1
|
Xie D, Li G, Zheng Z, Zhang X, Wang S, Jiang B, Li X, Wang X, Wu G. The molecular code of kidney cancer: A path of discovery for gene mutation and precision therapy. Mol Aspects Med 2025; 101:101335. [PMID: 39746268 DOI: 10.1016/j.mam.2024.101335] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2024] [Revised: 12/13/2024] [Accepted: 12/21/2024] [Indexed: 01/04/2025]
Abstract
Renal cell carcinoma (RCC) is a malignant tumor with highly heterogeneous and complex molecular mechanisms. Through systematic analysis of TCGA, COSMIC and other databases, 24 mutated genes closely related to RCC were screened, including VHL, PBRM1, BAP1 and SETD2, which play key roles in signaling pathway transduction, chromatin remodeling and DNA repair. The PI3K/AKT/mTOR signaling pathway is particularly important in the pathogenesis of RCC. Mutations in genes such as PIK3CA, MTOR and PTEN are closely associated with metabolic abnormalities and tumor cell proliferation. Clinically, mTOR inhibitors and VEGF-targeted drugs have shown significant efficacy in personalized therapy. Abnormal regulation of metabolic reprogramming, especially glycolysis and glutamine metabolic pathways, provides tumor cells with continuous energy supply and survival advantages, and GLS1 inhibitors have shown promising results in preclinical studies. This paper also explores the potential of immune checkpoint inhibitors in combination with other targeted drugs, as well as the promising application of nanotechnology in drug delivery and targeted therapy. In addition, unique molecular mechanisms are revealed and individualized therapeutic strategies are explored for specific subtypes such as TFE3, TFEB rearrangement type and SDHB mutant type. The review summarizes the common gene mutations in RCC and their molecular mechanisms, emphasizes their important roles in tumor diagnosis, treatment and prognosis, and looks forward to the application prospects of multi-pathway targeted therapy, metabolic targeted therapy, immunotherapy and nanotechnology in RCC treatment, providing theoretical support and clinical guidance for individualized treatment and new drug development.
Collapse
Affiliation(s)
- Deqian Xie
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Guandu Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Zunwen Zheng
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaoman Zhang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Shijin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Bowen Jiang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, 110042, China.
| | - Xiaoxi Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China.
| |
Collapse
|
2
|
Zhao J, Zhu J, Tang Y, Zheng K, Li Z. Advances in the study of the role of high-frequency mutant subunits of the SWI/SNF complex in tumors. Front Oncol 2024; 14:1463892. [PMID: 39697230 PMCID: PMC11652375 DOI: 10.3389/fonc.2024.1463892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2024] [Accepted: 11/15/2024] [Indexed: 12/20/2024] Open
Abstract
SWI/SNF (Switch/Sucrose non-fermentable, switch/sucrose non-fermentable) chromatin remodeling complex is a macromolecular complex composed of multiple subunits. It can use the energy generated by the hydrolysis of ATP (Adenosine triphosphate) to destroy the connection between DNA and histones, achieve the breakdown of nucleosomes, and regulate gene expression. SWI/SNF complex is essential for cell proliferation and differentiation, and the abnormal function of its subunits is closely related to tumorigenesis. Among them, ARID1A, an essential non-catalytic subunit of the SWI/SNF complex, can regulate the targeting of the complex through DNA or protein interactions. Moreover, the abnormal function of ARID1A significantly reduces the targeting of SWI/SNF complex to genes and participates in critical intracellular activities such as gene transcription and DNA synthesis. As a catalytic subunit of the SWI/SNF complex, SMARCA4 has ATPase activity that catalyzes the hydrolysis of ATP to produce energy and power the chromatin remodeling complex, which is critical to the function of the SWI/SNF complex. The study data indicate that approximately 25% of cancers have one or more SWI/SNF subunit genetic abnormalities, and at least nine different SWI/SNF subunits have been identified as having repeated mutations multiple times in various cancers, suggesting that mutations affecting SWI/SNF subunits may introduce vulnerabilities to these cancers. Here, we review the mechanism of action of ARID1A and SMARCA4, the two subunits with the highest mutation frequency in the SWI/SNF complex, and the research progress of their targeted therapy in tumors to provide a new direction for precise targeted therapy of clinical tumors.
Collapse
Affiliation(s)
- Jiumei Zhao
- Chongqing Nanchuan District People’s Hospital, Chongqing, China
| | - Jing Zhu
- Kunming Medical University, Kunming, China
| | - Yu Tang
- The Third Affiliated Hospital of Kunming Medical University, Kunming, China
| | - Kepu Zheng
- Kunming Medical University, Kunming, China
| | - Ziwei Li
- Chongqing Health Center for Women and Children, Women and Children’s Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
3
|
Ma F, Ren M, Li Z, Tang Y, Sun X, Wang Y, Cao N, Zhu X, Xu Y, Wang R, Shen Y, Zhao R, Li Z, Ashrafizadeh M, Sethi G, Wang F, Zhao A. ARID1A is a coactivator of STAT5 that contributes to CD8 + T cell dysfunction and anti-PD-1 resistance in gastric cancer. Pharmacol Res 2024; 210:107499. [PMID: 39549895 DOI: 10.1016/j.phrs.2024.107499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 11/01/2024] [Accepted: 11/04/2024] [Indexed: 11/18/2024]
Abstract
ARID1A deletion mutation contributes to improved treatment of several malignancies with immune checkpoint inhibitors (ICIs). However, its role in modulating of tumor immune microenvironment (TIME) of gastric cancer (GC) remains unclear. Here, we report an increase of CD8+ T cells infiltration in GC patients with ARID1A-mutation (MUT), which enhances sensitivity to ICIs. Kaplan-Meier survival analysis showed that ARID1A-mutation patients with gastrointestinal malignancies benefit from immunotherapy. Transcriptome analysis implicated that ARID1A regulates STAT5 downstream targets to inhibit T-cell mediated toxicity. Integrated dual luciferase assay and ChIP-qPCR analyses indicated that ARID1A coordinated with STAT5 to facilitate the transcription of the immunosuppressive factors TGF-β1 and NOX4. ARID1A recruited canonical BAF complex (cBAF) subunits, including SMARCB1 and SMARCD1, to sustain DNA accessibility. Downregulation of ARID1A reduced chromatin remodeling into configurations which make GC more sensitive to ICIs. In addition, targeting STAT5 effectively improved anti-PD-1 efficiency in ARID1A-wild type (WT) GC patients. Taken together, ARID1A is a coactivator of STAT5, function as a chromatin organizer in GC ICIs resistance, and targeting STAT5 is an effective strategy to improve the efficiency of ICIs in GC.
Collapse
Affiliation(s)
- Fangqi Ma
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China; Department of Traditional Chinese Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230001, China
| | - Mingming Ren
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhongqiu Li
- Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Zhengzhou, Henan 450004, China
| | - Yujing Tang
- Obesity and Metabolism Medicine-Engineering Integration Laboratory, Department of General Surgery, The Third People's Hospital of Chengdu, The Affiliated Hospital of Southwest Jiaotong University, Chengdu, Sichuan 611756, China
| | - Xiaoyu Sun
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yi Wang
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Nida Cao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Xiaohong Zhu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Yan Xu
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Rui Wang
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China
| | - Yumiao Shen
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Ruohan Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China
| | - Zhaoyan Li
- Department of Traditional Chinese Medicine, School of Medicine Affiliated Ruijin Hospital, Shanghai Jiao Tong University, Shanghai 200025, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, Shandong 250117, China
| | - Gautam Sethi
- Department of Pharmacology and NUS Centre for Cancer Research (N2CR) Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Furong Wang
- Department of Pathology, the Huizhou Central People's Hospital, Guangdong Medical University, Huizhou, Guangdong 516002, China.
| | - Aiguang Zhao
- Department of Oncology, Longhua Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 200032, China.
| |
Collapse
|
4
|
Liu K, Shi H, Gao L, Ye L, Lu B. Endocervical adenocarcinoma with a micropapillary component: a clinicopathologic analysis in the setting of current WHO classification. Virchows Arch 2024:10.1007/s00428-024-03971-w. [PMID: 39579262 DOI: 10.1007/s00428-024-03971-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 10/07/2024] [Accepted: 11/05/2024] [Indexed: 11/25/2024]
Abstract
Our study aimed to investigate the clinicopathologic and molecular features of endocervical adenocarcinoma with a micropapillary component (EAC-MP) in the setting of current classification schema. We investigated 26 EAC-MP from consecutive 511 adenocarcinomas. HER2 status was analyzed by immunohistochemistry and fluorescence in situ hybridization. Four cases were performed with targeted next-generation sequencing (NGS). We found that HPV-associated adenocarcinomas (HPVA) with a micropapillary component (HPVA-MP) (n = 12) had a higher frequency of large tumor size (> 2 cm), Silva pattern C (12/12, 100%), invasion of the deep cervical wall (> 2/3) (8/12, 66.7%), lymphovascular space invasion (LVSI) (11/12, 91.7%), lymph node metastasis (4/11, 36.4%), FIGO stage III/IV (4/12, 33.3%), and HER2 amplification (3/12, 25%, P = 0.015), compared to those without (HPVA-NMP (all P < 0.05). HPV-independent adenocarcinomas (HPVI) with a micropapillary component (HPVI-MP) (n = 14) had LVSI more commonly than those without (HPVI-NMP) (P = 0.033). Survival analysis indicated that HPVA-MP was associated with worse overall survival and recurrence-free survival than HPVA-NMP (P < 0.01). Particularly, in patients with Silva pattern C, HPVA-MP appeared to have more adverse clinical outcomes (P < 0.01). No survival differences were found in HPVI-MP versus HPVI-NMP (P > 0.05). NGS identified significant mutations in STK11, TERT, ERBB2, TP53, PIK3CA, ARID1A, and NTRK2. We conclude that the micropapillary structure is an indicator for unfavorable clinical outcomes in HPVA, and can aid in the prognostic stratification of Silva pattern C EAC. The presence of HER2 amplification and specific gene mutations raise the possibility for targeted therapy in the future.
Collapse
Affiliation(s)
- Keyi Liu
- Department of Gynecology & Obstetrics, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Haiyan Shi
- Department of Surgical Pathology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Limei Gao
- School of Basic Medicine & Forensic Medicine, Hangzhou Medical College, Hangzhou, Zhejiang Province, China
| | - Lei Ye
- Department of Surgical Pathology, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China
| | - Bingjian Lu
- Department of Surgical Pathology, Zhejiang Provincial Clinical Research Center for Obstetrics and Gynecology, Zhejiang Provincial Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, School of Medicine, Women's Hospital, Zhejiang University, Hangzhou, Zhejiang Province, China.
| |
Collapse
|
5
|
Qin RS, Li CT, Chen F, Luo S, Wang C, Li J, Xu S, Kang M, Hu HW. AURKA inhibition shows promise as a therapeutic strategy for ARID1A-mutant colorectal cancer. Discov Oncol 2024; 15:556. [PMID: 39402330 PMCID: PMC11473479 DOI: 10.1007/s12672-024-01433-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 10/07/2024] [Indexed: 10/19/2024] Open
Abstract
PURPOSE Mutations in ARID1A frequently occur in colorectal cancer (CRC) cells. However, there are currently no clinical treatment options specifically addressing this aberration. The preliminary in vitro experiments revealed a synthetic lethal interaction between ARID1A and Aurora kinase A (AURKA) in colorectal cancer (CRC) cells. METHODS We collected samples from 80 CRC patients and evaluated the efficacy of AURKA inhibitor (AURKAi) using the ATP-tumor chemosensitivity assay (ATP-TCA) on untreated ARID1A-proficient (ARID1A +) and ARID1A-deficient (ARID1A-) CRC patient samples. In addition, we validated this result by a clonogenic assay. Additionally, we examined the effects of AURKA inhibitors on cell cycle progression and apoptosis in ARID1A + and ARID1A- CRC patient samples using flow cytometry. RESULTS The results showed that AURKAi selectively inhibited the growth of ARID1A- CRC cells. Furthermore, AURKA inhibitors significantly increased G2/M arrest and induced apoptosis in ARID1A- cells. CONCLUSION We believe that AURKAi hold promise as potential therapeutics for ARID1A mutation colorectal cancer patients.
Collapse
Affiliation(s)
- Rong-Sheng Qin
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chun-Tao Li
- Department of Hepatobiliary and Pancreatic Surgery, The Affilitaed Traditional Chinese Medicine Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - Fei Chen
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Shu Luo
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Chao Wang
- Department of Oncology, Suining First People's Hospital, No. 2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China
| | - Jie Li
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China
| | - Shan Xu
- Department of Oncology, Mianyang Central Hospital, School of Medicine, University of Electronic Science and Technology, No.12 Changjiaxiang Road, Mianyang, 621000, Sichuan, China.
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China.
| | - MingWei Kang
- Department of Oncology, Mianyang Fulin Hospital, No. 100, East Section, Puming South Road, High-Tech Zone, Mianyang, 621000, Sichuan, China
| | - Hao-Wen Hu
- Department of Gastrointestinal Surgical, Suining first people's hospital, No.2, Wentao Road, High-Tech Zone, Suining, 629000, Sichuan, China.
| |
Collapse
|
6
|
Deiana C, Ricci C, Vahabi M, Ali M, Brandi G, Giovannetti E. Advances in target drugs and immunotherapy for biliary tract cancer. Expert Rev Gastroenterol Hepatol 2024; 18:605-630. [PMID: 39544174 DOI: 10.1080/17474124.2024.2416230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Accepted: 10/09/2024] [Indexed: 11/17/2024]
Abstract
INTRODUCTION After years of treatment stagnation in biliary tract cancers (BTC), there has been a notable shift with the emergence of targeted therapies and immunotherapy, leading to substantial progress in tackling this aggressive disease. AREAS COVERED We provide a comprehensive overview of the target therapies that are already part of the treatment algorithm for BTC, such as FGFR, IDH, and HER2 inhibitors. Additionally, we delve into some less known targets that are being explored, such as KRAS proto-oncogene, MAPK cascade, PI3K/AKT/mTOR pathway and novel molecules directed against P53, claudin, histones, and mitochondrial metabolism. Furthermore, we discuss agnostic drugs and analyze the efficacy data available for BTC specifically. We also examine the expanding world of immunotherapy, with an eye on predictive factors of response for immune checkpoint inhibitors, and on novel immune drugs such as chimeric antigen receptor (CAR)-T and vaccines. EXPERT OPINION In the expert opinion, we discuss the problem of the scarcity of patients eligible for target therapies and how can clinical trials be designed to overcome this challenge. We also summarize the most promising trials that have the potential to change clinical practice both for immunotherapies and target drugs.
Collapse
Affiliation(s)
- Chiara Deiana
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Chiara Ricci
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Mahrou Vahabi
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
| | - Mahsoem Ali
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Department of Surgery, Amsterdam UMC, Location Vrije Universiteit, Amsterdam, The Netherlands
| | - Giovanni Brandi
- Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
- Department of Medical and Surgical Sciences, University of Bologna, Bologna, Italy
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center (VUmc), Amsterdam, The Netherlands
- Cancer Center Amsterdam, Imaging and Biomarkers, Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Associazione Italiana per la Ricerca sul Cancro (AIRC) Start-Up Unit, Fondazione Pisana per la Scienza, Pisa, Italy
| |
Collapse
|
7
|
Abu Sailik F, Emerald BS, Ansari SA. Opening and changing: mammalian SWI/SNF complexes in organ development and carcinogenesis. Open Biol 2024; 14:240039. [PMID: 39471843 PMCID: PMC11521604 DOI: 10.1098/rsob.240039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 07/04/2024] [Accepted: 09/18/2024] [Indexed: 11/01/2024] Open
Abstract
The switch/sucrose non-fermentable (SWI/SNF) subfamily are evolutionarily conserved, ATP-dependent chromatin-remodelling complexes that alter nucleosome position and regulate a spectrum of nuclear processes, including gene expression, DNA replication, DNA damage repair, genome stability and tumour suppression. These complexes, through their ATP-dependent chromatin remodelling, contribute to the dynamic regulation of genetic information and the maintenance of cellular processes essential for normal cellular function and overall genomic integrity. Mutations in SWI/SNF subunits are detected in 25% of human malignancies, indicating that efficient functioning of this complex is required to prevent tumourigenesis in diverse tissues. During development, SWI/SNF subunits help establish and maintain gene expression patterns essential for proper cellular identity and function, including maintenance of lineage-specific enhancers. Moreover, specific molecular signatures associated with SWI/SNF mutations, including disruption of SWI/SNF activity at enhancers, evasion of G0 cell cycle arrest, induction of cellular plasticity through pro-oncogene activation and Polycomb group (PcG) complex antagonism, are linked to the initiation and progression of carcinogenesis. Here, we review the molecular insights into the aetiology of human malignancies driven by disruption of the SWI/SNF complex and correlate these mechanisms to their developmental functions. Finally, we discuss the therapeutic potential of targeting SWI/SNF subunits in cancer.
Collapse
Affiliation(s)
- Fadia Abu Sailik
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Bright Starling Emerald
- Department of Anatomy, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| | - Suraiya Anjum Ansari
- Department of Biochemistry and Molecular Biology, College of Medicine and Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- Zayed Center for Health Sciences, United Arab Emirates University, Al Ain, Abu Dhabi, UAE
- ASPIRE Precision Medicine Research Institute Abu Dhabi (PMRI-AD), United Arab Emirates University, Al Ain, Abu Dhabi, UAE
| |
Collapse
|
8
|
Fan Z, Yan W, Li J, Yan M, Liu B, Yang Z, Yu B. PHF10 inhibits gastric epithelium differentiation and induces gastric cancer carcinogenesis. Cancer Gene Ther 2024; 31:1511-1524. [PMID: 39127832 PMCID: PMC11489120 DOI: 10.1038/s41417-024-00820-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 07/30/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024]
Abstract
Gastric cancer (GC) is characterized with differentiation disorders, the precise mechanisms of which remain unknown. Our previous study showed that PHF10 exhibits oncogenic properties in GC, with its histological presentation indicating a potential role in the modulation of differentiation disorders in GC. This study reveals a significant upregulation of PHF10 in GC tissues, showing a negative correlation with differentiation level. PHF10 was found to impede the differentiation of GC cells while promoting their stemness properties. This was attributed to the formation of a positive feedback loop between PHF10 and E2F1, resulting in dysregulated expression levels in GC. Additionally, PHF10 was found to mediate the transcriptional repression of the target gene DUSP5 in GC cells through the assembly of the SWI/SNF complex, leading to an elevation in pERK1/2 levels. In GC tissues, a negative association was noted between the expression of E2F1 or PHF10 and DUSP5, whereas a positive correlation was observed between the expression of E2F1 or PHF10 and pERK1/2. Additional rescue experiments confirmed that the inhibitory effect on differentiation of GC cells by PHF10 is dependent on the DUSP5-pERK1/2 axis. The signaling cascade involving E2F1-PHF10-DUSP5-pERK1/2 was identified as an important player in regulating differentiation and stemness in GC cells. PHF10 emerges as a promising target for differentiation induction therapy in GC.
Collapse
Affiliation(s)
- Zhiyuan Fan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Breast Surgery, Shanghai First Maternity and Infant Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Wenjing Yan
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfang Li
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Min Yan
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Bingya Liu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhongyin Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.
| |
Collapse
|
9
|
Ma Y, Field NR, Xie T, Briscas S, Kokinogoulis EG, Skipper TS, Alghalayini A, Sarker FA, Tran N, Bowden NA, Dickson KA, Marsh DJ. Aberrant SWI/SNF Complex Members Are Predominant in Rare Ovarian Malignancies-Therapeutic Vulnerabilities in Treatment-Resistant Subtypes. Cancers (Basel) 2024; 16:3068. [PMID: 39272926 PMCID: PMC11393890 DOI: 10.3390/cancers16173068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2024] [Revised: 08/30/2024] [Accepted: 09/02/2024] [Indexed: 09/15/2024] Open
Abstract
SWI/SNF (SWItch/Sucrose Non-Fermentable) is the most frequently mutated chromatin-remodelling complex in human malignancy, with over 20% of tumours having a mutation in a SWI/SNF complex member. Mutations in specific SWI/SNF complex members are characteristic of rare chemoresistant ovarian cancer histopathological subtypes. Somatic mutations in ARID1A, encoding one of the mutually exclusive DNA-binding subunits of SWI/SNF, occur in 42-67% of ovarian clear cell carcinomas (OCCC). The concomitant somatic or germline mutation and epigenetic silencing of the mutually exclusive ATPase subunits SMARCA4 and SMARCA2, respectively, occurs in Small cell carcinoma of the ovary, hypercalcaemic type (SCCOHT), with SMARCA4 mutation reported in 69-100% of SCCOHT cases and SMARCA2 silencing seen 86-100% of the time. Somatic ARID1A mutations also occur in endometrioid ovarian cancer (EnOC), as well as in the chronic benign condition endometriosis, possibly as precursors to the development of the endometriosis-associated cancers OCCC and EnOC. Mutation of the ARID1A paralogue ARID1B can also occur in both OCCC and SCCOHT. Mutations in other SWI/SNF complex members, including SMARCA2, SMARCB1 and SMARCC1, occur rarely in either OCCC or SCCOHT. Abrogated SWI/SNF raises opportunities for pharmacological inhibition, including the use of DNA damage repair inhibitors, kinase and epigenetic inhibitors, as well as immune checkpoint blockade.
Collapse
Affiliation(s)
- Yue Ma
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Natisha R Field
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tao Xie
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Sarina Briscas
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Emily G Kokinogoulis
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Tali S Skipper
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Amani Alghalayini
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Farhana A Sarker
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nham Tran
- School of Biomedical Engineering, Faculty of Engineering and IT, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Nikola A Bowden
- Drug Repurposing and Medicines Research Program, Hunter Medical Research Institute, Newcastle, NSW 2289, Australia
- School of Medicine and Public Health, University of Newcastle, Newcastle, NSW 2289, Australia
| | - Kristie-Ann Dickson
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Deborah J Marsh
- Translational Oncology Group, School of Life Sciences, Faculty of Science, University of Technology Sydney, Ultimo, NSW 2007, Australia
| |
Collapse
|
10
|
Salmon A, Lebeau A, Streel S, Dheur A, Schoenen S, Goffin F, Gonne E, Kridelka F, Kakkos A, Gennigens C. Locally advanced and metastatic endometrial cancer: Current and emerging therapies. Cancer Treat Rev 2024; 129:102790. [PMID: 38972136 DOI: 10.1016/j.ctrv.2024.102790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 06/18/2024] [Accepted: 06/19/2024] [Indexed: 07/09/2024]
Abstract
Until recently, patients diagnosed with locally advanced and metastatic endometrial cancer faced significant challenges in their treatment due to limited options and poor prognostic outcomes. The sequencing of tumors has been a major advancement in its management. It has led to The Cancer Genome Atlas classification currently used in clinical practice and the initiation of several clinical trials for innovative treatments targeting principally signaling pathways, immune checkpoints, DNA integrity, growth factors, hormonal signaling, and metabolism. Numerous clinical trials are investigating a combinatorial approach of these targeted therapies to counter tumoral resistance, cellular compensatory mechanisms, and tumor polyclonality. This review provides a comprehensive overview of historical, current, and promising therapies in advanced and metastatic endometrial cancer. It particularly highlights clinical research on targeted and hormonal therapies, but also immunotherapy, reflecting the evolving landscape of treatment modalities for this disease.
Collapse
Affiliation(s)
- Alixe Salmon
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Alizée Lebeau
- Department of Medical Oncology, CHU Liège, Liège, Belgium; Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sylvie Streel
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | - Adriane Dheur
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Sophie Schoenen
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Frédéric Goffin
- Department of Gynecology and Obstetrics, CHU Liège, Liège, Belgium
| | - Elodie Gonne
- Department of Medical Oncology, CHU Liège, Liège, Belgium
| | | | | | | |
Collapse
|
11
|
Fournier LA, Kalantari F, Wells JP, Lee JS, Trigo-Gonzalez G, Moksa MM, Smith T, White J, Shanks A, Wang SL, Su E, Wang Y, Huntsman DG, Hirst M, Stirling PC. Genome-Wide CRISPR Screen Identifies KEAP1 Perturbation as a Vulnerability of ARID1A-Deficient Cells. Cancers (Basel) 2024; 16:2949. [PMID: 39272807 PMCID: PMC11394604 DOI: 10.3390/cancers16172949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/15/2024] Open
Abstract
ARID1A is the core DNA-binding subunit of the BAF chromatin remodeling complex and is mutated in about 8% of all cancers. The frequency of ARID1A loss varies between cancer subtypes, with clear cell ovarian carcinoma (CCOC) presenting the highest incidence at > 50% of cases. Despite a growing understanding of the consequences of ARID1A loss in cancer, there remains limited targeted therapeutic options for ARID1A-deficient cancers. Using a genome-wide CRISPR screening approach, we identify KEAP1 as a genetic dependency of ARID1A in CCOC. Depletion or chemical perturbation of KEAP1 results in selective growth inhibition of ARID1A-KO cell lines and edited primary endometrial epithelial cells. While we confirm that KEAP1-NRF2 signalling is dysregulated in ARID1A-KO cells, we suggest that this synthetic lethality is not due to aberrant NRF2 signalling. Rather, we find that KEAP1 perturbation exacerbates genome instability phenotypes associated with ARID1A deficiency. Together, our findings identify a potentially novel synthetic lethal interaction of ARID1A-deficient cells.
Collapse
Affiliation(s)
- Louis-Alexandre Fournier
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Interdisciplinary Oncology Program, University of British Columbia, Vancouver, BC V5L1Z3, Canada
| | - Forouh Kalantari
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - James P Wells
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Joon Seon Lee
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Genny Trigo-Gonzalez
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - Michelle M Moksa
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Theodore Smith
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Justin White
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Alynn Shanks
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
| | - Siyun L Wang
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Edmund Su
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Yemin Wang
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
| | - David G Huntsman
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T1Z4, Canada
- Department of Molecular Oncology, BC Cancer Research Centre, Vancouver, BC V5L1Z3, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Martin Hirst
- Michael Smith Laboratories, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| | - Peter C Stirling
- Terry Fox Laboratory, BC Cancer, Vancouver, BC V5L1Z3, Canada
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6T1Z4, Canada
| |
Collapse
|
12
|
Olislagers M, de Jong FC, Rutten VC, Boormans JL, Mahmoudi T, Zuiverloon TCM. Molecular biomarkers of progression in non-muscle-invasive bladder cancer - beyond conventional risk stratification. Nat Rev Urol 2024:10.1038/s41585-024-00914-7. [PMID: 39095581 DOI: 10.1038/s41585-024-00914-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2024] [Indexed: 08/04/2024]
Abstract
The global incidence of bladder cancer is more than half a million diagnoses each year. Bladder cancer can be categorized into non-muscle-invasive bladder cancer (NMIBC), which accounts for ~75% of diagnoses, and muscle-invasive bladder cancer (MIBC). Up to 45% of patients with NMIBC develop disease progression to MIBC, which is associated with a poor outcome, highlighting a clinical need to identify these patients. Current risk stratification has a prognostic value, but relies solely on clinicopathological parameters that might not fully capture the complexity of disease progression. Molecular research has led to identification of multiple crucial players involved in NMIBC progression. Identified biomarkers of progression are related to cell cycle, MAPK pathways, apoptosis, tumour microenvironment, chromatin stability and DNA-damage response. However, none of these biomarkers has been prospectively validated. Reported gene signatures of progression do not improve NMIBC risk stratification. Molecular subtypes of NMIBC have improved our understanding of NMIBC progression, but these subtypes are currently unsuitable for clinical implementation owing to a lack of prospective validation, limited predictive value as a result of intratumour subtype heterogeneity, technical challenges, costs and turnaround time. Future steps include the development of consensus molecular NMIBC subtypes that might improve conventional clinicopathological risk stratification. Prospective implementation studies of biomarkers and the design of biomarker-guided clinical trials are required for the integration of molecular biomarkers into clinical practice.
Collapse
Affiliation(s)
- Mitchell Olislagers
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Florus C de Jong
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Vera C Rutten
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Joost L Boormans
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
| | - Tokameh Mahmoudi
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands
- Department of Pathology, Erasmus University Medical Center, Rotterdam, the Netherlands
| | - Tahlita C M Zuiverloon
- Department of Urology, Erasmus University Medical Center, Erasmus MC Cancer Institute, Rotterdam, the Netherlands.
| |
Collapse
|
13
|
Fatema K, Wang Y, Pavek A, Larson Z, Nartker C, Plyler S, Jeppesen A, Mehling B, Capecchi MR, Jones KB, Barrott JJ. Arid1a Loss Enhances Disease Progression in a Murine Model of Osteosarcoma. Cancers (Basel) 2024; 16:2725. [PMID: 39123453 PMCID: PMC11311538 DOI: 10.3390/cancers16152725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/12/2024] Open
Abstract
Osteosarcoma is an aggressive bone malignancy, molecularly characterized by acquired genome complexity and frequent loss of TP53 and RB1. Obtaining a molecular understanding of the initiating mutations of osteosarcomagenesis has been challenged by the difficulty of parsing between passenger and driver mutations in genes. Here, a forward genetic screen in a genetic mouse model of osteosarcomagenesis initiated by Trp53 and Rb1 conditional loss in pre-osteoblasts identified that Arid1a loss contributes to OS progression. Arid1a is a member of the canonical BAF (SWI/SNF) complex and a known tumor suppressor gene in other cancers. We hypothesized that the loss of Arid1a increases the rate of tumor progression and metastasis. Phenotypic evaluation upon in vitro and in vivo deletion of Arid1a validated this hypothesis. Gene expression and pathway analysis revealed a correlation between Arid1a loss and genomic instability, and the subsequent dysregulation of genes involved in DNA DSB or SSB repair pathways. The most significant of these transcriptional changes was a concomitant decrease in DCLRE1C. Our findings suggest that Arid1a plays a role in genomic instability in aggressive osteosarcoma and a better understanding of this correlation can help with clinical prognoses and personalized patient care.
Collapse
Affiliation(s)
- Kaniz Fatema
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Yanliang Wang
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Adriene Pavek
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Zachary Larson
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Christopher Nartker
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Shawn Plyler
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Amanda Jeppesen
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Breanna Mehling
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
| | - Mario R. Capecchi
- Department of Human Genetics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
| | - Kevin B. Jones
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
| | - Jared J. Barrott
- Department of Biomedical and Pharmaceutical Sciences, College of Pharmacy, Idaho State University, Pocatello, ID 83209, USA; (K.F.); (A.P.); (C.N.); (S.P.); (A.J.); (B.M.)
- Department of Oncological Sciences, University of Utah School of Medicine, Salt Lake City, UT 84132, USA;
- Department of Orthopaedics, University of Utah School of Medicine, Salt Lake City, UT 84132, USA
- Huntsman Cancer Institute, Salt Lake City, UT 84112, USA
- Department of Cell Biology and Physiology, Brigham Young University, Provo, UT 84602, USA
- Simmons Center for Cancer Research, Provo, UT 84602, USA
| |
Collapse
|
14
|
Alyafeai E, Qaed E, Al-Mashriqi HS, Almaamari A, Almansory AH, Futini FA, Sultan M, Tang Z. Molecular dynamics of DNA repair and carcinogen interaction: Implications for cancer initiation, progression, and therapeutic strategies. Mutat Res 2024; 829:111883. [PMID: 39265237 DOI: 10.1016/j.mrfmmm.2024.111883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 07/07/2024] [Accepted: 09/05/2024] [Indexed: 09/14/2024]
Abstract
The integrity of the genetic material in human cells is continuously challenged by environmental agents and endogenous stresses. Among these, environmental carcinogens are pivotal in initiating complex DNA lesions that can lead to malignant transformations if not properly repaired. This review synthesizes current knowledge on the molecular dynamics of DNA repair mechanisms and their interplay with various environmental carcinogens, providing a comprehensive overview of how these interactions contribute to cancer initiation and progression. We examine key DNA repair pathways including base excision repair, nucleotide excision repair, and double-strand break repair and their regulatory networks, highlighting how defects in these pathways can exacerbate carcinogen-induced damage. Further, we discuss how understanding these molecular interactions offers novel insights into potential therapeutic strategies. This includes leveraging synthetic lethality concepts and designing targeted therapies that exploit specific DNA repair vulnerabilities in cancer cells. By integrating recent advances in molecular biology, genetics, and oncology, this review aims to illuminate the complex landscape of DNA repair and carcinogen-induced carcinogenesis, setting the stage for future research and therapeutic innovations.
Collapse
Affiliation(s)
- Eman Alyafeai
- School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou, China
| | - Eskandar Qaed
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China; State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | | | - Ahmed Almaamari
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Anisa H Almansory
- Biological department, Faculty of Science, University of Sana'a, Yemen
| | - Fatima Al Futini
- Department of Food Science, Faculty of Food Science & Technology, University Putra Malaysia (UPM), Malaysia
| | - Marwa Sultan
- The Key Laboratory of Neural and Vascular Biology, The Key Laboratory of New Drug Pharmacology and Toxicology, Department of Pharmacology, Ministry of Education, Hebei Medical University, Shijiazhuang, China
| | - Zeyao Tang
- Collage of Pharmacy, Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|
15
|
Zhou H, Sun D, Song S, Niu Y, Zhang Y, Lan H, Cui J, Liu H, Liu N, Hou H. Efficacy of immunotherapy in ARID1A-mutant solid tumors: a single-center retrospective study. Discov Oncol 2024; 15:213. [PMID: 38847966 PMCID: PMC11161453 DOI: 10.1007/s12672-024-01074-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 06/03/2024] [Indexed: 06/10/2024] Open
Abstract
BACKGROUND Immune checkpoint inhibitors (ICIs), especially those targeting programmed cell death-1 (PD-1) and programmed cell death ligand-1 (PD-L1), have introduced a new treatment landscape for many types of tumors. However, they only achieve a limited therapeutic response. Hence, identifying patients who may benefit from ICIs is currently a challenge. METHODS 47 tumor patients harboring ARID1A mutations were retrospectively studied. The genomic profiling data through next-generation sequencing (NGS) and relevant clinical information were collected and analyzed. Additionally, bioinformatics analysis of the expression of immune checkpoints and immune cell infiltration levels was conducted in ARID1A-mutant gastric cancer (GC). RESULTS ARID1A mutations frequently co-occur with mutations in DNA damage repair (DDR)-associated genes. Among the 35 ARID1A-mutant patients who received immunotherapy, 27 were evaluable., with the objective response rate (ORR) was 48.15% (13/27), and the disease control rate (DCR) was 92.59% (25/27). Moreover, survival assays revealed that ARID1A-mutant patients had longer median overall survival (mOS) after immunotherapy. In ARID1A-mutated GC patients, receiving ICIs treatment indicated longer progressive-free survival (PFS). Additionally, the incidence of microsatellite instability-high (MSI-H), high tumor mutation burden (TMB-H) and Epstein‒Barr virus (EBV) infection was elevated. Bioinformatic analysis showed significant enrichment of immune response and T cell activation pathway within differentially expressed genes in ARID1A-mutant GC group. Finally, ARID1A mutations status was considered to be highly correlated with the level of tumor infiltrating lymphocytes (TILs) and high expression of immune checkpoints. CONCLUSIONS Patients with tumors harboring ARID1A mutations may achieve better clinical outcomes from immunotherapy, especially in GC. ARID1A mutations can lead to genomic instability and reshape the tumor immune microenvironment (TIME), which can be used as a biomarker for immunotherapy.
Collapse
Affiliation(s)
- Hai Zhou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Dantong Sun
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Shanai Song
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Yurong Niu
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Yuming Zhang
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Hongwei Lan
- Precision Medicine Center of Oncology, The Affiliated Hospital of Qingdao University, Qingdao, 266000, Shandong, China
| | - Jiali Cui
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Houde Liu
- Medical College of Qingdao University, No.308 Ningxia Road, Qingdao, 266000, Shandong, China
| | - Ning Liu
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China
| | - Helei Hou
- Department of Oncology, The Affiliated Hospital of Qingdao University, No. 7 Jiaxing Road, Qingdao, 266000, Shandong, China.
| |
Collapse
|
16
|
Wang Z, Zhang X, Luo Y, Song Y, Xiang C, He Y, Wang K, Yu Y, Wang Z, Peng W, Ding Y, Liu S, Wu C. Therapeutic targeting of ARID1A-deficient cancer cells with RITA (Reactivating p53 and inducing tumor apoptosis). Cell Death Dis 2024; 15:375. [PMID: 38811536 PMCID: PMC11136964 DOI: 10.1038/s41419-024-06751-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/12/2024] [Accepted: 05/15/2024] [Indexed: 05/31/2024]
Abstract
ARID1A, a component of the SWI/SNF chromatin-remodeling complex, is frequently mutated in various cancer types and has emerged as a potential therapeutic target. In this study, we observed that ARID1A-deficient colorectal cancer (CRC) cells showed synthetic lethal effects with a p53 activator, RITA (reactivating p53 and inducing tumor apoptosis). RITA, an inhibitor of the p53-MDM2 interaction, exhibits increased sensitivity in ARID1A-deficient cells compared to ARID1A wild-type cells. Mechanistically, the observed synthetic lethality is dependent on both p53 activation and DNA damage accumulation, which are regulated by the interplay between ARID1A and RITA. ARID1A loss exhibits an opposing effect on p53 targets, leading to decreased p21 expression and increased levels of proapoptotic genes, PUMA and NOXA, which is further potentiated by RITA treatment, ultimately inducing cell apoptosis. Meanwhile, ARID1A loss aggravates RITA-induced DNA damage accumulation by downregulating Chk2 phosphorylation. Taken together, ARID1A loss significantly heightens sensitivity to RITA in CRC, revealing a novel synthetic lethal interaction between ARID1A and RITA. These findings present a promising therapeutic approach for colorectal cancer characterized by ARID1A loss-of-function mutations.
Collapse
Affiliation(s)
- Zihuan Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Xu Zhang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yuchen Luo
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yijiang Song
- Department of Laboratory Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Cheng Xiang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yilin He
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Kejin Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yingnan Yu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Zhen Wang
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Wenxuan Peng
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China
| | - Yi Ding
- Department of Radiation Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Side Liu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| | - Changjie Wu
- Guangdong Provincial Key Laboratory of Gastroenterology, Department of Gastroenterology, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
17
|
Tang L, Bian C. Research progress in endometriosis-associated ovarian cancer. Front Oncol 2024; 14:1381244. [PMID: 38725626 PMCID: PMC11079782 DOI: 10.3389/fonc.2024.1381244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2024] [Accepted: 04/15/2024] [Indexed: 05/12/2024] Open
Abstract
Endometriosis-associated ovarian cancer (EAOC) is a unique subtype of ovarian malignant tumor originating from endometriosis (EMS) malignant transformation, which has gradually become one of the hot topics in clinical and basic research in recent years. According to clinicopathological and epidemiological findings, precancerous lesions of ovarian clear cell carcinoma (OCCC) and ovarian endometrioid carcinoma (OEC) are considered as EMS. Given the large number of patients with endometriosis and its long time window for malignant transformation, sufficient attention should be paid to EAOC. At present, the pathogenesis of EAOC has not been clarified, no reliable biomarkers have been found in the diagnosis, and there is still a lack of basis and targets for stratified management and precise treatment in the treatment. At the same time, due to the long medical history of patients, the fast growth rate of cancer cells, and the possibility of eliminating the earliest endometriosis-associated ovarian cancer, it is difficult to find the corresponding histological evidence. As a result, few patients are finally diagnosed with EAOC, which increases the difficulty of in-depth study of EAOC. This article reviews the epidemiology, pathogenesis, risk factors, clinical diagnosis, new treatment strategies and prognosis of endometriosis-associated ovarian cancer, and prospects the future direction of basic research and clinical transformation, in order to achieve stratified management and personalized treatment of ovarian cancer patients.
Collapse
Affiliation(s)
| | - Ce Bian
- Department of Gynecology and Obstetrics, Key Laboratory of Birth Defects and Related Diseases of Women and Children, Ministry of Education, West China Second Hospital, Sichuan University, Chengdu, Sichuan Province, China
| |
Collapse
|
18
|
Chaudhri A, Lizee G, Hwu P, Rai K. Chromatin Remodelers Are Regulators of the Tumor Immune Microenvironment. Cancer Res 2024; 84:965-976. [PMID: 38266066 DOI: 10.1158/0008-5472.can-23-2244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 11/24/2023] [Accepted: 01/17/2024] [Indexed: 01/26/2024]
Abstract
Immune checkpoint inhibitors show remarkable responses in a wide range of cancers, yet patients develop adaptive resistance. This necessitates the identification of alternate therapies that synergize with immunotherapies. Epigenetic modifiers are potent mediators of tumor-intrinsic mechanisms and have been shown to regulate immune response genes, making them prime targets for therapeutic combinations with immune checkpoint inhibitors. Some success has been observed in early clinical studies that combined immunotherapy with agents targeting DNA methylation and histone modification; however, less is known about chromatin remodeler-targeted therapies. Here, we provide a discussion on the regulation of tumor immunogenicity by the chromatin remodeling SWI/SNF complex through multiple mechanisms associated with immunotherapy response that broadly include IFN signaling, DNA damage, mismatch repair, regulation of oncogenic programs, and polycomb-repressive complex antagonism. Context-dependent targeting of SWI/SNF subunits can elicit opportunities for synthetic lethality and reduce T-cell exhaustion. In summary, alongside the significance of SWI/SNF subunits in predicting immunotherapy outcomes, their ability to modulate the tumor immune landscape offers opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Apoorvi Chaudhri
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Graduate School of Biomedical Sciences, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Medical Oncology, Dana Farber Cancer Institute, Boston, Massachusetts
| | - Gregory Lizee
- Department of Melanoma Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Immunology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | | | - Kunal Rai
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- MDACC Epigenomics Therapy Initiative, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
19
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MHG, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS mutations and co-mutations on clinical outcomes in pancreatic ductal adenocarcinoma. NPJ Precis Oncol 2024; 8:27. [PMID: 38310130 PMCID: PMC10838312 DOI: 10.1038/s41698-024-00505-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Accepted: 01/05/2024] [Indexed: 02/05/2024] Open
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 patients with PDAC (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p < 0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p = 0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p < 0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p = 0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p = 0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n = 408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H G Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
20
|
Kazandjian S, Rousselle E, Dankner M, Cescon DW, Spreafico A, Ma K, Kavan P, Batist G, Rose AAN. The Clinical, Genomic, and Transcriptomic Landscape of BRAF Mutant Cancers. Cancers (Basel) 2024; 16:445. [PMID: 38275886 PMCID: PMC10814895 DOI: 10.3390/cancers16020445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 01/08/2024] [Accepted: 01/13/2024] [Indexed: 01/27/2024] Open
Abstract
BACKGROUND BRAF mutations are classified into four molecularly distinct groups, and Class 1 (V600) mutant tumors are treated with targeted therapies. Effective treatment has not been established for Class 2/3 or BRAF Fusions. We investigated whether BRAF mutation class differed according to clinical, genomic, and transcriptomic variables in cancer patients. METHODS Using the AACR GENIE (v.12) cancer database, the distribution of BRAF mutation class in adult cancer patients was analyzed according to sex, age, primary race, and tumor type. Genomic alteration data and transcriptomic analysis was performed using The Cancer Genome Atlas. RESULTS BRAF mutations were identified in 9515 (6.2%) samples among 153,834, with melanoma (31%), CRC (20.7%), and NSCLC (13.9%) being the most frequent cancer types. Class 1 harbored co-mutations outside of the MAPK pathway (TERT, RFN43) vs. Class 2/3 mutations (RAS, NF1). Across all tumor types, Class 2/3 were enriched for alterations in genes involved in UV response and WNT/β-catenin. Pathway analysis revealed enrichment of WNT/β-catenin and Hedgehog signaling in non-V600 mutated CRC. Males had a higher proportion of Class 3 mutations vs. females (17.4% vs. 12.3% q = 0.003). Non-V600 mutations were generally more common in older patients (aged 60+) vs. younger (38% vs. 15% p < 0.0001), except in CRC (15% vs. 30% q = 0.0001). Black race was associated with non-V600 BRAF alterations (OR: 1.58; p < 0.0001). CONCLUSIONS Class 2/3 BRAFs are more present in Black male patients with co-mutations outside of the MAPK pathway, likely requiring additional oncogenic input for tumorigenesis. Improving access to NGS and trial enrollment will help the development of targeted therapies for non-V600 BRAF mutations.
Collapse
Affiliation(s)
- Suzanne Kazandjian
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Emmanuelle Rousselle
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
| | - Matthew Dankner
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3A 1A3, Canada
| | - David W. Cescon
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Anna Spreafico
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Center, Toronto, ON M5G 2M9, Canada; (D.W.C.); (A.S.)
| | - Kim Ma
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Petr Kavan
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - Gerald Batist
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
| | - April A. N. Rose
- Gerald Bronfman Department of Oncology, McGill University, Montreal, QC H4A 3T2, Canada; (S.K.); (K.M.); (P.K.); (G.B.)
- Segal Cancer Centre, Jewish General Hospital, Montreal, QC H3T 1E2, Canada
- Lady Davis Institute, Jewish General Hospital, Montreal, QC H3T 1E2, Canada; (E.R.); (M.D.)
- Division of Experimental Medicine, McGill University, Montreal, QC H4A 3J1, Canada
- Faculty of Medicine and Health Sciences, McGill University, Montreal, QC H3G 2M1, Canada
| |
Collapse
|
21
|
Aulakh S, Xiu J, Hinton A, Darabi S, Demeure MJ, Sengupta S, Kesari S, Ashley DM, Sumrall AL, Glantz MJ, Spetzler D. Biological and prognostic relevance of epigenetic regulatory genes in high-grade gliomas. Neurooncol Adv 2024; 6:vdae169. [PMID: 39553337 PMCID: PMC11565242 DOI: 10.1093/noajnl/vdae169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2024] Open
Abstract
Background High-grade gliomas (HGGs) are the most aggressive type of gliomas and have the poorest outcomes. Chromatin remodeling (CR) genes have been implicated in multiple oncogenic pathways in numerous cancer types. In gliomagenesis, CR genes have been implicated in regulating the stemness of glioma cells, the tumor microenvironment (TME), and resistance to therapies. Methods We performed molecular profiling of 4244 HGGs and evaluated associations of CR mutations with other cancer-related biomarkers, infiltration by immune cells, and immune gene expression. We also evaluated the association between CR mutations and survival in wild-type IDH HGG patients. Results Nearly 10% of HGGs carry mutations in CR genes, with a higher prevalence (15%) in HGGs with IDH mutations. Analysis of cooccurrence with other biomarkers revealed that CR-mutated HGGs possess favorable genetic alterations which may have prognostic value. CR-mutated HGGs with wild-type IDH demonstrated colder TME and worse OS overall compared to the CR-wild-type HGGs. Conclusions Our study reveals the prognostic effects of CR mutations in HGG and points to several biomarker candidates that could suggest sensitivity to emerging therapeutic strategies.
Collapse
Affiliation(s)
| | - Joanne Xiu
- Caris Life Sciences, Medical Affairs, Phoenix, Arizona, USA
| | - Andrew Hinton
- Caris Life Sciences, Medical Affairs, Phoenix, Arizona, USA
| | - Sourat Darabi
- Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Michael J Demeure
- Translational Genomics Research Institute, Phoenix, Arizona, USA
- Hoag Family Cancer Institute, Newport Beach, California, USA
| | - Soma Sengupta
- School of Medicine, The University of North Carolina at Chapel Hill, Chapel Hill, North Carolina, USA
| | - Santosh Kesari
- Pacific Neuroscience Institute and Saint John’s Cancer Institute, Santa Monica, California, USA
| | - David M Ashley
- Duke University School of Medicine, Durham, North Carolina, USA
| | | | - Michael J Glantz
- Departments of Neurosurgery and Oncology, Penn State Hershey Medical Center, Hershey, Pennsylvania, USA (M.J.G.)
| | - David Spetzler
- Caris Life Sciences, Medical Affairs, Phoenix, Arizona, USA
| |
Collapse
|
22
|
Andraus W, Tustumi F, de Meira Junior JD, Pinheiro RSN, Waisberg DR, Lopes LD, Arantes RM, Rocha Santos V, de Martino RB, Carneiro D’Albuquerque LA. Molecular Profile of Intrahepatic Cholangiocarcinoma. Int J Mol Sci 2023; 25:461. [PMID: 38203635 PMCID: PMC10778975 DOI: 10.3390/ijms25010461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 12/23/2023] [Accepted: 12/27/2023] [Indexed: 01/12/2024] Open
Abstract
Intrahepatic cholangiocarcinoma (ICC) is a relatively uncommon but highly aggressive primary liver cancer that originates within the liver. The aim of this study is to review the molecular profile of intrahepatic cholangiocarcinoma and its implications for prognostication and decision-making. This comprehensive characterization of ICC tumors sheds light on the disease's underlying biology and offers a foundation for more personalized treatment strategies. This is a narrative review of the prognostic and therapeutic role of the molecular profile of ICC. Knowing the molecular profile of tumors helps determine prognosis and support certain target therapies. The molecular panel in ICC helps to select patients for specific therapies, predict treatment responses, and monitor treatment responses. Precision medicine in ICC can promote improvement in prognosis and reduce unnecessary toxicity and might have a significant role in the management of ICC in the following years. The main mutations in ICC are in tumor protein p53 (TP53), Kirsten rat sarcoma virus (KRAS), isocitrate dehydrogenase 1 (IDH1), and AT-rich interactive domain-containing protein 1A (ARID1A). The rate of mutations varies significantly for each population. Targeting TP53 and KRAS is challenging due to the natural characteristics of these genes. Different stages of clinical studies have shown encouraging results with inhibitors of mutated IDH1 and target therapy for ARID1A downstream effectors. Fibroblast growth factor receptor 2 (FGFR2) fusions are an important target in patients with ICC. Immune checkpoint blockade can be applied to a small percentage of ICC patients. Molecular profiling in ICC represents a groundbreaking approach to understanding and managing this complex liver cancer. As our comprehension of ICC's molecular intricacies continues to expand, so does the potential for offering patients more precise and effective treatments. The integration of molecular profiling into clinical practice signifies the dawn of a new era in ICC care, emphasizing personalized medicine in the ongoing battle against this malignancy.
Collapse
Affiliation(s)
| | - Francisco Tustumi
- Department of Gastroenterology, Transplantation Unit, Universidade de São Paulo, São Paulo 05403-000, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
23
|
Mandal J, Yu ZC, Shih IM, Wang TL. ARID1A loss activates MAPK signaling via DUSP4 downregulation. J Biomed Sci 2023; 30:94. [PMID: 38071325 PMCID: PMC10709884 DOI: 10.1186/s12929-023-00985-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 11/12/2023] [Indexed: 12/18/2023] Open
Abstract
BACKGROUND ARID1A, a tumor suppressor gene encoding BAF250, a protein participating in chromatin remodeling, is frequently mutated in endometrium-related malignancies, including ovarian or uterine clear cell carcinoma (CCC) and endometrioid carcinoma (EMCA). However, how ARID1A mutations alter downstream signaling to promote tumor development is yet to be established. METHODS We used RNA-sequencing (RNA-seq) to explore transcriptomic changes in isogenic human endometrial epithelial cells after deleting ARID1A. Chromatin immunoprecipitation sequencing (ChIP-seq) was employed to assess the active or repressive histone marks on DUSP4 promoter and regulatory regions. We validated our findings using genetically engineered murine endometroid carcinoma models, human endometroid carcinoma tissues, and in silico approaches. RESULTS RNA-seq revealed the downregulation of the MAPK phosphatase dual-specificity phosphatase 4 (DUSP4) in ARID1A-deficient cells. ChIP-seq demonstrated decreased histone acetylation marks (H3K27Ac, H3K9Ac) on DUSP4 regulatory regions as one of the causes for DUSP4 downregulation in ARID1A-deficient cells. Ectopic DUSP4 expression decreased cell proliferation, and pharmacologically inhibiting the MAPK pathway significantly mitigated tumor formation in vivo. CONCLUSIONS Our findings suggest that ARID1A protein transcriptionally modulates DUSP4 expression by remodeling chromatin, subsequently inactivating the MAPK pathway, leading to tumor suppression. The ARID1A-DUSP4-MAPK axis may be further considered for developing targeted therapies against ARID1A-mutated cancers.
Collapse
Affiliation(s)
- Jayaprakash Mandal
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng-Cheng Yu
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Ie-Ming Shih
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| | - Tian-Li Wang
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Gynecology and Obstetrics, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD, USA.
| |
Collapse
|
24
|
Xing B, Zhang X, Gu X, Xiang L, Wang C, Jin Y. Explore the alterations of downstream molecular pathways caused by ARID1A mutation/knockout in human endometrial cancer cells. J Cancer Res Clin Oncol 2023; 149:17529-17541. [PMID: 37906351 DOI: 10.1007/s00432-023-05471-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 10/10/2023] [Indexed: 11/02/2023]
Abstract
PURPOSE As one of the most common gynecologic malignancies, endometrial cancer (EC) is driven by multiple genetic alterations that may be targeted for treatments. AT-rich interaction domain 1A (ARID1A) gene mutations were reported as early events in endometrial carcinogenesis. METHODS To explore the alterations of downstream molecular pathways caused by ARID1A mutations and the associated therapeutic implications, we edited ARID1A gene in human endometrial cancer cell line Ishikawa using the Clustered Regularly Interspaced Short Palindromic Repeats and CRISPR-Associated Proteins (CRISPR/Cas9) technology. We successfully constructed a stable Ishikawa cell line with a confirmed 10 bp deletion on the ARID1A gene, which resulted in a code-shift mutation and gene knockout. RESULTS Compared with unedited wild-type cells, ARID1A knockout (KO) led to reduced apoptosis, accelerated transformation from G0/G1 to S phase, and enhanced cell proliferation. ARID1A deficiency would reduce the protein levels of p21, caspase 7, and caspase 9 in Ishikawa endometrial cancer cells compared with the wild-type cells. In addition, ARID1A KO resulted in high levels of microsatellite instability (MSI-H). Moreover, transcriptomic analyses showed that ARID1A KO can lead to activated phosphoinositide 3-kinase (PI3K)/protein kinase B (Akt) signaling. Furthermore, experimental analyses demonstrated that ARID1A KO cells had reduced expression of genetic instability-associated markers mutL homologue 1 (MLH1) and progesterone receptor B (PR) and increased p-Akt expression. CONCLUSION These findings support further exploration of ARID1A as a therapeutic target for EC and provide insight into developing more effective treatments in EC, such as the combinatory use of immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Baoling Xing
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China.
| | - Xiaoying Zhang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Xia Gu
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Lintao Xiang
- Department of Pathology, Affiliated Zhoupu Hospital of Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Cuiping Wang
- College of Medical Technology, Shanghai University of Medicine and Health Sciences, Shanghai, 201318, China
| | - Yueling Jin
- Management Department of Scientific Research, Shanghai Science and Technology Museum, Shanghai, 200127, China
| |
Collapse
|
25
|
Maioru OV, Radoi VE, Coman MC, Hotinceanu IA, Dan A, Eftenoiu AE, Burtavel LM, Bohiltea LC, Severin EM. Developments in Genetics: Better Management of Ovarian Cancer Patients. Int J Mol Sci 2023; 24:15987. [PMID: 37958970 PMCID: PMC10647767 DOI: 10.3390/ijms242115987] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/22/2023] [Accepted: 11/03/2023] [Indexed: 11/15/2023] Open
Abstract
The purpose of this article is to highlight the new advancements in molecular and diagnostic genetic testing and to properly classify all ovarian cancers. In this article, we address statistics, histopathological classification, molecular pathways implicated in ovarian cancer, genetic screening panels, details about the genes, and also candidate genes. We hope to bring new information to the medical field so as to better prevent and diagnose ovarian cancer.
Collapse
Affiliation(s)
- Ovidiu-Virgil Maioru
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Viorica-Elena Radoi
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Madalin-Codrut Coman
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Iulian-Andrei Hotinceanu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Andra Dan
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Anca-Elena Eftenoiu
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Livia-Mălina Burtavel
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| | - Laurentiu-Camil Bohiltea
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
- “Alessandrescu-Rusescu” National Institute for Maternal and Child Health, 20382 Bucharest, Romania
| | - Emilia-Maria Severin
- Department of Medical Genetics, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania; (O.-V.M.); (M.-C.C.); (A.D.); (A.-E.E.); (L.-M.B.); (L.-C.B.); (E.-M.S.)
| |
Collapse
|
26
|
Jacobson DH, Pan S, Fisher J, Secrier M. Multi-scale characterisation of homologous recombination deficiency in breast cancer. Genome Med 2023; 15:90. [PMID: 37919776 PMCID: PMC10621207 DOI: 10.1186/s13073-023-01239-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Accepted: 09/26/2023] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Homologous recombination is a robust, broadly error-free mechanism of double-strand break repair, and deficiencies lead to PARP inhibitor sensitivity. Patients displaying homologous recombination deficiency can be identified using 'mutational signatures'. However, these patterns are difficult to reliably infer from exome sequencing. Additionally, as mutational signatures are a historical record of mutagenic processes, this limits their utility in describing the current status of a tumour. METHODS We apply two methods for characterising homologous recombination deficiency in breast cancer to explore the features and heterogeneity associated with this phenotype. We develop a likelihood-based method which leverages small insertions and deletions for high-confidence classification of homologous recombination deficiency for exome-sequenced breast cancers. We then use multinomial elastic net regression modelling to develop a transcriptional signature of heterogeneous homologous recombination deficiency. This signature is then applied to single-cell RNA-sequenced breast cancer cohorts enabling analysis of homologous recombination deficiency heterogeneity and differential patterns of tumour microenvironment interactivity. RESULTS We demonstrate that the inclusion of indel events, even at low levels, improves homologous recombination deficiency classification. Whilst BRCA-positive homologous recombination deficient samples display strong similarities to those harbouring BRCA1/2 defects, they appear to deviate in microenvironmental features such as hypoxic signalling. We then present a 228-gene transcriptional signature which simultaneously characterises homologous recombination deficiency and BRCA1/2-defect status, and is associated with PARP inhibitor response. Finally, we show that this signature is applicable to single-cell transcriptomics data and predict that these cells present a distinct milieu of interactions with their microenvironment compared to their homologous recombination proficient counterparts, typified by a decreased cancer cell response to TNFα signalling. CONCLUSIONS We apply multi-scale approaches to characterise homologous recombination deficiency in breast cancer through the development of mutational and transcriptional signatures. We demonstrate how indels can improve homologous recombination deficiency classification in exome-sequenced breast cancers. Additionally, we demonstrate the heterogeneity of homologous recombination deficiency, especially in relation to BRCA1/2-defect status, and show that indications of this feature can be captured at a single-cell level, enabling further investigations into interactions between DNA repair deficient cells and their tumour microenvironment.
Collapse
Affiliation(s)
- Daniel H Jacobson
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Shi Pan
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK
| | - Jasmin Fisher
- UCL Cancer Institute, University College London, Paul O'Gorman Building, 72 Huntley Street, London, WC1E 6BT, UK
| | - Maria Secrier
- UCL Genetics Institute, Department of Genetics, Evolution and Environment, University College London, Gower Street, London, WC1E 6BT, UK.
| |
Collapse
|
27
|
Li Z, Luo A, Xie B. The Complex Network of ADP-Ribosylation and DNA Repair: Emerging Insights and Implications for Cancer Therapy. Int J Mol Sci 2023; 24:15028. [PMID: 37834477 PMCID: PMC10573881 DOI: 10.3390/ijms241915028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2023] [Revised: 09/23/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
ADP-ribosylation is a post-translational modification of proteins that plays a key role in various cellular processes, including DNA repair. Recently, significant progress has been made in understanding the mechanism and function of ADP-ribosylation in DNA repair. ADP-ribosylation can regulate the recruitment and activity of DNA repair proteins by facilitating protein-protein interactions and regulating protein conformations. Moreover, ADP-ribosylation can influence additional post-translational modifications (PTMs) of proteins involved in DNA repair, such as ubiquitination, methylation, acetylation, phosphorylation, and SUMOylation. The interaction between ADP-ribosylation and these additional PTMs can fine-tune the activity of DNA repair proteins and ensure the proper execution of the DNA repair process. In addition, PARP inhibitors have been developed as a promising cancer therapeutic strategy by exploiting the dependence of certain cancer types on the PARP-mediated DNA repair pathway. In this paper, we review the progress of ADP-ribosylation in DNA repair, discuss the crosstalk of ADP-ribosylation with additional PTMs in DNA repair, and summarize the progress of PARP inhibitors in cancer therapy.
Collapse
Affiliation(s)
| | - Aiqin Luo
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| | - Bingteng Xie
- Key Laboratory of Molecular Medicine and Biological Diagnosis and Treatment (Ministry of Industry and Information Technology), School of Life Science, Beijing Institute of Technology, Beijing 100081, China
| |
Collapse
|
28
|
Kinose Y, Xu H, Kim H, Kumar S, Shan X, George E, Wang X, Medvedev S, Ferman B, Gitto SB, Whicker M, D’Andrea K, Wubbenhorst B, Hallberg D, O’Connor M, Schwartz LE, Hwang WT, Nathanson KL, Mills GB, Velculescu VE, Wang TL, Brown EJ, Drapkin R, Simpkins F. Dual blockade of BRD4 and ATR/WEE1 pathways exploits ARID1A loss in clear cell ovarian cancer. RESEARCH SQUARE 2023:rs.3.rs-3314138. [PMID: 37841875 PMCID: PMC10571599 DOI: 10.21203/rs.3.rs-3314138/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/17/2023]
Abstract
ARID1A, an epigenetic tumor suppressor, is the most common gene mutation in clear-cell ovarian cancers (CCOCs). CCOCs are often resistant to standard chemotherapy and lack effective therapies. We hypothesized that ARID1A loss would increase CCOC cell dependency on chromatin remodeling and DNA repair pathways for survival. We demonstrate that combining BRD4 inhibitor (BRD4i) with DNA damage response inhibitors (ATR or WEE1 inhibitors; e.g. BRD4i-ATRi) was synergistic at low doses leading to decreased survival, and colony formation in CCOC in an ARID1A dependent manner. BRD4i-ATRi caused significant tumor regression and increased overall survival in ARID1AMUT but not ARID1AWT patient-derived xenografts. Combination BRD4i-ATRi significantly increased γH2AX, and decreased RAD51 foci and BRCA1 expression, suggesting decreased ability to repair DNA double-strand-breaks (DSBs) by homologous-recombination in ARID1AMUT cells, and these effects were greater than monotherapies. These studies demonstrate BRD4i-ATRi is an effective treatment strategy that capitalizes on synthetic lethality with ARID1A loss in CCOC.
Collapse
Affiliation(s)
- Yasuto Kinose
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Haineng Xu
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Hyoung Kim
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sushil Kumar
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaoyin Shan
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Erin George
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Xiaolei Wang
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sergey Medvedev
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Benjamin Ferman
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Sarah B. Gitto
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
- Department of Pathology and Laboratory Medicine, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, 19104, USA
| | - Margaret Whicker
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Kurt D’Andrea
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Wubbenhorst
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Dorothy Hallberg
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Mark O’Connor
- AstraZeneca, R&D Oncology, Cambridge, United Kingdom
| | - Lauren E. Schwartz
- Department of Pathology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104
| | - Wei-Ting Hwang
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Abramson Cancer Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Gordon B. Mills
- Division of Oncological Sciences Knight Cancer Institute, Oregon Health and Science University, Portland, OR
| | - Victor E. Velculescu
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Tian-Li Wang
- The Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University School of Medicine, Baltimore, MD
| | - Eric J. Brown
- Department of Cancer Biology and the Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Ronny Drapkin
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Fiona Simpkins
- Penn Ovarian Cancer Research Center, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
- Department of Obstetrics and Gynecology, Division of Gynecologic Oncology, Hospital of the University of Pennsylvania, Philadelphia, PA
| |
Collapse
|
29
|
Li J, Li X, Quan C, Li X, Wan C, Wu X. Genomic profile of Chinese patients with endometrial carcinoma. BMC Cancer 2023; 23:888. [PMID: 37730563 PMCID: PMC10512642 DOI: 10.1186/s12885-023-11382-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/06/2023] [Indexed: 09/22/2023] Open
Abstract
BACKGROUNDS Endometrial carcinoma (EC) is one of the most commonly diagnosed gynecologic malignancy in China. However, the genetic profile of Chinese EC patients has not been well established yet. METHODS In current study, 158 Chinese EC patients were subjected to next-generation sequencing assay (74 took testing of EC-related 20-genes panel, and 84 took the expanded panel). Of the 158 patients, 91 patients were performed germline mutation testing using the expanded panel. Moreover, the public datasets from TCGA and MSKCC were utilized to compare the genomic differences between Chinese and Western EC patients. The proteomic and transcriptomic from CPTAC and TCGA were derived and performed unsupervised clustering to identify molecular subtypes. RESULTS Among the 158 patients analyzed, a significant majority (85.4%) exihibited at least one somatic alteration, with the most prevalent alterations occurring in PTEN, PIK3CA, TP53, and ARID1A. These genomic alterations were mainly enriched in the PI3K, cell cycle, RAS/RAF/MAPK, Epigenetic modifiers/Chromatin remodelers, and DNA damage repair (DDR) signaling pathways. Additionally, we identified ten individuals (11.0%) with pathogenic or likely pathogenic germline alterations in seven genes, with the DDR pathway being predominantly involved. Compared to Western EC patients, Chinese EC patients displayed different prevalence in AKT1, MET, PMS2, PIK3R1, and CTCF. Notably, 69.6% of Chinese EC patients were identified with actionable alterations. In addition, we discovered novel molecular subtypes in ARID1A wild-type patients, characterized by an inferior prognosis, higher TP53 but fewer PTEN and PIK3CA alterations. Additionally, this subtype exhibited a significantly higher abundance of macrophages and activated dendritic cells. CONCLUSION Our study has contributed valuable insights into the unique germline and somatic genomic profiles of Chinese EC patients, enhancing our understanding of their biological characteristics and potential therapeutic avenues. Furthermore, we have highlighted the presence of molecular heterogeneity in ARID1A-wild type EC patients, shedding light on the complexity of this subgroup.
Collapse
Affiliation(s)
- Jin Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xiaoqi Li
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Chenlian Quan
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Xiaoqiu Li
- Department of Pathology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China
| | - Chong Wan
- Precision Medicine Center, Yangtze Delta Region Institute of Tsinghua University, Jiaxing, China
| | - Xiaohua Wu
- Department of Gynecologic Oncology, Fudan University Shanghai Cancer Center, Fudan University, 200032, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.
| |
Collapse
|
30
|
Powell SK, Kulakova K, Kennedy S. A Review of the Molecular Landscape of Adenoid Cystic Carcinoma of the Lacrimal Gland. Int J Mol Sci 2023; 24:13755. [PMID: 37762061 PMCID: PMC10530759 DOI: 10.3390/ijms241813755] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 08/21/2023] [Accepted: 08/31/2023] [Indexed: 09/29/2023] Open
Abstract
Adenoid cystic carcinoma (ACC) has a worldwide incidence of three to four cases per million population. Although more cases occur in the minor and major salivary glands, it is the most common lacrimal gland malignancy. ACC has a low-grade, indolent histological appearance, but is relentlessly progressive over time and has a strong proclivity to recur and/or metastasise. Current treatment options are limited to complete surgical excision and adjuvant radiotherapy. Intra-arterial systemic therapy is a recent innovation. Recurrent/metastatic disease is common due to perineural invasion, and it is largely untreatable as it is refractory to conventional chemotherapeutic agents. Given the rarity of this tumour, the molecular mechanisms that govern disease pathogenesis are poorly understood. There is an unmet, critical need to develop effective, personalised targeted therapies for the treatment of ACC in order to reduce morbidity and mortality associated with the disease. This review details the evidence relating to the molecular underpinnings of ACC of the lacrimal gland, including the MYB-NFIB chromosomal translocations, Notch-signalling pathway aberrations, DNA damage repair gene mutations and epigenetic modifications.
Collapse
Affiliation(s)
- Sarah Kate Powell
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
| | - Karina Kulakova
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- Department of Biotechnology, Dublin City University, D09 V209 Dublin, Ireland
| | - Susan Kennedy
- Research Foundation, Royal Victoria Eye and Ear Hospital, D02 XK51 Dublin, Ireland; (K.K.); (S.K.)
- National Ophthalmic Pathology Laboratory, D04 T6F6 Dublin, Ireland
| |
Collapse
|
31
|
Falcone R, Filetti M, Lombardi P, Altamura V, Paroni Sterbini F, Scambia G, Daniele G. Clinical and mutational profile of AT-rich interaction domain 1A-mutated cancers. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2023; 4:716-726. [PMID: 37711591 PMCID: PMC10497392 DOI: 10.37349/etat.2023.00163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 04/12/2023] [Indexed: 09/16/2023] Open
Abstract
Aim AT-rich interaction domain 1A (ARID1A) encodes a key component of the SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeling complex that participates in gene expression. ARID1A alterations are quite common among cancer patients, although their role remains debated. The aim of this article was to study ARID1A-mutated cancer patients. Methods Molecular and clinical data of cancer patients evaluated at Phase 1 Unit of Fondazione Policlinico Universitario A. Gemelli IRCCS were collected. Molecular analyses were performed using FoundationOne® CDx (Foundation Medicine Inc., Cambridge, MA, United States). Cancer patients with at least one molecular alteration in ARID1A gene were identified as ARID1A+. Results Among the 270 patients undergoing molecular analysis, we found 25 (9%) with at least one pathogenic alteration in ARID1A. The vast majority of these patients were female (84%). The median age at diagnosis was 59; most of the cancers (15, 60%) were gynecological (especially endometrioid endometrial cancers and clear cell ovarian cancers), diagnosed at an early stage. Frameshift alterations in ARID1A were the most common (19/31, 61%) alterations. The median number of mutations in ARID1A+ population was higher compared to ARID1A- population (6 vs. 4), as well as tumor mutational burden (TMB) [20 mutations/megabase (mut/Mb) vs. 1.26 mut/Mb]. Phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha (PIK3CA), phosphatase and tensin homolog (PTEN), catenin beta 1 (CTNNB1), and lysine methyltransferase 2D (MLL2) mutations were enriched in ARID1A+ population. In this cohort, ARID1A did not display any relation with response to platinum chemotherapy. Cancers with double alterations in ARID1A (ARID1A2+) were all gynecological cancers (83% endometrioid endometrial cancers). Conclusions This analysis provides clinical and molecular details about the phenotypes of ARID1A+ cancers, in particular the subgroup of gynecologic cancers. The high frequency of concurrent mutations in the phosphoinositide 3-kinase (PI3K) pathway among endometrioid endometrial cancers may support the proposal of a new treatment strategy based on the combination of ataxia telangiectasia and Rad3-related (ATR) inhibitor and PIK3CA inhibitor.
Collapse
Affiliation(s)
- Rosa Falcone
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Marco Filetti
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Pasquale Lombardi
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Valeria Altamura
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | | | - Giovanni Scambia
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Department of Life Science and Public Health, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
| | - Gennaro Daniele
- Phase 1 Unit, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
- Scientific Directorate, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| |
Collapse
|
32
|
Kobayashi K, Saito Y, Kage H, Fukuoka O, Yamamura K, Mukai T, Oda K, Yamasoba T. CDK12 alterations and ARID1A mutations are predictors of poor prognosis and therapeutic targets in high-grade salivary gland carcinoma: analysis of the National Genomic Profiling Database. Jpn J Clin Oncol 2023; 53:798-807. [PMID: 37357968 DOI: 10.1093/jjco/hyad066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/03/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Due to the diversity of histopathologic types in salivary gland carcinoma, genomic analysis of large cohorts with next-generation sequencing by histologic type has not been adequately performed. METHODS We analysed data from 93 patients with salivary duct carcinoma and 243 patients with adenoid cystic carcinoma who underwent comprehensive genomic profiling testing in the Center for Cancer Genomics and Advanced Therapeutics database, a Japanese national genome profiling database. We visualised gene mutation profiles using the OncoPrinter platform. Fisher's exact test, Kaplan-Meier analysis, log-rank test and Cox regression models were used for statistical analysis. RESULTS In salivary duct carcinoma, a population with CDK12 and ERBB2 co-amplification was detected in 20 of 37 (54.1%) patients with ERBB2 amplification. We identified five loss-of-function variants in genes related to homologous recombination deficiency, such as BRCA2 and CDK12. Cox survival analysis showed that CDK12 and ERBB2 co-amplification is associated with overall survival (hazard ratio, 3.597; P = 0.045). In salivary duct carcinoma, NOTCH1 mutations were the most common, followed by mutations in chromatin modification genes such as KMT2D, BCOR, KDM6A, ARID1A, EP300 and CREBBP. In the multivariate Cox analysis, activating NOTCH1 mutations (hazard ratio, 3.569; P = 0.009) and ARID1A mutations (hazard ratio, 4.029; P = 0.034) were significantly associated with overall survival. CONCLUSION CDK12 and ERBB2 co-amplification is associated with a poor prognosis in salivary duct carcinoma. Chromatin remodelling genes are deeply involved in tumour progression in adenoid cystic carcinoma. One such gene, ARID1A, was an independent prognostic factor. In salivary duct carcinoma and adenoid cystic carcinoma, there might be minor populations with mutations that could be targeted for treatment with the synthetic lethality approach.
Collapse
Affiliation(s)
- Kenya Kobayashi
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Yuki Saito
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Hidenori Kage
- Department of Next-Generation Precision Medicine Development Laboratory, The University of Tokyo, Tokyo, Japan
| | - Osamu Fukuoka
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Koji Yamamura
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Toshiyuki Mukai
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| | - Katsutoshi Oda
- Department of Integrative Genomics, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuya Yamasoba
- Department of Otolaryngology, Head and Neck Surgery, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
33
|
Hinsberger M, Becker-Kettern J, Jürgens-Wemheuer WM, Oertel J, Schulz-Schaeffer WJ. Development of an Enzyme-Linked Immunosorbent Assay (ELISA) for the Quantification of ARID1A in Tissue Lysates. Cancers (Basel) 2023; 15:4096. [PMID: 37627124 PMCID: PMC10452747 DOI: 10.3390/cancers15164096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/10/2023] [Accepted: 08/13/2023] [Indexed: 08/27/2023] Open
Abstract
ARID1A is a subunit of the mammalian SWI/SNF complex, which is thought to regulate gene expression through restructuring chromatin structures. Its gene ARID1A is frequently mutated and ARID1A levels are lowered in several human cancers, especially gynecologic ones. A functional ARID1A loss may have prognostic or predictive value in terms of therapeutic strategies but has not been proposed based on a quantitative method. Hardly any literature is available on ARID1A levels in tumor samples. We developed an indirect enzyme-linked immunosorbent assay (ELISA) for ARID1A based on the current EMA and FDA criteria. We demonstrated that our ELISA provides the objective, accurate, and precise quantification of ARID1A concentrations in recombinant protein solutions, cell culture standards, and tissue lysates of tumors. A standard curve analysis yielded a 'goodness of fit' of R2 = 0.99. Standards measured on several plates and days achieved an inter-assay accuracy of 90.26% and an inter-assay precision with a coefficient of variation of 4.53%. When tumor lysates were prepared and measured multiple times, our method had an inter-assay precision with a coefficient of variation of 11.78%. We believe that our suggested method ensures a high reproducibility and can be used for a high sample throughput to determine the ARID1A concentration in different tumor entities. The application of our ELISA on various tumor and control tissues will allow us to explore whether quantitative ARID1A measurements in tumor samples are of predictive value.
Collapse
Affiliation(s)
- Manuel Hinsberger
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Julia Becker-Kettern
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Wiebke M. Jürgens-Wemheuer
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| | - Joachim Oertel
- Department of Neurosurgery, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany;
| | - Walter J. Schulz-Schaeffer
- Institute for Neuropathology, Medical Faculty, Saarland University, Building 90.3, 66421 Homburg, Saar, Germany (J.B.-K.); (W.M.J.-W.)
| |
Collapse
|
34
|
Yousef A, Yousef M, Chowdhury S, Abdilleh K, Knafl M, Edelkamp P, Alfaro-Munoz K, Chacko R, Peterson J, Smaglo BG, Wolff RA, Pant S, Lee MS, Willis J, Overman M, Doss S, Matrisian L, Hurd MW, Snyder R, Katz MH, Wang H, Maitra A, Shen JP, Zhao D. Impact of KRAS Mutations and Co-mutations on Clinical Outcomes in Pancreatic Ductal Adenocarcinoma. RESEARCH SQUARE 2023:rs.3.rs-3195257. [PMID: 37609177 PMCID: PMC10441514 DOI: 10.21203/rs.3.rs-3195257/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
The relevance of KRAS mutation alleles to clinical outcome remains inconclusive in pancreatic adenocarcinoma (PDAC). We conducted a retrospective study of 803 PDAC patients (42% with metastatic disease) at MD Anderson Cancer Center. Overall survival (OS) analysis demonstrated that KRAS mutation status and subtypes were prognostic (p<0.001). Relative to patients with KRAS wildtype tumors (median OS 38 months), patients with KRASG12R had a similar OS (median 34 months), while patients with KRASQ61 and KRASG12D mutated tumors had shorter OS (median 20 months [HR: 1.9, 95% CI 1.2-3.0, p=0.006] and 22 months [HR: 1.7, 95% CI 1.3-2.3, p<0.001], respectively). There was enrichment of KRASG12D mutation in metastatic tumors (34% vs 24%, OR: 1.7, 95% CI 1.2-2.4, p=0.001) and enrichment of KRASG12R in well and moderately differentiated tumors (14% vs 9%, OR: 1.7, 95% CI 1.05-2.99, p=0.04). Similar findings were observed in the external validation cohort (PanCAN's Know Your Tumor® dataset, n=408).
Collapse
Affiliation(s)
- Abdelrahman Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Mahmoud Yousef
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Saikat Chowdhury
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kawther Abdilleh
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark Knafl
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Paul Edelkamp
- Department of Data Engineering & Analytics, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Kristin Alfaro-Munoz
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Ray Chacko
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jennifer Peterson
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Brandon G. Smaglo
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Robert A. Wolff
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael S. Lee
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jason Willis
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Michael Overman
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sudheer Doss
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Lynn Matrisian
- Pancreatic Cancer Action Network, Manhattan Beach, Los Angeles, CA, USA
| | - Mark W. Hurd
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Rebecca Snyder
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Matthew H.G. Katz
- Department of Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Huamin Wang
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anirban Maitra
- Sheikh Ahmed Center for Pancreatic Cancer Research, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - John Paul Shen
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Dan Zhao
- Department of Gastrointestinal Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
35
|
Shi Y, Shin DS. Dysregulation of SWI/SNF Chromatin Remodelers in NSCLC: Its Influence on Cancer Therapies including Immunotherapy. Biomolecules 2023; 13:984. [PMID: 37371564 DOI: 10.3390/biom13060984] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/30/2023] [Accepted: 06/08/2023] [Indexed: 06/29/2023] Open
Abstract
Lung cancer is the leading cause of cancer death worldwide. Molecularly targeted therapeutics and immunotherapy revolutionized the clinical care of NSCLC patients. However, not all NSCLC patients harbor molecular targets (e.g., mutated EGFR), and only a subset benefits from immunotherapy. Moreover, we are lacking reliable biomarkers for immunotherapy, although PD-L1 expression has been mainly used for guiding front-line therapeutic options. Alterations of the SWI/SNF chromatin remodeler occur commonly in patients with NSCLC. This subset of NSCLC tumors tends to be undifferentiated and presents high heterogeneity in histology, and it shows a dismal prognosis because of poor response to the current standard therapies. Catalytic subunits SMARCA4/A2 and DNA binding subunits ARID1A/ARID1B/ARID2 as well as PBRM1 were identified to be the most commonly mutated subunits of SWI/SNF complexes in NSCLC. Mechanistically, alteration of these SWI/SNF subunits contributes to the tumorigenesis of NSCLC through compromising the function of critical tumor suppressor genes, enhancing oncogenic activity as well as impaired DNA repair capacity related to genomic instability. Several vulnerabilities of NSCLCS with altered SWI/SNF subunits were detected and evaluated clinically using EZH2 inhibitors, PROTACs of mutual synthetic lethal paralogs of the SWI/SNF subunits as well as PARP inhibitors. The response of NSCLC tumors with an alteration of SWI/SNF to ICIs might be confounded by the coexistence of mutations in genes capable of influencing patients' response to ICIs. High heterogenicity in the tumor with SWI/SNF deficiency might also be responsible for the seemingly conflicting results of ICI treatment of NSCLC patients with alterations of SWI/SNF. In addition, an alteration of each different SWI/SNF subunit might have a unique impact on the response of NSCLC with deficient SWI/SNF subunits. Prospective studies are required to evaluate how the alterations of the SWI/SNF in the subset of NSCLC patients impact the response to ICI treatment. Finally, it is worthwhile to point out that combining inhibitors of other chromatin modulators with ICIs has been proven to be effective for the treatment of NSCLC with deficient SWI/SNF chromatin remodelers.
Collapse
Affiliation(s)
- Yijiang Shi
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| | - Daniel Sanghoon Shin
- Division of Hematology/Oncology, Department of Medicine, Los Angeles, CA 90073, USA
- Division of Hematology/Oncology, Department of Medicine, VA Greater Los Angeles Healthcare System, 11301 Wilshire Blvd, Los Angeles, CA 90073, USA
| |
Collapse
|
36
|
Ashcroft CR, Penney SW, Whiteway SL. Treatment Refractory Soft Tissue Myoepithelial Carcinoma With an ARID1A Mutation. J Pediatr Hematol Oncol 2023; 45:e539-e542. [PMID: 37083274 DOI: 10.1097/mph.0000000000002650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2022] [Accepted: 02/02/2023] [Indexed: 04/22/2023]
Abstract
Soft tissue myoepithelial carcinoma is a rare tumor first reported in the salivary gland. There is considerable tumor heterogeneity between pathology findings, tumor aggressiveness, and response to treatment. Recent molecular testing has identified recurrent genetic changes with PLAG mutations in salivary gland primary tumors and loss of SMARCB1 and EWSR1/FUS gene changes in myoepithelial carcinoma. SMARCB1 is a component of the switch/sucrose nonfermentable (SWI/SNF) complex, an essential cellular regulator. ARID1A is another SWI/SNF complex subunit and is a potent oncogenic driver in other tumor types. In this case, we describe the case of an adolescent/young adult patient with treatment refractory soft tissue myoepithelial carcinoma and a previously unreported ARID1A mutation.
Collapse
Affiliation(s)
| | - Scott W Penney
- Pediatrics, Brooke Army Medical Center, Fort Sam Houston, TX
| | - Susan L Whiteway
- Department of Pediatrics, Walter Reed National Military Medical Center, Bethesda, MD
| |
Collapse
|
37
|
Czegle I, Huang C, Soria PG, Purkiss DW, Shields A, Wappler-Guzzetta EA. The Role of Genetic Mutations in Mitochondrial-Driven Cancer Growth in Selected Tumors: Breast and Gynecological Malignancies. Life (Basel) 2023; 13:996. [PMID: 37109525 PMCID: PMC10145875 DOI: 10.3390/life13040996] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 03/15/2023] [Accepted: 03/31/2023] [Indexed: 04/29/2023] Open
Abstract
There is an increasing understanding of the molecular and cytogenetic background of various tumors that helps us better conceptualize the pathogenesis of specific diseases. Additionally, in many cases, these molecular and cytogenetic alterations have diagnostic, prognostic, and/or therapeutic applications that are heavily used in clinical practice. Given that there is always room for improvement in cancer treatments and in cancer patient management, it is important to discover new therapeutic targets for affected individuals. In this review, we discuss mitochondrial changes in breast and gynecological (endometrial and ovarian) cancers. In addition, we review how the frequently altered genes in these diseases (BRCA1/2, HER2, PTEN, PIK3CA, CTNNB1, RAS, CTNNB1, FGFR, TP53, ARID1A, and TERT) affect the mitochondria, highlighting the possible associated individual therapeutic targets. With this approach, drugs targeting mitochondrial glucose or fatty acid metabolism, reactive oxygen species production, mitochondrial biogenesis, mtDNA transcription, mitophagy, or cell death pathways could provide further tailored treatment.
Collapse
Affiliation(s)
- Ibolya Czegle
- Department of Internal Medicine and Haematology, Semmelweis University, H-1085 Budapest, Hungary
| | - Chelsea Huang
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Priscilla Geraldine Soria
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Dylan Wesley Purkiss
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | - Andrea Shields
- Department of Pathology and Laboratory Medicine, Loma Linda University Health, Loma Linda, CA 92354, USA
| | | |
Collapse
|
38
|
Lebedev T, Kousar R, Patrick B, Usama M, Lee MK, Tan M, Li XG. Targeting ARID1A-Deficient Cancers: An Immune-Metabolic Perspective. Cells 2023; 12:cells12060952. [PMID: 36980292 PMCID: PMC10047504 DOI: 10.3390/cells12060952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/14/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Epigenetic remodeling and metabolic reprogramming, two well-known cancer hallmarks, are highly intertwined. In addition to their abilities to confer cancer cell growth advantage, these alterations play a critical role in dynamically shaping the tumor microenvironment and antitumor immunity. Recent studies point toward the interplay between epigenetic regulation and metabolic rewiring as a potentially targetable Achilles' heel in cancer. In this review, we explore the key metabolic mechanisms that underpin the immunomodulatory role of AT-rich interaction domain 1A (ARID1A), the most frequently mutated epigenetic regulator across human cancers. We will summarize the recent advances in targeting ARID1A-deficient cancers by harnessing immune-metabolic vulnerability elicited by ARID1A deficiency to stimulate antitumor immune response, and ultimately, to improve patient outcome.
Collapse
Affiliation(s)
- Timofey Lebedev
- Department of Cancer Cell Biology, Engelhardt Institute of Molecular Biology, Russian Academy of Sciences, 119991 Moscow, Russia
| | - Rubina Kousar
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Bbumba Patrick
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Muhammad Usama
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Meng-Kuei Lee
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Ming Tan
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| | - Xing-Guo Li
- Graduate Institute of Biomedical Sciences, China Medical University, Taichung 110122, Taiwan
- Research Center for Cancer Biology, China Medical University, Taichung 110122, Taiwan
- Institute of Biochemistry and Molecular Biology, College of Life Sciences, China Medical University, Taichung 110122, Taiwan
| |
Collapse
|
39
|
Ovejero-Sánchez M, González-Sarmiento R, Herrero AB. DNA Damage Response Alterations in Ovarian Cancer: From Molecular Mechanisms to Therapeutic Opportunities. Cancers (Basel) 2023; 15:448. [PMID: 36672401 PMCID: PMC9856346 DOI: 10.3390/cancers15020448] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Revised: 01/03/2023] [Accepted: 01/04/2023] [Indexed: 01/12/2023] Open
Abstract
The DNA damage response (DDR), a set of signaling pathways for DNA damage detection and repair, maintains genomic stability when cells are exposed to endogenous or exogenous DNA-damaging agents. Alterations in these pathways are strongly associated with cancer development, including ovarian cancer (OC), the most lethal gynecologic malignancy. In OC, failures in the DDR have been related not only to the onset but also to progression and chemoresistance. It is known that approximately half of the most frequent subtype, high-grade serous carcinoma (HGSC), exhibit defects in DNA double-strand break (DSB) repair by homologous recombination (HR), and current evidence indicates that probably all HGSCs harbor a defect in at least one DDR pathway. These defects are not restricted to HGSCs; mutations in ARID1A, which are present in 30% of endometrioid OCs and 50% of clear cell (CC) carcinomas, have also been found to confer deficiencies in DNA repair. Moreover, DDR alterations have been described in a variable percentage of the different OC subtypes. Here, we overview the main DNA repair pathways involved in the maintenance of genome stability and their deregulation in OC. We also recapitulate the preclinical and clinical data supporting the potential of targeting the DDR to fight the disease.
Collapse
Affiliation(s)
- María Ovejero-Sánchez
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Rogelio González-Sarmiento
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| | - Ana Belén Herrero
- Institute of Biomedical Research of Salamanca (IBSAL), 37007 Salamanca, Spain
- Molecular Medicine Unit, Department of Medicine, University of Salamanca, 37007 Salamanca, Spain
- Institute of Molecular and Cellular Biology of Cancer (IBMCC), University of Salamanca-Spanish National Research Council, 37007 Salamanca, Spain
| |
Collapse
|