1
|
Ren Z, Wang W, He X, Chu M. The Response of the miRNA Profiles of the Thyroid Gland to the Artificial Photoperiod in Ovariectomized and Estradiol-Treated Ewes. Animals (Basel) 2024; 15:11. [PMID: 39794954 PMCID: PMC11718883 DOI: 10.3390/ani15010011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 12/18/2024] [Accepted: 12/23/2024] [Indexed: 01/13/2025] Open
Abstract
The photoperiod has been considered to be a key environmental factor in sheep reproduction, and some studies have shown that the thyroid gland plays an important role in mammalian reproduction, but the molecular mechanism is still unclear. In this study, we used the artificial-light-controlled, ovariectomized, and estradiol-treated model (OVX + E2 model); healthy and consistent 2-3-year-old Sunite multiparous ewes were collected; and thyroids were collected for testing, combined with RNA-seq technology and bioinformatics analysis, to analyze the effects of different photoperiods (long photoperiod treatment for 42 days, LP42; short photoperiod treatment for 42 days, SP42; SP42 transferred to LP42, SPLP42) on the variations in the miRNA profiles of the thyroid gland. A total of 105 miRNAs were differentially expressed in the thyroid gland, most of which were new miRNAs. Through GO and KEGG enrichment analysis, the results showed that the photoperiod response characteristics of Sunite ewes were affected by Olfactory transduction, Wnt signaling pathways, and Apelin signaling pathways. A different illumination time may have a certain influence on the downstream of these pathways, which leads to the change in animal estrus state. In addition, lncRNA-mRNA-miRNA network analysis revealed the target binding sites of identified miRNAs in DE-circRNA and DE-mRNA, such as Novel_369, Novel_370, Novel_461, and so on. The results of this study will provide some new insights into the function of miRNA and the changes in sheep thyroid glands under different photoperiods.
Collapse
Affiliation(s)
| | | | | | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China; (Z.R.); (W.W.); (X.H.)
| |
Collapse
|
2
|
Richardson LS, Severino ME, Chauhan R, Zhang W, Kacerovsky M, Bhavnani SK, Menon R. Spatial transcriptomics of fetal membrane-Decidual interface reveals unique contributions by cell types in term and preterm births. PLoS One 2024; 19:e0309063. [PMID: 39159152 PMCID: PMC11332933 DOI: 10.1371/journal.pone.0309063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Accepted: 08/05/2024] [Indexed: 08/21/2024] Open
Abstract
During pregnancy, two fetomaternal interfaces, the placenta-decidua basalis and the fetal membrane-decidua parietals, allow for fetal growth and maturation and fetal-maternal crosstalk, and protect the fetus from infectious and inflammatory signaling that could lead to adverse pregnancy outcomes. While the placenta has been studied extensively, the fetal membranes have been understudied, even though they play critical roles in pregnancy maintenance and the initiation of term or preterm parturition. Fetal membrane dysfunction has been associated with spontaneous preterm birth (PTB, < 37 weeks gestation) and preterm prelabor rupture of the membranes (PPROM), which is a disease of the fetal membranes. However, it is unknown how the individual layers of the fetal membrane decidual interface (the amnion epithelium [AEC], the amnion mesenchyme [AMC], the chorion [CTC], and the decidua [DEC]) contribute to these pregnancy outcomes. In this study, we used a single-cell transcriptomics approach to unravel the transcriptomics network at spatial levels to discern the contributions of each layer of the fetal membranes and the adjoining maternal decidua during the following conditions: scheduled caesarian section (term not in labor [TNIL]; n = 4), vaginal term in labor (TIL; n = 3), preterm labor with and without rupture of membranes (PPROM; n = 3; and PTB; n = 3). The data included 18,815 genes from 13 patients (including TIL, PTB, PPROM, and TNIL) expressed across the four layers. After quality control, there were 11,921 genes and 44 samples. The data were processed by two pipelines: one by hierarchical clustering the combined cases and the other to evaluate heterogeneity within the cases. Our visual analytical approach revealed spatially recognized differentially expressed genes that aligned with four gene clusters. Cluster 1 genes were present predominantly in DECs and Cluster 3 centered around CTC genes in all labor phenotypes. Cluster 2 genes were predominantly found in AECs in PPROM and PTB, while Cluster 4 contained AMC and CTC genes identified in term labor cases. We identified the top 10 differentially expressed genes and their connected pathways (kinase activation, NF-κB, inflammation, cytoskeletal remodeling, and hormone regulation) per cluster in each tissue layer. An in-depth understanding of the involvement of each system and cell layer may help provide targeted and tailored interventions to reduce the risk of PTB.
Collapse
Affiliation(s)
- Lauren S. Richardson
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Mary Elise Severino
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
- Department of Physiology, College of Medicine, University of the Philippines Manila, Manila, Philippines
| | - Rahul Chauhan
- Sealy School of Medicine, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Weibin Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Faculty of Medicine in Hradec Kralove, Charles University, Hradec Kralove, Czechia
| | - Suresh K. Bhavnani
- Department of Epidemiology and Biostatistics, School of Public Health, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| | - Ramkumar Menon
- Division of Basic Science and Translational Research, Department of Obstetrics & Gynecology, The University of Texas Medical Branch at Galveston, Galveston, Texas, United States of America
| |
Collapse
|
3
|
Paquette A, Ahuna K, Hwang YM, Pearl J, Liao H, Shannon P, Kadam L, Lapehn S, Bucher M, Roper R, Funk C, MacDonald J, Bammler T, Baloni P, Brockway H, Mason WA, Bush N, Lewinn KZ, Karr CJ, Stamatoyannopoulos J, Muglia LJ, Jones H, Sadovsky Y, Myatt L, Sathyanarayana S, Price ND. A genome scale transcriptional regulatory model of the human placenta. SCIENCE ADVANCES 2024; 10:eadf3411. [PMID: 38941464 PMCID: PMC11212735 DOI: 10.1126/sciadv.adf3411] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2022] [Accepted: 05/28/2024] [Indexed: 06/30/2024]
Abstract
Gene regulation is essential to placental function and fetal development. We built a genome-scale transcriptional regulatory network (TRN) of the human placenta using digital genomic footprinting and transcriptomic data. We integrated 475 transcriptomes and 12 DNase hypersensitivity datasets from placental samples to globally and quantitatively map transcription factor (TF)-target gene interactions. In an independent dataset, the TRN model predicted target gene expression with an out-of-sample R2 greater than 0.25 for 73% of target genes. We performed siRNA knockdowns of four TFs and achieved concordance between the predicted gene targets in our TRN and differences in expression of knockdowns with an accuracy of >0.7 for three of the four TFs. Our final model contained 113,158 interactions across 391 TFs and 7712 target genes and is publicly available. We identified 29 TFs which were significantly enriched as regulators for genes previously associated with preterm birth, and eight of these TFs were decreased in preterm placentas.
Collapse
Affiliation(s)
- Alison Paquette
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Kylia Ahuna
- Oregon Health and Sciences University, Portland, OR, USA
| | | | | | - Hanna Liao
- University of Washington, Seattle, WA, USA
| | | | - Leena Kadam
- Oregon Health and Sciences University, Portland, OR, USA
| | | | - Matthew Bucher
- Oregon Health and Sciences University, Portland, OR, USA
| | - Ryan Roper
- Institute for Systems Biology, Seattle, WA, USA
| | - Cory Funk
- Institute for Systems Biology, Seattle, WA, USA
| | | | | | | | - Heather Brockway
- Department of Physiology and Aging, University of Florida, Gainesville, FL, USA
| | - W. Alex Mason
- University of Tennessee Health Sciences Center, Memphis, TN, USA
| | - Nicole Bush
- University of California San Francisco, San Francisco, CA, USA
| | - Kaja Z. Lewinn
- University of California San Francisco, San Francisco, CA, USA
| | | | | | - Louis J. Muglia
- The Burroughs Wellcome Fund, Research Triangle Park, NC, USA
- Cincinnati Children’s Hospital Medical Center and Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | | | - Yoel Sadovsky
- Magee Womens Research Institute, Pittsburgh, PA, USA
- University of Pittsburgh, Pittsburgh, PA, USA
| | - Leslie Myatt
- Oregon Health and Sciences University, Portland, OR, USA
| | - Sheela Sathyanarayana
- University of Washington, Seattle, WA, USA
- Seattle Children’s Research Institute, Seattle, WA, USA
| | - Nathan D. Price
- Institute for Systems Biology, Seattle, WA, USA
- Thorne HealthTech, New York City, NY, USA
| |
Collapse
|
4
|
Underhill LA, Mennella JM, Tollefson GA, Uzun A, Lechner BE. Transcriptomic analysis delineates preterm prelabor rupture of membranes from preterm labor in preterm fetal membranes. BMC Med Genomics 2024; 17:72. [PMID: 38443884 PMCID: PMC10916314 DOI: 10.1186/s12920-024-01841-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 02/28/2024] [Indexed: 03/07/2024] Open
Abstract
BACKGROUND Globally, preterm birth remains the leading cause of death in children younger than 5 years old. Spontaneous preterm birth is comprised of two events that may or may not occur simultaneously: preterm labor and preterm prelabor rupture of membranes (PPROM). To further explore the concept that spontaneous preterm birth can result from the initializing of two separate but overlapping pathological events, we compared fetal membrane tissue from preterm labor deliveries to fetal tissue from preterm labor with PPROM deliveries. We hypothesized that the fetal membrane tissue from preterm labor with PPROM cases will have an RNA-seq profile divergent from the fetal membrane tissue from preterm labor controls. METHODS Chorioamnion, separated into amnion and chorion, was collected from eight gestationally age-matched cases and controls within 15 min of birth, and analyzed using RNA sequencing. Pathway enrichment analyses and functional annotations of differentially expressed genes were performed using KEGG and Gene Ontogeny Pathway enrichment analyses. RESULTS A total of 1466 genes were differentially expressed in the amnion, and 484 genes were differentially expressed in the chorion (log2 fold change > 1, FDR < 0.05) in cases (preterm labor with PPROM), versus controls (preterm labor only). In the amnion, the most significantly enriched (FDR < 0.01) KEGG pathway among down-regulated genes was the extracellular matrix receptor interaction pathway. Seven of the most significantly enriched pathways were comprised of multiple genes from the COL family, including COL1A, COL3A1, COL4A4, and COL4A6. In the chorion, the most significantly enriched KEGG pathways in up-regulated genes were chemokine, NOD receptor, Toll-like receptor, and cytokine-cytokine receptor signaling pathways. Similarly, KEGG pathway enrichment analysis for up-regulated genes in the amnion included three inflammatory pathways: cytokine-cytokine interaction, TNF signaling and the CXCL family. Six genes were significantly up regulated in chorionic tissue discriminated between cases (preterm labor with PPROM) and controls (preterm labor only) including GBP5, CXCL9, ALPL, S100A8, CASP5 and MMP25. CONCLUSIONS In our study, transcriptome analysis of preterm fetal membranes revealed distinct differentially expressed genes for PPROM, separate from preterm labor. This study is the first to report transcriptome data that reflects the individual pathophysiology of amnion and chorion tissue from PPROM deliveries.
Collapse
Affiliation(s)
- Lori A Underhill
- Warren Alpert Medical School at Brown University, Providence, RI, USA.
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA.
- Women and Infants Hospital, 101 Dudley St, 02905, Providence, RI, USA.
| | - J M Mennella
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - G A Tollefson
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - A Uzun
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| | - B E Lechner
- Warren Alpert Medical School at Brown University, Providence, RI, USA
- Department of Pediatrics, Women and Infants Hospital, Providence, RI, USA
| |
Collapse
|
5
|
Mead EC, Wang CA, Phung J, Fu JY, Williams SM, Merialdi M, Jacobsson B, Lye S, Menon R, Pennell CE. The Role of Genetics in Preterm Birth. Reprod Sci 2023; 30:3410-3427. [PMID: 37450251 PMCID: PMC10692032 DOI: 10.1007/s43032-023-01287-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 06/09/2023] [Indexed: 07/18/2023]
Abstract
Preterm birth (PTB), defined as the birth of a child before 37 completed weeks gestation, affects approximately 11% of live births and is the leading cause of death in children under 5 years. PTB is a complex disease with multiple risk factors including genetic variation. Much research has aimed to establish the biological mechanisms underlying PTB often through identification of genetic markers for PTB risk. The objective of this review is to present a comprehensive and updated summary of the published data relating to the field of PTB genetics. A literature search in PubMed was conducted and English studies related to PTB genetics were included. Genetic studies have identified genes within inflammatory, immunological, tissue remodeling, endocrine, metabolic, and vascular pathways that may be involved in PTB. However, a substantial proportion of published data have been largely inconclusive and multiple studies had limited power to detect associations. On the contrary, a few large hypothesis-free approaches have identified and replicated multiple novel variants associated with PTB in different cohorts. Overall, attempts to predict PTB using single "-omics" datasets including genomic, transcriptomic, and epigenomic biomarkers have been mostly unsuccessful and have failed to translate to the clinical setting. Integration of data from multiple "-omics" datasets has yielded the most promising results.
Collapse
Affiliation(s)
- Elyse C Mead
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Carol A Wang
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
| | - Jason Phung
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia
| | - Joanna Yx Fu
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Mario Merialdi
- Maternal Newborn Health Innovations, Geneva, PBC, Switzerland
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Institute of Clinical Science, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Obstetrics and Gynaecology, Region Västra Götaland, Sahlgrenska University Hospital, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalization, Institute of Public Health, Oslo, Norway
| | - Stephen Lye
- Lunenfeld Tanenbaum Research Institute, Toronto, Ontario, Canada
| | - Ramkumar Menon
- Department of Obstetrics and Gynecology, Division of Basic Science and Translational Research, University of Texas Medical Branch, Galveston, TX, USA
| | - Craig E Pennell
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW, 2308, Australia.
- Hunter Medical Research Institute, Newcastle, NSW, 2305, Australia.
- Department of Maternity and Gynaecology, John Hunter Hospital, Newcastle, NSW, 2305, Australia.
| |
Collapse
|
6
|
Solé-Navais P, Flatley C, Steinthorsdottir V, Vaudel M, Juodakis J, Chen J, Laisk T, LaBella AL, Westergaard D, Bacelis J, Brumpton B, Skotte L, Borges MC, Helgeland Ø, Mahajan A, Wielscher M, Lin F, Briggs C, Wang CA, Moen GH, Beaumont RN, Bradfield JP, Abraham A, Thorleifsson G, Gabrielsen ME, Ostrowski SR, Modzelewska D, Nohr EA, Hypponen E, Srivastava A, Talbot O, Allard C, Williams SM, Menon R, Shields BM, Sveinbjornsson G, Xu H, Melbye M, Lowe W, Bouchard L, Oken E, Pedersen OB, Gudbjartsson DF, Erikstrup C, Sørensen E, Lie RT, Teramo K, Hallman M, Juliusdottir T, Hakonarson H, Ullum H, Hattersley AT, Sletner L, Merialdi M, Rifas-Shiman SL, Steingrimsdottir T, Scholtens D, Power C, West J, Nyegaard M, Capra JA, Skogholt AH, Magnus P, Andreassen OA, Thorsteinsdottir U, Grant SFA, Qvigstad E, Pennell CE, Hivert MF, Hayes GM, Jarvelin MR, McCarthy MI, Lawlor DA, Nielsen HS, Mägi R, Rokas A, Hveem K, Stefansson K, Feenstra B, Njolstad P, Muglia LJ, Freathy RM, Johansson S, Zhang G, Jacobsson B. Genetic effects on the timing of parturition and links to fetal birth weight. Nat Genet 2023; 55:559-567. [PMID: 37012456 PMCID: PMC10101852 DOI: 10.1038/s41588-023-01343-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 02/22/2023] [Indexed: 04/05/2023]
Abstract
The timing of parturition is crucial for neonatal survival and infant health. Yet, its genetic basis remains largely unresolved. We present a maternal genome-wide meta-analysis of gestational duration (n = 195,555), identifying 22 associated loci (24 independent variants) and an enrichment in genes differentially expressed during labor. A meta-analysis of preterm delivery (18,797 cases, 260,246 controls) revealed six associated loci and large genetic similarities with gestational duration. Analysis of the parental transmitted and nontransmitted alleles (n = 136,833) shows that 15 of the gestational duration genetic variants act through the maternal genome, whereas 7 act both through the maternal and fetal genomes and 2 act only via the fetal genome. Finally, the maternal effects on gestational duration show signs of antagonistic pleiotropy with the fetal effects on birth weight: maternal alleles that increase gestational duration have negative fetal effects on birth weight. The present study provides insights into the genetic effects on the timing of parturition and the complex maternal-fetal relationship between gestational duration and birth weight.
Collapse
Affiliation(s)
- Pol Solé-Navais
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
| | - Christopher Flatley
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | | | - Marc Vaudel
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Julius Juodakis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Jing Chen
- Division of Biomedical Informatics, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Triin Laisk
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Abigail L LaBella
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
| | - David Westergaard
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Methods and Analysis, Statistics Denmark, Copenhagen, Denmark
| | - Jonas Bacelis
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ben Brumpton
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Line Skotte
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Maria C Borges
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Øyvind Helgeland
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Anubha Mahajan
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Matthias Wielscher
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Frederick Lin
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Briggs
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Carol A Wang
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Gunn-Helen Moen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- University of Queensland Diamantina Institute, University of Queensland, Woolloongabba, Australia
| | - Robin N Beaumont
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Abin Abraham
- Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Maiken E Gabrielsen
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Sisse R Ostrowski
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - Dominika Modzelewska
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden
| | - Ellen A Nohr
- Research Unit of Gynecology and Obstetrics, Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Elina Hypponen
- Australian Centre for Precision Health, Uni Clinical & Health Sciences, University of South Australia, Adelaide, Australia
- South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Amit Srivastava
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Octavious Talbot
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Catherine Allard
- Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CHUS), Sherbrooke, Québec, Canada
| | - Scott M Williams
- Department of Population and Quantitative Health Sciences, School of Medicine, Case Western Reserve University, Cleveland, OH, USA
| | - Ramkumar Menon
- Department of Obstetrics and Gynaecology, University of Texas Medical Branch, Galveston, TX, USA
| | - Beverley M Shields
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | | | - Huan Xu
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Mads Melbye
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Genetics, Stanford University School of Medicine, Stanford, CA, USA
| | - William Lowe
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Luigi Bouchard
- Department of Biochemistry and Functional Genomics, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Québec, Canada
- Clinical Department of Laboratory Medicine, Centre intégré universitaire de santé et de services sociaux (CIUSSS) du Saguenay-Lac-St-Jean - Hôpital Universitaire de Chicoutimi, Saguenay, Québec, Canada
| | - Emily Oken
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Ole B Pedersen
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Immunology, Zealand University Hospital, Køge, Denmark
| | - Daniel F Gudbjartsson
- deCODE genetics/Amgen, Reykjavik, Iceland
- School of Engineering and Natural Sciences, University of Iceland, Reykjavik, Iceland
| | - Christian Erikstrup
- Department of Clinical Immunology, Aarhus University Hospital, Aarhus, Denmark
- Department of Clinical Medicine, Faculty of Health, University of Aarhus, Aarhus, Denmark
| | - Erik Sørensen
- Department of Clinical Immunology, Copenhagen University Hospital - Rigshospitalet, Copenhagen, Denmark
| | - Rolv T Lie
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
- Department of Global Public Health and Primary Care, University of Bergen, Bergen, Norway
| | - Kari Teramo
- Department of Obstetrics and Gynecology, Helsinki University Central Hospital, Helsinki, Finland
- University of Helsinki, Helsinki, Finland
| | - Mikko Hallman
- PEDEGO Research Unit and Medical Research Center Oulu, University of Oulu, Oulu, Finland
- Department of Children and Adolescents, Oulu University Hospital, Oulu, Finland
| | | | - Hakon Hakonarson
- The Center for Applied Genomics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Division of Human Genetics, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Division of Pulmonary Medicine, Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | | | - Andrew T Hattersley
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Line Sletner
- Department of Pediatric and Adolescents Medicine, Akershus University Hospital, Lørenskog, Norway
| | - Mario Merialdi
- Maternal Newborn Health Innovations, PBC, Geneva, Switzerland
| | - Sheryl L Rifas-Shiman
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
| | - Thora Steingrimsdottir
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
- Department of Obstetrics and Gynecology, Landspitali - The National University Hospital of Iceland, Reykjavik, Iceland
| | - Denise Scholtens
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Christine Power
- Population, Policy, Practice. Great Ormond Street Institute of Child Health, University College London, London, UK
| | - Jane West
- Bradford Institute for Health Research, Bradford Teaching Hospitals NHS Foundation Trust, Bradford, UK
| | - Mette Nyegaard
- Department of Health Science and Technology, Aalborg University, Aalborg, Denmark
| | - John A Capra
- Bakar Computational Health Sciences Institute and Department of Epidemiology and Statistics, University of California San Francisco, San Francisco, CA, USA
| | - Anne H Skogholt
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
| | - Per Magnus
- Centre for Fertility and Health, Norwegian Institute of Public Health, Oslo, Norway
| | - Ole A Andreassen
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- NORMENT Centre, University of Oslo, Oslo, Norway
- Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Unnur Thorsteinsdottir
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Struan F A Grant
- Department of Pediatrics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
- Center for Spatial and Functional Genomics Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Divisions of Human Genetics and Endocrinology and Diabetes, Children's Hospital of Philadelphia, Philadelphia, PA, USA
- Department of Genetics, The Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Elisabeth Qvigstad
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Department of Endocrinology, Morbid Obesity and Preventive Medicine, Oslo University Hospital, Oslo, Norway
| | - Craig E Pennell
- School of Medicine and Public Health, College of Health, Medicine and Wellbeing, The University of Newcastle, Callaghan, New South Wales, Australia
- Hunter Medical Research Institute, New Lambton Heights, New South Wales, Australia
| | - Marie-France Hivert
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, MA, USA
- Diabetes Unit, Massachusetts General Hospital, Boston, MA, USA
| | - Geoffrey M Hayes
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Marjo-Riitta Jarvelin
- Department of Epidemiology and Biostatistics, MRC-PHE Centre for Environment and Health, School of Public Health, Imperial College London, London, UK
- Center for Life Course Health Research, Faculty of Medicine, University of Oulu, Oulu, Finland
- Biocenter of Oulu, University of Oulu, Linnanmaa, Oulu, Finland
- Department of Life Sciences, College of Health and Life Sciences, Brunel University London, Uxbridge, UK
| | - Mark I McCarthy
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
- Genentech, South San Francisco, CA, USA
| | - Deborah A Lawlor
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Bristol Biomedical Research Centre, Bristol, UK
| | - Henriette S Nielsen
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital Hvidovre, Hvidovre, Denmark
- Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
- The Recurrent Pregnancy Loss Unit, The Capital Region, Copenhagen University Hospitals Rigshospitalet & Hvidovre Hospital, Hvidovre, Denmark
| | - Reedik Mägi
- Estonian Genome Centre, Institute of Genomics, University of Tartu, Tartu, Estonia
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN, USA
- Department of Biomedical Informatics, Vanderbilt University School of Medicine, Nashville, TN, USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN, USA
| | - Kristian Hveem
- K.G. Jebsen Center for Genetic Epidemiology, Department of Public Health and Nursing, Norwegian University of Science and Technology, Trondheim, Norway
- HUNT Research Centre, Department of Public Health and Nursing, Norwegian University of Science and Technology, Levanger, Norway
- Department of Medicine, Levanger Hospital, Nord-Trøndelag Hospital Trust, Levanger, Norway
| | - Kari Stefansson
- deCODE genetics/Amgen, Reykjavik, Iceland
- Faculty of Medicine, University of Iceland, Reykjavik, Iceland
| | - Bjarke Feenstra
- Department of Epidemiology Research, Statens Serum Institut, Copenhagen, Denmark
| | - Pål Njolstad
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Children and Youth Clinic, Haukeland University Hospital, Bergen, Norway
| | - Louis J Muglia
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Rachel M Freathy
- MRC Integrative Epidemiology Unit, University of Bristol, Bristol, UK
- Institute of Biomedical and Clinical Science, College of Medicine and Health, University of Exeter, Exeter, UK
| | - Stefan Johansson
- Center for Diabetes Research, Department of Clinical Science, University of Bergen, Bergen, Norway
- Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | - Ge Zhang
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, USA
- Division of Human Genetics, Center for the Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH, USA
| | - Bo Jacobsson
- Department of Obstetrics and Gynaecology, Sahlgrenska Academy, Institute of Clinical Science, University of Gothenburg, Gothenburg, Sweden.
- Department of Genetics and Bioinformatics, Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway.
| |
Collapse
|
7
|
Paquette AG, MacDonald J, Bammler T, Day DB, Loftus CT, Buth E, Mason WA, Bush NR, Lewinn KZ, Marsit C, Litch JA, Gravett M, Enquobahrie DA, Sathyanarayana S. Placental transcriptomic signatures of spontaneous preterm birth. Am J Obstet Gynecol 2023; 228:73.e1-73.e18. [PMID: 35868418 PMCID: PMC9790028 DOI: 10.1016/j.ajog.2022.07.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Revised: 07/01/2022] [Accepted: 07/09/2022] [Indexed: 01/26/2023]
Abstract
BACKGROUND Spontaneous preterm birth accounts for most preterm births and leads to significant morbidity in the newborn and childhood period. This subtype of preterm birth represents an increasing proportion of all preterm births when compared with medically indicated preterm birth, yet it is understudied in omics analyses. The placenta is a key regulator of fetal and newborn health, and the placental transcriptome can provide insight into pathologic changes that lead to spontaneous preterm birth. OBJECTIVE This analysis aimed to identify genes for which placental expression was associated with spontaneous preterm birth (including early preterm and late preterm birth). STUDY DESIGN The ECHO PATHWAYS consortium extracted RNA from placental samples collected from the Conditions Affecting Neurocognitive Development and Learning in Early Childhood and the Global Alliance to Prevent Prematurity and Stillbirth studies. Placental transcriptomic data were obtained by RNA sequencing. Linear models were fit to estimate differences in placental gene expression between term birth and spontaneous preterm birth (including gestational age subgroups defined by the American College of Obstetricians and Gynecologists). Models were adjusted for numerous confounding variables, including labor status, cohort, and RNA sequencing batch. This analysis excluded patients with induced labor, chorioamnionitis, multifetal gestations, or medical indications for preterm birth. Our combined cohort contained gene expression data for 14,023 genes in 48 preterm and 540 term samples. Genes and pathways were considered statistically significantly different at false discovery rate-adjusted P value of <.05. RESULTS In total, we identified 1728 genes for which placental expression was associated with spontaneous preterm birth with more differences in expression in early preterm samples than late preterm samples when compared with full-term samples. Of those, 9 genes were significantly decreased in both early and late spontaneous preterm birth, and the strongest associations involved placental expression of IL1B, ALPL, and CRLF1. In early and late preterm samples, we observed decreased expression of genes involved in immune signaling, signal transduction, and endocrine function. CONCLUSION This study provides a comprehensive assessment of the differences in the placental transcriptome associated with spontaneous preterm birth with robust adjustment for confounding. Results of this study are in alignment with the known etiology of spontaneous preterm birth, because we identified multiple genes and pathways for which the placental and chorioamniotic membrane expression was previously associated with prematurity, including IL1B. We identified decreased expression in key signaling pathways that are essential for placental growth and function, which may be related to the etiology of spontaneous preterm birth. We identified increased expression of genes within metabolic pathways associated exclusively with early preterm birth. These signaling and metabolic pathways may provide clinically targetable pathways and biomarkers. The findings presented here can be used to understand underlying pathologic changes in premature placentas, which can inform and improve clinical obstetrics practice.
Collapse
Affiliation(s)
- Alison G Paquette
- Center for Developmental Biology and Regenerative Medicine, Seattle Children's Research Institute, Seattle, WA; Department of Pediatrics, University of Washington, Seattle, WA.
| | - James MacDonald
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Theo Bammler
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA
| | - Christine T Loftus
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - Erin Buth
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA
| | - W Alex Mason
- Department of Preventative Medicine, University of Tennessee Health Science Center, Memphis, TN
| | - Nicole R Bush
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA; Department of Pediatrics, University of San Francisco, San Francisco, CA
| | - Kaja Z Lewinn
- Department of Psychiatry and Behavioral Sciences, University of San Francisco, San Francisco, CA
| | - Carmen Marsit
- Gangarosa Department of Environmental Health, Emory University, Atlanta, GA
| | - James A Litch
- Global Alliance to Prevent Preterm Birth and Stillbirth (GAPPS), Lynnwood, WA
| | - Michael Gravett
- Department of Obstetrics and Gynecology, University of Washington, Seattle, WA
| | | | - Sheela Sathyanarayana
- Department of Pediatrics, University of Washington, Seattle, WA; Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, WA; Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, Seattle, WA; Department of Epidemiology, University of Washington, Seattle, WA
| |
Collapse
|
8
|
Akram KM, Kulkarni NS, Brook A, Wyles MD, Anumba DOC. Transcriptomic analysis of the human placenta reveals trophoblast dysfunction and augmented Wnt signalling associated with spontaneous preterm birth. Front Cell Dev Biol 2022; 10:987740. [DOI: 10.3389/fcell.2022.987740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 10/13/2022] [Indexed: 11/13/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of death in under-five children. Worldwide, annually, over 15 million babies are born preterm and 1 million of them die. The triggers and mechanisms of spontaneous PTB remain largely unknown. Most current therapies are ineffective and there is a paucity of reliable predictive biomarkers. Understanding the molecular mechanisms of spontaneous PTB is crucial for developing better diagnostics and therapeutics. To address this need, we conducted RNA-seq transcriptomic analysis, qRT-PCR and ELISA on fresh placental villous tissue from 20 spontaneous preterm and 20 spontaneous term deliveries, to identify genes and signalling pathways involved in the pathogenesis of PTB. Our differential gene expression, gene ontology and pathway analysis revealed several dysregulated genes (including OCLN, OPTN, KRT7, WNT7A, RSPO4, BAMBI, NFATC4, SLC6A13, SLC6A17, SLC26A8 and KLF8) associated with altered trophoblast functions. We identified dysregulated Wnt, oxytocin and cellular senescence signalling pathways in preterm placentas, where augmented Wnt signalling could play a pivotal role in the pathogenesis of PTB due to its diverse biological functions. We also reported two novel targets (ITPR2 and MYLK2) in the oxytocin signalling pathways for further study. Through bioinformatics analysis on DEGs, we identified four key miRNAs, - miR-524-5p, miR-520d-5p, miR-15a-5p and miR-424-5p - which were significantly downregulated in preterm placentas. These miRNAs may have regulatory roles in the aberrant gene expressions that we have observed in preterm placentas. We provide fresh molecular insight into the pathogenesis of spontaneous PTB which may drive further studies to develop new predictive biomarkers and therapeutics.
Collapse
|
9
|
Östling H, Lodefalk M, Backman H, Kruse R. Global microRNA and protein expression in human term placenta. Front Med (Lausanne) 2022; 9:952827. [PMID: 36330066 PMCID: PMC9622934 DOI: 10.3389/fmed.2022.952827] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Accepted: 08/30/2022] [Indexed: 11/23/2022] Open
Abstract
Introduction Description of the global expression of microRNAs (miRNAs) and proteins in healthy human term placentas may increase our knowledge of molecular biological pathways that are important for normal fetal growth and development in term pregnancy. The aim of this study was to explore the global expression of miRNAs and proteins, and to point out functions of importance in healthy term placentas. Materials and methods Placental samples (n = 19) were identified in a local biobank. All samples were from uncomplicated term pregnancies with vaginal births and healthy, normal weight newborns. Next-generation sequencing and nano-scale liquid chromatographic tandem mass spectrometry were used to analyse miRNA and protein expression, respectively. Results A total of 895 mature miRNAs and 6,523 proteins were detected in the placentas, of which 123 miRNAs and 346 proteins were highly abundant. The miRNAs were in high degree mapped to chromosomes 19, 14, and X. Analysis of the highly abundant miRNAs and proteins showed several significantly predicted functions in common, including immune and inflammatory response, lipid metabolism and development of the nervous system. Discussion The predicted function inflammatory response may reflect normal vaginal delivery, while lipid metabolism and neurodevelopment may be important processes for the term fetus. The data presented in this study, with complete miRNA and protein findings, will enhance the knowledge base for future research in the field of placental function and pathology.
Collapse
Affiliation(s)
- Hanna Östling
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- *Correspondence: Hanna Östling,
| | - Maria Lodefalk
- Department of Paediatrics, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- University Health Care Research Center, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Helena Backman
- Department of Obstetrics and Gynaecology, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | - Robert Kruse
- iRiSC - Inflammatory Response and Infection Susceptibility Centre, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
- Department of Clinical Research Laboratory, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| |
Collapse
|
10
|
Wikström T, Abrahamsson S, Bengtsson‐Palme J, Ek J, Kuusela P, Rekabdar E, Lindgren P, Wennerholm U, Jacobsson B, Valentin L, Hagberg H. Microbial and human transcriptome in vaginal fluid at midgestation: Association with spontaneous preterm delivery. Clin Transl Med 2022; 12:e1023. [PMID: 36103557 PMCID: PMC9473488 DOI: 10.1002/ctm2.1023] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/03/2022] [Accepted: 08/08/2022] [Indexed: 11/24/2022] Open
Abstract
BACKGROUND Intrauterine infection and inflammation caused by microbial transfer from the vagina are believed to be important factors causing spontaneous preterm delivery (PTD). Multiple studies have examined the relationship between the cervicovaginal microbiome and spontaneous PTD with divergent results. Most studies have applied a DNA-based assessment, providing information on the microbial composition but not transcriptional activity. A transcriptomic approach was applied to investigate differences in the active vaginal microbiome and human transcriptome at midgestation between women delivering spontaneously preterm versus those delivering at term. METHODS Vaginal swabs were collected in women with a singleton pregnancy at 18 + 0 to 20 + 6 gestational weeks. For each case of spontaneous PTD (delivery <37 + 0 weeks) two term controls were randomized (39 + 0 to 40 + 6 weeks). Vaginal specimens were subject to sequencing of both human and microbial RNA. Microbial reads were taxonomically classified using Kraken2 and RefSeq as a reference. Statistical analyses were performed using DESeq2. GSEA and HUMAnN3 were used for pathway analyses. RESULTS We found 17 human genes to be differentially expressed (false discovery rate, FDR < 0.05) in the preterm group (n = 48) compared to the term group (n = 96). Gene expression of kallikrein-2 (KLK2), KLK3 and four isoforms of metallothioneins 1 (MT1s) was higher in the preterm group (FDR < 0.05). We found 11 individual bacterial species to be differentially expressed (FDR < 0.05), most with a low occurrence. No statistically significant differences in bacterial load, diversity or microbial community state types were found between the groups. CONCLUSIONS In our mainly white population, primarily bacterial species of low occurrence were differentially expressed at midgestation in women who delivered preterm versus at term. However, the expression of specific human transcripts including KLK2, KLK3 and several isoforms of MT1s was higher in preterm cases. This is of interest, because these genes may be involved in critical inflammatory pathways associated with spontaneous PTD.
Collapse
Affiliation(s)
- Tove Wikström
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Sanna Abrahamsson
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Johan Bengtsson‐Palme
- Department of Infectious DiseasesInstitute of BiomedicineSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Centre for Antibiotic Resistance Research (CARe) at University of GothenburgGothenburgSweden
- Division of Systems and Synthetic BiologyDepartment ofBiology and Biological EngineeringChalmers University of TechnologyGothenburgSweden
| | - Joakim Ek
- Institute of Neuroscience and PhysiologyDepartment of Physiology Sahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | | | - Elham Rekabdar
- Bioinformatics Core FacilitySahlgrenska AcademyUniversity of GothenburgGothenburgSweden
| | - Peter Lindgren
- Department of Clinical ScienceIntervention and TechnologyKarolinska InstitutetStockholmSweden
- Centre for Fetal MedicineKarolinska University HospitalStockholmSweden
| | - Ulla‐Britt Wennerholm
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Bo Jacobsson
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| | - Lil Valentin
- Department of Obstetrics and GynecologySkåne University HospitalMalmöSweden
- Department of Clinical Sciences MalmöLund UniversityLundSweden
| | - Henrik Hagberg
- Centre of Perinatal Medicine and HealthDepartment of Obstetrics and GynecologyInstitute of Clinical SciencesSahlgrenska AcademyUniversity of GothenburgGothenburgSweden
- Department of ObstetricsRegion Västra GötalandSahlgrenska University HospitalGothenburgSweden
| |
Collapse
|
11
|
Akram KM, Frost LI, Anumba DOC. Impaired autophagy with augmented apoptosis in a Th1/Th2-imbalanced placental micromilieu is associated with spontaneous preterm birth. Front Mol Biosci 2022; 9:897228. [PMID: 36090032 PMCID: PMC9460763 DOI: 10.3389/fmolb.2022.897228] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 07/28/2022] [Indexed: 12/09/2022] Open
Abstract
Background: Despite decades of research, the pathogenesis of spontaneous preterm birth (PTB) remains largely unknown. Limited currently available data on PTB pathogenesis are based on rodent models, which do not accurately reflect the complexity of the human placenta across gestation. While much study has focused on placental infection and inflammation associated with PTB, two key potentially important cellular events in the placenta-apoptosis and autophagy-remained less explored. Understanding the role of these processes in the human placenta may unravel currently ill-understood processes in the pathomechanism of PTB. Methods: To address this necessity, we conducted qRT-PCR and ELISA assays on placental villous tissue from 20 spontaneous preterm and 20 term deliveries, to assess the inter-relationships between inflammation, apoptosis, and autophagy in villous tissue in order to clarify their roles in the pathogenesis of PTB. Results: We found disrupted balance between pro-apoptotic BAX and anti-apoptotic BCL2 gene/protein expression in preterm placenta, which was associated with significant reduction of BCL2 and increase of BAX proteins along with upregulation of active CASP3 and CASP8 suggesting augmented apoptosis in PTB. In addition, we detected impaired autophagy in the same samples, evidenced by significant accumulation of autophagosome cargo protein p62/SQSTM1 in the preterm villous placentas, which was associated with simultaneous downregulation of an essential autophagy gene ATG7 and upregulation of Ca2+-activated cysteine protease CAPN1. Placental aggregation of p62 was inversely correlated with newborn birth weight, suggesting a potential link between placental autophagy impairment and fetal development. These two aberrations were detected in a micromilieu where the genes of the Th2 cytokines IL10 and IL13 were downregulated, suggesting an alteration in the Th1/Th2 immune balance in the preterm placenta. Conclusion: Taken together, our observations suggest that impaired autophagy and augmented apoptosis in a Th1/Th2 imbalanced placental micro-environment may be associated with the pathogenesis of spontaneous PTB.
Collapse
Affiliation(s)
| | | | - Dilly OC. Anumba
- Academic Unit of Reproductive and Developmental Medicine, Department of Oncology and Metabolism, The University of Sheffield, Sheffield, United Kingdom
| |
Collapse
|
12
|
Ali HES, Scoggin K, Murase H, Norris J, Menarim B, Dini P, Ball B. Transcriptomic and histochemical analysis reveal the complex regulatory networks in equine Chorioallantois during spontaneous term labor. Biol Reprod 2022; 107:1296-1310. [PMID: 35913756 DOI: 10.1093/biolre/ioac154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 07/20/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
The equine chorioallantois (CA) undergoes complex physical and biochemical changes during labor. However, the molecular mechanisms controlling these changes are still unclear. Therefore, the current study aimed to characterize the transcriptome of equine CA during spontaneous labor and compare it to that of normal preterm CA. Placental samples were collected postpartum from mares with normal term labor (TL group, n = 4) and from preterm not in labor mares (330 days GA; PTNL group, n = 4). Our study identified 4137 differentially expressed genes (DEGs) (1820 upregulated and 2317 downregulated) in CA during TL as compared to PTNL. TL was associated with the upregulation of several pro-inflammatory mediators (MHC-I, MHC-II, NLRP3, CXCL8, and MIF). Also, TL was associated with the upregulation of matrix metalloproteinase (MMP1, MMP2, MMP3, and MMP9) with subsequent extracellular matrix degradation and apoptosis, as reflected by upregulation of several apoptosis-related genes (ATF3, ATF4, FAS, FOS, and BIRC3). In addition, TL was associated with downregulation of 21 transcripts coding for collagens. The upregulation of proteases, along with the downregulation of collagens, is believed to be implicated in separation and rupture of the CA during TL. Additionally, TL was associated with downregulation of transcripts coding for proteins essential for progestin synthesis (SRD5A1 and AKR1C1) and angiogenesis (VEGFA and RTL1), as well as upregulation of prostaglandin synthesis-related genes (PTGS2 and PTGES), which could reflect the physiological switch in placental endocrinology and function during TL. In conclusion, our findings revealed the equine CA gene expression signature in spontaneous labor at term, which improves our understanding of the molecular mechanisms triggering labor.
Collapse
Affiliation(s)
- Hossam El-Sheikh Ali
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA.,Theriogenology Department, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Dakahlia, Egypt
| | - Kirsten Scoggin
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Harutaka Murase
- Equine Science Division, Hidaka Training and Research Center, Japan Racing Association, Hokkaido 057-0171, Japan
| | - Jamie Norris
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Bruno Menarim
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| | - Pouya Dini
- Department of Population Health and Reproduction, School of Veterinary Medicine, University of California, Davis, CA 95616, USA
| | - Barry Ball
- Gluck Equine Research Center, Department of Veterinary Science, University of Kentucky, Lexington, KY 40546, USA
| |
Collapse
|
13
|
Sobhani NC, Mernoff R, Abraha M, Okorie CN, Marquez-Magana L, Gaw SL, Robinson JF. Integrated analysis of transcriptomic datasets to identify placental biomarkers of spontaneous preterm birth. Placenta 2022; 122:66-73. [DOI: 10.1016/j.placenta.2022.03.122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 03/06/2022] [Accepted: 03/22/2022] [Indexed: 11/28/2022]
|
14
|
Belville C, Ponelle-Chachuat F, Rouzaire M, Gross C, Pereira B, Gallot D, Sapin V, Blanchon L. Physiological TLR4 regulation in human fetal membranes as an explicative mechanism of a pathological preterm case. eLife 2022; 11:71521. [PMID: 35119365 PMCID: PMC8816379 DOI: 10.7554/elife.71521] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 01/17/2022] [Indexed: 12/15/2022] Open
Abstract
The integrity of human fetal membranes is crucial for harmonious fetal development throughout pregnancy. Their premature rupture is often the consequence of a physiological phenomenon that has been exacerbated. Beyond all the implied biological processes, inflammation is of primary importance and is qualified as ‘sterile’ at the end of pregnancy. In this study, complementary methylomic and transcriptomic strategies on amnion and choriodecidua explants obtained from the altered (cervix zone) and intact fetal membranes at term and before labour were used. By cross-analysing genome-wide studies strengthened by in vitro experiments, we deciphered how the expression of toll-like receptor 4 (TLR4), an actor in pathological fetal membrane rupture, is controlled. Indeed, it is differentially regulated in the altered zone and between both layers by a dual mechanism: (1) the methylation of TLR4 and miRNA promoters and (2) targeting by miRNA (let-7a-2 and miR-125b-1) acting on the 3’-UTR of TLR4. Consequently, this study demonstrates that fine regulation of TLR4 is required for sterile inflammation establishment at the end of pregnancy and that it may be dysregulated in the pathological premature rupture of membranes.
Collapse
Affiliation(s)
- Corinne Belville
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Flora Ponelle-Chachuat
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Marion Rouzaire
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Christelle Gross
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| | - Bruno Pereira
- CHU Clermont-Ferrand, Biostatistics unit (DRCI) Department, clermont-ferrand, France
| | - Denis Gallot
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Obstetrics and Gynaecology Department, Clermont-ferrand, France
| | - Vincent Sapin
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France.,CHU Clermont-Ferrand, Biochemistry and Molecular Genetic Department, Clermont-Ferrand, France
| | - Loïc Blanchon
- Team 'Translational approach to epithelial injury and repair', iGReD, Université Clermont Auvergne, Clermont-ferrand, France
| |
Collapse
|
15
|
Li N, Hou R, Liu C, Yang T, Qiao C, Wei J. Integration of transcriptome and proteome profiles in placenta accreta reveals trophoblast over-migration as the underlying pathogenesis. Clin Proteomics 2021; 18:31. [PMID: 34963445 PMCID: PMC8903580 DOI: 10.1186/s12014-021-09336-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Accepted: 12/09/2021] [Indexed: 12/03/2022] Open
Abstract
Background Placenta accreta (PA) is a major cause of maternal morbidity and mortality in modern obstetrics, few studies have explored the underlying molecular mechanisms. Methods In our study, transcriptome and proteome profiling were performed in placental tissues from ten participants including five cases each in the PA and control groups to clarify the pathogenesis of PA. Results We identified differential expression of 37,743 transcripts and 160 proteins between the PA and control groups with an overlap rate of 0.09%. The 33 most-significant transcripts and proteins were found and further screened and analyzed. Adhesion-related signature, chemotaxis related signatures and immune related signature were found in the PA group and played a certain role. Sum up two points, three significant indicators, methyl-CpG-binding domain protein 2 (MeCP2), podocin (PODN), and apolipoprotein D (ApoD), which participate in “negative regulation of cell migration”, were downregulated at the mRNA and protein levels in PA group. Furthermore, transwell migration and invasion assay of HTR-8/SVneo cell indicated the all of them impaired the migration and invasion of trophoblast. Conclusion A poor correlation was observed between the transcriptome and proteome data and MeCP2, PODN, and ApoD decreased in transcriptome and proteome profiling, resulting in increased migration of trophoblasts in the PA group, which clarify the mechanism of PA and might be the biomarkers or therapy targets in the future. Supplementary Information The online version contains supplementary material available at 10.1186/s12014-021-09336-8.
Collapse
Affiliation(s)
- Na Li
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province; Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Rui Hou
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province; Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Caixia Liu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China.,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province; Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China
| | - Tian Yang
- Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Chong Qiao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province; Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China.
| | - Jun Wei
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, China. .,Key Laboratory of Maternal-Fetal Medicine of Liaoning Province; Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, China.
| |
Collapse
|
16
|
Labour classified by cervical dilatation & fetal membrane rupture demonstrates differential impact on RNA-seq data for human myometrium tissues. PLoS One 2021; 16:e0260119. [PMID: 34797869 PMCID: PMC8604334 DOI: 10.1371/journal.pone.0260119] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
High throughput sequencing has previously identified differentially expressed genes (DEGs) and enriched signalling networks in human myometrium for term (≥37 weeks) gestation labour, when defined as a singular state of activity at comparison to the non-labouring state. However, transcriptome changes that occur during transition from early to established labour (defined as ≤3 and >3 cm cervical dilatation, respectively) and potentially altered by fetal membrane rupture (ROM), when adapting from onset to completion of childbirth, remained to be defined. In the present study, we assessed whether differences for these two clinically observable factors of labour are associated with different myometrial transcriptome profiles. Analysis of our tissue (‘bulk’) RNA-seq data (NCBI Gene Expression Omnibus: GSE80172) with classification of labour into four groups, each compared to the same non-labour group, identified more DEGs for early than established labour; ROM was the strongest up-regulator of DEGs. We propose that lower DEGs frequency for early labour and/or ROM negative myometrium was attributed to bulk RNA-seq limitations associated with tissue heterogeneity, as well as the possibility that processes other than gene transcription are of more importance at labour onset. Integrative analysis with future data from additional samples, which have at least equivalent refined clinical classification for labour status, and alternative omics approaches will help to explain what truly contributes to transcriptomic changes that are critical for labour onset. Lastly, we identified five DEGs common to all labour groupings; two of which (AREG and PER3) were validated by qPCR and not differentially expressed in placenta and choriodecidua.
Collapse
|
17
|
Recknagel H, Carruthers M, Yurchenko AA, Nokhbatolfoghahai M, Kamenos NA, Bain MM, Elmer KR. The functional genetic architecture of egg-laying and live-bearing reproduction in common lizards. Nat Ecol Evol 2021; 5:1546-1556. [PMID: 34621056 DOI: 10.1038/s41559-021-01555-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 08/20/2021] [Indexed: 02/07/2023]
Abstract
All amniotes reproduce either by egg-laying (oviparity), which is ancestral to vertebrates or by live-bearing (viviparity), which has evolved many times independently. However, the genetic basis of these parity modes has never been resolved and, consequently, its convergence across evolutionary scales is currently unknown. Here, we leveraged natural hybridizations between oviparous and viviparous common lizards (Zootoca vivipara) to describe the functional genes and genetic architecture of parity mode and its key traits, eggshell and gestation length, and compared our findings across vertebrates. In these lizards, parity trait genes were associated with progesterone-binding functions and enriched for tissue remodelling and immune system pathways. Viviparity involved more genes and complex gene networks than did oviparity. Angiogenesis, vascular endothelial growth and adrenoreceptor pathways were enriched in the viviparous female reproductive tissue, while pathways for transforming growth factor were enriched in the oviparous. Natural selection on these parity mode genes was evident genome-wide. Our comparison to seven independent origins of viviparity in mammals, squamates and fish showed that genes active in pregnancy were related to immunity, tissue remodelling and blood vessel generation. Therefore, our results suggest that pre-established regulatory networks are repeatedly recruited for viviparity and that these are shared at deep evolutionary scales.
Collapse
Affiliation(s)
- Hans Recknagel
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Biotechnical Faculty, University of Ljubljana, Ljubljana, Slovenia
| | - Madeleine Carruthers
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,School of Biological Sciences, University of Bristol, Bristol, UK
| | - Andrey A Yurchenko
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.,Inserm U981, Gustave Roussy Cancer Campus, Université Paris Saclay, Villejuif, France
| | - Mohsen Nokhbatolfoghahai
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Nicholas A Kamenos
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, UK
| | - Maureen M Bain
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK
| | - Kathryn R Elmer
- Institute of Biodiversity, Animal Health and Comparative Medicine, College of Medical, Veterinary & Life Sciences, University of Glasgow, Glasgow, UK.
| |
Collapse
|
18
|
Paquette AG, MacDonald J, Lapehn S, Bammler T, Kruger L, Day DB, Price ND, Loftus C, Kannan K, Marsit C, Mason WA, Bush NR, LeWinn KZ, Enquobahrie DA, Prasad B, Karr CJ, Sathyanarayana S. A Comprehensive Assessment of Associations between Prenatal Phthalate Exposure and the Placental Transcriptomic Landscape. ENVIRONMENTAL HEALTH PERSPECTIVES 2021; 129:97003. [PMID: 34478338 PMCID: PMC8415559 DOI: 10.1289/ehp8973] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
BACKGROUND Phthalates are commonly used endocrine-disrupting chemicals that are ubiquitous in the general population. Prenatal phthalate exposure may alter placental physiology and fetal development, leading to adverse perinatal and childhood health outcomes. OBJECTIVE We examined associations between prenatal phthalate exposure in the second and third trimesters and the placental transcriptome at birth, including genes and long noncoding RNAs (lncRNAs), to gain insight into potential mechanisms of action during fetal development. METHODS The ECHO PATHWAYs consortium quantified 21 urinary phthalate metabolites from 760 women enrolled in the CANDLE study (Shelby County, TN) using high-performance liquid chromatography-tandem mass spectrometry. Placental transcriptomic data were obtained using paired-end RNA sequencing. Linear models were fitted to estimate separate associations between maternal urinary phthalate metabolite concentration during the second and third trimester and placental gene expression at birth, adjusted for confounding variables. Genes were considered differentially expressed at a Benjamini-Hochberg false discovery rate (FDR) p<0.05. Associations between phthalate metabolites and biological pathways were identified using self-contained gene set testing and considered significantly altered with an FDR-adjusted p<0.2. RESULTS We observed significant associations between second-trimester phthalate metabolites mono (carboxyisooctyl) phthalate (MCIOP), mono-2-ethyl-5-carboxypentyl phthalate, and mono-2-ethyl-5-oxohexyl phthalate and 18 genes in total, including four lncRNAs. Specifically, placental expression of NEAT1 was associated with multiple phthalate metabolites. Third-trimester MCIOP and mono-isobutyl phthalate concentrations were significantly associated with placental expression of 18 genes and two genes, respectively. Expression of genes within 27 biological pathways was associated with mono-methyl phthalate, MCIOP, and monoethyl phthalate concentrations. DISCUSSION To our knowledge, this is the first genome-wide assessment of the relationship between the placental transcriptome at birth and prenatal phthalate exposure in a large and diverse birth cohort. We identified numerous genes and lncRNAs associated with prenatal phthalate exposure. These associations mirror findings from other epidemiological and in vitro analyses and may provide insight into biological pathways affected in utero by phthalate exposure. https://doi.org/10.1289/EHP8973.
Collapse
Affiliation(s)
- Alison G. Paquette
- Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| | | | - Samantha Lapehn
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Theo Bammler
- University of Washington, Seattle, Washington, USA
| | - Laken Kruger
- Washington State University, Spokane, Washington, USA
| | - Drew B. Day
- Seattle Children’s Research Institute, Seattle, Washington, USA
| | - Nathan D. Price
- Institute For Systems Biology, Seattle, Washington, USA
- Onegevity Health, New York City, New York, USA
| | | | | | | | - W. Alex Mason
- University of Tennessee Health Sciences Center, Memphis, Tennessee, USA
| | - Nicole R. Bush
- University of California San Francisco, San Francisco California, USA
| | - Kaja Z. LeWinn
- University of California San Francisco, San Francisco California, USA
| | | | | | | | - Sheela Sathyanarayana
- Seattle Children’s Research Institute, Seattle, Washington, USA
- University of Washington, Seattle, Washington, USA
| |
Collapse
|
19
|
Yong HEJ, Chan SY. Current approaches and developments in transcript profiling of the human placenta. Hum Reprod Update 2021; 26:799-840. [PMID: 33043357 PMCID: PMC7600289 DOI: 10.1093/humupd/dmaa028] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND The placenta is the active interface between mother and foetus, bearing the molecular marks of rapid development and exposures in utero. The placenta is routinely discarded at delivery, providing a valuable resource to explore maternal-offspring health and disease in pregnancy. Genome-wide profiling of the human placental transcriptome provides an unbiased approach to study normal maternal–placental–foetal physiology and pathologies. OBJECTIVE AND RATIONALE To date, many studies have examined the human placental transcriptome, but often within a narrow focus. This review aims to provide a comprehensive overview of human placental transcriptome studies, encompassing those from the cellular to tissue levels and contextualize current findings from a broader perspective. We have consolidated studies into overarching themes, summarized key research findings and addressed important considerations in study design, as a means to promote wider data sharing and support larger meta-analysis of already available data and greater collaboration between researchers in order to fully capitalize on the potential of transcript profiling in future studies. SEARCH METHODS The PubMed database, National Center for Biotechnology Information and European Bioinformatics Institute dataset repositories were searched, to identify all relevant human studies using ‘placenta’, ‘decidua’, ‘trophoblast’, ‘transcriptome’, ‘microarray’ and ‘RNA sequencing’ as search terms until May 2019. Additional studies were found from bibliographies of identified studies. OUTCOMES The 179 identified studies were classifiable into four broad themes: healthy placental development, pregnancy complications, exposures during pregnancy and in vitro placental cultures. The median sample size was 13 (interquartile range 8–29). Transcriptome studies prior to 2015 were predominantly performed using microarrays, while RNA sequencing became the preferred choice in more recent studies. Development of fluidics technology, combined with RNA sequencing, has enabled transcript profiles to be generated of single cells throughout pregnancy, in contrast to previous studies relying on isolated cells. There are several key study aspects, such as sample selection criteria, sample processing and data analysis methods that may represent pitfalls and limitations, which need to be carefully considered as they influence interpretation of findings and conclusions. Furthermore, several areas of growing importance, such as maternal mental health and maternal obesity are understudied and the profiling of placentas from these conditions should be prioritized. WIDER IMPLICATIONS Integrative analysis of placental transcriptomics with other ‘omics’ (methylome, proteome and metabolome) and linkage with future outcomes from longitudinal studies is crucial in enhancing knowledge of healthy placental development and function, and in enabling the underlying causal mechanisms of pregnancy complications to be identified. Such understanding could help in predicting risk of future adversity and in designing interventions that can improve the health outcomes of both mothers and their offspring. Wider collaboration and sharing of placental transcriptome data, overcoming the challenges in obtaining sufficient numbers of quality samples with well-defined clinical characteristics, and dedication of resources to understudied areas of pregnancy will undoubtedly help drive the field forward.
Collapse
Affiliation(s)
- Hannah E J Yong
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore
| | - Shiao-Yng Chan
- Singapore Institute for Clinical Sciences, Agency for Science, Technology and Research, Singapore, Singapore.,Department of Obstetrics and Gynaecology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| |
Collapse
|
20
|
Pantham P, Armstrong DL, Bodnariuc J, Haupt O, Johnson AW, Underhill L, Iozzo RV, Lechner BE, Wildman DE. Transcriptomic profiling of fetal membranes of mice deficient in biglycan and decorin as a model of preterm birth†. Biol Reprod 2020; 104:611-623. [PMID: 33165521 DOI: 10.1093/biolre/ioaa205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 08/09/2020] [Accepted: 11/06/2020] [Indexed: 12/16/2022] Open
Abstract
Approximately, 25% of all preterm births are due to preterm premature rupture of membranes. Mice deficient in proteoglycans biglycan (Bgn) and decorin (Dcn) display abnormal fetal membranes and increased incidence of preterm birth. We conducted RNA-Seq to profile fetal membranes and identify molecular pathways that may lead to preterm birth in double knockout (DKO) mice (Bgn-/-; Dcn-/-) compared to wild-type (WT) at two different gestational stages, E12 and E18 (n = 3 in each group). 3264 transcripts were differentially regulated in E18 DKO vs. WT fetal membranes, and 96 transcripts differentially regulated in E12 DKO vs. WT fetal membranes (FDR < 0.05, log 2 FC ≥ 1). Differentially regulated transcripts in E18 DKO fetal membranes were significantly enriched for genes involved in cell cycle regulation, extracellular matrix-receptor interaction, and the complement cascade. Fifty transcripts involved in the cell cycle were altered in E18 DKO fetal membranes (40↓, 10↑, FDR < 0.05), including p21 and p57 (↑), and Tgfb2, Smad3, CycA, Cdk1, and Cdk2(↓). Thirty-one transcripts involved in the complement cascade were altered (11↓, 20↑, FDR < 0.05) in E18 DKO fetal membranes, including C1q, C2, and C3 (↑). Differentially expressed genes in the top three molecular pathways (1) showed evidence of negative or purifying selection, and (2) were significantly enriched (Z-score > 10) for transcription factor binding sites for Nr2f1 at E18. We propose that in DKO mice, cell cycle arrest results in lack of cell proliferation in fetal membranes, inability to contain the growing fetus, and preterm birth.
Collapse
Affiliation(s)
- Priyadarshini Pantham
- Department of Obstetrics, Gynecology, and Reproductive Sciences, University of California San Diego, La Jolla, CA, USA.,Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Don L Armstrong
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Jonathan Bodnariuc
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Owen Haupt
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Amy Wagoner Johnson
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, IL, USA
| | - Lori Underhill
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Renato V Iozzo
- Department of Pathology, Anatomy and Cell Biology, Sidney Kimmel Medical College at Thomas Jefferson University, Philadelphia, PA, USA
| | - Beatrice E Lechner
- Department of Pediatrics, Women and Infants' Hospital of Rhode Island, Warren Alpert Medical School of Brown University, Providence, RI, USA
| | - Derek E Wildman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL, USA.,Genomics Program, College of Public Health, University of South Florida, Tampa, FL, USA
| |
Collapse
|
21
|
Gerson KD, Haviland MJ, Neo D, Hecht JL, Baccarelli AA, Brennan KJM, Dereix AE, Ralston SJ, Hacker MR, Burris HH. Pregnancy-associated changes in cervical noncoding RNA. Epigenomics 2020; 12:1013-1025. [PMID: 32808540 PMCID: PMC7546170 DOI: 10.2217/epi-2019-0231] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 03/20/2020] [Indexed: 12/16/2022] Open
Abstract
Aim: To identify pregnancy-associated changes in cervical noncoding RNA (ncRNA), including miRNA and long noncoding RNA (lncRNA), and their potential effects on biologic processes. Materials & methods: We enrolled 21 pregnant women with term deliveries (≥37 weeks' gestation) in a prospective cohort and collected cervical swabs before 28 weeks' gestation. We enrolled 21 nonpregnant controls. We analyzed miRNA, lncRNA and mRNA expression, applying a Bonferroni correction. Results: Five miRNA and three lncRNA were significantly differentially (>twofold change) expressed. Putative miRNA targets are enriched in genes mediating organogenesis, glucocorticoid signaling, cell adhesion and ncRNA machinery. Conclusion: Differential cervical ncRNA expression occurs in the setting of pregnancy. Gene ontology classification reveals biological pathways through which miRNA may play a biologic role in normal pregnancy physiology.
Collapse
Affiliation(s)
- Kristin D Gerson
- Department of Obstetrics & Gynecology, Maternal Child Health Research Center, Center for Research on Reproduction & Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| | - Miriam J Haviland
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Dayna Neo
- Department of Obstetrics & Gynecology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
| | - Jonathan L Hecht
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Department of Pathology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrea A Baccarelli
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Kasey JM Brennan
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Alexandra E Dereix
- Department of Environmental Health, Columbia University Mailman School of Public Health, New York, NY 10032, USA
| | - Steven J Ralston
- Department of Obstetrics & Gynecology, Pennsylvania Hospital, Philadelphia, PA 19107, USA
- Department of Obstetrics & Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Michele R Hacker
- Department of Obstetrics & Gynecology, Maternal Child Health Research Center, Center for Research on Reproduction & Women's Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
- Department Obstetrics, Gynecology & Reproductive Biology, Harvard Medical School, Boston, MA 02115, USA
- Department of Epidemiology, Harvard TH Chan School of Public Health, Boston, MA 02115, USA
| | - Heather H Burris
- Department of Pediatrics, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Department of Pediatrics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
- Department of Neonatology, Beth Israel Deaconess Medical Center, Boston, MA 02215, USA
- Maternal Child Health Research Center, Center for Research on Reproduction & Women’s Health, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA 19104, USA
| |
Collapse
|
22
|
Cappelletti M, Presicce P, Kallapur SG. Immunobiology of Acute Chorioamnionitis. Front Immunol 2020; 11:649. [PMID: 32373122 PMCID: PMC7177011 DOI: 10.3389/fimmu.2020.00649] [Citation(s) in RCA: 59] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2019] [Accepted: 03/23/2020] [Indexed: 12/19/2022] Open
Abstract
Acute chorioamnionitis is characterized by neutrophilic infiltration and inflammation at the maternal fetal interface. It is a relatively common complication of pregnancy and can have devastating consequences including preterm labor, maternal infections, fetal infection/inflammation, fetal lung, brain, and gastrointestinal tract injury. In this review, we will discuss current understanding of the pathogenesis, immunobiology, and mechanisms of this condition. Most commonly, acute chorioamnionitis is a result of ascending infection with relatively low-virulence organisms such as the Ureaplasma species. Furthermore, recent vaginal microbiome studies suggest that there is a link between vaginal dysbiosis, vaginal inflammation, and ascending infection. Although less common, microorganisms invading the maternal-fetal interface via hematogenous route (e.g., Zika virus, Cytomegalovirus, and Listeria) can cause placental villitis and severe fetal inflammation and injury. We will provide an overview of the knowledge gleaned from different animal models of acute chorioamnionitis and the role of different immune cells in different maternal-fetal compartments. Lastly, we will discuss how infectious agents can break the maternal tolerance of fetal allograft during pregnancy and highlight the novel future therapeutic approaches.
Collapse
Affiliation(s)
- Monica Cappelletti
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Pietro Presicce
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| | - Suhas G Kallapur
- Divisions of Neonatology and Developmental Biology, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
23
|
Iacono D, Feltis GC. Impact of Apolipoprotein E gene polymorphism during normal and pathological conditions of the brain across the lifespan. Aging (Albany NY) 2020; 11:787-816. [PMID: 30677746 PMCID: PMC6366964 DOI: 10.18632/aging.101757] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2018] [Accepted: 01/05/2019] [Indexed: 12/12/2022]
Abstract
The central nervous system (CNS) is the cellular substrate for the integration of complex, dynamic, constant, and simultaneous interactions among endogenous and exogenous stimuli across the entire human lifespan. Numerous studies on aging-related brain diseases show that some genes identified as risk factors for some of the most common neurodegenerative diseases - such as the allele 4 of APOE gene (APOE4) for Alzheimer's disease (AD) - have a much earlier neuro-anatomical and neuro-physiological impact. The impact of APOE polymorphism appears in fact to start as early as youth and early-adult life. Intriguingly, though, those same genes associated with aging-related brain diseases seem to influence different aspects of the brain functioning much earlier actually, that is, even from the neonatal periods and earlier. The APOE4, an allele classically associated with later-life neurodegenerative disorders as AD, seems in fact to exert a series of very early effects on phenomena of neuroplasticity and synaptogenesis that begin from the earliest periods of life such as the fetal ones.We reviewed some of the findings supporting the hypothesis that APOE polymorphism is an early modifier of various neurobiological aspects across the entire human lifespan - from the in-utero to the centenarian life - during both normal and pathological conditions of the brain.
Collapse
Affiliation(s)
- Diego Iacono
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA.,MidAtlantic Neonatology Associates (MANA), Morristown, NJ 07960, USA.,Atlantic Neuroscience Institute, Atlantic Health System (AHS), Overlook Medical Center, Summit, NJ 07901, USA
| | - Gloria C Feltis
- Neuropathology Research, Biomedical Research Institute of New Jersey (BRInj), Cedar Knolls, NJ 07927, USA
| |
Collapse
|
24
|
Volozonoka L, Rots D, Kempa I, Kornete A, Rezeberga D, Gailite L, Miskova A. Genetic landscape of preterm birth due to cervical insufficiency: Comprehensive gene analysis and patient next-generation sequencing data interpretation. PLoS One 2020; 15:e0230771. [PMID: 32214361 PMCID: PMC7098624 DOI: 10.1371/journal.pone.0230771] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Accepted: 03/07/2020] [Indexed: 01/10/2023] Open
Abstract
Preterm delivery is both a traumatizing experience for the patient and a burden on the healthcare system. A condition distinguishable by its phenotype in prematurity is cervical insufficiency, where certain cases exhibit a strong genetic component. Despite genomic advancements, little is known about the genetics of human cervix remodeling during pregnancy. Using selected gene approaches, a few studies have demonstrated an association of common gene variants with cervical insufficiency. However, until now, no study has employed comprehensive methods to investigate this important subject matter. In this study, we asked: i) are there genes reliably linked to cervical insufficiency and, if so, what are their roles? and ii) what is the proportion of cases of non-syndromic cervical insufficiency attributable to these genetic variations? We performed next-generation sequencing on 21 patients with a clinical presentation of cervical insufficiency. To assist the sequencing data interpretation, we retrieved all known genes implicated in cervical functioning through a systematic literature analysis and additional gene searches. These genes were then classified according to their relation to the questions being posed by the study. Patients' sequence variants were filtered for pathogenicity and assigned a likelihood of being contributive to phenotype development. Gene extraction and analysis revealed 12 genes primarily linked to cervical insufficiency, the majority of which are known to cause collagenopathies. Ten patients carried disruptive variants potentially contributive to the development of non-syndromic cervical insufficiency. Pathway enrichment analysis of variant genes from our cohort revealed an increased variation burden in genes playing roles in tissue mechanical and biomechanical properties, i.e. collagen biosynthesis and cell-extracellular matrix communications. Consequently, the proposed idea of cervical insufficiency being a subtle form of collagenopathy, now strengthened by our genetic findings, might open up new opportunities for improved patient evaluation and management.
Collapse
Affiliation(s)
- Ludmila Volozonoka
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Dmitrijs Rots
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Inga Kempa
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Anna Kornete
- Department of Obstetrics and Gynecology, Riga Stradins University, Riga, Latvia
| | - Dace Rezeberga
- Department of Obstetrics and Gynecology, Riga Stradins University, Riga, Latvia
| | - Linda Gailite
- Scientific Laboratory of Molecular Genetics, Riga Stradins University, Riga, Latvia
| | - Anna Miskova
- Department of Obstetrics and Gynecology, Riga Stradins University, Riga, Latvia
| |
Collapse
|
25
|
Seiler C, Bayless NL, Vergara R, Pintye J, Kinuthia J, Osborn L, Matemo D, Richardson BA, John-Stewart G, Holmes S, Blish CA. Influenza-Induced Interferon Lambda Response Is Associated With Longer Time to Delivery Among Pregnant Kenyan Women. Front Immunol 2020; 11:452. [PMID: 32256497 PMCID: PMC7089959 DOI: 10.3389/fimmu.2020.00452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 02/27/2020] [Indexed: 12/21/2022] Open
Abstract
Specific causes of preterm birth remain unclear. Several recent studies have suggested that immune changes during pregnancy are associated with the timing of delivery, yet few studies have been performed in low-income country settings where the rates of preterm birth are the highest. We conducted a retrospective nested case-control evaluation within a longitudinal study among HIV-uninfected pregnant Kenyan women. To characterize immune function in these women, we evaluated unstimulated and stimulated peripheral blood mononuclear cells in vitro with the A/California/2009 strain of influenza to understand the influenza-induced immune response. We then evaluated transcript expression profiles using the Affymetrix Human GeneChip Transcriptome Array 2.0. Transcriptional profiles of sufficient quality for analysis were obtained from 54 women; 19 of these women delivered <34 weeks and were defined as preterm cases and 35 controls delivered >37 weeks. The median time to birth from sample collection was 13 weeks. No transcripts were significantly associated with preterm birth in a case-control study of matched term and preterm birth (n = 42 women). In the influenza-stimulated samples, expression of IFNL1 was associated with longer time to delivery-the amount of time between sample collection and delivery (n = 54 women). A qPCR analysis confirmed that influenza-induced IFNL expression was associated with longer time to delivery. These data indicate that during pregnancy, ex vivo influenza stimulation results in altered transcriptional response and is associated with time to delivery in cohort of women residing in an area with high preterm birth prevalence.
Collapse
Affiliation(s)
- Christof Seiler
- Department of Statistics, Stanford University, Stanford, CA, United States
- Department of Data Science and Knowledge Engineering, Maastricht University, Maastricht, Netherlands
| | - Nicholas L. Bayless
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
| | - Rosemary Vergara
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
| | - Jillian Pintye
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | | | | | | | - Barbra A. Richardson
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
- Department of Biostatistics, University of Washington, Seattle, WA, United States
| | - Grace John-Stewart
- Department of Global Health, University of Washington School of Medicine, Seattle, WA, United States
| | - Susan Holmes
- Department of Statistics, Stanford University, Stanford, CA, United States
| | - Catherine A. Blish
- Immunology Program, Stanford University School of Medicine, Stanford, CA, United States
- Department of Medicine, Stanford University School of Medicine, Stanford, CA, United States
- Chan Zuckerberg Biohub, San Francisco, CA, United States
| |
Collapse
|
26
|
Paquette AG, Shynlova O, Wu X, Kibschull M, Wang K, Price ND, Lye SJ. MicroRNA-transcriptome networks in whole blood and monocytes of women undergoing preterm labour. J Cell Mol Med 2019; 23:6835-6845. [PMID: 31342622 PMCID: PMC6787570 DOI: 10.1111/jcmm.14567] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Revised: 06/13/2019] [Accepted: 06/20/2019] [Indexed: 12/18/2022] Open
Abstract
Preterm birth is attributed to neonatal morbidity as well as cognitive and physiological challenges. We have previously identified significant differences in mRNA expression in whole blood and monocytes, as well as differences in miRNA concentration in blood plasma, extracellular vesicles (EV) and EV-depleted plasma in women undergoing spontaneous preterm labour (sPTL). The goal of this analysis was to identify differences in miRNA expression within whole blood (WB) and peripheral monocytes (PM) from the same population of women undergoing sPTL compared with non-labouring controls matched by gestational age. We performed single-end small RNA sequencing in whole blood and peripheral monocytes from women undergoing sPTL with active contractions (24-34 weeks of gestation, N = 15) matched for gestational age to healthy pregnant non-labouring controls (>37 weeks gestation, N = 30) who later delivered at term as a part of the Ontario Birth Study (Toronto, Ontario CA). We identified significant differences in expression of 16 miRNAs in PMs and nine miRNAs in WB in women undergoing sPTL. In PMs, these miRNAs were predicted targets of 541 genes, including 28 previously associated with sPTL. In WB, miRNAs were predicted to target 303 genes, including nine previously associated with sPTL. These genes were involved in a variety of immune pathways, including interleukin-2 signalling. This study is the first to identify changes in miRNA expression in WB and PMs of women undergoing sPTL. Our results shed light on potential mechanisms by which miRNAs may play a role in mediating systemic inflammatory response in pregnant women that deliver prematurely.
Collapse
Affiliation(s)
| | - Oksana Shynlova
- Program in Development and Fetal HealthLunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoONCanada
| | | | - Mark Kibschull
- Program in Development and Fetal HealthLunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoONCanada
| | - Kai Wang
- Institute for Systems BiologySeattleWAUSA
| | | | - Stephen J. Lye
- Program in Development and Fetal HealthLunenfeld‐Tanenbaum Research Institute, Sinai Health SystemTorontoONCanada
| |
Collapse
|
27
|
Paquette AG, Brockway HM, Price ND, Muglia LJ. Comparative transcriptomic analysis of human placentae at term and preterm delivery. Biol Reprod 2019; 98:89-101. [PMID: 29228154 PMCID: PMC5803773 DOI: 10.1093/biolre/iox163] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2017] [Accepted: 11/30/2017] [Indexed: 12/11/2022] Open
Abstract
Preterm birth affects 1 out of every 10 infants in the United States, resulting in substantial neonatal morbidity and mortality. Currently, there are few predictive markers and few treatment options to prevent preterm birth. A healthy, functioning placenta is essential to positive pregnancy outcomes. Previous studies have suggested that placental pathology may play a role in preterm birth etiology. Therefore, we tested the hypothesis that preterm placentae may exhibit unique transcriptomic signatures compared to term samples reflective of their abnormal biology leading to this adverse outcome. We aggregated publicly available placental villous microarray data to generate a preterm and term sample dataset (n = 133, 55 preterm placentae and 78 normal term placentae). We identified differentially expressed genes using the linear regression for microarray (LIMMA) package and identified perturbations in known biological networks using Differential Rank Conservation (DIRAC). We identified 129 significantly differentially expressed genes between term and preterm placenta with 96 genes upregulated and 33 genes downregulated (P-value <0.05). Significant changes in gene expression in molecular networks related to Tumor Protein 53 and phosphatidylinositol signaling were identified using DIRAC. We have aggregated a uniformly normalized transcriptomic dataset and have identified novel and established genes and pathways associated with developmental regulation of the placenta and potential preterm birth pathology. These analyses provide a community resource to integrate with other high-dimensional datasets for additional insights in normal placental development and its disruption.
Collapse
Affiliation(s)
| | - Heather M Brockway
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| | | | - Louis J Muglia
- Division of Human Genetics, Center for Prevention of Preterm Birth, Cincinnati Children's, Hospital Medical Center, Cincinnati, Ohio, USA
| |
Collapse
|
28
|
Smith SP, Phillips JB, Johnson ML, Abbot P, Capra JA, Rokas A. Genome-wide association analysis uncovers variants for reproductive variation across dog breeds and links to domestication. Evol Med Public Health 2019; 2019:93-103. [PMID: 31263560 PMCID: PMC6592264 DOI: 10.1093/emph/eoz015] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2018] [Accepted: 05/09/2019] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND AND OBJECTIVES The diversity of eutherian reproductive strategies has led to variation in many traits, such as number of offspring, age of reproductive maturity and gestation length. While reproductive trait variation has been extensively investigated and is well established in mammals, the genetic loci contributing to this variation remain largely unknown. The domestic dog, Canis lupus familiaris is a powerful model for studies of the genetics of inherited disease due to its unique history of domestication. To gain insight into the genetic basis of reproductive traits across domestic dog breeds, we collected phenotypic data for four traits, cesarean section rate, litter size, stillbirth rate and gestation length, from primary literature and breeders' handbooks. METHODOLOGY By matching our phenotypic data to genomic data from the Cornell Veterinary Biobank, we performed genome-wide association analyses for these four reproductive traits, using body mass and kinship among breeds as covariates. RESULTS We identified 12 genome-wide significant associations between these traits and genetic loci, including variants near CACNA2D3 with gestation length, MSRB3 and MSANTD1 with litter size, SMOC2 with cesarean section rate and UFM1 with stillbirth rate. A few of these loci, such as CACNA2D3 and MSRB3, have been previously implicated in human reproductive pathologies, whereas others have been associated with domestication-related traits, including brachycephaly (SMOC2) and coat curl (KRT71). CONCLUSIONS AND IMPLICATIONS We hypothesize that the artificial selection that gave rise to dog breeds also influenced the observed variation in their reproductive traits. Overall, our work establishes the domestic dog as a system for studying the genetics of reproductive biology and disease. LAY SUMMARY The genetic contributors to variation in mammalian reproductive traits remain largely unknown. We took advantage of the domestic dog, a powerful model system, to test for associations between genome-wide variants and four reproductive traits (cesarean section rate, litter size, stillbirth rate and gestation length) that vary extensively across breeds. We identified associations at a dozen loci, including ones previously associated with domestication-related traits, suggesting that selection on dog breeds also influenced their reproductive traits.
Collapse
Affiliation(s)
- Samuel P Smith
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02912, USA
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biological Sciences, Cumberland University, Lebanon, TN 37087, USA
| | - Maddison L Johnson
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37203, USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN 37203, USA
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
29
|
Christian LM. At the forefront of psychoneuroimmunology in pregnancy: Implications for racial disparities in birth outcomes PART 1: Behavioral risks factors. Neurosci Biobehav Rev 2019; 117:319-326. [PMID: 31005626 DOI: 10.1016/j.neubiorev.2019.04.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Birth prior to full term is a substantial public health issue. In the US, ˜400,000 babies per year are born preterm (<37 weeks), while>1 million are early term (37-386/7 weeks). Birth prior to full term confers risk both immediate and long term, including neonatal intensive care, decrements in school performance, and increased mortality risk from infancy through young adulthood. Risk for low birth weight and preterm birth are 1.5-2 times greater among African Americans versus Whites. Psychosocial stress related to being a member of a discriminated racial minority group contributes substantially to these racial disparities. Providing promising targets for intervention, depressed mood, anxiety, and poor sleep are each linked with exposure to chronic stress, including racial discrimination. A rigorous transdisciplinary approach addressing these gaps holds great promise for clinical impact in addressing racial disparities as well as ameliorating effects of stress on perinatal health more broadly. As will be reviewed in a companion paper, the mechanistic roles of physiological sequelae to stress - including neuroendocrine, inflammatory regulation, biological aging, and the microbiome - also require delineation.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, USA; Department of Psychology, The Ohio State University, Columbus, OH, USA; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, USA.
| |
Collapse
|
30
|
Pereyra S, Sosa C, Bertoni B, Sapiro R. Transcriptomic analysis of fetal membranes reveals pathways involved in preterm birth. BMC Med Genomics 2019; 12:53. [PMID: 30935390 PMCID: PMC6444860 DOI: 10.1186/s12920-019-0498-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Accepted: 03/10/2019] [Indexed: 12/21/2022] Open
Abstract
Background Preterm birth (PTB), defined as infant delivery before 37 weeks of completed gestation, results from the interaction of both genetic and environmental components and constitutes a complex multifactorial syndrome. Transcriptome analysis of PTB has proven challenging because of the multiple causes of PTB and the numerous maternal and fetal gestational tissues that must interact to facilitate parturition. The transcriptome of the chorioamnion membranes at the site of rupture in PTB and term fetuses may reflect the molecular pathways of preterm labor. Methods In this work, chorioamnion membranes from severe preterm and term fetuses were analyzed using RNA sequencing. Functional annotations and pathway analysis of differentially expressed genes were performed with the GAGE and GOSeq packages. A subset of differentially expressed genes in PTB was validated in a larger cohort using qRT-PCR and by comparing our results with genes and pathways previously reported in the literature. Results A total of 270 genes were differentially expressed (DE): 252 were upregulated and 18 were down-regulated in severe preterm births relative to term births. Inflammatory and immunological pathways were upregulated in PTB. Both types of pathways were previously suggested to lead to PTB. Pathways that were not previously reported in PTB, such as the hemopoietic pathway, appeared upregulated in preterm membranes. A group of 18 downregulated genes discriminated between term and severe preterm cases. These genes potentially characterize a severe preterm transcriptome pattern and therefore are candidate genes for understanding the syndrome. Some of the downregulated genes are involved in the nervous system, morphogenesis (WNT1, DLX5, PAPPA2) and ion channel complexes (KCNJ16, KCNB1), making them good candidates as biomarkers of PTB. Conclusions The identification of this DE gene pattern will help with the development of a multi-gene disease classifier. These markers were generated in an admixed South American population in which PTB has a high incidence. Since the genetic background may differentially impact different populations, it is necessary to include populations such as those from South America and Africa, which are usually excluded from high-throughput approaches. These classifiers should be compared to those in other populations to obtain a global landscape of PTB. Electronic supplementary material The online version of this article (10.1186/s12920-019-0498-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Silvana Pereyra
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay
| | - Claudio Sosa
- Clínica Ginecotologica "C", Centro Hospitalario Pereira Rossell, Facultad de Medicina, Universidad de la República, Bvar. General Artigas 1590, C:P.11600, Montevideo, Uruguay
| | - Bernardo Bertoni
- Departamento de Genética, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay
| | - Rossana Sapiro
- Departamento de Histología y Embriología, Facultad de Medicina, Universidad de la República, Av. General Flores 2125, C.P, 11800, Montevideo, Uruguay.
| |
Collapse
|
31
|
Christian LM. At the forefront of psychoneuroimmunology in pregnancy: Implications for racial disparities in birth outcomes: PART 2: Biological mechanisms. Neurosci Biobehav Rev 2019; 117:327-333. [PMID: 30885813 DOI: 10.1016/j.neubiorev.2019.03.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2018] [Revised: 02/26/2019] [Accepted: 03/14/2019] [Indexed: 10/27/2022]
Abstract
As reviewed in Part 1 of this two part review, birth prior to full term is a substantial public health issue. In the US, ˜400,000 babies per year are born preterm (< 37 weeks), while>1 million are early term (37-386/7 weeks) and remarkable racial disparities in shortened gestation are observed among African Americans as compared to Whites. Biomechanisms linking stressor exposures with birth outcomes are increasingly being explicated. The current paper reviews the mechanistic role of maternal biological functioning in the link between behavioral exposures and birth outcomes. These include the inter-related roles of neuroendocrine function, inflammatory regulation, biological aging, and the microbiome. An integrative approach which addresses both behavioral and biological factors within the same study, carefully considers the role of race/ethnicity, and rigorously defines birth outcomes (e.g., spontaneous versus medically-indicated and inclusive of early term birth) is needed to move research in this field toward better mechanistic understanding and clinical application.
Collapse
Affiliation(s)
- Lisa M Christian
- Department of Psychiatry & Behavioral Health, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA; The Institute for Behavioral Medicine Research, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA; Department of Psychology, The Ohio State University, Columbus, OH, 43210, USA; Department of Obstetrics and Gynecology, The Ohio State University Wexner Medical Center, Columbus, OH, 43210, USA.
| |
Collapse
|
32
|
Abstract
Preterm birth (PTB) complications are the leading cause of long-term morbidity and mortality in children. By using whole blood samples, we integrated whole-genome sequencing (WGS), RNA sequencing (RNA-seq), and DNA methylation data for 270 PTB and 521 control families. We analyzed this combined dataset to identify genomic variants associated with PTB and secondary analyses to identify variants associated with very early PTB (VEPTB) as well as other subcategories of disease that may contribute to PTB. We identified differentially expressed genes (DEGs) and methylated genomic loci and performed expression and methylation quantitative trait loci analyses to link genomic variants to these expression and methylation changes. We performed enrichment tests to identify overlaps between new and known PTB candidate gene systems. We identified 160 significant genomic variants associated with PTB-related phenotypes. The most significant variants, DEGs, and differentially methylated loci were associated with VEPTB. Integration of all data types identified a set of 72 candidate biomarker genes for VEPTB, encompassing genes and those previously associated with PTB. Notably, PTB-associated genes RAB31 and RBPJ were identified by all three data types (WGS, RNA-seq, and methylation). Pathways associated with VEPTB include EGFR and prolactin signaling pathways, inflammation- and immunity-related pathways, chemokine signaling, IFN-γ signaling, and Notch1 signaling. Progress in identifying molecular components of a complex disease is aided by integrated analyses of multiple molecular data types and clinical data. With these data, and by stratifying PTB by subphenotype, we have identified associations between VEPTB and the underlying biology.
Collapse
|
33
|
Vora NL, Parker JS, Mieckowski PA, Smeester L, Fry RC, Boggess KA. RNA-Sequencing of Umbilical Cord Blood to Investigate Spontaneous Preterm Birth: A Pilot Study. AJP Rep 2019; 9:e60-e66. [PMID: 30854245 PMCID: PMC6406026 DOI: 10.1055/s-0039-1678717] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 11/13/2018] [Indexed: 12/21/2022] Open
Abstract
Objective To analyze the transcriptomic gene expression of umbilical cord blood leukocytes using RNA-sequencing from preterm birth (PTB) and term birth (TB). Study Design Eight women with spontaneous PTB (sPTB) and eight women with unlabored TB were enrolled prospectively. The sPTB and TB cohorts were matched for maternal age, race, mode of delivery, and fetal sex. Cord blood RNA was extracted and a globin depletion protocol was applied, then sequenced on the Illumina HiSeq 4000. Raw read counts were analyzed with DESeq2 to test for gene expression differences between sPTB and TB. Results 148 genes had significant differential expression ( q < 0.01). Cell cycle/metabolism gene expression was significantly higher and immune/inflammatory signaling gene expression significantly lower in the sPTB cohort compared with term. In African American (AA) infants, 18 genes specific to cell signaling, neutrophil activity, and major histocompatibility complex type 1 had lower expression in preterm compared with term cohort; the opposite pattern was seen in non-Hispanic Whites (NHWs). Conclusion Compared with term, preterm fetuses have higher cell cycle/metabolism gene expression, suggesting metabolic focus on growth and development. Immune function gene expression in this pilot study is lower in the sPTB group compared with term and differs in AA compared with NHW infants.
Collapse
Affiliation(s)
- Neeta L Vora
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | - Joel S Parker
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Piotr A Mieckowski
- Department of Genetics, Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill, North Carolina
| | - Lisa Smeester
- Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Rebecca C Fry
- Department of Environmental Sciences and Engineering, University of North Carolina Gillings School of Global Public Health, Chapel Hill, North Carolina
| | - Kim A Boggess
- Department of Obstetrics and Gynecology, University of North Carolina School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Eidem HR, Steenwyk JL, Wisecaver JH, Capra JA, Abbot P, Rokas A. integRATE: a desirability-based data integration framework for the prioritization of candidate genes across heterogeneous omics and its application to preterm birth. BMC Med Genomics 2018; 11:107. [PMID: 30453955 PMCID: PMC6245874 DOI: 10.1186/s12920-018-0426-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 11/07/2018] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND The integration of high-quality, genome-wide analyses offers a robust approach to elucidating genetic factors involved in complex human diseases. Even though several methods exist to integrate heterogeneous omics data, most biologists still manually select candidate genes by examining the intersection of lists of candidates stemming from analyses of different types of omics data that have been generated by imposing hard (strict) thresholds on quantitative variables, such as P-values and fold changes, increasing the chance of missing potentially important candidates. METHODS To better facilitate the unbiased integration of heterogeneous omics data collected from diverse platforms and samples, we propose a desirability function framework for identifying candidate genes with strong evidence across data types as targets for follow-up functional analysis. Our approach is targeted towards disease systems with sparse, heterogeneous omics data, so we tested it on one such pathology: spontaneous preterm birth (sPTB). RESULTS We developed the software integRATE, which uses desirability functions to rank genes both within and across studies, identifying well-supported candidate genes according to the cumulative weight of biological evidence rather than based on imposition of hard thresholds of key variables. Integrating 10 sPTB omics studies identified both genes in pathways previously suspected to be involved in sPTB as well as novel genes never before linked to this syndrome. integRATE is available as an R package on GitHub ( https://github.com/haleyeidem/integRATE ). CONCLUSIONS Desirability-based data integration is a solution most applicable in biological research areas where omics data is especially heterogeneous and sparse, allowing for the prioritization of candidate genes that can be used to inform more targeted downstream functional analyses.
Collapse
Affiliation(s)
- Haley R. Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Jacob L. Steenwyk
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Jennifer H. Wisecaver
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biochemistry, Purdue University, West Lafayette, IN USA
| | - John A. Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN USA
- Department of Biomedical Informatics, Vanderbilt University, Nashville, TN USA
- Vanderbilt Genetics Institute, Vanderbilt University, Nashville, TN USA
| |
Collapse
|
35
|
Luyten LJ, Saenen ND, Janssen BG, Vrijens K, Plusquin M, Roels HA, Debacq-Chainiaux F, Nawrot TS. Air pollution and the fetal origin of disease: A systematic review of the molecular signatures of air pollution exposure in human placenta. ENVIRONMENTAL RESEARCH 2018; 166:310-323. [PMID: 29908461 DOI: 10.1016/j.envres.2018.03.025] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Revised: 03/13/2018] [Accepted: 03/14/2018] [Indexed: 05/24/2023]
Abstract
BACKGROUND Fetal development is a crucial window of susceptibility in which exposure-related alterations can be induced on the molecular level, leading to potential changes in metabolism and development. The placenta serves as a gatekeeper between mother and fetus, and is in contact with environmental stressors throughout pregnancy. This makes the placenta as a temporary organ an informative non-invasive matrix suitable to investigate omics-related aberrations in association with in utero exposures such as ambient air pollution. OBJECTIVES To summarize and discuss the current evidence and define the gaps of knowledge concerning human placental -omics markers in association with prenatal exposure to ambient air pollution. METHODS Two investigators independently searched the PubMed, ScienceDirect, and Scopus databases to identify all studies published until January 2017 with an emphasis on epidemiological research on prenatal exposure to ambient air pollution and the effect on placental -omics signatures. RESULTS From the initial 386 articles, 25 were retained following an a priori set inclusion and exclusion criteria. We identified eleven studies on the genome, two on the transcriptome, five on the epigenome, five on the proteome category, one study with both genomic and proteomic topics, and one study with both genomic and transcriptomic topics. Six studies discussed the triple relationship between exposure to air pollution during pregnancy, the associated placental -omics marker(s), and the potential effect on disease development later in life. So far, no metabolomic or exposomic data discussing associations between the placenta and prenatal exposure to air pollution have been published. CONCLUSIONS Integration of placental biomarkers in an environmental epidemiological context enables researchers to address fundamental questions essential in unraveling the fetal origin of disease and helps to better define the pregnancy exposome of air pollution.
Collapse
Affiliation(s)
- Leen J Luyten
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Nelly D Saenen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Bram G Janssen
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Karen Vrijens
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Michelle Plusquin
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium
| | - Harry A Roels
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Louvain Centre for Toxicology and Applied Pharmacology, Université catholique de Louvain, Brussels, Belgium
| | - Florence Debacq-Chainiaux
- Unité de Recherche en Biologie Cellulaire (URBC) - Namur Research Institute for Life Sciences (Narilis), University of Namur, Belgium
| | - Tim S Nawrot
- Centre for Environmental Sciences, Hasselt University, Hasselt, Belgium; Department of Public Health & Primary Care, Occupational and Environmental Medicine, Leuven University (KULeuven), Leuven, Belgium.
| |
Collapse
|
36
|
Zhang G, Srivastava A, Bacelis J, Juodakis J, Jacobsson B, Muglia LJ. Genetic studies of gestational duration and preterm birth. Best Pract Res Clin Obstet Gynaecol 2018; 52:33-47. [PMID: 30007778 PMCID: PMC6290110 DOI: 10.1016/j.bpobgyn.2018.05.003] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Revised: 04/18/2018] [Accepted: 05/04/2018] [Indexed: 01/12/2023]
Abstract
The fine control of birth timing is important to human survival and evolution. A key challenge in studying the mechanisms underlying the regulation of human birth timing is that human parturition is a unique to human event — animal models provide only limited information. The duration of gestation or the risk of preterm birth is a complex human trait under genetic control from both maternal and fetal genomes. Genomic discoveries through genome-wide association (GWA) studies would implicate relevant genes and pathways. Similar to other complex human traits, gestational duration is likely to be influenced by numerous genetic variants of small effect size. The detection of these small-effect genetic variants requires very large sample sizes. In addition, several practical and analytical challenges, in particular the involvement of both maternal and fetal genomes, further complicate the genetic studies of gestational duration and other pregnancy phenotypes. Despite these challenges, large-scale GWA studies have already identified several genomic loci associated with gestational duration or the risk of preterm birth. These genomic discoveries have revealed novel insights about the biology of human birth timing. Expanding genomic discoveries in larger datasets by more refined analytical approaches, together with the functional analysis of the identified genomic loci, will collectively elucidate the biological processes underlying the control of human birth timing.
Collapse
Affiliation(s)
- Ge Zhang
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA.
| | - Amit Srivastava
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA
| | - Jonas Bacelis
- Department of Obstetrics and Gynecology, Sahlgrenska University Hospital Östra (East), Gothenburg, Sweden
| | - Julius Juodakis
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Institute of Clinical Sciences, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden; Department of Genetics and Bioinformatics, Area of Health Data and Digitalisation, Norwegian Institute of Public Health, Oslo, Norway
| | - Louis J Muglia
- Division of Human Genetics, Cincinnati Children's Hospital Medical Center, USA; The Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, USA; March of Dimes Prematurity Research Center Ohio Collaborative, USA; Department of Pediatrics, University of Cincinnati College of Medicine, USA
| |
Collapse
|
37
|
Rinaldi SF, Makieva S, Saunders PT, Rossi AG, Norman JE. Immune cell and transcriptomic analysis of the human decidua in term and preterm parturition. Mol Hum Reprod 2018; 23:708-724. [PMID: 28962035 PMCID: PMC5909855 DOI: 10.1093/molehr/gax038] [Citation(s) in RCA: 44] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 08/14/2017] [Indexed: 12/11/2022] Open
Abstract
STUDY QUESTION Is labour, both at term and preterm, associated with alterations in decidual lymphocyte densities and widespread changes to the decidual transcriptome? SUMMARY ANSWER The onset of parturition, both at term and preterm, is associated with widespread gene expression changes in the decidua, many of which are related to inflammatory signalling, but is not associated with changes in the number of any of the decidual lymphocyte populations examined. WHAT IS KNOWN ALREADY Given its location, directly at the maternal–foetal interface, the decidua is likely to play a pivotal role in the onset of parturition, however, the molecular events occurring in the decidua in association with the onset of labour, both at term and preterm, remain relatively poorly defined. Using flow cytometry and microarray analysis, the present study aimed to investigate changes to the immune cell milieu of the decidua in association with the onset of parturition and define the decidual gene signature associated with term and preterm labour (PTL). STUDY DESIGN, SIZE, DURATION This study used decidual samples collected from 36 women across four clinical groups: term (38–42 weeks of gestation) not in labour, TNL; term in labour, TL; preterm (<35 weeks of gestation)not in labour, PTNL; and preterm in labour, PTL. PARTICIPANTS/MATERIALS, SETTING, METHODS Decidual lymphocytes were isolated from fresh decidual tissue collected from women in each of our four patient groups and stained with a panel of antibodies (CD45, CD3, CD19, CD56, CD4, CD8 and TCRVα24-Jα18) to investigate lymphocyte populations present in the decidua (TNL, n = 8; TL, n = 7; PTNL, n = 5; PTL, n = 5). RNA was extracted from decidual tissue and subjected to Illumina HT-12v4.0 BeadChip expression microarrays (TNL, n = 11; TL, n = 8; PTNL, n = 7; PTL, n = 10). Quantitative real-time PCR (qRT-PCR) was used to validate the microarray results. MAIN RESULTS AND THE ROLE OF CHANCE The relative proportions of decidual lymphocytes (T cells, NK cells, B cells and invariant natural killer (iNKT) cells) were unaffected by either gestation or labour status. However, we found elevated expression of the non-classical MHC-protein, CD1D, in PTL decidua samples (P < 0.05), suggesting the potential for increased activation of decidual invariant NKT (iNKT) cells in PTL. Both term and PTL were associated with widespread gene expression changes, particularly related to inflammatory signalling. Up-regulation of candidate genes in TL (IL-6, PTGS2, ATF3, IER3 and TNFAIP3) and PTL (CXCL8, MARCO, LILRA3 and PLAU) were confirmed by qRT-PCR analysis. LARGE SCALE DATA Microarray data are available at www.ebi.ac.uk/arrayexpress under accession number E-MTAB-5353. LIMITATIONS REASONS FOR CAUTION Whilst no changes in lymphocyte number were observed across our patient samples, we did not investigate the activation state of any of the immune cell sub-populations examined, therefore, it is possible that the function of these cells may be altered in association with labour onset. Additionally, the results of our transcriptomic analyses are descriptive and at this stage, we cannot prove direct causal link with the up-regulation of any of the genes examined and the onset of either term or PTL. WIDER IMPLICATIONS OF THE FINDINGS Our findings demonstrate that the onset of parturition is associated with widespread changes to the decidual transcriptome, and there are distinct gene expression changes associated with term and PTL. We confirmed that an inflammatory signature is present within the decidua, and we also report the up-regulation of several genes involved in regulating the inflammatory response. The identification of genes involved in regulating the inflammatory response may provide novel molecular targets for the development of new, more effective therapies for the prevention of preterm birth (PTB). Such targets are urgently required. STUDY FUNDING AND COMPETING INTEREST(S) This work was supported by Medical Research Council (grant number MR/L002657/1) and Tommy's, the baby charity. Jane Norman has had research grants from the charity Tommy's and from the National Institute for Health Research on PTB during the lifetime of this project. Jane Norman also sits on a data monitoring committee for GSK for a study on PTB prevention and her institution receives financial recompense for this. The other authors do not have any conflicts of interest to declare.
Collapse
Affiliation(s)
- S F Rinaldi
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - S Makieva
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| | - P T Saunders
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - A G Rossi
- MRC Centre for Inflammation Research, University of Edinburgh, Queen's Medical Research Institute, 47 Little France Crescent, Edinburgh EH16 4TJ, UK
| | - J E Norman
- MRC Centre for Reproductive Health and Tommy's Centre for Maternal and Fetal Health, University of Edinburgh, Queen's Medical Research Institute, Edinburgh, UK
| |
Collapse
|
38
|
Yarboro MT, Durbin MD, Herington JL, Shelton EL, Zhang T, Ebby CG, Stoller JZ, Clyman RI, Reese J. Transcriptional profiling of the ductus arteriosus: Comparison of rodent microarrays and human RNA sequencing. Semin Perinatol 2018; 42:212-220. [PMID: 29910032 PMCID: PMC6064668 DOI: 10.1053/j.semperi.2018.05.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
DA closure is crucial for the transition from fetal to neonatal life. This closure is supported by changes to the DA's signaling and structural properties that distinguish it from neighboring vessels. Examining transcriptional differences between these vessels is key to identifying genes or pathways responsible for DA closure. Several microarray studies have explored the DA transcriptome in animal models but varied experimental designs have led to conflicting results. Thorough transcriptomic analysis of the human DA has yet to be performed. A clear picture of the DA transcriptome is key to guiding future research endeavors, both to allow more targeted treatments in the clinical setting, and to understand the basic biology of DA function. In this review, we use a cross-species cross-platform analysis to consider all available published rodent microarray data and novel human RNAseq data in order to provide high priority candidate genes for consideration in future DA studies.
Collapse
Affiliation(s)
- Michael T. Yarboro
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN 37232
| | - Matthew D. Durbin
- Department of Pediatrics, Indiana University School of Medicine, Indianapolis, IN, 46202
| | - Jennifer L. Herington
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Elaine L. Shelton
- Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232,Department of Pharmacology, Vanderbilt University, Nashville, TN 37232
| | - Tao Zhang
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Cris G. Ebby
- Rutgers New Jersey Medical School, Newark, NJ 08901
| | - Jason Z. Stoller
- Department of Pediatrics, Perelman School of Medicine at the University of Pennsylvania, Children's Hospital of Philadelphia, Philadelphia, PA 19104
| | - Ronald I. Clyman
- Department of Pediatrics, Cardiovascular Research Institute, University of California San Francisco, San Francisco, CA 94143
| | - Jeff Reese
- Department of Cell and Developmental Biology, Vanderbilt University Medical Center, Vanderbilt University, 1125 Light Hall/MRB IV Bldg., 2215 B Garland Ave., Nashville, TN 37232; Division of Neonatology, Department of Pediatrics, Vanderbilt University Medical Center, Nashville, TN 37232.
| |
Collapse
|
39
|
Vora B, Wang A, Kosti I, Huang H, Paranjpe I, Woodruff TJ, MacKenzie T, Sirota M. Meta-Analysis of Maternal and Fetal Transcriptomic Data Elucidates the Role of Adaptive and Innate Immunity in Preterm Birth. Front Immunol 2018; 9:993. [PMID: 29867970 PMCID: PMC5954243 DOI: 10.3389/fimmu.2018.00993] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 04/20/2018] [Indexed: 12/27/2022] Open
Abstract
Preterm birth (PTB) is the leading cause of newborn deaths around the world. Spontaneous preterm birth (sPTB) accounts for two-thirds of all PTBs; however, there remains an unmet need of detecting and preventing sPTB. Although the dysregulation of the immune system has been implicated in various studies, small sizes and irreproducibility of results have limited identification of its role. Here, we present a cross-study meta-analysis to evaluate genome-wide differential gene expression signals in sPTB. A comprehensive search of the NIH genomic database for studies related to sPTB with maternal whole blood samples resulted in data from three separate studies consisting of 339 samples. After aggregating and normalizing these transcriptomic datasets and performing a meta-analysis, we identified 210 genes that were differentially expressed in sPTB relative to term birth. These genes were enriched in immune-related pathways, showing upregulation of innate immunity and downregulation of adaptive immunity in women who delivered preterm. An additional analysis found several of these differentially expressed at mid-gestation, suggesting their potential to be clinically relevant biomarkers. Furthermore, a complementary analysis identified 473 genes differentially expressed in preterm cord blood samples. However, these genes demonstrated downregulation of the innate immune system, a stark contrast to findings using maternal blood samples. These immune-related findings were further confirmed by cell deconvolution as well as upstream transcription and cytokine regulation analyses. Overall, this study identified a strong immune signature related to sPTB as well as several potential biomarkers that could be translated to clinical use.
Collapse
Affiliation(s)
- Bianca Vora
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States.,Department of Bioengineering and Therapeutic Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Aolin Wang
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States.,Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Idit Kosti
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| | - Hongtai Huang
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States.,Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Ishan Paranjpe
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Tracey J Woodruff
- Program on Reproductive Health and the Environment, Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, United States
| | - Tippi MacKenzie
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States.,Center for Maternal-Fetal Precision Medicine, University of California San Francisco, San Francisco, CA, United States.,Department of Surgery, University of California San Francisco, San Francisco, CA, United States
| | - Marina Sirota
- Institute for Computational Health Sciences, University of California San Francisco, San Francisco, CA, United States.,Department of Pediatrics, University of California San Francisco, San Francisco, CA, United States
| |
Collapse
|
40
|
Goldstein JA, Bastarache LA, Denny JC, Pulley JM, Aronoff DM. PregOMICS-Leveraging systems biology and bioinformatics for drug repurposing in maternal-child health. Am J Reprod Immunol 2018; 80:e12971. [PMID: 29726581 DOI: 10.1111/aji.12971] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 04/06/2018] [Indexed: 12/28/2022] Open
Abstract
Obstetric diseases remain underserved and understudied. Drug repurposing-utilization of a drug whose use is accepted in one condition for a different condition-could represent a rapid and low-cost way to identify new therapies that are known to be safe. In diseases of pregnancy, the known safety profile is a strong additional incentive. We describe the techniques and steps used in the use of 'omics data for drug repurposing. We illustrate these techniques using case studies of published drug repurposing projects. We provide a set of available databases with low barriers to entry which investigators can use to perform their own projects. The promise of 'omics techniques is unbiased screening, either of all drug targets or of all patients using particular drugs to find which are likely to alter disease risk or progression. However, we caution that reproducibility across the underlying studies, and thus the drugs suggested for repurposing, can be poor. We suggest that improved nosology, for example correlating patient clinical conditions with placental pathology, could yield more robust associations. We conclude that 'omics-driven drug repurposing represents a potential fruitful path to discover new, safe treatments of obstetric diseases.
Collapse
Affiliation(s)
- Jeffery A Goldstein
- Department of Pathology and Laboratory Medicine, Lurie Children's Hospital, Chicago, IL, USA
| | - Lisa A Bastarache
- Department of Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Joshua C Denny
- Department of Biomedical Informatics and Medicine, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Jill M Pulley
- Vanderbilt Institute of Clinical and Translational Research, Nashville, TN, USA
| | - David M Aronoff
- Section of Infectious Disease, Department of Medicine, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA.,Department of Obstetrics and Gynecology, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
41
|
Paquette AG, Shynlova O, Kibschull M, Price ND, Lye SJ. Comparative analysis of gene expression in maternal peripheral blood and monocytes during spontaneous preterm labor. Am J Obstet Gynecol 2018; 218:345.e1-345.e30. [PMID: 29305255 DOI: 10.1016/j.ajog.2017.12.234] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 12/07/2017] [Accepted: 12/27/2017] [Indexed: 10/18/2022]
Abstract
BACKGROUND Preterm birth is the leading cause of newborn death worldwide, and is associated with significant cognitive and physiological challenges in later life. There is a pressing need to define the mechanisms that initiate spontaneous preterm labor, and for development of novel clinical biomarkers to identify high-risk pregnancies. Most preterm birth studies utilize fetal tissues, and there is limited understanding of the transcriptional changes that occur in mothers undergoing spontaneous preterm labor. Earlier work revealed that a specific population of maternal peripheral leukocytes (macrophages/monocytes) play an active role in the initiation of labor. Thus, we hypothesized that there are dynamic gene expression changes in maternal blood leukocytes during preterm labor. OBJECTIVE Using next-generation sequencing we aim to characterize the transcriptome in whole blood leukocytes and peripheral monocytes of women undergoing spontaneous preterm labor compared to healthy pregnant women who subsequently delivered at full term. STUDY DESIGN RNA sequencing was performed in both whole blood and peripheral monocytes from women who underwent preterm labor (24-34 weeks of gestation, N = 20) matched for gestational age to healthy pregnant controls (N = 30). All participants were a part of the Ontario Birth Study cohort (Toronto, Ontario, Canada). RESULTS We identified significant differences in expression of 262 genes in peripheral monocytes and 184 genes in whole blood of women who were in active spontaneous preterm labor compared to pregnant women of the same gestational age not undergoing labor, with 43 of these genes differentially expressed in both whole blood and peripheral monocytes. ADAMTS2 expression was significantly increased in women actively undergoing spontaneous preterm labor, which we validated through digital droplet reverse transcriptase polymerase chain reaction. Intriguingly, we have also identified a number of gene sets including signaling by stem cell factor-KIT, nucleotide metabolism, and trans-Golgi network vesicle budding, which exhibited changes in relative gene expression that was predictive of preterm labor status in both maternal whole blood and peripheral monocytes. CONCLUSION This study is the first to investigate changes in both whole blood leukocytes and peripheral monocytes of women actively undergoing spontaneous preterm labor through robust transcript measurements from RNA sequencing. Our unique study design overcame confounding based on gestational age by collecting blood samples from women matched by gestational age, allowing us to study transcriptomic changes directly related to the active preterm parturition. We performed RNA profiling using whole genome sequencing, which is highly sensitive and allowed us to identify subtle changes in specific genes. ADAMTS2 expression emerged as a marker of prematurity within peripheral blood leukocytes, an accessible tissue that plays a functional role in signaling during the onset of labor. We identified changes in relative gene expression in a number of gene sets related to signaling in monocytes and whole blood of women undergoing spontaneous preterm labor compared to controls. These genes and pathways may help identify potential targets for the development of novel drugs for preterm birth prevention.
Collapse
|
42
|
Barnum CE, Fey JL, Weiss SN, Barila G, Brown AG, Connizzo BK, Shetye SS, Elovitz MA, Soslowsky LJ. Tensile Mechanical Properties and Dynamic Collagen Fiber Re-Alignment of the Murine Cervix are Dramatically Altered Throughout Pregnancy. J Biomech Eng 2017; 139:2621587. [PMID: 28418563 DOI: 10.1115/1.4036473] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Indexed: 12/26/2022]
Abstract
The cervix is a unique organ able to dramatically change its shape and function by serving as a physical barrier for the growing fetus and then undergoing dramatic dilation allowing for delivery of a term infant. As a result, the cervix endures changing mechanical forces from the growing fetus. There is an emerging concept that the cervix may change or remodel "early" in many cases of spontaneous preterm birth (sPTB). However, the mechanical role of the cervix in both normal and preterm birth remains unclear. Therefore, the primary objective of this study was to determine the mechanical and structural responses of murine cervical tissue throughout a normal gestational time course. In this study, both tissue structural and material properties were determined via a quasi-static tensile load-to-failure test, while simultaneously obtaining dynamic collagen fiber re-alignment via cross-polarization imaging. This study demonstrated that the majority of the mechanical properties evaluated decreased at midgestation and not just at term, while collagen fiber re-alignment occurred earlier in the loading curve for cervices at term. This suggests that although structural changes in the cervix occur throughout gestation, the differences in material properties function in combination with collagen fiber re-alignment as mechanical precursors to regulate term gestation. This work lays a foundation for investigating cervical biomechanics and the role of the cervix in preterm birth.
Collapse
Affiliation(s)
- Carrie E Barnum
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Jennifer L Fey
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Stephanie N Weiss
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Guillermo Barila
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Amy G Brown
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Brianne K Connizzo
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104;Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139
| | - Snehal S Shetye
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104
| | - Michal A Elovitz
- Maternal and Child Health Research Program, Department of Obstetrics and Gynecology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104
| | - Louis J Soslowsky
- McKay Orthopedic Research Laboratory, University of Pennsylvania, Philadelphia, PA 19104 e-mail:
| |
Collapse
|
43
|
Eidem HR, McGary KL, Capra JA, Abbot P, Rokas A. The transformative potential of an integrative approach to pregnancy. Placenta 2017; 57:204-215. [PMID: 28864013 DOI: 10.1016/j.placenta.2017.07.010] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 07/08/2017] [Accepted: 07/15/2017] [Indexed: 11/17/2022]
Abstract
BACKGROUND Complex traits typically involve diverse biological pathways and are shaped by numerous genetic and environmental factors. Pregnancy-associated traits and pathologies are further complicated by extensive communication across multiple tissues in two individuals, interactions between two genomes-maternal and fetal-that obscure causal variants and lead to genetic conflict, and rapid evolution of pregnancy-associated traits across mammals and in the human lineage. Given the multi-faceted complexity of human pregnancy, integrative approaches that synthesize diverse data types and analyses harbor tremendous promise to identify the genetic architecture and environmental influences underlying pregnancy-associated traits and pathologies. METHODS We review current research that addresses the extreme complexities of traits and pathologies associated with human pregnancy. RESULTS We find that successful efforts to address the many complexities of pregnancy-associated traits and pathologies often harness the power of many and diverse types of data, including genome-wide association studies, evolutionary analyses, multi-tissue transcriptomic profiles, and environmental conditions. CONCLUSION We propose that understanding of pregnancy and its pathologies will be accelerated by computational platforms that provide easy access to integrated data and analyses. By simplifying the integration of diverse data, such platforms will provide a comprehensive synthesis that transcends many of the inherent challenges present in studies of pregnancy.
Collapse
Affiliation(s)
- Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Kriston L McGary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - John A Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA.
| |
Collapse
|
44
|
The preterm cervix reveals a transcriptomic signature in the presence of premature prelabor rupture of membranes. Am J Obstet Gynecol 2017; 216:602.e1-602.e21. [PMID: 28209491 DOI: 10.1016/j.ajog.2017.02.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 01/31/2017] [Accepted: 02/06/2017] [Indexed: 12/25/2022]
Abstract
BACKGROUND Premature prelabor rupture of fetal membranes accounts for 30% of all premature births and is associated with detrimental long-term infant outcomes. Premature cervical remodeling, facilitated by matrix metalloproteinases, may trigger rupture at the zone of the fetal membranes overlying the cervix. The similarities and differences underlying cervical remodeling in premature prelabor rupture of fetal membranes and spontaneous preterm labor with intact membranes are unexplored. OBJECTIVES We aimed to perform the first transcriptomic assessment of the preterm human cervix to identify differences between premature prelabor rupture of fetal membranes and preterm labor with intact membranes and to compare the enzymatic activities of matrix metalloproteinases-2 and -9 between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. STUDY DESIGN Cervical biopsies were collected following preterm labor with intact membranes (n = 6) and premature prelabor rupture of fetal membranes (n = 5). Biopsies were also collected from reference groups at term labor (n = 12) or term not labor (n = 5). The Illumina HT-12 version 4.0 BeadChips microarray was utilized, and a novel network graph approach determined the specificity of changes between premature prelabor rupture of fetal membranes and preterm labor with intact membranes. Quantitative reverse transcription-polymerase chain reaction and Western blotting confirmed the microarray findings. Immunofluorescence was used for localization studies and gelatin zymography to assess matrix metalloproteinase activity. RESULTS PML-RARA-regulated adapter molecule 1, FYVE-RhoGEF and PH domain-containing protein 3 and carcinoembryonic antigen-ralated cell adhesion molecule 3 were significantly higher, whereas N-myc downstream regulated gene 2 was lower in the premature prelabor rupture of fetal membranes cervix when compared with the cervix in preterm labor with intact membranes, term labor, and term not labor. PRAM1 and CEACAM3 were localized to immune cells at the cervical stroma and NDRG2 and FGD3 were localized to cervical myofibroblasts. The activity of matrix metalloproteinase-9 was higher (1.22 ± 4.403-fold, P < .05) in the cervix in premature prelabor rupture of fetal membranes compared with preterm labor with intact membranes. CONCLUSION We identified 4 novel proteins with a potential role in the regulation of cervical remodeling leading to premature prelabor rupture of fetal membranes. Our findings contribute to the studies dissecting the mechanisms underlying premature prelabor rupture of fetal membranes and inspire further investigations toward the development of premature prelabor rupture of fetal membranes therapeutics.
Collapse
|
45
|
Newnham JP, Kemp MW, White SW, Arrese CA, Hart RJ, Keelan JA. Applying Precision Public Health to Prevent Preterm Birth. Front Public Health 2017; 5:66. [PMID: 28421178 PMCID: PMC5379772 DOI: 10.3389/fpubh.2017.00066] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2016] [Accepted: 03/17/2017] [Indexed: 12/12/2022] Open
Abstract
Preterm birth (PTB) is one of the major health-care challenges of our time. Being born too early is associated with major risks to the child with potential for serious consequences in terms of life-long disability and health-care costs. Discovering how to prevent PTB needs to be one of our greatest priorities. Recent advances have provided hope that a percentage of cases known to be related to risk factors may be amenable to prevention; but the majority of cases remain of unknown cause, and there is little chance of prevention. Applying the principle of precision public health may offer opportunities previously unavailable. Presented in this article are ideas that may improve our abilities in the fields of studying the effects of migration and of populations in transition, public health programs, tobacco control, routine measurement of length of the cervix in mid-pregnancy by ultrasound imaging, prevention of non-medically indicated late PTB, identification of pregnant women for whom treatment of vaginal infection may be of benefit, and screening by genetics and other “omics.” Opening new research in these fields, and viewing these clinical problems through a prism of precision public health, may produce benefits that will affect the lives of large numbers of people.
Collapse
Affiliation(s)
- John P Newnham
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Matthew W Kemp
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Scott W White
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia.,Department of Maternal Fetal Medicine, King Edward Memorial Hospital, Subiaco, WA, Australia
| | - Catherine A Arrese
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Roger J Hart
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| | - Jeffrey A Keelan
- School of Women's and Infants' Health, The University of Western Australia, Crawley, WA, Australia
| |
Collapse
|
46
|
El-Azzamy H, Balogh A, Romero R, Xu Y, LaJeunesse C, Plazyo O, Xu Z, Price TG, Dong Z, Tarca AL, Papp Z, Hassan SS, Chaiworapongsa T, Kim CJ, Gomez-Lopez N, Than NG. Characteristic Changes in Decidual Gene Expression Signature in Spontaneous Term Parturition. J Pathol Transl Med 2017; 51:264-283. [PMID: 28226203 PMCID: PMC5445200 DOI: 10.4132/jptm.2016.12.20] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2016] [Revised: 12/03/2016] [Accepted: 12/20/2016] [Indexed: 11/29/2022] Open
Abstract
Background The decidua has been implicated in the “terminal pathway” of human term parturition, which is characterized by the activation of pro-inflammatory pathways in gestational tissues. However, the transcriptomic changes in the decidua leading to terminal pathway activation have not been systematically explored. This study aimed to compare the decidual expression of developmental signaling and inflammation-related genes before and after spontaneous term labor in order to reveal their involvement in this process. Methods Chorioamniotic membranes were obtained from normal pregnant women who delivered at term with spontaneous labor (TIL, n = 14) or without labor (TNL, n = 15). Decidual cells were isolated from snap-frozen chorioamniotic membranes with laser microdissection. The expression of 46 genes involved in decidual development, sex steroid and prostaglandin signaling, as well as pro- and anti-inflammatory pathways, was analyzed using high-throughput quantitative real-time polymerase chain reaction (qRT-PCR). Chorioamniotic membrane sections were immunostained and then semi-quantified for five proteins, and immunoassays for three chemokines were performed on maternal plasma samples. Results The genes with the highest expression in the decidua at term gestation included insulin-like growth factor-binding protein 1 (IGFBP1), galectin-1 (LGALS1), and progestogen-associated endometrial protein (PAEP); the expression of estrogen receptor 1 (ESR1), homeobox A11 (HOXA11), interleukin 1β (IL1B), IL8, progesterone receptor membrane component 2 (PGRMC2), and prostaglandin E synthase (PTGES) was higher in TIL than in TNL cases; the expression of chemokine C-C motif ligand 2 (CCL2), CCL5, LGALS1, LGALS3, and PAEP was lower in TIL than in TNL cases; immunostaining confirmed qRT-PCR data for IL-8, CCL2, galectin-1, galectin-3, and PAEP; and no correlations between the decidual gene expression and the maternal plasma protein concentrations of CCL2, CCL5, and IL-8 were found. Conclusions Our data suggests that with the initiation of parturition, the decidual expression of anti-inflammatory mediators decreases, while the expression of pro-inflammatory mediators and steroid receptors increases. This shift may affect downstream signaling pathways that can lead to parturition.
Collapse
Affiliation(s)
- Haidy El-Azzamy
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Andrea Balogh
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Yi Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | | | - Olesya Plazyo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhonghui Xu
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Theodore G Price
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Zhong Dong
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Zoltan Papp
- Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary
| | - Sonia S Hassan
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Tinnakorn Chaiworapongsa
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Chong Jai Kim
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Pathology, Wayne State University, School of Medicine, Detroit, MI, USA.,Department of Pathology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA
| | - Nandor Gabor Than
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University, School of Medicine, Detroit, MI, USA.,Maternity Private Department, Kutvolgyi Clinical Block, Semmelweis University, Budapest, Hungary.,Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
47
|
Sõber S, Rull K, Reiman M, Ilisson P, Mattila P, Laan M. RNA sequencing of chorionic villi from recurrent pregnancy loss patients reveals impaired function of basic nuclear and cellular machinery. Sci Rep 2016; 6:38439. [PMID: 27929073 PMCID: PMC5143936 DOI: 10.1038/srep38439] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2016] [Accepted: 11/08/2016] [Indexed: 12/14/2022] Open
Abstract
Recurrent pregnancy loss (RPL) concerns ~3% of couples aiming at childbirth. In the current study, transcriptomes and miRNomes of 1st trimester placental chorionic villi were analysed for 2 RPL cases (≥6 miscarriages) and normal, but electively terminated pregnancies (ETP; n = 8). Sequencing was performed on Illumina HiSeq 2000 platform. Differential expression analyses detected 51 (27%) transcripts with increased and 138 (73%) with decreased expression in RPL compared to ETP (DESeq: FDR P < 0.1 and DESeq2: <0.05). RPL samples had substantially decreased transcript levels of histones, regulatory RNAs and genes involved in telomere, spliceosome, ribosomal, mitochondrial and intra-cellular signalling functions. Downregulated expression of HIST1H1B and HIST1H4A (Wilcoxon test, fc≤0.372, P≤9.37 × 10−4) was validated in an extended sample by quantitative PCR (RPL, n = 14; ETP, n = 24). Several upregulated genes are linked to placental function and pregnancy complications: ATF4, C3, PHLDA2, GPX4, ICAM1, SLC16A2. Analysis of the miRNA-Seq dataset identified no large disturbances in RPL samples. Notably, nearly 2/3 of differentially expressed genes have binding sites for E2F transcription factors, coordinating mammalian endocycle and placental development. For a conceptus destined to miscarriage, the E2F TF-family represents a potential key coordinator in reprogramming the placental genome towards gradually stopping the maintenance of basic nuclear and cellular functions.
Collapse
Affiliation(s)
- Siim Sõber
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Kristiina Rull
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Department of Obstetrics and Gynaecology, University of Tartu, L. Puusepa St. 8, Tartu 51014, Estonia.,Women's Clinic of Tartu University Hospital, L. Puusepa St. 8, Tartu 51014, Estonia
| | - Mario Reiman
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia
| | - Piret Ilisson
- Department of Genetics, United Laboratories of Tartu University Hospital, L. Puusepa St. 2, Tartu 51014, Estonia
| | - Pirkko Mattila
- The Institute for Molecular Medicine Finland (FIMM), Tukholmankatu 8, Helsinki FI-00014 Finland.,Finnish Red Cross Blood Service (FRCBS), Kivihaantie 7, Helsinki FI-00310, Finland
| | - Maris Laan
- Human Molecular Genetics Research Group, Institute of Molecular and Cell Biology, University of Tartu, Riia St. 23, 51010 Tartu, Estonia.,Institute of Biomedicine and Translational Medicine, University of Tartu, Ravila St. 19, 50412 Tartu, Estonia
| |
Collapse
|
48
|
Eidem HR, Rinker DC, Ackerman WE, Buhimschi IA, Buhimschi CS, Dunn-Fletcher C, Kallapur SG, Pavličev M, Muglia LJ, Abbot P, Rokas A. Comparing human and macaque placental transcriptomes to disentangle preterm birth pathology from gestational age effects. Placenta 2016; 41:74-82. [PMID: 27208410 DOI: 10.1016/j.placenta.2016.03.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Revised: 03/05/2016] [Accepted: 03/10/2016] [Indexed: 11/26/2022]
Abstract
INTRODUCTION A major issue in the transcriptomic study of spontaneous preterm birth (sPTB) in humans is the inability to collect healthy control tissue at the same gestational age (GA) to compare with pathologic preterm tissue. Thus, gene expression differences identified after the standard comparison of sPTB and term tissues necessarily reflect differences in both sPTB pathology and GA. One potential solution is to use GA-matched controls from a closely related species to tease apart genes that are dysregulated during sPTB from genes that are expressed differently as a result of GA effects. METHODS To disentangle genes whose expression levels are associated with sPTB pathology from those linked to GA, we compared RNA sequencing data from human preterm placentas, human term placentas, and rhesus macaque placentas at 80% completed gestation (serving as healthy non-human primate GA-matched controls). We first compared sPTB and term human placental transcriptomes to identify significantly differentially expressed genes. We then overlaid the results of the comparison between human sPTB and macaque placental transcriptomes to identify sPTB-specific candidates. Finally, we overlaid the results of the comparison between human term and macaque placental transcriptomes to identify GA-specific candidates. RESULTS Examination of relative expression for all human genes with macaque orthologs identified 267 candidate genes that were significantly differentially expressed between preterm and term human placentas. 29 genes were identified as sPTB-specific candidates and 37 as GA-specific candidates. Altogether, the 267 differentially expressed genes were significantly enriched for a variety of developmental, metabolic, reproductive, immune, and inflammatory functions. Although there were no notable differences between the functions of the 29 sPTB-specific and 37 GA-specific candidate genes, many of these candidates have been previously shown to be dysregulated in diverse pregnancy-associated pathologies. DISCUSSION By comparing human sPTB and term transcriptomes with GA-matched control transcriptomes from a closely related species, this study disentangled the confounding effects of sPTB pathology and GA, leading to the identification of 29 promising sPTB-specific candidate genes and 37 genes potentially related to GA effects. The apparent similarity in functions of the sPTB and GA candidates may suggest that the effects of sPTB and GA do not correspond to biologically distinct processes. Alternatively, it may reflect the poor state of knowledge of the transcriptional landscape underlying placental development and disease.
Collapse
Affiliation(s)
- Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - David C Rinker
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Program in Human Genetics, Vanderbilt University, Nashville, TN 37235, USA.
| | - William E Ackerman
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH 43210, USA.
| | - Irina A Buhimschi
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43210, USA.
| | - Catalin S Buhimschi
- Department of Obstetrics and Gynecology, The Ohio State University, Columbus, OH 43210, USA.
| | - Caitlin Dunn-Fletcher
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Suhas G Kallapur
- Center for Perinatal Research, Nationwide Children's Hospital, Columbus, OH 43210, USA.
| | - Mihaela Pavličev
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Louis J Muglia
- Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH 45229, USA.
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA.
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA; Program in Human Genetics, Vanderbilt University, Nashville, TN 37235, USA.
| |
Collapse
|
49
|
Kim M, Cooper BA, Venkat R, Phillips JB, Eidem HR, Hirbo J, Nutakki S, Williams SM, Muglia LJ, Capra JA, Petren K, Abbot P, Rokas A, McGary KL. GEneSTATION 1.0: a synthetic resource of diverse evolutionary and functional genomic data for studying the evolution of pregnancy-associated tissues and phenotypes. Nucleic Acids Res 2016; 44:D908-16. [PMID: 26567549 PMCID: PMC4702823 DOI: 10.1093/nar/gkv1137] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2015] [Revised: 09/30/2015] [Accepted: 10/16/2015] [Indexed: 01/24/2023] Open
Abstract
Mammalian gestation and pregnancy are fast evolving processes that involve the interaction of the fetal, maternal and paternal genomes. Version 1.0 of the GEneSTATION database (http://genestation.org) integrates diverse types of omics data across mammals to advance understanding of the genetic basis of gestation and pregnancy-associated phenotypes and to accelerate the translation of discoveries from model organisms to humans. GEneSTATION is built using tools from the Generic Model Organism Database project, including the biology-aware database CHADO, new tools for rapid data integration, and algorithms that streamline synthesis and user access. GEneSTATION contains curated life history information on pregnancy and reproduction from 23 high-quality mammalian genomes. For every human gene, GEneSTATION contains diverse evolutionary (e.g. gene age, population genetic and molecular evolutionary statistics), organismal (e.g. tissue-specific gene and protein expression, differential gene expression, disease phenotype), and molecular data types (e.g. Gene Ontology Annotation, protein interactions), as well as links to many general (e.g. Entrez, PubMed) and pregnancy disease-specific (e.g. PTBgene, dbPTB) databases. By facilitating the synthesis of diverse functional and evolutionary data in pregnancy-associated tissues and phenotypes and enabling their quick, intuitive, accurate and customized meta-analysis, GEneSTATION provides a novel platform for comprehensive investigation of the function and evolution of mammalian pregnancy.
Collapse
Affiliation(s)
- Mara Kim
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Brian A Cooper
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Rohit Venkat
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Julie B Phillips
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Haley R Eidem
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Sashank Nutakki
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Scott M Williams
- Department of Genetics, Geisel School of Medicine, Dartmouth College, Hanover, NH 03755, USA
| | - Louis J Muglia
- Center for Prevention of Preterm Birth, Perinatal Institute, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229, USA
| | - J Anthony Capra
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kenneth Petren
- Department of Biological Sciences, University of Cincinnati, Cincinnati, OH 45221, USA
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA Department of Biomedical Informatics, Vanderbilt University Medical Center, Nashville, TN 37235, USA
| | - Kriston L McGary
- Department of Biological Sciences, Vanderbilt University, Nashville, TN 37235, USA
| |
Collapse
|
50
|
Hirbo J, Eidem H, Rokas A, Abbot P. Integrating Diverse Types of Genomic Data to Identify Genes that Underlie Adverse Pregnancy Phenotypes. PLoS One 2015; 10:e0144155. [PMID: 26641094 PMCID: PMC4671692 DOI: 10.1371/journal.pone.0144155] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 11/14/2015] [Indexed: 11/18/2022] Open
Abstract
Progress in understanding complex genetic diseases has been bolstered by synthetic approaches that overlay diverse data types and analyses to identify functionally important genes. Pre-term birth (PTB), a major complication of pregnancy, is a leading cause of infant mortality worldwide. A major obstacle in addressing PTB is that the mechanisms controlling parturition and birth timing remain poorly understood. Integrative approaches that overlay datasets derived from comparative genomics with function-derived ones have potential to advance our understanding of the genetics of birth timing, and thus provide insights into the genes that may contribute to PTB. We intersected data from fast evolving coding and non-coding gene regions in the human and primate lineage with data from genes expressed in the placenta, from genes that show enriched expression only in the placenta, as well as from genes that are differentially expressed in four distinct PTB clinical subtypes. A large fraction of genes that are expressed in placenta, and differentially expressed in PTB clinical subtypes (23–34%) are fast evolving, and are associated with functions that include adhesion neurodevelopmental and immune processes. Functional categories of genes that express fast evolution in coding regions differ from those linked to fast evolution in non-coding regions. Finally, there is a surprising lack of overlap between fast evolving genes that are differentially expressed in four PTB clinical subtypes. Integrative approaches, especially those that incorporate evolutionary perspectives, can be successful in identifying potential genetic contributions to complex genetic diseases, such as PTB.
Collapse
Affiliation(s)
- Jibril Hirbo
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Haley Eidem
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Antonis Rokas
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
| | - Patrick Abbot
- Department of Biological Sciences, Vanderbilt University, Box 35164 Station B, Nashville, TN, 37235–1634, United States of America
- * E-mail:
| |
Collapse
|