1
|
Huiying Z, Mingfeng C, Wei C, Shuiyun C, Yuchen L, Honghai W, Xuelong C, Yanping Q. Prevalence of bovine paratuberculosis in Chinese cattle populations: a meta-analysis. Front Cell Infect Microbiol 2024; 14:1424170. [PMID: 39639865 PMCID: PMC11617580 DOI: 10.3389/fcimb.2024.1424170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 10/18/2024] [Indexed: 12/07/2024] Open
Abstract
Background Bovine paratuberculosis is a chronic infectious disease of ruminants primarily caused by Mycobacterium avium subsp. paratuberculosis (MAP). It is essentially a chronic granulomatous enteritis characterized by intractable diarrhea, progressive lethargy, and thickening of the intestinal mucosa with the formation of crumpled pouches. Bovine paratuberculosis not only adversely affects milk production and the quality of dairy products but also poses a significant threat to the economic development of dairy farming and human food security. This systematic review and meta-analysis was conducted to assess the prevalence of MAP infection among cattle herds in mainland China. Results A total of 62 studies with data from 102,340 cattle in 24 provinces in China were selected after matching the assessment criteria. In China, the overall estimated prevalence of MAP infection in cattle was 8%(7727/102340). Interestingly, the MAP infection rate in cattle in southern China was estimated to be 2% (6/281), which was significantly lower compared with other regions of China, and the highest infection rate was 12% (1914/16008) in eastern China. MAP infection rates were related to age, average herd size, type of use, season, detection method, and sample type. Moreover, the MAP infection rate in cattle did not correlate with the publication date of the studies. Conclusion The analysis identified age, average herd size, type of use, and season as significant potential risk factors associated with PTB pool positivity. In addition, the detection method and sample type can also potentially affect the incidence of detected PTB.
Collapse
Affiliation(s)
- Zhang Huiying
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Chu Mingfeng
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Cheng Wei
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Chen Shuiyun
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Liang Yuchen
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Wang Honghai
- Daqing Agricultural and Rural Bureau, Daqing, Heilongjiang, China
| | - Chen Xuelong
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| | - Qi Yanping
- Anhui Province Key Laboratory of Animal Nutritional Regulation and Health, Anhui Science and Technology University, Fengyang, China
| |
Collapse
|
2
|
Martins L, Orsel K, Eshraghisamani R, Hernández-Agudelo JM, Pereira AC, Shaukat W, Koets AP, Bannantine JP, Ritter C, Kelton DF, Whittington RJ, Weber MF, Facciuolo A, Dhand NK, Donat K, Eisenberg S, Salgado MA, Kastelic JP, De Buck J, Barkema HW. Invited Review: Improved control of Johne's disease in dairy cattle through advancements in diagnostics, testing and management of young stock. J Dairy Sci 2024:S0022-0302(24)01187-1. [PMID: 39369889 DOI: 10.3168/jds.2024-24643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Accepted: 09/15/2024] [Indexed: 10/08/2024]
Abstract
Johne's disease (JD; paratuberculosis) control programs have been regionally implemented across the globe, but few have successfully eradicated the pathogen (Mycobacterium avium ssp. paratuberculosis (MAP)) causing this disease. The limited success may partly be attributed to excluding young stock (calves and replacement heifers or bulls) from testing strategies aimed at identifying MAP-infected cattle. Young stock can shed MAP in feces and can have detectable MAP-specific antibodies in blood, as confirmed in experimentally and naturally infected cattle. Furthermore, MAP transmission causes new infections in young stock. Calves and heifers are often included in JD management strategies on dairy farms but excluded from conventional diagnostic tests due to a presumed lag between infection and detection of MAP shedding and/or MAP-specific serum antibodies. We summarize evidence of MAP shedding early in the course of infection and discuss promising diagnostics, testing and management strategies to support inclusion of young stock in JD control programs. Improvements in fecal Polymerase Chain Reaction, interferon-gamma release assay (IGRA), and enzyme-linked immunosorbent assay (ELISA) enable earlier detection of MAP and specific early immune responses. Studies on IGRA and ELISA have focused on evaluation of new antigens and optimal age of testing. There are new diagnostics, including phage-based tests to detect viable MAP, and gene expression patterns and metabolomics to detect MAP-infected young stock. In addition, refinements in testing and management of calves and heifers may enable reductions in MAP prevalence. We provide recommendations for dairy farmers, researchers, veterinarians, and other stakeholders that may improve JD control programs with an objective to control and potentially eradicate JD. Additionally, we have identified the most pressing gaps in knowledge that currently hamper inclusion of young stock in JD prevention and control programs. In summary, transmission among young stock may cause new MAP infections, and appropriate use of new diagnostic tests, testing and management strategies for young stock may improve the efficacy of JD control programs.
Collapse
Affiliation(s)
- Larissa Martins
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | - Karin Orsel
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | | | - Jose Miguel Hernández-Agudelo
- Instituto de Medicina Preventiva Veterinaria, Faculty of Veterinary Medicine, Universidad Austral de Chile, Valdivia, 5090000, Chile; Escuela de Graduados, Facultad de Ciencias Veterinarias, Universidad Austral de Chile, Valdivia, Chile
| | - A Caroline Pereira
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | - Waseem Shaukat
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | - Ad P Koets
- Wageningen Bioveterinary Research, 8221 RA, Lelystad, The Netherlands
| | | | - Caroline Ritter
- Department of Health Management, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - David F Kelton
- Department of Population Medicine, University of Guelph, 50 Stone Rd., Guelph, ON, N1G 2W1, Canada
| | - Richard J Whittington
- Sydney School of Veterinary Science, The University of Sydney, Camden, 2570, NSW, Australia
| | | | - Antonio Facciuolo
- Vaccine and Infectious Disease Organization (VIDO), University of Saskatchewan, Saskatoon, SK, Canada; Department of Veterinary Microbiology, Western College of Veterinary Medicine, University of Saskatchewan, Saskatoon, SK, Canada
| | - Navneet K Dhand
- Sydney School of Veterinary Science, The University of Sydney, Camden, 2570, NSW, Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Thuringia, Germany
| | - Susanne Eisenberg
- Animal Disease Fund of Lower Saxony, 30169 Hanover, Lower Saxony, Germany
| | - Miguel A Salgado
- Instituto de Medicina Preventiva Veterinaria, Faculty of Veterinary Medicine, Universidad Austral de Chile, Valdivia, 5090000, Chile
| | - John P Kastelic
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | - Jeroen De Buck
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada
| | - Herman W Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, AB, T2N 0Z4, Canada.
| |
Collapse
|
3
|
Stefanova EP, Paz-Sánchez Y, Quesada-Canales Ó, Quintana-Montesdeoca MDP, Espinosa de los Monteros A, Ramírez AS, Fernández A, Andrada M. Caprine Paratuberculosis Seroprevalence and Immune Response to Anti- Mycobacterium avium Subspecies paratuberculosis Vaccination on the Canary Islands, Spain. Vet Sci 2024; 11:388. [PMID: 39330767 PMCID: PMC11435619 DOI: 10.3390/vetsci11090388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2024] [Revised: 08/12/2024] [Accepted: 08/22/2024] [Indexed: 09/28/2024] Open
Abstract
Paratuberculosis (PTB), caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic disease with economic impact on ruminant farming worldwide. The Canary Islands count with the fourth largest goat population in Spain and are "officially free" of bovine tuberculosis. Twelve farms were included with 2774 serum samples tested by an enzyme-linked immunosorbent assay (ELISA) for detection of anti-MAP antibodies in two sessions. In the first session, an overall apparent prevalence of 18.4% (2.5% up to 61.1%) was obtained. Farms with prevalences (0-10%], (10-20%] and >20% were identified, with differences in seroconversion in the same prevalence group between farms and age ranges. Non-vaccinated (nV) and vaccinated (V) animals were included in the second sampling session. Higher levels of antibodies were detected in V animals older than 12 months, with considerable variations between age ranges and farms. Our results describe the current PTB status of the Canary Islands' goat farming. Furthermore, new insights on the effect of the farm prevalence on seroconversion in V animals are provided, although further studies are needed to evaluate the multiple factors affecting the immune response to anti-MAP vaccination.
Collapse
Affiliation(s)
- Elena Plamenova Stefanova
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| | - Yania Paz-Sánchez
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| | - Óscar Quesada-Canales
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| | | | - Antonio Espinosa de los Monteros
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| | - Ana Sofía Ramírez
- Epidemiology and Preventive Medicine Unit, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain;
| | - Antonio Fernández
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| | - Marisa Andrada
- Veterinary Histology and Pathology, Institute of Animal Health and Food Safety (IUSA), Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain; (Ó.Q.-C.); (A.E.d.l.M.); (A.F.); (M.A.)
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, 35413 Arucas, Gran Canaria, Spain
| |
Collapse
|
4
|
Stefanova EP, Sierra E, Fernández A, Quesada-Canales O, Paz-Sánchez Y, Colom-Rivero A, Espinosa de los Monteros A, Herráez P, Domínguez L, Bezos J, Pérez-Sancho M, Moreno I, Risalde MA, Andrada M. Detection of caprine paratuberculosis (Johne's disease) in pre- and post-vaccinated herds: morphological diagnosis, lesion grading, and bacterial identification. Front Vet Sci 2024; 11:1395928. [PMID: 39144076 PMCID: PMC11322454 DOI: 10.3389/fvets.2024.1395928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 07/15/2024] [Indexed: 08/16/2024] Open
Abstract
Samples from the mesenteric lymph nodes (MS LNs) and ileocecal valves (ICV) of 105 goats, comprising 61 non-vaccinated and 44 vaccinated against Mycobacterium avium subspecies paratuberculosis (MAP), were collected at slaughter from a farm with a confirmed history of paratuberculosis (PTB). These goats had subclinical infections. PTB-compatible lesions in the MS LNs, ICV lamina propria (LP), and Peyer's patches (PPs) were graded separately. Furthermore, the load of acid-fast bacilli was quantified using Ziehl-Neelsen staining (ZN), MAP antigens by immunohistochemistry (IHC), and MAP DNA by PCR targeting the IS900 sequence. Gross PTB-compatible lesions were found in 39% of the goats, with 31.72% vaccinated (V) and 68.29% non-vaccinated (nV). Histopathological lesions induced MAP were observed in 58% of the animals, with 36.07% vaccinated and 63.93% non-vaccinated. The inclusion of histopathology as a diagnostic tool led to a 28% increase in diagnosed cases in MS LNs and 86.05% in ICV. Grade IV granulomas with central mineralization and necrosis were the most common lesions in MS LNs. In the ICV, mild granulomatous enteritis with multifocal foci of epithelioid macrophages was predominant, occurring more frequently in the PPs than in the LP. Furthermore, statistical differences in the presence of histopathological lesions between vaccinated and non-vaccinated goats were noted in MS LNs, ICV LPs, and ICV PPs. Non-vaccinated animals showed higher positivity rates in ZN, IHC, and PCR tests, underscoring the benefits of anti-MAP vaccination in reducing PTB lesions and bacterial load in target organs. Our findings emphasize the necessity of integrating gross and histopathological assessments with various laboratory techniques for accurate morphological and etiological diagnosis of PTB in both vaccinated and non-vaccinated goats with subclinical disease. However, further studies are required to refine sampling protocols for subclinical PTB in goats to enhance the consistency of diagnostic tools.
Collapse
Affiliation(s)
- Elena Plamenova Stefanova
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Eva Sierra
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Antonio Fernández
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Oscar Quesada-Canales
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Yania Paz-Sánchez
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Ana Colom-Rivero
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Antonio Espinosa de los Monteros
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Pedro Herráez
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| | - Lucas Domínguez
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Javier Bezos
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Marta Pérez-Sancho
- VISAVET Health Surveillance Centre, Complutense University of Madrid, Madrid, Spain
- Departamento de Sanidad Animal, Facultad de Veterinaria, Universidad Complutense de Madrid, Madrid, Spain
| | - Inmaculada Moreno
- Servicio de Inmunología Microbiana, Centro Nacional de Microbiología, Instituto de Investigación Carlos III, Madrid, Spain
| | - María A. Risalde
- Departamento de Anatomía y Anatomía Patológica Comparadas y Toxicología, Grupo de Investigación GISAZ, UIC Zoonosis y Enfermedades Emergentes ENZOEM, Universidad de Córdoba, Campus de Rabanales, Edificio Sanidad Animal, Córdoba, Spain
- Centro de Investigación Biomédica en Red Enfermedades Infecciosas, Instituto de Salud Carlos III (CIBERINFEC, ISCIII), Madrid, Spain
| | - Marisa Andrada
- Division of Animal Histology and Pathology, Veterinary School, Institute of Animal Health and Food Safety (IUSA), University of Las Palmas de Gran Canaria, Arucas, Spain
- Departament of Morphology, Veterinary School, University of Las Palmas de Gran Canaria, Arucas, Spain
| |
Collapse
|
5
|
Kravitz A, Liao M, Morota G, Tyler R, Cockrum R, Manohar BM, Ronald BSM, Collins MT, Sriranganathan N. Retrospective Single Nucleotide Polymorphism Analysis of Host Resistance and Susceptibility to Ovine Johne's Disease Using Restored FFPE DNA. Int J Mol Sci 2024; 25:7748. [PMID: 39062990 PMCID: PMC11276633 DOI: 10.3390/ijms25147748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Revised: 06/26/2024] [Accepted: 06/28/2024] [Indexed: 07/28/2024] Open
Abstract
Johne's disease (JD), also known as paratuberculosis, is a chronic, untreatable gastroenteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. Evidence for host genetic resistance to disease progression exists, although it is limited due to the extended incubation period (years) and diagnostic challenges. To overcome this, previously restored formalin-fixed paraffin embedded tissue (FFPE) DNA from archived FFPE tissue cassettes was utilized for a novel retrospective case-control genome-wide association study (GWAS) on ovine JD. Samples from known MAP-infected flocks with ante- and postmortem diagnostic data were used. Cases (N = 9) had evidence of tissue infection, compared to controls (N = 25) without evidence of tissue infection despite positive antemortem diagnostics. A genome-wide efficient mixed model analysis (GEMMA) to conduct a GWAS using restored FFPE DNA SNP results from the Illumina Ovine SNP50 Bead Chip, identified 10 SNPs reaching genome-wide significance of p < 1 × 10-6 on chromosomes 1, 3, 4, 24, and 26. Pathway analysis using PANTHER and the Kyoto Encyclopedia of Genes and Genomes (KEGG) was completed on 45 genes found within 1 Mb of significant SNPs. Our work provides a framework for the novel use of archived FFPE tissues for animal genetic studies in complex diseases and further evidence for a genetic association in JD.
Collapse
Affiliation(s)
- Amanda Kravitz
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Mingsi Liao
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Gota Morota
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Ron Tyler
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - Rebecca Cockrum
- Department of Animal and Poultry Sciences, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| | - B. Murali Manohar
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - B. Samuel Masilamoni Ronald
- Department of Veterinary Pathology, Tamilnadu Veterinary and Animal Sciences University, Madhavaram Milk Colony, Chennai 600051, Tamil Nadu India, India
| | - Michael T. Collins
- Department of Pathobiological Sciences, School of Veterinary Medicine, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Nammalwar Sriranganathan
- Center for One Health Research, Department of Biomedical Sciences and Pathobiology, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA
| |
Collapse
|
6
|
Novo LC, Parker Gaddis KL, Wu XL, McWhorter TM, Burchard J, Norman HD, Dürr J, Fourdraine R, Peñagaricano F. Genetic parameters and trends for Johne's disease in US Holsteins: An updated study. J Dairy Sci 2024; 107:4804-4821. [PMID: 38428495 DOI: 10.3168/jds.2023-23788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Accepted: 02/01/2024] [Indexed: 03/03/2024]
Abstract
Johne's disease (JD) is an infectious enteric disease in ruminants, causing substantial economic loss annually worldwide. This work aimed to estimate JD's genetic parameters and the phenotypic and genetic trends by incorporating recent data. It also explores the feasibility of a national genetic evaluation for JD susceptibility in Holstein cattle in the United States. The data were extracted from a JD data repository, maintained at the Council on Dairy Cattle Breeding, and initially supplied by 2 dairy record processing centers. The data comprised 365,980 Holstein cows from 1,048 herds participating in a voluntary control program for JD. Two protocol kits, IDEXX Paratuberculosis Screening Ab Test (IDX) and Parachek 2 (PCK), were used to analyze milk samples with the ELISA technique. Test results from the first 5 parities were considered. An animal was considered infected if it had at least one positive outcome. The overall average of JD incidence was 4.72% in these US Holstein cattle. Genotypes of 78,964 SNP markers were used for 25,000 animals randomly selected from the phenotyped population. Variance components and genetic parameters were estimated based on 3 models, namely, a pedigree-only threshold model (THR), a single-step threshold model (ssTHR), and a single-step linear model (ssLR). The posterior heritability estimates of JD susceptibility were low to moderate: 0.11 to 0.16 based on the 2 threshold models and 0.05 to 0.09 based on the linear model. The average reliability of EBVs of JD susceptibility using single-step analysis for animals with or without phenotypes varied from 0.18 (THR) to 0.22 (ssLR) for IDX and from 0.14 (THR) to 0.18 (ssTHR and ssLR) for PCK. Despite no prior direct genetic selection against JD, the estimated genetic trends of JD susceptibility were negative and highly significant. The correlations of bulls' PTA with economically important traits such as milk yield, milk protein, milk fat, somatic cell score, and mastitis were low, indicating a nonoverlapping genetic selection process with traits in current genetic evaluations. Our results suggest the feasibility of reducing the JD incidence rate by incorporating it into the national genetic evaluation programs.
Collapse
Affiliation(s)
- Larissa C Novo
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Council on Dairy Cattle Breeding, Bowie, MD 20716.
| | | | - Xiao-Lin Wu
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706; Council on Dairy Cattle Breeding, Bowie, MD 20716
| | | | | | | | - João Dürr
- Council on Dairy Cattle Breeding, Bowie, MD 20716
| | | | - Francisco Peñagaricano
- Department of Animal and Dairy Sciences, University of Wisconsin-Madison, Madison, WI 53706
| |
Collapse
|
7
|
Martins E, Oliveira P, Correia-Gomes C, Mendonça D, Ribeiro JN. Association of Mycobacterium avium paratuberculosis serostatus with age at first calving, calving interval, and milk production in dairy cows. J Dairy Sci 2024; 107:3916-3926. [PMID: 38331177 DOI: 10.3168/jds.2023-23516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 12/03/2023] [Indexed: 02/10/2024]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of bovine paratuberculosis, also known as Johne's disease. This infection is responsible for negative effects, ranging from reduction of milk production to reproductive compromise and increased susceptibility to other diseases such as mastitis. Contradictory information on the association between this infection and reproductive performance has been reported in dairy cows. The aim of this work was to investigate associations between individual cow MAP seropositivity and lifetime reproduction and production performance. The MAP serum ELISA (IDEXX MAP Ac) results from all the 13,071 adult cows present on 191 farms and corresponding birth- and calving-date records obtained from the National Association for Genetic Improvement of Dairy Cattle were used. Cows and farms were classified as positive or negative, based on ELISA results. Outcomes assessed were age at first calving (AFC), intercalving intervals (ICI) from first to fourth interval, and average milk production per day of productive cycle (Milk-305/ICI, a ratio between 305-d corrected milk production and the number of days of the respective calving interval). Multilevel mixed models were used to investigate the association of cow MAP status with AFC, ICI, and Milk-305/ICI. Three levels were considered in the models: "measurement occasion," the first level, was nested within cows and cows were nested within farms. The "measurement occasion" is the time point to which all the observed measures (between 2 successive parturitions, such as milk production and somatic cell count) were referred. Our results indicate that MAP-positive cows have a significantly lower 14-d mean AFC than MAP-negative cows. The overall average ICI in our study was 432.5 d (standard deviation: 94.6). The average ICI, from first to fourth, was not significantly affected by MAP seropositivity. No significant effect of MAP positivity was found on the overall ICI. In relation to Milk-305/ICI, MAP-positive cows did not produce significantly less milk than negative cows across their productive lifetime. We observed higher but nonsignificant Milk-305/ICI (kg/d) in MAP-positive cows. In our study, the proportion of MAP-positive cows within lactations remained similar across all lactations, suggesting that seropositivity did not increased drop-off rate.
Collapse
Affiliation(s)
- Elisabete Martins
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-313 Porto, Portugal; EPIUnit-Instituto de Saúde Pública da Universidade do Porto (ISPUP), 4050-600 Porto, Portugal; Departement of Veterinary Sciences, Escola Universitária Vasco da Gama (EUVG), 3020-210 Coimbra, Portugal.
| | - Pedro Oliveira
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-313 Porto, Portugal; EPIUnit-Instituto de Saúde Pública da Universidade do Porto (ISPUP), 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
| | | | - Denisa Mendonça
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-313 Porto, Portugal; EPIUnit-Instituto de Saúde Pública da Universidade do Porto (ISPUP), 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
| | - João Niza Ribeiro
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), 4050-313 Porto, Portugal; EPIUnit-Instituto de Saúde Pública da Universidade do Porto (ISPUP), 4050-600 Porto, Portugal; Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), 4050-313 Porto, Portugal
| |
Collapse
|
8
|
de Noronha Xavier A, de Sá LMN, de Nazaré Santos Ferreira M, de Oliveira PRF, de Moraes Peixoto R, Mota RA, Junior JWP. First serological diagnosis of Mycobacterium avium subsp. paratuberculosis infection in sheep in the state of Pernambuco, Brazil. Vet Res Commun 2024; 48:1293-1299. [PMID: 38206561 DOI: 10.1007/s11259-024-10300-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
This study aimed to diagnose Mycobacterium avium subsp. paratuberculosis (MAP) infections in sheep in the state of Pernambuco, Brazil. A total of 276 blood samples were analyzed using the enzyme-linked immunosorbent assay IDEXX Paratuberculosis Screening kit, and 261 fecal samples were submitted for bacterial culture and polymerase chain reaction tests. An animal-level sero-frequency of 0.72% (n = 2/276) and a farm-level sero-frequency of 20% (n = 2/10) were found. All fecal sample cultures were negative, and molecular analyses were also negative. To the best of our knowledge, this is the first study of MAP infection in sheep in the state of Pernambuco and one of the pioneers in the country. It is an asymptomatic disease that is difficult to diagnose in this species because the susceptibility of sheep to the organism is lower than that of other ruminant species. However, the sero-frequency found reveals that there is MAP exposure in sheep flocks in the region. In addition, serological monitoring can contribute to the observation of the organism's behavior in herds. Our results support the potential risk of MAP infection in sheep in the state of Pernambuco, Brazil.
Collapse
Affiliation(s)
- Amanda de Noronha Xavier
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n- Dois Irmãos, Recife, PE, 52171-900, Brazil.
| | - Luenda Menezes Novaes de Sá
- Federal Institute of the Pernambuco Sertão, Floresta Campus, Rua Projetada, s/n - Caetano II, Floresta, PE, 56400-000, Brazil
| | - Maria de Nazaré Santos Ferreira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n- Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Pollyanne Raysa Fernandes de Oliveira
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n- Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - Rodolfo de Moraes Peixoto
- Federal Institute of the Pernambuco Sertão, Campus Petrolina - Rural Zone, PE 647, Km 22, PISNC N - 4, Zona Rural, Petrolina, PE, 56302-970, Brazil
| | - Rinaldo Aparecido Mota
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n- Dois Irmãos, Recife, PE, 52171-900, Brazil
| | - José Wilton Pinheiro Junior
- Department of Veterinary Medicine, Federal Rural University of Pernambuco, Rua Dom Manuel de Medeiros, s/n- Dois Irmãos, Recife, PE, 52171-900, Brazil
| |
Collapse
|
9
|
Garcia AA, Plain KM, Thomson PC, Thomas AJ, Davies CJ, Toribio JALML, Whittington RJ. Association between major histocompatibility complex haplotypes and susceptibility of unvaccinated and vaccinated cattle to paratuberculosis. Vet Immunol Immunopathol 2023; 265:110677. [PMID: 37952345 DOI: 10.1016/j.vetimm.2023.110677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/14/2023]
Abstract
Bovine Johne's disease (BJD) or paratuberculosis is caused by Mycobacterium avium spp. paratuberculosis (MAP) and is a worldwide problem among domestic and wild ruminants. While vaccines are available, natural differences in background immunity between breeds within species and between individuals within herds suggest that genetic differences may be able to be exploited in marker-assisted selection as an aid to disease control. The major histocompatibility complex (MHC) is an important component in immune recognition with considerable genetic variability. In this study, associations between the MHC and resistance to BJD were explored in dairy cattle across two herds in which some of the cattle had been vaccinated with Silirum® (n = 540 cows). A BJD susceptible animal was exposed to MAP and became infected, while a resistant animal was exposed but did not become infected. There are different ways to define both exposure and infection, with different levels of stringency, therefore many classifications of the same set of animals are possible and were included in the analysis. The polymorphic regions of major histocompatibility complex class I (MHC I) and class II (MHC II) genes were amplified from the genomic DNA by PCR and sequenced, targeting exons 2 and 3 of the classical and non-classical MHC I genes and exon 2 from the DRB3, DQA1, DQA2 + 3 and DQB MHC II genes. The frequencies of MHC I and MHC II haplotypes and alleles were determined in susceptible and resistant populations. In unvaccinated animals, seven MHC I haplotypes and seven MHC II haplotypes were associated with susceptibility while two MHC I and six MHC II haplotypes were associated with resistance (P < 0.05). In vaccinated animals, two MHC I and three MHC II haplotypes were associated with susceptibility, while one MHC I and two MHC II haplotypes were associated with resistance (P < 0.05). The alleles in significant haplotypes were also identified. Case definitions with higher stringency resulted in fewer animals being included in the analyses, but the power to detect an association was not reduced and there was an increase in strength and consistency of associations. Consistent use of stringent case definitions is likely to improve agreement in future association studies.
Collapse
Affiliation(s)
- Anabel A Garcia
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Karren M Plain
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Peter C Thomson
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Aaron J Thomas
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Christopher J Davies
- Department of Animal, Dairy and Veterinary Sciences, College of Agriculture and Applied Sciences, Utah State University, Logan, UT 84322, USA
| | - Jenny-Ann L M L Toribio
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia
| | - Richard J Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, Camden, NSW 2570, Australia.
| |
Collapse
|
10
|
O'Connell LM, Coffey A, O'Mahony JM. Alternatives to antibiotics in veterinary medicine: considerations for the management of Johne's disease. Anim Health Res Rev 2023; 24:12-27. [PMID: 37475561 DOI: 10.1017/s146625232300004x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/22/2023]
Abstract
Antibiotic resistance has become a major health concern globally, with current predictions expecting deaths related to resistant infections to surpass those of cancer by 2050. Major efforts are being undertaken to develop derivative and novel alternatives to current antibiotic therapies in human medicine. What appears to be lacking however, are similar efforts into researching the application of those alternatives, such as (bacterio)phage therapy, in veterinary contexts. Agriculture is still undoubtedly the most prominent consumer of antibiotics, with up to 70% of annual antibiotic usage attributed to this sector, despite policies to reduce their use in food animals. This not only increases the risk of resistant infections spreading from farm to community but also the risk that animals may acquire species-specific infections that subvert treatment. While these diseases may not directly affect human welfare, they greatly affect the profit margin of industries reliant on livestock due to the cost of treatments and (more frequently) the losses associated with animal death. This means actively combatting animal infection not only benefits animal welfare but also global economies. In particular, targeting recurring or chronic conditions associated with certain livestock has the potential to greatly reduce financial losses. This can be achieved by developing novel diagnostics to quickly identify ill animals alongside the design of novel therapies. To explore this concept further, this review employs Johne's disease, a chronic gastroenteritis condition that affects ruminants, as a case study to exemplify the benefits of rapid diagnostics and effective treatment of chronic disease, with particular regard to the diagnostic and therapeutic potential of phage.
Collapse
Affiliation(s)
- Laura M O'Connell
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Aidan Coffey
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| | - Jim M O'Mahony
- Department of Biological Sciences, Munster Technological University, Rossa Avenue, Bishopstown, Cork, T12 P928, Ireland
| |
Collapse
|
11
|
Mazzone P, Di Paolo A, Petrucci L, Torricelli M, Corneli S, Sebastiani C, Ciullo M, Sebastianelli M, Costarelli S, Scoccia E, Sbarra F, Gabbianelli F, Chillemi G, Valentini A, Pezzotti G, Biagetti M. Evaluation of Single Nucleotide Polymorphisms (SNPs) Associated with Genetic Resistance to Bovine Paratuberculosis in Marchigiana Beef Cattle, an Italian Native Breed. Animals (Basel) 2023; 13:ani13040587. [PMID: 36830374 PMCID: PMC9951665 DOI: 10.3390/ani13040587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 01/26/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of paratuberculosis (PTB), a widespread chronic enteritis of ruminants. The progression of the infection depends on the containment action of innate and cell-mediated immunity (CMI), and it is related to environmental and genetic factors. In particular, PTB susceptibility seems to be associated with specific genes coding for immune regulators involved in the cell-mediated response during the infection. The aim of this preliminary study was to verify, in Italian beef cattle, an association between MAP infectious status and the presence of single nucleotide polymorphisms (SNPs) in candidate genes. To the best of our knowledge, this is the first investigation conducted on a native beef cattle breed, known as Marchigiana, reared in Central Italy. The present research, based on a longitudinal study, aimed to identify and correlate phenotypic and genetic profiles characteristic of the subjects potentially able to contrast or contain PTB. In a MAP-infected herd, ELISA, IFN-γ tests, qPCR, and cultures were performed at a follow-up, occurring within a period ranging from three to six years, to evaluate the individual state of infection. Animals testing positive for at least one test were considered infected. DNA samples of 112 bovines, with known MAP statuses, were analyzed to verify an association with SNPs in the genes encoding gamma-interferon (BoIFNG), interleukin receptor 10 (IL10RA), interleukin receptor 12 (IL12RB2), and toll-like receptors (TLR1, TLR2, TLR4). Regarding statistical analysis, the differences among target genes and pairs of alleles in the analyzed groups of animals, were evaluated at a significance level of p < 0.05. For IL10RA and for IL12RB2 genes, relevant differences in genotypic frequencies among the considered cattle groups were observed. For all candidate genes studied in this investigation, SNP genotypes already associated with PTB resistance were found more frequently in our population, suggesting potential resistance traits in the Marchigiana breed.
Collapse
Affiliation(s)
- Piera Mazzone
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Antonella Di Paolo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Linda Petrucci
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
- Correspondence: (L.P.); (M.T.)
| | - Martina Torricelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
- Correspondence: (L.P.); (M.T.)
| | - Sara Corneli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Carla Sebastiani
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Marcella Ciullo
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Martina Sebastianelli
- Azienda Sanitaria Unica Regionale Marche, Area Vasta 2, Servizio di Igiene degli Allevamenti e delle Produzioni Zootecniche, 60127 Ancona, Italy
| | - Silva Costarelli
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Eleonora Scoccia
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Fiorella Sbarra
- A.N.A.B.I.C. Associazione Nazionale Allevatori Bovini Italiani Carne, Strada del Vio Viscoloso 21, San Martino in Colle, 06132 Perugia, Italy
| | - Federica Gabbianelli
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Giovanni Chillemi
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Alessio Valentini
- Department for Innovation in Biological Agro-Food and Forest Systems (DIBAF), University of Tuscia, 01100 Viterbo, Italy
| | - Giovanni Pezzotti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| | - Massimo Biagetti
- Istituto Zooprofilattico Sperimentale dell’Umbria e delle Marche “Togo Rosati”, Via Salvemini 1, 06126 Perugia, Italy
| |
Collapse
|
12
|
Purdie AC, Plain KM, Pooley H, Begg DJ, de Silva K, Whittington RJ. Correlates of vaccine protection against Mycobacterium avium sub-species paratuberculosis infection revealed in a transcriptomic study of responses in Gudair ® vaccinated sheep. Front Vet Sci 2022; 9:1004237. [PMID: 36504842 PMCID: PMC9729357 DOI: 10.3389/fvets.2022.1004237] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 11/07/2022] [Indexed: 11/25/2022] Open
Abstract
A critical hindrance in the development of effective vaccine strategies to combat infectious disease is lack of knowledge about correlates of protection and of the host responses necessary for successful adaptive immunity. Often vaccine formulations are developed by stepwise experimentation, with incomplete investigation of the fundamental mechanisms of protection. Gudair® is a commercially available vaccine registered for use in sheep and goats for controlling spread of Mycobacterium avium sub-species paratuberculosis (MAP) infections and reduces mortality by up to 90%. Here, using an experimental infection model in sheep, we have utilized a transcriptomics approach to identify white blood cell gene expression changes in vaccinated, MAP-exposed Merino sheep with a protective response in comparison to those vaccinated animals that failed to develop immunity to MAP infection. This methodology facilitated an overview of gene-associated functional pathway adaptations using an in-silico analysis approach. We identified a group of genes that were activated in the vaccine-protected animals and confirmed stability of expression in samples obtained from naturally exposed commercially maintained sheep. We propose these genes as correlates of vaccine induced protection.
Collapse
|
13
|
Zapico D, Espinosa J, Fernández M, Criado M, Arteche-Villasol N, Pérez V. Local assessment of the immunohistochemical expression of Foxp3 + regulatory T lymphocytes in the different pathological forms associated with bovine paratuberculosis. BMC Vet Res 2022; 18:299. [PMID: 35927759 PMCID: PMC9351272 DOI: 10.1186/s12917-022-03399-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Accepted: 07/25/2022] [Indexed: 11/17/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis infected animals show a variety of granulomatous lesions, from focal forms with well-demarcated granulomas restricted to the gut-associated lymphoid tissue (GALT), that are seen in the initial phases or latency stages, to a diffuse granulomatous enteritis, with abundant (multibacillary) or scant (paucibacillary) bacteria, seen in clinical stages. Factors that determine the response to the infection, responsible for the occurrence of the different types of lesion, are still not fully determined. It has been seen that regulatory T cells (Treg) play an important role in various diseases where they act on the limitation of the immunopathology associated with the immune response. In the case of paratuberculosis (PTB) the role of Treg lymphocytes in the immunity against Map is far away to be completely understood; therefore, several studies addressing this subject have appeared recently. The aim of this work was to assess, by immunohistochemical methods, the presence of Foxp3+ T lymphocytes in intestinal samples with different types of lesions seen in cows with PTB. METHODS Intestinal samples of twenty cows showing the different pathological forms of PTB were evaluated: uninfected controls (n = 5), focal lesions (n = 5), diffuse paucibacillary (n = 5) and diffuse multibacillary (n = 5) forms. Foxp3+ lymphocyte distribution was assessed by differential cell count in intestinal lamina propria (LP), gut-associated lymphoid tissue (GALT) and mesenteric lymph node (MLN). RESULTS A significant increase in the number of Foxp3+ T cells was observed in infected animals with respect to control group, regardless of the type of lesion. However, when the different categories of lesion were analyzed independently, all individuals with PTB lesions showed an increase in the amount of Foxp3+ T lymphocytes compared to the control group but this increase was only significant in cows with focal lesions and, to a lesser extent, in animals with diffuse paucibacillary forms. The former showed the highest numbers, significantly different from those found in cows with diffuse lesions, where no differences were noted between the two forms. No specific distribution pattern was observed within the granulomatous lesions in any of the groups. CONCLUSIONS The increase of Foxp3+ T cells in focal forms, that have been associated with latency or resistance to infection, suggest an anti-inflammatory action of these cells at these stages, helping to prevent exacerbation of the inflammatory response, as occurs in diffuse forms, responsible for the appearance of clinical signs.
Collapse
Affiliation(s)
- David Zapico
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - José Espinosa
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain.
| | - Miguel Fernández
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Miguel Criado
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Noive Arteche-Villasol
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| | - Valentín Pérez
- Departamento de Sanidad Animal, Facultad de Veterinaria, Instituto de Ganadería de Montaña (CSIC-ULE), Universidad de León, C/ Profesor Pedro Cármenes s/n, E-24071, León, Spain
| |
Collapse
|
14
|
Hernández-Reyes AL, Chávez-Gris G, Maldonado-Castro E, Alcaraz-Sosa LE, Díaz-Negrete MT. First identification of Mycobacterium avium subsp. paratuberculosis in wild ruminants in a zoo in Mexico. Vet World 2022; 15:655-661. [PMID: 35497960 PMCID: PMC9047120 DOI: 10.14202/vetworld.2022.655-661] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Accepted: 02/08/2022] [Indexed: 12/03/2022] Open
Abstract
Background and Aim Paratuberculosis (PTB) is an infectious disease that induces chronic enteritis in ruminants. It is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In this study, we evaluated the presence of MAP using bacteriological, molecular, and anatomopathological studies, based on the clinical suspicion of PTB in a zoo, in an area housing 10 scimitar-horned oryx (Oryx dammah), five giraffes (Giraffa camelopardalis), and three blue wildebeests (Connochaetes taurinus). Materials and Methods From November 2016 to June 2017, fecal samples were collected from individuals of the three species on four occasions, resulting in a total of 56 fecal samples. In addition, five small intestine samples were collected from the necropsies of three adult scimitar-horned oryx females and two oryx calves. MAP identification was performed through isolation in Herrold's medium with egg yolk, mycobactin, and sodium pyruvate, Ziehl-Neelsen staining, IS900 polymerase chain reaction (IS900 PCR), and anatomopathological examination of intestine samples. Results Diffuse granulomatous enteritis with abundant acid-fast bacilli was found in two out of five intestine samples from adult scimitar-horned oryx females. MAP was isolated in 7/56 (12.5%) of the fecal samples from four scimitar-horned oryx, one giraffe, and two wildebeest samples. Two out of 5 (40%) samples obtained from scimitar-horned oryx tested positive. IS900 PCR yielded five positive samples (two fecal samples and three small intestine samples). MAP isolates were classified as Type C (Cattle) using type-specific PCR. Conclusion These results demonstrated the presence of MAP in the area evaluated and indicated the importance of both sampling live animals and conducting postmortem examinations. The use of bacteriological and histopathological diagnostic techniques demonstrated in this study will provide insight into the health status and prevalence of paratuberculosis in wild ruminants under human care.
Collapse
Affiliation(s)
- A. L. Hernández-Reyes
- National Autonomous University of Mexico (UNAM), School of Veterinary Medicine and Zootechnics (FMVZ), Center for Teaching, Research and Extension of Animal Production in High Plateau (CEIEPAA), Tequisquiapan-Ezequiel Montes Highway Km 8.5, 76790 Tequisquiapan, Queretaro, Mexico
| | - G. Chávez-Gris
- National Autonomous University of Mexico (UNAM), School of Veterinary Medicine and Zootechnics (FMVZ), Center for Teaching, Research and Extension of Animal Production in High Plateau (CEIEPAA), Tequisquiapan-Ezequiel Montes Highway Km 8.5, 76790 Tequisquiapan, Queretaro, Mexico
| | - E. Maldonado-Castro
- National Autonomous University of Mexico (UNAM), School of Veterinary Medicine and Zootechnics (FMVZ), Center for Teaching, Research and Extension of Animal Production in High Plateau (CEIEPAA), Tequisquiapan-Ezequiel Montes Highway Km 8.5, 76790 Tequisquiapan, Queretaro, Mexico
| | - L. E. Alcaraz-Sosa
- Autonomous Metropolitan University, Xochimilco Campus, Division of Biological and Health Sciences, Department of Agricultural and Animal Production, Veterinary Medicine and Zootechnics, Calzada del Hueso 1100, Col, Villa Quietud, Coyoacán, 09460, Mexico City, Mexico
| | - M. T. Díaz-Negrete
- Zoological and Wildlife Conservation General Directorate (DGZCFS), Secretariat of Environment of Mexico City, Mexico City, Mexico
| |
Collapse
|
15
|
Paratuberculosis: The Hidden Killer of Small Ruminants. Animals (Basel) 2021; 12:ani12010012. [PMID: 35011118 PMCID: PMC8749836 DOI: 10.3390/ani12010012] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 12/02/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022] Open
Abstract
Simple Summary Paratuberculosis is a chronic disease of ruminants and many non-ruminant animals caused by the bacterium Mycobacterium avium subsp. paratuberculosis. Affected animals show diarrhoea, loss of weight, and decreased production performance with consequent economic losses. This bacterium has been detected in some humans suffering from a chronic intestinal disease known as Crohn’s disease (CD) and, therefore, some scientists believe that CD is the human form of paratuberculosis. The disease in small ruminants has been reported in all continents, with goats being more susceptible than sheep. The clinical signs of the disease in goats are not so obvious as often do not show signs of diarrhoea, and the animal may die before being finally diagnosed. In Africa and many developing countries, paratuberculosis is described as a “neglected disease” particularly in small ruminants, which play a vital role in the livelihood of poor communities. This overview attempts to highlight the current research and gaps on this disease in small ruminants to draw more attention for further studies on diagnosis, prevention and control. Abstract Paratuberculosis (PTB) is a contagious and chronic enteric disease of ruminants and many non-ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP), and is characterised by diarrhoea and progressive emaciation with consequent serious economic losses due to death, early culling, and reduced productivity. In addition, indirect economic losses may arise from trade restrictions. Besides being a production limiting disease, PTB is a potential zoonosis; MAP has been isolated from Crohn’s disease patients and was associated with other human diseases, such as rheumatoid arthritis, Hashimoto’s thyroiditis, Type 1 diabetes, and multiple sclerosis. Paratuberculosis in sheep and goats may be globally distributed though information on the prevalence and economic impact in many developing countries seem to be scanty. Goats are more susceptible to infection than sheep and both species are likely to develop the clinical disease. Ingestion of feed and water contaminated with faeces of MAP-positive animals is the common route of infection, which then spreads horizontally and vertically. In African countries, PTB has been described as a “neglected disease”, and in small ruminants, which support the livelihood of people in rural areas and poor communities, the disease was rarely reported. Prevention and control of small ruminants’ PTB is difficult because diagnostic assays demonstrate poor sensitivity early in the disease process, in addition to the difficulties in identifying subclinically infected animals. Further studies are needed to provide more insight on molecular epidemiology, transmission, and impact on other animals or humans, socio-economic aspects, prevention and control of small ruminant PTB.
Collapse
|
16
|
Sababoglu E, Turutoglu H. Comparison of interferon-gamma, neopterin, interleukin-10 and antibody levels in sheep with and without Mycobacterium avium subspecies paratuberculosis. Small Rumin Res 2021. [DOI: 10.1016/j.smallrumres.2021.106486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
17
|
Ly A, Kirkeby C, Sergeant ESG, Plain KM, Smith M, Dhand NK. Comparison of the current abattoir surveillance system for detection of paratuberculosis in Australian sheep with quantitative PCR tissue strategies using simulation modelling. Prev Vet Med 2021; 196:105495. [PMID: 34547663 DOI: 10.1016/j.prevetmed.2021.105495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/08/2021] [Accepted: 09/13/2021] [Indexed: 10/20/2022]
Abstract
Abattoir surveillance for Johne's disease monitoring in Australia has provided valuable feedback to producers about their flock's disease status since its commencement in 1999. The current surveillance system relies on the identification of gross lesions in sheep carcases at an abattoir, followed by sampling and histopathology testing. This manual inspection system has not been adapted to meet the changing disease situation, as infection prevalence levels have declined over time due to vaccination. This simulation study compares the current system with two alternative approaches utilising a validated quantitative (q)PCR method for the detection of Mycobacterium avium subsp. paratuberculosis in tissues, with random systematic sampling either alone or in conjunction with sampling of a single carcass presenting gross lesions. Consigned sheep were randomly simulated as either infected or uninfected according to defined prevalence levels of infection, with varying histopathological lesion severity and the presence or absence of gross lesions. These sheep were then allocated into multiple 'lines' (group of sheep slaughtered together) within each consignment, with each line subjected to testing with the three sampling strategies for the estimation of line and flock (consignment) sensitivity. The line sensitivity described the proportion of infected lines that tested positive, whereas the flock sensitivity was the proportion of consignments from the simulated infected flocks that had one or more lines test positive for paratuberculosis infection. The tissue qPCR strategy with gross lesion detection achieved marginally higher line sensitivity than the current abattoir surveillance strategy. The simulation of unvaccinated infected flocks with low to moderate prevalence levels demonstrated similar flock sensitivity for all three sampling models. However, the current strategy had very low line sensitivity for the simulated vaccinated infected flocks when the infection prevalence level was <2%. There were substantial differences in flock sensitivity between the two tissue qPCR approaches and the current abattoir surveillance strategy for vaccinated infected flocks, whereas, only marginal differences in flock sensitivity were evident between the two tissue qPCR models. Our results demonstrate that the current strategy is not effective at identifying infected animals at very low infection prevalence levels. The tissue qPCR approach investigated in this study is better as it removes the reliance on meat inspectors to identify gross lesions and can also assist in identifying flocks that have subclinical infected sheep not displaying gross lesions. Therefore, the sheep industry may benefit from incorporating tissue qPCR for Johne's disease surveillance, however the logistics and costs of conducting this type of testing would need to be considered prior to implementing any changes.
Collapse
Affiliation(s)
- Anna Ly
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Carsten Kirkeby
- Department of Veterinary and Animal Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Frederiksberg, Denmark
| | | | - Karren M Plain
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Melanie Smith
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - Navneet K Dhand
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia.
| |
Collapse
|
18
|
Kravitz A, Pelzer K, Sriranganathan N. The Paratuberculosis Paradigm Examined: A Review of Host Genetic Resistance and Innate Immune Fitness in Mycobacterium avium subsp. Paratuberculosis Infection. Front Vet Sci 2021; 8:721706. [PMID: 34485444 PMCID: PMC8414637 DOI: 10.3389/fvets.2021.721706] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 07/23/2021] [Indexed: 11/13/2022] Open
Abstract
Paratuberculosis, or Johne's Disease (JD) is a debilitating chronic enteritis mainly affecting ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). This organism causes worldwide economic losses to the livestock industry, and is of public health importance due to the potential zoonotic risk between MAP and Crohn's disease (CD) in humans. Without economical treatments, or a vaccine capable of preventing infection without causing cross-reactions with bovine tuberculosis, test-and-cull methods for disease control are imperative. Unfortunately, difficulties in diagnostics and long subclinical stage hinder adequate control and is further complicated by variation in MAP exposure outcome. Interestingly, the majority of infections result in asymptomatic presentation and never progress to clinical disease. One contributing factor is host genetics, where polymorphisms in innate immune genes have been found to influence resistance and susceptibility to disease. Candidate genes identified across studies overlap with those found in CD and tuberculosis including; Solute carrier family 11 member 1 gene (SLC11A1), Nucleotide-binding-oligomerization domain containing gene 2 (NOD2), Major histocompatibility complex type II (MHC-II), and Toll-like receptor (TLR) genes. This review will highlight evidence supporting the vital role of these genes in MAP infection outcome, associated challenges, and implications for the future of JD research.
Collapse
Affiliation(s)
- Amanda Kravitz
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Kevin Pelzer
- Department of Large Animal Clinical Sciences, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences and Pathobiology, Center for One Health Research, Virginia-Maryland College of Veterinary Medicine, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
19
|
de Silva K. Developing smarter vaccines for paratuberculosis: From early biomarkers to vaccine design. Immunol Rev 2021; 301:145-156. [PMID: 33619731 DOI: 10.1111/imr.12961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 02/01/2021] [Accepted: 02/01/2021] [Indexed: 11/30/2022]
Abstract
Vaccines for paratuberculosis have been used for over a hundred years but the disease continues to affect ruminant health and livestock industries globally. Mycobacterium avium subspecies paratuberculosis which causes the disease also known as Johne's disease is a subversive pathogen able to undermine both innate and adaptive host defense mechanisms. This review focuses on early protective immune pathways that lead to some animals becoming resilient to infection to provide a road map for designing better vaccines and emphasizes the need for harnessing the potential of mucosal immunity.
Collapse
Affiliation(s)
- Kumudika de Silva
- Faculty of Science, Sydney School of Veterinary Science, The University of Sydney, Narellan, NSW, Australia
| |
Collapse
|
20
|
Roller M, Hansen S, Knauf-Witzens T, Oelemann WMR, Czerny CP, Abd El Wahed A, Goethe R. Mycobacterium avium Subspecies paratuberculosis Infection in Zoo Animals: A Review of Susceptibility and Disease Process. Front Vet Sci 2020; 7:572724. [PMID: 33426014 PMCID: PMC7785982 DOI: 10.3389/fvets.2020.572724] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 11/30/2020] [Indexed: 12/14/2022] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (MAP) is the causative agent of paratuberculosis (ParaTB or Johne's disease), a contagious, chronic and typically fatal enteric disease of domestic and non-domestic ruminants. Clinically affected animals present wasting and emaciation. However, MAP can also infect non-ruminant animal species with less specific signs. Zoological gardens harbor various populations of diverse animal species, which are managed on limited space at higher than natural densities. Hence, they are predisposed to endemic trans-species pathogen distribution. Information about the incidence and prevalence of MAP infections in zoological gardens and the resulting potential threat to exotic and endangered species are rare. Due to unclear pathogenesis, chronicity of disease as well as the unknown cross-species accuracy of diagnostic tests, diagnosis and surveillance of MAP and ParaTB is challenging. Differentiation between uninfected shedders of ingested bacteria; subclinically infected individuals; and preclinically diseased animals, which may subsequently develop clinical signs after long incubation periods, is crucial for the interpretation of positive test results in animals and the resulting consequences in their management. This review summarizes published data from the current literature on occurrence of MAP infection and disease in susceptible and affected zoo animal species as well as the applied diagnostic methods and measures. Clinical signs indicative for ParaTB, pathological findings and reports on detection, transmission and epidemiology in zoo animals are included. Furthermore, case reports were re-evaluated for incorporation into accepted consistent terminologies and case definitions.
Collapse
Affiliation(s)
- Marco Roller
- Zoological-Botanical Gardens Wilhelma, Stuttgart, Germany
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| | - Sören Hansen
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | | | - Walter M. R. Oelemann
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
- Department of Immunology, Institute of Microbiology, Federal University of Rio de Janeiro, Rio de Janeiro, Brazil
| | - Claus-Peter Czerny
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | - Ahmed Abd El Wahed
- Department of Animal Sciences, Faculty of Agricultural Science, Institute of Veterinary Medicine, Division of Microbiology and Animal Hygiene, Georg-August-University Göttingen, Göttingen, Germany
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover Foundation, Hannover, Germany
| |
Collapse
|
21
|
Seroprevalence of Mycobacterium
avium subsp. paratuberculosis in Dairy Cattle in Khartoum State, Sudan. Vet Sci 2020; 7:vetsci7040209. [PMID: 33371490 PMCID: PMC7767521 DOI: 10.3390/vetsci7040209] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2020] [Revised: 12/15/2020] [Accepted: 12/16/2020] [Indexed: 12/01/2022] Open
Abstract
Paratuberculosis, caused by Mycobacterium avium subspecies paratuberculosis (MAP), is a chronic wasting disease mainly of domestic and wild ruminants. It occurs worldwide, causing significant economic losses through decreased productivity, low fertility, increased cull rates and mortality. It is listed by the OIE (World Organization for Animal Health) as a disease of concern to trade in animals. Prevalence of this disease can be studied by detecting anti-MAP antibodies by Enzyme linked immunosorbent Assay (ELISA). The aim of this study was to investigate the current prevalence of MAP infection in cattle in Khartoum State. The overall apparent prevalence of MAP infection was found to be 6.3% and 18.9% at animal and herd levels, respectively. All seropositive animals were cross-bred females of good body condition; most of them (>90%) were >3 years old and >50% were from medium-sized herds in Omdurman. No significant association (p > 0.05) was found between seropositivity and animal herd size. The prevalence of MAP infection in Khartoum State is still low to medium compared to other parts of the world, but it is comparable to those reported from other African countries. Further studies with the view of designing nationwide surveys in domestic ruminants and camels in other states of the country are needed for establishing control programmes.
Collapse
|
22
|
Cross-sectional study on seroprevalence and risk factor analysis of Mycobacterium avium subsp. paratuberculosis in Kashmir Merino sheep flocks of Central Kashmir valley, India. Small Rumin Res 2020. [DOI: 10.1016/j.smallrumres.2020.106266] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
|
23
|
Windsor P, Whittington R. Ovine Paratuberculosis Control in Australia Revisited. Animals (Basel) 2020; 10:ani10091623. [PMID: 32927843 PMCID: PMC7552279 DOI: 10.3390/ani10091623] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/31/2020] [Accepted: 09/08/2020] [Indexed: 12/26/2022] Open
Abstract
Simple Summary Ovine Johne’s Disease (OJD) is caused by Mycobacterium avium subspecies paratuberculosis (MAP) and is a less serious animal health issue in Australia than it was 10–20 years ago, with abattoir surveillance confirming declining prevalence. Control strategies for paratuberculosis potentially include (i) test and cull programs; (ii) management interventions to reduce faecal–oral transmission; and/or (iii) vaccination to limit and suppress infection, with the decline in OJD concern in Australia mostly attributable to vaccination programs providing effective disease suppression. However, as disease spread has continued, control program extension renewal to encourage the safe and wider use of vaccination, plus address misinformation promulgated by some disaffected producers, is required. As vaccination for OJD has contributed significantly to the welfare of Australian sheep, the livelihoods of producers, and reduced risk of MAP entering the human food chain, it should be more widely adopted globally. Abstract OJD is no longer the serious animal health issue that it was for many Australian rural communities a decade and a half ago. Despite declining OJD prevalence as determined by abattoir surveillance, the disease continues to spread, with OJD extension programs required to continually address the misinformation promulgated by some disaffected producers as new areas have become affected. Improved regional and on-farm biosecurity, including the introduction of a risk-based trading system, may have contributed to improved attitudes to OJD control, although attitudinal differences between OJD endemic areas and where the disease is not well established remain. Declines in on-farm OJD prevalence are almost certainly attributable to the widespread uptake of vaccination programs, although encouraging the ongoing use of vaccination to prevent recrudescence and improved biosecurity when mortalities disappear, remains challenging. Vaccination has provided a robust strategy for managing OJD and contributed significantly to the health of Australian sheep and the lives of producers with affected properties. As vaccination offers a pathway to reduce the risk of MAP infection entering the human food chain from small ruminant products, it should be more widely adopted globally, accompanied by research efforts to improve efficacy and importantly, the safety of vaccination to both operators and livestock.
Collapse
|
24
|
Roller M, Hansen S, Böhlken-Fascher S, Knauf-Witzens T, Czerny CP, Goethe R, Abd El Wahed A. Molecular and Serological Footprints of Mycobacterium avium Subspecies Infections in Zoo Animals. Vet Sci 2020; 7:vetsci7030117. [PMID: 32842515 PMCID: PMC7558821 DOI: 10.3390/vetsci7030117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Revised: 08/13/2020] [Accepted: 08/19/2020] [Indexed: 11/16/2022] Open
Abstract
Background: Mycobacteria of the Mycobacterium avium complex (MAC) pose a significant risk to zoological collections. Mycobacterium avium subspecies paratuberculosis (MAP) is a member of MAC and the causative agent of Johne’s disease. Despite many reports in animals kept in zoological gardens, systemic surveillance has rarely been reported. Methods: In this study, archived serum samples collected from animal species at the Wilhelma Zoological and Botanical Gardens in Stuttgart, Germany, were screened for the presence of antibodies against MAC and MAP. In addition, molecular investigations were performed on necropsy, fecal, and environmental samples. Results: In total, 30/381 serum samples of various mammalian species were positive for MAC antibodies in ELISA, while one sample of a reticulated giraffe (Giraffa camelopardalis reticulata) was positive in MAP-specific ELISA. Samples from many species were positive in pan-Mycobacterium real-time PCR (40/43 fecal samples, 27/43 environmental samples, and 31/90 necropsy samples). Surprisingly, no sample was positive in the MAP-specific molecular assays. However, two environmental samples from primate enclosures were positive in Mycobacterium avium subspecies hominissuis (MAH)-specific real-time PCR. Conclusions: The results reveal serological indications of MAC infections in the zoological collection. However, the presence of a MAP-contaminated environment by a high-shedding individual animal or MAP-infected population is unlikely.
Collapse
Affiliation(s)
- Marco Roller
- Wilhelma Zoological-Botanical Gardens Stuttgart, Wilhelma 13, D-70376 Stuttgart, Germany; (M.R.); (T.K.-W.)
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany;
| | - Sören Hansen
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Susanne Böhlken-Fascher
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Tobias Knauf-Witzens
- Wilhelma Zoological-Botanical Gardens Stuttgart, Wilhelma 13, D-70376 Stuttgart, Germany; (M.R.); (T.K.-W.)
| | - Claus-Peter Czerny
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
| | - Ralph Goethe
- Institute for Microbiology, University of Veterinary Medicine Hannover, Foundation, Bischofsholer Damm 15, D-30173 Hannover, Germany;
| | - Ahmed Abd El Wahed
- Department of Animal Sciences, Division of Microbiology and Animal Hygiene, Faculty of Agricultural Science, Georg-August-University, Burckhardtweg 2, D-37077 Göttingen, Germany; (S.H.); (S.B.-F.); (C.-P.C.)
- Institute of Animal Hygiene and Veterinary Public Health, University of Leipzig, An den Tierkliniken 43, D-04103 Leipzig, Germany
- Correspondence: ; Tel.: +49-176-6136-0325
| |
Collapse
|
25
|
Jain M, Singh AK, Singh M, Gupta S, Kumar A, Aseri GK, Polavarapu R, Sharma D, Sohal JS. Comparative evaluation of Mycobacterium avium subspecies paratuberculosis (MAP) recombinant secretory proteins as DTH marker for paratuberculosis. J Microbiol Methods 2020; 175:105987. [PMID: 32565277 DOI: 10.1016/j.mimet.2020.105987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 06/15/2020] [Accepted: 06/15/2020] [Indexed: 10/24/2022]
Abstract
Delayed type hypersensitivity (DTH) based skin test is an important onsite animal herd screening procedure for detecting the early stages of the chronic mycobacterial infections. DTH testing plays a vital role in the diagnosis of paratuberculosis infection. However, there are questions over the specificity of this test due to cross-reactive epitopes present on the purified protein derivative (PPD) prepared from the whole cell secretory proteins. PPD may contain proteins shared with other mycobacteria especially environmental species. Therefore, it is needed to test alternate paratuberculosis specific secretory antigens. Present study explored the potential of recombinant secretory proteins (MAP2168c, MAP1693c, MAP3547c, MAP4308c and MAP2677c) as DTH markers. The published literature shows that these proteins as strong cell mediated markers with specificity to paratuberculosis bacilli. To determine the positive skin thickness cutoff, herds of farm animals with history of endemic paratuberculosis were selected and thickness of >2.0 mm was reported as the positive cutoff. Preliminary findings on pilot scale animals report the usefulness of recombinant secretory proteins as DTH markers over traditional Johnin assay. Traditional Johnin reported more false positives and negatives compared to gold standard fecal PCR and field reference plate ELISA test. Present findings encourage and demand further research.
Collapse
Affiliation(s)
- Mukta Jain
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Amit Kumar Singh
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Manju Singh
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, NH-2, Chaumuhan, Mathura 281406, India
| | - Amit Kumar
- Department of Immunology & Defense Mechanism, Sardar Vallabh Bhai Patel University of Agriculture & Technology (SVPUAT), Modipurum, Meerut 250110, India
| | - G K Aseri
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Rathnagiri Polavarapu
- Genomix Molecular Diagnostics (P) Ltd, 5-36/207 Prasanthnagar, Kukatpally, Hyderabad 500 072, India
| | - Deepansh Sharma
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India
| | - Jagdip Singh Sohal
- Amity Center for Mycobacterial Disease Research, Amity University Rajasthan, Kant-Kalwar, Delhi-Jaipur Highway, NH11C, Jaipur 303 002, India.
| |
Collapse
|
26
|
Mallikarjunappa S, Schenkel FS, Brito LF, Bissonnette N, Miglior F, Chesnais J, Lohuis M, Meade KG, Karrow NA. Association of genetic polymorphisms related to Johne's disease with estimated breeding values of Holstein sires for milk ELISA test scores. BMC Vet Res 2020; 16:165. [PMID: 32460776 PMCID: PMC7254716 DOI: 10.1186/s12917-020-02381-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 05/17/2020] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Johne's disease (JD) is a chronic intestinal inflammatory disease caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection in ruminants. Since there are currently no effective vaccine or treatment options available to control JD, genetic selection may be an alternative strategy to enhance JD resistance. Numerous Single Nucleotide Polymorphisms (SNPs) have been reported to be associated with MAP infection status based on published genome-wide association and candidate gene studies. The main objective of this study was to validate these SNPs that were previously identified to be associated with JD by testing their effect on Holstein bulls' estimated breeding values (EBVs) for milk ELISA test scores, an indirect indicator of MAP infection status in cattle. RESULTS Three SNPs, rs41810662, rs41617133 and rs110225854, located on Bos taurus autosomes (BTA) 16, 23 and 26, respectively, were confirmed as significantly associated with Holstein bulls' EBVs for milk ELISA test score (FDR < 0.01) based on General Quasi Likelihood Scoring analysis (GQLS) analysis. Single-SNP regression analysis identified four SNPs that were associated with sire EBVs (FDR < 0.05). This includes two SNPs that were common with GQLS (rs41810662 and rs41617133), with the other two SNPs being rs110494981 and rs136182707, located on BTA9 and BTA16, respectively. CONCLUSIONS The findings of this study validate the association of SNPs with JD MAP infection status and highlight the need to further investigate the genomic regions harboring these SNPs.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada.,Animal and Bioscience Research Department, Teagasc, Grange, Co. Meath, Ireland
| | - Flavio S Schenkel
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | - Luiz F Brito
- Department of Animal Sciences, Purdue University, West Lafayette, IN, 47907, USA
| | - Nathalie Bissonnette
- Agriculture and Agri-Food Canada, Sherbrooke Research and Development Centre, Sherbrooke, QC, J1M 0C8, Canada
| | - Filippo Miglior
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| | | | | | - Kieran G Meade
- Animal and Bioscience Research Department, Teagasc, Grange, Co. Meath, Ireland.
| | - Niel A Karrow
- Centre for Genetic Improvement of Livestock, Department of Animal Biosciences, University of Guelph, Guelph, ON, N1G 2W1, Canada
| |
Collapse
|
27
|
Gupta S, Singh SV, Singh M, Chaubey KK, Karthik K, Bhatia AK, Kumar N, Dhama K. Vaccine approaches for the 'therapeutic management' of Mycobacterium avium subspecies paratuberculosis infection in domestic livestock. Vet Q 2020; 39:143-152. [PMID: 31524561 PMCID: PMC6831026 DOI: 10.1080/01652176.2019.1667042] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
High endemicity of Johne’s disease (JD) in herds adversely affects heavy milk yielding breeds by reducing the per animal productivity and ‘productive life-span’. This review evaluates different vaccines used for its control and summarizes the benefits of ‘global vaccine’ in the four major domestic livestock species, namely goat, sheep, buffalo and cattle. Vaccines developed by using ‘native strains’ revealed both 'therapeutic' and preventive effects in domestic livestock. The 'therapeutic' role of vaccine in animals suffering from clinical JD turned out to be valuable in some cases by reversing the disease process and animals returning back to health and production. Good herd management, improved hygiene, ‘test and cull’ methodology, proper disposal of animal excreta and monitoring of MAP bio-load were also regarded as crucial in the 'therapeutic' management of JD. Vaccine approaches have been widely adopted in JD control programs and may be considered as a valuable adjunct in order to utilize huge populations of otherwise un-productive livestock. It has been shown that vaccination was the preeminent strategy to control JD, because it yielded approximately 3–4 times better benefit-to-cost ratios than other strategies. Internationally, 146 vaccine trials/studies have been conducted in different countries for the control of JD and have shown remarkable reduction in its national prevalence. It is concluded that for JD, there cannot be global vaccines or diagnostic kits as solutions have to come from locally prevalent strains of MAP. Despite some limitations, vaccines might still be an effective strategy to reduce or eradicate JD.
Collapse
Affiliation(s)
- Saurabh Gupta
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Shoor Vir Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Manju Singh
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | | | - Kumaragurubaran Karthik
- Central University Laboratory, Tamil Nadu Veterinary and Animal Sciences University , Chennai , Tamil Nadu , India
| | - A K Bhatia
- Department of Biotechnology, GLA University , Mathura , Uttar Pradesh , India
| | - Naveen Kumar
- Veterinary Type Culture Collection, NRC on Equines, Indian Council of Agricultural Research , Hisar , Haryana, India
| | - Kuldeep Dhama
- Division of Pathology, ICAR-Indian Veterinary Research Institute , Izatnagar, Bareilly , Uttar Pradesh , India
| |
Collapse
|
28
|
Liu H, Dang G, Zang X, Cai Z, Cui Z, Song N, Liu S. Characterization and pathogenicity of extracellular serine protease MAP3292c from Mycobacterium avium subsp. paratuberculosis. Microb Pathog 2020; 142:104055. [PMID: 32058021 DOI: 10.1016/j.micpath.2020.104055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 01/08/2020] [Accepted: 02/10/2020] [Indexed: 12/14/2022]
Abstract
Serine protease is the virulence factor of many pathogens. However, there are no prevailing data available for serine protease as a virulence factor derived from Mycobacterium avium subsp. paratuberculosis (MAP). The MAP3292c gene from MAP, the predicted serine protease, was expressed in Escherichia coli and characterized by biochemical methods. MAP3292c protein efficiently hydrolyzed casein at optimal temperature and pH of 41 °C and 9.0, respectively. Furthermore, divalent metal ions of Ca2+ significantly promoted the protease activity of MAP3292c, and MAP3292c had autocleavage activity between serine 86 and asparagine 87. Site-directed mutagenesis studies showed that the serine 238 residue had catalytic roles in MAP3292c. Furthermore, a BALB/c mouse model confirmed that MAP3292c significantly promoted the survival of Mycobacterium smegmatis in vivo; caused damage to the liver, spleen, and lung; and promoted the release of inflammatory cytokines IL-1β, IL-6, and TNF-α in mice. Finally, we confirmed that MAP3292c was relevant to mycobacterial pathogenicity.
Collapse
Affiliation(s)
- Hongxiu Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Guanghui Dang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Xinxin Zang
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Zhuming Cai
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ziyin Cui
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Ningning Song
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China
| | - Siguo Liu
- State Key Laboratory of Veterinary Biotechnology, Division of Bacterial Diseases, Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences, 678 Haping Street, Harbin, 150069, PR China.
| |
Collapse
|
29
|
Abstract
Paratuberculosis and bovine tuberculosis are two mycobacterial diseases of ruminants which have a considerable impact on livestock health, welfare, and production. These are chronic "iceberg" diseases which take years to manifest and in which many subclinical cases remain undetected. Suggested biomarkers to detect infected or diseased animals are numerous and include cytokines, peptides, and expression of specific genes; however, these do not provide a strong correlation to disease. Despite these advances, disease detection still relies heavily on dated methods such as detection of pathogen shedding, skin tests, or serology. Here we review the evidence for suitable biomarkers and their mechanisms of action, with a focus on identifying animals that are resilient to disease. A better understanding of these factors will help establish new strategies to control the spread of these diseases.
Collapse
|
30
|
Williams HJ, Duncan JS, Fisher SN, Coates A, Stokes JE, Gillespie A. Ovine infectious keratoconjunctivitis in sheep: the farmer's perspective. Vet Rec Open 2019; 6:e000321. [PMID: 31673374 PMCID: PMC6802982 DOI: 10.1136/vetreco-2018-000321] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Revised: 02/19/2019] [Accepted: 08/27/2019] [Indexed: 11/04/2022] Open
Abstract
The objective of this study was to gather current, farmer-reported data on the frequency of occurrence, risk factors and treatment practices for the sheep eye disease, ovine infectious keratoconjunctivitis (OIKC). A questionnaire regarding eye disease in sheep was completed by 135 farmers from four livestock markets. Most farmers (87%) had observed OIKC in their flock, 88% of these within the last 2 years. Farmers reported observing most cases in the winter months (51%) and fewest in the summer (10%). They proposed housing and forage feeding from racks as factors associated with OIKC. A variety of treatment protocols were used by farmers. The three most popular treatments used were: cloxacillin eye ointment, intramuscular oxytetracycline injection and topical tetracycline spray applied to the eye. Only 62% of treatments were considered very effective by the farmers, with no difference in farmer perceived efficacy between these three most commonly used treatments (p=0.6). Farmers used 15 different terms to describe a photograph of a sheep with OIKC, including many colloquial terms. We hypothesise that this could result in communication problems between veterinary surgeons and farmers.
Collapse
Affiliation(s)
- Helen J Williams
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Jennifer S Duncan
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Sarah Nichol Fisher
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Amy Coates
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, UK
| | - Jessica Eleanor Stokes
- Department of Epidemiology and Population Health, Institute of Infection and Global Health, University of Liverpool, Neston, UK
| | - Amy Gillespie
- Department of Livestock Health and Welfare, Institute of Veterinary Science, University of Liverpool, Neston, UK
| |
Collapse
|
31
|
Mataragka A, Sotirakoglou K, Gazouli M, Triantaphyllopoulos KA, Ikonomopoulos J. Parturition affects test-positivity in sheep with subclinical paratuberculosis; investigation following a preliminary analysis. JOURNAL OF KING SAUD UNIVERSITY - SCIENCE 2019; 31:1399-1403. [DOI: 10.1016/j.jksus.2019.02.009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/11/2023]
|
32
|
Sange MD, Becker A, Hassan AA, Bülte M, Ganter M, Siebert U, Abdulmawjood A. Development and validation of a loop-mediated isothermal amplification assay-a rapid and sensitive detection tool for Mycobacterium avium subsp. paratuberculosis in small ruminants. J Appl Microbiol 2019; 127:47-58. [PMID: 31002199 DOI: 10.1111/jam.14284] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 04/09/2019] [Accepted: 04/14/2019] [Indexed: 12/22/2022]
Abstract
AIMS The aim of this study was to design an assay for the identification of Mycobacterium avium subsp. paratuberculosis (MAP) to be used in faeces and milk samples of small ruminants with a loop-mediated isothermal amplification (LAMP) system, as a time-saving and user-friendly method in contrast to real-time PCR. METHODS AND RESULTS For the detection of MAP in milk and faeces of small ruminants, we developed a set of primers, specific for the target gene ISMap02. The analytical sensitivity of LAMP, when targeting ISMap02, showed a DNA detection limit of 10 fg μl-1 . After performing spiking experiments with two MAP reference strains, DSM 44133 and ATCC 19698T , the limit of detection, using the LAMP protocol described herein were 3·8 MAP CFU per ml milk and 12·5 MAP CFU per gram faeces. All LAMP results during the establishment of the assay were compared to those of the real-time PCR results. An internal amplification control was incorporated into the assay to exclude false-negative results produced and had no significant negative impact on the analytical sensitivity. Validation of the assay was confirmed by testing field samples of faeces and revising the results with real-time PCR. CONCLUSION Our study conducted the first MAP detection system with a LAMP targeting ISMap02. Due to the positive results we encourage the use of LAMP in combination with ISMap02, when detecting MAP in faeces samples, as an alternative to targeting other genes as f57 or IS900. Further research on MAP detection in different matrices like raw milk, tissue or sperm with this system is recommended. SIGNIFICANCE AND IMPACT OF THE STUDY This study provides new achievements in MAP diagnostic. Especially small ruminants do not show signs of diarrhoea until the terminal stage of the illness. The greatest task in fighting MAP is to rule out animals, which shed MAP with faeces and milk before showing symptoms of Johne's disease. Worldwide there is a need to eradicate animals, which are low MAP shedders to stop the illness spreading in animal holdings. MAP detection with LAMP is time saving, easy to use, does not need expensive equipment, as, for example, PCR kits and can be used without access to laboratories. The target gene ISMap02 was shown to be a specific insertion element for MAP and is a reliable aim in future MAP detection studies.
Collapse
Affiliation(s)
- M D Sange
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - A Becker
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - A A Hassan
- Institute of Food Science, Faculty of Veterinary Medicine of the Justus-Liebig-University Gießen, Gießen, Germany
| | - M Bülte
- Institute of Food Science, Faculty of Veterinary Medicine of the Justus-Liebig-University Gießen, Gießen, Germany
| | - M Ganter
- Clinic for Swine, Small Ruminants and Forensic Medicine, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - U Siebert
- Institute for Terrestrial and Aquatic Wildlife Research, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| | - A Abdulmawjood
- Research Center for Emerging Infections and Zoonoses, University of Veterinary Medicine Hannover, Foundation, Hannover, Germany
| |
Collapse
|
33
|
Stinson KJ, Duffield TF, Kelton DF, Baquero MM, Plattner BL. A preliminary study investigating effects of oral monensin sodium in an enteric Mycobacterium avium ssp. paratuberculosis infection model of calves. J Dairy Sci 2019; 102:9097-9106. [PMID: 31400899 DOI: 10.3168/jds.2018-15980] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2018] [Accepted: 06/12/2019] [Indexed: 12/23/2022]
Abstract
Mycobacterium avium ssp. paratuberculosis (MAP) is the causative agent of Johne's disease, an enteric infection of ruminants that causes significant economic burden for dairy and beef producers. Efforts to control MAP in endemic herds typically focus on herd management practices such as limiting exposure or early culling of infected animals and, occasionally, vaccination. The ionophore monensin sodium may have protective effects against MAP both in vivo and in vitro; however, this has not been thoroughly evaluated experimentally. Using a direct intestinal MAP challenge model, we have observed similarities regarding persistence of MAP in tissues and apparent resilience to infection compared with experimental oral infection or natural disease. Here we sought to investigate the effects of oral monensin supplementation in experimentally MAP-infected calves. We examined the persistence of MAP in the intestinal tissues, MAP-induced intestinal inflammation, fecal MAP shedding, and seroconversion using a commercial serologic assay. Monensin-supplemented MAP-infected calves demonstrated evidence for resilience to MAP infection earlier in this study compared with monensin-free MAP-infected calves. However, statistical modeling did not identify a significant effect of monensin on outcomes of infection, and more work is required to understand how monensin affects early tissue colonization of MAP in calves.
Collapse
Affiliation(s)
- K J Stinson
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - T F Duffield
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - D F Kelton
- Department of Population Medicine, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - M M Baquero
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - B L Plattner
- Department of Pathobiology, Ontario Veterinary College, University of Guelph, Guelph, ON N1G 2W1, Canada.
| |
Collapse
|
34
|
The humoral immune response is essential for successful vaccine protection against paratuberculosis in sheep. BMC Vet Res 2019; 15:223. [PMID: 31266499 PMCID: PMC6604481 DOI: 10.1186/s12917-019-1972-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 06/20/2019] [Indexed: 12/26/2022] Open
Abstract
Background The role played by the humoral immune response in animals vaccinated against a mycobacterial disease such as paratuberculosis, is not well understood. Sheep vaccinated against Mycobacterium avium subsp. paratuberculosis (MAP) can still become infected and in some cases succumb to clinical disease. The strength and location of the humoral immune response following vaccination could contribute to the ability of sheep to clear MAP infection. We examined the peripheral antibody response along with the localised humoral response at the site of paratuberculosis infection, the ileum, to better understand how this contributes to MAP infection of sheep following vaccination and exposure. Results Through assessing MAP specific serum IgG1 and IgG levels we show that the timing and strength of the humoral immune response directly relates to prevention of infection following vaccination. Vaccinated sheep that subsequently became infected had significantly reduced levels of MAP specific serum IgG1 early after vaccination. In contrast, vaccinated sheep that did not subsequently become infected had significantly elevated MAP specific serum IgG1 following vaccination. Furthermore, at 12 months post MAP exposure, vaccinated and subsequently uninfected sheep had downregulated expression of genes related to the humoral response in contrast to vaccinated infected sheep where expression levels were upregulated. Conclusions The timing and strength of the humoral immune response following vaccination against paratuberculosis in sheep directly relates to subsequent infection status. An initial strong IgG1 response following vaccination was crucial to prevent infection. Additionally, vaccinated uninfected sheep were able to modulate that response following apparent MAP clearance, unlike vaccinated infected animals where there was apparent dysregulation of the humoral response, which is associated with progression to clinical disease.
Collapse
|
35
|
Koets A, Ravesloot L, Ruuls R, Dinkla A, Eisenberg S, Lievaart-Peterson K. Effects of Age and Environment on Adaptive Immune Responses to Mycobacterium avium subsp. paratuberculosis (MAP) Vaccination in Dairy Goats in Relation to Paratuberculosis Control Strategies. Vet Sci 2019; 6:vetsci6030062. [PMID: 31266267 PMCID: PMC6789810 DOI: 10.3390/vetsci6030062] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/19/2019] [Accepted: 06/28/2019] [Indexed: 11/16/2022] Open
Abstract
Paratuberculosis infection is caused by Mycobacterium avium subsp. paratuberculosis (MAP). In the Netherlands, 75% herd level prevalence of caprine paratuberculosis has been estimated, and vaccination is the principal control strategy applied. Most goat dairy farms with endemic paratuberculosis systematically vaccinate goat kids in the first months of life with a commercially available whole cell MAP vaccine. We hypothesized that the development of adaptive immune responses in goats vaccinated at young age depends on the environment they are raised in, and this has implications for the application of immune diagnostic tests in vaccinated dairy goats. We evaluated the early immune response to vaccination in young goat kids sourced from a MAP unsuspected non-vaccinated herd and raised in a MAP-free environment. Subsequently we compared these with responses observed in birth year and vaccination matched adult goats raised on farms with endemic paratuberculosis. Results indicated that initial adaptive immune responses to vaccination are limited in a MAP-free environment. In addition, adult antibody positive vaccinated goats raised in a MAP endemic environment are less likely to be IS900 PCR-positive as compared to antibody negative herd mates. We conclude that test-and-cull strategies in a vaccinated herd are currently not feasible using available immune diagnostic tests.
Collapse
Affiliation(s)
- Ad Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands.
| | - Lars Ravesloot
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Robin Ruuls
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Annemieke Dinkla
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Susanne Eisenberg
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, The Netherlands
| | | |
Collapse
|
36
|
van den Esker MH, Koets AP. Application of Transcriptomics to Enhance Early Diagnostics of Mycobacterial Infections, with an Emphasis on Mycobacterium avium ssp. paratuberculosis. Vet Sci 2019; 6:vetsci6030059. [PMID: 31247942 PMCID: PMC6789504 DOI: 10.3390/vetsci6030059] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2019] [Revised: 06/14/2019] [Accepted: 06/19/2019] [Indexed: 12/18/2022] Open
Abstract
Mycobacteria cause a wide variety of disease in human and animals. Species that infect ruminants include M. bovis and M. avium ssp. paratuberculosis (MAP). MAP is the causative agent of Johne’s disease in ruminants, which is a chronic granulomatous enteric infection that leads to severe economic losses worldwide. Characteristic of MAP infection is the long, latent phase in which intermittent shedding can take place, while diagnostic tests are unable to reliably detect an infection in this stage. This leads to unnoticed dissemination within herds and the presence of many undetected, silent carriers, which makes the eradication of Johne’s disease difficult. To improve the control of MAP infection, research is aimed at improving early diagnosis. Transcriptomic approaches can be applied to characterize host-pathogen interactions during infection, and to develop novel biomarkers using transcriptional profiles. Studies have focused on the identification of specific RNAs that are expressed in different infection stages, which will assist in the development and clinical implementation of early diagnostic tests.
Collapse
Affiliation(s)
- Marielle H van den Esker
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands
| | - Ad P Koets
- Department of Bacteriology and Epidemiology, Wageningen Bioveterinary Research, 8200 AB Lelystad, The Netherlands.
- Department of Farm Animal Health, Faculty of Veterinary Medicine, Utrecht University, 3508 TD Utrecht, The Netherlands.
| |
Collapse
|
37
|
Whittington R, Donat K, Weber MF, Kelton D, Nielsen SS, Eisenberg S, Arrigoni N, Juste R, Sáez JL, Dhand N, Santi A, Michel A, Barkema H, Kralik P, Kostoulas P, Citer L, Griffin F, Barwell R, Moreira MAS, Slana I, Koehler H, Singh SV, Yoo HS, Chávez-Gris G, Goodridge A, Ocepek M, Garrido J, Stevenson K, Collins M, Alonso B, Cirone K, Paolicchi F, Gavey L, Rahman MT, de Marchin E, Van Praet W, Bauman C, Fecteau G, McKenna S, Salgado M, Fernández-Silva J, Dziedzinska R, Echeverría G, Seppänen J, Thibault V, Fridriksdottir V, Derakhshandeh A, Haghkhah M, Ruocco L, Kawaji S, Momotani E, Heuer C, Norton S, Cadmus S, Agdestein A, Kampen A, Szteyn J, Frössling J, Schwan E, Caldow G, Strain S, Carter M, Wells S, Munyeme M, Wolf R, Gurung R, Verdugo C, Fourichon C, Yamamoto T, Thapaliya S, Di Labio E, Ekgatat M, Gil A, Alesandre AN, Piaggio J, Suanes A, de Waard JH. Control of paratuberculosis: who, why and how. A review of 48 countries. BMC Vet Res 2019; 15:198. [PMID: 31196162 PMCID: PMC6567393 DOI: 10.1186/s12917-019-1943-4] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2018] [Accepted: 05/31/2019] [Indexed: 12/20/2022] Open
Abstract
Paratuberculosis, a chronic disease affecting ruminant livestock, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). It has direct and indirect economic costs, impacts animal welfare and arouses public health concerns. In a survey of 48 countries we found paratuberculosis to be very common in livestock. In about half the countries more than 20% of herds and flocks were infected with MAP. Most countries had large ruminant populations (millions), several types of farmed ruminants, multiple husbandry systems and tens of thousands of individual farms, creating challenges for disease control. In addition, numerous species of free-living wildlife were infected. Paratuberculosis was notifiable in most countries, but formal control programs were present in only 22 countries. Generally, these were the more highly developed countries with advanced veterinary services. Of the countries without a formal control program for paratuberculosis, 76% were in South and Central America, Asia and Africa while 20% were in Europe. Control programs were justified most commonly on animal health grounds, but protecting market access and public health were other factors. Prevalence reduction was the major objective in most countries, but Norway and Sweden aimed to eradicate the disease, so surveillance and response were their major objectives. Government funding was involved in about two thirds of countries, but operations tended to be funded by farmers and their organizations and not by government alone. The majority of countries (60%) had voluntary control programs. Generally, programs were supported by incentives for joining, financial compensation and/or penalties for non-participation. Performance indicators, structure, leadership, practices and tools used in control programs are also presented. Securing funding for long-term control activities was a widespread problem. Control programs were reported to be successful in 16 (73%) of the 22 countries. Recommendations are made for future control programs, including a primary goal of establishing an international code for paratuberculosis, leading to universal acknowledgment of the principles and methods of control in relation to endemic and transboundary disease. An holistic approach across all ruminant livestock industries and long-term commitment is required for control of paratuberculosis.
Collapse
Affiliation(s)
- Richard Whittington
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Karsten Donat
- Animal Health Service, Thuringian Animal Diseases Fund, 07745 Jena, Germany
- Clinic for Obstetrics, Gynecology and Andrology with Veterinary Ambulance, Justus-Liebig-University Giessen, 35392 Giessen, Germany
| | | | - David Kelton
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Søren Saxmose Nielsen
- Department of Veterinary and Animal Sciences, University of Copenhagen, DK-1870 Frederiksberg C, Denmark
| | | | - Norma Arrigoni
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Ramon Juste
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Asturias Spain
| | - Jose Luis Sáez
- Ministry of Agriculture and Fisheries, Food and Environment, ES-28071 Madrid, Spain
| | - Navneet Dhand
- School of Veterinary Science, Faculty of Science, University of Sydney, 425 Werombi Road, Camden, NSW 2570 Australia
| | - Annalisa Santi
- Istituto Zooprofilattico Sperimentale della Lombardia e dell’Emilia Romagna, 29027 Podenzano, Italy
| | - Anita Michel
- Faculty of Veterinary Science, University of Pretoria, Onderstepoort, 0110 South Africa
| | - Herman Barkema
- Faculty of Veterinary Medicine, University of Calgary, Calgary, Alberta T2N 4N1 Canada
| | - Petr Kralik
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | | | - Lorna Citer
- Animal Health Ireland, Carrick on Shannon, Co. Leitrim, N41 WN27 Republic of Ireland
| | - Frank Griffin
- Disease Research Limited, Invermay Agricultural Centre, Mosgiel, 9092 New Zealand
| | - Rob Barwell
- Animal Health Australia, Turner, ACT 2612 Australia
| | | | - Iva Slana
- Veterinary Research Institute, 621 00 Brno, Czech Republic
| | - Heike Koehler
- Friedrich-Loeffler-Institut, Federal Research Institute of Animal Health, 07743 Jena, Germany
| | - Shoor Vir Singh
- Deparment of Biotechnology, GLA University, Mathura, Uttar Pradesh 281 406 India
| | - Han Sang Yoo
- Department of Infectious Diseases, College of Veterinary Medicine, Seoul National University, Seoul, 08826 South Korea
| | - Gilberto Chávez-Gris
- Facultad de Medicina Veterinaria y Zootecnia, Universidad Nacional Autonoma de México, 76750 Tequisquiapan, Queretaro, Mexico
| | - Amador Goodridge
- Instituto de Investigaciones Científicas y Servicios de Alta Tecnología, City of Knowledge, Panama City, 0843-01103 Panama
| | - Matjaz Ocepek
- National Veterinary Institute, Veterinary Faculty, University of Ljubljana, 1000 Ljubljana, Slovenia
| | - Joseba Garrido
- Instituto Vasco de Investigacion y Desarrollo Agrario-NEIKER, 48160 Derio, Bizkaia Spain
| | | | - Mike Collins
- School of Veterinary Medicine, University of Wisconsin-Madison, Wisconsin, 53706-1102 USA
| | | | - Karina Cirone
- Instituto Nacional de Tecnologia Agropecuaria, 7620 Balcarce, Argentina
| | | | - Lawrence Gavey
- Biosecurity Queensland, Department of Agriculture and Fisheries, Toowoomba, Queensland 4350 Australia
| | - Md Tanvir Rahman
- Faculty of Veterinary Science, Bangladesh Agricultural University, Mymensingh, 2202 Bangladesh
| | | | | | - Cathy Bauman
- Department of Population Medicine, University of Guelph, Guelph, Ontario N1G 2W1 Canada
| | - Gilles Fecteau
- Faculté de Médecine Vétérinaire, University of Montreal, Quebec, J2S 6Z9 Canada
| | - Shawn McKenna
- Atlantic Veterinary College, Charlottetown, Prince Edward Island C1A 4P3 Canada
| | - Miguel Salgado
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Jorge Fernández-Silva
- Escuela de Medicina Veterinaria, Universidad de Antioquia, Medellín, Antioquia 050034076 Colombia
| | | | - Gustavo Echeverría
- Instituto de Investigación en Salud Pública y Zoonosis, Universidad Central del Ecuador, 17-03-100 Quito, Ecuador
| | - Jaana Seppänen
- Finnish Food Authority, Mustialankatu 3, 00790 Helsinki, Finland
| | - Virginie Thibault
- ANSES Laboratoire de Ploufragan-Plouzané-Niort and GDS France, CS 28440, 79024 Niort Cedex, France
| | - Vala Fridriksdottir
- Institute for Experimental Pathology at Keldur, University of Iceland, IS-112 Reykjavík, Iceland
| | | | - Masoud Haghkhah
- School of Veterinary Medicine, Shiraz University, Shiraz, 71441-69155 Iran
| | - Luigi Ruocco
- Ministry of Health, General Directorate of Animal Health and Veterinary Medicines, 00144 Rome, Italy
| | - Satoko Kawaji
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Eiichi Momotani
- Comparative Medical Research Institute, Tsukuba, Ibaraki 305-0856 Japan
| | - Cord Heuer
- School of Veterinary Sciences, Massey University, Palmerston North, 4441 New Zealand
| | | | - Simeon Cadmus
- Department of Veterinary Public Health and Preventive Medicine, University of Ibadan, Ibadan, Nigeria
| | | | | | - Joanna Szteyn
- Faculty of Veterinary Medicine, University of Warmia and Mazury, 10-718 Olsztyn, Poland
| | | | - Ebba Schwan
- Swedish Farm and Animal Health, 62254 Romakloster, Sweden
| | | | - Sam Strain
- Animal Health and Welfare Northern Ireland, Dungannon Enterprise Centre, Dungannon, BT71 6JT UK
| | - Mike Carter
- USDA-APHIS-Veterinary Services, Riverdale, MD 20737 USA
| | - Scott Wells
- College of Veterinary Medicine, University of Minnesota, St. Paul, MN 55108 USA
| | - Musso Munyeme
- School of Veterinary Medicine, The University of Zambia, 10101 Lusaka, Zambia
| | - Robert Wolf
- Fachabteilung Gesundheit und Pflegemanagement, 8010 Graz, Austria
| | - Ratna Gurung
- National Centre for Animal Health, Serbithang, Bhutan
| | - Cristobal Verdugo
- Facultad de Ciencias Veterinarias, Universidad Austral de Chile, 5090000 Valdivia, Chile
| | - Christine Fourichon
- Oniris – INRA, Department Farm Animal Health and Public Health, 44307 Nantes cedex 3, France
| | - Takehisa Yamamoto
- National Institute of Animal Health, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, 305-0856 Japan
| | - Sharada Thapaliya
- Faculty of Animal Science, Veterinary Science and Fisheries, Agriculture and Forestry University, Rampur, Chitwan Nepal
| | - Elena Di Labio
- Federal Food Safety and Veterinary Office, 3003 Bern, Switzerland
| | - Monaya Ekgatat
- National Institute of Animal Health, Chatuchak, Bangkok, 10900 Thailand
| | - Andres Gil
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | | | - José Piaggio
- Facultad de Veterinaria, Lasplaces 1620, CP 11600 Montevideo, Uruguay
| | - Alejandra Suanes
- Ministry of Livestock Agriculture and Fisheries of Uruguay, CP 11300 Montevideo, Uruguay
| | - Jacobus H. de Waard
- Servicio Autonomo Instituto de Biomedicina, Universidad Central de Venezuela, Caracas, Venezuela
| |
Collapse
|
38
|
Mallikarjunappa S, Adnane M, Cormican P, Karrow NA, Meade KG. Characterization of the bovine salivary gland transcriptome associated with Mycobacterium avium subsp. paratuberculosis experimental challenge. BMC Genomics 2019; 20:491. [PMID: 31195975 PMCID: PMC6567491 DOI: 10.1186/s12864-019-5845-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Mycobacterium avium subsp. paratuberculosis (MAP), the etiologic agent of Johne's disease is spread between cattle via the fecal-oral route, yet the functional changes in the salivary gland associated with infection remain uncharacterized. In this study, we hypothesized that experimental challenge with MAP would induce stable changes in gene expression patterns in the salivary gland that may shed light on the mucosal immune response as well as the regional variation in immune capacity of this extensive gland. Holstein-Friesian cattle were euthanized 33 months' post oral challenge with MAP strain CIT003 and both the parotid and mandibular salivary glands were collected from healthy control (n = 5) and MAP exposed cattle (n = 5) for histopathological and transcriptomic analysis. RESULTS A total of 205, 21, 61, and 135 genes were significantly differentially expressed between control and MAP exposed cattle in dorsal mandibular (M1), ventral mandibular (M2), dorsal parotid (P1) and ventral parotid salivary glands (P2), respectively. Expression profiles varied between the structurally divergent parotid and mandibular gland sections which was also reflected in the enriched biological pathways identified. Changes in gene expression associated with MAP exposure were detected with significantly elevated expression of BoLA DR-ALPHA, BOLA-DRB3 and complement factors in MAP exposed cattle. In contrast, reduced expression of genes such as polymeric immunoglobin receptor (PIGR), TNFSF13, and the antimicrobial genes lactoferrin (LF) and lactoperoxidase (LPO) was detected in MAP exposed animals. CONCLUSIONS This first analysis of the transcriptomic profile of salivary glands in cattle adds an important layer to our understanding of salivary gland immune function. Transcriptomic changes associated with MAP exposure have been identified including reduced LF and LPO. These critical antimicrobial and immunoregulatory proteins are known to be secreted into saliva and their downregulation may contribute to disease susceptibility. Future work will focus on the validation of their expression levels in saliva from additional cattle of known infection status as a potential strategy to augment disease diagnosis.
Collapse
Affiliation(s)
- Sanjay Mallikarjunappa
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Mounir Adnane
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.,Institute of Veterinary Sciences, Ibn Khaldoun University, Tiaret, Algeria
| | - Paul Cormican
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland
| | - Niel A Karrow
- Department of Animal Biosciences, Centre for Genetic Improvement of Livestock, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Kieran G Meade
- Animal & Bioscience Research Department, Animal & Grassland Research and Innovation Centre, Teagasc, Grange, Co. Meath, Ireland.
| |
Collapse
|
39
|
Gene expression profiles during subclinical Mycobacterium avium subspecies paratuberculosis infection in sheep can predict disease outcome. Sci Rep 2019; 9:8245. [PMID: 31160677 PMCID: PMC6547741 DOI: 10.1038/s41598-019-44670-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 05/22/2019] [Indexed: 01/19/2023] Open
Abstract
Paratuberculosis in ruminants is caused by infection with Mycobacterium avium subspecies paratuberculosis (MAP) however exposure does not predetermine progression to clinical disease. The pathogenesis incorporates a subclinical phase during which MAP is capable of evading host immune responses through adaptation of host cellular immune mechanisms. Presented are results of transcriptomic analysis of Merino sheep experimentally exposed to MAP and repeatedly sampled over the subclinical phase, identifying genes consistently changed over time in comparison to unexposed controls and associated with different disease outcomes. MAP exposed sheep were classified as diseased 45% (n = 9) or resilient 55% (n = 11). Significant gene expression changes were identified in the white blood cells of paucibacillary (n = 116), multibacillary (n = 98) and resilient cohorts (n = 53) compared to controls. Members of several gene families were differentially regulated, including S100 calcium binding, lysozyme function, MHC class I and class II, T cell receptor and transcription factors. The microarray findings were validated by qPCR. These differentially regulated genes are presented as putative biomarkers of MAP exposure, or of the specified disease or resilience outcomes. Further, in silico functional analysis of genes suggests that experimental MAP exposure in Merino sheep results in adaptations to cellular growth, proliferation and lipid metabolism.
Collapse
|
40
|
Arsenault J, Singh Sohal J, Leboeuf A, Hélie P, Fecteau G, Robinson Y, L’Homme Y. Validation of an in-house real-time PCR fecal assay and comparison with two commercial assays for the antemortem detection of Mycobacterium avium subsp. paratuberculosis infection in culled sheep. J Vet Diagn Invest 2019; 31:58-68. [PMID: 30387705 PMCID: PMC6505751 DOI: 10.1177/1040638718810744] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Paratuberculosis is a chronic infectious enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). In sheep, the antemortem detection of the infection is challenging given the slow progression of the disease and the lack of sensitive, specific, and cost-effective validated tests. We adapted an in-house real-time PCR (rtPCR) assay targeting the multi-copy IS 900 element of MAP. The sensitivity and specificity of this essay for the detection of MAP infection were estimated in a convenience sample of culled ewes from 7 infected flocks and compared to a commercial fecal rtPCR, a commercial ELISA, and fecal culture. An infected ewe was defined as a ewe with a positive culture of the ileum and/or mesenteric lymph node. A non-infected ewe was defined as a ewe negative in intestinal tissue culture, negative in fecal culture, and with no lesions consistent with paratuberculosis. The in-house rtPCR had a sensitivity estimate of 84% (95% confidence interval [CI]: 59%, 97%) among the 44 infected ewes, which was significantly higher ( p ⩽ 0.05) than the sensitivity of a commercial fecal rtPCR (52%, 95% CI: 27%, 76%; or 63%, 95% CI: 35%, 87% depending on the cutoff used), an ELISA (14%, 95% CI:2.0%, 41%), and fecal culture (21%, 95% CI: 2.7%, 59%). No statistical difference in assay specificities was observed for the 30 non-infected ewes. The in-house rtPCR is a promising tool that could be used advantageously for the antemortem detection of MAP infection in sheep.
Collapse
Affiliation(s)
- Julie Arsenault
- Julie Arsenault, Faculty of Veterinary Medicine, Université de Montréal, 3200 Sicotte, Saint-Hyacinthe, Quebec J2S 2M2, Canada.
| | - Jagdip Singh Sohal
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| | - Anne Leboeuf
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| | - Pierre Hélie
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| | - Gilles Fecteau
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| | - Yves Robinson
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| | - Yvan L’Homme
- Faculty of Veterinary Medicine, Université de Montréal, Saint-Hyacinthe, Quebec, Canada (Arsenault, Hélie, Fecteau)
- Canadian Food Inspection Agency, Saint-Hyacinthe, Quebec, Canada (Sohal, Robinson, L’Homme)
- Ministry of Agriculture, Fisheries and Food of Quebec, Quebec City, Quebec, Canada (Leboeuf)
| |
Collapse
|
41
|
Pisanu S, Cubeddu T, Cacciotto C, Pilicchi Y, Pagnozzi D, Uzzau S, Rocca S, Addis MF. Characterization of paucibacillary ileal lesions in sheep with subclinical active infection by Mycobacterium avium subsp. paratuberculosis. Vet Res 2018; 49:117. [PMID: 30514405 PMCID: PMC6278003 DOI: 10.1186/s13567-018-0612-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Accepted: 11/13/2018] [Indexed: 01/10/2023] Open
Abstract
Paratuberculosis (PTB) or Johne's disease is a contagious enteritis of ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP). Ovine PTB is less understood than bovine PTB, especially concerning paucibacillary infection and its evolution into clinical disease. We combined shotgun proteomics, histopathology and immunohistochemistry for the characterization of ileal tissues collected from seven asymptomatic sheep negative to serum ELISA, positive to feces and tissue MAP IS900 and F57 PCR, histologically classified as paucibacillary, actively infected, together with 3 MAP-free controls (K). Following shotgun proteomics with label-free quantitation and differential analysis, 96 proteins were significantly changed in PTB vs K, and were mostly involved in immune defense processes and in the macrophage-MAP interaction. Principal component analysis (PCA) of protein abundances highlighted two PTB sample clusters, PTB1 and PTB2, indicating a dichotomy in their proteomic profiles. This was in line with the PCA of histopathology data and was related to features of type 2 (PTB1) and type 3a (PTB2) lesions, respectively. PTB2 proteomes differed more than PTB1 proteomes from K: 43 proteins changed significantly only in PTB2 and 11 only in PTB1. The differential proteins cathelicidin, haptoglobin, S100A8 and S100A9 were evaluated by immunohistochemistry. K tissues were negative to cathelicidin and haptoglobin and sparsely positive to S100A8 and S100A9. PTB tissues were positive to all four proteins, with significantly more cells in PTB2 than in PTB1. In conclusion, we described several pathways altered in paucibacillary PTB, highlighted some proteomic differences among paucibacillary PTB cases, and identified potential markers for disease understanding, staging, and detection.
Collapse
Affiliation(s)
- Salvatore Pisanu
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Tiziana Cubeddu
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Carla Cacciotto
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Ylenia Pilicchi
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Daniela Pagnozzi
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy
| | - Sergio Uzzau
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy.,Dipartimento di Scienze Biomediche, Università degli Studi di Sassari, Viale S. Pietro 43/B, 07100, Sassari, Italy
| | - Stefano Rocca
- Dipartimento di Medicina Veterinaria, Università degli Studi di Sassari, Via Vienna 2, 07100, Sassari, Italy
| | - Maria Filippa Addis
- Porto Conte Ricerche, SP 55 Porto Conte/Capo Caccia, Km 8.400, Loc. Tramariglio, 07041, Alghero, Italy. .,Dipartimento di Medicina Veterinaria, Università degli Studi di Milano, Via Celoria 10, 20133, Milan, Italy.
| |
Collapse
|
42
|
Evaluation of three commercial PCR kits for the direct detection of Mycobacterium avium subsp. paratuberculosis (MAP) in bovine faeces. Vet J 2018; 241:52-57. [DOI: 10.1016/j.tvjl.2018.09.013] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Revised: 09/19/2018] [Accepted: 09/25/2018] [Indexed: 01/06/2023]
|
43
|
Johansen MD, de Silva K, Plain KM, Begg DJ, Whittington RJ, Purdie AC. Sheep and cattle exposed to Mycobacterium avium subspecies paratuberculosis exhibit altered total serum cholesterol profiles during the early stages of infection. Vet Immunol Immunopathol 2018; 202:164-171. [PMID: 30078591 DOI: 10.1016/j.vetimm.2018.07.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2018] [Revised: 06/04/2018] [Accepted: 07/15/2018] [Indexed: 12/20/2022]
Abstract
Pathogenic mycobacteria such as Mycobacterium tuberculosis are capable of utilising cholesterol as a primary carbon-based energy source in vitro but there has been little research examining the significance of cholesterol in vivo. Johne's disease is a chronic enteric disease of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). This study sought to evaluate the levels of total serum cholesterol in the host following exposure to MAP. Blood samples were collected from both sheep and cattle prior to experimental challenge with MAP and at monthly intervals post-challenge. Total serum cholesterol levels in sheep challenged with MAP were significantly elevated at 9 weeks post-inoculation (wpi) in comparison to controls. When stratified based on disease outcome, there was no significant difference in serum cholesterol at the timepoints examined between MAP exposed sheep that were susceptible and those that were resistant to Johne's disease. There was a similar elevation in serum cholesterol at 9 wpi in cattle with histopathological gut lesions associated with disease or those with an early high IFN-γ response. Total serum cholesterol in exposed cattle was significantly lower when compared to controls at 13 wpi. Taken together, these results demonstrate changes in serum cholesterol following MAP exposure and disease progression which could reflect novel aspects of the pathogenesis and immune response associated with MAP infection in both sheep and cattle.
Collapse
Affiliation(s)
- M D Johansen
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - K de Silva
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - K M Plain
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - D J Begg
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia
| | - R J Whittington
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia; School of Life & Environmental Sciences, The University of Sydney, Australia
| | - A C Purdie
- Sydney School of Veterinary Science, Faculty of Science, The University of Sydney, 425 Werombi Rd, Camden 2570, NSW, Australia.
| |
Collapse
|
44
|
Stinson KJ, Baquero MM, Plattner BL. Resilience to infection by Mycobacterium avium subspecies paratuberculosis following direct intestinal inoculation in calves. Vet Res 2018; 49:58. [PMID: 30001739 PMCID: PMC6044094 DOI: 10.1186/s13567-018-0553-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2018] [Accepted: 06/18/2018] [Indexed: 02/06/2023] Open
Abstract
Mycobacterium avium subspecies paratuberculosis (Map) is the cause of Johne’s disease, a chronic enteritis of cattle. A significant knowledge gap is how persistence of Map within the intestinal tract after infection contributes to progression of disease. To address this, we exposed calves to Map by direct ileocecal Peyer’s patch injection. Our objective was to characterize the persistence of Map in tissues, associated intestinal lesions, fecal Map shedding, and serum antibody responses, through the first 28-weeks post-inoculation (wpi). Previous work using this model showed 100% rate of Map infection in intestine and lymph node by 12 wpi. We hypothesized that direct inoculation of Map into the distal small intestine would induce intestinal Map infection with local persistence and progression towards clinical disease. However, our data show decreased persistence of Map in the distal small intestine and draining lymph nodes. We identified Map in multiple sections of distal ileum and draining lymph node of all calves at 4 and 12 wpi, but then we observed reduced Map in distal ileum at 20 wpi, and by 28 wpi we found that 50% of animals had no detectable Map in intestine or the lymph node. This provides evidence of resilience to Map infection following direct intestinal Map inoculation. Further work examining the immune responses and host–pathogen interactions associated with this infection model are needed to help elicit the mechanisms underlying resilience to Map infection.
Collapse
Affiliation(s)
- Kevin J Stinson
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | - Monica M Baquero
- Department of Pathobiology, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
45
|
Begg DJ, Plain KM, de Silva K, Gurung R, Gunn A, Purdie AC, Whittington RJ. Immunopathological changes and apparent recovery from infection revealed in cattle in an experimental model of Johne's disease using a lyophilised culture of Mycobacterium avium subspecies paratuberculosis. Vet Microbiol 2018; 219:53-62. [PMID: 29778205 DOI: 10.1016/j.vetmic.2018.03.029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/12/2018] [Accepted: 03/29/2018] [Indexed: 01/06/2023]
Abstract
Johne's disease (JD) or paratuberculosis is an economically significant, chronic enteropathy of ruminants caused by Mycobacterium avium subspecies paratuberculosis (MAP). Experimental models of JD in cattle are logistically challenging due to the need for long term monitoring, because the clinical disease can take years to manifest. Three trials were undertaken, the largest involving 20 cattle exposed orally to a low dose of C strain MAP and 10 controls studied for 4.75 years. Frequent blood and faecal sampling was used to monitor immunological and infection parameters, and intestinal biopsies were performed at two time points during the subclinical disease phase. Although clinical disease was not seen, there was evidence of infection in 35% of the animals and at necropsy 10% had histopathological lesions consistent with JD, similar to the proportions expected in naturally infected herds. Faecal shedding occurred in two distinct phases: firstly there was intermittent shedding <∼9 months post-exposure that did not correlate with disease outcomes; secondly, in a smaller cohort of animals, this was followed by more consistent shedding of increasing quantities of MAP, associated with intestinal pathology. There was evidence of regression of histopathological lesions in the ileum of one animal, which therefore had apparently recovered from the disease. Both cattle with histopathological lesions of paratuberculosis at necropsy had low MAP-specific interferon-gamma responses at 4 months post-exposure and later had consistently shed viable MAP; they also had the highest loads of MAP DNA in faeces 4.75 year s post-exposure. In a trial using a higher dose of MAP, a higher proportion of cattle developed paratuberculosis. The information derived from these trials provides greater understanding of the changes that occur during the course of paratuberculosis in cattle.
Collapse
Affiliation(s)
- Douglas J Begg
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Karren M Plain
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Kumudika de Silva
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Ratna Gurung
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Alison Gunn
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Auriol C Purdie
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia
| | - Richard J Whittington
- Farm Animal Health, Sydney School of Veterinary Science, Faculty of Science, University of Sydney, Camden, Australia.
| |
Collapse
|
46
|
de Silva K, Plain K, Purdie A, Begg D, Whittington R. Defining resilience to mycobacterial disease: Characteristics of survivors of ovine paratuberculosis. Vet Immunol Immunopathol 2018; 195:56-64. [DOI: 10.1016/j.vetimm.2017.11.008] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Accepted: 11/23/2017] [Indexed: 10/18/2022]
|