1
|
Chitteti R, Zuniga-Hertz JP, Masso-Silva JA, Shin J, Niesman I, Bojanowski CM, Kumar AJ, Hepokoski M, Crotty Alexander LE, Patel HH, Roth DM. E-cigarette-induced changes in cell stress and mitochondrial function. Free Radic Biol Med 2025; 228:329-338. [PMID: 39756490 DOI: 10.1016/j.freeradbiomed.2025.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/22/2024] [Accepted: 01/02/2025] [Indexed: 01/07/2025]
Abstract
Inhaling aerosols from electronic nicotine delivery systems, such as e-cigarettes (e-cigs), may pose health risks beyond those caused by nicotine intake. Exposure to e-cig aerosols can lead to the release of exosomes and metabolites into the bloodstream, potentially affecting mitochondrial physiology across the body, leading to chronic inflammatory diseases. In this study we assessed the effects of e-cig use by young healthy human subjects on the circulating exosome profile and markers of cell stress, and also defined the effects of e-cig user plasma on mitochondrial function in endothelial cells (EA. Hy 926) and epithelial cells (A549) via adoptive transfer. E-cig users had altered plasma exosome profiles, with significantly increased levels of cell free mitochondrial DNA (mtDNA), protein carbonyls, and 4-HNE relative to non-users. Plasma from e-cig users decreased maximal mitochondrial respiration and spare capacity of cells, while also increasing metabolic stress, as evidenced by changes in mitochondrial phenotype from basal to stressed in both endothelial and epithelial cells, which was corroborated by electron microscopy demonstrating structural changes in mitochondria. Mitochondrial membrane potential (MMP) and reactive oxygen species (ROS) levels significantly increased in e-cig plasma-subjected cells. Overall, we identified alterations in plasma exosome profiles and increased markers of mitochondrial stress in e-cig users and evidence that circulating factors within plasma from e-cig users drives metabolic stress in endothelial and epithelial cells. Our results imply that e-cig use adversely affects mitochondrial function, leading to stress and potentially chronic inflammation across the body.
Collapse
Affiliation(s)
- Ramamurthy Chitteti
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA.
| | - Juan Pablo Zuniga-Hertz
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - Jorge A Masso-Silva
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - John Shin
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Ingrid Niesman
- San Diego State University, Electron Microscope Facility, 5500 Campanile Dr, San Diego, CA, 92182, USA
| | - Christine M Bojanowski
- Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA; Division of Pulmonary and Critical Care, Tulane University, New Orleans, LA, USA
| | - Avnee J Kumar
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Mark Hepokoski
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Laura E Crotty Alexander
- VA San Diego Healthcare System, San Diego, CA, USA; Division of Pulmonary, Critical Care and Sleep Medicine, University of California San Diego, USA
| | - Hemal H Patel
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| | - David M Roth
- VA San Diego Healthcare System, San Diego, CA, USA; Department of Anesthesiology, School of Medicine, University of California San Diego, USA
| |
Collapse
|
2
|
Li D, Xie Z, Shaikh SB, Rahman I. Altered expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. Sci Rep 2025; 15:2714. [PMID: 39837838 PMCID: PMC11751386 DOI: 10.1038/s41598-025-85373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 01/02/2025] [Indexed: 01/23/2025] Open
Abstract
Little is known about how exclusive e-cigarette use affects exosomal microRNA (miRNA) expression, which is crucial in inflammation and disease processes like cancer. We compared exosomal miRNA profiles between exclusive e-cigarette users and non-users. We used plasma samples from 15 exclusive e-cigarette users and 15 non-users from the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014) and sequenced miRNAs with Illumina NextSeq 500/550. We performed differential analyses using DESeq2 in R/Bioconductor, adjusting for race, and conducted gene enrichment analyses on target genes regulated by significant miRNAs. Further, molecular-based techniques using the miRNA mimics and inhibitors were applied for the validation of the expressions of the miRNAs in vitro. We identified four miRNAs that were upregulated in exclusive e-cigarette users compared to non-users: hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p, after adjusting for the confounding effects of race. However, none of the miRNAs remained statistically significant after controlling for the false discovery rate (FDR) at 5%. Subgroup analysis of White participants only identified four miRNAs (hsa-miR-100-5p, hsa-miR-125b-5p, hsa-miR-200b-3p, and hsa-miR-99a-5p) that were also upregulated in e-cigarette users with one miRNA hsa-miR-200b-3p remaining statistical significance after controlling for the FDR at 5%. GO enrichment analysis showed that these miRNAs are involved in processes like transcription regulation and cellular protein modification. KEGG pathway analysis indicated their involvement in cancer pathways, including small cell lung cancer, renal cell carcinoma, and signaling pathways (neurotrophin, ErbB, PI3K-Akt, FoxO, Hippo, MAPK, TGF-beta). Overexpression of hsa-miR-125b-5p promoted DNA damage in bronchial epithelial cells. These findings suggest an elevation of carcinogenic cellular signaling pathways in exclusive e-cigarette users.
Collapse
Affiliation(s)
- Dongmei Li
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US.
| | - Zidian Xie
- Department of Clinical and Translational Research, University of Rochester Medical Center, Rochester, NY, US
| | - Sadiya Bi Shaikh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, US
| |
Collapse
|
3
|
Rocchetti F, Tenore G, Macali F, Vicidomini T, Podda GM, Fantozzi PJ, Silvestri V, Porzio V, Valentini V, Ottini L, Richetta AG, Valentini V, Della Monaca M, Grenga C, Polimeni A, Romeo U. Expression Analysis of Circulating microRNAs in Saliva and Plasma for the Identification of Clinically Relevant Biomarkers for Oral Squamous Cell Carcinoma and Oral Potentially Malignant Disorders. Cancers (Basel) 2024; 16:2990. [PMID: 39272848 PMCID: PMC11394426 DOI: 10.3390/cancers16172990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/10/2024] [Accepted: 08/23/2024] [Indexed: 09/15/2024] Open
Abstract
This study aims to evaluate the expression of salivary and plasmatic miRNAs as diagnostic biomarkers in patients with oral squamous cell carcinoma (OSCC) and oral potentially malignant disorders (OPMDs). A total of 25 patients were divided into three groups, according to their diagnosis: OSCC patients (n = 14); OPMDs patients (n = 6); and healthy controls (n = 5). At the time at diagnosis/enrolment, patients underwent salivary and plasmatic collection. The expression of miRNA -21, -31, -138, -145, -184, and -424 were evaluated by real-time PCR. An F-test and ANOVA test were performed to evaluate the miRNA levels (significance at p < 0.05). By comparing miRNA expression levels from saliva, a statistically significant difference emerged in the expression of miR-138 and miR-424 between the three groups (p < 0.05). In particular, these two miRNAs showed decreased expression levels in saliva samples from OSCC and OPMD patients compared to those from healthy controls. On the other hand, miRNA expression levels in plasma were low in all the groups, and no statistically significant differences were found. Overall, our results showed that liquid biopsy from saliva may be a useful tool for the identification of diagnostic molecular biomarkers in OSCC and OPMDs.
Collapse
Affiliation(s)
- Federica Rocchetti
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gianluca Tenore
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Federica Macali
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Teresa Vicidomini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Gian Marco Podda
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Paolo Junior Fantozzi
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentina Silvestri
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Porzio
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Virginia Valentini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Laura Ottini
- Department of Molecular Medicine, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonio Giovanni Richetta
- Department of Internal Medicine and Medical Specialties, Sapienza University of Rome, 00161 Rome, Italy
| | - Valentino Valentini
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Marco Della Monaca
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Camilla Grenga
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Antonella Polimeni
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| | - Umberto Romeo
- Department of Oral and Maxillofacial Sciences, Sapienza University of Rome, 00161 Rome, Italy
| |
Collapse
|
4
|
Besaratinia A, Tommasi S. The Untapped Biomarker Potential of MicroRNAs for Health Risk-Benefit Analysis of Vaping vs. Smoking. Cells 2024; 13:1330. [PMID: 39195220 PMCID: PMC11352591 DOI: 10.3390/cells13161330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/29/2024] Open
Abstract
Despite the popularity of electronic cigarettes (e-cigs) among adolescent never-smokers and adult smokers seeking a less pernicious substitute for tobacco cigarettes, the long-term health impact of vaping is largely unknown. Like cigarette smoke, e-cig vapor contains harmful and potentially harmful compounds, although in fewer numbers and at substantially lower concentrations. Many of the same constituents of e-cig vapor and cigarette smoke induce epigenetic changes that can lead to the dysregulation of disease-related genes. MicroRNAs (MiRNAs) are key regulators of gene expression in health and disease states. Extensive research has shown that miRNAs play a prominent role in the regulation of genes involved in the pathogenesis of smoking-related diseases. However, the use of miRNAs for investigating the disease-causing potential of vaping has not been fully explored. This review article provides an overview of e-cigs as a highly consequential electronic nicotine delivery system, describes trends in e-cig use among adolescents and adults, and discusses the ongoing debate on the public health impact of vaping. Highlighting the significance of miRNAs in cell biology and disease, it summarizes the published and ongoing research on miRNAs in relation to gene regulation and disease pathogenesis in e-cig users and in vitro experimental settings. It identifies gaps in knowledge and priorities for future research while underscoring the need for empirical evidence that can inform the regulation of tobacco products to protect youth and promote public health.
Collapse
Affiliation(s)
- Ahmad Besaratinia
- Department of Population & Public Health Sciences, USC Keck School of Medicine, University of Southern California, M/C 9603, Los Angeles, CA 90033, USA;
| | | |
Collapse
|
5
|
Li D, Xie Z, Shaikh SB, Rahman I. Abnormal expression profile of plasma exosomal microRNAs in exclusive electronic cigarette adult users. RESEARCH SQUARE 2024:rs.3.rs-3877316. [PMID: 38343804 PMCID: PMC10854321 DOI: 10.21203/rs.3.rs-3877316/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2024]
Abstract
Background Exposure to electronic cigarette (e-cigarette) aerosol has been linked to several health concerns, including DNA damage, elevated oxidative stress, the release of inflammatory cytokine, and dysfunctions in epithelial barriers. However, little is known about the effect of exclusive e-cigarette use on expression profiles of exosomal miRNAs, which play critical regulatory roles in many inflammatory responses and disease processes including cancer. We aim to compare the exosomal microRNA expression profile between exclusive e-cigarette users and normal controls without any tobacco product use (non-users). Methods Using plasma samples from 15 exclusive e-cigarette users and 15 non-users in the Population Assessment of Tobacco and Health (PATH) Wave 1 study (2013-2014), we examined exosomal microRNAs expression levels through Illumina NextSeq 500/550 sequencing. The differential analyses between exclusive e-cigarette users and non-users were examined using the generalized linear model approach in the DESeq2 package in R/Bioconductor after adjusting the significant confounding effect from race. Gene enrichment analyses were conducted on target genes regulated by significant microRNAs in the differential analyses. Further, molecular-based techniques using the micro RNA mimics and inhibitors were applied for the validation of the expressions of the micro RNAs in vitro. Results We identified four microRNAs that have significantly higher expression levels in exclusive e-cigarette users than non-users including hsa-miR-100-5p, hsa-miR-125a-5p, hsa-miR-125b-5p, and hsa-miR-99a-5p. GO enrichment analysis on the target genes regulated by the four microRNAs showed that dysregulation of the four microRNAs in exclusive e-cigarette users involved in multiple cell processes such as protein kinase binding and miRNA metabolic process. KEGG pathway enrichment analysis found the four upregulated miRNAs in exclusive e-cigarette users involved in many cancer pathways such as the non-small cell lung cancer, small cell lung cancer, pancreatic cancer, p53 signaling pathway, Hippo signaling pathway, HIF-1 signaling pathway, and MAPK signaling pathway. Overexpression of miRNA hsa-miR-125b-5p was shown to promote DNA damage in bronchial epithelia cells. Conclusions Four plasma exosomal microRNAs involved in cancer development had higher expression levels in exclusive e-cigarette users than non-users, which might indicate a potentially elevated risk of cancer among exclusive e-cigarette users.
Collapse
|
6
|
Shao J, Fei Y, Xiao J, Wang L, Zou S, Yang J. The role of miRNA-144-3p/Oprk1/KOR in nicotine dependence and nicotine withdrawal in male rats. Nicotine Tob Res 2023; 25:1856-1864. [PMID: 37455648 PMCID: PMC10664084 DOI: 10.1093/ntr/ntad118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/31/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
INTRODUCTION The kappa-opioid receptor (KOR) has been implicated in mediating the behavioral and biochemical effects associated with nicotine reward and withdrawal; however, its underlying mechanisms remain to be further explored. METHODS Adult male Sprague-Dawley rats were used to establish a nicotine dependence and withdrawal model by injecting nicotine (3 mg/kg/day, s.c.) or vehicle for 14 days, followed by the termination of nicotine for 7 days. Body weight gain, pain behaviors, and withdrawal scores were assessed in succession. MicroRNA (miRNA) sequencing was performed, and quantitative real-time PCR was used to detect the expression of candidate miRNAs and Oprk1. Western blotting was performed to examine KOR protein expression of KOR. Luciferase assay was conducted to validate the relationship of certain miRNAs/Oprk1. RESULTS The behavioral results showed that nicotine dependence and withdrawal induced behavioral changes. Biochemical analyses demonstrated that miR-144-3p expression decreased and Oprk1/KOR expression increased in the prefrontal cortex, nucleus accumben, and hippocampus. Further investigation suggested that miR-144-3p exerted an inhibitory effect on Oprk1 expression in PC12 cells. CONCLUSIONS This study revealed that miR-144-3p/Oprk1/KOR might be a potential pathway underlying the adverse effects induced by nicotine dependence and withdrawal, and might provide a novel therapeutic target for smoking cessation. IMPLICATIONS This study demonstrates an impact of nicotine dependence and nicotine withdrawal on behavioral outcomes and the expressions of miR-144-3p/Oprk1/KOR in male rats. These findings have important translational implications given the continued use of nicotine and the difficulty in smoking cessation worldwide, which can be applied to alleviated the adverse effects induced by nicotine dependence and withdrawal, thus assist smokers to quit smoking.
Collapse
Affiliation(s)
- Jiali Shao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Yanxia Fei
- Department of Anesthesiology, Women’s Hospital, School of Medicine Zhejiang University, Zhejiang, China
| | - Ji Xiao
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Lijuan Wang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Shuangfa Zou
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| | - Jinfeng Yang
- Department of Anesthesiology, Hunan Cancer Hospital, School of Xiangya Medicine, Central South University, Hunan, China
| |
Collapse
|
7
|
Monti P, Solazzo G, Bollati V. Effect of environmental exposures on cancer risk: Emerging role of non-coding RNA shuttled by extracellular vesicles. ENVIRONMENT INTERNATIONAL 2023; 181:108255. [PMID: 37839267 DOI: 10.1016/j.envint.2023.108255] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 09/11/2023] [Accepted: 10/09/2023] [Indexed: 10/17/2023]
Abstract
Environmental and lifestyle exposures have a huge impact on cancer risk; nevertheless, the biological mechanisms underlying this association remain poorly understood. Extracellular vesicles (EVs) are membrane-enclosed particles actively released by all living cells, which play a key role in intercellular communication. EVs transport a variegate cargo of biomolecules, including non-coding RNA (ncRNA), which are well-known regulators of gene expression. Once delivered to recipient cells, EV-borne ncRNAs modulate a plethora of cancer-related biological processes, including cell proliferation, differentiation, and motility. In addition, the ncRNA content of EVs can be altered in response to outer stimuli. Such changes can occur either as an active attempt to adapt to the changing environment or as an uncontrolled consequence of cell homeostasis loss. In either case, such environmentally-driven alterations in EV ncRNA might affect the complex crosstalk between malignant cells and the tumor microenvironment, thus modulating the risk of cancer initiation and progression. In this review, we summarize the current knowledge about EV ncRNAs at the interface between environmental and lifestyle determinants and cancer. In particular, we focus on the effect of smoking, air and water pollution, diet, exercise, and electromagnetic radiation. In addition, we have conducted a bioinformatic analysis to investigate the biological functions of the genes targeted by environmentally-regulated EV microRNAs. Overall, we draw a comprehensive picture of the role of EV ncRNA at the interface between external factors and cancer, which could be of great interest to the development of novel strategies for cancer prevention, diagnosis, and therapy.
Collapse
Affiliation(s)
- Paola Monti
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Giulia Solazzo
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy
| | - Valentina Bollati
- EPIGET Lab, Department of Clinical Sciences and Community Health, University of Milan, Milan, Italy; CRC, Center for Environmental Health, University of Milan, Milan, Italy; Occupational Health Unit, Fondazione IRCCS Ca' Granda Ospedale Maggiore Policlinico, Milan, Italy.
| |
Collapse
|
8
|
Peng Q, Duan N, Wang X, Wang W. The potential roles of cigarette smoke-induced extracellular vesicles in oral leukoplakia. Eur J Med Res 2023; 28:250. [PMID: 37481562 PMCID: PMC10362576 DOI: 10.1186/s40001-023-01217-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 07/08/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND The onset of oral leukoplakia (OLK), the most common oral lesion with a high risk of malignant transformation, is closely associated with the exposure of cigarette smoke. Cigarette smoke is a complicated mixture of more than 4500 different chemicals including various oxidants and free radical, which contributes to the onset of immune and inflammatory response or even carcinogenesis. Recent studies have proved that the exposure of cigarette smoke leads to the onset and aggravation of many diseases via significantly changed the production and components of extracellular vesicles. The extracellular vesicles are membrane-enclosed nanosized particles secreted by diverse cells and involved in cell-cell communication because of their ability to deliver a number of bioactive molecules including proteins, lipids, DNAs and RNAs. Getting insight into the mechanisms of extracellular vesicles in regulating OLK upon cigarette smoke stimulation contributes to unravel the pathophysiology of OLK in-depth. However, evidence done on the role of extracellular vesicles in cigarette smoke-induced OLK is still in its infancy. MATERIALS AND METHODS Relevant literatures on cigarette smoke, oral leukoplakia and extracellular vesicles were searched in PubMed database. CONCLUSIONS In this review, we summarize the recent findings about the function of extracellular vesicles in the pathogenesis of cigarette smoke-induced diseases, and to infer their potential utilizations as diagnostic biomarkers, prognostic evaluation, and therapeutic targets of OLK in the future.
Collapse
Affiliation(s)
- Qiao Peng
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Ning Duan
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China
| | - Xiang Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| | - Wenmei Wang
- Department of Oral Medicine, Nanjing Stomatological Hospital, Medical School of Nanjing University, 30 Zhongyang Road, Nanjing, 210008, China.
| |
Collapse
|
9
|
Limanówka P, Ochman B, Świętochowska E. PiRNA Obtained through Liquid Biopsy as a Possible Cancer Biomarker. Diagnostics (Basel) 2023; 13:diagnostics13111895. [PMID: 37296747 DOI: 10.3390/diagnostics13111895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/21/2023] [Accepted: 05/27/2023] [Indexed: 06/12/2023] Open
Abstract
In recent years PIWI-interacting RNAs (piRNAs) have gained the interest of scientists, mainly because of their possible implications in cancer. Many kinds of research showed how their expression can be linked to malignant diseases. However, most of them evaluated the expression of piRNAs in tumor tissues. It was shown how these non-coding RNAs can interfere with many signaling pathways involved in the regulation of proliferation or apoptosis. A comparison of piRNA expression in tumor tissue and adjacent healthy tissues has demonstrated they can be used as biomarkers. However, this way of obtaining samples has a significant drawback, which is the invasiveness of such a procedure. Liquid biopsy is an alternative for acquiring biological material with little to no harm to a patient. Several different piRNAs in various types of cancer were shown to be expressed in bodily fluids such as blood or urine. Furthermore, their expression significantly differed between cancer patients and healthy individuals. Hence, this review aimed to assess the possible use of liquid biopsy for cancer diagnosis with piRNAs as biomarkers.
Collapse
Affiliation(s)
- Piotr Limanówka
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Błażej Ochman
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| | - Elżbieta Świętochowska
- Department of Medical and Molecular Biology, Faculty of Medical Sciences in Zabrze, Medical University of Silesia, 19 Jordana, 41-800 Zabrze, Poland
| |
Collapse
|
10
|
Xuan S, Zhang J, Guo Q, Zhao L, Yao X. A Diagnostic Classifier Based on Circulating miRNA Pairs for COPD Using a Machine Learning Approach. Diagnostics (Basel) 2023; 13:diagnostics13081440. [PMID: 37189541 DOI: 10.3390/diagnostics13081440] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 05/17/2023] Open
Abstract
Chronic obstructive pulmonary disease (COPD) is highly underdiagnosed, and early detection is urgent to prevent advanced progression. Circulating microRNAs (miRNAs) have been diagnostic candidates for multiple diseases. However, their diagnostic value has not yet been fully established in COPD. The purpose of this study was to develop an effective model for the diagnosis of COPD based on circulating miRNAs. We included circulating miRNA expression profiles of two independent cohorts consisting of 63 COPD and 110 normal samples, and then we constructed a miRNA pair-based matrix. Diagnostic models were developed using several machine learning algorithms. The predictive performance of the optimal model was validated in our external cohort. In this study, the diagnostic values of miRNAs based on the expression levels were unsatisfactory. We identified five key miRNA pairs and further developed seven machine learning models. The classifier based on LightGBM was selected as the final model with the area under the curve (AUC) values of 0.883 and 0.794 in test and validation datasets, respectively. We also built a web tool to assist diagnosis for clinicians. Enriched signaling pathways indicated the potential biological functions of the model. Collectively, we developed a robust machine learning model based on circulating miRNAs for COPD screening.
Collapse
Affiliation(s)
- Shurui Xuan
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Jiayue Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Qinxing Guo
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| | - Liang Zhao
- Department of Neurosurgery, The Affiliated Brain Hospital of Nanjing Medical University, 264 Guangzhou Road, Nanjing 210029, China
| | - Xin Yao
- Department of Respiratory & Critical Care Medicine, The First Affiliated Hospital of Nanjing Medical University, 300 Guangzhou Road, Nanjing 210029, China
| |
Collapse
|
11
|
Luca AC, Curpăn AȘ, Iordache AC, Mîndru DE, Țarcă E, Luca FA, Pădureț IA. Cardiotoxicity of Electronic Cigarettes and Heat-Not-Burn Tobacco Products-A Problem for the Modern Pediatric Cardiologist. Healthcare (Basel) 2023; 11:healthcare11040491. [PMID: 36833024 PMCID: PMC9957306 DOI: 10.3390/healthcare11040491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 01/27/2023] [Accepted: 02/01/2023] [Indexed: 02/11/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS) have become increasingly popular among adolescents, either as an alternative to conventional cigarettes (CCs) or as a newly acquired recreational habit. Although considered by most users as a safer option for nicotine intake, these devices pose significant health risks, resulting in multisystem damage. Heat-not-burn products, which, unlike ENDS, contain tobacco, are also alternatives to CCs that consumers use based on the idea that their safety profile is superior to that of cigarettes. Recent studies in the USA and EU show that adolescents are particularly prone to using these devices. Pediatric cardiologists, as well as other healthcare professionals, should be aware of the complications that may arise from acute and chronic consumption of these substances, considering the cardiovascular damage they elicit. This article summarized the known data about the impact of ENDS on the cardiovascular system, with emphasis on the pathophysiological and molecular changes that herald the onset of systemic lesions alongside the clinical cardiovascular manifestations in this scenario.
Collapse
Affiliation(s)
- Alina-Costina Luca
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Alexandrina-Ștefania Curpăn
- Department of Biology, Faculty of Biology, “Alexandru Ioan Cuza” University of Iași, Bd. Carol I, 20A, 700505 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Alin-Constantin Iordache
- Department of Mother and Child Medicine–Pediatric Cardiology, “Grigore T. Popa”, University of Medicine and Pharmacy of Iasi, 16 Universitatii Str., 700115 Iași, Romania
| | - Dana Elena Mîndru
- Department of Pediatric Cardiology, Faculty of Medicine, Gr. T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Elena Țarcă
- Sfânta Maria’ Emergency Children’s Hospital, 700309 Iași, Romania
- Department of Surgery II—Pediatric Surgery, Grigore T. Popa’ University of Medicine and Pharmacy, 700115 Iași, Romania
- Correspondence: (A.-Ș.C.); (E.Ț.)
| | - Florin-Alexandru Luca
- Department BMTM, “Gheorghe Asachi” Technical University of Iasi, 700050 Iaşi, Romania
| | | |
Collapse
|
12
|
Ouyang C, Wang W, Wu D, Wang W, Ye X, Yang Q. Analysis of serum exosome microRNAs in the rat model of chronic obstructive pulmonary disease. Am J Transl Res 2023; 15:138-150. [PMID: 36777859 PMCID: PMC9908490] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Accepted: 12/08/2022] [Indexed: 02/14/2023]
Abstract
BACKGROUND MicroRNAs (miRNAs) play an important role in the pathogenesis of chronic obstructive pulmonary disease (COPD). However, the molecular mechanisms underlying the function of miRNAs remain to be fully understood. This study aimed to explore the profile of serum exosome-derived miRNAs in the rat model of COPD. METHODS We established the COPD rat model by cigarette smoke exposure (CSE). The pulmonary function and morphological changes were analyzed. Serum exosomes were examined by transmission electron microscopy (TEM) and western blotting. The differentially expressed miRNAs between COPD and healthy rats were screened from exosome-derived small RNA library using bioinformatics analysis and experimentally verified in rat lung tissues by quantitative real-time polymerase chain reaction (qRT-PCR). RESULTS The pulmonary function indexes in COPD rats were significantly decreased compared to control rats. The typical pathological manifestations of emphysema were observed in COPD rats. Marker proteins (CD9, CD63, and TSG101) and characteristic morphology features were detected in serum exosomes. Fifteen differentially expressed miRNAs were identified in the small RNA library. In addition, we confirmed that the expression of miR-185-5p and miR-182-5p was significantly down-regulated in the lung tissues of COPD rats compared to control rats. CONCLUSION The expression of miR-185-5p and miR-182-5p was down-regulated in serum-derived exosomes and lung tissues of COPD rats, indicating that these two miRNAs might be involved in the development of COPD and might serve as potential biomarkers for the diagnosis of COPD.
Collapse
|
13
|
Cozzolino C, Picchio V, Floris E, Pagano F, Saade W, Peruzzi M, Frati G, Chimenti I. Modified Risk Tobacco Products and Cardiovascular Repair: Still Very "Smoky". Curr Stem Cell Res Ther 2023; 18:440-444. [PMID: 35927909 DOI: 10.2174/1574888x17666220802142532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2022] [Revised: 06/01/2022] [Accepted: 06/01/2022] [Indexed: 11/22/2022]
Abstract
Smoking habits represent a cardiovascular risk factor with a tremendous impact on health. Other than damaging differentiated and functional cells of the cardiovascular system, they also negatively affect reparative mechanisms, such as those involved in cardiac fibrosis and in endothelial progenitor cell (EPC) activation. In recent years, alternative smoking devices, dubbed modified tobacco risk products (MRPs), have been introduced, but their precise impact on human health is still under evaluation. Also, they have not been characterized yet about the possible negative effects on cardiovascular reparative and regenerative cells, such as EPCs or pluripotent stem cells. In this perspective, we critically review the still scarce available data on the effects of MRPs on molecular and cellular mechanisms of cardiovascular repair and regeneration.
Collapse
Affiliation(s)
- Claudia Cozzolino
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Vittorio Picchio
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Erica Floris
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
| | - Francesca Pagano
- Institute of Biochemistry and Cell Biology, National Council of Research (IBBC-CNR), Monterotondo (RM), Italy
| | - Wael Saade
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Mariangela Peruzzi
- Department of Clinical Internal, Anesthesiologic and Cardiovascular Sciences, Sapienza University of Rome, 00185 Rome, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| | - Giacomo Frati
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- IRCCS NeuroMed, Pozzilli (IS), Italy
| | - Isotta Chimenti
- Department of Medical Surgical Sciences and Biotechnologies, Sapienza University of Rome, 04100 Latina, Italy
- Mediterranea Cardiocentro, 80133 Napoli, Italy
| |
Collapse
|
14
|
Kopa-Stojak PN, Pawliczak R. Comparison of effects of tobacco cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression. A systematic review. Toxicol Mech Methods 2023; 33:18-37. [PMID: 35722939 DOI: 10.1080/15376516.2022.2089610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 05/16/2022] [Accepted: 06/09/2022] [Indexed: 01/05/2023]
Abstract
OBJECTIVES This work attempts to summarize current knowledge on the effects of cigarettes, electronic nicotine delivery systems and tobacco heating products on miRNA-mediated gene expression regulation and on their possible impact on smoking-related respiratory disease development. MATERIALS AND METHODS Literature search by terms combination: 'smoking', 'cigarette' 'THP', 'tobacco heating product', 'ENDS', 'electronic nicotine delivery system', 'e-cigarette', electronic cigarette' and 'miRNA-mediated gene expression' has been performed from October 2021 to February 2022. In this systematic review all relevant literature, including clinical trials, cellular and animal-based studies were included. RESULTS Cigarette smoke (CS) significantly altered transcriptome, including miRNAs expression profile. MiRNA-mediated gene expression is mentioned as one of the mechanisms associated with smoking-related respiratory disease development. Differential expression of miRNAs was reduced in aerosol from e-cigarettes (EC) and tobacco heating products (THP) when compared to CS. However, there was a significant alteration of some miRNAs expression when compared to air-controls in both EC and THP. DISCUSSION CS negatively affects transcriptome and miRNA-mediated gene expression regulation because of a huge number of hazardous substances which predispose to smoking-related diseases. Despite the reduced effect of ENDS and THP on miRNAs profile compared to CS, differences in expression of miRNAs when compared to air-control were observed, which may be harmful to never-smokers who may perceive such alternative smoking products as non-hazardous. To clearly indicate the role of ENDS and THP in the alteration of miRNA-mediated gene expression and the development of smoking-related respiratory diseases associated with this mechanism, more long-term studies should be performed in the future.
Collapse
Affiliation(s)
- Paulina Natalia Kopa-Stojak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Rafał Pawliczak
- Department of Immunopathology, Division of Biomedical Science, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| |
Collapse
|
15
|
Lopez K, Camacho A, Jacquez Q, Amistadi MK, Medina S, Zychowski K. Lung-Based, Exosome Inhibition Mediates Systemic Impacts Following Particulate Matter Exposure. TOXICS 2022; 10:457. [PMID: 36006136 PMCID: PMC9413489 DOI: 10.3390/toxics10080457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 07/28/2022] [Accepted: 08/01/2022] [Indexed: 06/15/2023]
Abstract
Particulate matter (PM) exposure is a global health issue that impacts both urban and rural communities. Residential communities in the Southwestern United States have expressed concerns regarding the health impacts of fugitive PM from rural, legacy mine-sites. In addition, the recent literature suggests that exosomes may play a role in driving toxicological phenotypes following inhaled exposures. In this study, we assessed exosome-driven mechanisms and systemic health impacts following inhaled dust exposure, using a rodent model. Using an exosome inhibitor, GW4869 (10 μM), we inhibited exosome generation in the lungs of mice via oropharyngeal aspiration. We then exposed mice to previously characterized inhaled particulate matter (PM) from a legacy mine-site and subsequently assessed downstream behavioral, cellular, and molecular biomarkers in lung, serum, and brain tissue. Results indicated that CCL-2 was significantly upregulated in the lung tissue and downregulated in the brain (p < 0.05) following PM exposure. Additional experiments revealed cerebrovascular barrier integrity deficits and increased glial fibrillary acidic protein (GFAP) staining in the mine-PM exposure group, mechanistically dependent on exosome inhibition. An increased stress and anxiety response, based on the open-field test, was noted in the mine-PM exposure group, and subsequently mitigated with GW4869 intervention. Exosome lipidomics revealed 240 and eight significantly altered positive-ion lipids and negative-ion lipids, respectively, across the three treatment groups. Generally, phosphatidylethanolamine (PE) and phosphatidylcholine (PC) lipids were significantly downregulated in the PM group, compared to FA. In conclusion, these data suggest that systemic, toxic impacts of inhaled PM may be mechanistically dependent on lung-derived, circulating exosomes, thereby driving a systemic, proinflammatory phenotype.
Collapse
Affiliation(s)
- Keegan Lopez
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Alexandra Camacho
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Quiteria Jacquez
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| | - Mary Kay Amistadi
- Arizona Laboratory for Emerging Contaminants, University of Arizona, Tucson, AZ 85721, USA
| | - Sebastian Medina
- Department of Biology, College of Arts and Sciences, New Mexico Highlands University, Las Vegas, NM 88901, USA
| | - Katherine Zychowski
- College of Nursing, University of New Mexico-Health Sciences Center, Albuquerque, NM 87131, USA
| |
Collapse
|
16
|
Robinson I, Bertsch A, Leithner K, Stiegler P, Olschewski H, Hrzenjak A. Circulating microRNAs as molecular biomarkers for lung adenocarcinoma. Cancer Biomark 2022; 34:591-606. [DOI: 10.3233/cbm-210205] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
BACKGROUND: The potential of microRNAs (miRNAs) as molecular tumor biomarkers for early diagnosis and prognosis in lung cancer is still unclear. OBJECTIVE: To analyze expression of miRNAs in A549 lung adenocarcinoma (LUAD) cells and in primary, non-malignant bronchial epithelial (BE) cells from healthy donors. To analyze the most prominently deregulated miRNAs in plasma samples of LUAD patients and healthy donors. MATERIALS AND METHODS: The expression of 752 miRNAs in LUAD and BE cells was assessed by RT-qPCR with mean-centering restricted normalization. The relative plasma levels of 18 miRNAs in LUAD patients and healthy donors were analyzed using RT-qPCR and normalized to miR-191-5p and miR-16-3p. Putative interactions between miRNAs and their target genes were investigated in silico. RESULTS: Out of 752 miRNAs, 37 miRNAs were significantly deregulated in A549 cells compared to BE cells. MiR-15b-3p, miR-148a-3p, miR-193b-3p, and miR-195-5p were significantly deregulated in plasma samples of LUAD patients compared to donors. The target genes of those four miRNAs are involved in essential mechanisms in cancer development and progression. CONCLUSIONS: There are substantial differences between cancer and control miRNA expression in vitro and in plasma samples of LUAD patients compared to healthy donors. Four deregulated miRNAs are promising as a diagnostic biomarker for adenocarcinoma of the lung.
Collapse
Affiliation(s)
- Irina Robinson
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Alexandra Bertsch
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Katharina Leithner
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- BioTechMed-Graz, Graz, Austria
| | - Philipp Stiegler
- Division of Transplantation Surgery, Department of Surgery, Medical University of Graz, Graz, Austria
| | - Horst Olschewski
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
| | - Andelko Hrzenjak
- Department of Internal Medicine, Division of Pulmonology, Medical University of Graz, Graz, Austria
- Ludwig Boltzmann Institute for Lung Vascular Research, Medical University of Graz, Graz, Austria
| |
Collapse
|
17
|
Lu X, Sun L, Xie Z, Li D. Perception of the Food and Drug Administration Electronic Cigarette Flavor Enforcement Policy on Twitter: Observational Study. JMIR Public Health Surveill 2022; 8:e25697. [PMID: 35348461 PMCID: PMC9006136 DOI: 10.2196/25697] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2020] [Revised: 04/13/2021] [Accepted: 11/19/2021] [Indexed: 12/12/2022] Open
Abstract
Background
On January 2, 2020, the US Food and Drug Administration (FDA) released the electronic cigarette (e-cigarette) flavor enforcement policy to prohibit the sale of all flavored cartridge–based e-cigarettes, except for menthol and tobacco flavors.
Objective
This research aimed to examine the public perception of this FDA flavor enforcement policy and its impact on the public perception of e-cigarettes on Twitter.
Methods
A total of 2,341,660 e-cigarette–related tweets and 190,490 FDA flavor enforcement policy–related tweets in the United States were collected from Twitter before (between June 13 and August 22, 2019) and after (between January 2 and March 30, 2020) the announcement of the FDA flavor enforcement policy. Sentiment analysis was conducted to detect the changes in the public perceptions of the policy and e-cigarettes on Twitter. Topic modeling was used for finding frequently discussed topics about e-cigarettes.
Results
The proportion of negative sentiment tweets about e-cigarettes significantly increased after the announcement of the FDA flavor enforcement policy compared with before the announcement of the policy. In contrast, the overall sentiment toward the FDA flavor enforcement policy became less negative. The FDA flavor enforcement policy was the most popular topic associated with e-cigarettes after the announcement of the FDA flavor enforcement policy. Twitter users who discussed about e-cigarettes started to talk about other alternative ways of getting e-cigarettes after the FDA flavor enforcement policy.
Conclusions
Twitter users’ perceptions of e-cigarettes became more negative after the announcement of the FDA flavor enforcement policy.
Collapse
Affiliation(s)
- Xinyi Lu
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Li Sun
- Goergen Institute for Data Science, University of Rochester, Rochester, NY, United States
| | - Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States
| |
Collapse
|
18
|
Liu DSK, Yang QZC, Asim M, Krell J, Frampton AE. The Clinical Significance of Transfer RNAs Present in Extracellular Vesicles. Int J Mol Sci 2022; 23:ijms23073692. [PMID: 35409051 PMCID: PMC8998272 DOI: 10.3390/ijms23073692] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 12/19/2022] Open
Abstract
Extracellular vesicles (EVs) are important for intercellular signalling in multi-cellular organisms. However, the role of mature transfer RNAs (tRNAs) and tRNA fragments in EVs has yet to be characterised. This systematic review aimed to identify up-to-date literature on tRNAs present within human EVs and explores their potential clinical significance in health and disease. A comprehensive and systematic literature search was performed, and the study was conducted in accordance with PRISMA guidelines. Electronic databases MEDLINE and EMBASE were searched up until 1 January 2022. From 685 papers, 60 studies were identified for analysis. The majority of papers reviewed focussed on the role of EV tRNAs in cancers (31.7%), with numerous other conditions represented. Blood and cell lines were the most common EV sources, representing 85.9% of protocols used. EV isolation methods included most known methods, precipitation being the most common (49.3%). The proportion of EV tRNAs was highly variable, ranging between 0.04% to >95% depending on tissue source. EV tRNAs are present in a multitude of sources and show promise as disease markers in breast cancer, gastrointestinal cancers, and other diseases. EV tRNA research is an emerging field, with increasing numbers of papers highlighting novel methodologies for tRNA and tRNA fragment discovery.
Collapse
Affiliation(s)
- Daniel S. K. Liu
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Qi Zhi Clayton Yang
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Mohammad Asim
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK;
| | - Jonathan Krell
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
| | - Adam E. Frampton
- Division of Cancer, Department of Surgery & Cancer, Imperial College London, Hammersmith Hospital Campus, Du Cane Road, London W12 0HS, UK; (D.S.K.L.); (Q.Z.C.Y.); (J.K.)
- Department of Clinical and Experimental Medicine, Faculty of Health and Medical Sciences, University of Surrey, Guildford, Surrey GU2 7WG, UK;
- HPB Surgical Unit, Royal Surrey County Hospital NHS Foundation Trust, Guildford, Surrey GU2 7XX, UK
- Correspondence: or
| |
Collapse
|
19
|
Majka M, Kleibert M, Wojciechowska M. Impact of the Main Cardiovascular Risk Factors on Plasma Extracellular Vesicles and Their Influence on the Heart's Vulnerability to Ischemia-Reperfusion Injury. Cells 2021; 10:3331. [PMID: 34943838 PMCID: PMC8699798 DOI: 10.3390/cells10123331] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 12/12/2022] Open
Abstract
The majority of cardiovascular deaths are associated with acute coronary syndrome, especially ST-elevation myocardial infarction. Therapeutic reperfusion alone can contribute up to 40 percent of total infarct size following coronary artery occlusion, which is called ischemia-reperfusion injury (IRI). Its size depends on many factors, including the main risk factors of cardiovascular mortality, such as age, sex, systolic blood pressure, smoking, and total cholesterol level as well as obesity, diabetes, and physical effort. Extracellular vesicles (EVs) are membrane-coated particles released by every type of cell, which can carry content that affects the functioning of other tissues. Their role is essential in the communication between healthy and dysfunctional cells. In this article, data on the variability of the content of EVs in patients with the most prevalent cardiovascular risk factors is presented, and their influence on IRI is discussed.
Collapse
Affiliation(s)
- Miłosz Majka
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Marcin Kleibert
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
| | - Małgorzata Wojciechowska
- Laboratory of Centre for Preclinical Research, Department of Experimental and Clinical Physiology, Medical University of Warsaw, Banacha 1b, 02-097 Warsaw, Poland; (M.M.); (M.K.)
- Invasive Cardiology Unit, Independent Public Specialist Western Hospital John Paul II, Daleka 11, 05-825 Grodzisk Mazowiecki, Poland
| |
Collapse
|
20
|
Wang R, Li S, Wen W, Zhang J. Multi-Omics Analysis of the Effects of Smoking on Human Tumors. Front Mol Biosci 2021; 8:704910. [PMID: 34796198 PMCID: PMC8592943 DOI: 10.3389/fmolb.2021.704910] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 09/15/2021] [Indexed: 12/13/2022] Open
Abstract
Comprehensive studies on cancer patients with different smoking histories, including non-smokers, former smokers, and current smokers, remain elusive. Therefore, we conducted a multi-omics analysis to explore the effect of smoking history on cancer patients. Patients with smoking history were screened from The Cancer Genome Atlas database, and their multi-omics data and clinical information were downloaded. A total of 2,317 patients were included in this study, whereby current smokers presented the worst prognosis, followed by former smokers, while non-smokers showed the best prognosis. More importantly, smoking history was an independent prognosis factor. Patients with different smoking histories exhibited different immune content, and former smokers had the highest immune cells and tumor immune microenvironment. Smokers are under a higher incidence of genomic instability that can be reversed following smoking cessation in some changes. We also noted that smoking reduced the sensitivity of patients to chemotherapeutic drugs, whereas smoking cessation can reverse the situation. Competing endogenous RNA network revealed that mir-193b-3p, mir-301b, mir-205-5p, mir-132-3p, mir-212-3p, mir-1271-5p, and mir-137 may contribute significantly in tobacco-mediated tumor formation. We identified 11 methylation driver genes (including EIF5A2, GBP6, HGD, HS6ST1, ITGA5, NR2F2, PLS1, PPP1R18, PTHLH, SLC6A15, and YEATS2), and methylation modifications of some of these genes have not been reported to be associated with tumors. We constructed a 46-gene model that predicted overall survival with good predictive power. We next drew nomograms of each cancer type. Interestingly, calibration diagrams and concordance indexes are verified that the nomograms were highly accurate for the prognosis of patients. Meanwhile, we found that the 46-gene model has good applicability to the overall survival as well as to disease-specific survival and progression-free intervals. The results of this research provide new and valuable insights for the diagnosis, treatment, and follow-up of cancer patients with different smoking histories.
Collapse
Affiliation(s)
- Rui Wang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Shanshan Li
- Department of Nursing, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Wen Wen
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| | - Jianquan Zhang
- Department of Hepatobiliary Surgery, Affiliated Haikou Hospital of Xiangya Medical College, Central South University, Haikou, China
| |
Collapse
|
21
|
Kaur G, Maremanda KP, Campos M, Chand HS, Li F, Hirani N, Haseeb MA, Li D, Rahman I. Distinct Exosomal miRNA Profiles from BALF and Lung Tissue of COPD and IPF Patients. Int J Mol Sci 2021; 22:ijms222111830. [PMID: 34769265 PMCID: PMC8584050 DOI: 10.3390/ijms222111830] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 10/17/2021] [Accepted: 10/24/2021] [Indexed: 12/13/2022] Open
Abstract
Chronic obstructive pulmonary disease (COPD) and idiopathic pulmonary fibrosis (IPF) are chronic, progressive lung ailments that are characterized by distinct pathologies. Early detection biomarkers and disease mechanisms for these debilitating diseases are lacking. Extracellular vesicles (EVs), including exosomes, are small, lipid-bound vesicles attributed to carry proteins, lipids, and RNA molecules to facilitate cell-to-cell communication under normal and diseased conditions. Exosomal miRNAs have been studied in relation to many diseases. However, there is little to no knowledge regarding the miRNA population of bronchoalveolar lavage fluid (BALF) or the lung-tissue-derived exosomes in COPD and IPF. Here, we determined and compared the miRNA profiles of BALF- and lung-tissue-derived exosomes of healthy non-smokers, smokers, and patients with COPD or IPF in independent cohorts. Results: Exosome characterization using NanoSight particle tracking and TEM demonstrated that the BALF-derived exosomes were ~89.85 nm in size with a yield of ~2.95 × 1010 particles/mL in concentration. Lung-derived exosomes were larger in size (~146.04 nm) with a higher yield of ~2.38 × 1011 particles/mL. NGS results identified three differentially expressed miRNAs in the BALF, while there was one in the lung-derived exosomes from COPD patients as compared to healthy non-smokers. Of these, miR-122-5p was three- or five-fold downregulated among the lung-tissue-derived exosomes of COPD patients as compared to healthy non-smokers and smokers, respectively. Interestingly, there were a large number (55) of differentially expressed miRNAs in the lung-tissue-derived exosomes of IPF patients compared to non-smoking controls. Conclusions: Overall, we identified lung-specific miRNAs associated with chronic lung diseases that can serve as potential biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.K.); or (K.P.M.)
| | - Krishna Prahlad Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.K.); or (K.P.M.)
| | - Michael Campos
- Division of Pulmonary, Allergy, Critical Care, University of Miami School of Medicine, Miami, FL 33136, USA;
| | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Florida International University, Miami, FL 33199, USA;
| | - Feng Li
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (F.L.); (N.H.)
| | - Nikhil Hirani
- Centre for Inflammation Research, Queen’s Medical Research Institute, University of Edinburgh, Edinburgh EH16 4TJ, UK; (F.L.); (N.H.)
| | - M. A. Haseeb
- Department of Cell Biology, SUNY Downstate Health Sciences University, Brooklyn, NY 11203, USA;
| | - Dongmei Li
- Clinical and Translational Science Institute (CTSI), Public Health Sciences, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY 14642, USA; (G.K.); or (K.P.M.)
- Correspondence: ; Tel.: +1-585-275-6911
| |
Collapse
|
22
|
Shen W, Wang S, Wang R, Zhang Y, Tian H, Yang X, Wei W. Analysis of the polarization states of the alveolar macrophages in chronic obstructive pulmonary disease samples based on miRNA-mRNA network signatures. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:1333. [PMID: 34532470 PMCID: PMC8422127 DOI: 10.21037/atm-21-3815] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/12/2021] [Indexed: 12/12/2022]
Abstract
Background Multiple gene expression studies have been performed to investigate the biomarkers of chronic obstructive pulmonary disease (COPD). However, few studies have related COPD to macrophage cells. Methods The gene expression levels of clinical samples of COPD smokers (COPD; n=6), healthy smokers (Smoke; n=11), and never smokers (Never; n=4) were downloaded from the Gene Expression Omnibus (GEO) repository of GSE124180. The expression levels of messenger RNAs (mRNAs) and microRNAs (miRNAs) in macrophage cells of M0 (n=7), M1 (n=7), and M2 (n=7) were downloaded from the GEO repository of GSE46903 and GSE51307. Differentially expressed (DE) mRNAs (DEmRNAs) were identified by edgeR and GEO2R, with an adjusted P value <0.05 and |log2fold change (FC)| ≥1 chosen as the cut-off threshold. The potential target genes of miRNA were identified using miRanda (v3.3a) and TargetScan (v6.0) with default settings. Gene Ontology (GO) and Reactome pathway analyses were performed. Results The composition of macrophages was quite different between COPD, Never, and Smoke samples. The proportion of M1 cells was lower than that of M0 and M2 cells in Smokers and COPD samples. Most of the genes specifically up-regulated in M1 are related to inflammation/immunity. The expression levels of miR-30a-5p, miR-200c-3p, miR-20b-5p, miR-199b-5p, and miR-301b-3p in M1 macrophages were all lower than that of M0. Their expression levels in M2 macrophages compared with M1 varied, with higher expression in miR-30a-5p, miR-20b-5p, and lower expression in miR-200c-3p, and miR-301b-3p. The mRNAs of the fms related receptor tyrosine kinase 1 (FLT1), cardiotrophin like cytokine factor 1 (CLCF1), phosphodiesterase 4D (PDE4D), coagulation factor III, and tissue factor (F3) were dysregulated in COPD and macrophage cells. Conclusions The present study mined the miRNA-mRNA signature which might play an essential role in COPD and macrophage polarization.
Collapse
Affiliation(s)
- Wen Shen
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Shukun Wang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Ruili Wang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Yang Zhang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Hong Tian
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Xiaolei Yang
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Wei Wei
- Respiratory Medicine Department, The Second Affiliated Hospital of Kunming Medical University, Kunming, China
| |
Collapse
|
23
|
Fujimori K, Yoneda T, Tomofuji T, Ekuni D, Azuma T, Maruyama T, Sugiura Y, Morita M. Detection of Salivary miRNAs That Predict Chronic Periodontitis Progression: A Cohort Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18158010. [PMID: 34360304 PMCID: PMC8345340 DOI: 10.3390/ijerph18158010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/15/2021] [Accepted: 07/27/2021] [Indexed: 12/12/2022]
Abstract
The aim of this two-year cohort study was to investigate salivary microRNAs (miRNAs) that predict periodontitis progression. A total of 120 patients who underwent supportive periodontal therapy were recruited. Unstimulated whole saliva was collected at baseline. Two years later, 44 patients were followed up (median age, 67.1 years) and divided into two groups: progression group (n = 22), with one or more sites with clinical attachment level (CAL) progression (>3 mm compared with baseline) or tooth extraction due to periodontitis progression; and the control group (n = 22), which did not exhibit CAL progression. In the microarray analysis of salivary miRNAs, hsa-miR-5571-5p, hsa-miR-17-3p, hsa-let-7f-5p, hsa-miR-4724-3p, hsa-miR-99a-5p, hsa-miR-200a-3p, hsa-miR-28-5p, hsa-miR-320d, and hsa-miR-31-5p showed fold change values <0.5 or ≥2.0 in the progression group compared with the control group (p < 0.05). On receiver operating characteristic curve analysis, areas under the curves of hsa-miR-5571-5p, hsa-let-7f-5p, hsa-miR-99a-5p, hsa-miR-28-5p, and hsa-miR-320d were >0.7, indicating fair discrimination power. The expressions of salivary hsa-miR-5571-5p, hsa-let-7f-5p, hsa-miR-99a-5p, hsa-miR-28-5p, and hsa-miR-320d were associated with periodontitis progression in patients with chronic periodontitis. These salivary miRNAs may be new biomarkers for progression of periodontitis, and monitoring them may contribute to new diagnostics and precision medicine for periodontitis.
Collapse
Affiliation(s)
- Kohei Fujimori
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
| | - Toshiki Yoneda
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
| | - Takaaki Tomofuji
- Department of Community Oral Health, School of Dentistry, Asahi University, 1851-1 Hozumi, Mizuho 501-0296, Japan; (T.T.); (T.A.)
| | - Daisuke Ekuni
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
| | - Tetsuji Azuma
- Department of Community Oral Health, School of Dentistry, Asahi University, 1851-1 Hozumi, Mizuho 501-0296, Japan; (T.T.); (T.A.)
| | - Takayuki Maruyama
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
- Advanced Research Center for Oral and Craniofacial Sciences, Dental School, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan
| | - Yoshio Sugiura
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
| | - Manabu Morita
- Department of Preventive Dentistry, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-cho, Kita-ku, Okayama 700-8558, Japan; (K.F.); (T.Y.); (D.E.); (T.M.); (Y.S.)
- Correspondence: ; Tel.: +81-86-235-6712; Fax: +81-86-235-6714
| |
Collapse
|
24
|
Wang Q, Ji X, Rahman I. Dysregulated Metabolites Serve as Novel Biomarkers for Metabolic Diseases Caused by E-Cigarette Vaping and Cigarette Smoking. Metabolites 2021; 11:metabo11060345. [PMID: 34072305 PMCID: PMC8229291 DOI: 10.3390/metabo11060345] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/21/2021] [Accepted: 05/24/2021] [Indexed: 12/31/2022] Open
Abstract
Metabolites are essential intermediate products in metabolism, and metabolism dysregulation indicates different types of diseases. Previous studies have shown that cigarette smoke dysregulated metabolites; however, limited information is available with electronic cigarette (e-cig) vaping. We hypothesized that e-cig vaping and cigarette smoking alters systemic metabolites, and we propose to understand the specific metabolic signature between e-cig users and cigarette smokers. Plasma from non-smoker controls, cigarette smokers, and e-cig users was collected, and metabolites were identified by UPLC-MS (ultra-performance liquid chromatography mass spectrometer). Nicotine degradation was activated by e-cig vaping and cigarette smoking with increased concentrations of cotinine, cotinine N-oxide, (S)-nicotine, and (R)-6-hydroxynicotine. Additionally, we found significantly decreased concentrations in metabolites associated with tricarboxylic acid (TCA) cycle pathways in e-cig users versus cigarette smokers, such as d-glucose, (2R,3S)-2,3-dimethylmalate, (R)-2-hydroxyglutarate, O-phosphoethanolamine, malathion, d-threo-isocitrate, malic acid, and 4-acetamidobutanoic acid. Cigarette smoking significant upregulated sphingolipid metabolites, such as d-sphingosine, ceramide, N-(octadecanoyl)-sphing-4-enine, N-(9Z-octadecenoyl)-sphing-4-enine, and N-[(13Z)-docosenoyl]-sphingosine, versus e-cig vaping. Overall, e-cig vaping dysregulated TCA cycle-related metabolites while cigarette smoking altered sphingolipid metabolites. Both e-cig and cigarette smoke increased nicotinic metabolites. Therefore, specific metabolic signatures altered by e-cig vaping and cigarette smoking could serve as potential systemic biomarkers for early pathogenesis of cardiopulmonary diseases.
Collapse
Affiliation(s)
- Qixin Wang
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
| | - Xiangming Ji
- Department of Nutrition, Byrdine F. Lewis School of Nursing and Health Professions, Georgia State University, Atlanta, GA 30302, USA;
| | - Irfan Rahman
- Department of Environmental Medicine, School of Medicine and Dentistry, University of Rochester Medical Center, Rochester, NY 14642, USA;
- Correspondence:
| |
Collapse
|
25
|
Xie Z, Rahman I, Goniewicz ML, Li D. Perspectives on Epigenetics Alterations Associated with Smoking and Vaping. FUNCTION (OXFORD, ENGLAND) 2021; 2:zqab022. [PMID: 35330676 PMCID: PMC8788872 DOI: 10.1093/function/zqab022] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/09/2021] [Revised: 04/03/2021] [Accepted: 04/21/2021] [Indexed: 01/11/2023]
Abstract
Epigenetic alterations, including DNA methylation, microRNA, and long noncoding RNA, play important roles in the pathogenesis of numerous respiratory health conditions and diseases. Exposure to tobacco smoking has been found to be associated with epigenetic changes in the respiratory tract. Marketed as a less harmful alternative to combustible cigarettes, electronic cigarette (e-cigarette) has rapidly gained popularity in recent years, especially among youth and young adults. Accumulative evidence from both animal and human studies has shown that e-cigarette use (vaping) is also linked to similar respiratory health conditions as observed with cigarette smoking, including wheezing, asthma, and COPD. This review aims to provide an overview of current studies on associations of smoking and vaping with epigenetic alterations in respiratory cells and provide future research directions in epigenetic studies related to vaping.
Collapse
Affiliation(s)
- Zidian Xie
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, USA
| | - Maciej L Goniewicz
- Department of Health Behavior, Roswell Park Comprehensive Cancer Center, Elm and Carlton Streets, Buffalo, NY, USA
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, USA,Address correspondence to D.L. (e-mail: )
| |
Collapse
|
26
|
Kupsco A, Prada D, Valvi D, Hu L, Petersen MS, Coull B, Grandjean P, Weihe P, Baccarelli AA. Human milk extracellular vesicle miRNA expression and associations with maternal characteristics in a population-based cohort from the Faroe Islands. Sci Rep 2021; 11:5840. [PMID: 33712635 PMCID: PMC7970999 DOI: 10.1038/s41598-021-84809-2] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2020] [Accepted: 02/17/2021] [Indexed: 12/17/2022] Open
Abstract
Human milk plays a critical role in infant development and health, particularly in cognitive, immune, and cardiometabolic functions. Milk contains extracellular vesicles (EVs) that can transport biologically relevant cargo from mother to infant, including microRNAs (miRNAs). We aimed to characterize milk EV-miRNA profiles in a human population cohort, assess potential pathways and ontology, and investigate associations with maternal characteristics. We conducted the first study to describe the EV miRNA profile of human milk in 364 mothers from a population-based mother-infant cohort in the Faroe Islands using small RNA sequencing. We detected 1523 miRNAs with ≥ one read in 70% of samples. Using hierarchical clustering, we determined five EV-miRNA clusters, the top three consisting of 15, 27 and 67 miRNAs. Correlation coefficients indicated that the expression of many miRNAs within the top three clusters was highly correlated. Top-cluster human milk EV-miRNAs were involved in pathways enriched for the endocrine system, cellular community, neurodevelopment, and cancers. miRNA expression was associated with time to milk collection post-delivery, maternal body mass index, and maternal smoking, but not maternal parity. Future studies investigating determinants of human EV-miRNAs and associated health outcomes are needed to elucidate the role of human milk EV-miRNAs in health and disease.
Collapse
Affiliation(s)
- Allison Kupsco
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA.
| | - Diddier Prada
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
- Unit for Biomedical Research in Cancer, Instituto Nacional de Cancerologia, Universidad Nacional Autonoma de Mexico, 14080, Mexico City, Mexico
| | - Damaskini Valvi
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA
| | - Lisa Hu
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| | - Maria Skaalum Petersen
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Brent Coull
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Philippe Grandjean
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
- Department of Environmental Medicine, University of Southern Denmark, Odense C, Denmark
| | - Pal Weihe
- Department of Occupational Medicine and Public Health, The Faroese Hospital System, Tórshavn, Faroe Islands
- Center of Health Science, University of the Faroe Islands, Tórshavn, Faroe Islands
| | - Andrea A Baccarelli
- Department of Environmental Health Sciences, Columbia University Mailman School of Public Health, New York, NY, 10023, USA
| |
Collapse
|
27
|
Shrivastava S, Morris KV. The Multifunctionality of Exosomes; from the Garbage Bin of the Cell to a Next Generation Gene and Cellular Therapy. Genes (Basel) 2021; 12:genes12020173. [PMID: 33513776 PMCID: PMC7912150 DOI: 10.3390/genes12020173] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2020] [Revised: 01/23/2021] [Accepted: 01/24/2021] [Indexed: 02/07/2023] Open
Abstract
Exosomes are packaged with a variety of cellular cargo including RNA, DNA, lipids and proteins. For several decades now there has been ongoing debate as to what extent exosomes are the garbage bin of the cell or if these entities function as a distributer of cellular cargo which acts in a meaningful mechanistic way on target cells. Are the contents of exosomes unwanted excess cellular produce or are they selective nucleic acid packaged nanoparticles used to communicate in a paracrine fashion? Overexpressed RNAs and fragments of DNA have been shown to collect into exosomes which are jettisoned from cells in response to particular stimuli to maintain homeostasis suggesting exosomes are functional trash bins of the cell. Other studies however have deciphered selective packaging of particular nucleic acids into exosomes. Nucleic acids packaged into exosomes are increasingly reported to exert transcriptional control on recipient cells, supporting the notion that exosomes may provide a role in signaling and intracellular communication. We survey the literature and conclude that exosomes are multifunctional entities, with a plethora of roles that can each be taken advantage to functionally modulate cells. We also note that the potential utility of developing exosomes as a next generation genetic therapy may in future transform cellular therapies. We also depict three models of methodologies which can be adopted by researchers intending to package nucleic acid in exosomes for developing gene and cell therapy.
Collapse
Affiliation(s)
- Surya Shrivastava
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
| | - Kevin V. Morris
- Center for Gene Therapy, City of Hope-Beckman Research Institute, Duarte, CA 91010, USA;
- Hematological Malignancy and Stem Cell Transplantation Institute at the City of Hope, Duarte, CA 91010, USA
- School of Medical Science, Gold Coast Campus, Griffith University, Southport 4222, Australia
- Correspondence:
| |
Collapse
|
28
|
McDonough SR, Rahman I, Sundar IK. Recent updates on biomarkers of exposure and systemic toxicity in e-cigarette users and EVALI. Am J Physiol Lung Cell Mol Physiol 2021; 320:L661-L679. [PMID: 33501893 DOI: 10.1152/ajplung.00520.2020] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Electronic nicotine delivery systems (ENDS), or e-cigarettes, are emerging tobacco products that produce aerosols by heating e-liquids, which most often consist of propylene glycol and vegetable glycerin along with various flavoring compounds, bypassing the combustion that occurs in the use of traditional tobacco cigarettes. These products have seen a drastic increase in popularity in recent years both as smoking cessation devices as well as among younger generations, due in large part to the widespread perception among consumers that e-cigs are significantly less harmful to health than traditional tobacco cigarettes. Due to the novelty of ENDS as well as their rapidly increasing use, research into biomarkers of e-cig exposure and toxicity have lagged behind their popularity, leaving important questions about their potential toxicity unanswered. Research into potential biomarkers of acute and chronic e-cig use, and e-cigarette- or vaping-associated lung injury is necessary for informing both clinical and regulatory decision-making. We aim to provide an updated review of recent research into potential circulating, genomic, transcriptomic, and epigenetic biomarkers of exposure to and toxicity of e-cigs. We additionally highlight research areas that warrant additional study to gain a better understanding of health risks associated with ENDS use, as well as to provide validation of existing data and methods for measuring and analyzing e-cig-associated biomarkers in human and animal biofluids, tissues, and cells. This review also highlights ongoing efforts within the WNY Center for Research on Flavored Tobacco for research into novel biomarkers in extracellular vesicles that may be associated with short- and long-term ENDS use.
Collapse
Affiliation(s)
- Samantha R McDonough
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, New York
| | - Isaac Kirubakaran Sundar
- Division of Pulmonary, Critical Care and Sleep Medicine, Department of Internal Medicine, University of Kansas Medical Center, Kansas City, Kansas
| |
Collapse
|
29
|
Kaur G, Singh K, Maremanda KP, Li D, Chand HS, Rahman I. Differential plasma exosomal long non-coding RNAs expression profiles and their emerging role in E-cigarette users, cigarette, waterpipe, and dual smokers. PLoS One 2020; 15:e0243065. [PMID: 33290406 PMCID: PMC7723270 DOI: 10.1371/journal.pone.0243065] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Accepted: 11/15/2020] [Indexed: 12/12/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) are the varied set of transcripts that play a critical role in biological processes like gene regulation, transcription, post-transcriptional modification, and chromatin remodeling. Recent studies have reported the presence of lncRNAs in the exosomes that are involved in regulating cell-to-cell communication in lung pathologies including lung cancer, chronic obstructive pulmonary disease (COPD), asthma, and idiopathic pulmonary fibrosis (IPF). In this study, we compared the lncRNA profiles in the plasma-derived exosomes amongst non-smokers (NS), cigarette smokers (CS), E-cig users (E-cig), waterpipe smokers (WP) and dual smokers (CSWP) using GeneChip™ WT Pico kit for transcriptional profiling. We found alterations in a distinct set of lncRNAs among subjects exposed to E-cig vapor, cigarette smoke, waterpipe smoke and dual smoke with some overlaps. Gene enrichment analyses of the differentially expressed lncRNAs demonstrated enrichment in the lncRNAs involved in crucial biological processes including steroid metabolism, cell differentiation and proliferation. Thus, the characterized lncRNA profiles of the plasma-derived exosomes from smokers, vapers, waterpipe users, and dual smokers will help identify the biomarkers relevant to chronic lung diseases such as COPD, asthma or IPF.
Collapse
Affiliation(s)
- Gagandeep Kaur
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Kameshwar Singh
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Krishna P. Maremanda
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Dongmei Li
- Department of Clinical & Translational Research, University of Rochester Medical Center, Rochester, NY, United States of America
| | - Hitendra S. Chand
- Department of Immunology and Nanomedicine, Florida International University, Miami, FL, United States of America
| | - Irfan Rahman
- Department of Environmental Medicine, University of Rochester Medical Center, Rochester, NY, United States of America
- * E-mail:
| |
Collapse
|