1
|
Sarapultsev A, Komelkova M, Lookin O, Khatsko S, Gusev E, Trofimov A, Tokay T, Hu D. Rat Models in Post-Traumatic Stress Disorder Research: Strengths, Limitations, and Implications for Translational Studies. PATHOPHYSIOLOGY 2024; 31:709-760. [PMID: 39728686 DOI: 10.3390/pathophysiology31040051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Revised: 11/28/2024] [Accepted: 12/02/2024] [Indexed: 12/28/2024] Open
Abstract
Post-Traumatic Stress Disorder (PTSD) is a multifaceted psychiatric disorder triggered by traumatic events, leading to prolonged psychological distress and varied symptoms. Rat models have been extensively used to explore the biological, behavioral, and neurochemical underpinnings of PTSD. This review critically examines the strengths and limitations of commonly used rat models, such as single prolonged stress (SPS), stress-re-stress (S-R), and predator-based paradigms, in replicating human PTSD pathology. While these models provide valuable insights into neuroendocrine responses, genetic predispositions, and potential therapeutic targets, they face challenges in capturing the full complexity of PTSD, particularly in terms of ethological relevance and translational validity. We assess the degree to which these models mimic the neurobiological and behavioral aspects of human PTSD, highlighting areas where they succeed and where they fall short. This review also discusses future directions in refining these models to improve their utility for translational research, aiming to bridge the gap between preclinical findings and clinical applications.
Collapse
Affiliation(s)
- Alexey Sarapultsev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Maria Komelkova
- Russian-Chinese Education and Research Center of System Pathology, South Ural State University, 76 Lenin Prospekt, 454080 Chelyabinsk, Russia
| | - Oleg Lookin
- National Scientific Medical Center, Astana 010000, Kazakhstan
| | - Sergey Khatsko
- Anatomical and Physiological Experimental Laboratory, Department of Experimental Biology and Biotechnology, Institute of Natural Sciences and Mathematics, 48 Kuybysheva Str., 620026 Ekaterinburg, Russia
| | - Evgenii Gusev
- Institute of Immunology and Physiology, Ural Branch of the Russian Academy of Science, 106 Pervomaiskaya Street, 620049 Ekaterinburg, Russia
| | - Alexander Trofimov
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Tursonjan Tokay
- Biology Department, School of Sciences and Humanities, Nazarbayev University, 53 Kabanbai Batyr Ave., Astana 010000, Kazakhstan
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
- Hubei Key Laboratory of Biological Targeted Therapy, China-Russia Medical Research Center for Stress Immunology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430000, China
| |
Collapse
|
2
|
Ge S, Dang M, Pires Dias AC, Zhang X. Engineered IgG Fc-conjugation prolongs the half-life of florfenicol and alleviates pneumonia in mice. Biochimie 2024:S0300-9084(24)00240-2. [PMID: 39427834 DOI: 10.1016/j.biochi.2024.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/15/2024] [Accepted: 10/17/2024] [Indexed: 10/22/2024]
Abstract
Small molecule drugs often exhibit short half-lives, requiring frequent administrations to maintain therapeutic concentrations over an extended period. To address this issue, the fragment crystallizable (Fc) region of IgG, known to prolong the half-life of antibodies via its interaction with the Fc neonatal receptor, was harnessed as a carrier protein to extend the half-life of a small molecule drug, florfenicol. Florfenicol, was chemically coupled to a recombinant Fc protein expressed using the eukaryotic expression system in HEK293 cells. The Fc-florfenicol conjugate exhibited a substantially prolonged half-life of from 3.8 to 9.1 h compared to unconjugated florfenicol and demonstrated excellent therapeutic properties in treating pneumonia in a mouse model. Our results, combined with the literature analysis on Fc-small molecule conjugates, show that Fc can substantially enhance the drug's half-life and suggest the potential for its use as a carrier in novel delivery systems.
Collapse
Affiliation(s)
- Shikun Ge
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Mei Dang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Department of Biological Sciences, Faculty of Science, National University of Singapore, 10 Keng Ridge Crescent, 119260, Singapore
| | - Alberto Carlos Pires Dias
- Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal
| | - Xiaoying Zhang
- China and Portugal Joint Research Center, Shaanxi International Cooperation Demonstration Base, Shaanxi University of Technology, Hanzhong, 723000, Shaanxi, China; Centre of Molecular and Environmental Biology, Department of Biology, University of Minho, Campus de Gualtar, 4710-057, Braga, Portugal; Department of Biomedical Sciences, Ontario Veterinary College, University of Guelph, N1G 2W1, Guelph, Ontario, Canada.
| |
Collapse
|
3
|
Munshi-South J, Garcia JA, Orton D, Phifer-Rixey M. The evolutionary history of wild and domestic brown rats ( Rattus norvegicus). Science 2024; 385:1292-1297. [PMID: 39298602 DOI: 10.1126/science.adp1166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 08/15/2024] [Indexed: 09/22/2024]
Abstract
The brown rat (Rattus norvegicus) occupies nearly every terrestrial habitat with a human presence and is one of our most important model organisms. Despite this prevalence, gaps remain in understanding the evolution of brown rat commensalism, their global dispersal, and mechanisms underlying contemporary adaptations to diverse environments. In this Review, we explore recent advances in the evolutionary history of brown rats and discuss key challenges, including finding and accurately dating historical specimens, disentangling histories of multiple domestication events, and synthesizing functional variation in wild rat populations with the development of laboratory strains. Advances in zooarchaeology and population genomics will usher in a new golden age of research on the evolutionary biology of brown rats, with positive feedbacks on their use as biomedical models.
Collapse
Affiliation(s)
- Jason Munshi-South
- Department of Biodiversity, Earth and Environmental Science, Drexel University, Philadelphia, PA, USA
| | - Joseph A Garcia
- Departments of Medicine and Research & Development, James J. Peters Veterans Affairs Medical Center, Bronx, New York, NY, USA
- Department of Medicine, Columbia University Irving Medical Center, New York, NY, USA
| | - David Orton
- BioArCh, Department of Archaeology, University of York, York, UK
| | | |
Collapse
|
4
|
Rebelo AP, Abad C, Dohrn MF, Li JJ, Tieu EK, Medina J, Yanick C, Huang J, Zotter B, Young JI, Saporta M, Scherer SS, Walz K, Zuchner S. SORD-deficient rats develop a motor-predominant peripheral neuropathy unveiling novel pathophysiological insights. Brain 2024; 147:3131-3143. [PMID: 38538210 DOI: 10.1093/brain/awae079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 01/23/2024] [Accepted: 01/26/2024] [Indexed: 04/09/2024] Open
Abstract
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect ∼10 000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord-/-, Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioural tests as well as biochemical, physiological and comprehensive histological examinations. Sord-/- rats had remarkably increased levels of sorbitol in serum, CSF and peripheral nerve. Moreover, serum from Sord-/- rats contained significantly increased levels of neurofilament light chain, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord-/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion-tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding-enlarged 'ballooned' myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord-/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
Collapse
Affiliation(s)
- Adriana P Rebelo
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Clemer Abad
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Maike F Dohrn
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- Department of Neurology, Medical Faculty, RWTH Aachen University, Aachen 52074, Germany
| | - Jian J Li
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ethan K Tieu
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jessica Medina
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Christopher Yanick
- Graduate Program in Neuroscience, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Jingyu Huang
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Brendan Zotter
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Juan I Young
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Mario Saporta
- Department of Neurology, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Steven S Scherer
- Department of Neurology, The Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherina Walz
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
- IQUIBICEN-CONICET, Faculty of Exact and Natural Sciences-University of Buenos Aires, Buenos Aires C1428EG4, Argentina
| | - Stephan Zuchner
- Dr. John T. Macdonald Foundation Department of Human Genetics and John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| |
Collapse
|
5
|
Bosnyak I, Farkas N, Molitor D, Meresz B, Patko E, Atlasz T, Vaczy A, Reglodi D. Optimization of an Ischemic Retinopathy Mouse Model and the Consequences of Hypoxia in a Time-Dependent Manner. Int J Mol Sci 2024; 25:8008. [PMID: 39125579 PMCID: PMC11311598 DOI: 10.3390/ijms25158008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 07/18/2024] [Accepted: 07/19/2024] [Indexed: 08/12/2024] Open
Abstract
The retina is one of the highest metabolically active tissues with a high oxygen consumption, so insufficient blood supply leads to visual impairment. The incidence of related conditions is increasing; however, no effective treatment without side effects is available. Furthermore, the pathomechanism of these diseases is not fully understood. Our aim was to develop an optimal ischemic retinopathy mouse model to investigate the retinal damage in a time-dependent manner. Retinal ischemia was induced by bilateral common carotid artery occlusion (BCCAO) for 10, 13, 15 or 20 min, or by right permanent unilateral common carotid artery occlusion (UCCAO). Optical coherence tomography was used to follow the changes in retinal thickness 3, 7, 14, 21 and 28 days after surgery. The number of ganglion cells was evaluated in the central and peripheral regions on whole-mount retina preparations. Expression of glial fibrillary acidic protein (GFAP) was analyzed with immunohistochemistry and Western blot. Retinal degeneration and ganglion cell loss was observed in multiple groups. Our results suggest that the 20 min BCCAO is a good model to investigate the consequences of ischemia and reperfusion in the retina in a time-dependent manner, while the UCCAO causes more severe damage in a short time, so it can be used for testing new drugs.
Collapse
Affiliation(s)
- Inez Bosnyak
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Nelli Farkas
- Institute of Bioanalysis, Medical School, University of Pecs, 7624 Pecs, Hungary;
| | - Dorottya Molitor
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Balazs Meresz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Evelin Patko
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Tamas Atlasz
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
- Department of Sportbiology, Faculty of Sciences, University of Pecs, 7624 Pecs, Hungary
| | - Alexandra Vaczy
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| | - Dora Reglodi
- Department of Anatomy, HUN-REN-PTE PACAP Research Team, Medical School, University of Pecs, 7624 Pecs, Hungary; (I.B.); (D.M.); (B.M.); (E.P.); (T.A.)
| |
Collapse
|
6
|
Nicotra R, Lutz C, Messal HA, Jonkers J. Rat Models of Hormone Receptor-Positive Breast Cancer. J Mammary Gland Biol Neoplasia 2024; 29:12. [PMID: 38913216 PMCID: PMC11196369 DOI: 10.1007/s10911-024-09566-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 06/07/2024] [Indexed: 06/25/2024] Open
Abstract
Hormone receptor-positive (HR+) breast cancer (BC) is the most common type of breast cancer among women worldwide, accounting for 70-80% of all invasive cases. Patients with HR+ BC are commonly treated with endocrine therapy, but intrinsic or acquired resistance is a frequent problem, making HR+ BC a focal point of intense research. Despite this, the malignancy still lacks adequate in vitro and in vivo models for the study of its initiation and progression as well as response and resistance to endocrine therapy. No mouse models that fully mimic the human disease are available, however rat mammary tumor models pose a promising alternative to overcome this limitation. Compared to mice, rats are more similar to humans in terms of mammary gland architecture, ductal origin of neoplastic lesions and hormone dependency status. Moreover, rats can develop spontaneous or induced mammary tumors that resemble human HR+ BC. To date, six different types of rat models of HR+ BC have been established. These include the spontaneous, carcinogen-induced, transplantation, hormone-induced, radiation-induced and genetically engineered rat mammary tumor models. Each model has distinct advantages, disadvantages and utility for studying HR+ BC. This review provides a comprehensive overview of all published models to date.
Collapse
Affiliation(s)
- Raquel Nicotra
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands
- Oncode Institute, Amsterdam, Netherlands
| | - Catrin Lutz
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Hendrik A Messal
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| | - Jos Jonkers
- Division of Molecular Pathology, The Netherlands Cancer Institute, Amsterdam, Netherlands.
- Oncode Institute, Amsterdam, Netherlands.
| |
Collapse
|
7
|
Kadar DD, Warli SM, Ritarwan K, Ichwan M, Ismi J, Fikri E, Harahap J, Alferraly I. Efficacy of metamizole to prevent kidney injury after renal-ischaemic reperfusion injury in Wistar rats. Ann Med Surg (Lond) 2024; 86:1408-1415. [PMID: 38463114 PMCID: PMC10923394 DOI: 10.1097/ms9.0000000000001694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 12/27/2023] [Indexed: 03/12/2024] Open
Abstract
Background Renal ischaemia-reperfusion injury (RIRI) is a common kidney procedure complication due to temporary blood flow interruption, leading to kidney injuries. This study aimed to analyze the effect of metamizole on the levels of interleukin-18 (IL-18), neutrophil-gelatinase-associated lipocalin (NGAL), myeloperoxidase (MPO), and histopathological changes in rats with RIRI. Materials and methods Animal pre-clinical design study was used. Thirty-two male Wistar rats (Rattus norvegicus) were divided into four groups: negative control, positive control, M100, and M200. Blood samples were collected by intracardiac puncture, followed by bilateral nephrectomy and analyzed histopathologically. Results Significant difference in IL-18 levels between positive control vs negative control (114.1 + 12.07 vs. 94.0 + 11.4; P = 0.019) and positive control vs M100 (114.1 + 12.07 vs. 86.9 + 8.34; P = 0.007). There was no difference in NGAL. M100 group had the lowest serum MPO levels (14.78+2.01), there was a significant difference in MPO levels in all pairwise analyses. There was a difference in cumulative EGTI scores among the study groups [positive 10.5 (8-11) vs. negative 9 (7-10) vs. M100 9 (7-10) vs. M200 9 (7-11); P = 0.021]. Conclusion Metamizole 100 mg/kgBW can reduce IL-18 and MPO levels in RIRI, giving more optimal results without affecting NGAL levels. Metamizole administration can reduce cumulative EGTI scores in RIRI, both at doses of 100 mg/kgBW and 200 mg/kgBW. This study shows that Metamizole can be used to prevent kidney injury caused by RIRI. IL-18 and MPO can be biomarkers in predicting kidney injury in RIRI.
Collapse
Affiliation(s)
| | - Syah Mirsya Warli
- Division of Urology
- Department of Urology, Universitas Sumatera Utara Hospital, Universitas Sumatera Utara
| | - Kiking Ritarwan
- Department of Neurology, Faculty of Medicine, Universitas Sumatera Utara—Haji Adam Malik General Hospital
| | | | - Jufriady Ismi
- Department of Surgery, Faculty of Medicine, Universitas Syiah Kuala—Zainoel Abidin General Hospital, Banda Aceh, Indonesia
| | - Erjan Fikri
- Division of Pediatric Surgery, Department of Surgery
| | | | - Ibnu Alferraly
- Anatomical Pathology, Faculty of Medicine, Universitas Sumatera Utara, Medan
| |
Collapse
|
8
|
Kaplan BLF, Hoberman AM, Slikker W, Smith MA, Corsini E, Knudsen TB, Marty MS, Sobrian SK, Fitzpatrick SC, Ratner MH, Mendrick DL. Protecting Human and Animal Health: The Road from Animal Models to New Approach Methods. Pharmacol Rev 2024; 76:251-266. [PMID: 38351072 PMCID: PMC10877708 DOI: 10.1124/pharmrev.123.000967] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Revised: 10/18/2023] [Accepted: 12/01/2023] [Indexed: 02/16/2024] Open
Abstract
Animals and animal models have been invaluable for our current understanding of human and animal biology, including physiology, pharmacology, biochemistry, and disease pathology. However, there are increasing concerns with continued use of animals in basic biomedical, pharmacological, and regulatory research to provide safety assessments for drugs and chemicals. There are concerns that animals do not provide sufficient information on toxicity and/or efficacy to protect the target population, so scientists are utilizing the principles of replacement, reduction, and refinement (the 3Rs) and increasing the development and application of new approach methods (NAMs). NAMs are any technology, methodology, approach, or assay used to understand the effects and mechanisms of drugs or chemicals, with specific focus on applying the 3Rs. Although progress has been made in several areas with NAMs, complete replacement of animal models with NAMs is not yet attainable. The road to NAMs requires additional development, increased use, and, for regulatory decision making, usually formal validation. Moreover, it is likely that replacement of animal models with NAMs will require multiple assays to ensure sufficient biologic coverage. The purpose of this manuscript is to provide a balanced view of the current state of the use of animal models and NAMs as approaches to development, safety, efficacy, and toxicity testing of drugs and chemicals. Animals do not provide all needed information nor do NAMs, but each can elucidate key pieces of the puzzle of human and animal biology and contribute to the goal of protecting human and animal health. SIGNIFICANCE STATEMENT: Data from traditional animal studies have predominantly been used to inform human health safety and efficacy. Although it is unlikely that all animal studies will be able to be replaced, with the continued advancement in new approach methods (NAMs), it is possible that sometime in the future, NAMs will likely be an important component by which the discovery, efficacy, and toxicity testing of drugs and chemicals is conducted and regulatory decisions are made.
Collapse
Affiliation(s)
- Barbara L F Kaplan
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Alan M Hoberman
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - William Slikker
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Mary Alice Smith
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Emanuela Corsini
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Thomas B Knudsen
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - M Sue Marty
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Sonya K Sobrian
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Suzanne C Fitzpatrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Marcia H Ratner
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| | - Donna L Mendrick
- Center for Environmental Health Sciences, Department of Comparative Biomedical Sciences, College of Veterinary Medicine, Mississippi State University, Mississippi State, Mississippi (B.L.F.K.); Charles River Laboratories, Inc., Horsham, Pennsylvania (A.M.H.); Retired, National Center for Toxicological Research, Jefferson, Arkansas (W.S.); University of Georgia, Athens, Georgia (M.A.S.); Department of Pharmacological and Biomolecular Sciences, 'Rodolfo Paoletti' Università degli Studi di Milano, Milan, Italy (E.C.); US Environmental Protection Agency, Research Triangle Park, North Carolina (T.B.K.); Dow, Inc., Midland, Michigan (M.S.M.); Howard University College of Medicine, Washington DC (S.K.S.); Center for Food Safety and Applied Nutrition, US Food and Drug Administration, College Park, Maryland (S.C.F.); Boston University Chobanian & Avedisian School of Medicine, Boston, Massachusetts (M.H.R.); and National Center for Toxicological Research, US Food and Drug Administration, Silver Spring, Maryland (D.L.M.)
| |
Collapse
|
9
|
Evangelista S, Vazakidou P, Koekkoek J, Heinzelmann MT, Lichtensteiger W, Schlumpf M, Tresguerres JAF, Linillos-Pradillo B, van Duursen MBM, Lamoree MH, Leonards PEG. High throughput LC-MS/MS method for steroid hormone analysis in rat liver and plasma - unraveling methodological challenges. Talanta 2024; 266:124981. [PMID: 37516072 DOI: 10.1016/j.talanta.2023.124981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Revised: 07/20/2023] [Accepted: 07/22/2023] [Indexed: 07/31/2023]
Abstract
Comprehensive reference data for steroid hormones are lacking in rat models, particularly for early developmental stages and unconventional matrices as the liver. Therefore, we developed and validated an enzymatic, solid-phase extraction (SPE) and liquid chromatography-tandem mass spectrometry (LC-MS/MS) method to quantify a panel of 23 steroid hormones in liver and plasma from adult and neonatal rats. Our approach tackles methodological challenges, focusing on undesired byproducts associated with specific enzymatic treatment, and enables a thorough assessment of potential interferences in complex matrices by utilizing unstripped plasma and liver. We propose an optimized enzymatic hydrolysis protocol using a recombinant β-glucuronidase/sulfatase mix (BGS mix) to efficiently deconjugate steroid phase II conjugates. The streamlined sample preparation and high-throughput solid phase extraction in a 96-well plate significantly accelerate sample processing for complex matrices and alarge number of samples. We were able to achieve the necessary sensitivity for accurately measuring the target analytes, particularly estrogens, in small sample sizes of 5-20 mg of liver tissue and 100 μL of plasma. Through the analysis of liver and plasma samples from adult and neonatal rats, including both sexes, our study showed a novel set of steroid hormone reference intervals. This study provides a reliable diagnostic tool for the quantification of steroids in rat models and gives insight in liver and plasma-related steroid hormone dynamics at early developmental stages. In addition, the method covers several pathway intermediates and extend the list of steroid hormones to be investigated.
Collapse
Affiliation(s)
- Sara Evangelista
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands.
| | - Paraskevi Vazakidou
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Jacco Koekkoek
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Manuel T Heinzelmann
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Walter Lichtensteiger
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Margret Schlumpf
- GREEN Tox and Institute of Veterinary Pharmacology and Toxicology, University of Zurich, Zurich, Switzerland
| | - Jesus A F Tresguerres
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Beatriz Linillos-Pradillo
- Departments of Physiology and of Biochemistry and Molecular Biology, Complutense University of Madrid, Madrid, Spain
| | - Majorie B M van Duursen
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Marja H Lamoree
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| | - Pim E G Leonards
- Amsterdam Institute for Life and Environment (A-LIFE), Faculty of Science, Vrije Universiteit Amsterdam, the Netherlands
| |
Collapse
|
10
|
Rebelo AP, Abad C, Dohrn MF, Li JJ, Tieu E, Medina J, Yanick C, Huang J, Zotter B, Young JI, Saporta M, Scherer SS, Walz K, Zuchner S. Sord deficient rats develop a motor-predominant peripheral neuropathy unveiling novel pathophysiological insights. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.05.570001. [PMID: 38106042 PMCID: PMC10723320 DOI: 10.1101/2023.12.05.570001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
Biallelic SORD mutations cause one of the most frequent forms of recessive hereditary neuropathy, estimated to affect approximately 10,000 patients in North America and Europe alone. Pathogenic SORD loss-of-function changes in the encoded enzyme sorbitol dehydrogenase result in abnormally high sorbitol levels in cells and serum. How sorbitol accumulation leads to peripheral neuropathy remains to be elucidated. A reproducible animal model for SORD neuropathy is essential to illuminate the pathogenesis of SORD deficiency and for preclinical studies of potential therapies. Therefore, we have generated a Sord knockout (KO), Sord -/- , Sprague Dawley rat, to model the human disease and to investigate the pathophysiology underlying SORD deficiency. We have characterized the phenotype in these rats with a battery of behavioral tests as well as biochemical, physiological, and comprehensive histological examinations. Sord -/- rats had remarkably increased levels of sorbitol in serum, cerebral spinal fluid (CSF), and peripheral nerve. Moreover, serum from Sord -/- rats contained significantly increased levels of neurofilament light chain, NfL, an established biomarker for axonal degeneration. Motor performance significantly declined in Sord -/- animals starting at ∼7 months of age. Gait analysis evaluated with video motion tracking confirmed abnormal gait patterns in the hindlimbs. Motor nerve conduction velocities of the tibial nerves were slowed. Light and electron microscopy of the peripheral nervous system revealed degenerating myelinated axons, de- and remyelinated axons, and a likely pathognomonic finding - enlarged "ballooned" myelin sheaths. These findings mainly affected myelinated motor axons; myelinated sensory axons were largely spared. In summary, Sord -/- rats develop a motor-predominant neuropathy that closely resembles the human phenotype. Our studies revealed novel significant aspects of SORD deficiency, and this model will lead to an improved understanding of the pathophysiology and the therapeutic options for SORD neuropathy.
Collapse
|
11
|
Seki S, Kawabe T, Yamazaki W, Matsumura K, Oikawa T, Obata T, Higashiya M, Yano M, Eto T. Cryopreservation of rat embryos at all developmental stages by small-volume vitrification procedure and rapid warming in cryotubes. Sci Rep 2023; 13:20903. [PMID: 38017006 PMCID: PMC10684866 DOI: 10.1038/s41598-023-47394-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 11/13/2023] [Indexed: 11/30/2023] Open
Abstract
Intracellular ice formation during cryopreservation is lethal to the cell, including during warming. Here, we examined the effect of sample volume and warming rate on the cryopreservation success of 1-cell rat embryos based on successful development into blastocysts in vitro and to term in vivo following embryo transfer. Embryos were equilibrated in 5% propylene glycol solution for 10 min, held for 40 s at 0 °C in cryopreservation solution (5%PG + PEPeS), and cooled by immersion in liquid nitrogen. When 1-cell embryos were cryopreserved in a volume of 30-100 μL at a cooling rate of 5830-7160 °C/min and warmed at 35,480-49,400 °C/min by adding 1 mL of 0.3 M sucrose solution at 50 °C, 17.3-28.8% developed into blastocysts, compared with 57.0% of untreated embryos. However, when 1-cell embryos were cryopreserved in a smaller volume of 15 μl at 7950 °C/min and warmed at 68,850 °C/min, 58.8 ± 10.6% developed into blastocysts and 50.0 ± 7.4% developed to term, comparable to that of non-treated embryos (57.0 ± 5.4% and 51.4 ± 3.1%, respectively). Cryopreserved embryos at other developmental stages also showed high in vitro culture potential similar to that of the control. Using a conventional cryotube and a small-volume vitrification procedure with rapid warming, we achieved high levels of subsequent rat embryonic development at all developmental stages.
Collapse
Affiliation(s)
- Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan.
| | - Toshiaki Kawabe
- ARK Resource Co., Ltd., 456 Osozu, Misato-machi, Shimomashiki-gun, Kumamoto, 861-4401, Japan
| | - Wataru Yamazaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, 1-1 Asahi-dai, Nomi, Ishikawa, 923-1292, Japan
| | - Takanori Oikawa
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, 1-1-1 Hondo, Akita, Akita, 010-8543, Japan
| | - Tomoo Eto
- Central Institute for Experimental Animals, 3-25-12 Tonomachi, Kawasaki-ku, Kawasaki, 210-0821, Japan.
| |
Collapse
|
12
|
Izawa K, Tsuda M, Suzuki T, Honma M, Sugiyama KI. Detection of in vivo mutagenicity in rat liver samples using error-corrected sequencing techniques. Genes Environ 2023; 45:30. [PMID: 37993952 PMCID: PMC10664353 DOI: 10.1186/s41021-023-00288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/14/2023] [Indexed: 11/24/2023] Open
Abstract
BACKGROUND Mutagenicity, the ability of chemical agents to cause mutations and potentially lead to cancer, is a critical aspect of substance safety assessment for protecting human health and the environment. Metabolic enzymes activate multiple mutagens in living organisms, thus in vivo animal models provide highly important information for evaluating mutagenicity in human. Rats are considered suitable models as they share a similar metabolic pathway with humans for processing toxic chemical and exhibit higher responsiveness to chemical carcinogens than mice. To assess mutagenicity in rats, transgenic rodents (TGRs) are widely used for in vivo gene mutation assays. However, such assays are labor-intensive and could only detect transgene mutations inserted into the genome. Therefore, introducing a technology to directly detect in vivo mutagenicity in rats would be necessary. The next-generation sequencing (NGS) based error-corrected sequencing technique is a promising approach for such purposes. RESULTS We investigated the applicability of paired-end and complementary consensus sequencing (PECC-Seq), an error-corrected sequencing technique, for detecting in vivo mutagenicity in the rat liver samples. PECC-Seq allows for the direct detection of ultra-rare somatic mutations in the genomic DNA without being constrained by the genomic locus, tissue, or organism. We tested PECC-Seq feasibility in rats treated with diethylnitrosamine (DEN), a mutagenic compound. Interestingly, the mutation and mutant frequencies between PECC-Seq and the TGR assay displayed a promising correlation. Our results also demonstrated that PECC-Seq could successfully detect the A:T > T:A mutation in rat liver samples, consistent with the TGR assay. Furthermore, we calculated the trinucleotide mutation frequency and proved that PECC-Seq accurately identified the DEN treatment-induced mutational signatures. CONCLUSIONS Our study provides the first evidence of using PECC-Seq for in vivo mutagenicity detection in rat liver samples. This approach could provide a valuable alternative to conventional TGR assays as it is labor- and time-efficient and eliminates the need for transgenic rodents. Error-corrected sequencing techniques, such as PECC-Seq, represent promising approaches for enhancing mutagenicity assessment and advancing regulatory science.
Collapse
Affiliation(s)
- Kazuki Izawa
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan.
| | - Masataka Tsuda
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Takayoshi Suzuki
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Masamitsu Honma
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
- Division of General Affairs, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| | - Kei-Ichi Sugiyama
- Division of Genetics and Mutagenesis, National Institute of Health Sciences, 3-25-26, Tonomachi, Kawasaki-ku, Kawasaki-shi, Kanagawa, 210-9501, Japan
| |
Collapse
|
13
|
Bhardwaj M, Gour A, Ahmed A, Dhiman S, Manhas D, Khajuria P, Wazir P, Mukherjee D, Nandi U. Impact of Disease States on the Oral Pharmacokinetics of EIDD-1931 (an Active Form of Molnupiravir) in Rats for Implication in the Dose Adjustment. Mol Pharm 2023; 20:4597-4610. [PMID: 37527414 DOI: 10.1021/acs.molpharmaceut.3c00314] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/03/2023]
Abstract
The pharmacokinetic alteration of an antimicrobial medication leading to sub-therapeutic plasma level can aid in the emergence of resistance, a global threat nowadays. In this context, molnupiravir (prodrug of EIDD-1931) is the most efficacious orally against corona virus disease (COVID-19). In addition to drug-drug interaction, the pharmacokinetics of a drug can significantly vary during any disease state, leading to disease-drug interaction. However, no information is available for such a recently approved drug. Therefore, we aimed to explore the oral pharmacokinetics of EIDD-1931 in seven chemically induced disease states individually compared to the normal state using various rat models. Induction of any disease situation was confirmed by the disease specific study(s) prior to pharmacokinetic investigations. Compared to the normal state, substantially lowered plasma exposure (0.47- and 0.63-fold) with notably enhanced clearance (2.00- and 1.56-fold) of EIDD-1931 was observed in rats of ethanol-induced gastric injury and carbon tetrachloride-induced liver injury states. Conversely, paclitaxel-induced neuropathic pain and cisplatin-induced kidney injury states exhibited opposite outcomes on oral exposure (1.43- and 1.50-fold) and clearance (0.69- and 0.65-fold) of EIDD-1931. Although the highest plasma concentration (2.26-fold) markedly augmented in the doxorubicin-induced cardiac injury state, streptozocin-induced diabetes and lipopolysaccharide-induced lung injury state did not substantially influence the pharmacokinetics of EIDD-1931. Exploring the possible phenomenon behind the reduced or boosted plasma exposure of EIDD-1931, results suggest the need for dose adjustment in respective diseased conditions in order to achieve desired efficacy during oral therapy of EIDD-1931.
Collapse
Affiliation(s)
- Mahir Bhardwaj
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Abhishek Gour
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Ajaz Ahmed
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Sumit Dhiman
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Diksha Manhas
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Parul Khajuria
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Priya Wazir
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
| | - Debaraj Mukherjee
- Natural Product and Medicinal Chemistry (NPMC) Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Utpal Nandi
- Pharmacology Division, CSIR-Indian Institute of Integrative Medicine, Jammu 180001, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
14
|
Vedi M, Smith JR, Thomas Hayman G, Tutaj M, Brodie KC, De Pons JL, Demos WM, Gibson AC, Kaldunski ML, Lamers L, Laulederkind SJF, Thota J, Thorat K, Tutaj MA, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. 2022 updates to the Rat Genome Database: a Findable, Accessible, Interoperable, and Reusable (FAIR) resource. Genetics 2023; 224:iyad042. [PMID: 36930729 PMCID: PMC10474928 DOI: 10.1093/genetics/iyad042] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Revised: 03/07/2023] [Accepted: 03/08/2023] [Indexed: 03/19/2023] Open
Abstract
The Rat Genome Database (RGD, https://rgd.mcw.edu) has evolved from simply a resource for rat genetic markers, maps, and genes, by adding multiple genomic data types and extensive disease and phenotype annotations and developing tools to effectively mine, analyze, and visualize the available data, to empower investigators in their hypothesis-driven research. Leveraging its robust and flexible infrastructure, RGD has added data for human and eight other model organisms (mouse, 13-lined ground squirrel, chinchilla, naked mole-rat, dog, pig, African green monkey/vervet, and bonobo) besides rat to enhance its translational aspect. This article presents an overview of the database with the most recent additions to RGD's genome, variant, and quantitative phenotype data. We also briefly introduce Virtual Comparative Map (VCMap), an updated tool that explores synteny between species as an improvement to RGD's suite of tools, followed by a discussion regarding the refinements to the existing PhenoMiner tool that assists researchers in finding and comparing quantitative data across rat strains. Collectively, RGD focuses on providing a continuously improving, consistent, and high-quality data resource for researchers while advancing data reproducibility and fulfilling Findable, Accessible, Interoperable, and Reusable (FAIR) data principles.
Collapse
Affiliation(s)
- Mahima Vedi
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jennifer R Smith
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - G Thomas Hayman
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Monika Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Kent C Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jeffrey L De Pons
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Wendy M Demos
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Adam C Gibson
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Mary L Kaldunski
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Logan Lamers
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stanley J F Laulederkind
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Jyothi Thota
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Ketaki Thorat
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Marek A Tutaj
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Shur-Jen Wang
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Stacy Zacher
- Finance and Administration, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Melinda R Dwinell
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| | - Anne E Kwitek
- The Rat Genome Database, Department of Physiology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
- Department of Biomedical Engineering, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
15
|
Cullins MJ, Lenell C, Ciucci MR, Connor NP. Changes in ultrasonic vocalizations after unilateral cerebral ischemia in a rat stroke model. Behav Brain Res 2023; 439:114252. [PMID: 36496078 PMCID: PMC9795729 DOI: 10.1016/j.bbr.2022.114252] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 11/30/2022] [Accepted: 12/06/2022] [Indexed: 12/14/2022]
Abstract
Stroke frequently results in communication impairments that negatively impact quality of life and overall recovery, yet the biological mechanisms underlying these changes are not well understood. Ultrasonic vocalizations (USVs) in rodent models of disease and aging have been used to improve our understanding of the biological mechanisms that underlie vocal deficits and their response to interventions. Changes in USVs after middle cerebral artery occlusion (MCAO) in mice have been reported, yet rat models have significant anatomical and behavioral advantages over mice, including the ability to vocally train rats with an established paradigm. We sought to determine whether a unilateral MCAO rat stroke model provides a biologically and behaviorally relevant way to study post stroke vocalization deficits. We hypothesized that left MCAO would be associated with changes in USVs. Six weeks after MCAO or sham-control surgery, USVs were recorded in rats using an established mating paradigm. Stroke was associated with differences in USV acoustics including more frequent use of simple calls characterized by shorter durations and restricted bandwidths. These parameters were also found to correlate with post stroke lingual weakness. This is the first study to describe changes to rat USVs using a stroke model. These results suggest the unilateral MCAO rat stroke model is a biologically and behaviorally relevant model to understand how stroke affects vocal behaviors.
Collapse
Affiliation(s)
- Miranda J Cullins
- University of Wisconsin-Madison, Department of Surgery, United States.
| | - Charles Lenell
- University of Wisconsin-Madison, Department of Surgery, United States; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, United States
| | - Michelle R Ciucci
- University of Wisconsin-Madison, Department of Surgery, United States; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, United States
| | - Nadine P Connor
- University of Wisconsin-Madison, Department of Surgery, United States; University of Wisconsin-Madison, Department of Communication Sciences and Disorders, United States
| |
Collapse
|
16
|
Abstract
The fragile X-related disorders are an important group of hereditary disorders that are caused by expanded CGG repeats in the 5' untranslated region of the FMR1 gene or by mutations in the coding sequence of this gene. Two categories of pathological CGG repeats are associated with these disorders, full mutation alleles and shorter premutation alleles. Individuals with full mutation alleles develop fragile X syndrome, which causes autism and intellectual disability, whereas those with premutation alleles, which have shorter CGG expansions, can develop fragile X-associated tremor/ataxia syndrome, a progressive neurodegenerative disease. Thus, fragile X-related disorders can manifest as neurodegenerative or neurodevelopmental disorders, depending on the size of the repeat expansion. Here, we review mouse models of fragile X-related disorders and discuss how they have informed our understanding of neurodegenerative and neurodevelopmental disorders. We also assess the translational value of these models for developing rational targeted therapies for intellectual disability and autism disorders.
Collapse
Affiliation(s)
- Rob Willemsen
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| | - R. Frank Kooy
- Department of Clinical Genetics, Erasmus University Medical Center, 3015 CN Rotterdam, the Netherlands. Department of Medical Genetics, University of Antwerp, 2000 Antwerp, Belgium
| |
Collapse
|
17
|
Roh YJ, Gong JE, Kim JE, Jin YJ, Song HJ, Seol A, Park J, Lim Y, Hwang DY. Comparison of immunophenotypes between Rag2 knockout mice derived from two different sources. Lab Anim Res 2023; 39:2. [PMID: 36627650 PMCID: PMC9832259 DOI: 10.1186/s42826-023-00153-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 12/28/2022] [Accepted: 01/03/2023] [Indexed: 01/12/2023] Open
Abstract
BACKGROUND Recombination activating gene2 (Rag2) knockout (KO) mice are used widely in various research fields, including vaccine development, transplantation studies, and hematopoiesis research, but few studies have compared their phenotypes. This study examined whether there were differences in the immunophenotypes between Rag2 KO mice derived from different sources. In particular, the changes in the organ weight, histological structure, and subpopulation of T and B cells were compared in the spleen and thymus of C57BL/6-Rag2em1hwl/Korl (Rag2/Korl KO) and B6.Cg-Rag2tm1.1Cgn/J (Rag2/J KO) mice. RESULTS The weight of the spleen and thymus similarly decreased in the Rag2/Korl and Rag2/J KO mice compared to their wild type (WT) mice, even though the other organs were kept at the same weight. A slight difference between the Rag2/Korl and Rag2/J KO group were detected in the number of white blood cells (WBC), lymphocytes (LYM), red cell distribution width (RDW), and platelets (PLT). In addition, the white pulp of the spleen and the cortex region of the thymus decreased in both Rag2 KO mice compared to WT mice. On the other hand, significant differences in the number of CD8+ T and B cell subpopulations between WT and Rag2 KO mice were observed between Rag2/Korl and Rag2/J KO group, while the CD4+ T subpopulation was maintained similarly in both groups. CONCLUSIONS These results suggest that Rag2/Korl and Rag2/J KO mice exhibit similar immunophenotypes in the spleen and thymus except for the differences in the number of CD8+ T and B cell subpopulations.
Collapse
Affiliation(s)
- Yu Jeong Roh
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - Jeong Eun Gong
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - Ji Eun Kim
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - You Jeong Jin
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - Hee Jin Song
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - Ayun Seol
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| | - Jumin Park
- grid.262229.f0000 0001 0719 8572Department of Food Science and Nutrition, College of Human Ecology, Pusan National University, Busan, 46241 Korea
| | - Yong Lim
- grid.412050.20000 0001 0310 3978Department of Clinical Laboratory Science, College of Nursing and Healthcare Science, Dong-Eui University, Busan, 47340 Korea
| | - Dae Youn Hwang
- grid.262229.f0000 0001 0719 8572Department of Biomaterials Science (BK21 FOUR Program)/Life and Industry Convergence Research Institute/Laboratory Animal Resources Center, College of Natural Resources and Life Science, Pusan National University, Miryang, 50463 Korea
| |
Collapse
|
18
|
Kuramoto T. Positional cloning of rat mutant genes reveals new functions of these genes. Exp Anim 2023; 72:1-8. [PMID: 36058846 PMCID: PMC9978133 DOI: 10.1538/expanim.22-0089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The laboratory rat (Rattus norvegicus) is a key model organism for biomedical research. Rats can be subjected to strict genetic and environmental controls. The rat's large body size is suitable for both surgical operations and repeated measurements of physiological parameters. These advantages have led to the development of numerous rat models for genetic diseases. Forward genetics is a proven approach for identifying the causative genes of these disease models but requires genome resources including genetic markers and genome sequences. Over the last few decades, rat genome resources have been developed and deposited in bioresource centers, which have enabled us to perform positional cloning in rats. To date, more than 100 disease-related genes have been identified by positional cloning. Since some disease models are more accessible in rats than mice, the identification of causative genes in these models has sometimes led to the discovery of novel functions of genes. As before, various mutant rats are also expected to be discovered and developed as disease models in the future. Thus, the forward genetics continues to be an important approach to find genes involved in disease phenotypes in rats. In this review, I provide an overview the development of rat genome resources and describe examples of positional cloning in rats in which novel gene functions have been identified.
Collapse
Affiliation(s)
- Takashi Kuramoto
- Laboratory of Animal Nutrition, Department of Animal Science, Faculty of Agriculture, Tokyo University of Agriculture, 1737 Funako, Atsugi, Kanagawa 243-0034, Japan
| |
Collapse
|
19
|
Zhang D, Qiao L. Intestine‐on‐a‐chip for intestinal disease study and pharmacological research. VIEW 2022. [DOI: 10.1002/viw.20220037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Affiliation(s)
- Dongxue Zhang
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| | - Liang Qiao
- Department of Chemistry, Institutes of Biomedical Sciences, and Shanghai Stomatological Hospital Fudan University Shanghai China
| |
Collapse
|
20
|
Zheng H, López-Ferreras L, Krieger JP, Fasul S, Cea Salazar V, Valderrama Pena N, Skibicka KP, Rinaman L. A Cre-driver rat model for anatomical and functional analysis of glucagon (Gcg)-expressing cells in the brain and periphery. Mol Metab 2022; 66:101631. [PMID: 36368622 PMCID: PMC9677222 DOI: 10.1016/j.molmet.2022.101631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/05/2022] [Revised: 11/02/2022] [Accepted: 11/03/2022] [Indexed: 11/09/2022] Open
Abstract
OBJECTIVE The glucagon gene (Gcg) encodes preproglucagon, which is cleaved to form glucagon-like peptide 1 (GLP1) and other mature signaling molecules implicated in metabolic functions. To date there are no transgenic rat models available for precise manipulation of GLP1-expressing cells in the brain and periphery. METHODS To visualize and manipulate Gcg-expressing cells in rats, CRISPR/Cas9 was used to express iCre under control of the Gcg promoter. Gcg-Cre rats were bred with tdTomato reporter rats to tag Gcg-expressing cells. Cre-dependent AAVs and RNAscope in situ hybridization were used to evaluate the specificity of iCre expression by GLP1 neurons in the caudal nucleus of the solitary tract (cNTS) and intermediate reticular nucleus (IRt), and by intestinal and pancreatic secretory cells. Food intake was assessed in heterozygous (Het) Gcg-Cre rats after chemogenetic stimulation of cNTS GLP1 neurons expressing an excitatory DREADD. RESULTS While genotype has minimal effect on body weight or composition in chow-fed Gcg-Cre rats, homozygous (Homo) rats have lower plasma glucose levels. In neonatal and adult Gcg-Cre/tdTom rats, reporter-labeled cells are present in the cNTS and IRt, and in additional brain regions (e.g., basolateral amygdala, piriform cortex) that lack detectable Gcg mRNA in adults but display transient developmental or persistently low Gcg expression. Compared to wildtype (WT) rats, hindbrain Gcg mRNA and GLP1 protein in brain and plasma are markedly reduced in Homo Gcg-Cre rats. Chemogenetic stimulation of cNTS GLP1 neurons reduced overnight chow intake in males but not females, the effect in males was blocked by antagonism of central GLP1 receptors, and hypophagia was enhanced when combined with a subthreshold dose of cholecystokinin-8 to stimulate gastrointestinal vagal afferents. CONCLUSIONS Gcg-Cre rats are a novel and valuable experimental tool for analyzing the development, anatomy, and function of Gcg-expressing cells in the brain and periphery. In addition, Homo Gcg-Cre rats are a unique model for assessing the role of Gcg-encoded proteins in glucose homeostasis and energy metabolism.
Collapse
Affiliation(s)
- Huiyuan Zheng
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Lorena López-Ferreras
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Jean-Phillipe Krieger
- Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden
| | - Stephen Fasul
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Valentina Cea Salazar
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Natalia Valderrama Pena
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA
| | - Karolina P. Skibicka
- Department of Nutritional Sciences, College of Health and Human Development, Huck Institute, The Pennsylvania State University, University Park, PA, USA,Institute of Neuroscience and Physiology, Department of Physiology/Metabolic Physiology, The Sahlgrenska Academy at University of Gothenburg, Sweden,Corresponding author. Department of Nutritional Sciences, Pennsylvania State University, 204 Chandlee Lab, University Park, PA 16802, USA
| | - Linda Rinaman
- Department of Psychology and Program in Neuroscience, Florida State University, Tallahassee, FL 32306, USA,Corresponding author. Department of Psychology, Program in Neuroscience, Florida State University, 1107 W. Call Street, Tallahassee, FL 32306, USA.
| |
Collapse
|
21
|
Wang H, Shu J, Zhang C, Wang Y, Shi R, Yang F, Tang X. Extracellular Vesicle-Mediated miR-150-3p Delivery in Joint Homeostasis: A Potential Treatment for Osteoarthritis? Cells 2022; 11:cells11172766. [PMID: 36078172 PMCID: PMC9454967 DOI: 10.3390/cells11172766] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/28/2022] [Accepted: 09/01/2022] [Indexed: 12/02/2022] Open
Abstract
Background: The disruption of joint homeostasis is a critical event during the process of joint injury in osteoarthritis (OA). As regulatory molecules, microRNAs (miRNAs) can be released from secretory cells and delivered to recipient cells through extracellular vesicles (EVs), thereby playing an important role in regulating joint homeostasis. We hypothesized that the fibroblast-like synoviocytes (FLSs) in healthy joints could release EVs enriched in miRNAs that can maintain joint homeostasis by regulating the signal transduction pathways in the joints, whereby the articular cartilage (AC) is protected from degeneration, and OA progression is delayed. Methods: Via high-throughput sequencing and qPCR, we found that miR-150-3p was enriched in the circulating EVs in healthy rats. Next, we established an in vitro cell model in which chondrocytes were cultured with (i) FLSs transfected with miR-150-3p mimics or (ii) EVs released by FLSs (FLS–EVs) inside the healthy synovial membrane (SM). The transportation mechanism from FLSs to chondrocytes was studied using the EV inhibitor GW4869, and the FLSs were transfected with a miR-150-3p mimic or inhibitor. To assess the therapeutic effect of miR-150-3p-carrying EVs (EVs-150) in vivo, healthy FLS-derived EVs (H-FLS–EVs) were injected into the tail vein of rats with OA at various stages of the pathogenesis and evaluated for the progression of OA. Results: The chondrocytes could uptake fluorescent-labeled miR-150-3p mimics and FLS–EVs, and GW4869 suppressed this uptake. The overexpression of miR-150-3p could significantly reduce the concentrations of pro-inflammatory cytokines in the cell culture medium and the expression of the miR-150-3p target T cell receptor-interacting molecule 14 (Trim14), as well as the innate immune-related factors, including nuclear factor kappa B (NF-κB) and interferon-β (IFN-β). Similarly to the in vitro findings, the miR-150-3p level in the serum EVs was significantly upregulated among the EV-treated rats. In the AC of the OA rat model injected with H-FLS–EVs, the joint degeneration was suppressed, and Type II collagen (COLII) and aggrecan (ACAN) were significantly upregulated, whereas the innate immune-related factors Trim14, NF-κB, and IFN-β were downregulated compared with the levels in the untreated OA rats. Notably, the suppression of joint degeneration was more significant when H-FLS–EVs were administered at the early stages of OA rather than the late stages. Conclusion: H-FLS–EVs protect chondrocyte function and maintain joint homeostasis by modulating the innate immune response by suppressing the Trim14/NF-κB/IFNβ axis. These effects are achieved through the EV-mediated transport of miR-150-3p from the FLSs to the chondrocytes. Our findings show that EV-mediated miR-150-3p can be used to suppress OA, thus providing a novel therapeutic strategy. Additionally, the EV-mediated miR-150-3p transport may also serve as a potential biomarker in the diagnosis, treatment, and prognosis of OA.
Collapse
Affiliation(s)
- Huan Wang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: (H.W.); (X.T.)
| | - Jun Shu
- Institute of Clinical Research, China-Japan Friendship Hospital, Beijing 100029, China
| | - Chengfei Zhang
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Yang Wang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing 100029, China
| | - Rongxing Shi
- Department of Traditional Chinese Medicine Acupuncture, China-Japan Friendship Hospital, Beijing 100029, China
| | - Fan Yang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
| | - Xuezhang Tang
- Department of Traditional Chinese Medicine Massage, China-Japan Friendship Hospital, Beijing 100029, China
- Correspondence: (H.W.); (X.T.)
| |
Collapse
|
22
|
Terhune EA, Monley AM, Cuevas MT, Wethey CI, Gray RS, Hadley-Miller N. Genetic animal modeling for idiopathic scoliosis research: history and considerations. Spine Deform 2022; 10:1003-1016. [PMID: 35430722 DOI: 10.1007/s43390-022-00488-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 02/19/2022] [Indexed: 10/18/2022]
Abstract
PURPOSE Idiopathic scoliosis (IS) is defined as a structural lateral spinal curvature ≥ 10° in otherwise healthy children and is the most common pediatric spinal deformity. IS is known to have a strong genetic component; however, the underlying etiology is still largely unknown. Animal models have been used historically to both understand and develop treatments for human disease, including within the context of IS. This intended audience for this review is clinicians in the fields of musculoskeletal surgery and research. METHODS In this review article, we synthesize current literature of genetic animal models of IS and introduce considerations for researchers. RESULTS Due to complex genetic and unique biomechanical factors (i.e., bipedalism) hypothesized to contribute to IS in humans, scoliosis is a difficult condition to replicate in model organisms. CONCLUSION We advocate careful selection of animal models based on the scientific question and introduce gaps and limitations in the current literature. We advocate future research efforts to include animal models with multiple characterized genetic or environmental perturbations to reflect current understanding of the human condition.
Collapse
Affiliation(s)
- Elizabeth A Terhune
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Anna M Monley
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA.,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA
| | - Melissa T Cuevas
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Cambria I Wethey
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA
| | - Ryan S Gray
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX, 78712, USA
| | - Nancy Hadley-Miller
- Department of Orthopedics, University of Colorado Anschutz Medical Campus, 12800 E 19th Ave., P18-3105, MS 8343, Aurora, CO, 80045, USA. .,Musculoskeletal Research Center, Children's Hospital Colorado, Aurora, CO, 80045, USA.
| |
Collapse
|
23
|
Nutrigenetic Interaction of Spontaneously Hypertensive Rat Chromosome 20 Segment and High-Sucrose Diet Sensitizes to Metabolic Syndrome. Nutrients 2022; 14:nu14163428. [PMID: 36014934 PMCID: PMC9416443 DOI: 10.3390/nu14163428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/17/2022] [Accepted: 08/19/2022] [Indexed: 11/16/2022] Open
Abstract
Several corresponding regions of human and mammalian genomes have been shown to affect sensitivity to the manifestation of metabolic syndrome via nutrigenetic interactions. In this study, we assessed the effect of sucrose administration in a newly established congenic strain BN.SHR20, in which a limited segment of rat chromosome 20 from a metabolic syndrome model, spontaneously hypertensive rat (SHR), was introgressed into Brown Norway (BN) genomic background. We mapped the extent of the differential segment and compared the genomic sequences of BN vs. SHR within the segment in silico. The differential segment of SHR origin in BN.SHR20 spans about 9 Mb of the telomeric portion of the short arm of chromosome 20. We identified non-synonymous mutations e.g., in ApoM, Notch4, Slc39a7, Smim29 genes and other variations in or near genes associated with metabolic syndrome in human genome-wide association studies. Male rats of BN and BN.SHR20 strains were fed a standard diet for 18 weeks (control groups) or 16 weeks of standard diet followed by 14 days of high-sucrose diet (HSD). We assessed the morphometric and metabolic profiles of all groups. Adiposity significantly increased only in BN.SHR20 after HSD. Fasting glycemia and the glucose levels during the oral glucose tolerance test were higher in BN.SHR20 than in BN groups, while insulin levels were comparable. The fasting levels of triacylglycerols were the highest in sucrose-fed BN.SHR20, both compared to the sucrose-fed BN and the control BN.SHR20. The non-esterified fatty acids and total cholesterol concentrations were higher in BN.SHR20 compared to their respective BN groups, and the HSD elicited an increase in non-esterified fatty acids only in BN.SHR20. In a new genetically defined model, we have isolated a limited genomic region involved in nutrigenetic sensitization to sucrose-induced metabolic disturbances.
Collapse
|
24
|
Ohara H, Nabika T. Genetic Modifications to Alter Blood Pressure Level. Biomedicines 2022; 10:biomedicines10081855. [PMID: 36009402 PMCID: PMC9405136 DOI: 10.3390/biomedicines10081855] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 12/04/2022] Open
Abstract
Genetic manipulation is one of the indispensable techniques to examine gene functions both in vitro and in vivo. In particular, cardiovascular phenotypes such as blood pressure cannot be evaluated in vitro system, necessitating the creation of transgenic or gene-targeted knock-out and knock-in experimental animals to understand the pathophysiological roles of specific genes on the disease conditions. Although genome-wide association studies (GWAS) in various human populations have identified multiple genetic variations associated with increased risk for hypertension and/or its complications, the causal links remain unresolved. Genome-editing technologies can be applied to many different types of cells and organisms for creation of knock-out/knock-in models. In the post-GWAS era, it may be more worthwhile to validate pathophysiological implications of the risk variants and/or candidate genes by creating genome-edited organisms.
Collapse
|
25
|
Miller JL, Bartlett AP, Harman RM, Majhi PD, Jerry DJ, Van de Walle GR. Induced mammary cancer in rat models: pathogenesis, genetics, and relevance to female breast cancer. J Mammary Gland Biol Neoplasia 2022; 27:185-210. [PMID: 35904679 DOI: 10.1007/s10911-022-09522-w] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 07/05/2022] [Accepted: 07/06/2022] [Indexed: 10/16/2022] Open
Abstract
Mammary cancer, or breast cancer in women, is a polygenic disease with a complex etiopathogenesis. While much remains elusive regarding its origin, it is well established that chemical carcinogens and endogenous estrogens contribute significantly to the initiation and progression of this disease. Rats have been useful models to study induced mammary cancer. They develop mammary tumors with comparable histopathology to humans and exhibit differences in resistance or susceptibility to mammary cancer depending on strain. While some rat strains (e.g., Sprague-Dawley) readily form mammary tumors following treatment with the chemical carcinogen, 7,12-dimethylbenz[a]-anthracene (DMBA), other strains (e.g., Copenhagen) are resistant to DMBA-induced mammary carcinogenesis. Genetic linkage in inbred strains has identified strain-specific quantitative trait loci (QTLs) affecting mammary tumors, via mechanisms that act together to promote or attenuate, and include 24 QTLs controlling the outcome of chemical induction, 10 QTLs controlling the outcome of estrogen induction, and 4 QTLs controlling the outcome of irradiation induction. Moreover, and based on shared factors affecting mammary cancer etiopathogenesis between rats and humans, including orthologous risk regions between both species, rats have served as useful models for identifying methods for breast cancer prediction and treatment. These studies in rats, combined with alternative animal models that more closely mimic advanced stages of breast cancer and/or human lifestyles, will further improve our understanding of this complex disease.
Collapse
Affiliation(s)
- James L Miller
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Arianna P Bartlett
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Rebecca M Harman
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA
| | - Prabin Dhangada Majhi
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - D Joseph Jerry
- Department of Veterinary & Animal Sciences, University of Massachusetts, 01003, Amherst, MA, USA
| | - Gerlinde R Van de Walle
- Baker Institute for Animal Health, College of Veterinary Medicine, Cornell University, 14853, Ithaca, NY, USA.
| |
Collapse
|
26
|
Sex Differences in Intestinal P-Glycoprotein Expression in Wistar versus Sprague Dawley Rats. Pharmaceutics 2022; 14:pharmaceutics14051030. [PMID: 35631615 PMCID: PMC9143158 DOI: 10.3390/pharmaceutics14051030] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/04/2022] [Accepted: 05/06/2022] [Indexed: 02/01/2023] Open
Abstract
Wistar and Sprague Dawley are the most common strains of rat used in pharmaceutical research and are used interchangeably in pre-clinical drug development. No studies have assessed whether Wistar and Sprague Dawley rats are equivalent in the gastrointestinal factors that influence oral drug absorption, specifically in relation to intestinal transporters. Enzyme-linked immunosorbent assay (ELISA) and liquid chromatography–tandem mass spectrometry (LC-MS/MS) are two reliable methods for quantifying intestinal protein levels with their own distinct advantages and limitations. In this study, P-glycoprotein (P-gp), a key efflux transporter, was quantified using ELISA and LC-MS/MS along the complete intestinal tract of male and female Wistar and Sprague Dawley rats. This work presents that Sprague Dawley rats have innately higher baseline P-gp expression than Wistar rats. Significant sex differences in P-gp expression were identified in the jejunum, ileum and colon between male and female Wistar rats using both techniques, with males exhibiting higher P-gp levels. Sprague Dawley rats showed no sex differences in P-gp expression through ELISA and LC-MS/MS. Both methods demonstrated similar trends for P-gp quantification, but ELISA could offer faster data acquisition. Our findings report significant sex differences between the strains and highlight that Wistar and Sprague Dawley rats are not equivalent in their P-gp expression. As humans exhibit distinct sex differences in intestinal P-gp levels, Wistar rats may therefore be a more suitable pre-clinical animal strain to model oral drug absorption of P-gp substrates in male and female subjects.
Collapse
|
27
|
Utrera A, Navarrete Á, González-Candia A, García-Herrera C, Herrera EA. Biomechanical and structural responses of the aorta to intermittent hypobaric hypoxia in a rat model. Sci Rep 2022; 12:3790. [PMID: 35260626 PMCID: PMC8904842 DOI: 10.1038/s41598-022-07616-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 02/14/2022] [Indexed: 02/07/2023] Open
Abstract
High altitude hypoxia is a condition experienced by diverse populations worldwide. In addition, several jobs require working shifts where workers are exposed to repetitive cycles of hypobaric hypoxia and normobaric normoxia. Currently, few is known about the biomechanical cardiovascular responses of this condition. In the present study, we investigate the cycle-dependent biomechanical effects of intermittent hypobaric hypoxia (IHH) on the thoracic aorta artery, in terms of both structure and function. To determine the vascular effects of IHH, functional, mechanical and histological approaches were carried out in the thoracic aorta artery, using uniaxial, pre-stretch, ring opening, myography, and histological tests. Three groups of rats were established: control (normobaric normoxia, NN), 4-cycles of intermittent hypoxia (short-term intermittent hypobaric hypoxia, STH), and 10-cycles of intermittent hypoxia (long-term intermittent hypobaric hypoxia, LTH). The pre-stretch and ring opening tests, aimed at quantifying residual strains of the tissues in longitudinal and circumferential directions, showed that the hypoxia condition leads to an increase in the longitudinal stretch and a marked decrease of the circumferential residual strain. The uniaxial mechanical tests were used to determine the elastic properties of the tissues, showing that a general stiffening process occurs during the early stages of the IH (STH group), specially leading to a significative increase in the high strain elastic modulus ([Formula: see text]) and an increasing trend of low strain elastic modulus ([Formula: see text]). In contrast, the LTH group showed a more control-like mechanical behavior. Myography test, used to assess the vasoactive function, revealed that IH induces a high sensitivity to vasoconstrictor agents as a function of hypoxic cycles. In addition, the aorta showed an increased muscle-dependent vasorelaxation on the LTH group. Histological tests, used to quantify the elastic fiber, nuclei, and geometrical properties, showed that the STH group presents a state of vascular fibrosis, with a significant increase in elastin content, and a tendency towards an increase in collagen fibers. In addition, advanced stages of IH (LTH), showed a vascular remodeling effect with a significant increase of internal and external diameters. Considering all the multidimensional vascular effects, we propose the existence of a long-term passive adaptation mechanism and vascular dysfunction as cycle-dependent effects of intermittent exposures to hypobaric hypoxia.
Collapse
Affiliation(s)
- Andrés Utrera
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | - Álvaro Navarrete
- Departamento de Ingeniería Mecánica, Universidad de Santiago de Chile, Santiago, Chile
| | | | | | - Emilio A Herrera
- Programa de Fisiopatología, ICBM, Facultad de Medicina, Universidad de Chile, Santiago, Chile. .,International Center for Andean Studies (INCAS), Universidad de Chile, Santiago, Chile.
| |
Collapse
|
28
|
Summers KM, Bush SJ, Wu C, Hume DA. Generation and network analysis of an RNA-seq transcriptional atlas for the rat. NAR Genom Bioinform 2022; 4:lqac017. [PMID: 35265836 PMCID: PMC8900154 DOI: 10.1093/nargab/lqac017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/13/2022] [Accepted: 02/15/2022] [Indexed: 12/19/2022] Open
Abstract
Abstract
The laboratory rat is an important model for biomedical research. To generate a comprehensive rat transcriptomic atlas, we curated and downloaded 7700 rat RNA-seq datasets from public repositories, downsampled them to a common depth and quantified expression. Data from 585 rat tissues and cells, averaged from each BioProject, can be visualized and queried at http://biogps.org/ratatlas. Gene co-expression network (GCN) analysis revealed clusters of transcripts that were tissue or cell type restricted and contained transcription factors implicated in lineage determination. Other clusters were enriched for transcripts associated with biological processes. Many of these clusters overlap with previous data from analysis of other species, while some (e.g. expressed specifically in immune cells, retina/pineal gland, pituitary and germ cells) are unique to these data. GCN analysis on large subsets of the data related specifically to liver, nervous system, kidney, musculoskeletal system and cardiovascular system enabled deconvolution of cell type-specific signatures. The approach is extensible and the dataset can be used as a point of reference from which to analyse the transcriptomes of cell types and tissues that have not yet been sampled. Sets of strictly co-expressed transcripts provide a resource for critical interpretation of single-cell RNA-seq data.
Collapse
Affiliation(s)
- Kim M Summers
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| | - Stephen J Bush
- Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, OX3 9DS, UK
| | - Chunlei Wu
- Department of Integrative and Computational Biology, The Scripps Research Institute, La Jolla, CA 92037, USA
| | - David A Hume
- Mater Research Institute—University of Queensland, Translational Research Institute, 37 Kent St, Woolloongabba, QLD 4102, Australia
| |
Collapse
|
29
|
Pöstyéni E, Ganczer A, Kovács-Valasek A, Gabriel R. Relevance of Peptide Homeostasis in Metabolic Retinal Degenerative Disorders: Curative Potential in Genetically Modified Mice. Front Pharmacol 2022; 12:808315. [PMID: 35095518 PMCID: PMC8793341 DOI: 10.3389/fphar.2021.808315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 12/20/2021] [Indexed: 11/19/2022] Open
Abstract
The mammalian retina contains approximately 30 neuropeptides that are synthetized by different neuronal cell populations, glia, and the pigmented epithelium. The presence of these neuropeptides leaves a mark on normal retinal molecular processes and physiology, and they are also crucial in fighting various pathologies (e.g., diabetic retinopathy, ischemia, age-related pathologies, glaucoma) because of their protective abilities. Retinal pathologies of different origin (metabolic, genetic) are extensively investigated by genetically manipulated in vivo mouse models that help us gain a better understanding of the molecular background of these pathomechanisms. These models offer opportunities to manipulate gene expression in different cell types to help reveal their roles in the preservation of retinal health or identify malfunction during diseases. In order to assess the current status of transgenic technologies available, we have conducted a literature survey focused on retinal disorders of metabolic origin, zooming in on the role of retinal neuropeptides in diabetic retinopathy and ischemia. First, we identified those neuropeptides that are most relevant to retinal pathologies in humans and the two clinically most relevant models, mice and rats. Then we continued our analysis with metabolic disorders, examining neuropeptide-related pathways leading to systemic or cellular damage and rescue. Last but not least, we reviewed the available literature on genetically modified mouse strains to understand how the manipulation of a single element of any given pathway (e.g., signal molecules, receptors, intracellular signaling pathways) could lead either to the worsening of disease conditions or, more frequently, to substantial improvements in retinal health. Most attention was given to studies which reported successful intervention against specific disorders. For these experiments, a detailed evaluation will be given and the possible role of converging intracellular pathways will be discussed. Using these converging intracellular pathways, curative effects of peptides could potentially be utilized in fighting metabolic retinal disorders.
Collapse
Affiliation(s)
- Etelka Pöstyéni
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Alma Ganczer
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| | - Andrea Kovács-Valasek
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary
| | - Robert Gabriel
- Department of Experimental Zoology and Neurobiology, University of Pécs, Pécs, Hungary.,János Szentágothai Research Centre, University of Pécs, Pécs, Hungary
| |
Collapse
|
30
|
Gonzalez-Fernandez E, Fan L, Wang S, Liu Y, Gao W, Thomas KN, Fan F, Roman RJ. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases. Physiol Genomics 2022; 54:58-70. [PMID: 34859687 PMCID: PMC8799388 DOI: 10.1152/physiolgenomics.00119.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|
31
|
Goodenow D, Greer AJ, Cone SJ, Gaddameedhi S. Circadian effects on UV-induced damage and mutations. MUTATION RESEARCH. REVIEWS IN MUTATION RESEARCH 2022; 789:108413. [PMID: 35690416 PMCID: PMC9188652 DOI: 10.1016/j.mrrev.2022.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 02/09/2022] [Accepted: 02/14/2022] [Indexed: 10/19/2022]
Abstract
Skin cancer is the most diagnosed type of cancer in the United States, and while most of these malignancies are highly treatable, treatment costs still exceed $8 billion annually. Over the last 50 years, the annual incidence of skin cancer has steadily grown; therefore, understanding the environmental factors driving these types of cancer is a prominent research-focus. A causality between ultraviolet radiation (UVR) exposure and skin cancer is well-established, but exposure to UVR alone is not necessarily sufficient to induce carcinogenesis. The emerging field of circadian biology intersects strongly with the physiological systems of the mammalian body and introduces a unique opportunity for analyzing mechanisms of homeostatic disruption. The circadian clock refers to the approximate 24-hour cycle, in which protein levels of specific clock-controlled genes (CCGs) fluctuate based on the time of day. Though these CCGs are tissue specific, the skin has been observed to have a robust circadian clock that plays a role in its response to UVR exposure. This in-depth review will detail the mechanisms of the circadian clock and its role in cellular homeostasis. Next, the skin's response to UVR exposure and its induction of DNA damage and mutations will be covered - with an additional focus placed on how the circadian clock influences this response through nucleotide excision repair. Lastly, this review will discuss current models for studying UVR-induced skin lesions and perturbations of the circadian clock, as well as the impact of these factors on human health.
Collapse
Affiliation(s)
- Donna Goodenow
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Adam J Greer
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Sean J Cone
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA
| | - Shobhan Gaddameedhi
- Department of Biological Sciences, North Carolina State University, Raleigh, NC 27606, USA; Center for Human Health and the Environment, North Carolina State University, Raleigh, NC 27606, USA.
| |
Collapse
|
32
|
Bertzbach LD, Ip WH, Dobner T. Animal Models in Human Adenovirus Research. BIOLOGY 2021; 10:biology10121253. [PMID: 34943168 PMCID: PMC8698265 DOI: 10.3390/biology10121253] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 12/31/2022]
Abstract
Simple Summary Animal models are widely used to study various aspects of human diseases and disorders. Likewise, they are indispensable for preclinical testing of medicals and vaccines. Human adenovirus infections are usually self-limiting, and can cause mild respiratory symptoms with fever, eye infection or gastrointestinal symptoms, but occasional local outbreaks with severe disease courses have been reported. In addition, adenovirus infections pose a serious risk for children and patients with a weakened immune system. Human adenovirus research in animal models to study adenovirus-induced disease and tumor development started in the 1950s. Various animal species have been tested for their susceptibility to human adenovirus infection since then, and some have been shown to mimic key characteristics of the infection in humans, including persistent infection. Furthermore, some rodent species have been found to develop tumors upon human adenovirus infection. Our review summarizes the current knowledge on animal models in human adenovirus research, describing the pros and cons along with important findings and future perspectives. Abstract Human adenovirus (HAdV) infections cause a wide variety of clinical symptoms, ranging from mild upper respiratory tract disease to lethal outcomes, particularly in immunocompromised individuals. To date, neither widely available vaccines nor approved antiadenoviral compounds are available to efficiently deal with HAdV infections. Thus, there is a need to thoroughly understand HAdV-induced disease, and for the development and preclinical evaluation of HAdV therapeutics and/or vaccines, and consequently for suitable standardizable in vitro systems and animal models. Current animal models to study HAdV pathogenesis, persistence, and tumorigenesis include rodents such as Syrian hamsters, mice, and cotton rats, as well as rabbits. In addition, a few recent studies on other species, such as pigs and tree shrews, reported promising data. These models mimic (aspects of) HAdV-induced pathological changes in humans and, although they are relevant, an ideal HAdV animal model has yet to be developed. This review summarizes the available animal models of HAdV infection with comprehensive descriptions of virus-induced pathogenesis in different animal species. We also elaborate on rodent HAdV animal models and how they contributed to insights into adenovirus-induced cell transformation and cancer.
Collapse
|
33
|
Joshi B, Wagh G, Kaur H, Patra C. Zebrafish Model to Study Angiotensin II-Mediated Pathophysiology. BIOLOGY 2021; 10:1177. [PMID: 34827169 PMCID: PMC8614710 DOI: 10.3390/biology10111177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/04/2021] [Revised: 10/31/2021] [Accepted: 11/04/2021] [Indexed: 11/16/2022]
Abstract
Hypertension, a common chronic condition, may damage multiple organs, including the kidney, heart, and brain. Thus, it is essential to understand the pathology upon ectopic activation of the molecular pathways involved in mammalian hypertension to develop strategies to manage hypertension. Animal models play a crucial role in unraveling the disease pathophysiology by allowing incisive experimental procedures impossible in humans. Zebrafish, a small freshwater fish, have emerged as an important model system to study human diseases. The primary effector, Angiotensin II of the RAS pathway, regulates hemodynamic pressure overload mediated cardiovascular pathogenesis in mammals. There are various established mammalian models available to study pathophysiology in Angiotensin II-induced hypertension. Here, we have developed a zebrafish model to study pathogenesis by Angiotensin II. We find that intradermal Angiotensin II injection every 12 h can induce cardiac remodeling in seven days. We show that Angiotensin II injection in adult zebrafish causes cardiomyocyte hypertrophy and enhances cardiac cell proliferation. In addition, Angiotensin II induces ECM protein-coding gene expression and fibrosis in the cardiac ventricles. Thus, this study can conclude that Angiotensin II injection in zebrafish has similar implications as mammals, and zebrafish can be a model to study pathophysiology associated with AngII-RAS signaling.
Collapse
Affiliation(s)
- Bhagyashri Joshi
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| | - Ganesh Wagh
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| | - Harmandeep Kaur
- Keenan Research Centre for Biomedical Science and Li Ka Shing Knowledge Institute, St. Michael’s Hospital, Toronto, ON M5C 2T2, Canada;
| | - Chinmoy Patra
- Developmental Biology, Agharkar Research Institute, Pune 411004, India; (B.J.); (G.W.)
- Science and Technology, SP Pune University, Pune 411007, India
| |
Collapse
|
34
|
Kaldunski ML, Smith JR, Hayman GT, Brodie K, De Pons JL, Demos WM, Gibson AC, Hill ML, Hoffman MJ, Lamers L, Laulederkind SJF, Nalabolu HS, Thorat K, Thota J, Tutaj M, Tutaj MA, Vedi M, Wang SJ, Zacher S, Dwinell MR, Kwitek AE. The Rat Genome Database (RGD) facilitates genomic and phenotypic data integration across multiple species for biomedical research. Mamm Genome 2021; 33:66-80. [PMID: 34741192 PMCID: PMC8570235 DOI: 10.1007/s00335-021-09932-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 10/21/2021] [Indexed: 01/21/2023]
Abstract
Model organism research is essential for discovering the mechanisms of human diseases by defining biologically meaningful gene to disease relationships. The Rat Genome Database (RGD, ( https://rgd.mcw.edu )) is a cross-species knowledgebase and the premier online resource for rat genetic and physiologic data. This rich resource is enhanced by the inclusion and integration of comparative data for human and mouse, as well as other human disease models including chinchilla, dog, bonobo, pig, 13-lined ground squirrel, green monkey, and naked mole-rat. Functional information has been added to records via the assignment of annotations based on sequence similarity to human, rat, and mouse genes. RGD has also imported well-supported cross-species data from external resources. To enable use of these data, RGD has developed a robust infrastructure of standardized ontologies, data formats, and disease- and species-centric portals, complemented with a suite of innovative tools for discovery and analysis. Using examples of single-gene and polygenic human diseases, we illustrate how data from multiple species can help to identify or confirm a gene as involved in a disease and to identify model organisms that can be studied to understand the pathophysiology of a gene or pathway. The ultimate aim of this report is to demonstrate the utility of RGD not only as the core resource for the rat research community but also as a source of bioinformatic tools to support a wider audience, empowering the search for appropriate models for human afflictions.
Collapse
Affiliation(s)
- M L Kaldunski
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J R Smith
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - G T Hayman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Brodie
- Clinical and Translational Science Institute, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J L De Pons
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - W M Demos
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A C Gibson
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M L Hill
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M J Hoffman
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - L Lamers
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J F Laulederkind
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - H S Nalabolu
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - K Thorat
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - J Thota
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M A Tutaj
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M Vedi
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S J Wang
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
| | - S Zacher
- Information Services, Medical College of Wisconsin, Milwaukee, WI, USA
| | - M R Dwinell
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA
| | - A E Kwitek
- Department of Biomedical Engineering, The Rat Genome Database, Medical College of Wisconsin, Milwaukee, WI, USA.
- Department of Physiology, Medical College of Wisconsin, Milwaukee, WI, USA.
| |
Collapse
|
35
|
Namba M, Kobayashi T, Kohno M, Koyano T, Hirose T, Fukushima M, Matsuyama M. Creation of X-linked Alport syndrome rat model with Col4a5 deficiency. Sci Rep 2021; 11:20836. [PMID: 34675305 PMCID: PMC8531394 DOI: 10.1038/s41598-021-00354-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 10/12/2021] [Indexed: 12/31/2022] Open
Abstract
Alport syndrome is an inherited chronic human kidney disease, characterized by glomerular basement membrane abnormalities. This disease is caused by mutations in COL4A3, COL4A4, or COL4A5 gene. The knockout mice for Col4α3, Col4α4, and Col4α5 are developed and well characterized for the study of Alport syndrome. However, disease progression and effects of pharmacological therapy depend on the genetic variability. This model was reliable only to mouse. In this study, we created a novel Alport syndrome rat model utilizing the rGONAD technology, which generated rat with a deletion of the Col4α5 gene. Col4α5 deficient rats showed hematuria, proteinuria, high levels of BUN, Cre, and then died at 18 to 28 weeks of age (Hemizygous mutant males). Histological and ultrastructural analyses displayed the abnormalities including parietal cell hyperplasia, mesangial sclerosis, and interstitial fibrosis. Then, we demonstrated that α3/α4/α5 (IV) and α5/α5/α6 (IV) chains of type IV collagen disrupted in Col4α5 deficient rats. Thus, Col4α5 mutant rat is a reliable candidate for the Alport syndrome model for underlying the mechanism of kidney diseases and further identifying potential therapeutic targets for human renal diseases.
Collapse
Affiliation(s)
- Masumi Namba
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Tomoe Kobayashi
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Mayumi Kohno
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takayuki Koyano
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan
| | - Takuo Hirose
- Division of Nephrology and Endocrinology, Faculty of Medicine, Tohoku Medical and Pharmaceutical University, Sendai, Japan.,Department of Endocrinology and Applied Medicine, Tohoku University Graduate School of Medicine, Sendai, Japan
| | - Masaki Fukushima
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.,Shigei Medical Research Hospital, Okayama, Japan
| | - Makoto Matsuyama
- Division of Molecular Genetics, Shigei Medical Research Institute, 2117 Yamada, Minami-ku, Okayama, 701-0202, Japan.
| |
Collapse
|
36
|
Hooper AW, Wong H, Niibori Y, Abdoli R, Karumuthil-Melethil S, Qiao C, Danos O, Bruder JT, Hampson DR. Gene therapy using an ortholog of human fragile X mental retardation protein partially rescues behavioral abnormalities and EEG activity. MOLECULAR THERAPY-METHODS & CLINICAL DEVELOPMENT 2021; 22:196-209. [PMID: 34485605 PMCID: PMC8399347 DOI: 10.1016/j.omtm.2021.06.013] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/30/2021] [Indexed: 01/28/2023]
Abstract
Fragile X syndrome (FXS), a neurodevelopmental disorder with no known cure, is caused by a lack of expression of the fragile X mental retardation protein (FMRP). As a single-gene disorder, FXS is an excellent candidate for viral-vector-based gene therapy, although that is complicated by the existence of multiple isoforms of FMRP, whose individual cellular functions are unknown. We studied the effects of rat and mouse orthologs of human isoform 17, a major expressed isoform of FMRP. Injection of neonatal Fmr1 knockout rats and mice with adeno-associated viral vectors (AAV9 serotype) under the control of an MeCP2 mini-promoter resulted in widespread distribution of the FMRP transgenes throughout the telencephalon and diencephalon. Transgene expression occurred mainly in non-GABAergic neurons, with little expression in glia. Early postnatal treatment resulted in partial rescue of the Fmr1 KO rat phenotype, including improved social dominance in treated Fmr1 KO females and partial rescue of locomotor activity in males. Electro-encephalogram (EEG) recordings showed correction of abnormal slow-wave activity during the sleep-like state in male Fmr1 KO rats. These findings support the use of AAV-based gene therapy as a treatment for FXS and specifically demonstrate the potential therapeutic benefit of human FMRP isoform 17 orthologs.
Collapse
Affiliation(s)
- Alexander W.M. Hooper
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Hayes Wong
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Yosuke Niibori
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | - Rozita Abdoli
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
| | | | - Chunping Qiao
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Olivier Danos
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - Joseph T. Bruder
- Research and Early Development, REGENXBIO Inc. Rockville, Maryland, U.S.A. 20850
| | - David R. Hampson
- Leslie Dan Faculty of Pharmacy, Department of Pharmaceutical Sciences, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Department of Pharmacology and Toxicology, Faculty of Medicine, University of Toronto, Toronto, Ontario, Canada M5S 3M2
- Corresponding author: David R. Hampson, PhD, Department of Pharmaceutical Sciences, Leslie Dan Faculty of Pharmacy, Univerity of Toronto, ON M5S 3M2, Canada.
| |
Collapse
|
37
|
Szpirer C. Rat Models of Human Diseases and Related Phenotypes: A Novel Inventory of Causative Genes. Mamm Genome 2021; 33:88-90. [PMID: 34184128 DOI: 10.1007/s00335-021-09876-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2021] [Accepted: 05/11/2021] [Indexed: 10/21/2022]
Abstract
The laboratory rat (Rattus norvegicus) has been used for a long time as the model of choice in several biomedical disciplines. In 2020, I made an inventory of rat genes that had been identified as underlying diseases or playing a key role in critical biological processes that are altered in diseases. Over 350 genes could be found, a significant number of which have similar effects in rat and humans (Szpirer in J Biomed Sci 27:84-155, 2020). However, a few rat disease genes were unintentionally overlooked; in addition, since this review was published, numerous rat genes were inactivated by targeted mutations, revealing their potential role in diseases. It thus seems appropriate to update these data, which is the aim of this paper.
Collapse
Affiliation(s)
- Claude Szpirer
- Université Libre de Bruxelles, B-6041, Gosselies, Belgium. .,, Avenue Jassogne, 27, B-1410, Waterloo, Belgium.
| |
Collapse
|
38
|
Hume DA, Caruso M, Keshvari S, Patkar OL, Sehgal A, Bush SJ, Summers KM, Pridans C, Irvine KM. The Mononuclear Phagocyte System of the Rat. THE JOURNAL OF IMMUNOLOGY 2021; 206:2251-2263. [PMID: 33965905 DOI: 10.4049/jimmunol.2100136] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2021] [Accepted: 03/01/2021] [Indexed: 12/14/2022]
Abstract
The laboratory rat continues to be the model of choice for many studies of physiology, behavior, and complex human diseases. Cells of the mononuclear phagocyte system (MPS; monocytes, macrophages, and dendritic cells) are abundant residents in every tissue in the body and regulate postnatal development, homeostasis, and innate and acquired immunity. Recruitment and proliferation of MPS cells is an essential component of both initiation and resolution of inflammation. The large majority of current knowledge of MPS biology is derived from studies of inbred mice, but advances in technology and resources have eliminated many of the advantages of the mouse as a model. In this article, we review the tools available and the current state of knowledge of development, homeostasis, regulation, and diversity within the MPS of the rat.
Collapse
Affiliation(s)
- David A Hume
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Melanie Caruso
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Sahar Keshvari
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Omkar L Patkar
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Anuj Sehgal
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Stephen J Bush
- Nuffield Department of Clinical Medicine, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom
| | - Kim M Summers
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| | - Clare Pridans
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, United Kingdom.,Simons Initiative for the Developing Brain, Centre for Discovery Brain Sciences, University of Edinburgh, Edinburgh, United Kingdom
| | - Katharine M Irvine
- Mater Research Institute-University of Queensland, Translational Research Institute, Brisbane, Queensland, Australia
| |
Collapse
|
39
|
Chenouard V, Remy S, Tesson L, Ménoret S, Ouisse LH, Cherifi Y, Anegon I. Advances in Genome Editing and Application to the Generation of Genetically Modified Rat Models. Front Genet 2021; 12:615491. [PMID: 33959146 PMCID: PMC8093876 DOI: 10.3389/fgene.2021.615491] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
The rat has been extensively used as a small animal model. Many genetically engineered rat models have emerged in the last two decades, and the advent of gene-specific nucleases has accelerated their generation in recent years. This review covers the techniques and advances used to generate genetically engineered rat lines and their application to the development of rat models more broadly, such as conditional knockouts and reporter gene strains. In addition, genome-editing techniques that remain to be explored in the rat are discussed. The review also focuses more particularly on two areas in which extensive work has been done: human genetic diseases and immune system analysis. Models are thoroughly described in these two areas and highlight the competitive advantages of rat models over available corresponding mouse versions. The objective of this review is to provide a comprehensive description of the advantages and potential of rat models for addressing specific scientific questions and to characterize the best genome-engineering tools for developing new projects.
Collapse
Affiliation(s)
- Vanessa Chenouard
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- genOway, Lyon, France
| | - Séverine Remy
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Laurent Tesson
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | - Séverine Ménoret
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
- CHU Nantes, Inserm, CNRS, SFR Santé, Inserm UMS 016, CNRS UMS 3556, Nantes Université, Nantes, France
| | - Laure-Hélène Ouisse
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| | | | - Ignacio Anegon
- CHU Nantes, Inserm, Centre de Recherche en Transplantation et Immunologie, UMR 1064, ITUN, Université de Nantes, Nantes, France
| |
Collapse
|
40
|
Fukuda Y, Higashiya M, Obata T, Basaki K, Yano M, Matsumura K, Ono K, Ohba T, Okamoto Y, Nishijima K, Seki S. Small-volume vitrification and rapid warming yield high survivals of one-cell rat embryos in cryotubes†. Biol Reprod 2021; 105:258-266. [PMID: 33783478 DOI: 10.1093/biolre/ioab059] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 02/09/2021] [Accepted: 03/17/2021] [Indexed: 01/28/2023] Open
Abstract
To cryopreserve cells, it is essential to avoid intracellular ice formation during cooling and warming. One way to achieve this is to convert the water inside the cells into a non-crystalline glass. It is currently believed that to accomplish this vitrification, the cells must be suspended in a very high concentration (20-40%) of a glass-inducing solute, and subsequently cooled very rapidly. Herein, we report that this belief is erroneous with respect to the vitrification of one-cell rat embryos. In the present study, one-cell rat embryos were vitrified with 5 μL of EFS10 (a mixture of 10% ethylene glycol (EG), 27% Ficoll, and 0.45 M sucrose) in cryotubes at a moderate cooling rate, and warmed at various rates. Survival was assessed according to the ability of the cells to develop into blastocysts and to develop to term. When embryos were vitrified at a 2613 °C/min cooling rate and thawed by adding 1 mL of sucrose solution (0.3 M, 50 °C) at a warming rate of 18 467 °C/min, 58.1 ± 3.5% of the EFS10-vitrified embryos developed into blastocysts, and 50.0 ± 4.7% developed to term. These rates were similar to those of non-treated intact embryos. Using a conventional cryotube, we achieved developmental capabilities in one-cell rat embryos by rapid warming that were comparable to those of intact embryos, even using low concentrations (10%) of cell-permeating cryoprotectant and at low cooling rates.
Collapse
Affiliation(s)
- Yasuyoshi Fukuda
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Misako Higashiya
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Takahiro Obata
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Keita Basaki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Megumi Yano
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| | - Kazuaki Matsumura
- School of Materials Science, Japan Advanced Institute of Science and Technology, Nomi, Ishikawa, Japan
| | - Kyoichi Ono
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | | | - Yosuke Okamoto
- Department of Cell Physiology, Akita University Graduate School of Medicine, Akita, Akita, Japan
| | - Kazutoshi Nishijima
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
- National Institute for Physiological Sciences, Okazaki, Aichi, Japan
- Center for Experimental Animals, National Institutes of Natural Sciences, Okazaki, Aichi, Japan
| | - Shinsuke Seki
- Experimental Animal Division, Bioscience Education and Research Support Center, Akita University, Akita, Akita, Japan
| |
Collapse
|
41
|
Zinski AL, Carrion S, Michal JJ, Gartstein MA, Quock RM, Davis JF, Jiang Z. Genome-to-phenome research in rats: progress and perspectives. Int J Biol Sci 2021; 17:119-133. [PMID: 33390838 PMCID: PMC7757052 DOI: 10.7150/ijbs.51628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Accepted: 10/06/2020] [Indexed: 01/07/2023] Open
Abstract
Because of their relatively short lifespan (<4 years), rats have become the second most used model organism to study health and diseases in humans who may live for up to 120 years. First-, second- and third-generation sequencing technologies and platforms have produced increasingly greater sequencing depth and accurate reads, leading to significant advancements in the rat genome assembly during the last 20 years. In fact, whole genome sequencing (WGS) of 47 strains have been completed. This has led to the discovery of genome variants in rats, which have been widely used to detect quantitative trait loci underlying complex phenotypes based on gene, haplotype, and sweep association analyses. DNA variants can also reveal strain, chromosome and gene functional evolutions. In parallel, phenome programs have advanced significantly in rats during the last 15 years and more than 10 databases host genome and/or phenome information. In order to discover the bridges between genome and phenome, systems genetics and integrative genomics approaches have been developed. On the other hand, multiple level information transfers from genome to phenome are executed by differential usage of alternative transcriptional start (ATS) and polyadenylation (APA) sites per gene. We used our own experiments to demonstrate how alternative transcriptome analysis can lead to enrichment of phenome-related causal pathways in rats. Development of advanced genome-to-phenome assays will certainly enhance rats as models for human biomedical research.
Collapse
Affiliation(s)
- Amy L. Zinski
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Shane Carrion
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Jennifer J. Michal
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| | - Maria A. Gartstein
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Raymond M. Quock
- Department of Psychology, Washington State University, Pullman, WA 99164-4820
| | - Jon F. Davis
- Department of Integrative Physiology and Neuroscience, Washington State University, Pullman, WA 99164-7620
| | - Zhihua Jiang
- Department of Animal Sciences, Washington State University, Pullman, WA 99164-7620
| |
Collapse
|