measurement methods are highly heterogeneous across studies which may explain the lack of clinical translation. Future studies should aim to develop a selected group of measures that should be included in all brain health studies to aid interstudy comparison (core outcome set), and broaden from the current focus on neuroimaging outcomes to include a range of outcomes.
Collapse
Affiliation(s)
- Angeline Lee
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | - Peter Indoe
- Health Education Thames Valley (HETV), Oxford, UK
| | | | - Guy Niblett
- Health Education Thames Valley (HETV), Oxford, UK
| | | | - Nia Roberts
- Bodleian Health Care Libraries, University of Oxford, Oxford, UK
| | - Reem Saleem Malouf
- Nuffield Department of Population Health, National Perinatal Epidemiology Unit, Oxford, UK
| | - Anya Topiwala
- Nuffield Department of Population Health, University of Oxford, Oxford, UK
| |
Collapse
|
42
|
Fu M, Valiente-Banuet L, Wadhwa SS, Pasaniuc B, Vossel K, Chang TS. Improving genetic risk modeling of dementia from real-world data in underrepresented populations. MEDRXIV : THE PREPRINT SERVER FOR HEALTH SCIENCES 2024:2024.02.05.24302355. [PMID: 38370649 PMCID: PMC10871463 DOI: 10.1101/2024.02.05.24302355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
BACKGROUND Genetic risk modeling for dementia offers significant benefits, but studies based on real-world data, particularly for underrepresented populations, are limited. METHODS We employed an Elastic Net model for dementia risk prediction using single-nucleotide polymorphisms prioritized by functional genomic data from multiple neurodegenerative disease genome-wide association studies. We compared this model with APOE and polygenic risk score models across genetic ancestry groups, using electronic health records from UCLA Health for discovery and All of Us cohort for validation. RESULTS Our model significantly outperforms other models across multiple ancestries, improving the area-under-precision-recall curve by 21-61% and the area-under-the-receiver-operating characteristic by 10-21% compared to the APOE and the polygenic risk score models. We identified shared and ancestry-specific risk genes and biological pathways, reinforcing and adding to existing knowledge. CONCLUSIONS Our study highlights benefits of integrating functional mapping, multiple neurodegenerative diseases, and machine learning for genetic risk models in diverse populations. Our findings hold potential for refining precision medicine strategies in dementia diagnosis.
Collapse
Affiliation(s)
- Mingzhou Fu
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
- Medical Informatics Home Area, Department of Bioinformatics, University of California, Los Angeles, Los Angeles, CA, 90024, United States
| | - Leopoldo Valiente-Banuet
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Satpal S. Wadhwa
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | | | | | - Bogdan Pasaniuc
- Department of Computational Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Keith Vossel
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| | - Timothy S. Chang
- Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, 90095, United States
| |
Collapse
|
43
|
Tang H, Guo J, Shaaban CE, Feng Z, Wu Y, Magoc T, Hu X, Donahoo WT, DeKosky ST, Bian J. Heterogeneous treatment effects of metformin on risk of dementia in patients with type 2 diabetes: A longitudinal observational study. Alzheimers Dement 2024; 20:975-985. [PMID: 37830443 PMCID: PMC10917005 DOI: 10.1002/alz.13480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 08/14/2023] [Accepted: 08/20/2023] [Indexed: 10/14/2023]
Abstract
INTRODUCTION Little is known about the heterogeneous treatment effects of metformin on dementia risk in people with type 2 diabetes (T2D). METHODS Participants (≥ 50 years) with T2D and normal cognition at baseline were identified from the National Alzheimer's Coordinating Center database (2005-2021). We applied a doubly robust learning approach to estimate risk differences (RD) with a 95% confidence interval (CI) for dementia risk between metformin use and no use in the overall population and subgroups identified through a decision tree model. RESULTS Among 1393 participants, 104 developed dementia over a 4-year median follow-up. Metformin was significantly associated with a lower risk of dementia in the overall population (RD, -3.2%; 95% CI, -6.2% to -0.2%). We identified four subgroups with varied risks for dementia, defined by neuropsychiatric disorders, non-steroidal anti-inflammatory drugs, and antidepressant use. DISCUSSION Metformin use was significantly associated with a lower risk of dementia in individuals with T2D, with significant variability among subgroups.
Collapse
Affiliation(s)
- Huilin Tang
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
| | - Jingchuan Guo
- Department of Pharmaceutical Outcomes and PolicyUniversity of Florida College of PharmacyGainesvilleFloridaUSA
- Center for Drug Evaluation and SafetyUniversity of FloridaGainesvilleFloridaUSA
| | - C. Elizabeth Shaaban
- Department of EpidemiologySchool of Public HealthUniversity of PittsburghPittsburghPennsylvaniaUSA
- Alzheimer's Disease Research CenterUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Zheng Feng
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Yonghui Wu
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Tanja Magoc
- Clinical and Translational Science InstituteUniversity of FloridaGainesvilleFloridaUSA
| | - Xia Hu
- DATA LabDepartment of Computer ScienceRice UniversityHoustonTexasUSA
| | - William T Donahoo
- Department of MedicineCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| | - Steven T. DeKosky
- Department of Neurology and McKnight Brain InstituteCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
- Florida Alzheimer's Disease Research Center (ADRC)University of FloridaGainesvilleFloridaUSA
| | - Jiang Bian
- Department of Health Outcomes and Biomedical InformaticsCollege of MedicineUniversity of FloridaGainesvilleFloridaUSA
| |
Collapse
|
44
|
Tseng WHS, Chattopadhyay A, Phan NN, Chuang EY, Lee OK. Utilizing multimodal approach to identify candidate pathways and biomarkers and predicting frailty syndrome in individuals from UK Biobank. GeroScience 2024; 46:1211-1228. [PMID: 37523034 PMCID: PMC10828416 DOI: 10.1007/s11357-023-00874-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 07/12/2023] [Indexed: 08/01/2023] Open
Abstract
Frailty, a prevalent clinical syndrome in aging adults, is characterized by poor health outcomes, represented via a standardized frailty-phenotype (FP), and Frailty Index (FI). While the relevance of the syndrome is gaining awareness, much remains unclear about its underlying biology. Further elucidation of the genetic determinants and possible underlying mechanisms may help improve patients' outcomes allowing healthy aging.Genotype, clinical and demographic data of subjects (aged 60-73 years) from UK Biobank were utilized. FP was defined on Fried's criteria. FI was calculated using electronic-health-records. Genome-wide-association-studies (GWAS) were conducted and polygenic-risk-scores (PRS) were calculated for both FP and FI. Functional analysis provided interpretations of underlying biology. Finally, machine-learning (ML) models were trained using clinical, demographic and PRS towards identifying frail from non-frail individuals.Thirty-one loci were significantly associated with FI accounting for 12% heritability. Seventeen of those were known associations for body-mass-index, coronary diseases, cholesterol-levels, and longevity, while the rest were novel. Significant genes CDKN2B and APOE, previously implicated in aging, were reported to be enriched in lipoprotein-particle-remodeling. Linkage-disequilibrium-regression identified specific regulation in limbic-system, associated with long-term memory and cognitive-function. XGboost was established as the best performing ML model with area-under-curve as 85%, sensitivity and specificity as 0.75 and 0.8, respectively.This study provides novel insights into increased vulnerability and risk stratification of frailty syndrome via a multi-modal approach. The findings suggest frailty as a highly polygenic-trait, enriched in cholesterol-remodeling and metabolism and to be genetically associated with cognitive abilities. ML models utilizing FP and FI + PRS were established that identified frailty-syndrome patients with high accuracy.
Collapse
Affiliation(s)
- Watson Hua-Sheng Tseng
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Amrita Chattopadhyay
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan.
| | - Nam Nhut Phan
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
| | - Eric Y Chuang
- Bioinformatics and Biostatistics Core, Centers of Genomic and Precision Medicine, National Taiwan University, Taipei, Taiwan
- Graduate Institute of Biomedical Electronics and Bioinformatics, Department of Electrical Engineering, National Taiwan University, Taipei, Taiwan
- Biomedical Technology and Device Research Laboratories, Industrial Technology Research Institute, Hsinchu, Taiwan
| | - Oscar K Lee
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Center for Translational Genomics and Regenerative Medicine, China Medical University Hospital, Taichung, Taiwan.
- Stem Cell Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan.
- Department of Orthopedics, China Medical University Hospital, Taichung, Taiwan.
| |
Collapse
|
45
|
Morshedzadeh F, Ghanei M, Lotfi M, Ghasemi M, Ahmadi M, Najari-Hanjani P, Sharif S, Mozaffari-Jovin S, Peymani M, Abbaszadegan MR. An Update on the Application of CRISPR Technology in Clinical Practice. Mol Biotechnol 2024; 66:179-197. [PMID: 37269466 PMCID: PMC10239226 DOI: 10.1007/s12033-023-00724-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2022] [Accepted: 03/13/2023] [Indexed: 06/05/2023]
Abstract
The CRISPR/Cas system, an innovative gene-editing tool, is emerging as a promising technique for genome modifications. This straightforward technique was created based on the prokaryotic adaptive immune defense mechanism and employed in the studies on human diseases that proved enormous therapeutic potential. A genetically unique patient mutation in the process of gene therapy can be corrected by the CRISPR method to treat diseases that traditional methods were unable to cure. However, introduction of CRISPR/Cas9 into the clinic will be challenging because we still need to improve the technology's effectiveness, precision, and applications. In this review, we first describe the function and applications of the CRISPR-Cas9 system. We next delineate how this technology could be utilized for gene therapy of various human disorders, including cancer and infectious diseases and highlight the promising examples in the field. Finally, we document current challenges and the potential solutions to overcome these obstacles for the effective use of CRISPR-Cas9 in clinical practice.
Collapse
Affiliation(s)
- Firouzeh Morshedzadeh
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Mahmoud Ghanei
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Malihe Lotfi
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Morteza Ghasemi
- Cellular and Molecular Research Center, Qom University of Medical Sciences, Qom, Iran
| | - Mohsen Ahmadi
- Department of Medical Genetics, Faculty of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Islamic Republic of Iran
| | - Parisa Najari-Hanjani
- Department of Medical Genetics, Faculty of Advanced Technologies in Medicine, Golestan University of Medical Science, Gorgan, Iran
| | - Samaneh Sharif
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Sina Mozaffari-Jovin
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maryam Peymani
- Department of Genetics, Faculty of Basic Sciences, Shahrekord Branch, Islamic Azad University, Shahrekord, Iran.
| | - Mohammad Reza Abbaszadegan
- Department of Medical Genetics and Molecular Medicine, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran.
- Medical Genetics Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
- Immunology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran.
| |
Collapse
|
46
|
Reiss AB, Gulkarov S, Jacob B, Srivastava A, Pinkhasov A, Gomolin IH, Stecker MM, Wisniewski T, De Leon J. Mitochondria in Alzheimer's Disease Pathogenesis. Life (Basel) 2024; 14:196. [PMID: 38398707 PMCID: PMC10890468 DOI: 10.3390/life14020196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 01/23/2024] [Accepted: 01/25/2024] [Indexed: 02/25/2024] Open
Abstract
Alzheimer's disease (AD) is a progressive and incurable neurodegenerative disorder that primarily affects persons aged 65 years and above. It causes dementia with memory loss and deterioration in thinking and language skills. AD is characterized by specific pathology resulting from the accumulation in the brain of extracellular plaques of amyloid-β and intracellular tangles of phosphorylated tau. The importance of mitochondrial dysfunction in AD pathogenesis, while previously underrecognized, is now more and more appreciated. Mitochondria are an essential organelle involved in cellular bioenergetics and signaling pathways. Mitochondrial processes crucial for synaptic activity such as mitophagy, mitochondrial trafficking, mitochondrial fission, and mitochondrial fusion are dysregulated in the AD brain. Excess fission and fragmentation yield mitochondria with low energy production. Reduced glucose metabolism is also observed in the AD brain with a hypometabolic state, particularly in the temporo-parietal brain regions. This review addresses the multiple ways in which abnormal mitochondrial structure and function contribute to AD. Disruption of the electron transport chain and ATP production are particularly neurotoxic because brain cells have disproportionately high energy demands. In addition, oxidative stress, which is extremely damaging to nerve cells, rises dramatically with mitochondrial dyshomeostasis. Restoring mitochondrial health may be a viable approach to AD treatment.
Collapse
Affiliation(s)
- Allison B. Reiss
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Shelly Gulkarov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Benna Jacob
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Ankita Srivastava
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Aaron Pinkhasov
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Irving H. Gomolin
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| | - Mark M. Stecker
- The Fresno Institute of Neuroscience, Fresno, CA 93730, USA;
| | - Thomas Wisniewski
- Center for Cognitive Neurology, Departments of Neurology, Pathology and Psychiatry, New York University Grossman School of Medicine, New York, NY 10016, USA;
| | - Joshua De Leon
- Department of Medicine and Biomedical Research Institute, NYU Grossman Long Island School of Medicine, Mineola, NY 11501, USA; (S.G.); (B.J.); (A.S.); (A.P.); (I.H.G.); (J.D.L.)
| |
Collapse
|
47
|
De Francesco MA. Herpesviridae, Neurodegenerative Disorders and Autoimmune Diseases: What Is the Relationship between Them? Viruses 2024; 16:133. [PMID: 38257833 PMCID: PMC10818483 DOI: 10.3390/v16010133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 12/06/2023] [Accepted: 01/15/2024] [Indexed: 01/24/2024] Open
Abstract
Alzheimer's disease and Parkinson's disease represent the most common forms of cognitive impairment. Multiple sclerosis is a chronic inflammatory disease of the central nervous system responsible for severe disability. An aberrant immune response is the cause of myelin destruction that covers axons in the brain, spinal cord, and optic nerves. Systemic lupus erythematosus is an autoimmune disease characterized by alteration of B cell activation, while Sjögren's syndrome is a heterogeneous autoimmune disease characterized by altered immune responses. The etiology of all these diseases is very complex, including an interrelationship between genetic factors, principally immune associated genes, and environmental factors such as infectious agents. However, neurodegenerative and autoimmune diseases share proinflammatory signatures and a perturbation of adaptive immunity that might be influenced by herpesviruses. Therefore, they might play a critical role in the disease pathogenesis. The aim of this review was to summarize the principal findings that link herpesviruses to both neurodegenerative and autoimmune diseases; moreover, briefly underlining the potential therapeutic approach of virus vaccination and antivirals.
Collapse
Affiliation(s)
- Maria Antonia De Francesco
- Department of Molecular and Translational Medicine, Institute of Microbiology, University of Brescia-ASST Spedali Civili, 25123 Brescia, Italy
| |
Collapse
|
48
|
Gadara D, Berka V, Spacil Z. High-Throughput Microbore LC-MS Lipidomics to Investigate APOE Phenotypes. Anal Chem 2024; 96:59-66. [PMID: 38113351 PMCID: PMC10782415 DOI: 10.1021/acs.analchem.3c02652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2023] [Revised: 11/13/2023] [Accepted: 11/16/2023] [Indexed: 12/21/2023]
Abstract
Microflow liquid chromatography interfaced with mass spectrometry (μLC-MS/MS) is increasingly applied for high-throughput profiling of biological samples and has been proven to have an acceptable trade-off between sensitivity and reproducibility. However, lipidomics applications are scarce. We optimized a μLC-MS/MS system utilizing a 1 mm inner diameter × 100 mm column coupled to a triple quadrupole mass spectrometer to establish a sensitive, high-throughput, and robust single-shot lipidomics workflow. Compared to conventional lipidomics methods, we achieve a ∼4-fold increase in response, facilitating quantification of 351 lipid species from a single iPSC-derived cerebral organoid during a 15 min LC-MS analysis. Consecutively, we injected 303 samples over ∼75 h to prove the robustness and reproducibility of the microflow separation. As a proof of concept, μLC-MS/MS analysis of Alzheimer's disease patient-derived iPSC cerebral organoid reveals differential lipid metabolism depending on APOE phenotype (E3/3 vs E4/4). Microflow separation proves to be an environmentally friendly and cost-effective method as it reduces the consumption of harmful solvents. Also, the data demonstrate robust, in-depth, high-throughput performance to enable routine clinical or biomedical applications.
Collapse
Affiliation(s)
- Darshak Gadara
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Vratislav Berka
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| | - Zdenek Spacil
- RECETOX
Centre, Faculty of Science, Masaryk University, Brno 625 00, Czech Republic
| |
Collapse
|
49
|
Moon H, Ham H, Yun J, Shin D, Lee EH, Kim HJ, Seo SW, Na DL, Jang H. Prediction of Amyloid Positivity in Patients with Subcortical Vascular Cognitive Impairment. J Alzheimers Dis 2024; 99:1117-1127. [PMID: 38788077 DOI: 10.3233/jad-240196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/26/2024]
Abstract
Background Amyloid-β (Aβ) commonly coexists and impacts prognosis in subcortical vascular cognitive impairment (SVCI). Objective This study aimed to examine the differences in clinical and neuroimaging variables between Aβ-positive and Aβ-negative SVCI and to propose a prediction model for Aβ positivity in clinically diagnosed SVCI patients. Methods A total of 130 patients with SVCI were included in model development, and a separate cohort of 70 SVCI patients was used in external validation. The variables for the prediction model were selected by comparing the characteristics of the Aβ-negative and Aβ-positive SVCI groups. The final model was determined using a stepwise method. The model performance was evaluated using the receiver operating characteristic (ROC) curve and a calibration curve. A nomogram was used for visualization. Results Among 130 SVCI patients, 70 (53.8%) were Aβ-positive. The Aβ-positive SVCI group was characterized by older age, tendency to be in the dementia stage, a higher prevalence of APOEɛ4, a lower prevalence of lacune, and more severe medial temporal atrophy (MTA). The final prediction model, which excluded MTA grade following the stepwise method for variable selection, demonstrated good accuracy in distinguishing between Aβ-positive and Aβ-negative SVCI, with an area under the curve (AUC) of 0.80. The external validation demonstrated an AUC of 0.71. Conclusions The findings suggest that older age, dementia stage, APOEɛ4 carrier, and absence of lacunes may be predictive of Aβ positivity in clinically diagnosed SVCI patients.
Collapse
Affiliation(s)
- Hasom Moon
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, South Korea
| | - Hongki Ham
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Department of Intelligent Precision Healthcare Convergence, Sungkyunkwan University, Suwon, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Jihwan Yun
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Department of Neurology, Soonchunhyang University Bucheon Hospital, Gyeonggi-do, South Korea
| | - Daeun Shin
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Eun Hye Lee
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Hee Jin Kim
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Sang Won Seo
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Health Sciences and Technology, SAIHST, Sungkyunkwan University, Seoul, South Korea
| | - Duk L Na
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Happymind Clinic, Seoul, South Korea
| | - Hyemin Jang
- Department of Neurology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
- Neuroscience Center, Samsung Medical Center, Seoul, South Korea
- Samsung Alzheimer's Convergence Research Center, Samsung Medical Center, Seoul, South Korea
- Department of Neurology, Seoul National University Hospital, Seoul National University School of Medicine, Seoul, South Korea
| |
Collapse
|
50
|
Khaled M, Al-Jamal H, Tajer L, El-Mir R. Alzheimer's Disease in Lebanon: Exploring Genetic and Environmental Risk Factors-A Comprehensive Review. J Alzheimers Dis 2024; 99:21-40. [PMID: 38640157 DOI: 10.3233/jad-231432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/21/2024]
Abstract
Alzheimer's disease (AD) is a neurodegenerative condition that displays a high prevalence in Lebanon causing a local burden in healthcare and socio-economic sectors. Unfortunately, the lack of prevalence studies and clinical trials in Lebanon minimizes the improvement of AD patient health status. In this review, we include over 155 articles to cover the different aspects of AD ranging from mechanisms to possible treatment and management tools. We highlight some important modifiable and non-modifiable risk factors of the disease including genetics, age, cardiovascular diseases, smoking, etc. Finally, we propose a hypothetical genetic synergy model between APOE4 and TREM2 genes which constitutes a potential early diagnostic tool that helps in reducing the risk of AD based on preventative measures decades before cognitive decline. The studies on AD in Lebanon and the Middle East are scarce. This review points out the importance of genetic mapping in the understanding of disease pathology which is crucial for the emergence of novel diagnostic tools. Hence, we establish a rigid basis for further research to identify the most influential genetic and environmental risk factors for the purpose of using more specific diagnostic tools and possibly adopting a local management protocol.
Collapse
Affiliation(s)
| | - Hadi Al-Jamal
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Layla Tajer
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| | - Reem El-Mir
- Faculty of Public Health III, Lebanese University, Tripoli, Lebanon
| |
Collapse
|