1
|
Ferrara G, Tejeda C. Editorial: Wildlife-domestic animal interface: threat or sentinel? Front Vet Sci 2024; 11:1495580. [PMID: 39380777 PMCID: PMC11458570 DOI: 10.3389/fvets.2024.1495580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/13/2024] [Indexed: 10/10/2024] Open
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Production, University of Naples, Federico II, Naples, Italy
| | - Carlos Tejeda
- Universidad Austral de Chile, Facultad de Ciencias Veterinarias, Departamento de Medicina Preventiva, Valdivia, Chile
| |
Collapse
|
2
|
Ferrara G, Colitti B, Gabriela FR, Rosati S, Iovane G, Pagnini U, Montagnaro S. Efficiency of recombinant Ybgf in a double antigen-ELISA for the detection of Coxiella antibodies in ruminants. Vet Anim Sci 2024; 25:100366. [PMID: 38957741 PMCID: PMC11217752 DOI: 10.1016/j.vas.2024.100366] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2024] Open
Abstract
Q fever is a zoonosis whose main reservoirs are domestic ruminants. Surveillance in these species is carried out mainly with serological tests, which, however, have limited diagnostic performance, and their manufacturing requires laboratories equipped with high biosafety requirements for antigen production. Recombinant ELISAs do not depend on these requirements and, being based on a single antigen, can reduce potential false positivity by identifying antibodies specific to a phase of infection. The aim of this study was to apply a new technology (dual antigen test) to a recombinant protein (Ybgf), an antigen produced in recombinant form and already used in previous studies for the design of an indirect ELISA. The successfully produced recombinant antigen was used to coat 96-well plates and, at the same time, another antigen aliquot was conjugated with HRP to obtain an HRP-conjugated Ybgf. After setting the test conditions, the results obtained with the recombinant double antigen test were compared with those obtained with a commercial assay (considered as reference assay) testing a total of 514 ruminant samples (280 goats and 234 cattle). A concordance of 86.2 and a Cohen's Kappa value of 0.72 were obtained, with no significant difference between the two species tested. Notably, the test proved to be highly specific, having correctly identified 250 out of 253 animals. This research represents an additional effort to use recombinant antigens to enhance serological methods in veterinary medicine. In a "one-health scenario", improving the performance of serological tests used in veterinary practice also means improving the surveillance of this infection.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Barbara Colitti
- Department of Veterinary Science, University of Turin, Grugliasco, TO 10095, Italy
| | | | - Sergio Rosati
- Department of Veterinary Science, University of Turin, Grugliasco, TO 10095, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples, “Federico II”, Naples 80137, Italy
| |
Collapse
|
3
|
Ferrara G, Pagnini U, Improda E, Ciarcia R, Parisi A, Fiorito F, Della Valle G, Iovane G, Montagnaro S. Detection of anti-HEV antibodies but no molecular positivity in dogs in the Campania region, southern Italy. One Health 2024; 18:100724. [PMID: 38623500 PMCID: PMC11017036 DOI: 10.1016/j.onehlt.2024.100724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 04/04/2024] [Indexed: 04/17/2024] Open
Abstract
Paslahepevirus balayani genotypes 3 and 4 (HEV-3 and 4) have zoonotic potential and can be transmitted to humans and animals through the consumption of contaminated raw or undercooked meat. Although it has been demonstrated that dogs are susceptible to the infection and produce specific antibodies, the epidemiological role of this species is not yet well defined. This study aimed to evaluate the circulation of HEV at the serological and molecular level in the dog population of the Campania region, southern Italy. A total of 231 dogs were sampled, divided according to several variables (sex, age, origin, lifestyle, location, size, and breed), and tested for the presence of HEV antibodies using a commercial multi-species ELISA. A total of 197 blood samples and 170 stool samples were tested with two specific PCRs in order to detect viral RNA. A total of 19 out samples of 231 were seropositive, obtaining an exposure (8.2%) similar to that observed in other European countries. The univariate and multivariate analysis revealed a wide exposure to stray dogs and animals from the province of Salerno. All samples tested with molecular methods were negative. Defining the role of domestic carnivores continues to be a "one health" challenge, although it appears that they do not eliminate the virus and therefore do not pose a danger to humans. In the absence of other evidence, it is advisable to continue to carry out surveillance also for domestic animals, which, due to ethological characteristics or their position in the food chain, could be predisposed to being exposed to HEV.
Collapse
Affiliation(s)
- G. Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - U. Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - E. Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - R. Ciarcia
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - A. Parisi
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - F. Fiorito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - G. Della Valle
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - G. Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - S. Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| |
Collapse
|
4
|
Ferrara G, Pagnini U, Improda E, Iovane G, Montagnaro S. Pigs in southern Italy are exposed to three ruminant pathogens: an analysis of seroprevalence and risk factors analysis study. BMC Vet Res 2024; 20:183. [PMID: 38720324 PMCID: PMC11077783 DOI: 10.1186/s12917-024-04037-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Accepted: 04/25/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Pigs are susceptible to several ruminant pathogens, including Coxiella burnetti, Schmallenberg virus (SBV) and bovine viral diarrhea virus (BVDV). These pathogens have already been described in the pig population, although the dynamics of the infection and the impact on pig farms are currently unclear. The aim of this work was to evaluate the presence of these infections in the pig population of the Campania region, southern Italy, and to evaluate the risk factors associated with a greater risk of exposure. RESULTS A total of 414 serum samples belonging to 32 herds were tested for the presence of antibodies against SBV, Coxiella, and BVD using commercial multispecies ELISA kits. SBV (5.3%) was the most prevalent pathogen, followed by Coxiella (4.1%) and BVD (3%). The risk factors included in the study (age, sex, province, farming system, ruminant density and major ruminant species) had no influence on the probability of being exposed to BVD and Coxiella, except for the location, in fact more pigs seropositive to Coxiella were found in the province of Caserta. However, the univariate analysis highlighted the influence of age, location, and sex on exposure to SBV. The subsequent multivariate analysis statistically confirmed the importance of these factors. The presence of neutralizing antibodies for SBV and BVDV, or antibodies directed towards a specific phase of infection for Coxiella was further confirmed with virus-neutralization assays and phase-specific ELISAs in a large proportion of positive samples. The presence of high neutralizing antibody titers (especially for SBV) could indicate recent exposures. Twelve of the 17 positive samples tested positive for antibodies against Coxiella phase I or II antigens, indicating the presence of both acute and chronic infections (one animal tested positive for both phases antibodies). CONCLUSIONS Our study indicates a non-negligible exposure of pigs from southern Italy to the above pathogens. Further studies are necessary to fully understand the dynamics of these infections in pigs, the impact on productivity, and the public health consequences in the case of Coxiella.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy.
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Elvira Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, Naples, 80137, Italy
| |
Collapse
|
5
|
Dagnaw M, Solomon A, Dagnew B. Serological prevalence of the Schmallenberg virus in domestic and wild hosts worldwide: a systematic review and meta-analysis. Front Vet Sci 2024; 11:1371495. [PMID: 38605927 PMCID: PMC11008530 DOI: 10.3389/fvets.2024.1371495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Accepted: 02/29/2024] [Indexed: 04/13/2024] Open
Abstract
Schmallenberg virus (SBV) is an arthropod-borne virus that emerged recently in northwestern Europe in 2011 that affects domestic and wild ruminants and induces abortion, stillbirth, and newborns with congenital anomalies. Since its discovery, SBV has spread very rapidly to too many countries in the world. The overall serological investigation of SBV is needed to improve modeling predictions and assess the overall impact on ruminant animals, which helps to design interventions for control and prevention strategies. Thus, this study aimed to estimate the overall serological assay of SBV in both domestic and wild ruminants around the world. This systematic review was conducted as per the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. International databases were employed To search for relevant articles. The pooled prevalence with a 95% confidence interval was calculated with a random effects model. The Cochran's Q test, τ2, and I2 were used to assess the sources of heterogeneity. In the current meta-analysis, a total of 41 articles were included. The overall pooled proportion of SBV in domestic and wild ruminants was 49 and 26%, respectively. Substantial heterogeneity was observed in studies on domestic ruminants (I2 = 99.7%; p < 0.01) and studies on wild ruminants (I2 = 97.9%; p < 0.01). The pooled prevalence of SBV was significantly associated with publication time, detection techniques, and species of animals. According to the subgroup analysis, the highest pooled prevalence of SBV was reported in cattle (59%), followed by sheep (37%) and goat (18%). In addition to the subgroup analysis based on publication year, the pooled prevalence of SBV infection has become endemic since 2013 (49%) among domestic animals in the world. Of the diagnostic tests used, the highest anti-SBV antibodies (66%) were detected by a virus neutralization test. In this meta-analysis, the major wild animals that were infected by SBV were red deer, roe deer, fallow deer, mouflon, and wild boar. The highest sub-pooled prevalence of SBV was found in roe deer (46%), followed by fallow deer (30%), red deer (27%), mouflon (22%), and wild boar (11%). In general, the prevalence of SBV was high in cattle among domestic ruminants and in roe deer among wild animals. According to the current information provided by this meta-analysis, evidence-based risk management measures should be established to restrict SBV spread in both domestic and wild ruminants.
Collapse
Affiliation(s)
- Melkie Dagnaw
- Department of Veterinary Clinical Medicine, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Atsede Solomon
- Department of Veterinary Pharmacy, College of Veterinary Medicine and Animal Science, University of Gondar, Gondar, Ethiopia
| | - Binyam Dagnew
- Department of Microbiology, College of Medicine and Health Science, University of Gondar, Gondar, Ethiopia
| |
Collapse
|
6
|
Ferrara G, Iovane V, Moje N, Improda E, Iovane G, Pagnini U, Montagnaro S. Cattle exposure to bubaline herpesvirus (BuHV-1) in Southern Italy: A hidden threat for IBR eradication? Prev Vet Med 2024; 224:106116. [PMID: 38271923 DOI: 10.1016/j.prevetmed.2024.106116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Revised: 11/27/2023] [Accepted: 01/08/2024] [Indexed: 01/27/2024]
Abstract
There is sufficient evidence that both bovine herpesvirus (BoHV-1) and bubaline herpesvirus (BuHV-1) can overcome the species barrier represented by their respective hosts, cattle and buffalo. Although several studies have focused on the impact of BoHV-1 on buffalo, little is known about the impact of BuHV-1 on cattle. In this work, we evaluated the seroprevalence of BuHV-1 in the cattle population in an area where intensive buffalo farming is highly developed (Campania region, Italy). BuHV-1 seroprevalence of cattle sampled in this study was estimated to be 21.4% using a specific commercial ELISA for the detection of antibodies against glycoprotein E of the virus. Risk factor assessment by univariate analysis revealed a correlation between housing type and higher prevalence. Similarly, cattle housed with buffalo and adult animals had a higher likelihood of being seropositive. BoHV-1 vaccination did not prove to be a protective factor against BuHV-1 exposure. The role of age, grazing, and co-living with buffalo in influencing BuHV-1 exposure was also confirmed by multivariate analysis. All BuHV-1 positive animals were also tested with cross-serum neutralization aimed at evaluating the specific antibody titers against BoHV-1 and BuHV-1. We, therefore, assessed the potential cross-reaction between BoHV-1 and BuHV-1, the co-infection rate, and the agreement of the assays used. This study described the presence of BuHV-1 in the cattle population of the Campania region (Italy) and indicated the requirement to take BuHV-1 into consideration for any measures and control and/or eradication plans to be applied against BoHV-1.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy.
| | - Valentina Iovane
- Department of Agricultural Sciences, University of Naples Federico II, 80055 Naples, Italy
| | - Nebyou Moje
- College of Veterinary Medicine and Agriculture, Addis Ababa University, Bishoftu, Ethiopia
| | - Elvira Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino n.1, 80137 Naples, Italy
| |
Collapse
|
7
|
Ferrara G, Improda E, Piscopo F, Esposito R, Iovane G, Pagnini U, Montagnaro S. Bluetongue virus seroprevalence and risk factor analysis in cattle and water buffalo in southern Italy (Campania region). Vet Res Commun 2024; 48:579-584. [PMID: 37682447 PMCID: PMC10810927 DOI: 10.1007/s11259-023-10215-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 08/31/2023] [Indexed: 09/09/2023]
Abstract
Bluetongue is an arthropod-borne viral infection that is notifiable in several countries and causes significant economic losses and major concerns for ruminant trade. In this study, we investigated bluetongue 1seroprevalence in the Campania region, southern Italy, in cattle and buffalo populations, and assessed which factors were correlated with a high risk of exposure. The infection was widespread, as evidenced by the high individual (43.6%) and herd prevalence (85.4%). The highest prevalence was found in adult animals. Among the climatic factors analyzed, average temperature played a prominent role, being capable of affecting the probability of being positive for this infection. Surprisingly, exposure to Schmallenberg virus did not predispose animals to be positive for bluetongue virus, even though these infections share the same vector (Culicoides). Our data, consistent with those in the literature, suggest the transversal spread of bluetongue virus in the Mediterranean area, and indicate a limited co-exposure rate between Bluetongue and Schmallenberg viruses.
Collapse
Affiliation(s)
- Gianmarco Ferrara
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy.
| | - Elvira Improda
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Federica Piscopo
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Riccardo Esposito
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Giuseppe Iovane
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Ugo Pagnini
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| | - Serena Montagnaro
- Department of Veterinary Medicine and Animal Productions, University of Naples Federico II, Via Federico Delpino N.1, 80137, Naples, Italy
| |
Collapse
|
8
|
Ogola EO, Bastos ADS, Slothouwer I, Getugi C, Osalla J, Omoga DCA, Ondifu DO, Sang R, Torto B, Junglen S, Tchouassi DP. Viral diversity and blood-feeding patterns of Afrotropical Culicoides biting midges (Diptera: Ceratopogonidae). Front Microbiol 2024; 14:1325473. [PMID: 38249470 PMCID: PMC10797016 DOI: 10.3389/fmicb.2023.1325473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 12/13/2023] [Indexed: 01/23/2024] Open
Abstract
Introduction Culicoides biting midges (Diptera: Ceratopogonidae) are vectors of arboviral pathogens that primarily affect livestock represented by Schmallenberg virus (SBV), epizootic hemorrhagic disease virus (EHDV) and bluetongue virus (BTV). In Kenya, studies examining the bionomic features of Culicoides including species diversity, blood-feeding habits, and association with viruses are limited. Methods Adult Culicoides were surveyed using CDC light traps in two semi-arid ecologies, Baringo and Kajiado counties, in Kenya. Blood-fed specimens were analysed through polymerase chain reaction (PCR) and sequencing of cytochrome oxidase subunit 1 (cox1) barcoding region. Culicoides pools were screened for virus infection by generic RT-PCR and next-generation sequencing (NGS). Results Analysis of blood-fed specimens confirmed that midges had fed on cattle, goats, sheep, zebra, and birds. Cox1 barcoding of the sampled specimens revealed the presence of known vectors of BTV and epizootic hemorrhagic disease virus (EHDV) including species in the Imicola group (Culicoides imicola) and Schultzei group (C. enderleni, C. kingi, and C. chultzei). Culicoides leucostictus and a cryptic species distantly related to the Imicola group were also identified. Screening of generated pools (11,006 individuals assigned to 333 pools) by generic RT-PCR revealed presence of seven phylogenetically distinct viruses grouping in the genera Goukovirus, Pacuvirus and Orthobunyavirus. The viruses showed an overall minimum infection rate (MIR) of 7.0% (66/333, 95% confidence interval (CI) 5.5-8.9). In addition, full coding sequences of two new iflaviruses, tentatively named Oloisinyai_1 and Oloisinyai_2, were generated by next-generation sequencing (NGS) from individual homogenate of Culicoides pool. Conclusion The results indicate a high genetic diversity of viruses in Kenyan biting midges. Further insights into host-vector-virus interactions as well as investigations on the potential clinical significance of the detected viruses are warranted.
Collapse
Affiliation(s)
- Edwin O. Ogola
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Armanda D. S. Bastos
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Inga Slothouwer
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Caroline Getugi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Josephine Osalla
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dorcus C. A. Omoga
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Dickens O. Ondifu
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Rosemary Sang
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| | - Baldwyn Torto
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Sandra Junglen
- Institute of Virology, Charité Universitätsmedizin Berlin, Corporate Member of Free University Berlin, Humboldt-University Berlin, and Berlin Institute of Health, Berlin, Germany
| | - David P. Tchouassi
- International Centre of Insect Physiology and Ecology (icipe), Nairobi, Kenya
| |
Collapse
|