1
|
Zhou F, Feng X, Xu Z, Yan F, Song G, Tang L. Design, synthesis and biological activity of 8-hydroxy modified urolithin A derivatives as phosphodiesterase type II (PDE2) inhibitors. Bioorg Med Chem 2025; 121:118127. [PMID: 40015121 DOI: 10.1016/j.bmc.2025.118127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2024] [Revised: 02/17/2025] [Accepted: 02/18/2025] [Indexed: 03/01/2025]
Abstract
Urolithin A (UA) is a naturally occurring polyphenolic compound.Due to its remarkable efficacy in safeguarding the central nervous system, UA has emerged as a promising candidate for drug development targeting neurodegenerative diseases such as Alzheimer's. However, the source of UA is limited and the activity of UA to inhibit PDE2 needs to be further improved. Therefore, this study will be optimized on the basis of UA to seek PDE2 inhibitors with better activity. In this study, we designed a series of UA derivatives based on 4HTX as the target protein and UA as the lead compound, utilizing the binding crystal structures of 4HTX and BAY60-7550 as references. After thorough screening, we successfully identified the 8-hydroxyl group as the precise site of modification. Utilizing 2-bromo-5-hydroxybenzoic acid as our primary raw material, we synthesized a series of the 8-hydroxyl modified UA. Subsequently, we evaluated the inhibitory activity of these synthesized UA derivatives using a phosphodiesterase assay kit. Ultimately, we screened a total of 34 derivatives; among them, compounds 1f, 1q, 2d, and 2j exhibited significant inhibitory activity against PDE2 with half-maximal inhibitory concentrations of 3.05 μM, 0.67 μM, 0.57 μM, and 4.96 μM, respectively.
Collapse
Affiliation(s)
- Feng Zhou
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Xiaoqing Feng
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Zhongqiu Xu
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Fen Yan
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Guoqiang Song
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| | - Long Tang
- School of Pharmacy & School of Biological and Food Engineering, Changzhou University, Changzhou 213164, China.
| |
Collapse
|
2
|
Ribeiro M, Alvarenga L, Cardozo LFMF, Baptista BG, Nascimento D, Esgalhado M, Mafra D. Urolithin as a Metabolite of Ellagitannins and Ellagic Acid from Fruits and Nuts Produced by the Gut Microbiota: Its Role on Non-Communicable Diseases. Curr Nutr Rep 2025; 14:55. [PMID: 40180655 DOI: 10.1007/s13668-025-00645-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2025] [Indexed: 04/05/2025]
Abstract
PURPOSE OF REVIEW This narrative review investigates how urolithins produced by the gut microbiota can regulate transcription factors (such as NRF2, NF-kB, and PPAR-γ) associated with senescence, inflammation, and imbalanced redox status. It also discusses the potential benefits of urolithins for patients with chronic diseases, including cardiovascular disease, cancer, diabetes, obesity, and chronic kidney disease. RECENT FINDINGS Studies have shown that urolithins have many health benefits, including anti-inflammatory, antioxidant, antimicrobial, and anti-atherosclerotic effects. They are also linked to improved mitochondrial function and imbalanced redox associated with activating the Nrf2/ARE pathway. Urolithins are metabolites produced by gut microbiota from ellagic acid and ellagitannins, polyphenols primarily found in nuts and fruits, including pomegranates and berries like raspberries, cloudberries, and blackberries.
Collapse
Affiliation(s)
- Marcia Ribeiro
- Graduate Program in Biological Sciences - Physiology, IBCCF, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil.
- Unidade de Pesquisa Clínica-UPC, Rua Marquês de Paraná, 303/4 Andar, Niterói, RJ, Brazil.
- Federal Fluminense University, Niterói, Rio de Janeiro (RJ), Brazil.
| | - Livia Alvarenga
- Graduate Program in Biological Sciences - Physiology, IBCCF, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Ludmila F M F Cardozo
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Cardiovascular Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Beatriz G Baptista
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| | - Danielle Nascimento
- Graduate Program in Biological Sciences - Physiology, IBCCF, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
| | - Marta Esgalhado
- CBIOS - Universidade Lusófona's Research Center for Biosciences and Health Technologies, Lisbon, Portugal
| | - Denise Mafra
- Graduate Program in Biological Sciences - Physiology, IBCCF, Federal University of Rio de Janeiro (UFRJ), Rio de Janeiro (RJ), Brazil
- Graduate Program in Nutrition Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
- Graduate Program in Medical Sciences, Fluminense Federal University (UFF), Niterói, RJ, Brazil
| |
Collapse
|
3
|
Ravindran R, Gustafsson ÅB. Mitochondrial quality control in cardiomyocytes: safeguarding the heart against disease and ageing. Nat Rev Cardiol 2025:10.1038/s41569-025-01142-1. [PMID: 40113864 DOI: 10.1038/s41569-025-01142-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 02/17/2025] [Indexed: 03/22/2025]
Abstract
Mitochondria are multifunctional organelles that are important for many different cellular processes, including energy production and biosynthesis of fatty acids, haem and iron-sulfur clusters. Mitochondrial dysfunction leads to a disruption in these processes, the generation of excessive reactive oxygen species, and the activation of inflammatory and cell death pathways. The consequences of mitochondrial dysfunction are particularly harmful in energy-demanding organs such as the heart. Loss of terminally differentiated cardiomyocytes leads to cardiac remodelling and a reduced ability to sustain contraction. Therefore, cardiomyocytes rely on multilayered mitochondrial quality control mechanisms to maintain a healthy population of mitochondria. Mitochondrial chaperones protect against protein misfolding and aggregation, and resident proteases eliminate damaged proteins through proteolysis. Irreparably damaged mitochondria can also be degraded through mitochondrial autophagy (mitophagy) or ejected from cells inside vesicles. The accumulation of dysfunctional mitochondria in cardiomyocytes is a hallmark of ageing and cardiovascular disease. This accumulation is driven by impaired mitochondrial quality control mechanisms and contributes to the development of heart failure. Therefore, there is a strong interest in developing therapies that directly target mitochondrial quality control in cardiomyocytes. In this Review, we discuss the current knowledge of the mechanisms involved in regulating mitochondrial quality in cardiomyocytes, how these pathways are altered with age and in disease, and the therapeutic potential of targeting mitochondrial quality control pathways in cardiovascular disease.
Collapse
Affiliation(s)
- Rishith Ravindran
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA
| | - Åsa B Gustafsson
- Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
4
|
El Sayed S, Macri VI, Singh B, Segars JH, Islam MS. Beneficial Effects of Pomegranate Extracts for Benign Gynecologic Disorders. Reprod Sci 2025; 32:600-617. [PMID: 39733205 DOI: 10.1007/s43032-024-01776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 12/17/2024] [Indexed: 12/30/2024]
Abstract
Pomegranate (Punica granatum) is a widely cultivated fruit historically recognized for its health benefits and is regarded as a nutritional powerhouse. Pomegranate has a unique composition of bioactive compounds including hydrolysable tannins, anthocyanins, and other polyphenolic components. Of those, punicalagin and its subsequent metabolites are the most extensively studied, demonstrating antioxidant, anti-inflammatory, anti-cancer, and anti-nociceptive activity. The compounds possess promising therapeutic potential for many diseases, including conditions affecting the female reproductive system. This scoping review examines the pharmacodynamics of pomegranate's bioactive compounds and synthesizes the current literature concerning the role in benign gynecological disorders. Pomegranate extract decreased testosterone levels, levels of oxidative stress and inflammation biomarkers in women with polycystic ovary syndrome, erstwhile favorably impacting some cardiovascular risk factors in women. Pomegranate supplementation improved menopause specific health-related quality of life in women. In a pre-clinical murine model following ovariectomy, improved bone formation and reduced vaginal atrophy were associated with pomegranate treatment. Existing data suggests that additional research on the beneficial antioxidant, anti-inflammatory, anti-proliferative, and anti-nociceptive effects of pomegranate extracts for benign gynecologic conditions is warranted.
Collapse
Affiliation(s)
- Samya El Sayed
- Faculty of Medicine, American University of Beirut, Beirut, Lebanon
| | - Valeria I Macri
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Bhuchitra Singh
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - James H Segars
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA
| | - Md Soriful Islam
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Re-search, Johns Hopkins Medicine, Baltimore, MD, 21205, USA.
- Department of Gynecology and Obstetrics, Division of Reproductive Sciences & Women's Health Research, Johns Hopkins Medicine, 720 Rutland Ave, Ross Building, Room 624, Baltimore, MD, 21205, USA.
| |
Collapse
|
5
|
Liu S, Faitg J, Tissot C, Konstantopoulos D, Laws R, Bourdier G, Andreux PA, Davey T, Gallart-Ayala H, Ivanisevic J, Singh A, Rinsch C, Marcinek DJ, D’Amico D. Urolithin A provides cardioprotection and mitochondrial quality enhancement preclinically and improves human cardiovascular health biomarkers. iScience 2025; 28:111814. [PMID: 40034121 PMCID: PMC11875685 DOI: 10.1016/j.isci.2025.111814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/04/2024] [Accepted: 01/10/2025] [Indexed: 03/05/2025] Open
Abstract
Cardiovascular diseases (CVDs) remain the primary cause of global mortality. Nutritional interventions hold promise to reduce CVD risks in an increasingly aging population. However, few nutritional interventions are proven to support heart health and act mostly on blood lipid homeostasis rather than at cardiac cell level. Here, we show that mitochondrial quality dysfunctions are common hallmarks in human cardiomyocytes upon heart aging and in chronic conditions. Preclinically, the post-biotic and mitophagy activator, urolithin A (UA), reduced both systolic and diastolic cardiac dysfunction in models of natural aging and heart failure. At a cellular level, this was associated with a recovery of mitochondrial ultrastructural defects and mitophagy. In humans, UA supplementation for 4 months in healthy older adults significantly reduced plasma ceramides clinically validated to predict CVD risks. These findings extend and translate UA's benefits to heart health, making UA a promising nutritional intervention to support cardiovascular function as we age.
Collapse
Affiliation(s)
- Sophia Liu
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | - Julie Faitg
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | | | | | - Ross Laws
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | | | | | - Tracey Davey
- Electron Microscopy Research Services, Newcastle University, Newcastle, UK
| | - Hector Gallart-Ayala
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Julijana Ivanisevic
- Metabolomics Platform, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | - Anurag Singh
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis, EPFL Innovation Park, Lausanne, Switzerland
| | - David J. Marcinek
- Department of Radiology, University of Washington Medical Center, Box 358050, Seattle, WA 98109, USA
| | | |
Collapse
|
6
|
Chen K, Ying J, Zhu J, Chen L, Liu R, Jing M, Wang Y, Zhou K, Wu L, Wu C, Xiao J, Ni W. Urolithin A alleviates NLRP3 inflammasome activation and pyroptosis by promoting microglial mitophagy following spinal cord injury. Int Immunopharmacol 2025; 148:114057. [PMID: 39827665 DOI: 10.1016/j.intimp.2025.114057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2024] [Revised: 01/02/2025] [Accepted: 01/06/2025] [Indexed: 01/22/2025]
Abstract
Spinal cord injury (SCI) is a potentially fatal condition that often results in loss of motor and sensory functions, thereby significantly burdening global health initiatives. Urolithin A (UA), an intestinal microbial metabolite of ellagic acid, is known for its potent anti-inflammatory properties in chronic inflammation contexts. UA treatment in humans induces a molecular signature of improved mitochondrial and cellular health. Yet, its effects on acute inflammation following SCI remain unclear. In this study, we developed an impact-induced mouse model for SCI and treated the injured mice with UA (50 mg/kg/d, till 8 weeks) via intragastric administration. Furthermore, we subjected BV2 cells to lipopolysaccharide and adenosine 5'-triphosphate to simulate the post-injury inflammatory response. Our results demonstrated that pre-treatment with UA (10 μM) effectively inhibited NLRP3 inflammasome activation in LPS-primed BV2 cells. This inhibition was evidenced by reduced cleaved Caspase-1 and mature IL-1β release, diminished ASC speck formation, and decreased gasdermin D (GSDMD)-mediated pyroptosis. Additionally, UA treatment restored mitochondrial activity and ROS production attenuated by NLRP3 activation, increased LC3-II expression, and enhanced LC3 co-localization with mitochondria. 3-Methyladenine (3-MA), an autophagy inhibitor, can partially reverse the stimulatory effect of UA on mitophagy, as well as the inhibitory effect of UA on pyroptosis. This study highlighted the protective role of UA against SCI through its promotion of mitophagy, which in turn inhibits NLRP3 inflammasome activation and pyroptosis.
Collapse
Affiliation(s)
- Kongbin Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiahao Ying
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Jiangwei Zhu
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Liang Chen
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Rongjie Liu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Mengqi Jing
- Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China
| | - Yuchao Wang
- Department of Orthopedic, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116600, China
| | - Kailiang Zhou
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China
| | - Long Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China.
| | - Chenyu Wu
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Jian Xiao
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| | - Wenfei Ni
- Department of Orthopedic, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou 325000 China; Key Laboratory of Orthopaedics of Zhejiang Province, Wenzhou 325000 China; Molecular Pharmacology Research Center, School of Pharmaceutical Science, Wenzhou Medical University, Wenzhou 325000 China.
| |
Collapse
|
7
|
Alfei S, Zuccari G. Ellagic Acid: A Green Multi-Target Weapon That Reduces Oxidative Stress and Inflammation to Prevent and Improve the Condition of Alzheimer's Disease. Int J Mol Sci 2025; 26:844. [PMID: 39859559 PMCID: PMC11766176 DOI: 10.3390/ijms26020844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2024] [Revised: 01/08/2025] [Accepted: 01/14/2025] [Indexed: 01/27/2025] Open
Abstract
Oxidative stress (OS), generated by the overrun of reactive species of oxygen and nitrogen (RONS), is the key cause of several human diseases. With inflammation, OS is responsible for the onset and development of clinical signs and the pathological hallmarks of Alzheimer's disease (AD). AD is a multifactorial chronic neurodegenerative syndrome indicated by a form of progressive dementia associated with aging. While one-target drugs only soften its symptoms while generating drug resistance, multi-target polyphenols from fruits and vegetables, such as ellagitannins (ETs), ellagic acid (EA), and urolithins (UROs), having potent antioxidant and radical scavenging effects capable of counteracting OS, could be new green options to treat human degenerative diseases, thus representing hopeful alternatives and/or adjuvants to one-target drugs to ameliorate AD. Unfortunately, in vivo ETs are not absorbed, while providing mainly ellagic acid (EA), which, due to its trivial water-solubility and first-pass effect, metabolizes in the intestine to yield UROs, or irreversible binding to cellular DNA and proteins, which have very low bioavailability, thus failing as a therapeutic in vivo. Currently, only UROs have confirmed the beneficial effect demonstrated in vitro by reaching tissues to the extent necessary for therapeutic outcomes. Unfortunately, upon the administration of food rich in ETs or ETs and EA, URO formation is affected by extreme interindividual variability that renders them unreliable as novel clinically usable drugs. Significant attention has therefore been paid specifically to multitarget EA, which is incessantly investigated as such or nanotechnologically manipulated to be a potential "lead compound" with protective action toward AD. An overview of the multi-factorial and multi-target aspects that characterize AD and polyphenol activity, respectively, as well as the traditional and/or innovative clinical treatments available to treat AD, constitutes the opening of this work. Upon focus on the pathophysiology of OS and on EA's chemical features and mechanisms leading to its antioxidant activity, an all-around updated analysis of the current EA-rich foods and EA involvement in the field of AD is provided. The possible clinical usage of EA to treat AD is discussed, reporting results of its applications in vitro, in vivo, and during clinical trials. A critical view of the need for more extensive use of the most rapid diagnostic methods to detect AD from its early symptoms is also included in this work.
Collapse
Affiliation(s)
- Silvana Alfei
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
| | - Guendalina Zuccari
- Department of Pharmacy (DIFAR), University of Genoa, Viale Cembrano, 4, 16148 Genova, Italy
- Laboratory of Experimental Therapies in Oncology, IRCCS Istituto Giannina Gaslini, Via G. Gaslini 5, 16147 Genoa, Italy
| |
Collapse
|
8
|
Xu MY, Xu JJ, Kang LJ, Liu ZH, Su MM, Zhao WQ, Wang ZH, Sun L, Xiao JB, Evans PC, Tian XY, Wang L, Huang Y, Liang XM, Weng JP, Xu SW. Urolithin A promotes atherosclerotic plaque stability by limiting inflammation and hypercholesteremia in Apolipoprotein E-deficient mice. Acta Pharmacol Sin 2024; 45:2277-2289. [PMID: 38886550 PMCID: PMC11489441 DOI: 10.1038/s41401-024-01317-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 05/16/2024] [Indexed: 06/20/2024]
Abstract
Urolithin A (UroA), a dietary phytochemical, is produced by gut bacteria from fruits rich in natural polyphenols ellagitannins (ETs). The efficiency of ETs metabolism to UroA in humans depends on gut microbiota. UroA has shown a variety of pharmacological activities. In this study we investigated the effects of UroA on atherosclerotic lesion development and stability. Apolipoprotein E-deficient (ApoE-/-) mice were fed a high-fat and high-cholesterol diet for 3 months to establish atherosclerosis model. Meanwhile the mice were administered UroA (50 mg·kg-1·d-1, i.g.). We showed that UroA administration significantly decreased diet-induced atherosclerotic lesions in brachiocephalic arteries, macrophage content in plaques, expression of endothelial adhesion molecules, intraplaque hemorrhage and size of necrotic core, while increased the expression of smooth muscle actin and the thickness of fibrous cap, implying features of plaque stabilization. The underlying mechanisms were elucidated using TNF-α-stimulated human endothelial cells. Pretreatment with UroA (10, 25, 50 μM) dose-dependently inhibited TNF-α-induced endothelial cell activation and monocyte adhesion. However, the anti-inflammatory effects of UroA in TNF-α-stimulated human umbilical vein endothelial cells (HUVECs) were independent of NF-κB p65 pathway. We conducted RNA-sequencing profiling analysis to identify the differential expression of genes (DEGs) associated with vascular function, inflammatory responses, cell adhesion and thrombosis in UroA-pretreated HUVECs. Human disease enrichment analysis revealed that the DEGs were significantly correlated with cardiovascular diseases. We demonstrated that UroA pretreatment mitigated endothelial inflammation by promoting NO production and decreasing YAP/TAZ protein expression and TEAD transcriptional activity in TNF-α-stimulated HUVECs. On the other hand, we found that UroA administration modulated the transcription and cleavage of lipogenic transcription factors SREBP1/2 in the liver to ameliorate cholesterol metabolism in ApoE-/- mice. This study provides an experimental basis for new dietary therapeutic option to prevent atherosclerosis.
Collapse
Affiliation(s)
- Meng-Yun Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jing-Jing Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, China
| | - Li-Jing Kang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Zheng-Hong Liu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Mei-Ming Su
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Wen-Qi Zhao
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Zhi-Hua Wang
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Lu Sun
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China
| | - Jian-Bo Xiao
- Universidade de Vigo, Department of Analytical and Food Chemistry, Faculty of Sciences, Ourense, 32004, Spain
| | - Paul C Evans
- Centre for Biochemical Pharmacology, William Harvey Research Institute, Barts and The London Faculty of Medicine and Dentistry, Queen Mary University of London, London, EC1M 6BQ, UK
| | - Xiao-Yu Tian
- School of Biomedical Sciences, Heart and Vascular Institute, Faculty of Medicine, The Chinese University of Hong Kong, Shatin NT, Hong Kong SAR, 999077, China
| | - Li Wang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Yu Huang
- Department of Biomedical Sciences, City University of Hong Kong, Hong Kong, China
| | - Xin-Miao Liang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, 116000, China.
| | - Jian-Ping Weng
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| | - Suo-Wen Xu
- Department of Endocrinology, Institute of Endocrine and Metabolic Disease, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, Clinical Research Hospital of Chinese Academy of Sciences (Hefei), University of Science and Technology of China, Hefei, 230000, China.
| |
Collapse
|
9
|
Yang H, Wu B, Yang Q, Tan T, Shang D, Chen J, Cao C, Xu C. Urolithin C suppresses colorectal cancer progression via the AKT/mTOR pathway. J Nat Med 2024; 78:887-900. [PMID: 38849679 PMCID: PMC11364574 DOI: 10.1007/s11418-024-01821-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Accepted: 04/29/2024] [Indexed: 06/09/2024]
Abstract
Urolithin families are gut-microbial metabolites of ellagic acid (EA). Although urolithin A (UA) and urolithin B (UB) were reported to have antiproliferative activities in cancer cells, the role and related mechanisms of urolithin C (UC) in colorectal cancer (CRC) have not yet been clarified. In this study, we assess the antitumor activities of UC in vitro and in vivo and further explore the underlying mechanisms in CRC cell lines. We found that UC inhibited the proliferation and migration of CRC cells, induced apoptosis, and arrested the cell cycle at the G2/M phase in vitro, and UC inhibited tumor growth in a subcutaneous transplantation tumor model in vivo. Mechanically, UC blocked the activation of the AKT/mTOR signaling pathway by decreasing the expression of Y-box binding protein 1(YBX1). The AKT agonist SC79 could reverse the suppression of cell proliferation in UC-treated CRC cells. In conclusion, our research revealed that UC could prevent the progression of CRC by blocking AKT/mTOR signaling, suggesting that it may have potential therapeutic values.
Collapse
Affiliation(s)
- Haochi Yang
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Binghuo Wu
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China
- Jinfeng Laboratory, Chongqing, 401329, China
| | - Qi Yang
- Biotherapy Centre, Harbin Medical University Cancer Hospital, Harbin, 150081, China
| | - Tian Tan
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China
| | - Dan Shang
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Jie Chen
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China
| | - Chenhui Cao
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Centre, School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610042, China.
| | - Chuan Xu
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, China.
- Department of Oncology and Cancer Institute, Sichuan Academy of Medical Sciences, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- Department of Laboratory Medicine, Sichuan Provincial Key Laboratory for Human Disease Gene Study, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, 610072, China.
- School of Medicine, University of Electronic Science and Technology of China, Chengdu, 610047, China.
- Yu-Yue Pathology Scientific Research Centre, Chongqing, 400039, China.
- Jinfeng Laboratory, Chongqing, 401329, China.
| |
Collapse
|
10
|
Hou C, Shi H, Xiao J, Song X, Luo Z, Ma X, Shi L, Wei H, Li J. Pomegranate Juice Supplemented with Inulin Modulates Gut Microbiota and Promotes the Production of Microbiota-Associated Metabolites in Overweight/Obese Individuals: A Randomized, Double-Blind, Placebo-Controlled Trial. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:14663-14677. [PMID: 38887904 DOI: 10.1021/acs.jafc.4c00849] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/20/2024]
Abstract
Pomegranate juice (PJ) and inulin have been reported to ameliorate diet-induced metabolic disorders by regulating gut microbiota dysbiosis. However, there was a lack of clinical evidence for the combined effects of PJ and inulin on regulating gut microbiota in individuals with metabolic disorders. A double-blind, parallel, randomized, placebo-controlled trial was conducted, and 68 overweight/obese individuals (25 ≤ BMI ≤ 35 kg/m2) were randomly assigned to receive 200 mL/d PJ, PJ supplemented with inulin, or placebo for 3 weeks. Our results showed that PJ and PJ+inulin did not significantly alter the levels of anthropometric and blood biochemical indicators after 3 weeks of treatment. However, there was an increasingly significant impact from placebo to PJ to PJ+inulin on the composition of gut microbiota. Detailed bacterial abundance analysis further showed that PJ+inulin treatment more profoundly resulted in significant changes in the abundance of gut microbiota at each taxonomic level than PJ. Moreover, PJ+inulin treatment also promoted the production of microbiota-associated short-chain fatty acids and pomegranate polyphenol metabolites, which correlated with the abundance of the bacterial genus. Our results suggested that PJ supplemented with inulin modulates gut microbiota composition and thus promotes the production of microbiota-associated metabolites that exert potential beneficial effects in overweight/obese subjects.
Collapse
Affiliation(s)
- Chen Hou
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Haidan Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Jingjing Xiao
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Xiaoyu Song
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Zhuoting Luo
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Xing Ma
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Lin Shi
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| | - Hongliang Wei
- Department of Thyroid, Breast and Vascular Surgery, Xijing Hospital, The Air Force Military Medical University, Xi'an, Shaanxi 710032, China
| | - Jianke Li
- College of Food Engineering and Nutritional Science, Shaanxi Normal University, Xi'an 710119, China
- University Key Laboratory of Food Processing Byproducts for Advanced Development and High Value Utilization, Shaanxi Normal University, Xi'an 710119, China
| |
Collapse
|
11
|
Zhang Y, Wei S, Zhang H, Jo Y, Kang JS, Ha KT, Joo J, Lee HJ, Ryu D. Gut microbiota-generated metabolites: missing puzzles to hosts' health, diseases, and aging. BMB Rep 2024; 57:207-215. [PMID: 38627947 PMCID: PMC11139682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Revised: 03/07/2024] [Accepted: 03/20/2024] [Indexed: 05/25/2024] Open
Abstract
The gut microbiota, an intricate community of bacteria residing in the gastrointestinal system, assumes a pivotal role in various physiological processes. Beyond its function in food breakdown and nutrient absorption, gut microbiota exerts a profound influence on immune and metabolic modulation by producing diverse gut microbiota-generated metabolites (GMGMs). These small molecules hold potential to impact host health via multiple pathways, which exhibit remarkable diversity, and have gained increasing attention in recent studies. Here, we elucidate the intricate implications and significant impacts of four specific metabolites, Urolithin A (UA), equol, Trimethylamine N-oxide (TMAO), and imidazole propionate, in shaping human health. Meanwhile, we also look into the advanced research on GMGMs, which demonstrate promising curative effects and hold great potential for further clinical therapies. Notably, the emergence of positive outcomes from clinical trials involving GMGMs, typified by UA, emphasizes their promising prospects in the pursuit of improved health and longevity. Collectively, the multifaceted impacts of GMGMs present intriguing avenues for future research and therapeutic interventions. [BMB Reports 2024; 57(5): 207-215].
Collapse
Affiliation(s)
- Yan Zhang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Shibo Wei
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Hang Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Hospital of Jilin University, Changchun 130041, China, Busan 49241, Korea
| | - Yunju Jo
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| | - Jong-Sun Kang
- Department of Molecular Cell Biology, Single Cell Network Research Center, Sungkyunkwan University, Suwon 16419, Korea
| | - Ki-Tae Ha
- Department of Korean Medical Science, School of Korean Medicine, Pusan National University, Yangsan 50612, Korea
| | - Jongkil Joo
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Hyun Joo Lee
- Department of Obstetrics and Gynecology, Pusan National University Hospital, Busan 49241, Korea
| | - Dongryeol Ryu
- Department of Biomedical Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju 61005, Korea, Busan 49241, Korea
| |
Collapse
|
12
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Chen H, Luo X, Huang W, Cui W, Hu N. Mitochondrial-Oriented Injectable Hydrogel Microspheres Maintain Homeostasis of Chondrocyte Metabolism to Promote Subcellular Therapy in Osteoarthritis. RESEARCH (WASHINGTON, D.C.) 2024; 7:0306. [PMID: 38274127 PMCID: PMC10809599 DOI: 10.34133/research.0306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 01/03/2024] [Indexed: 01/27/2024]
Abstract
Subcellular mitochondria serve as sensors for energy metabolism and redox balance, and the dynamic regulation of functional and dysfunctional mitochondria plays a crucial role in determining cells' fate. Selective removal of dysfunctional mitochondria at the subcellular level can provide chondrocytes with energy to prevent degeneration, thereby treating osteoarthritis. Herein, to achieve an ideal subcellular therapy, cartilage affinity peptide (WYRGRL)-decorated liposomes loaded with mitophagy activator (urolithin A) were integrated into hyaluronic acid methacrylate hydrogel microspheres through microfluidic technology, named HM@WY-Lip/UA, that could efficiently target chondrocytes and selectively remove subcellular dysfunctional mitochondria. As a result, this system demonstrated an advantage in mitochondria function restoration, reactive oxygen species scavenging, cell survival rescue, and chondrocyte homeostasis maintenance through increasing mitophagy. In a rat post-traumatic osteoarthritis model, the intra-articular injection of HM@WY-Lip/UA ameliorated cartilage matrix degradation, osteophyte formation, and subchondral bone sclerosis at 8 weeks. Overall, this study indicated that HM@WY-Lip/UA provided a protective effect on cartilage degeneration in an efficacious and clinically relevant manner, and a mitochondrial-oriented strategy has great potential in the subcellular therapy of osteoarthritis.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Jianye Yang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Zhengwei Cai
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Yanran Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Pengcheng Xiao
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Hong Chen
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Xiaoji Luo
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Wei Huang
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| | - Wenguo Cui
- Department of Orthopaedics, Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases,
Shanghai Institute of Traumatology and Orthopaedics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, 197 Ruijin 2nd Road, Shanghai 200025, China
| | - Ning Hu
- Department of Orthopedics, The First Affiliated Hospital of Chongqing Medical University,
Orthopedic Laboratory of Chongqing Medical University, Chongqing 400016, China
| |
Collapse
|
13
|
Jamialahmadi T, Hasanpour M, Vakilian F, Penson PE, Iranshahy M, Sahebkar A. Evaluation of Urolithin A Efficacy in Heart Failure Patients with Reduced Ejection Fraction: A Randomized, Double-blind, Crossover, Placebo-controlled Clinical Trial. Rev Recent Clin Trials 2024; 19:221-228. [PMID: 38415449 DOI: 10.2174/0115748871279354240209101604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/29/2024]
Abstract
BACKGROUND Mitochondrial dysfunction and impaired mitophagy are integral to myocyte loss and the progression of heart failure. Urolithin A (UA), a microbiota-produced metabolite of ellagitannins and ellagic acid, is a known stimulator of mitophagy and mitochondrial biogenesis that has shown cardioprotective effects in experimental models. METHODS A randomized, double-blind, placebo-controlled 2×2 crossover trial was conducted on 10 patients with HF with reduced ejection fraction (HFrEF). The trial design involved two 4- week intervention periods of UA (500 mg BID) and placebo, separated by a 2-week washout phase. The patients underwent two-dimensional echocardiogram examination as well as blood sampling at the beginning and end of each period. RESULTS All patients completed the study. The results failed to reveal any significant effect of UA supplementation on echocardiographic measures (LVEF, LVEDD, LVESV, and TAPSE). Plasma concentrations of pro-BNP, glucose, and CRP (p >0.05) were also not altered. Serum HDL-C levels were increased with UA compared with placebo (+6.46 ± 2.33 mg/dL, p =0.026), whereas other lipid indices (LDL-C, triglycerides, total cholesterol, and VLDL-C) remained unchanged (p >0.05). CONCLUSION The results of the present study do not support any positive effect of UA supplementation in improving echocardiographic and biochemical indices of HFrEF. Further studies with higher doses of UA and longer supplementation duration are encouraged to be conducted.
Collapse
Affiliation(s)
- Tannaz Jamialahmadi
- Medical Toxicology Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Maede Hasanpour
- Department of Pharmacognosy and Medicinal Plants Research Center, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Farveh Vakilian
- Atherosclerosis Prevention Research Centre, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Peter E Penson
- School of Pharmacy and Biomolecular Sciences, Liverpool John Moores University, Liverpool, United Kingdom
| | - Milad Iranshahy
- Department of Pharmacognosy, School of Pharmacy, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Amirhossein Sahebkar
- Biotechnology Research Center, Pharmaceutical Technology Institute, Mashhad University of Medical Sciences, Mashhad, Iran
- Applied Biomedical Research Center, Mashhad University of Medical Sciences, Mashhad, Iran
| |
Collapse
|
14
|
Yu Z, Zhang X, Zhao Q, Yan X, Wu C, Qing L, He Z, Chen Q, Huang M, Zhao J, Cao M. Urolithin B alleviates Helicobacter pylori-induced inflammation and oxidative stress in mice. Helicobacter 2023; 28:e13016. [PMID: 37623311 DOI: 10.1111/hel.13016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/08/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023]
Abstract
BACKGROUND Helicobacter pylori is one of the most common chronic bacterial infections. Active eradication of H. pylori infection is rare due to the fact that most infected patients are asymptomatic and the use of large amounts of antibiotics in eradication therapy leads to severe side effects. Urolithin B (UB) is an additional major intestinal metabolite of ellagic acid (EA), which has been shown to possess anti-inflammatory, antioxidant, and antiapoptotic biological activities. Preventing the incidence of H. pylori-related gastric disease and reducing the damage to the host by H. pylori is a current approach to control H. pylori infection. In this study, we explored the effect of UB on H. pylori infection. MATERIALS AND METHODS The effects of UB on inflammation and oxidative stress induced by H. pylori in vivo and in vitro were investigated by qPCR, ELISA, HE staining, IHC staining, etc. RESULTS: UB reduced the adhesion and colonization of H. pylori and improved H. pylori-induced inflammation and oxidative stress in vivo and in vitro. Moreover, UB had better anti-inflammatory and antioxidant effects than clarithromycin (CLR) and metronidazole (MET). In addition to inhibiting the secretion of CagA, UB reduced tissue damage by H. pylori infection. CONCLUSIONS UB was effective in improving damage caused by H. pylori.
Collapse
Affiliation(s)
- Zhihao Yu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
- Department of Microbiology, School of Basic Medical Sciences, Guizhou Medical University, Guiyang, China
| | - Xiangyue Zhang
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qiao Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Xin Yan
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Chengmeng Wu
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Liting Qing
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Zongyu He
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Qian Chen
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Min Huang
- Irradiation Preservation Technology Key Laboratory of Sichuan Province, Sichuan Institute of Atomic Energy, Chengdu, China
| | - Jian Zhao
- Key Laboratory of Biological Resource and Ecological Environment of Chinese Education Ministry, College of Life Sciences, Sichuan University, Chengdu, China
| | - Mei Cao
- Core Laboratory, School of Medicine, Sichuan Provincial People's Hospital Affiliated to University of Electronic Science and Technology of China, Chengdu, China
| |
Collapse
|
15
|
Yang Y, Hu Q, Kang H, Li J, Zhao X, Zhu L, Tang W, Wan M. Urolithin A protects severe acute pancreatitis-associated acute cardiac injury by regulating mitochondrial fatty acid oxidative metabolism in cardiomyocytes. MedComm (Beijing) 2023; 4:e459. [PMID: 38116065 PMCID: PMC10728757 DOI: 10.1002/mco2.459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 11/23/2023] [Accepted: 11/25/2023] [Indexed: 12/21/2023] Open
Abstract
Severe acute pancreatitis (SAP) often develops into acute cardiac injury (ACI), contributing to the high mortality of SAP. Urolithin A (UA; 3,8-dihydroxy-6H-dibenzopyran-6-one), a natural polyphenolic compound, has been extensively studied and shown to possess significant anti-inflammatory effects. Nevertheless, the specific effects of UA in SAP-associated acute cardiac injury (SACI) have not been definitively elucidated. Here, we investigated the therapeutic role and mechanisms of UA in SACI using transcriptomics and untargeted metabolomics analyses in a mouse model of SACI and in vitro studies. SACI resulted in severely damaged pancreatic and cardiac tissues with myocardial mitochondrial dysfunction and mitochondrial metabolism disorders. UA significantly reduced the levels of lipase, amylase and inflammatory factors, attenuated pathological damage to pancreatic and cardiac tissues, and reduced myocardial cell apoptosis and oxidative stress in SACI. Moreover, UA increased mitochondrial membrane potential and adenosine triphosphate production and restored mitochondrial metabolism, but the efficacy of UA was weakened by the inhibition of CPT1. Therefore, UA can attenuate cardiac mitochondrial dysfunction and reduce myocardial apoptosis by restoring the balance of mitochondrial fatty acid oxidation metabolism. CPT1 may be a potential target. This study has substantial implications for advancing our understanding of the pathogenesis and drug development of SACI.
Collapse
Affiliation(s)
- Yue Yang
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Qian Hu
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Hongxin Kang
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Juan Li
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Xianlin Zhao
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Lv Zhu
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Wenfu Tang
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China Hospital of Sichuan UniversityChengduChina
- Digestive DepartmentThe First People's Hospital of Shuangliu DistrictChengduChina
| |
Collapse
|
16
|
Luo C, Hou C, Yang D, Tan T, Chao C. Urolithin C alleviates pancreatic β-cell dysfunction in type 1 diabetes by activating Nrf2 signaling. Nutr Diabetes 2023; 13:24. [PMID: 38040681 PMCID: PMC10692094 DOI: 10.1038/s41387-023-00253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 12/03/2023] Open
Abstract
AIMS Type 1 diabetes (T1D) is an autoimmune disorder that destroys insulin-generating pancreatic β-cells. Preserving pancreatic β-cell function is important for treating T1D. Our study aims to explore the mechanism underlying urolithin C (UC)-mediated regulation of β-cell function. METHODS Non-obese diabetic (NOD) mice were administrated with UC to evaluate UC-mediated protection of T1D. The inflammation of the pancreas islets was examined by hematoxylin and eosin staining. Glucose-stimulated insulin secretion (GSIS) assay and oral glucose tolerance test were applied to evaluate the progression of T1D. MIN6 cells were treated with TNF-α, IL-1β and IFN-γ in the presence of UC. Cell viability was analyzed by CCK-8. Cell apoptosis, proliferation and DNA fragmentation were examined by Annexin V-FITC and PI staining, EdU incorporation and comet assays. Keap1, Nrf2, HO-1 and NQO1 were examined by western blot. Immunofluorescence staining was applied to detect Nrf2 and insulin. RESULTS UC administration significantly reduced diabetes incidence, attenuated insulitis, elevated insulin levels and GSIS and reduced blood glucose and AUC in NOD mice. Cytokine treatment suppressed MIN6 cell viability and proliferation but enhanced apoptosis and DNA damage, and these detrimental effects were relieved by UC treatment. Furthermore, UC administration inhibited Keap1 expression and promoted the expression of Nrf2, HO-1 and NQO1 in NOD mice. Nrf2 signaling has been reported to be implicated in preventing the onset of diabetes, and HO-1 and NQO1 are phase II antioxidant enzymes that are regulated by Nrf2 signaling. Cytokine treatment upregulated Keap1 and downregulated Nrf2, HO-1 and NQO1 in MIN6 cells, but it was reversed by UC. The nuclear translocation of Nrf2 was prevented by cytokine treatment, but UC promoted its nuclear translocation. UC-mediated upregulation of Nrf2, HO-1 and NQO1, decreased cell apoptosis and increased proliferation and insulin secretion were abolished by silencing of Nrf2. CONCLUSION UC improves pancreatic β-cell function by activating Nrf2 signaling, thereby alleviating T1D progression.
Collapse
Affiliation(s)
- Cheng Luo
- Department of Cardiovascular Surgery, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Can Hou
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Danyi Yang
- Department of Nephrology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
- Hunan Key Laboratory of Kidney Disease and Blood Purification, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China
| | - Tingting Tan
- Department of Immunology, School of Basic Medical Sciences, Central South University, Changsha, 410008, Hunan Province, PR China
| | - Chen Chao
- National Clinical Research Center for Metabolic Diseases, Key Laboratory of Diabetes Immunology, Ministry of Education, and Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, 410011, Hunan Province, PR China.
| |
Collapse
|
17
|
Yazdankhah M, Ghosh S, Liu H, Hose S, Zigler JS, Sinha D. Mitophagy in Astrocytes Is Required for the Health of Optic Nerve. Cells 2023; 12:2496. [PMID: 37887340 PMCID: PMC10605486 DOI: 10.3390/cells12202496] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/17/2023] [Accepted: 10/18/2023] [Indexed: 10/28/2023] Open
Abstract
Mitochondrial dysfunction in astrocytes has been implicated in the development of various neurological disorders. Mitophagy, mitochondrial autophagy, is required for proper mitochondrial function by preventing the accumulation of damaged mitochondria. The importance of mitophagy, specifically in the astrocytes of the optic nerve (ON), has been little studied. We introduce an animal model in which two separate mutations act synergistically to produce severe ON degeneration. The first mutation is in Cryba1, which encodes βA3/A1-crystallin, a lens protein also expressed in astrocytes, where it regulates lysosomal pH. The second mutation is in Bckdk, which encodes branched-chain ketoacid dehydrogenase kinase, which is ubiquitously expressed in the mitochondrial matrix and involved in the catabolism of the branched-chain amino acids. BCKDK is essential for mitochondrial function and the amelioration of oxidative stress. Neither of the mutations in isolation has a significant effect on the ON, but animals homozygous for both mutations (DM) exhibit very serious ON degeneration. ON astrocytes from these double-mutant (DM) animals have lysosomal defects, including impaired mitophagy, and dysfunctional mitochondria. Urolithin A can rescue the mitophagy impairment in DM astrocytes and reduce ON degeneration. These data demonstrate that efficient mitophagy in astrocytes is required for ON health and functional integrity.
Collapse
Affiliation(s)
- Meysam Yazdankhah
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Sayan Ghosh
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Haitao Liu
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - Stacey Hose
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
| | - J. Samuel Zigler
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| | - Debasish Sinha
- Department of Ophthalmology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA; (S.G.); (H.L.); (S.H.); (D.S.)
- Department of Ophthalmology, The Wilmer Eye Institute, The Johns Hopkins School of Medicine, Baltimore, MD 21205, USA;
| |
Collapse
|
18
|
Zhao H, Song G, Zhu H, Qian H, Pan X, Song X, Xie Y, Liu C. Pharmacological Effects of Urolithin A and Its Role in Muscle Health and Performance: Current Knowledge and Prospects. Nutrients 2023; 15:4441. [PMID: 37892516 PMCID: PMC10609777 DOI: 10.3390/nu15204441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/29/2023] Open
Abstract
Urolithin A (UA) is a naturally occurring compound derived from the metabolism of gut microbiota, which has attracted considerable research attention due to its pharmacological effects and potential implications in muscle health and performance. Recent studies have demonstrated that Urolithin A exhibits diverse biological activities, encompassing anti-inflammatory, antioxidant, anti-tumor, and anti-aging properties. In terms of muscle health, accumulating evidence suggests that Urolithin A may promote muscle protein synthesis and muscle growth through various pathways, offering promise in mitigating muscle atrophy. Moreover, Urolithin A exhibits the potential to enhance muscle health and performance by improving mitochondrial function and regulating autophagy. Nonetheless, further comprehensive investigations are still warranted to elucidate the underlying mechanisms of Urolithin A and to assess its feasibility and safety in human subjects, thereby advancing its potential applications in the realms of muscle health and performance.
Collapse
Affiliation(s)
- Haotian Zhao
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - Ge Song
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| | - Hongkang Zhu
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - He Qian
- School of Food Science and Technology, Jiangnan University, Wuxi 214122, China; (H.Z.); (H.Q.)
| | - Xinliang Pan
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| | - Xiaoneng Song
- Department of Physical Education, Jiangnan University, Wuxi 214122, China;
| | - Yijie Xie
- Affiliated Hospital of Jiangnan University, Wuxi 214062, China
| | - Chang Liu
- School of Sport Science, Beijing Sport University, Beijing 100084, China; (G.S.); (X.P.)
| |
Collapse
|
19
|
Yin Y, Martínez R, Zhang W, Estévez M. Crosstalk between dietary pomegranate and gut microbiota: evidence of health benefits. Crit Rev Food Sci Nutr 2023; 64:10009-10035. [PMID: 37335106 DOI: 10.1080/10408398.2023.2219763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/21/2023]
Abstract
Gut microbiota (GM) is an invisible organ that plays an important role in human health. Increasing evidence suggests that polyphenols in pomegranate (punicalagin, PU) could serve as prebiotics to modulate the composition and function of GM. In turn, GM transform PU into bioactive metabolites such as ellagic acid (EA) and urolithin (Uro). In this review, the interplay between pomegranate and GM is thoroughly described by unveiling a dialog in which both actors seem to affect each other's roles. In a first dialog, the influence of bioactive compounds from pomegranate on GM is described. The second act shows how the GM biotransform pomegranate phenolics into Uro. Finally, the health benefits of Uro and that related molecular mechanism are summarized and discussed. Intake of pomegranate promotes beneficial bacteria in GM (e.g. Lactobacillus spp., Bifidobacterium spp.) while reducing the growth of harmful bacteria (e.g. Bacteroides fragilis group, Clostridia). Akkermansia muciniphila, and Gordonibacter spp., among others, biotransform PU and EA into Uro. Uro contributes to strengthening intestinal barrier and reducing inflammatory processes. Yet, Uro production varies greatly among individuals and depend on GM composition. Uro-producing bacteria and precise metabolic pathways need to be further elucidated therefore contributing to personalized and precision nutrition.
Collapse
Affiliation(s)
- Yantao Yin
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| | - Remigio Martínez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
- Infectious Diseases Unit. Animal Health Department, University of Extremadura, Caceres, Spain
- Departamento de Sanidad Animal, Grupo de Investigación en Sanidad Animal y Zoonosis (GISAZ), UIC Zoonosis y Enfermedades Emergentes ENZOEM, University of Córdoba, Córdoba, Spain
| | - Wangang Zhang
- Key Laboratory of Meat Processing and Quality Control, College of Food Science and Technology, Nanjing Agricultural University, Nanjing, China
| | - Mario Estévez
- TECAL Research Group, IPROCAR Research Institute, Universidad de Extremadura, Caceres, Spain
| |
Collapse
|
20
|
Li J, Liao R, Zhang S, Weng H, Liu Y, Tao T, Yu F, Li G, Wu J. Promising remedies for cardiovascular disease: Natural polyphenol ellagic acid and its metabolite urolithins. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2023; 116:154867. [PMID: 37257327 DOI: 10.1016/j.phymed.2023.154867] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/17/2023] [Accepted: 05/08/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cardiovascular disease (CVD) is a significant worldwide factor contributing to human fatality and morbidity. With the increase of incidence rates, it is of concern that there is a lack of current therapeutic alternatives because of multiple side effects. Ellagic acid (EA), the natural polyphenol (C14H6O8), is abundant in pomegranates, berries, and nuts. EA and its intestinal microflora metabolite, urolithins, have recently attracted much attention as a potential novel "medicine" because of their wide pharmacological properties. PURPOSE This study aimed to critically analyze available literature to summarize the beneficial effects of EA and urolithins, and highlights their druggability and therapeutic potential in various CVDs. METHODS We systematically studied research and review articles between 1984 and 2022 available on various databases to obtain the data on EA and urolithins with no language restriction. Their cardiovascular protective activities, underlying mechanism, and druggability were highlighted and discussed comprehensively. RESULTS We found that EA and urolithins may exert preventive and curative effects on CVD with negligible side effects and possibly regulate lipid metabolism imbalance, pro-inflammatory factor production, vascular smooth muscle cell proliferation, cardiomyocyte apoptosis, endothelial cell dysfunction, and Ca2+ intake and release. Potentially, this may lead to the prevention and amelioration of atherosclerosis, hypertension, myocardial infarction, cardiac fibrosis, cardiomyopathy, cardiac arrhythmias, and cardiotoxicities in vivo. Several molecules and signaling pathways are associated with their therapeutic actions, including phosphatidylinositol 3-kinase/protein kinase B, mitogen-activated protein kinase, NF-κB, nuclear factor erythroid-2 related factor 2, sirtuin1, miRNA, and extracellular signal-regulated kinase 1/2. CONCLUSION In vitro and in vivo studies shows that EA and urolithins could be used as valid candidates for early prevention and effective therapeutic strategies for various CVDs.
Collapse
Affiliation(s)
- Jingyan Li
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Ruixue Liao
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Shijia Zhang
- School of Pharmacy, Xuzhou Medical University, Xuzhou 221000, China
| | - Huimin Weng
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Yuanzhi Liu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China; Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China
| | - Tianyi Tao
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China
| | - Fengxu Yu
- Cardiovascular Surgery Department, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, China.
| | - Guang Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education and Medical Electrophysiological Key Laboratory of Sichuan Province, Collaborative Innovation Center for Prevention of Cardiovascular Diseases, Institute of Cardiovascular Research, Southwest Medical University, Luzhou, Sichuan, China.
| | - Jianming Wu
- Sichuan Key Medical Laboratory of New Drug Discovery and Drugability Evaluation, Luzhou Key Laboratory of Activity Screening and Drugability Evaluation for Chinese Materia Medica, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan 646000, China; School of Basic Medical Sciences, Southwest Medical University, Luzhou, China.
| |
Collapse
|
21
|
Abo-Saif MA, Ragab AE, Ibrahim AO, Abdelzaher OF, Mehanyd ABM, Saber-Ayad M, El-Feky OA. Pomegranate peel extract protects against the development of diabetic cardiomyopathy in rats by inhibiting pyroptosis and downregulating LncRNA-MALAT1. Front Pharmacol 2023; 14:1166653. [PMID: 37056985 PMCID: PMC10086142 DOI: 10.3389/fphar.2023.1166653] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/13/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Pyroptosis is an inflammatory programmed cell death accompanied by activation of inflammasomes and maturation of pro-inflammatory cytokines interleukin-1β (IL-1β) and IL-18. Pyroptosis is closely linked to the development of diabetic cardiomyopathy (DC). Pomegranate peel extract (PPE) exhibits a cardioprotective effect due to its antioxidant and anti-inflammatory properties. This study aimed to investigate the underlying mechanisms of the protective effect of PPE on the myocardium in a rat model of DC and determine the underlying molecular mechanism.Methods: Type 1 diabetes (T1DM) was induced in rats by intraperitoneal injection of streptozotocin. The rats in the treated groups received (150 mg/kg) PPE orally and daily for 8 weeks. The effects on the survival rate, lipid profile, serum cardiac troponin-1, lipid peroxidation, and tissue fibrosis were assessed. Additionally, the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue was determined. The PPE was analyzed using UPLC-MS/MS and NMR for characterizing the phytochemical content.Results: Prophylactic treatment with PPE significantly ameliorated cardiac hypertrophy in the diabetic rats and increased the survival rate. Moreover, prophylactic treatment with PPE in the diabetic rats significantly improved the lipid profile, decreased serum cardiac troponin-1, and decreased lipid peroxidation in the myocardial tissue. Histopathological examination of the cardiac tissues showed a marked reduction in fibrosis (decrease in collagen volume and number of TGF-β-positive cells) and preservation of normal myocardial structures in the diabetic rats treated with PPE. There was a significant decrease in the expression of pyroptosis-related genes (NLRP3 and caspase-1) and lncRNA-MALAT1 in the heart tissue of the diabetic rats treated with PPE. In addition, the concentration of IL-1β and caspase-1 significantly decreased in the heart tissue of the same group. The protective effect of PPE on diabetic cardiomyopathy could be due to the inhibition of pyroptosis and downregulation of lncRNA-MALAT1. The phytochemical analysis of the PPE indicated that the major compounds were hexahydroxydiphenic acid glucoside, caffeoylquinic acid, gluconic acid, citric acid, gallic acid, and punicalagin.Conclusion: PPE exhibited a cardioprotective potential in diabetic rats due to its unique antioxidant, anti-inflammatory, and antifibrotic properties and its ability to improve the lipid profile. The protective effect of PPE on DC could be due to the inhibition of the NLRP3/caspase-1/IL-1β signaling pathway and downregulation of lncRNA-MALAT1. PPE could be a promising therapy to protect against the development of DC, but further clinical studies are recommended.
Collapse
Affiliation(s)
- Mariam Ali Abo-Saif
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | - Amany E. Ragab
- Department of Pharmacognosy, Faculty of Pharmacy, Tanta University, Tanta, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Amera O. Ibrahim
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| | | | | | - Maha Saber-Ayad
- Department of Clinical Sciences, College of Medicine and Research Institute for Medical and Health Sciences, University of Sharjah, Sharjah, United Arab Emirates
- Department of Pharmacology, College of Medicine, Cairo University, Giza, Egypt
- *Correspondence: Amany E. Ragab, ; Maha Saber-Ayad,
| | - Ola A. El-Feky
- Department of Biochemistry, Faculty of Pharmacy, Tanta University, Tanta, Egypt
| |
Collapse
|
22
|
Dose-Related Regulatory Effect of Raspberry Polyphenolic Extract on Cecal Microbiota Activity, Lipid Metabolism and Inflammation in Rats Fed a Diet Rich in Saturated Fats. Nutrients 2023; 15:nu15020354. [PMID: 36678224 PMCID: PMC9865883 DOI: 10.3390/nu15020354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 12/22/2022] [Accepted: 01/06/2023] [Indexed: 01/12/2023] Open
Abstract
The amount of berry polyphenols required to exert health-promoting effects seems to be difficult to achieve by fresh fruit ingestion, so polyphenol-rich extracts could be considered a dietary alternative. In the present study, laboratory rats were fed high-fat diets supplemented with 0.1 or 0.3% raspberry polyphenols from pomace, with the former dose reflecting the amount of polyphenols consumed with a glass of fresh raspberries. It was hypothesized that beneficial changes in blood and hepatic tissue related to lipid metabolism would accompany both treatments, but the health-promoting effect would be more noticeable with the higher dose of extract. This hypothesis was confirmed, and the high dose of raspberry polyphenols was better than the low dose extract in terms of decreased epididymal white adipose tissue weight, hepatic triglyceride content, PPARγ and SREBP-1c expression in the liver, and plasma IL-6 concentration, as well as increased acetic acid concentration in the cecal digesta. These effects might be partially associated with the enhanced content of ellagitannin and anthocyanin metabolites found in the blood plasma of rats administered the high dose of the extract. The results showed that this extract could be considered a dietary vehicle to provide an amount of raspberry polyphenols that could promote health.
Collapse
|
23
|
Tang L, Chen X, Kong XM, Liu TW, Feng XQ, Chen FE, Zhuang ZH. Anti-aging effect of methylurolithin A and its amide derivatives on nematode Caenorhabditis elegans. Tetrahedron Lett 2023. [DOI: 10.1016/j.tetlet.2023.154389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
24
|
Alka Ahuja, Saraswathy Mp, Nandakumar S, Prakash F A, Kn G, Um D. Role of the Gut Microbiome in Diabetes and Cardiovascular Diseases Including Restoration and Targeting Approaches- A Review. DRUG METABOLISM AND BIOANALYSIS LETTERS 2022; 15:133-149. [PMID: 36508273 DOI: 10.2174/2949681015666220615120300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/15/2022] [Accepted: 03/18/2022] [Indexed: 12/15/2022]
Abstract
Metabolic diseases, including cardiovascular diseases (CVD) and diabetes, have become the leading cause of morbidity and mortality worldwide. Gut microbiota appears to play a vital role in human disease and health, according to recent scientific reports. The gut microbiota plays an important role in sustaining host physiology and homeostasis by creating a cross-talk between the host and microbiome via metabolites obtained from the host's diet. Drug developers and clinicians rely heavily on therapies that target the microbiota in the management of metabolic diseases, and the gut microbiota is considered the biggest immune organ in the human body. They are highly associated with intestinal immunity and systemic metabolic disorders like CVD and diabetes and are reflected as potential therapeutic targets for the management of metabolic diseases. This review discusses the mechanism and interrelation between the gut microbiome and metabolic disorders. It also highlights the role of the gut microbiome and microbially derived metabolites in the pathophysiological effects related to CVD and diabetes. It also spotlights the reasons that lead to alterations of microbiota composition and the prominence of gut microbiota restoration and targeting approaches as effective treatment strategies in diabetes and CVD. Future research should focus onunderstanding the functional level of some specific microbial pathways that help maintain physiological homeostasis, multi-omics, and develop novel therapeutic strategies that intervene with the gut microbiome for the prevention of CVD and diabetes that contribute to a patient's well-being.
Collapse
Affiliation(s)
- Alka Ahuja
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| | - Saraswathy Mp
- Department of Microbiology, ESIC Medical College and PGIMSR, Chennai-600078, India
| | - Nandakumar S
- Department of Biotechnology, Pondicherry University, Kalapet, Puducherry-605014, India
| | - Arul Prakash F
- Centre of Molecular Medicine and Diagnostics (COMMAND), Saveetha Dental College and Hospital, Saveetha Institute of Medical & Technical Sciences, Chennai- 600077, India
| | - Gurpreet Kn
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| | - Dhanalekshmi Um
- College of Pharmacy, National University of Science and Technology, PC130, Muscat, Sultanate of Oman
| |
Collapse
|
25
|
García‐Villalba R, Giménez‐Bastida JA, Cortés‐Martín A, Ávila‐Gálvez MÁ, Tomás‐Barberán FA, Selma MV, Espín JC, González‐Sarrías A. Urolithins: a Comprehensive Update on their Metabolism, Bioactivity, and Associated Gut Microbiota. Mol Nutr Food Res 2022; 66:e2101019. [PMID: 35118817 PMCID: PMC9787965 DOI: 10.1002/mnfr.202101019] [Citation(s) in RCA: 113] [Impact Index Per Article: 37.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Revised: 01/22/2022] [Indexed: 12/30/2022]
Abstract
Urolithins, metabolites produced by the gut microbiota from the polyphenols ellagitannins and ellagic acid, are discovered by the research group in humans almost 20 years ago. Pioneering research suggests urolithins as pleiotropic bioactive contributors to explain the health benefits after consuming ellagitannin-rich sources (pomegranates, walnuts, strawberries, etc.). Here, this study comprehensively updates the knowledge on urolithins, emphasizing the review of the literature published during the last 5 years. To date, 13 urolithins and their corresponding conjugated metabolites (glucuronides, sulfates, etc.) have been described and, depending on the urolithin, detected in different human fluids and tissues (urine, blood, feces, breastmilk, prostate, colon, and breast tissues). There has been a substantial advance in the research on microorganisms involved in urolithin production, along with the compositional and functional characterization of the gut microbiota associated with urolithins metabolism that gives rise to the so-called urolithin metabotypes (UM-A, UM-B, and UM-0), relevant in human health. The design of in vitro studies using physiologically relevant assay conditions (molecular forms and concentrations) is still a pending subject, making some reported urolithin activities questionable. In contrast, remarkable progress has been made in the research on the safety, bioactivity, and associated mechanisms of urolithin A, including the first human interventions.
Collapse
Affiliation(s)
- Rocío García‐Villalba
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Antonio Giménez‐Bastida
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Adrián Cortés‐Martín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Ángeles Ávila‐Gálvez
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Francisco A. Tomás‐Barberán
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - María Victoria Selma
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Juan Carlos Espín
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| | - Antonio González‐Sarrías
- Laboratory of Food & HealthResearch Group on QualitySafety and Bioactivity of Plant FoodsCEBAS‐CSICMurciaCampus de EspinardoSpain
| |
Collapse
|
26
|
Vilella R, Izzo S, Naponelli V, Savi M, Bocchi L, Dallabona C, Gerra MC, Stilli D, Bettuzzi S. In Vivo Treatment with a Standardized Green Tea Extract Restores Cardiomyocyte Contractility in Diabetic Rats by Improving Mitochondrial Function through SIRT1 Activation. Pharmaceuticals (Basel) 2022; 15:1337. [PMID: 36355510 PMCID: PMC9692907 DOI: 10.3390/ph15111337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 10/13/2022] [Accepted: 10/25/2022] [Indexed: 08/27/2023] Open
Abstract
Background. Green tea catechins are known to promote mitochondrial function, and to modulate gene expression and signalling pathways that are altered in the diabetic heart. We thus evaluated the effectiveness of the in vivo administration of a standardized green tea extract (GTE) in restoring cardiac performance, in a rat model of early streptozotocin-induced diabetes, with a focus on the underlying mechanisms. Methods. Twenty-five male adult Wistar rats were studied: the control (n = 9), untreated diabetic animals (n = 7) and diabetic rats subjected to daily GTE administration for 28 days (n = 9). Isolated ventricular cardiomyocytes were used for ex vivo measurements of cell mechanics and calcium transients, and molecular assays, including the analysis of functional protein and specific miRNA expression. Results. GTE treatment induced an almost complete recovery of cardiomyocyte contractility that was markedly impaired in the diabetic cells, by preserving mitochondrial function and energy availability, and modulating the expression of the sarcoplasmic reticulum calcium ATPase and phospholamban. Increased Sirtuin 1 (SIRT1) expression and activity substantially contributed to the observed cardioprotective effects. Conclusions. The data supported the hypothesis that green tea dietary polyphenols, by targeting SIRT1, can constitute an adjuvant strategy for counteracting the initial damage of the diabetic heart, before the occurrence of diabetic cardiomyopathy.
Collapse
Affiliation(s)
- Rocchina Vilella
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Simona Izzo
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Valeria Naponelli
- Department of Medicine and Surgery, University of Parma, 43125 Parma, Italy
| | - Monia Savi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Leonardo Bocchi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Cristina Dallabona
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Maria Carla Gerra
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Donatella Stilli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Saverio Bettuzzi
- Adamas Biotech, 73024 Maglie, Italy
- National Institute of Biostructure and Biosystems (INBB), 00136 Rome, Italy
| |
Collapse
|
27
|
Chang X, Toan S, Li R, Zhou H. Therapeutic strategies in ischemic cardiomyopathy: Focus on mitochondrial quality surveillance. EBioMedicine 2022; 84:104260. [PMID: 36122552 PMCID: PMC9490489 DOI: 10.1016/j.ebiom.2022.104260] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 08/12/2022] [Accepted: 08/24/2022] [Indexed: 11/23/2022] Open
Abstract
Despite considerable efforts to prevent and treat ischemic cardiomyopathy (ICM), effective therapies remain lacking, in part owing to the complexity of the underlying molecular mechanisms, which are not completely understood yet. It is now widely thought that mitochondria serve as “sentinel” organelles that are capable of detecting cellular injury and integrating multiple stress signals. These pathophysiological activities are temporally and spatially governed by the mitochondrial quality surveillance (MQS) system, involving mitochondrial dynamics, mitophagy, and biogenesis. Dysregulation of MQS is an early and critical process contributing to mitochondrial bioenergetic dysfunction and sublethal injury to cardiomyocytes during ICM. An improved understanding of the pathogenesis of ICM may enable the development of novel preventive and therapeutic strategies aimed at overcoming the challenge of myocardial ischemia and its cardiovascular sequelae. This review describes recent research on the protective effects of MQS in ICM and highlights promising therapeutic targets.
Collapse
|
28
|
Guo P, Liu Y, Feng J, Tang S, Wei F, Feng J. p21-activated kinase 1 (PAK1) as a therapeutic target for cardiotoxicity. Arch Toxicol 2022; 96:3143-3162. [DOI: 10.1007/s00204-022-03384-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 09/14/2022] [Indexed: 11/02/2022]
|
29
|
Xu Z, Li S, Li K, Wang X, Li X, An M, Yu X, Long X, Zhong R, Liu Q, Wang X, Yang Y, Tian N. Urolithin A ameliorates diabetic retinopathy via activation of the Nrf2/HO-1 pathway. Endocr J 2022; 69:971-982. [PMID: 35321989 DOI: 10.1507/endocrj.ej21-0490] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Diabetic retinopathy (DR) is a progressive microvascular complication of diabetes mellitus and is characterised by excessive inflammation and oxidative stress. Urolithin A (UA), a major metabolite of ellagic acid, exerts anti-inflammatory and antioxidant functions in various human diseases. This study, for the first time, uncovered the role of UA in DR pathogenesis. Streptozotocin-induced diabetic rats were used to determine the effects of UA on blood glucose levels, retinal structures, inflammation, and oxidative stress. High glucose (HG)-induced human retinal endothelial cells (HRECs) were used to elucidate the anti-inflammatory and antioxidant mechanisms of UA in DR in vitro. The in vivo experiments demonstrated that UA injection reduced blood glucose levels, decreased albumin and vascular endothelial growth factor concentrations, and ameliorated the injured retinal structures caused by DR. UA administration also inhibited inflammation and oxidative damage in the retinal tissues of diabetic rats. Similar anti-inflammatory and antioxidant effects of UA were observed in HRECs induced by HG. Furthermore, we found that UA elevated the levels of nuclear Nrf2 and HO-1 both in vivo and in vitro. Nrf2 silencing reversed the inhibitory effects of UA on inflammation and oxidative stress during DR progression. Together, our findings indicate that UA can ameliorate DR by repressing inflammation and oxidative stress via the Nrf2/HO-1 pathway, which suggests that UA could be an effective drug for clinical DR treatment.
Collapse
Affiliation(s)
- Zepeng Xu
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Songtao Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Kunmeng Li
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaoyu Wang
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaojie Li
- The First Clinical Medical College of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Meixia An
- Department of Ophthalmology, The Third Affiliated Hospital of Southern Medical University, Guangdong Province, 510630, China
| | - Xiaoyi Yu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xinguang Long
- Department of Ophthalmology, Wuyi Hospital of Traditional Chinese Medicine, Guangdong Province, 529000, China
| | - Ruiying Zhong
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Qiuhong Liu
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Xiaochuan Wang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Yan Yang
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| | - Ni Tian
- Department of Ophthalmology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Province, 510504, China
| |
Collapse
|
30
|
Gandhi GR, Antony PJ, Ceasar SA, Vasconcelos ABS, Montalvão MM, Farias de Franca MN, Resende ADS, Sharanya CS, Liu Y, Hariharan G, Gan RY. Health functions and related molecular mechanisms of ellagitannin-derived urolithins. Crit Rev Food Sci Nutr 2022; 64:280-310. [PMID: 35959701 DOI: 10.1080/10408398.2022.2106179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Ellagitannins are vital bioactive polyphenols that are widely distributed in a variety of plant-based foods. The main metabolites of ellagitannins are urolithins, and current research suggests that urolithins provide a variety of health benefits. This review focused on the role of the gut bacteria in the conversion of ellagitannins to urolithins. Based on the results of in vitro and in vivo studies, the health benefits of urolithins, including antioxidant, anti-inflammatory, anti-cancer, anti-obesity, anti-diabetic, anti-aging, cardiovascular protective, neuroprotective, kidney protective, and muscle mass protective effects, were thoroughly outlined, with a focus on their associated molecular mechanisms. Finally, we briefly commented on urolithins' safety. Overall, urolithins' diverse health benefits indicate the potential utilization of ellagitannins and urolithins in the creation of functional foods and nutraceuticals to treat and prevent some chronic diseases.
Collapse
Affiliation(s)
- Gopalsamy Rajiv Gandhi
- Department of Biosciences, Rajagiri College of Social Sciences, Kalamaserry, Kochi, India
| | | | | | - Alan Bruno Silva Vasconcelos
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Monalisa Martins Montalvão
- Postgraduate Program of Physiological Sciences (PROCFIS), Federal University of Sergipe (UFS), São Cristóvão, Sergipe, Brazil
| | - Mariana Nobre Farias de Franca
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | - Ayane de Sá Resende
- Postgraduate Program of Health Sciences (PPGCS), Federal University of Sergipe (UFS), Campus Prof. João Cardoso Nascimento, Aracaju, CEP, Sergipe, Brazil
| | | | - Yi Liu
- Research Center for Plants and Human Health, Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences (CAAS), Chengdu National Agricultural Science and Technology Center, Chengdu, China
| | - Govindasamy Hariharan
- Department of Biochemistry, Srimad Andavan Arts and Science College (Autonomous) affiliated to the Bharathidasan University, Tiruchirapalli, India
| | - Ren-You Gan
- Nepal Jesuit Society, St. Xavier's College, Jawalakhel, Lalitpur Dt. Kathmandu, Nepal
| |
Collapse
|
31
|
Kotewicz M, Krauze-Baranowska M, Daca A, Płoska A, Godlewska S, Kalinowski L, Lewko B. Urolithins Modulate the Viability, Autophagy, Apoptosis, and Nephrin Turnover in Podocytes Exposed to High Glucose. Cells 2022; 11:cells11162471. [PMID: 36010548 PMCID: PMC9406555 DOI: 10.3390/cells11162471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/29/2022] [Accepted: 08/06/2022] [Indexed: 12/02/2022] Open
Abstract
Urolithins are bioactive compounds generated in human and animal intestines because of the bacterial metabolism of dietary ellagitannins (and their constituent, ellagic acid). Due to their multidirectional effects, including anti-inflammatory, antioxidant, anti-cancer, neuroprotective, and antiglycative properties, urolithins are potential novel therapeutic agents. In this study, while considering the future possibility of using urolithins to improve podocyte function in diabetes, we assessed the results of exposing mouse podocytes cultured in normal (NG, 5.5 mM) and high (HG, 25 mM) glucose concentrations to urolithin A (UA) and urolithin B (UB). Podocytes metabolized UA to form glucuronides in a time-dependent manner; however, in HG conditions, the metabolism was lower than in NG conditions. In HG milieu, UA improved podocyte viability more efficiently than UB and reduced the reactive oxygen species level. Both types of urolithins showed cytotoxic activity at high (100 µM) concentration. The UA upregulated total and surface nephrin expression, which was paralleled by enhanced nephrin internalization. Regulation of nephrin turnover was independent of ambient glucose concentration. We conclude that UA affects podocytes in different metabolic and functional aspects. With respect to its pro-survival effects in HG-induced toxicity, UA could be considered as a potent therapeutic candidate against diabetic podocytopathy.
Collapse
Affiliation(s)
- Milena Kotewicz
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | | | - Agnieszka Daca
- Department of Pathology and Experimental Rheumatology, Faculty of Medicine, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Agata Płoska
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Sylwia Godlewska
- Department of Pharmacognosy, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
| | - Leszek Kalinowski
- Department of Medical Laboratory Diagnostics-Fahrenheit Biobank BBMRI, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- BioTechMed Centre, Department of Mechanics of Materials and Structures, Gdansk University of Technology, 80-233 Gdansk, Poland
| | - Barbara Lewko
- Department of Pharmaceutical Pathophysiology, Faculty of Pharmacy, Medical University of Gdansk, 80-210 Gdansk, Poland
- Correspondence:
| |
Collapse
|
32
|
Azam T, Zhang H, Zhou F, Wang X. Recent Advances on Drug Development and Emerging Therapeutic Agents Through Targeting Cellular Homeostasis for Ageing and Cardiovascular Disease. FRONTIERS IN AGING 2022; 3:888190. [PMID: 35821839 PMCID: PMC9261412 DOI: 10.3389/fragi.2022.888190] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Ageing is a progressive physiological process mediated by changes in biological pathways, resulting in a decline in tissue and cellular function. It is a driving factor in numerous age-related diseases including cardiovascular diseases (CVDs). Cardiomyopathies, hypertension, ischaemic heart disease, and heart failure are some of the age-related CVDs that are the leading causes of death worldwide. Although individual CVDs have distinct clinical and pathophysiological manifestations, a disturbance in cellular homeostasis underlies the majority of diseases which is further compounded with aging. Three key evolutionary conserved signalling pathways, namely, autophagy, mitophagy and the unfolded protein response (UPR) are involved in eliminating damaged and dysfunctional organelle, misfolded proteins, lipids and nucleic acids, together these molecular processes protect and preserve cellular homeostasis. However, amongst the numerous molecular changes during ageing, a decline in the signalling of these key molecular processes occurs. This decline also increases the susceptibility of damage following a stressful insult, promoting the development and pathogenesis of CVDs. In this review, we discuss the role of autophagy, mitophagy and UPR signalling with respect to ageing and cardiac disease. We also highlight potential therapeutic strategies aimed at restoring/rebalancing autophagy and UPR signalling to maintain cellular homeostasis, thus mitigating the pathological effects of ageing and CVDs. Finally, we highlight some limitations that are likely hindering scientific drug research in this field.
Collapse
Affiliation(s)
- Tayyiba Azam
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Hongyuan Zhang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Fangchao Zhou
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| | - Xin Wang
- Michael Smith Building, Division of Cardiovascular Sciences, Faculty of Biology, Medicine and Health, The University of Manchester, Manchester, United Kingdom
| |
Collapse
|
33
|
D'Amico D, Olmer M, Fouassier AM, Valdés P, Andreux PA, Rinsch C, Lotz M. Urolithin A improves mitochondrial health, reduces cartilage degeneration, and alleviates pain in osteoarthritis. Aging Cell 2022; 21:e13662. [PMID: 35778837 PMCID: PMC9381911 DOI: 10.1111/acel.13662] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 05/11/2022] [Accepted: 06/07/2022] [Indexed: 01/22/2023] Open
Abstract
Osteoarthritis (OA) is the most common age‐related joint disorder with no effective therapy. According to the World Health Organization, OA affects over 500 million people and is characterized by degradation of cartilage and other joint tissues, severe pain, and impaired mobility. Mitochondrial dysfunction contributes to OA pathology. However, interventions to rescue mitochondrial defects in human OA are not available. Urolithin A (Mitopure) is a natural postbiotic compound that promotes mitophagy and mitochondrial function and beneficially impacts muscle health in preclinical models of aging and in elderly and middle‐aged humans. Here, we showed that Urolithin A improved mitophagy and mitochondrial respiration in primary chondrocytes from joints of both healthy donors and OA patients. Furthermore, Urolithin A reduced disease progression in a mouse model of OA, decreasing cartilage degeneration, synovial inflammation, and pain. These improvements were associated with increased mitophagy and mitochondrial content, in joints of OA mice. These findings indicate that UA promotes joint mitochondrial health, alleviates OA pathology, and supports Urolithin A's potential to improve mobility with beneficial effects on structural damage in joints.
Collapse
Affiliation(s)
- Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Merissa Olmer
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| | | | - Pamela Valdés
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | | | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Lausanne, Switzerland
| | - Martin Lotz
- Department of Molecular Medicine, Scripps Research, La Jolla, CA, USA
| |
Collapse
|
34
|
Abstract
Sarcopenia is common in aging and in patients with heart failure (HF) who may experience worse outcomes. Patients with muscle wasting are more likely to experience falls and can have serious complications when undergoing cardiac procedures. While intensive nutritional support and exercise rehabilitation can help reverse some of these changes, they are often under-prescribed in a timely manner, and we have limited insights into who would benefit. Mechanistic links between gut microbial metabolites (GMM) have been identified and may contribute to adverse clinical outcomes in patients with cardio-renal diseases and aging. This review will examine the emerging evidence for the influence of the gut microbiome-derived metabolites and notable signaling pathways involved in both sarcopenia and HF, especially those linked to dietary intake and mitochondrial metabolism. This provides a unique opportunity to gain mechanistic and clinical insights into developing novel therapeutic strategies that target these GMM pathways or through tailored nutritional modulation to prevent progressive muscle wasting in elderly patients with heart failure.
Collapse
Affiliation(s)
- Chia-Feng Liu
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA
| | - W H Wilson Tang
- Center for Microbiome and Human Health, Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland, OH 44195, USA.,Department of Cardiovascular Medicine, Heart, Vascular and Thoracic Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| |
Collapse
|
35
|
Najjar RS, Knapp D, Wanders D, Feresin RG. Raspberry and blackberry act in a synergistic manner to improve cardiac redox proteins and reduce NF-κB and SAPK/JNK in mice fed a high-fat, high-sucrose diet. Nutr Metab Cardiovasc Dis 2022; 32:1784-1796. [PMID: 35487829 DOI: 10.1016/j.numecd.2022.03.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 11/20/2022]
Abstract
BACKGROUND AND AIMS Increased cardiac inflammation and oxidative stress are common features in obesity, and toll-like receptor (TLR)4 signaling is a key inflammatory pathway in this deleterious process. This study aimed to investigate whether berries could attenuate the detrimental effects of a high-fat, high-sucrose (HFHS) diet on the myocardium at the molecular level. METHODS AND RESULTS Eight-week-old male C57BL/6 mice consumed a low-fat, low-sucrose (LFLS) diet alone or supplemented with 10% blackberry (BL), 10% raspberry (RB) or 10% blackberry + raspberry (BL + RB) for four weeks. Animals were then switched to a HFHS diet for 24 weeks with or without berry supplementation or maintained on a LFLS control diet without berry supplementation. Left ventricles of the heart were isolated for protein and mRNA analysis. Berry consumption, particularly BL + RB reduced NADPH-oxidase (NOX)1 and NOX2 and increased catalase (CAT) and superoxide dismutase (SOD)2, expression while BL and RB supplementation alone was less efficacious. Downstream TLR4 signaling was attenuated mostly by both RB and BL + RB supplementation, while NF-κB pathway was attenuated by BL + RB supplementation. Stress-activated protein kinase (SAPK)/Jun amino-terminal kinase (JNK) was also attenuated by BL + RB supplementation, and reduced TNF-α transcription and protein expression was observed only with BL + RB supplementation. CONCLUSION The synergistic effects of BL + RB may reduce obesity-induced cardiac inflammation and oxidative stress to a greater extent than BL or RB alone.
Collapse
Affiliation(s)
- Rami S Najjar
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Denise Knapp
- Department of Nutrition, Georgia State University, Atlanta, GA, USA; Department of Exercise Science and Sport Management, Kennesaw State University, Kennesaw, GA, USA
| | - Desiree Wanders
- Department of Nutrition, Georgia State University, Atlanta, GA, USA
| | - Rafaela G Feresin
- Department of Nutrition, Georgia State University, Atlanta, GA, USA.
| |
Collapse
|
36
|
Chen P, Guo Z, Chen F, Wu Y, Zhou B. Recent Advances and Perspectives on the Health Benefits of Urolithin B, A Bioactive Natural Product Derived From Ellagitannins. Front Pharmacol 2022; 13:917266. [PMID: 35814202 PMCID: PMC9257173 DOI: 10.3389/fphar.2022.917266] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Accepted: 06/06/2022] [Indexed: 12/11/2022] Open
Abstract
Urolithin (Uro) B is a natural compound produced by gut bacteria from ingested ellagitannins (ETs) and ellagic acid (EA), complex polyphenols abundant in foods such as pomegranates, raspberries, blueberries and chestnuts. Uro B has recently garnered considerable attention owing to its wide range of nutraceutical effects and relatively high potency. According to several studies, Uro B prevents the development of hyperlipidemia, cardiovascular disease (CVD) and tumors due to its strong antioxidant and anti-inflammatory properties. Many reviews have systematically summarized the health benefits and pharmacological activities of ETs, EA and urolithins (especially Uro A) while available reviews or detailed summaries on the positive impact of Uro B are rarer. Here, we sought to review the pharmacological activity, mechanism of action, regulation of immune function and its associated diseases and preventive potential of Uro B to elucidate its function as a nutritional agent in humans.
Collapse
Affiliation(s)
- Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhiei Guo
- Department of Pharmacy, Wuhan Fourth Hospital, Puai Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fuchao Chen
- Sinopharm Dongfeng General Hospital, Hubei University of Medicine, Shiyan, China
| | - Yue Wu
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
- *Correspondence: Benhong Zhou,
| |
Collapse
|
37
|
Ameliorative Effects of Gut Microbial Metabolite Urolithin A on Pancreatic Diseases. Nutrients 2022; 14:nu14122549. [PMID: 35745279 PMCID: PMC9229509 DOI: 10.3390/nu14122549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 06/14/2022] [Accepted: 06/15/2022] [Indexed: 12/11/2022] Open
Abstract
Urolithin A (Uro A) is a dietary metabolite of the intestinal microbiota following the ingestion of plant-based food ingredients ellagitannins and ellagic acid in mammals. Accumulating studies have reported its multiple potential health benefits in a broad range of diseases, including cardiovascular disease, cancer, cognitive impairment, and diabetes. In particular, Uro A is safe via direct oral administration and is non-genotoxic. The pancreas plays a central role in regulating energy consumption and metabolism by secreting digestive enzymes and hormones. Numerous pathophysiological factors, such as inflammation, deficits of mitophagy, and endoplasmic reticulum stress, can negatively affect the pancreas, leading to pancreatic diseases, including pancreatitis, pancreatic cancer, and diabetes mellitus. Recent studies showed that Uro A activates autophagy and inhibits endoplasmic reticulum stress in the pancreas, thus decreasing oxidative stress, inflammation, and apoptosis. In this review, we summarize the knowledge of Uro A metabolism and biological activity in the gut, as well as the pathological features and mechanisms of common pancreatic diseases. Importantly, we focus on the potential activities of Uro A and the underlying mechanisms in ameliorating various pancreatic diseases via inhibiting inflammatory signaling pathways, activating autophagy, maintaining the mitochondrial function, and improving the immune microenvironment. It might present a novel nutritional strategy for the intervention and prevention of pancreatic diseases.
Collapse
|
38
|
Li Y, Zhuang Q, Tao L, Zheng K, Chen S, Yang Y, Feng C, Wang Z, Shi H, Shi J, Fang Y, Xiao L, Geng D, Wang Z. Urolithin B suppressed osteoclast activation and reduced bone loss of osteoporosis via inhibiting ERK/NF-κB pathway. Cell Prolif 2022; 55:e13291. [PMID: 35708050 PMCID: PMC9528769 DOI: 10.1111/cpr.13291] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Revised: 05/30/2022] [Accepted: 06/01/2022] [Indexed: 12/05/2022] Open
Abstract
Objectives The main target of current drugs for alleviating bone loss is osteoclasts. However, the long‐term application of such drugs will also cause side effects. Therefore, it is of great need to develop new and safer therapeutics for osteoporosis. In recent years, drug development based on gut microbiota has gradually attracted attention. This manuscript investigates the inhibitory effect of urolithin B (UB) on osteoclastogenesis and differentiation in vitro and in ovariectomized (OVX) mice. Materials and Methods CCK‐8 was used to analyse the cytotoxicity of UB; BMMs cells were differentiated into osteoclasts by RANKL, and respectively treated with 1, 5, and 25 μmol/L UB during this process. After one week of intervention, tartrate‐resistant acid phosphatase (TRAP) staining was used to analyse the number and average area of osteoclasts. F‐actin staining and immunofluorescence staining were conducted to evaluate the morphology and function of osteoclasts. Bone resorption function of osteoclasts was detected by Pit Formation Assay. The expression of osteoclast‐related protein genes in RAW264.7 cells were investigated via western blot and RT‐PCR assays. Western blot analysis of RANKL‐mediated activation of MAPK/NF‐κB pathway after 0, 5, 15, 30, 60 min of intervention. For in vivo experiments, OVX mice received intraperitoneal injection of 10, 50 mg/kg every two days, 8 weeks later, the femurs of mice were taken for morphological analysis, and the serum content of CTX‐1, a bone metabolism index, was analysed. Results UB could inhibit the osteoclast differentiation of rankl‐induced bone marrow macrophages (BMMs) and RAW264.7 cells in vitro, suppress the uptake activity of hydroxyapatite and expression of osteoclast‐related gene MMP9, CTSK, NFATc1 and c‐fos. Furthermore, UB repressed the rankl‐induced phosphorylation and degradation of IκB and the phosphorylation of P65 in the NF‐κB pathway of RAW264.7 cells, and also down‐regulated the phosphorylation level of ERK in the MAPK pathway. For in vivo studies, UB‐treated OVX mice showed more significant improved various parameters of distal femur compared with the control group, with fewer NFATc1, MMP9 and TRAP‐positive osteoclasts in bone tissues, and less serum content of CTX‐1. Conclusion Urolithin B attenuated bone loss in OVX mice by inhibiting the formation and activation of osteoclasts via down‐regulation of the ERK/NF‐κB signalling pathway.
Collapse
Affiliation(s)
- Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Qi Zhuang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Lihong Tao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Rheumatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Kai Zheng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Rheumatology, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Chengcheng Feng
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Zhifang Wang
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Haiwei Shi
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Jiandong Shi
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| | - Yiling Fang
- Department of General Practice, The First People's Hospital of Zhangjiagang, Soochow University, Zhangjiagang, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Dechun Geng
- Department of Orthopedics, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China.,Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, China
| |
Collapse
|
39
|
Li Q, Wang L, Liu H, Ren W, Zhang Z, Xia B. Roles of miR-124-3p/Scd1 in urolithin A-induced brown adipocyte differentiation and succinate-dependent regulation of mitochondrial complex II. Biochem Biophys Res Commun 2022; 606:174-181. [PMID: 35361481 DOI: 10.1016/j.bbrc.2022.03.112] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Brown adipocytes have been linked to managing human obesity and related metabolic diseases. A large number of natural products have emerged that can activate brown adipocytes tissue (BAT) to active thermogenesis, but the epigenetic mechanisms have not been fully resolved. In this study, we identified the induction of miR-124-3p by urolithin A (UA) as a means to increase the thermogenic activity of brown adipocytes. Overexpression of miR-124-3p enhances thermogenesis by increasing mitochondrial content in brown adipocytes. Mechanistically, to clarify that miR-124-3p affects fatty acid synthesis using bioinformatics methods, it is clear that miR-124 affects the synthesis of fatty acids through the enrichment analysis of the KEGG pathway, and using dual luci. ferase to determine the target gene as stearoyl-CoA desaturase 1 (SCD1) while controlling rates of fatty acids synthesis and de novo brown fat biogenesis. Finally, in the overexpression of miR-124-3p and UA-treated BAT, succinate accumulation was enhanced in cells and fueled mitochondrial complex II activities. This study highlights a miR-124-3p/SCD1/succinate pathway that stimulates thermogenesis of BAT via the modulatory roles of UA.
Collapse
Affiliation(s)
- Qian Li
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Lina Wang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Huan Liu
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Weiyuan Ren
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China
| | - Zhiying Zhang
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| | - Bo Xia
- College of Animal Science and Technology, Northwest A&F University, Yangling, Shaanxi, 712100, China.
| |
Collapse
|
40
|
Singh A, D'Amico D, Andreux PA, Fouassier AM, Blanco-Bose W, Evans M, Aebischer P, Auwerx J, Rinsch C. Urolithin A improves muscle strength, exercise performance, and biomarkers of mitochondrial health in a randomized trial in middle-aged adults. Cell Rep Med 2022; 3:100633. [PMID: 35584623 PMCID: PMC9133463 DOI: 10.1016/j.xcrm.2022.100633] [Citation(s) in RCA: 68] [Impact Index Per Article: 22.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Revised: 02/24/2022] [Accepted: 04/21/2022] [Indexed: 12/14/2022]
Abstract
Targeting mitophagy to activate the recycling of faulty mitochondria during aging is a strategy to mitigate muscle decline. We present results from a randomized, placebo-controlled trial in middle-aged adults where we administer a postbiotic compound Urolithin A (Mitopure), a known mitophagy activator, at two doses for 4 months (NCT03464500). The data show significant improvements in muscle strength (∼12%) with intake of Urolithin A. We observe clinically meaningful improvements with Urolithin A on aerobic endurance (peak oxygen oxygen consumption [VO2]) and physical performance (6 min walk test) but do not notice a significant improvement on peak power output (primary endpoint). Levels of plasma acylcarnitines and C-reactive proteins are significantly lower with Urolithin A, indicating higher mitochondrial efficiency and reduced inflammation. We also examine expression of proteins linked to mitophagy and mitochondrial metabolism in skeletal muscle and find a significant increase with Urolithin A administration. This study highlights the benefit of Urolithin A to improve muscle performance. Oral supplementation with Urolithin A increases muscle strength High dose of Urolithin A positively impacts exercise-performance measures An increase in mitophagy proteins in human skeletal muscle observed in parallel Supplementation is safe and increases circulating levels of Urolithin A
Collapse
Affiliation(s)
- Anurag Singh
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland.
| | - Davide D'Amico
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| | - Pénélope A Andreux
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| | | | | | - Mal Evans
- KGK Science, 255 Queens Avenue #1440, London, ON N6A 5R8, Canada
| | - Patrick Aebischer
- Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Johan Auwerx
- Laboratory of Integrative Systems Physiology, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
| | - Chris Rinsch
- Amazentis SA, EPFL Innovation Park, Bâtiment C, 1015 Lausanne, Switzerland
| |
Collapse
|
41
|
Yang J, Guo Q, Feng X, Liu Y, Zhou Y. Mitochondrial Dysfunction in Cardiovascular Diseases: Potential Targets for Treatment. Front Cell Dev Biol 2022; 10:841523. [PMID: 35646910 PMCID: PMC9140220 DOI: 10.3389/fcell.2022.841523] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/13/2022] [Indexed: 12/20/2022] Open
Abstract
Cardiovascular diseases (CVDs) are serious public health issues and are responsible for nearly one-third of global deaths. Mitochondrial dysfunction is accountable for the development of most CVDs. Mitochondria produce adenosine triphosphate through oxidative phosphorylation and inevitably generate reactive oxygen species (ROS). Excessive ROS causes mitochondrial dysfunction and cell death. Mitochondria can protect against these damages via the regulation of mitochondrial homeostasis. In recent years, mitochondria-targeted therapy for CVDs has attracted increasing attention. Various studies have confirmed that clinical drugs (β-blockers, angiotensin-converting enzyme inhibitors/angiotensin receptor-II blockers) against CVDs have mitochondrial protective functions. An increasing number of cardiac mitochondrial targets have shown their cardioprotective effects in experimental and clinical studies. Here, we briefly introduce the mechanisms of mitochondrial dysfunction and summarize the progression of mitochondrial targets against CVDs, which may provide ideas for experimental studies and clinical trials.
Collapse
|
42
|
Abstract
Tannins are an interesting class of polyphenols, characterized, in almost all cases, by a different degree of polymerization, which, inevitably, markedly influences their bioavailability, as well as biochemical and pharmacological activities. They have been used for the process of tanning to transform hides into leather, from which their name derives. For several time, they have not been accurately evaluated, but now researchers have started to unravel their potential, highlighting anti-inflammatory, antimicrobial, antioxidant and anticancer activities, as well as their involvement in cardiovascular, neuroprotective and in general metabolic diseases prevention. The mechanisms underlying their activity are often complex, but the main targets of their action (such as key enzymes modulation, activation of metabolic pathways and changes in the metabolic fluxes) are highlighted in this review, without losing sight of their toxicity. This aspect still needs further and better-designed study to be thoroughly understood and allow a more conscious use of tannins for human health.
Collapse
|
43
|
Xiao Y, Li K, Bian J, Liu H, Zhai X, El‐Omar E, Han L, Gong L, Wang M. Urolithin A attenuates diabetes‐associated cognitive impairment by ameliorating intestinal barrier dysfunction via N‐glycan biosynthesis pathway. Mol Nutr Food Res 2022; 66:e2100863. [DOI: 10.1002/mnfr.202100863] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Revised: 01/24/2022] [Indexed: 11/05/2022]
Affiliation(s)
- Yao Xiao
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Kailin Li
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Ji Bian
- Kolling Institute Sydney Medical School Royal North Shore Hospital University of Sydney St. Leonards NSW 2065 Australia
| | - Hang Liu
- School of Life Sciences and Biotechnology Shanghai Jiao Tong University Shanghai Center for Systems Biomedicine Shanghai 200240 China
| | - Xiaotong Zhai
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
- Academy of National Food and Strategic Reserves Administration No.11 Baiwanzhuang Street Beijing 100037 China
| | - Emad El‐Omar
- Microbiome Research Centre St George and Sutherland Clinical School University of New South Wales Sydney Australia
| | - Lin Han
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| | - Lan Gong
- Microbiome Research Centre St George and Sutherland Clinical School University of New South Wales Sydney Australia
| | - Min Wang
- College of Food Science and Engineering Northwest A & F University Yangling Shaanxi 712100 China
| |
Collapse
|
44
|
Gong QY, Cai L, Jing Y, Wang W, Yang DX, Chen SW, Tian HL. Urolithin A alleviates blood-brain barrier disruption and attenuates neuronal apoptosis following traumatic brain injury in mice. Neural Regen Res 2022; 17:2007-2013. [PMID: 35142690 PMCID: PMC8848621 DOI: 10.4103/1673-5374.335163] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Urolithin A (UA) is a natural metabolite produced from polyphenolics in foods such as pomegranates, berries, and nuts. UA is neuroprotective against Parkinson's disease, Alzheimer's disease, and cerebral hemorrhage. However, its effect against traumatic brain injury remains unknown. In this study, we established adult C57BL/6J mouse models of traumatic brain injury by controlled cortical impact and then intraperitoneally administered UA. We found that UA greatly reduced brain edema; increased the expression of tight junction proteins in injured cortex; increased the immunopositivity of two neuronal autophagy markers, microtubule-associated protein 1A/B light chain 3A/B (LC3) and p62; downregulated protein kinase B (Akt) and mammalian target of rapamycin (mTOR), two regulators of the phosphatidylinositol 3-kinase (PI3K)/Akt/mTOR signaling pathway; decreased the phosphorylation levels of inhibitor of NFκB (IκB) kinase alpha (IKKα) and nuclear factor kappa B (NFκB), two regulators of the neuroinflammation-related Akt/IKK/NFκB signaling pathway; reduced blood-brain barrier permeability and neuronal apoptosis in injured cortex; and improved mouse neurological function. These findings suggest that UA may be a candidate drug for the treatment of traumatic brain injury, and its neuroprotective effects may be mediated by inhibition of the PI3K/Akt/mTOR and Akt/IKK/NFκB signaling pathways, thus reducing neuroinflammation and enhancing autophagy.
Collapse
Affiliation(s)
- Qiu-Yuan Gong
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Lin Cai
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Yao Jing
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Wei Wang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Dian-Xu Yang
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Shi-Wen Chen
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| | - Heng-Li Tian
- Department of Neurosurgery, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, China
| |
Collapse
|
45
|
Chen P, Pei J, Wang X, Tai S, Tang L, Hu X. Gut bacterial metabolite Urolithin A inhibits myocardial fibrosis through activation of Nrf2 pathway in vitro and in vivo. Mol Med 2022; 28:19. [PMID: 35135471 PMCID: PMC8822684 DOI: 10.1186/s10020-022-00444-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 01/21/2022] [Indexed: 12/15/2022] Open
Abstract
Background Myocardial fibrosis after myocardial infarction (MI) is one of the leading causes of cardiovascular diseases. Cardiac fibroblasts (CFs) are activated and promoted by MI to undergo myofibroblast transformation (CMT). Urolithin A (UA) is an active and effective gut metabolite derived from polyphenolics of berries and pomegranate fruits, which has been reported to have anti-inflammatory and anti-oxidant functions. However, whether UA affects the CMT process during myocardial fibrosis remains unclear. Methods TGF-β1-treated primary rat cardiac fibroblasts were used for in vitro study. Cell proliferation ability was evaluated by MTT assay. Cell migration and invasion abilities were tested by wound healing and Transwell assays. The expression of CMT process-related markers were measured by qRT-PCR and western blot. The rat MI model was established by left anterior descending coronary artery (LAD) ligation and evaluated by H&E and Masson staining. Results Our data demonstrated that UA treatment could inhibit the CMT process in TGF-β1-induced CFs, including cell proliferation, migration and invasion abilities. Knocking down of Nrf2, which was activated by UA treatment, could mitigate the effects of UA treatment on CMT process. Moreover, in vivo administration of UA in rat MI model successfully up-regulated Nrf2 expression and improved the myocardial damage and fibrosis. Conclusions The study discovered the function and mechanism of UA on myocardial fibrosis and demonstrated the protective effects of UA administration through activation of Nrf2 pathway.
Collapse
Affiliation(s)
- Pengfei Chen
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Junyu Pei
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xiaopu Wang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Shi Tai
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Liang Tang
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China
| | - Xinqun Hu
- Department of Cardiology, The Second Xiangya Hospital of Central South University, No.139, Middle Ren-min Road, Changsha, 410011, Hunan Province, People's Republic of China.
| |
Collapse
|
46
|
Vini R, Azeez JM, Remadevi V, Susmi TR, Ayswarya RS, Sujatha AS, Muraleedharan P, Lathika LM, Sreeharshan S. Urolithins: The Colon Microbiota Metabolites as Endocrine Modulators: Prospects and Perspectives. Front Nutr 2022; 8:800990. [PMID: 35187021 PMCID: PMC8849129 DOI: 10.3389/fnut.2021.800990] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/10/2021] [Indexed: 12/19/2022] Open
Abstract
Selective estrogen receptor modulators (SERMs) have been used in hormone related disorders, and their role in clinical medicine is evolving. Tamoxifen and raloxifen are the most commonly used synthetic SERMs, and their long-term use are known to create side effects. Hence, efforts have been directed to identify molecules which could retain the beneficial effects of estrogen, at the same time produce minimal side effects. Urolithins, the products of colon microbiota from ellagitannin rich foodstuff, have immense health benefits and have been demonstrated to bind to estrogen receptors. This class of compounds holds promise as therapeutic and nutritional supplement in cardiovascular disorders, osteoporosis, muscle health, neurological disorders, and cancers of breast, endometrium, and prostate, or, in essence, most of the hormone/endocrine-dependent diseases. One of our findings from the past decade of research on SERMs and estrogen modulators, showed that pomegranate, one of the indirect but major sources of urolithins, can act as SERM. The prospect of urolithins to act as agonist, antagonist, or SERM will depend on its structure; the estrogen receptor conformational change, availability and abundance of co-activators/co-repressors in the target tissues, and also the presence of other estrogen receptor ligands. Given that, urolithins need to be carefully studied for its SERM activity considering the pleotropic action of estrogen receptors and its numerous roles in physiological systems. In this review, we unveil the possibility of urolithins as a potent SERM, which we are currently investigating, in the hormone dependent tissues.
Collapse
Affiliation(s)
- Ravindran Vini
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Juberiya M. Azeez
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Viji Remadevi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - T. R. Susmi
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - R. S. Ayswarya
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | | | | | - Lakshmi Mohan Lathika
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
| | - Sreeja Sreeharshan
- Cancer Biology Division, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, India
- *Correspondence: Sreeja Sreeharshan
| |
Collapse
|
47
|
Albasher G, Alkahtani S, Al-Harbi LN. Urolithin A prevents streptozotocin-induced diabetic cardiomyopathy in rats by activating SIRT1. Saudi J Biol Sci 2022; 29:1210-1220. [PMID: 35241966 PMCID: PMC8865018 DOI: 10.1016/j.sjbs.2021.09.045] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 08/18/2021] [Accepted: 09/13/2021] [Indexed: 12/23/2022] Open
Abstract
This study examined the cardiac anti-cardiomyopathy (DC) protective effect of urolithin A in streptozotocin (STZ)-treated rats and investigated if this protection involves activation of SIRT1 signaling. Diabetes was induced first STZ (65 mg/kg, i.p.) before starting the experiments. Adult male rats (n = 8/group) were treated for 8 weeks as control (non-diabetic), control + urolithin A (2.5 mg/kg/i.p.), STZ, STZ + urolithin A, and STZ + urolithin A + Ex-527 (1 mg/kg/i.p.) (a SIRT1 inhibitor). With no effect on fasting glucose and insulin levels, urolithin A improved left ventricular (LV) function and structure and reduced heart weight and serum levels of cardiac markers in STZ-treated rats. Also, it prevented collagen deposition, reduced mRNA levels of Bax, cleaved caspaspe3, collagen 1A1, transforming growth factor-β1 (TGF-β1), and Smad3 but enhanced those of Bcl2 in the LVs of diabetic rats. However, urolithin A suppressed the generation of reactive oxygen species (ROS), activated the nuclear factor erythroid 2–related factor 2 (Nrf2), and increased the levels of manganese superoxide dismutase (MnSOD) and total glutathione (GSH) in the LVs of the non-diabetic and diabetic rats, In parallel, it suppressed the cardiac activity of NF-nuclear factor-kappa beta p65 (κB p65) and reduced levels of tumor necrosis factor-α (TNF-α), and interleukin-6 (IL-6). Coincided with these events, urolithin A promoted higher activity, mRNA, and total/nuclear protein levels of SIRT1 and lowered the levels of acetyl-FOXO1, Nrf2, NF-κB, and p53. All these benefits of urolithin A were prevented by Ex-527. In conclusion, urolithin A protects against DC by activating SIRT signaling.
Collapse
|
48
|
The profile of buckwheat tannins based on widely targeted metabolome analysis and pharmacokinetic study of ellagitannin metabolite urolithin A. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113069] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
|
49
|
Zhang Y, Liu M, Zhang Y, Tian M, Chen P, Lan Y, Zhou B. Urolithin A alleviates acute kidney injury induced by renal ischemia reperfusion through the p62-Keap1-Nrf2 signaling pathway. Phytother Res 2022; 36:984-995. [PMID: 35040204 DOI: 10.1002/ptr.7370] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 12/09/2021] [Accepted: 12/15/2021] [Indexed: 12/15/2022]
Abstract
Acute kidney injury (AKI) induced by renal ischemia reperfusion (RIR) is typically observed in renal surgeries and is a leading cause of renal failure. However, there is still an unmet medical need currently in terms of clinical treatments. Herein, we report the effect of Urolithin A (UA) in a mouse RIR model, wherein we demonstrated its underlying mechanism both in vitro and in vivo. The expression levels of p62 and Keap1 significantly decreased, while that of nuclear Nrf2 increased in vitro in a hypoxia cell model after UA treatment. Furthermore, the apoptosis of tubular cells was attenuated and the reactive oxygen species (ROS) levels were reduced in the kidneys in a mouse RIR model after UA administration. In this study, we demonstrated that UA can alleviate oxidative stress and promote autophagy by activating the p62-Keap1-Nrf2 signaling pathway, which could protect the kidneys from ischemia reperfusion injury.
Collapse
Affiliation(s)
- Yi Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Mengmeng Liu
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Yaoyuan Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Mi Tian
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Peng Chen
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yu Lan
- School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, China.,School of Pharmaceutical Sciences, Wuhan University, Wuhan, China
| |
Collapse
|
50
|
Raimundo AF, Ferreira S, Pobre V, Lopes-da-Silva M, Brito JA, dos Santos DJVA, Saraiva N, dos Santos CN, Menezes R. Urolithin B: Two-way attack on IAPP proteotoxicity with implications for diabetes. Front Endocrinol (Lausanne) 2022; 13:1008418. [PMID: 36589826 PMCID: PMC9797523 DOI: 10.3389/fendo.2022.1008418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 11/15/2022] [Indexed: 12/23/2022] Open
Abstract
INTRODUCTION Diabetes is one of the major metabolic diseases worldwide. Despite being a complex systemic pathology, the aggregation and deposition of Islet Amyloid Polypeptide (IAPP), or amylin, is a recognized histopathological marker of the disease. Although IAPP proteotoxicity represents an important trigger of β-cell dysfunction and ultimately death, its exploitation as a therapeutic tool remains underdeveloped. The bioactivity of (poly)phenols towards inhibition of pathological protein aggregation is well known, however, most of the identified molecules have limited bioavailability. METHODS Using a strategy combining in silico, cell-free and cell studies, we scrutinized a unique in-house collection of (poly)phenol metabolites predicted to appear in the human circulation after (poly)phenols ingestion. RESULTS We identified urolithin B as a potent inhibitor of IAPP aggregation and a powerful modulator of cell homeostasis pathways. Urolithin B was shown to affect IAPP aggregation pattern, delaying the formation of amyloid fibrils and altering their size and morphology. The molecular mechanisms underlying urolithin B-mediated protection include protein clearance pathways, mitochondrial function, and cell cycle ultimately rescuing IAPP-mediated cell dysfunction and death. DISCUSSION In brief, our study uncovered urolithin B as a novel small molecule targeting IAPP pathological aggregation with potential to be exploited as a therapeutic tool for mitigating cellular dysfunction in diabetes. Resulting from the colonic metabolism of dietary ellagic acid in the human body, urolithin B bioactivity has the potential to be explored in nutritional, nutraceutical, and pharmacological perspectives.
Collapse
Affiliation(s)
- Ana F. Raimundo
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Sofia Ferreira
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
- Universidad de Alcalá, Escuela de Doctorado, Departamento de Ciencias Biomédicas, Madrid, Spain
| | - Vânia Pobre
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
| | - Mafalda Lopes-da-Silva
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - José A. Brito
- ITQB-NOVA, Instituto de Tecnologia Química e Biológica António Xavier, Universidade NOVA Lisboa, Oeiras, Portugal
| | | | - Nuno Saraiva
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
| | - Cláudia N. dos Santos
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
| | - Regina Menezes
- iBET, Instituto de Biologia Experimental e Tecnológica, Oeiras, Portugal
- iNOVA4Health, NOVA Medical School|Faculdade de Ciências Médicas, NMS|FCM, Universidade Nova de Lisboa, Lisboa, Portugal
- CBIOS – Universidade Lusófona’s Research Center for Biosciences & Health Technologies, Lisboa, Portugal
- *Correspondence: Regina Menezes,
| |
Collapse
|