1
|
Cao K, Zhu Y, Kuai Y, Chen B, Zhao Q, Yu W. Macrophage MKL1 contributes to cardiac fibrosis in a mouse model of myocardial infarction. Life Sci 2024; 356:123036. [PMID: 39222836 DOI: 10.1016/j.lfs.2024.123036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
AIMS Cardiac fibrosis is characterized by aberrant collagen deposition in the heart. Macrophage polarization or infiltration is the main reason to accelerate the collagen deposition. We attempted to investigate the involvement of MKL1 in macrophages during the development of cardiac fibrosis. MATERIALS AND METHODS Cardiac fibrosis is induced by myocardial infarction (MI). The MKL1f/f mice were crossed to the Lyz2-cre mice to generate macrophage conditional MKL1 knockout mice (MKL1ΔMφ). In addition, macrophage conditional MKL1 overexpression mice (MKL1Mϕ-OE) were constructed by crossing Lyz2-cre mice to MKL1ΔN200-Rosa26 mice. KEY FINDINGS MKL1 expression was significantly increased in macrophages of both ischemic cardiomyopathy (ICM) patients and mice induced to develop myocardial infarction. Deletion of MKL1 in macrophages improved the heart function after MI-induced cardiac fibrosis. Consistently, MKL1Mϕ-OE mice displayed more severe cardiac fibrosis and worsened heart function than the control mice after MI. Moreover, administration of a small-molecule MKL1 inhibitor CCG-1423 also decreased the collagen deposition after MI. SIGNIFICANCE Our data demonstrate that MKL1 in macrophages contributes to cardiac fibrosis pathogenesis and reinforce the notion that targeting MKL1 may yield effective antifibrotic therapeutics in the heart.
Collapse
Affiliation(s)
- Ke Cao
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yuwen Zhu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Yameng Kuai
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Baoyu Chen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| | - Qianwen Zhao
- Department of Infectious Diseases, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China; Department of Infectious Diseases, Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Wenkui Yu
- Department of Critical Care Medicine, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
2
|
Lee HJ, Bernau K, Harr TJ, Rosenkrans ZT, Kessler GA, Stott K, Oler AT, Rahar B, Zhu T, Medina-Guevara Y, Gupta N, Cho I, Gari MK, Burkel BM, Jeffery JJ, Weichmann AM, Tomasini-Johansson BR, Ponik SM, Engle JW, Hernandez R, Kwon GS, Sandbo N. [ 64Cu]Cu-PEG-FUD peptide for noninvasive and sensitive detection of murine pulmonary fibrosis. SCIENCE ADVANCES 2024; 10:eadj1444. [PMID: 38598637 PMCID: PMC11006221 DOI: 10.1126/sciadv.adj1444] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 03/05/2024] [Indexed: 04/12/2024]
Abstract
Idiopathic pulmonary fibrosis (IPF) is a chronic lung disease resulting in irreversible scarring within the lungs. However, the lack of biomarkers that enable real-time assessment of disease activity remains a challenge in providing efficient clinical decision-making and optimal patient care in IPF. Fibronectin (FN) is highly expressed in fibroblastic foci of the IPF lung where active extracellular matrix (ECM) deposition occurs. Functional upstream domain (FUD) tightly binds the N-terminal 70-kilodalton domain of FN that is crucial for FN assembly. In this study, we first demonstrate the capacity of PEGylated FUD (PEG-FUD) to target FN deposition in human IPF tissue ex vivo. We subsequently radiolabeled PEG-FUD with 64Cu and monitored its spatiotemporal biodistribution via μPET/CT imaging in mice using the bleomycin-induced model of pulmonary injury and fibrosis. We demonstrated [64Cu]Cu-PEG-FUD uptake 3 and 11 days following bleomycin treatment, suggesting that radiolabeled PEG-FUD holds promise as an imaging probe in aiding the assessment of fibrotic lung disease activity.
Collapse
Affiliation(s)
- Hye Jin Lee
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Ksenija Bernau
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Thomas J. Harr
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Zachary T. Rosenkrans
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Grace A. Kessler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Kristen Stott
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Angie Tebon Oler
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Babita Rahar
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Terry Zhu
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| | - Yadira Medina-Guevara
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Nikesh Gupta
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Inyoung Cho
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
| | - Metti K. Gari
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Brian M. Burkel
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Justin J. Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Ashley M. Weichmann
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Bianca R. Tomasini-Johansson
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
- Arrowhead Pharmaceuticals, 502 S. Rosa Rd., Madison, WI 53719, USA
| | - Suzanne M. Ponik
- Department of Cell and Regenerative Biology, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Jonathan W. Engle
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
| | - Reinier Hernandez
- Department of Medical Physics, School of Medicine and Public Health, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Glen S. Kwon
- Pharmaceutical Sciences Division, School of Pharmacy, University of Wisconsin-Madison, 777 Highland Avenue, Madison, WI 53705, USA
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, 1111 Highland Avenue, Madison, WI, USA
| | - Nathan Sandbo
- Division of Allergy, Pulmonary and Critical Care Medicine, Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, 600 Highland Avenue, Madison, WI 53792, USA
| |
Collapse
|
3
|
Knipe RS, Nurunnabi M, Probst CK, Spinney JJ, Abe E, Bose RJC, Ha K, Logue A, Nguyen T, Servis R, Drummond M, Haring A, Brazee PL, Medoff BD, McCarthy JR. Myofibroblast-specific inhibition of the Rho kinase-MRTF-SRF pathway using nanotechnology for the prevention of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2023; 324:L190-L198. [PMID: 36625494 PMCID: PMC9925159 DOI: 10.1152/ajplung.00086.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 10/19/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Pulmonary fibrosis is characterized by the accumulation of myofibroblasts in the lung and progressive tissue scarring. Fibroblasts exist across a spectrum of states, from quiescence in health to activated myofibroblasts in the setting of injury. Highly activated myofibroblasts have a critical role in the establishment of fibrosis as the predominant source of type 1 collagen and profibrotic mediators. Myofibroblasts are also highly contractile cells and can alter lung biomechanical properties through tissue contraction. Inhibiting signaling pathways involved in myofibroblast activation could therefore have significant therapeutic value. One of the ways myofibroblast activation occurs is through activation of the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) pathway, which signals through intracellular actin polymerization. However, concerns surrounding the pleiotropic and ubiquitous nature of these signaling pathways have limited the translation of inhibitory drugs. Herein, we demonstrate a novel therapeutic antifibrotic strategy using myofibroblast-targeted nanoparticles containing a MTRF/SRF pathway inhibitor (CCG-1423), which has been shown to block myofibroblast activation in vitro. Myofibroblasts were preferentially targeted via the angiotensin 2 receptor, which has been shown to be selectively upregulated in animal and human studies. These nanoparticles were nontoxic and accumulated in lung myofibroblasts in the bleomycin-induced mouse model of pulmonary fibrosis, reducing the number of these activated cells and their production of profibrotic mediators. Ultimately, in a murine model of lung fibrosis, a single injection of these drugs containing targeted nanoagents reduced fibrosis as compared with control mice. This approach has the potential to deliver personalized therapy by precisely targeting signaling pathways in a cell-specific manner, allowing increased efficacy with reduced deleterious off-target effects.
Collapse
Affiliation(s)
- Rachel S Knipe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Md Nurunnabi
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Clemens K Probst
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jillian J Spinney
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Elizabeth Abe
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rajendran J C Bose
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| | - Khanh Ha
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| | - Amanda Logue
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Trong Nguyen
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Rachel Servis
- Department of Pathology, Massachusetts General Hospital, Boston, Massachusetts
| | - Matthew Drummond
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Alexis Haring
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Patricia L Brazee
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Benjamin D Medoff
- Division of Pulmonary and Critical Care Medicine, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Andrew M. Tager Fibrosis Research Center, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Center for Immunology and Inflammatory Diseases, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
| | - Jason R McCarthy
- Center for Systems Biology, Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts
- Biomedical Research and Translational Medicine, Masonic Medical Research Institute, Utica, New York
| |
Collapse
|
4
|
Xi Y, LaCanna R, Ma HY, N'Diaye EN, Gierke S, Caplazi P, Sagolla M, Huang Z, Lucio L, Arlantico A, Jeet S, Brightbill H, Emson C, Wong A, Morshead KB, DePianto DJ, Roose-Girma M, Yu C, Tam L, Jia G, Ramalingam TR, Marsters S, Ashkenazi A, Kim SH, Kelly R, Wu S, Wolters PJ, Feldstein AE, Vander Heiden JA, Ding N. A WISP1 antibody inhibits MRTF signaling to prevent the progression of established liver fibrosis. Cell Metab 2022; 34:1377-1393.e8. [PMID: 35987202 DOI: 10.1016/j.cmet.2022.07.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Revised: 06/06/2022] [Accepted: 07/19/2022] [Indexed: 01/18/2023]
Abstract
Fibrosis is the major risk factor associated with morbidity and mortality in patients with non-alcoholic steatohepatitis (NASH)-driven chronic liver disease. Although numerous efforts have been made to identify the mediators of the initiation of liver fibrosis, the molecular underpinnings of fibrosis progression remain poorly understood, and therapies to arrest liver fibrosis progression are elusive. Here, we identify a pathway involving WNT1-inducible signaling pathway protein 1 (WISP1) and myocardin-related transcription factor (MRTF) as a central mechanism driving liver fibrosis progression through the integrin-dependent transcriptional reprogramming of myofibroblast cytoskeleton and motility. In mice, WISP1 deficiency protects against fibrosis progression, but not fibrosis onset. Moreover, the therapeutic administration of a novel antibody blocking WISP1 halted the progression of existing liver fibrosis in NASH models. These findings implicate the WISP1-MRTF axis as a crucial determinant of liver fibrosis progression and support targeting this pathway by antibody-based therapy for the treatment of NASH fibrosis.
Collapse
Affiliation(s)
- Ying Xi
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Ryan LaCanna
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Hsiao-Yen Ma
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Elsa-Noah N'Diaye
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Sarah Gierke
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Patrick Caplazi
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Meredith Sagolla
- Department of Pathology, Genentech, South San Francisco, CA, USA
| | - Zhiyu Huang
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Laura Lucio
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Alexander Arlantico
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Surinder Jeet
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Hans Brightbill
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Claire Emson
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Aaron Wong
- Department of Translational Immunology, Genentech, South San Francisco, CA, USA
| | - Katrina B Morshead
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Daryle J DePianto
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA
| | - Merone Roose-Girma
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Charles Yu
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Lucinda Tam
- Department of Molecular Biology, Genentech, South San Francisco, CA, USA
| | - Guiquan Jia
- Department of Biomarker Discovery, Genentech, South San Francisco, CA, USA
| | | | - Scot Marsters
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Avi Ashkenazi
- Department of Cancer Immunology, Genentech, South San Francisco, CA, USA
| | - Si Hyun Kim
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Ryan Kelly
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Shuang Wu
- Department of Antibody Engineering, Genentech, South San Francisco, CA, USA
| | - Paul J Wolters
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
| | - Ariel E Feldstein
- Department of Pediatrics, University of California, San Diego, San Diego, CA, USA
| | | | - Ning Ding
- Department of Discovery Immunology, Genentech, South San Francisco, CA, USA.
| |
Collapse
|
5
|
Rosenkrans ZT, Massey CF, Bernau K, Ferreira CA, Jeffery JJ, Schulte JJ, Moore M, Valla F, Batterton JM, Drake CR, McMillan AB, Sandbo N, Pirasteh A, Hernandez R. [ 68 Ga]Ga-FAPI-46 PET for non-invasive detection of pulmonary fibrosis disease activity. Eur J Nucl Med Mol Imaging 2022; 49:3705-3716. [PMID: 35556159 PMCID: PMC9553066 DOI: 10.1007/s00259-022-05814-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 04/23/2022] [Indexed: 12/21/2022]
Abstract
PURPOSE The lack of effective molecular biomarkers to monitor idiopathic pulmonary fibrosis (IPF) activity or treatment response remains an unmet clinical need. Herein, we determined the utility of fibroblast activation protein inhibitor for positron emission tomography (FAPI PET) imaging in a mouse model of pulmonary fibrosis. METHODS Pulmonary fibrosis was induced by intratracheal administration of bleomycin (1 U/kg) while intratracheal saline was administered to control mice. Subgroups from each cohort (n = 3-5) underwent dynamic 1 h PET/CT after intravenously injecting FAPI-46 radiolabeled with gallium-68 ([68 Ga]Ga-FAPI-46) at 7 days and 14 days following disease induction. Animals were sacrificed following imaging for ex vivo gamma counting and histologic correlation. [68 Ga]Ga-FAPI-46 uptake was quantified and reported as percent injected activity per cc (%IA/cc) or percent injected activity (%IA). Lung CT density in Hounsfield units (HU) was also correlated with histologic examinations of lung fibrosis. RESULTS CT only detected differences in the fibrotic response at 14 days post-bleomycin administration. [68 Ga]Ga-FAPI-46 lung uptake was significantly higher in the bleomycin group than in control subjects at 7 days and 14 days. Significantly (P = 0.0012) increased [68 Ga]Ga-FAPI-46 lung uptake in the bleomycin groups at 14 days (1.01 ± 0.12%IA/cc) vs. 7 days (0.33 ± 0.09%IA/cc) at 60 min post-injection of the tracer was observed. These findings were consistent with an increase in both fibrinogenesis and FAP expression as seen in histology. CONCLUSION CT was unable to assess disease activity in a murine model of IPF. Conversely, FAPI PET detected both the presence and activity of lung fibrogenesis, making it a promising tool for assessing early disease activity and evaluating the efficacy of therapeutic interventions in lung fibrosis patients.
Collapse
Affiliation(s)
- Zachary T Rosenkrans
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Christopher F Massey
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Ksenija Bernau
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Carolina A Ferreira
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Justin J Jeffery
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA
| | - Jefree J Schulte
- Department of Pathology and Laboratory Medicine, University of Wisconsin-Madison, Madison, WI, USA
| | | | | | - Jeanine M Batterton
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | | | - Alan B McMillan
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA
| | - Nathan Sandbo
- Department of Medicine, Division of Allergy, Pulmonary and Critical Care Medicine, University of Wisconsin-Madison School of Medicine and Public Health, Madison, WI, USA
| | - Ali Pirasteh
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| | - Reinier Hernandez
- Department of Medical Physics, University of Wisconsin-Madison, 1111 Highland Ave., Room 7137, WI, 53705, Madison, USA.
- University of Wisconsin Carbone Cancer Center, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Radiology, University of Wisconsin-Madison, 1111 Highland Ave., Room 2423, WI, 53705, Madison, USA.
| |
Collapse
|
6
|
Bernau K, Skibba M, Leet JP, Furey S, Gehl C, Li Y, Zhou J, Sandbo N, Brasier AR. Selective Inhibition of Bromodomain-Containing Protein 4 Reduces Myofibroblast Transdifferentiation and Pulmonary Fibrosis. FRONTIERS IN MOLECULAR MEDICINE 2022; 2. [PMID: 35782526 PMCID: PMC9245900 DOI: 10.3389/fmmed.2022.842558] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Idiopathic pulmonary fibrosis is a lethal disease driven by myofibroblast expansion. Currently no therapies exist that target the epigenetic mechanisms controlling myofibroblast transdifferentiation, which is responsible for unregulated extracellular matrix (ECM) production. We have recently shown that bromodomain-containing protein 4 (BRD4), an epigenetic regulator that forms a scaffold for nuclear activators and transcription factors, is essential for TGFβ-induced myofibroblast transdifferentiation. However, its role in the development and progression of pulmonary fibrosis in vivo has not been established. Here, we evaluate the hypothesis that BRD4 bromodomain interactions mediate myofibroblast expansion and fibrosing disease in vivo. C57BL/6J mice challenged with intratracheal bleomycin were systemically treated with a selective allosteric inhibitor of the BRD4 bromodomain 1 (BD1), ZL0591 (10 mg/kg), during the established fibrotic phase (14 days post-bleomycin) in a rigorous therapeutic paradigm. Eleven days after initiation of ZL0591 treatment (25 days post-bleomycin), we detected a significant improvement in blood O2 saturation compared to bleomycin/vehicle control. Twenty-eight days post-bleomycin, we observed a reduction in the volumetric Hounsfield Unit (HU) density by micro computed tomography (µCT) in the ZL0591-treated group, as well as a reduction in collagen deposition (hydroxyproline content) and severity of injury (Ashcroft scoring). Myofibroblast transdifferentiation was measured by smooth muscle α-actin (αSMA) staining, indicating a loss of this cell population in the ZL0591-treated group, and corresponded to reduced transcript levels of myofibroblast-associated extracellular matrix genes, tenascin-C and collagen 1α1. We conclude that BRD4 BD1 interactions are critical for myofibroblast transdifferentiation and fibrotic progression in a mouse model of pulmonary fibrosis.
Collapse
Affiliation(s)
- Ksenija Bernau
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
- Correspondence: Ksenija Bernau,
| | - Melissa Skibba
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
| | - Jonathan P. Leet
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
| | - Sierra Furey
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
| | - Carson Gehl
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
| | - Yi Li
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Jia Zhou
- Department of Pharmacology and Toxicology, University of Texas Medical Branch, Galveston, TX, United States
| | - Nathan Sandbo
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
| | - Allan R. Brasier
- Department of Medicine, School of Medicine and Public Health (SMPH), University of Wisconsin-Madison, Madison, WI, United States
- Institute for Clinical and Translational Research (ICTR), University of Wisconsin-Madison, Madison, WI, United States
| |
Collapse
|
7
|
Huang S, Shao T, Liu H, Li T, Gui X, Zhao Q. Resident Fibroblast MKL1 Is Sufficient to Drive Pro-fibrogenic Response in Mice. Front Cell Dev Biol 2022; 9:812748. [PMID: 35178401 PMCID: PMC8844195 DOI: 10.3389/fcell.2021.812748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Accepted: 12/23/2021] [Indexed: 11/29/2022] Open
Abstract
Fibrosis is an evolutionarily conserved pathophysiological process serving bifurcated purposes. On the one hand, fibrosis is essential for wound healing and contributes to the preservation of organ function. On the other hand, aberrant fibrogenic response may lead to tissue remodeling and precipitate organ failure. Recently lineage tracing studies have shown that resident fibroblasts are the primary mediator of fibrosis taking place in key organs such as the heart, the lungs, and the kidneys. Megakaryocytic leukemia 1 (MKL1) is transcriptional regulator involved in tissue fibrosis. Here we generated resident fibroblast conditional MKL1 knockout (CKO) mice by crossing the Mkl1f/f mice to the Col1a2-CreERT2 mice. Models of cardiac fibrosis, pulmonary fibrosis, and renal fibrosis were reproduced in the CKO mice and wild type (WT) littermates. Compared to the WT mice, the CKO mice displayed across-the-board attenuation of fibrosis in different models. Our data cement the pivotal role MKL1 plays in tissue fibrosis but point to the cellular origin from which MKL1 exerts its pro-fibrogenic effects.
Collapse
Affiliation(s)
- Shan Huang
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Tinghui Shao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Hong Liu
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China
| | - Tianfa Li
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| | - Xianhua Gui
- Department of Respiratory Medicine, Affiliated Nanjing Drum Tower Hospital, Nanjing University School of Medicine, Nanjing, China
| | - Qianwen Zhao
- Key Laboratory of Targeted Intervention of Cardiovascular Disease and Collaborative Innovation Center for Cardiovascular Translational Medicine, Department of Pathophysiology, Nanjing Medical University, Nanjing, China.,Hainan Provincial Key Laboratory for Tropical Cardiovascular Diseases Research, Key Laboratory of Emergency and Trauma of Ministry of Education, Department of Cardiology, Research Unit of Island Emergency Medicine of Chinese Academy of Medical Sciences, The First Affiliated Hospital of Hainan Medical University, Haikou, China
| |
Collapse
|
8
|
Bernau K, Leet JP, Bruhn EM, Tubbs AJ, Zhu T, Sandbo N. Expression of serum response factor in the lung mesenchyme is essential for development of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 2021; 321:L174-L188. [PMID: 33978489 PMCID: PMC8321854 DOI: 10.1152/ajplung.00323.2020] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Extracellular matrix deposition characterizes idiopathic pulmonary fibrosis (IPF) and is orchestrated by myofibroblasts. The lung mesenchyme is an essential source of myofibroblasts in pulmonary fibrosis. Although the transcription factor serum response factor (SRF) has shown to be critical in the process of myofibroblast differentiation, its role in development of pulmonary fibrosis has not been determined in vivo. In this study, we observed that SRF expression localized to mesenchymal compartments, areas of dense fibrosis, and fibroblastic foci in human (IPF and normal) and bleomycin-treated mouse lungs. To determine the role of mesenchymal SRF in pulmonary fibrosis, we utilized a doxycycline-inducible, Tbx4 lung enhancer (Tbx4LE)-driven Cre-recombinase to disrupt SRF expression in the lung mesenchyme in vivo. Doxycycline-treated Tbx4LE-rtTA/TetO-Cre/tdTom/SRFf,f (and controls) were treated with a single intratracheal dose of bleomycin to induce pulmonary fibrosis and examined for lung mesenchymal expansion, pulmonary fibrosis, and inflammatory response. Bleomycin-treated Tbx4LE-rtTA/TetO-Cre/tdTom/SRFf,f mice showed decreased numbers of Tbx4LE-positive lung mesenchymal cells (LMCs) and collagen accumulation (via hydroxyproline assay) compared with controls. This effect was associated with SRF-null LMCs losing their proliferative and myofibroblast differentiation potential compared with SRF-positive controls. Together, these data demonstrate that SRF plays a critical role in LMC myofibroblast expansion during bleomycin-induced pulmonary fibrosis. This sets the stage for pharmacological strategies that specifically target SRF in the lung mesenchyme as a potential means of treating pulmonary fibrosis.
Collapse
Affiliation(s)
- Ksenija Bernau
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Jonathan Paul Leet
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Ellen Marie Bruhn
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Austin James Tubbs
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Terry Zhu
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| | - Nathan Sandbo
- Department of Medicine, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, Wisconsin
| |
Collapse
|
9
|
Interleukin-1α Is a Critical Mediator of the Response of Human Bronchial Fibroblasts to Eosinophilic Inflammation. Cells 2021; 10:cells10030528. [PMID: 33801398 PMCID: PMC7998867 DOI: 10.3390/cells10030528] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Revised: 02/20/2021] [Accepted: 02/23/2021] [Indexed: 02/08/2023] Open
Abstract
Eosinophils contribute to allergic inflammation in asthma in part via elaboration of a complex milieu of soluble mediators. Human bronchial fibroblasts (HBF) respond to stimulation by these mediators by acquiring a pro-inflammatory profile including induction of interleukin 6 (IL6) and IL8. This study sought to determine key component(s) of eosinophil soluble factors that mediate IL6 and IL8 induction in HBF. HBF treated with eosinophil-derived soluble mediators were analyzed for gene expression, intracellular signaling, and IL6 and IL8 secretion following inhibition of inflammatory signaling. Segmental allergen bronchoprovocation (SBP-Ag) was performed in mild asthmatics and bronchoalveolar lavage fluid was analyzed for eosinophils and cytokines. We found that signaling via the IL1α/IL1 receptor is an essential component of the response of HBF to eosinophil-derived soluble factors. IL1α-dependent activation of nuclear factor kappa-light-chain-enhancer of activated B cells (NFκB) signaling is required to induce IL6 secretion. However, NFκB signaling is dispensable for the induction of IL8, whereas Src is required. IL1α is associated with eosinophilic inflammation in human airways after SBP-Ag. Conclusions: IL1α appears to be a critical component of the soluble eosinophil-derived milieu that drives pro-inflammatory bronchial fibroblast responses and associates with eosinophilic inflammation following SBP-Ag. Disruption of IL1α-signaling could modify the downstream effects of eosinophilic inflammation on airway remodeling.
Collapse
|
10
|
MKL1-induced lncRNA SNHG18 drives the growth and metastasis of non-small cell lung cancer via the miR-211-5p/BRD4 axis. Cell Death Dis 2021; 12:128. [PMID: 33500406 PMCID: PMC7838315 DOI: 10.1038/s41419-021-03399-z] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Revised: 12/31/2020] [Accepted: 01/04/2021] [Indexed: 12/12/2022]
Abstract
Megakaryocytic leukemia 1 (MKL1) is a key transcription factor involved in non-small cell lung cancer (NSCLC) growth and metastasis. Yet, its downstream target genes, especially long non-coding RNA (lncRNA) targets, are poorly investigated. In this study, we employed lncRNA array technology to identify differentially expressed lncRNAs in NSCLC cells with or without overexpression of MKL1. Candidate lncRNAs were further explored for their clinical significance and function in NSCLC. The results showed that MKL1 promoted the expression of lncRNA SNHG18 in NSCLC cells. SNHG18 upregulation in NSCLC specimens correlated with lymph node metastasis and reduced overall survival of NSCLC patients. SNHG18 expression served as an independent prognostic factor for NSCLC. Knockdown of SNHG18 blocked MKL1-induced growth and invasion of NSCLC cells in vitro. Animal studies validated the requirement for SNHG18 in NSCLC growth and metastasis. Moreover, overexpression of SNHG18 promoted NSCLC cell proliferation and invasion. Mechanically, SNHG18 exerted its prometastatic effects on NSCLC cells through repression of miR-211-5p and induction of BRD4. Clinical evidence indicated that SNHG18 expression was negatively correlated with miR-211-5p expression in NSCLC tissues. Altogether, SNHG18 acts as a lncRNA mediator of MKL1 in NSCLC. SNHG18 facilitates NSCLC growth and metastasis by modulating the miR-211-5p/BRD4 axis. Therefore, SNHG18 may be a potential therapeutic target for the treatment of NSCLC.
Collapse
|
11
|
Deng Z, Fear MW, Suk Choi Y, Wood FM, Allahham A, Mutsaers SE, Prêle CM. The extracellular matrix and mechanotransduction in pulmonary fibrosis. Int J Biochem Cell Biol 2020; 126:105802. [PMID: 32668329 DOI: 10.1016/j.biocel.2020.105802] [Citation(s) in RCA: 61] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 07/06/2020] [Accepted: 07/10/2020] [Indexed: 12/11/2022]
Abstract
Pulmonary fibrosis is characterised by excessive scarring in the lung which leads to compromised lung function, serious breathing problems and in some diseases, death. It includes several lung disorders with idiopathic pulmonary fibrosis (IPF) the most common and most severe. Pulmonary fibrosis is considered to be perpetuated by aberrant wound healing which leads to fibroblast accumulation, differentiation and activation, and deposition of excessive amounts of extracellular matrix (ECM) components, in particular, collagen. Recent studies have identified the importance of changes in the composition and structure of lung ECM during the development of pulmonary fibrosis and the interaction between ECM and lung cells. There is strong evidence that increased matrix stiffness induces changes in cell function including proliferation, migration, differentiation and activation. Understanding how changes in the ECM microenvironment influence cell behaviour during fibrogenesis, and the mechanisms regulating these changes, will provide insight for developing new treatments.
Collapse
Affiliation(s)
- Zhenjun Deng
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Mark W Fear
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Institute for Respiratory Health, Nedlands, WA, Australia
| | - Yu Suk Choi
- School of Human Sciences, The University of Western Australia, Crawley, WA, Australia
| | - Fiona M Wood
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia; Burns Service of Western Australia, Perth Children's Hospital, Nedlands, WA, Australia; Fiona Stanley Hospital, Murdoch, WA, Australia
| | - Amira Allahham
- Burn Injury Research Unit, School of Biomedical Sciences, The University of Western Australia, Nedlands, 6009, WA, Australia
| | - Steven E Mutsaers
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia
| | - Cecilia M Prêle
- Institute for Respiratory Health, Nedlands, WA, Australia; Centre for Respiratory Health, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia; Centre for Cell Therapy and Regenerative Medicine, School of Biomedical Sciences, The University of Western Australia, Nedlands, WA, Australia.
| |
Collapse
|
12
|
Haak AJ, Ducharme MT, Diaz Espinosa AM, Tschumperlin DJ. Targeting GPCR Signaling for Idiopathic Pulmonary Fibrosis Therapies. Trends Pharmacol Sci 2020; 41:172-182. [PMID: 32008852 DOI: 10.1016/j.tips.2019.12.008] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Revised: 12/10/2019] [Accepted: 12/30/2019] [Indexed: 12/11/2022]
Abstract
A variety of G protein-coupled receptors (GPCRs) have been implicated in the pathogenesis of pulmonary fibrosis, largely through their promotion of profibrotic fibroblast activation. By contrast, recent work has highlighted the beneficial effects of Gαs-coupled GPCRs on reducing fibroblast activation and fibrosis. This review highlights how fibrosis-promoting and -inhibiting GPCR signaling converges on downstream signaling and transcriptional effectors, and how the diversity and dynamics of GPCR expression challenge efforts to identify effective therapies for idiopathic pulmonary fibrosis (IPF). Next-generation strategies to overcome these challenges, focusing on target selection, polypharmacology, and personalized medicine approaches, are discussed as a path towards more effective GPCR-targeted therapies for pulmonary fibrosis.
Collapse
Affiliation(s)
- Andrew J Haak
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA.
| | - Merrick T Ducharme
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Ana M Diaz Espinosa
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| | - Daniel J Tschumperlin
- Department of Physiology and Biomedical Engineering, Mayo Clinic, Rochester, MN, USA
| |
Collapse
|
13
|
Abstract
Fibrosis is a dynamic process with the potential for reversibility and restoration of near-normal tissue architecture and organ function. Herein, we review mechanisms for resolution of organ fibrosis, in particular that involving the lung, with an emphasis on the critical roles of myofibroblast apoptosis and clearance of deposited matrix.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Department of Internal Medicine, Division of Pulmonary and Critical Care Medicine, University of Michigan Medical School , Ann Arbor, Michigan
| | - Victor J Thannickal
- Department of Medicine, Division of Pulmonary, Allergy and Critical Care Medicine, University of Alabama at Birmingham , Birmingham, Alabama
| |
Collapse
|
14
|
Abstract
Myofibroblast activation is a critical process in the pathogenesis of tissue fibrosis accounting for 45% of all deaths. No effective therapies are available for the treatment of fibrotic diseases. We focus our mini-review on recent data showing that cardiotonic steroids (CTS) that are known as potent inhibitors of Na+,K+-ATPase affect myofibroblast differentiation in a cell type-specific manner. In cultured human lung fibroblasts (HLF), epithelial cells, and cancer-associated fibroblasts, CTS blocked myofibroblast differentiation triggered by profibrotic cytokine TGF-β. In contrast, in the absence of TGF-β, CTS augmented myofibroblast differentiation of cultured cardiac fibroblasts. The cell type-specific action of CTS in myofibroblast differentiation is consistent with data obtained in in vivo studies. Thus, infusion of ouabain via osmotic mini-pumps attenuated the development of lung fibrosis in bleomycintreated mice, whereas marinobufagenin stimulated renal and cardiac fibrosis in rats with experimental renal injury. In TGF-β-treated HLF, suppression of myofibroblast differentiation by ouabain is mediated by elevation of the [Na+]i/[K+]i ratio and is accompanied by upregulation of cyclooxygenase COX-2 and downregulation of TGF-β receptor TGFBR2. Augmented expression of COX-2 is abolished by inhibition of Na+/Ca2+ exchanger, suggesting a key role of [Ca2+]i-mediated signaling. What is the relative impact in tissue fibrosis of [Na+]i,[K+]iindependent signaling documented in several types of CTS-treated cells? Do the different conformational transitions of Na+,K+-ATPase α1 subunit in the presence of ouabain and marinobufagenin contribute to their distinct involvement in myofibroblast differentiation? Additional experiments should be done to answer these questions and to develop novel pharmacological approaches for the treatment of fibrosis-related disorders.
Collapse
Affiliation(s)
- Sergei N. Orlov
- Faculty of Biology, Lomonosov Moscow State University, Russian Federation
| | - Jennifer La
- Department of Medicine, The University of Chicago, IL, United States
| | | | - Nickolai O. Dulin
- Department of Medicine, The University of Chicago, IL, United States
| |
Collapse
|
15
|
Kinoshita T, Goto T. Molecular Mechanisms of Pulmonary Fibrogenesis and Its Progression to Lung Cancer: A Review. Int J Mol Sci 2019; 20:ijms20061461. [PMID: 30909462 PMCID: PMC6471841 DOI: 10.3390/ijms20061461] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 03/19/2019] [Accepted: 03/20/2019] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is defined as a specific form of chronic, progressive fibrosing interstitial pneumonia of unknown cause, occurring primarily in older adults, and limited to the lungs. Despite the increasing research interest in the pathogenesis of IPF, unfavorable survival rates remain associated with this condition. Recently, novel therapeutic agents have been shown to control the progression of IPF. However, these drugs do not improve lung function and have not been tested prospectively in patients with IPF and coexisting lung cancer, which is a common comorbidity of IPF. Optimal management of patients with IPF and lung cancer requires understanding of pathogenic mechanisms and molecular pathways that are common to both diseases. This review article reflects the current state of knowledge regarding the pathogenesis of pulmonary fibrosis and summarizes the pathways that are common to IPF and lung cancer by focusing on the molecular mechanisms.
Collapse
Affiliation(s)
- Tomonari Kinoshita
- Division of General Thoracic Surgery, Department of Surgery, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo 1608582, Japan.
| | - Taichiro Goto
- Lung Cancer and Respiratory Disease Center, Yamanashi Central Hospital, Kofu, Yamanashi 4008506, Japan.
| |
Collapse
|
16
|
Horowitz JC. Releasing Tensin. Am J Respir Cell Mol Biol 2018; 56:417-418. [PMID: 28362149 DOI: 10.1165/rcmb.2016-0417ed] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Affiliation(s)
- Jeffrey C Horowitz
- 1 Division of Pulmonary and Critical Care Medicine University of Michigan Medical School Ann Arbor, Michigan
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The pathogenesis of lung cancer and pulmonary fibrotic disorders partially overlaps. This review focuses on the common features of the two disease categories, aimed at advancing our translational understanding of their pathobiology and at fostering the development of new therapies. RECENT FINDINGS Both malignant and collagen-producing lung cells display enhanced cellular proliferation, increased resistance to apoptosis, a propensity for invading and distorting the lung parenchyma, as well as stemness potential. These characteristics are reinforced by the tissue microenvironment and inflammation seems to play an important adjuvant role in both types of disorders. SUMMARY Unraveling the thread of the common and distinct characteristics of lung fibrosis and cancer might contribute to a more comprehensive approach of the pathobiology of both diseases and to a pathfinder for novel and personalized therapeutic strategies.
Collapse
|
18
|
Bernau K, Torr EE, Evans MD, Aoki JK, Ngam CR, Sandbo N. Tensin 1 Is Essential for Myofibroblast Differentiation and Extracellular Matrix Formation. Am J Respir Cell Mol Biol 2017; 56:465-476. [PMID: 28005397 DOI: 10.1165/rcmb.2016-0104oc] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Myofibroblasts, the primary effector cells that mediate matrix remodeling during pulmonary fibrosis, rapidly assemble an extracellular fibronectin matrix. Tensin (TNS) 1 is a key component of specialized cellular adhesions (fibrillar adhesions) that bind to extracellular fibronectin fibrils. We hypothesized that TNS1 may play a role in modulating myofibroblast-mediated matrix formation. We found that TNS1 expression is increased in fibroblastic foci from lungs with idiopathic pulmonary fibrosis. Transforming growth factor (TGF)-β profoundly up-regulates TNS1 expression with kinetics that parallel the expression of the myofibroblast marker, smooth muscle α-actin. TGF-β-induced TNS1 expression is dependent on signaling through the TGF-β receptor 1 and is Rho coiled-coiled kinase/actin/megakaryoblastic leukemia-1/serum response factor dependent. Small interfering RNA-mediated knockdown of TNS1 disrupted TGF-β-induced myofibroblast differentiation, without affecting TGF-β/Smad signaling. In contrast, loss of TNS1 resulted in disruption of focal adhesion kinase phosphorylation, focal adhesion formation, and actin stress fiber development. Finally, TNS1 was essential for the formation of fibrillar adhesions and the assembly of nascent fibronectin and collagen matrix in myofibroblasts. In summary, our data show that TNS1 is a novel megakaryoblastic leukemia-1-dependent gene that is induced during pulmonary fibrosis. TNS1 plays an essential role in TGF-β-induced myofibroblast differentiation and myofibroblast-mediated formation of extracellular fibronectin and collagen matrix. Targeted disruption of TNS1 and associated signaling may provide an avenue to inhibit tissue fibrosis.
Collapse
Affiliation(s)
| | | | - Michael D Evans
- 2 Biostatistics and Medical Informatics, University of Wisconsin-Madison, School of Medicine and Public Health, Madison, Wisconsin
| | | | | | | |
Collapse
|
19
|
Sandbo N, Smolyaninova LV, Orlov SN, Dulin NO. Control of Myofibroblast Differentiation and Function by Cytoskeletal Signaling. BIOCHEMISTRY (MOSCOW) 2017; 81:1698-1708. [PMID: 28260491 DOI: 10.1134/s0006297916130071] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The cytoskeleton consists of three distinct types of protein polymer structures - microfilaments, intermediate filaments, and microtubules; each serves distinct roles in controlling cell shape, division, contraction, migration, and other processes. In addition to mechanical functions, the cytoskeleton accepts signals from outside the cell and triggers additional signals to extracellular matrix, thus playing a key role in signal transduction from extracellular stimuli through dynamic recruitment of diverse intermediates of the intracellular signaling machinery. This review summarizes current knowledge about the role of cytoskeleton in the signaling mechanism of fibroblast-to-myofibroblast differentiation - a process characterized by accumulation of contractile proteins and secretion of extracellular matrix proteins, and being critical for normal wound healing in response to tissue injury as well as for aberrant tissue remodeling in fibrotic disorders. Specifically, we discuss control of serum response factor and Hippo signaling pathways by actin and microtubule dynamics as well as regulation of collagen synthesis by intermediate filaments.
Collapse
Affiliation(s)
- N Sandbo
- University of Wisconsin, Department of Medicine, Madison, WI, USA
| | | | | | | |
Collapse
|
20
|
Horowitz JC, Osterholzer JJ, Marazioti A, Stathopoulos GT. "Scar-cinoma": viewing the fibrotic lung mesenchymal cell in the context of cancer biology. Eur Respir J 2016; 47:1842-54. [PMID: 27030681 DOI: 10.1183/13993003.01201-2015] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 02/28/2016] [Indexed: 12/22/2022]
Abstract
Lung cancer and pulmonary fibrosis are common, yet distinct, pathological processes that represent urgent unmet medical needs. Striking clinical and mechanistic parallels exist between these distinct disease entities. The goal of this article is to examine lung fibrosis from the perspective of cancer-associated phenotypic hallmarks, to discuss areas of mechanistic overlap and distinction, and to highlight profibrotic mechanisms that contribute to carcinogenesis. Ultimately, we speculate that such comparisons might identify opportunities to leverage our current understanding of the pathobiology of each disease process in order to advance novel therapeutic approaches for both. We anticipate that such "outside the box" concepts could be translated to a more precise and individualised approach to fibrotic diseases of the lung.
Collapse
Affiliation(s)
- Jeffrey C Horowitz
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - John J Osterholzer
- Division of Pulmonary and Critical Care Medicine, Dept of Internal Medicine, University of Michigan Medical Center, Ann Arbor, MI, USA
| | - Antonia Marazioti
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece
| | - Georgios T Stathopoulos
- Laboratory for Molecular Respiratory Carcinogenesis, Dept of Physiology, Faculty of Medicine, University of Patras, Rio, Greece Comprehensive Pneumology Center and Institute for Lung Biology and Disease, University Hospital, Ludwig-Maximilians University and Helmholtz Zentrum München, Member of the German Center for Lung Research (DZL), Munich, Germany
| |
Collapse
|
21
|
Lighthouse JK, Small EM. Transcriptional control of cardiac fibroblast plasticity. J Mol Cell Cardiol 2016; 91:52-60. [PMID: 26721596 PMCID: PMC4764462 DOI: 10.1016/j.yjmcc.2015.12.016] [Citation(s) in RCA: 91] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Revised: 12/15/2015] [Accepted: 12/20/2015] [Indexed: 12/11/2022]
Abstract
Cardiac fibroblasts help maintain the normal architecture of the healthy heart and are responsible for scar formation and the healing response to pathological insults. Various genetic, biomechanical, or humoral factors stimulate fibroblasts to become contractile smooth muscle-like cells called myofibroblasts that secrete large amounts of extracellular matrix. Unfortunately, unchecked myofibroblast activation in heart disease leads to pathological fibrosis, which is a major risk factor for the development of cardiac arrhythmias and heart failure. A better understanding of the molecular mechanisms that control fibroblast plasticity and myofibroblast activation is essential to develop novel strategies to specifically target pathological cardiac fibrosis without disrupting the adaptive healing response. This review highlights the major transcriptional mediators of fibroblast origin and function in development and disease. The contribution of the fetal epicardial gene program will be discussed in the context of fibroblast origin in development and following injury, primarily focusing on Tcf21 and C/EBP. We will also highlight the major transcriptional regulatory axes that control fibroblast plasticity in the adult heart, including transforming growth factor β (TGFβ)/Smad signaling, the Rho/myocardin-related transcription factor (MRTF)/serum response factor (SRF) axis, and Calcineurin/transient receptor potential channel (TRP)/nuclear factor of activated T-Cell (NFAT) signaling. Finally, we will discuss recent strategies to divert the fibroblast transcriptional program in an effort to promote cardiomyocyte regeneration. This article is a part of a Special Issue entitled "Fibrosis and Myocardial Remodeling".
Collapse
Affiliation(s)
- Janet K Lighthouse
- Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA
| | - Eric M Small
- Department of Medicine, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Department of Pharmacology and Physiology, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA; Aab Cardiovascular Research Institute, University of Rochester School of Medicine and Dentistry, Rochester, NY 14624, USA.
| |
Collapse
|