1
|
Krappinger JC, Aguilar Gomez CM, Hoenikl A, Schusterbauer V, Hatzl AM, Feichtinger J, Glieder A. dMAD7 is a promising tool for targeted gene regulation in the methylotrophic yeast Komagataella phaffii. N Biotechnol 2024; 83:110-120. [PMID: 38960022 DOI: 10.1016/j.nbt.2024.06.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 06/07/2024] [Accepted: 06/30/2024] [Indexed: 07/05/2024]
Abstract
The methylotrophic yeast Komagataella phaffii is a popular host system for the pharmaceutical and biotechnological production of recombinant proteins. CRISPR-Cas9 and its derivative CRISPR interference (CRISPRi) offer a promising avenue to further enhance and exploit the full capabilities of this host. MAD7 and its catalytically inactive variant "dead" MAD7 (dMAD7) represent an interesting alternative to established CRISPR-Cas9 systems and are free to use for industrial and academic research. CRISPRi utilizing dMAD7 does not introduce double-strand breaks but only binds to the DNA to regulate gene expression. Here, we report the first use of dMAD7 in K. phaffii to regulate the expression of the enhanced green fluorescent protein (eGFP). A reduction of eGFP fluorescence level (up to 88 %) was achieved in random integration experiments using dMAD7 plasmids. Integration loci/events of investigated strains were assessed through whole genome sequencing. Additionally, RNA-sequencing experiments corroborated the whole genome sequencing results and showed a significantly reduced expression of eGFP in strains containing a dMAD7 plasmid, among others. Our findings conclusively demonstrate the utility of dMAD7 in K. phaffii through successfully regulating eGFP expression.
Collapse
Affiliation(s)
- Julian C Krappinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria
| | - Carla M Aguilar Gomez
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Andrea Hoenikl
- Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | | | - Anna-Maria Hatzl
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| | - Julia Feichtinger
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Division of Cell Biology, Histology and Embryology, Gottfried Schatz Research Center, Medical University of Graz, Graz, Austria.
| | - Anton Glieder
- Christian Doppler Laboratory for Innovative Pichia pastoris Host and Vector Systems, Graz, Austria; Institute of Molecular Biotechnology, Graz University of Technology, Graz, Austria
| |
Collapse
|
2
|
Vercauteren S, Fiesack S, Maroc L, Verstraeten N, Dewachter L, Michiels J, Vonesch SC. The rise and future of CRISPR-based approaches for high-throughput genomics. FEMS Microbiol Rev 2024; 48:fuae020. [PMID: 39085047 PMCID: PMC11409895 DOI: 10.1093/femsre/fuae020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/02/2024] Open
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) has revolutionized the field of genome editing. To circumvent the permanent modifications made by traditional CRISPR techniques and facilitate the study of both essential and nonessential genes, CRISPR interference (CRISPRi) was developed. This gene-silencing technique employs a deactivated Cas effector protein and a guide RNA to block transcription initiation or elongation. Continuous improvements and a better understanding of the mechanism of CRISPRi have expanded its scope, facilitating genome-wide high-throughput screens to investigate the genetic basis of phenotypes. Additionally, emerging CRISPR-based alternatives have further expanded the possibilities for genetic screening. This review delves into the mechanism of CRISPRi, compares it with other high-throughput gene-perturbation techniques, and highlights its superior capacities for studying complex microbial traits. We also explore the evolution of CRISPRi, emphasizing enhancements that have increased its capabilities, including multiplexing, inducibility, titratability, predictable knockdown efficacy, and adaptability to nonmodel microorganisms. Beyond CRISPRi, we discuss CRISPR activation, RNA-targeting CRISPR systems, and single-nucleotide resolution perturbation techniques for their potential in genome-wide high-throughput screens in microorganisms. Collectively, this review gives a comprehensive overview of the general workflow of a genome-wide CRISPRi screen, with an extensive discussion of strengths and weaknesses, future directions, and potential alternatives.
Collapse
Affiliation(s)
- Silke Vercauteren
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Simon Fiesack
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Laetitia Maroc
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Natalie Verstraeten
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Liselot Dewachter
- de Duve Institute, Université catholique de Louvain, Hippokrateslaan 75, 1200 Brussels, Belgium
| | - Jan Michiels
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| | - Sibylle C Vonesch
- Center for Microbiology, VIB - KU Leuven, Gaston Geenslaan 1, 3001 Leuven, Belgium
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, box 2460, 3001 Leuven, Belgium
| |
Collapse
|
3
|
Benites-Pariente JS, Samolski I, Ludeña Y, Villena GK. CRISPR/Cas9 mediated targeted knock-in of eglA gene to improve endoglucanase activity of Aspergillus fumigatus LMB-35Aa. Sci Rep 2024; 14:19661. [PMID: 39179646 PMCID: PMC11344075 DOI: 10.1038/s41598-024-70397-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024] Open
Abstract
Bioeconomy goals for using biomass feedstock for biofuels and bio-based production has arisen the demand for fungal strains and enzymes for biomass processing. Despite well-known Trichoderma and Aspergillus commercial strains, continuous bioprospecting has revealed the fungal biodiversity potential for production of biomass degrading enzymes. The strain Aspergillus fumigatus LMB-35Aa has revealed a great potential as source of lignocellulose-degrading enzymes. Nevertheless, genetic improvement should be considered to increase its biotechnological potential. Molecular manipulation based on homologous direct recombination (HDR) in filamentous fungi poses a challenge since its low recombination rate. Currently, CRISPR/Cas9-mediated mutagenesis can enable precise and efficient editing of filamentous fungi genomes. In this study, a CRISPR/Cas9-mediated gene editing strategy for improving endoglucanase activity of A. fumigatus LMB-35Aa strain was successfully used, which constitutes the first report of heterologous cellulase production in filamentous fungi using this technology. For this, eglA gene from A. niger ATCC 10,864 was integrated into conidial melanin pksP gene locus, which facilitated the selection of edited events discerned by the emergence of albino colonies. Heterologous production of the EglA enzyme in a biofilm fermentation system resulted in a 40% improvement in endoglucanase activity of the mutant strain compared to the wild type.
Collapse
Affiliation(s)
- J S Benites-Pariente
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - I Samolski
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - Y Ludeña
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru
| | - G K Villena
- Laboratorio de Micología y Biotecnología "Marcel Gutiérrez-Correa", Universidad Nacional Agraria la Molina, 15024, Lima, Peru.
| |
Collapse
|
4
|
Moon SY, Zhang D, Chen SC, Lamey TM, Thompson JA, McLaren TL, Chen FK, McLenachan S. Rapid Variant Pathogenicity Analysis by CRISPR Activation of CRB1 Gene Expression in Patient-Derived Fibroblasts. CRISPR J 2024; 7:100-110. [PMID: 38579141 DOI: 10.1089/crispr.2023.0065] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2024] Open
Abstract
Inherited retinal diseases (IRDs) are a heterogeneous group of blinding genetic disorders caused by pathogenic variants in genes expressed in the retina. In this study, we sought to develop a method for rapid evaluation of IRD gene variant pathogenicity by inducing expression of retinal genes in patient-derived fibroblasts using CRISPR-activation (CRISPRa). We demonstrate CRISPRa of CRB1 expression in fibroblasts derived from patients with retinitis pigmentosa, enabling investigation of pathogenic mechanisms associated with specific variants. We show the CRB1 c.4005 + 1G>A variant caused exon 11 skipping in CRISPR-activated fibroblasts and retinal organoids (ROs) derived from the same RP12 patient. The c.652 + 5G>C variant was shown to enhance exon 2 skipping in CRISPR-activated fibroblasts and differentially affected CRB1 isoform expression in fibroblasts and ROs. Our study demonstrates an accessible platform for transcript screening of IRD gene variants in patient-derived fibroblasts, which can potentially be applied for rapid pathogenicity assessments of any gene variant.
Collapse
Affiliation(s)
- Sang Yoon Moon
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Dan Zhang
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Shang-Chih Chen
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| | - Tina M Lamey
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Jennifer A Thompson
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Terri L McLaren
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
| | - Fred K Chen
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
- Australian Inherited Retinal Disease Registry and DNA Bank, Department of Medical Technology and Physics, Sir Charles Gairdner Hospital, Perth, Australia
- Department of Ophthalmology, Royal Perth Hospital, Perth, Australia
- Ophthalmology, Department of Surgery, University of Melbourne, East Melbourne, Australia
- Centre for Eye Research Australia, Royal Victorian Eye and Ear Hospital, East Melbourne, Australia
| | - Samuel McLenachan
- Centre for Ophthalmology and Visual Science, The University of Western Australia, Perth, Australia
- Ocular Tissue Engineering Laboratory, Lions Eye Institute, Nedlands, Australia
| |
Collapse
|
5
|
Liang Y, Gao S, Qi X, Valentovich LN, An Y. Progress in Gene Editing and Metabolic Regulation of Saccharomyces cerevisiae with CRISPR/Cas9 Tools. ACS Synth Biol 2024; 13:428-448. [PMID: 38326929 DOI: 10.1021/acssynbio.3c00685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/09/2024]
Abstract
The CRISPR/Cas9 systems have been developed as tools for genetic engineering and metabolic engineering in various organisms. In this review, various aspects of CRISPR/Cas9 in Saccharomyces cerevisiae, from basic principles to practical applications, have been summarized. First, a comprehensive review has been conducted on the history of CRISPR/Cas9, successful cases of gene disruptions, and efficiencies of multiple DNA fragment insertions. Such advanced systems have accelerated the development of microbial engineering by reducing time and labor, and have enhanced the understanding of molecular genetics. Furthermore, the research progress of the CRISPR/Cas9-based systems in the production of high-value-added chemicals and the improvement of stress tolerance in S. cerevisiae have been summarized, which should have an important reference value for genetic and synthetic biology studies based on S. cerevisiae.
Collapse
Affiliation(s)
- Yaokun Liang
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Song Gao
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| | - Xianghui Qi
- School of Life Sciences, Guangzhou University, Guangdong 511370, China
| | - Leonid N Valentovich
- Institute of Microbiology, National Academy of Sciences of Belarus, Minsk 220072, Belarus
| | - Yingfeng An
- College of Biosciences and Biotechnology, Shenyang Agricultural University, Shenyang 110065, China
| |
Collapse
|
6
|
Yu L, Marchisio MA. Scaffold RNA engineering in type V CRISPR-Cas systems: a potent way to enhance gene expression in the yeast Saccharomyces cerevisiae. Nucleic Acids Res 2024; 52:1483-1497. [PMID: 38142459 PMCID: PMC10853767 DOI: 10.1093/nar/gkad1216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/30/2023] [Accepted: 12/14/2023] [Indexed: 12/26/2023] Open
Abstract
New, orthogonal transcription factors in eukaryotic cells have been realized by engineering nuclease-deficient CRISPR-associated proteins and/or their guide RNAs. In this work, we present a new kind of orthogonal transcriptional activators, in Saccharomyces cerevisiae, made by turning type V CRISPR RNA into a scaffold RNA (ScRNA) able to recruit a variable number of VP64 activation domains. The activator arises from the complex between the synthetic ScRNA and DNase-deficient type V Cas proteins: dCas12e and denAsCas12a. The transcription activation achieved via the newly engineered dCas:ScRNA system is up to 4.7-fold higher than that obtained with the direct fusion of VP64 to Cas proteins. The new transcription factors have been proven to be functional in circuits such as Boolean gates, converters, multiplex-gene and metabolic-pathway activation. Our results extend the CRISPR-Cas-based technology with a new effective tool that only demands RNA engineering and improves the current design of transcription factors based on type V Cas proteins.
Collapse
Affiliation(s)
- Lifang Yu
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| | - Mario Andrea Marchisio
- School of Pharmaceutical Science and Technology, Tianjin University, 92 Weijin Road, 300072 Tianjin, China
| |
Collapse
|
7
|
Teng Y, Jiang T, Yan Y. The expanded CRISPR toolbox for constructing microbial cell factories. Trends Biotechnol 2024; 42:104-118. [PMID: 37500408 PMCID: PMC10808275 DOI: 10.1016/j.tibtech.2023.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/29/2023]
Abstract
Microbial cell factories (MCFs) convert low-cost carbon sources into valuable compounds. The CRISPR/Cas9 system has revolutionized MCF construction as a remarkable genome editing tool with unprecedented programmability. Recently, the CRISPR toolbox has been significantly expanded through the exploration of new CRISPR systems, the engineering of Cas effectors, and the incorporation of other effectors, enabling multi-level regulation and gene editing free of double-strand breaks. This expanded CRISPR toolbox powerfully promotes MCF construction by facilitating pathway construction, enzyme engineering, flux redistribution, and metabolic burden control. In this article, we summarize different CRISPR tool designs and their applications in MCF construction for gene editing, transcriptional regulation, and enzyme modulation. Finally, we also discuss future perspectives for the development and application of the CRISPR toolbox.
Collapse
Affiliation(s)
- Yuxi Teng
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Tian Jiang
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA
| | - Yajun Yan
- School of Chemical, Materials and Biomedical Engineering, College of Engineering, University of Georgia, Athens, GA 30602, USA.
| |
Collapse
|
8
|
Bureau JA, Oliva ME, Dong Y, Ignea C. Engineering yeast for the production of plant terpenoids using synthetic biology approaches. Nat Prod Rep 2023; 40:1822-1848. [PMID: 37523210 DOI: 10.1039/d3np00005b] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/01/2023]
Abstract
Covering: 2011-2022The low amounts of terpenoids produced in plants and the difficulty in synthesizing these complex structures have stimulated the production of terpenoid compounds in microbial hosts by metabolic engineering and synthetic biology approaches. Advances in engineering yeast for terpenoid production will be covered in this review focusing on four directions: (1) manipulation of host metabolism, (2) rewiring and reconstructing metabolic pathways, (3) engineering the catalytic activity, substrate selectivity and product specificity of biosynthetic enzymes, and (4) localizing terpenoid production via enzymatic fusions and scaffolds, or subcellular compartmentalization.
Collapse
Affiliation(s)
| | | | - Yueming Dong
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| | - Codruta Ignea
- Department of Bioengineering, McGill University, Montreal, QC, H3A 0C3, Canada.
| |
Collapse
|
9
|
Barbier I, Kusumawardhani H, Chauhan L, Harlapur PV, Jolly MK, Schaerli Y. Synthetic Gene Circuits Combining CRISPR Interference and CRISPR Activation in E. coli: Importance of Equal Guide RNA Binding Affinities to Avoid Context-Dependent Effects. ACS Synth Biol 2023; 12:3064-3071. [PMID: 37813387 PMCID: PMC10594877 DOI: 10.1021/acssynbio.3c00375] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Indexed: 10/11/2023]
Abstract
Gene expression control based on clustered regularly interspaced short palindromic repeats (CRISPR) has emerged as a powerful approach for constructing synthetic gene circuits. While the use of CRISPR interference (CRISPRi) is already well-established in prokaryotic circuits, CRISPR activation (CRISPRa) is less mature, and a combination of the two in the same circuits is only just emerging. Here, we report that combining CRISPRi with SoxS-based CRISPRa in Escherichia coli can lead to context-dependent effects due to different affinities in the formation of CRISPRa and CRISPRi complexes, resulting in loss of predictable behavior. We show that this effect can be avoided by using the same scaffold guide RNA structure for both complexes.
Collapse
Affiliation(s)
- Içvara Barbier
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| | | | - Lakshya Chauhan
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | | | - Mohit Kumar Jolly
- Department
of Bioengineering, Indian Institute of Science, 560012 Bengaluru, India
| | - Yolanda Schaerli
- Department
of Fundamental Microbiology, University
of Lausanne, 1015 Lausanne, Switzerland
| |
Collapse
|
10
|
Xia Y, Li Y, Shen W, Yang H, Chen X. CRISPR-Cas Technology for Bioengineering Conventional and Non-Conventional Yeasts: Progress and New Challenges. Int J Mol Sci 2023; 24:15310. [PMID: 37894990 PMCID: PMC10607330 DOI: 10.3390/ijms242015310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 10/13/2023] [Accepted: 10/17/2023] [Indexed: 10/29/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated protein (CRISPR-Cas) system has undergone substantial and transformative progress. Simultaneously, a spectrum of derivative technologies has emerged, spanning both conventional and non-conventional yeast strains. Non-conventional yeasts, distinguished by their robust metabolic pathways, formidable resilience against diverse stressors, and distinctive regulatory mechanisms, have emerged as a highly promising alternative for diverse industrial applications. This comprehensive review serves to encapsulate the prevailing gene editing methodologies and their associated applications within the traditional industrial microorganism, Saccharomyces cerevisiae. Additionally, it delineates the current panorama of non-conventional yeast strains, accentuating their latent potential in the realm of industrial and biotechnological utilization. Within this discourse, we also contemplate the potential value these tools offer alongside the attendant challenges they pose.
Collapse
Affiliation(s)
- Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Yujie Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, 1800 Lihu Avenue, Wuxi 214122, China; (Y.X.); (Y.L.); (W.S.); (H.Y.)
- School of Biotechnology, Jiangnan University, Wuxi 214122, China
| |
Collapse
|
11
|
Kakko N, Rantasalo A, Koponen T, Vidgren V, Kannisto M, Maiorova N, Nygren H, Mojzita D, Penttilä M, Jouhten P. Inducible Synthetic Growth Regulation Using the ClpXP Proteasome Enhances cis,cis-Muconic Acid and Glycolic Acid Yields in Saccharomyces cerevisiae. ACS Synth Biol 2023; 12:1021-1033. [PMID: 36976676 PMCID: PMC10127448 DOI: 10.1021/acssynbio.2c00467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Indexed: 03/29/2023]
Abstract
Engineered microbial cells can produce sustainable chemistry, but the production competes for resources with growth. Inducible synthetic control over the resource use would enable fast accumulation of sufficient biomass and then divert the resources to production. We developed inducible synthetic resource-use control overSaccharomyces cerevisiae by expressing a bacterial ClpXP proteasome from an inducible promoter. By individually targeting growth-essential metabolic enzymes Aro1, Hom3, and Acc1 to the ClpXP proteasome, cell growth could be efficiently repressed during cultivation. The ClpXP proteasome was specific to the target proteins, and there was no reduction in the targets when ClpXP was not induced. The inducible growth repression improved product yields from glucose (cis,cis-muconic acid) and per biomass (cis,cis-muconic acid and glycolic acid). The inducible ClpXP proteasome tackles uncertainties in strain optimization by enabling model-guided repression of competing, growth-essential, and metabolic enzymes. Most importantly, it allows improving production without compromising biomass accumulation when uninduced; therefore, it is expected to mitigate strain stability and low productivity challenges.
Collapse
Affiliation(s)
- Natalia Kakko
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Anssi Rantasalo
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Tino Koponen
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Virve Vidgren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Matti Kannisto
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Natalia Maiorova
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Heli Nygren
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Dominik Mojzita
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
| | - Merja Penttilä
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| | - Paula Jouhten
- VTT
Technical Research Centre of Finland Ltd, Espoo 02044 VTT, Finland
- School
of Chemical Engineering, Department of Bioproducts and Biosystems, Aalto University, P.O. Box 16300, Espoo FI-00076 AALTO, Finland
| |
Collapse
|
12
|
Jeong SH, Lee HJ, Lee SJ. Recent Advances in CRISPR-Cas Technologies for Synthetic Biology. J Microbiol 2023; 61:13-36. [PMID: 36723794 PMCID: PMC9890466 DOI: 10.1007/s12275-022-00005-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 11/15/2022] [Accepted: 11/15/2022] [Indexed: 02/02/2023]
Abstract
With developments in synthetic biology, "engineering biology" has emerged through standardization and platformization based on hierarchical, orthogonal, and modularized biological systems. Genome engineering is necessary to manufacture and design synthetic cells with desired functions by using bioparts obtained from sequence databases. Among various tools, the CRISPR-Cas system is modularly composed of guide RNA and Cas nuclease; therefore, it is convenient for editing the genome freely. Recently, various strategies have been developed to accurately edit the genome at a single nucleotide level. Furthermore, CRISPR-Cas technology has been extended to molecular diagnostics for nucleic acids and detection of pathogens, including disease-causing viruses. Moreover, CRISPR technology, which can precisely control the expression of specific genes in cells, is evolving to find the target of metabolic biotechnology. In this review, we summarize the status of various CRISPR technologies that can be applied to synthetic biology and discuss the development of synthetic biology combined with CRISPR technology in microbiology.
Collapse
Affiliation(s)
- Song Hee Jeong
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Ho Joung Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea
| | - Sang Jun Lee
- Department of Systems Biotechnology, Chung-Ang University, Anseong, 17546, Republic of Korea.
| |
Collapse
|
13
|
Thakur K, Partap M, Kumar P, Sharma R, Warghat AR. Understandings of bioactive composition, molecular regulation, and biotechnological interventions in the development and usage of specialized metabolites as health-promoting substances in Siraitia grosvenorii (Swingle) C. Jeffrey. J Food Compost Anal 2022. [DOI: 10.1016/j.jfca.2022.105070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
14
|
Jensen ED, Deichmann M, Ma X, Vilandt RU, Schiesaro G, Rojek MB, Lengger B, Eliasson L, Vento JM, Durmusoglu D, Hovmand SP, Al'Abri I, Zhang J, Crook N, Jensen MK. Engineered cell differentiation and sexual reproduction in probiotic and mating yeasts. Nat Commun 2022; 13:6201. [PMID: 36261657 PMCID: PMC9582028 DOI: 10.1038/s41467-022-33961-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2022] [Accepted: 10/10/2022] [Indexed: 12/24/2022] Open
Abstract
G protein-coupled receptors (GPCRs) enable cells to sense environmental cues and are indispensable for coordinating vital processes including quorum sensing, proliferation, and sexual reproduction. GPCRs comprise the largest class of cell surface receptors in eukaryotes, and for more than three decades the pheromone-induced mating pathway in baker's yeast Saccharomyces cerevisiae has served as a model for studying heterologous GPCRs (hGPCRs). Here we report transcriptome profiles following mating pathway activation in native and hGPCR-signaling yeast and use a model-guided approach to correlate gene expression to morphological changes. From this we demonstrate mating between haploid cells armed with hGPCRs and endogenous biosynthesis of their cognate ligands. Furthermore, we devise a ligand-free screening strategy for hGPCR compatibility with the yeast mating pathway and enable hGPCR-signaling in the probiotic yeast Saccharomyces boulardii. Combined, our findings enable new means to study mating, hGPCR-signaling, and cell-cell communication in a model eukaryote and yeast probiotics.
Collapse
Affiliation(s)
- Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| | - Marcus Deichmann
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Xin Ma
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Rikke U Vilandt
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Giovanni Schiesaro
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Marie B Rojek
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Bettina Lengger
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Line Eliasson
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Justin M Vento
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Deniz Durmusoglu
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Sandie P Hovmand
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Ibrahim Al'Abri
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Jie Zhang
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark
| | - Nathan Crook
- Department of Chemical and Biomolecular Engineering, North Carolina State University, Raleigh, NC, 27695, USA
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs, Lyngby, Denmark.
| |
Collapse
|
15
|
Shaw WM, Studená L, Roy K, Hapeta P, McCarty NS, Graham AE, Ellis T, Ledesma-Amaro R. Inducible expression of large gRNA arrays for multiplexed CRISPRai applications. Nat Commun 2022; 13:4984. [PMID: 36008396 PMCID: PMC9411621 DOI: 10.1038/s41467-022-32603-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 08/09/2022] [Indexed: 01/12/2023] Open
Abstract
CRISPR gene activation and inhibition (CRISPRai) has become a powerful synthetic tool for influencing the expression of native genes for foundational studies, cellular reprograming, and metabolic engineering. Here we develop a method for near leak-free, inducible expression of a polycistronic array containing up to 24 gRNAs from two orthogonal CRISPR/Cas systems to increase CRISPRai multiplexing capacity and target gene flexibility. To achieve strong inducibility, we create a technology to silence gRNA expression within the array in the absence of the inducer, since we found that long gRNA arrays for CRISPRai can express themselves even without promoter. Using this method, we create a highly tuned and easy-to-use CRISPRai toolkit in the industrially relevant yeast, Saccharomyces cerevisiae, establishing the first system to combine simultaneous activation and repression, large multiplexing capacity, and inducibility. We demonstrate this toolkit by targeting 11 genes in central metabolism in a single transformation, achieving a 45-fold increase in succinic acid, which could be precisely controlled in an inducible manner. Our method offers a highly effective way to regulate genes and rewire metabolism in yeast, with principles of gRNA array construction and inducibility that should extend to other chassis organisms.
Collapse
Affiliation(s)
- William M Shaw
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Lucie Studená
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Kyler Roy
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Piotr Hapeta
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Nicholas S McCarty
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Alicia E Graham
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Tom Ellis
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK
| | - Rodrigo Ledesma-Amaro
- Imperial College Centre for Synthetic Biology, Imperial College London, London, SW7 2AZ, UK.
- Department of Bioengineering, Imperial College London, London, SW7 2AZ, UK.
| |
Collapse
|
16
|
Li Y, Zhang L, Yang H, Xia Y, Liu L, Chen X, Shen W. Development of a gRNA Expression and Processing Platform for Efficient CRISPR-Cas9-Based Gene Editing and Gene Silencing in Candida tropicalis. Microbiol Spectr 2022; 10:e0005922. [PMID: 35543560 PMCID: PMC9241840 DOI: 10.1128/spectrum.00059-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
Candida tropicalis, a nonmodel diploid microbe, has been applied in industry as a chassis cell. Metabolic engineering of C. tropicalis is challenging due to a lack of gene editing and regulation tools. Here, we report a tRNA:guide RNA (gRNA) platform for boosting gene editing and silencing efficiency in C. tropicalis. As the endogenous tRNA-processing system enables autocleavage for producing a large number of mature gRNAs, a tRNAGly sequence from the genome of C. tropicalis ATCC 20336 was selected for constructing the tRNA:gRNA platform. In the CRISPR-Cas9 system, the tRNA:gRNA platform proved to be efficient in single-gene and multi-gene editing. Furthermore, based on the tRNA:gRNA platform, a CRISPR interference (CRISPRi) system was developed to construct an efficient dCas9-mediated gene expression regulation system for C. tropicalis. The CRISPRi system was employed to regulate the expression of the exogenous gene GFP3 (green fluorescent protein) and the endogenous gene ADE2 (phosphoribosylaminoimidazole carboxylase). Different regions of GFP3 and ADE2 were targeted with the gRNAs processed by the tRNAGly, and the transcription levels of GFP3 and ADE2 were successfully downregulated to 23.9% ± 4.1% and 38.0% ± 7.4%, respectively. The effects of the target regions on gene regulation were also investigated. Additionally, the regulation system was applied to silence ERG9 (squalene synthase) to enhance β-carotene biosynthesis in a metabolically modified C. tropicalis strain. The results suggest that the endogenous tRNAGly and the CRISPRi system have great potential for metabolic engineering of C. tropicalis. IMPORTANCE In the nonmodel yeast Candida tropicalis, a lack of available RNA polymerase type III (Pol III) promoters hindered the development of guide RNA (gRNA) expression platforms for the establishment of CRISPR-Cas-mediated genome editing and silencing strategies. Here, a tRNA:gRNA platform was constructed. We show that this platform allows efficient and precise expression and processing of different gRNAs from a single polycistronic gene capable of mediating multi-gene editing in combination with CRISPR-Cas9. Furthermore, in combination with dCas9, the tRNA:gRNA platform was efficiently used for silencing of exogenous and endogenous genes, representing the first CRISPR interference tool (CRISPRi) in C. tropicalis. Importantly, the established CRISPRi-tRNA:gRNA tool was also used for metabolic engineering by regulating β-carotene biosynthesis in C. tropicalis. The results suggest that the tRNA:gRNA platform and the CRISPRi system will further advance the application of the CRISPR-Cas-based editing and CRISPRi systems for metabolic engineering in C. tropicalis.
Collapse
Affiliation(s)
- Yujie Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Lihua Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Haiquan Yang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Yuanyuan Xia
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Liming Liu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi, Jiangsu, China
| | - Xianzhong Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| | - Wei Shen
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, Jiangsu, China
- School of Biotechnology, Jiangnan University, Wuxi, Jiangsu, China
| |
Collapse
|
17
|
Wang S, Xu X, Lv X, Liu Y, Li J, Du G, Liu L. Construction and Optimization of the de novo Biosynthesis Pathway of Mogrol in Saccharomyces Cerevisiae. Front Bioeng Biotechnol 2022; 10:919526. [PMID: 35711645 PMCID: PMC9197265 DOI: 10.3389/fbioe.2022.919526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Accepted: 04/26/2022] [Indexed: 11/13/2022] Open
Abstract
Mogrol plays important roles in antihyperglycemic and antilipidemic through activating the AMP-activated protein kinase pathway. Although the synthesis pathway of mogrol in Siraitia grosvenorii has been clarified, few studies have focused on improving mogrol production. This study employed a modular engineerin g strategy to improve mogrol production in a yeast chassis cell. First, a de novo synthesis pathway of mogrol in Saccharomyces cerevisiae was constructed. Then, the metabolic flux of each synthetic module in mogrol metabolism was systematically optimized, including the enhancement of the precursor supply, inhibition of the sterol synthesis pathway using the Clustered Regularly Interspaced Short Palindromic Repeats Interference system (CRISPRi), and optimization of the expression and reduction system of P450 enzymes. Finally, the mogrol titer was increased to 9.1 μg/L, which was 455-fold higher than that of the original strain. The yeast strains engineered in this work can serve as the basis for creating an alternative way for mogrol production in place of extraction from S. grosvenorii.
Collapse
Affiliation(s)
- Siyu Wang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xianhao Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Ministry of Education, Jiangnan University, Wuxi, China
| |
Collapse
|
18
|
Antony JS, Hinz JM, Wyrick JJ. Tips, Tricks, and Potential Pitfalls of CRISPR Genome Editing in Saccharomyces cerevisiae. Front Bioeng Biotechnol 2022; 10:924914. [PMID: 35706506 PMCID: PMC9190257 DOI: 10.3389/fbioe.2022.924914] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 05/16/2022] [Indexed: 12/26/2022] Open
Abstract
The versatility of clustered regularly interspaced short palindromic repeat (CRISPR)-associated (Cas) genome editing makes it a popular tool for many research and biotechnology applications. Recent advancements in genome editing in eukaryotic organisms, like fungi, allow for precise manipulation of genetic information and fine-tuned control of gene expression. Here, we provide an overview of CRISPR genome editing technologies in yeast, with a particular focus on Saccharomyces cerevisiae. We describe the tools and methods that have been previously developed for genome editing in Saccharomyces cerevisiae and discuss tips and experimental tricks for promoting efficient, marker-free genome editing in this model organism. These include sgRNA design and expression, multiplexing genome editing, optimizing Cas9 expression, allele-specific editing in diploid cells, and understanding the impact of chromatin on genome editing. Finally, we summarize recent studies describing the potential pitfalls of using CRISPR genome targeting in yeast, including the induction of background mutations.
Collapse
Affiliation(s)
- Jacob S. Antony
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John M. Hinz
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
| | - John J. Wyrick
- School of Molecular Biosciences, Washington State University, Pullman, WA, United States
- Center for Reproductive Biology, Washington State University, Pullman, WA, United States
- *Correspondence: John J. Wyrick,
| |
Collapse
|
19
|
Qu L, Xiu X, Sun G, Zhang C, Yang H, Liu Y, Li J, Du G, Lv X, Liu L. Engineered yeast for efficient de novo synthesis of 7‐dehydrocholesterol. Biotechnol Bioeng 2022; 119:1278-1289. [DOI: 10.1002/bit.28055] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Revised: 01/22/2022] [Accepted: 02/01/2022] [Indexed: 02/02/2023]
Affiliation(s)
- Lisha Qu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Xiang Xiu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Guoyun Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Chenyang Zhang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Haiquan Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Xueqin Lv
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education Jiangnan University Wuxi Jiangsu China
- Science Center for Future Foods Jiangnan University Wuxi Jiangsu China
| |
Collapse
|
20
|
Abstract
Terpenoids represent the largest group of secondary metabolites with variable structures and functions. Terpenoids are well known for their beneficial application in human life, such as pharmaceutical products, vitamins, hormones, anticancer drugs, cosmetics, flavors and fragrances, foods, agriculture, and biofuels. Recently, engineering microbial cells have been provided with a sustainable approach to produce terpenoids with high yields. Noticeably, the clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has emerged as one of the most efficient genome-editing technologies to engineer microorganisms for improving terpenoid production. In this review, we summarize the application of the CRISPR-Cas system for the production of terpenoids in microbial hosts such as Escherichia coli, Saccharomyces cerevisiae, Corynebacterium glutamicum, and Pseudomonas putida. CRISPR-Cas9 deactivated Cas9 (dCas9)-based CRISPR (CRISPRi), and the dCas9-based activator (CRISPRa) have been used in either individual or combinatorial systems to control the metabolic flux for enhancing the production of terpenoids. Finally, the prospects of using the CRISPR-Cas system in terpenoid production are also discussed.
Collapse
Affiliation(s)
- Luan Luong Chu
- Faculty of Biotechnology, Chemistry and Environmental Engineering, Phenikaa University, Hanoi, Viet Nam.,Bioresource Research Center, Phenikaa University, Hanoi, Viet Nam
| |
Collapse
|
21
|
Skrekas C, Ferreira R, David F. Fluorescence-Activated Cell Sorting as a Tool for Recombinant Strain Screening. Methods Mol Biol 2022; 2513:39-57. [PMID: 35781199 DOI: 10.1007/978-1-0716-2399-2_4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Metabolic engineering of microbial cells is the discipline of optimizing microbial metabolism to enable and improve the production of target molecules ranging from biofuels and chemical building blocks to high-value pharmaceuticals. The advances in genetic engineering have eased the construction of highly engineered microbial strains and the generation of genetic libraries. Intracellular metabolite-responsive biosensors facilitate high-throughput screening of these libraries by connecting the levels of a metabolite of interest to a fluorescence output. Fluorescent-activated cell sorting (FACS) enables the isolation of highly fluorescent single cells and thus genotypes that produce higher levels of the metabolite of interest. Here, we describe a high-throughput screening method for recombinant yeast strain screening based on intracellular biosensors and FACS.
Collapse
Affiliation(s)
- Christos Skrekas
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Florian David
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- The Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
22
|
Otto M, Liu D, Siewers V. Saccharomyces cerevisiae as a Heterologous Host for Natural Products. Methods Mol Biol 2022; 2489:333-367. [PMID: 35524059 DOI: 10.1007/978-1-0716-2273-5_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Cell factories can provide a sustainable supply of natural products with applications as pharmaceuticals, food-additives or biofuels. Besides being an important model organism for eukaryotic systems, Saccharomyces cerevisiae is used as a chassis for the heterologous production of natural products. Its success as a cell factory can be attributed to the vast knowledge accumulated over decades of research, its overall ease of engineering and its robustness. Many methods and toolkits have been developed by the yeast metabolic engineering community with the aim of simplifying and accelerating the engineering process.In this chapter, a range of methodologies are highlighted, which can be used to develop novel natural product cell factories or to improve titer, rate and yields of an existing cell factory with the goal of developing an industrially relevant strain. The addressed topics are applicable for different stages of a cell factory engineering project and include the choice of a natural product platform strain, expression cassette design for heterologous or native genes, basic and advanced genetic engineering strategies, and library screening methods using biosensors. The many engineering methods available and the examples of yeast cell factories underline the importance and future potential of this host for industrial production of natural products.
Collapse
Affiliation(s)
- Maximilian Otto
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Dany Liu
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
- Novo Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg, Sweden.
| |
Collapse
|
23
|
Otto M, Skrekas C, Gossing M, Gustafsson J, Siewers V, David F. Expansion of the Yeast Modular Cloning Toolkit for CRISPR-Based Applications, Genomic Integrations and Combinatorial Libraries. ACS Synth Biol 2021; 10:3461-3474. [PMID: 34860007 PMCID: PMC8689691 DOI: 10.1021/acssynbio.1c00408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Indexed: 01/04/2023]
Abstract
Standardisation of genetic parts has become a topic of increasing interest over the last decades. The promise of simplifying molecular cloning procedures, while at the same time making them more predictable and reproducible has led to the design of several biological standards, one of which is modular cloning (MoClo). The Yeast MoClo toolkit provides a large library of characterised genetic parts combined with a comprehensive and flexible assembly strategy. Here we aimed to (1) simplify the adoption of the standard by providing a simple design tool for including new parts in the MoClo library, (2) characterise the toolkit further by demonstrating the impact of a BglII site in promoter parts on protein expression, and (3) expand the toolkit to enable efficient construction of gRNA arrays, marker-less integration cassettes and combinatorial libraries. These additions make the toolkit more applicable for common engineering tasks and will further promote its adoption in the yeast biological engineering community.
Collapse
Affiliation(s)
- Maximilian Otto
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Christos Skrekas
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Michael Gossing
- Discovery
Sciences, Biopharmaceuticals R&D, AstraZeneca, Gothenburg SE-43150, Sweden
| | - Johan Gustafsson
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Wallenberg
Center for Protein Research, Chalmers University
of Technology, Gothenburg SE-41296, Sweden
| | - Verena Siewers
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| | - Florian David
- Department
of Biology and Biological Engineering, Chalmers
University of Technology, Gothenburg SE-41296, Sweden
- Novo
Nordisk Foundation Center for Biosustainability, Chalmers University of Technology, Gothenburg SE-41296, Sweden
| |
Collapse
|
24
|
CRISPRi-Guided Metabolic Flux Engineering for Enhanced Protopanaxadiol Production in Saccharomyces cerevisiae. Int J Mol Sci 2021; 22:ijms222111836. [PMID: 34769267 PMCID: PMC8584524 DOI: 10.3390/ijms222111836] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/19/2021] [Accepted: 10/28/2021] [Indexed: 01/29/2023] Open
Abstract
Protopanaxadiol (PPD), an aglycon found in several dammarene-type ginsenosides, has high potency as a pharmaceutical. Nevertheless, application of these ginsenosides has been limited because of the high production cost due to the rare content of PPD in Panax ginseng and a long cultivation time (4–6 years). For the biological mass production of the PPD, de novo biosynthetic pathways for PPD were introduced in Saccharomyces cerevisiae and the metabolic flux toward the target molecule was restructured to avoid competition for carbon sources between native metabolic pathways and de novo biosynthetic pathways producing PPD in S. cerevisiae. Here, we report a CRISPRi (clustered regularly interspaced short palindromic repeats interference)-based customized metabolic flux system which downregulates the lanosterol (a competing metabolite of dammarenediol-II (DD-II)) synthase in S. cerevisiae. With the CRISPRi-mediated suppression of lanosterol synthase and diversion of lanosterol to DD-II and PPD in S. cerevisiae, we increased PPD production 14.4-fold in shake-flask fermentation and 5.7-fold in a long-term batch-fed fermentation.
Collapse
|
25
|
Bergenholm D, Dabirian Y, Ferreira R, Siewers V, David F, Nielsen J. Rational gRNA design based on transcription factor binding data. Synth Biol (Oxf) 2021; 6:ysab014. [PMID: 34712839 PMCID: PMC8546606 DOI: 10.1093/synbio/ysab014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 04/21/2021] [Accepted: 06/08/2021] [Indexed: 11/14/2022] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 system has become a standard tool in many genome engineering endeavors. The endonuclease-deficient version of Cas9 (dCas9) is also a powerful programmable tool for gene regulation. In this study, we made use of Saccharomyces cerevisiae transcription factor (TF) binding data to obtain a better understanding of the interplay between TF binding and binding of dCas9 fused to an activator domain, VPR. More specifically, we targeted dCas9–VPR toward binding sites of Gcr1–Gcr2 and Tye7 present in several promoters of genes encoding enzymes engaged in the central carbon metabolism. From our data, we observed an upregulation of gene expression when dCas9–VPR was targeted next to a TF binding motif, whereas a downregulation or no change was observed when dCas9 was bound on a TF motif. This suggests a steric competition between dCas9 and the specific TF. Integrating TF binding data, therefore, proved to be useful for designing guide RNAs for CRISPR interference or CRISPR activation applications.
Collapse
Affiliation(s)
- David Bergenholm
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Yasaman Dabirian
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Raphael Ferreira
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Florian David
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden
| |
Collapse
|
26
|
Kruasuwan W, Puseenam A, Phithakrotchanakoon C, Tanapongpipat S, Roongsawang N. Modulation of heterologous protein secretion in the thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 by CRISPR-Cas9 system. PLoS One 2021; 16:e0258005. [PMID: 34582499 PMCID: PMC8478189 DOI: 10.1371/journal.pone.0258005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2021] [Accepted: 09/16/2021] [Indexed: 11/18/2022] Open
Abstract
The thermotolerant methylotrophic yeast Ogataea thermomethanolica TBRC 656 is a potential host strain for industrial protein production. Heterologous proteins are often retained intracellularly in yeast resulting in endoplasmic reticulum (ER) stress and poor secretion, and despite efforts to engineer protein secretory pathways, heterologous protein production is often lower than expected. We hypothesized that activation of genes involved in the secretory pathway could mitigate ER stress. In this study, we created mutants defective in protein secretory-related functions using clustered regularly interspaced short palindromic repeats (CRISPR)-CRISPR-associated protein 9 (Cas9) tools. Secretion of the model protein xylanase was significantly decreased in loss of function mutants for oxidative stress (sod1Δ) and vacuolar and protein sorting (vps1Δ and ypt7Δ) genes. However, xylanase secretion was unaffected in an autophagy related atg12Δ mutant. Then, we developed a system for sequence-specific activation of target gene expression (CRISPRa) in O. thermomethanolica and used it to activate SOD1, VPS1 and YPT7 genes. Production of both non-glycosylated xylanase and glycosylated phytase was enhanced in the gene activated mutants, demonstrating that CRISPR-Cas9 systems can be used as tools for understanding O. thermomethanolica genes involved in protein secretion, which could be applied for increasing heterologous protein secretion in this yeast.
Collapse
Affiliation(s)
- Worarat Kruasuwan
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Aekkachai Puseenam
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Chitwadee Phithakrotchanakoon
- Microbial Systems and Computational Biology Research Team, Thailand Bioresource Research Center, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Sutipa Tanapongpipat
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
| | - Niran Roongsawang
- Microbial Cell Factory Research Team, Microbial Biotechnology and Biochemicals Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Khlong Nueng, Khlong Luang, Pathum Thani, Thailand
- * E-mail:
| |
Collapse
|
27
|
Karlson CKS, Mohd-Noor SN, Nolte N, Tan BC. CRISPR/dCas9-Based Systems: Mechanisms and Applications in Plant Sciences. PLANTS 2021; 10:plants10102055. [PMID: 34685863 PMCID: PMC8540305 DOI: 10.3390/plants10102055] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 09/20/2021] [Accepted: 09/27/2021] [Indexed: 12/26/2022]
Abstract
RNA-guided genomic transcriptional regulation tools, namely clustered regularly interspaced short palindromic repeats interference (CRISPRi) and CRISPR-mediated gene activation (CRISPRa), are a powerful technology for gene functional studies. Deriving from the CRISPR/Cas9 system, both systems consist of a catalytically dead Cas9 (dCas9), a transcriptional effector and a single guide RNA (sgRNA). This type of dCas9 is incapable to cleave DNA but retains its ability to specifically bind to DNA. The binding of the dCas9/sgRNA complex to a target gene results in transcriptional interference. The CRISPR/dCas9 system has been explored as a tool for transcriptional modulation and genome imaging. Despite its potential applications and benefits, the challenges and limitations faced by the CRISPR/dCas9 system include the off-target effects, protospacer adjacent motif (PAM) sequence requirements, efficient delivery methods and the CRISPR/dCas9-interfered crops being labeled as genetically modified organisms in several countries. This review highlights the progression of CRISPR/dCas9 technology as well as its applications and potential challenges in crop improvement.
Collapse
Affiliation(s)
- Chou Khai Soong Karlson
- Center for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia;
| | - Siti Nurfadhlina Mohd-Noor
- Institute of Microengineering and Nanoelectronics (IMEN), Universiti Kebangsaan Malaysia, Bangi 43600, Malaysia;
| | - Nadja Nolte
- Department of Plant Sciences, Wageningen University & Research, Droevendaalsesteeg 4, 6708 PB Wageningen, The Netherlands;
| | - Boon Chin Tan
- Center for Research in Biotechnology for Agriculture (CEBAR), Universiti Malaya, Kuala Lumpur 50603, Malaysia;
- Correspondence: ; Tel.: +60-3-7967-7982
| |
Collapse
|
28
|
Jensen ED, Laloux M, Lehka BJ, Pedersen LE, Jakočiūnas T, Jensen M, Keasling J. A synthetic RNA-mediated evolution system in yeast. Nucleic Acids Res 2021; 49:e88. [PMID: 34107026 PMCID: PMC8421215 DOI: 10.1093/nar/gkab472] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 04/13/2021] [Accepted: 05/18/2021] [Indexed: 11/19/2022] Open
Abstract
Laboratory evolution is a powerful approach to search for genetic adaptations to new or improved phenotypes, yet either relies on labour-intensive human-guided iterative rounds of mutagenesis and selection, or prolonged adaptation regimes based on naturally evolving cell populations. Here we present CRISPR- and RNA-assisted in vivo directed evolution (CRAIDE) of genomic loci using evolving chimeric donor gRNAs continuously delivered from an error-prone T7 RNA polymerase, and directly introduced as RNA repair donors into genomic targets under either Cas9 or dCas9 guidance. We validate CRAIDE by evolving novel functional variants of an auxotrophic marker gene, and by conferring resistance to a toxic amino acid analogue in baker's yeast Saccharomyces cerevisiae with a mutation rate >3,000-fold higher compared to spontaneous native rate, thus enabling the first demonstrations of in vivo delivery and information transfer from long evolving RNA donor templates into genomic context without the use of in vitro supplied and pre-programmed repair donors.
Collapse
Affiliation(s)
- Emil D Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Marcos Laloux
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Beata J Lehka
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Lasse E Pedersen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Tadas Jakočiūnas
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Michael K Jensen
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
| | - Jay D Keasling
- Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Kgs. Lyngby, Denmark
- Joint BioEnergy Institute, Emeryville, CA, USA
- Biological Systems and Engineering Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA
- Department of Chemical and Biomolecular Engineering & Department of Bioengineering, University of California, Berkeley, CA, USA
- Center for Synthetic Biochemistry, Institute for Synthetic Biology, Shenzhen Institutes of Advanced Technologies, Shenzhen, China
| |
Collapse
|
29
|
Ciurkot K, Gorochowski TE, Roubos JA, Verwaal R. Efficient multiplexed gene regulation in Saccharomyces cerevisiae using dCas12a. Nucleic Acids Res 2021; 49:7775-7790. [PMID: 34197613 PMCID: PMC8287914 DOI: 10.1093/nar/gkab529] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/02/2021] [Accepted: 06/09/2021] [Indexed: 12/27/2022] Open
Abstract
CRISPR Cas12a is an RNA-programmable endonuclease particularly suitable for gene regulation. This is due to its preference for T-rich PAMs that allows it to more easily target AT-rich promoter sequences, and built-in RNase activity which can process a single CRISPR RNA array encoding multiple spacers into individual guide RNAs (gRNAs), thereby simplifying multiplexed gene regulation. Here, we develop a flexible dCas12a-based CRISPRi system for Saccharomyces cerevisiae and systematically evaluate its design features. This includes the role of the NLS position, use of repression domains, and the position of the gRNA target. Our optimal system is comprised of dCas12a E925A with a single C-terminal NLS and a Mxi1 or a MIG1 repression domain, which enables up to 97% downregulation of a reporter gene. We also extend this system to allow for inducible regulation via an RNAP II-controlled promoter, demonstrate position-dependent effects in crRNA arrays, and use multiplexed regulation to stringently control a heterologous β-carotene pathway. Together these findings offer valuable insights into the design constraints of dCas12a-based CRISPRi and enable new avenues for flexible and efficient gene regulation in S. cerevisiae.
Collapse
Affiliation(s)
- Klaudia Ciurkot
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands.,Department of Chemistry, University of Hamburg, Hamburg 20146, Germany
| | - Thomas E Gorochowski
- School of Biological Sciences, University of Bristol, Tyndall Avenue, Bristol BS8 1TQ, UK
| | | | - René Verwaal
- DSM Biotechnology Center, Delft 2613 AX, The Netherlands
| |
Collapse
|
30
|
Harnessing the yeast Saccharomyces cerevisiae for the production of fungal secondary metabolites. Essays Biochem 2021; 65:277-291. [PMID: 34061167 PMCID: PMC8314005 DOI: 10.1042/ebc20200137] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 04/09/2021] [Accepted: 04/14/2021] [Indexed: 12/17/2022]
Abstract
Fungal secondary metabolites (FSMs) represent a remarkable array of bioactive compounds, with potential applications as pharmaceuticals, nutraceuticals, and agrochemicals. However, these molecules are typically produced only in limited amounts by their native hosts. The native organisms may also be difficult to cultivate and genetically engineer, and some can produce undesirable toxic side-products. Alternatively, recombinant production of fungal bioactives can be engineered into industrial cell factories, such as aspergilli or yeasts, which are well amenable for large-scale manufacturing in submerged fermentations. In this review, we summarize the development of baker's yeast Saccharomyces cerevisiae to produce compounds derived from filamentous fungi and mushrooms. These compounds mainly include polyketides, terpenoids, and amino acid derivatives. We also describe how native biosynthetic pathways can be combined or expanded to produce novel derivatives and new-to-nature compounds. We describe some new approaches for cell factory engineering, such as genome-scale engineering, biosensor-based high-throughput screening, and machine learning, and how these tools have been applied for S. cerevisiae strain improvement. Finally, we prospect the challenges and solutions in further development of yeast cell factories to more efficiently produce FSMs.
Collapse
|
31
|
Microbial production of chemicals driven by CRISPR-Cas systems. Curr Opin Biotechnol 2021; 73:34-42. [PMID: 34303184 DOI: 10.1016/j.copbio.2021.07.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 06/25/2021] [Accepted: 07/02/2021] [Indexed: 02/07/2023]
Abstract
Microorganisms have provided an attractive route for biosynthesis of various chemicals from renewable resources. CRISPR-Cas systems have served as powerful mechanisms for generating cell factories with desirable properties by manipulating nucleic acids quickly and efficiently. The CRISPR-Cas system provides a toolbox with excellent opportunities for identifying better biocatalysts, multiplexed fine-tuning of metabolic flux, efficient utilization of low-cost substrates, and improvement of metabolic robustness. The overall goal of this review highlights recent advances in the development of microbial cell factories for chemical production using various CRISPR-Cas systems. The perspectives for further development or applications of CRISPR-Cas systems for strain improvement are also discussed.
Collapse
|
32
|
Su Y, Bayarjargal M, Hale TK, Filichev VV. DNA with zwitterionic and negatively charged phosphate modifications: Formation of DNA triplexes, duplexes and cell uptake studies. Beilstein J Org Chem 2021; 17:749-761. [PMID: 33828619 PMCID: PMC8022206 DOI: 10.3762/bjoc.17.65] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 03/11/2021] [Indexed: 12/15/2022] Open
Abstract
Two phosphate modifications were introduced into the DNA backbone using the Staudinger reaction between the 3’,5’-dinucleoside β-cyanoethyl phosphite triester formed during DNA synthesis and sulfonyl azides, 4-(azidosulfonyl)-N,N,N-trimethylbutan-1-aminium iodide (N+ azide) or p-toluenesulfonyl (tosyl or Ts) azide, to provide either a zwitterionic phosphoramidate with N+ modification or a negatively charged phosphoramidate for Ts modification in the DNA sequence. The incorporation of these N+ and Ts modifications led to the formation of thermally stable parallel DNA triplexes, regardless of the number of modifications incorporated into the oligodeoxynucleotides (ONs). For both N+ and Ts-modified ONs, the antiparallel duplexes formed with complementary RNA were more stable than those formed with complementary DNA (except for ONs with modification in the middle of the sequence). Additionally, the incorporation of N+ modifications led to the formation of duplexes with a thermal stability that was less dependent on the ionic strength than native DNA duplexes. The thermodynamic analysis of the melting curves revealed that it is the reduction in unfavourable entropy, despite the decrease in favourable enthalpy, which is responsible for the stabilisation of duplexes with N+ modification. N+ONs also demonstrated greater resistance to nuclease digestion by snake venom phosphodiesterase I than the corresponding Ts-ONs. Cell uptake studies showed that Ts-ONs can enter the nucleus of mouse fibroblast NIH3T3 cells without any transfection reagent, whereas, N+ONs remain concentrated in vesicles within the cytoplasm. These results indicate that both N+ and Ts-modified ONs are promising for various in vivo applications.
Collapse
Affiliation(s)
- Yongdong Su
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Maitsetseg Bayarjargal
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand
| | - Tracy K Hale
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| | - Vyacheslav V Filichev
- School of Fundamental Sciences, Massey University, Private Bag 11-222, 4442 Palmerston North, New Zealand.,Maurice Wilkins Centre for Molecular Biodiscovery, Auckland 1142, New Zealand
| |
Collapse
|
33
|
McGlincy NJ, Meacham ZA, Reynaud KK, Muller R, Baum R, Ingolia NT. A genome-scale CRISPR interference guide library enables comprehensive phenotypic profiling in yeast. BMC Genomics 2021; 22:205. [PMID: 33757429 PMCID: PMC7986282 DOI: 10.1186/s12864-021-07518-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Accepted: 03/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND CRISPR/Cas9-mediated transcriptional interference (CRISPRi) enables programmable gene knock-down, yielding loss-of-function phenotypes for nearly any gene. Effective, inducible CRISPRi has been demonstrated in budding yeast, and genome-scale guide libraries enable systematic, genome-wide genetic analysis. RESULTS We present a comprehensive yeast CRISPRi library, based on empirical design rules, containing 10 distinct guides for most genes. Competitive growth after pooled transformation revealed strong fitness defects for most essential genes, verifying that the library provides comprehensive genome coverage. We used the relative growth defects caused by different guides targeting essential genes to further refine yeast CRISPRi design rules. In order to obtain more accurate and robust guide abundance measurements in pooled screens, we link guides with random nucleotide barcodes and carry out linear amplification by in vitro transcription. CONCLUSIONS Taken together, we demonstrate a broadly useful platform for comprehensive, high-precision CRISPRi screening in yeast.
Collapse
Affiliation(s)
| | - Zuriah A Meacham
- Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
| | - Kendra K Reynaud
- Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA
| | - Ryan Muller
- Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
| | - Rachel Baum
- Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, Berkeley, CA, 94720, USA.
- Biophysics Graduate Group, University of California, Berkeley, CA, 94720, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, 94720, USA.
| |
Collapse
|
34
|
Rainha J, Rodrigues JL, Rodrigues LR. CRISPR-Cas9: A Powerful Tool to Efficiently Engineer Saccharomyces cerevisiae. Life (Basel) 2020; 11:13. [PMID: 33375364 PMCID: PMC7823794 DOI: 10.3390/life11010013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Revised: 12/23/2020] [Accepted: 12/24/2020] [Indexed: 12/27/2022] Open
Abstract
Saccharomyces cerevisiae has been for a long time a common model for fundamental biological studies and a popular biotechnological engineering platform to produce chemicals, fuels, and pharmaceuticals due to its peculiar characteristics. Both lines of research require an effective editing of the native genetic elements or the inclusion of heterologous pathways into the yeast genome. Although S. cerevisiae is a well-known host with several molecular biology tools available, a more precise tool is still needed. The clustered, regularly interspaced, short palindromic repeats-associated Cas9 (CRISPR-Cas9) system is a current, widespread genome editing tool. The implementation of a reprogrammable, precise, and specific method, such as CRISPR-Cas9, to edit the S. cerevisiae genome has revolutionized laboratory practices. Herein, we describe and discuss some applications of the CRISPR-Cas9 system in S. cerevisiae from simple gene knockouts to more complex processes such as artificial heterologous pathway integration, transcriptional regulation, or tolerance engineering.
Collapse
Affiliation(s)
| | | | - Lígia R. Rodrigues
- Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal; (J.R.); (J.L.R.)
| |
Collapse
|
35
|
Baumschabl M, Prielhofer R, Mattanovich D, Steiger MG. Fine-Tuning of Transcription in Pichia pastoris Using dCas9 and RNA Scaffolds. ACS Synth Biol 2020; 9:3202-3209. [PMID: 33180466 PMCID: PMC7754189 DOI: 10.1021/acssynbio.0c00214] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Indexed: 01/24/2023]
Abstract
For metabolic engineering approaches, fast and reliable tools are required to precisely manipulate the expression of target genes. dCas9 can be fused via RNA scaffolds to trans-activator domains and thus regulate the gene expression when targeted to the promoter region of a gene. In this work we show that this strategy can be successfully implemented for the methylotrophic yeast Pichia pastoris. It is shown that the thiamine repressible promoter of THI11 can be activated under repression conditions using a scgRNA/dCas9 construct. Furthermore, the RIB1 gene required for riboflavin production was activated, leading to increased riboflavin production exceeding the riboflavin titers of a conventional RIB1 overexpression with a pGAP promoter.
Collapse
Affiliation(s)
- Michael Baumschabl
- Department
of Biotechnology, University of Natural
Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), 1190 Vienna, Austria
| | - Roland Prielhofer
- Department
of Biotechnology, University of Natural
Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), 1190 Vienna, Austria
| | - Diethard Mattanovich
- Department
of Biotechnology, University of Natural
Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), 1190 Vienna, Austria
| | - Matthias G. Steiger
- Department
of Biotechnology, University of Natural
Resources and Life Sciences (BOKU), 1190 Vienna, Austria
- Austrian
Centre of Industrial Biotechnology (ACIB), 1190 Vienna, Austria
- Institute
of Chemical, Environmental and Bioscience Engineering, TU Wien, 1060 Vienna, Austria
| |
Collapse
|
36
|
Ullah M, Xia L, Xie S, Sun S. CRISPR/Cas9-based genome engineering: A new breakthrough in the genetic manipulation of filamentous fungi. Biotechnol Appl Biochem 2020; 67:835-851. [PMID: 33179815 DOI: 10.1002/bab.2077] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2020] [Accepted: 10/24/2020] [Indexed: 12/26/2022]
Abstract
Filamentous fungi have several industrial, environmental, and medical applications. However, they are rarely utilized owing to the limited availability of full-genome sequences and genetic manipulation tools. Since the recent discovery of the full-genome sequences for certain industrially important filamentous fungi, CRISPR/Cas9 technology has drawn attention for the efficient development of engineered strains of filamentous fungi. CRISPR/Cas9 genome editing has been successfully applied to diverse filamentous fungi. In this review, we briefly discuss the use of common genetic transformation techniques as well as CRISPR/Cas9-based systems in filamentous fungi. Furthermore, we describe potential limitations and challenges in the practical application of genome engineering of filamentous fungi. Finally, we provide suggestions and highlight future research prospects in the area.
Collapse
Affiliation(s)
- Mati Ullah
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Lin Xia
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Shangxian Xie
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| | - Su Sun
- Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, Hubei, China
| |
Collapse
|
37
|
Zhao D, Zhu X, Zhou H, Sun N, Wang T, Bi C, Zhang X. CRISPR-based metabolic pathway engineering. Metab Eng 2020; 63:148-159. [PMID: 33152516 DOI: 10.1016/j.ymben.2020.10.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 10/27/2020] [Accepted: 10/28/2020] [Indexed: 12/27/2022]
Abstract
A highly effective metabolic pathway is the key for an efficient cell factory. However, the engineered homologous or heterologous multi-gene pathway may be unbalanced, inefficient and causing the accumulation of potentially toxic intermediates. Therefore, pathways must be constructed optimally to minimize these negative effects and maximize catalytic efficiency. With the development of CRISPR technology, some of the problems of previous pathway engineering and genome editing techniques were resolved, providing higher efficiency, lower cost, and easily customizable targets. Moreover, CRISPR was demonstrated as robust and effective in various organisms including both prokaryotes and eukaryotes. In recent years, researchers in the field of metabolic engineering and synthetic biology have exploited various CRISPR-based pathway engineering approaches, which are both effective and convenient, as well as valuable from a theoretical standpoint. In this review, we systematically summarize novel pathway engineering techniques and strategies based on CRISPR nucleases system, CRISPR interference (CRISPRi), and CRISPR activation (CRISPRa), including figures and descriptions for easy understanding, with the aim to facilitate their broader application among fellow researchers.
Collapse
Affiliation(s)
- Dongdong Zhao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Xinna Zhu
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Hang Zhou
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Naxin Sun
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China
| | - Ting Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Changhao Bi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| | - Xueli Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China; Key Laboratory of Systems Microbial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, China.
| |
Collapse
|
38
|
Casas-Mollano JA, Zinselmeier MH, Erickson SE, Smanski MJ. CRISPR-Cas Activators for Engineering Gene Expression in Higher Eukaryotes. CRISPR J 2020; 3:350-364. [PMID: 33095045 PMCID: PMC7580621 DOI: 10.1089/crispr.2020.0064] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
CRISPR-Cas-based transcriptional activators allow genetic engineers to specifically induce expression of one or many target genes in trans. Here we review the many design variations of these versatile tools and compare their effectiveness in different eukaryotic systems. Lastly, we highlight several applications of programmable transcriptional activation to interrogate and engineer complex biological processes.
Collapse
Affiliation(s)
- J. Armando Casas-Mollano
- Department of Biochemistry, Molecular Biology, and Biophysics, BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA; and Cell Biology, and Development, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA
| | - Matthew H. Zinselmeier
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA
| | - Samuel E. Erickson
- Department of Biochemistry, Molecular Biology, and Biophysics, BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA; and Cell Biology, and Development, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA
| | - Michael J. Smanski
- Department of Biochemistry, Molecular Biology, and Biophysics, BioTechnology Institute, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA; and Cell Biology, and Development, University of Minnesota, Twin-Cities, Saint Paul, Minnesota, USA
| |
Collapse
|
39
|
Dong C, Jiang L, Xu S, Huang L, Cai J, Lian J, Xu Z. A Single Cas9-VPR Nuclease for Simultaneous Gene Activation, Repression, and Editing in Saccharomyces cerevisiae. ACS Synth Biol 2020; 9:2252-2257. [PMID: 32841560 DOI: 10.1021/acssynbio.0c00218] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Combinatorial metabolic engineering has been widely established for the development of efficient microbial cell factories to produce the products of interest by precisely regulating the expression levels of multiple genes simultaneously. Here, we report a novel multifunctional CRISPR system that enables simultaneous gene activation, repression, and editing (CRISPR-ARE) with a single Cas9-VPR protein for combinatorial metabolic engineering applications in Saccharomyces cerevisiae. Via gRNA engineering, we achieved orthogonal transcriptional regulations and genome editing using the nuclease active Cas9-VPR fusion protein, individually or in a combinatorial manner. After establishing a system for stable expression of multiple gRNAs on the same plasmid, we first demonstrated CRISPR-ARE for simultaneous mCherry activation, mVenus repression, and ADE2 disruption in a fluorescence reporter strain. Subsequently, we adopted CRISPR-ARE for simple and fast combinatorial metabolic engineering, which improved the production of α-santalene for 2.66-fold in a single step. Because of its simplicity and modularity, the developed CRISPR-ARE system could be applied for facile multifunctional metabolic engineering of microbial cell factories, particularly for which only a few CRISPR proteins have been characterized.
Collapse
Affiliation(s)
- Chang Dong
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lihong Jiang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Saijuan Xu
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Lei Huang
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jin Cai
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiazhang Lian
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
- Center for Synthetic Biology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhinan Xu
- Key Laboratory of Biomass Chemical Engineering (Education Ministry), College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
40
|
Cámara E, Lenitz I, Nygård Y. A CRISPR activation and interference toolkit for industrial Saccharomyces cerevisiae strain KE6-12. Sci Rep 2020; 10:14605. [PMID: 32884066 PMCID: PMC7471924 DOI: 10.1038/s41598-020-71648-w] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2020] [Accepted: 08/10/2020] [Indexed: 01/17/2023] Open
Abstract
Recent advances in CRISPR/Cas9 based genome editing have considerably advanced genetic engineering of industrial yeast strains. In this study, we report the construction and characterization of a toolkit for CRISPR activation and interference (CRISPRa/i) for a polyploid industrial yeast strain. In the CRISPRa/i plasmids that are available in high and low copy variants, dCas9 is expressed alone, or as a fusion with an activation or repression domain; VP64, VPR or Mxi1. The sgRNA is introduced to the CRISPRa/i plasmids from a double stranded oligonucleotide by in vivo homology-directed repair, allowing rapid transcriptional modulation of new target genes without cloning. The CRISPRa/i toolkit was characterized by alteration of expression of fluorescent protein-encoding genes under two different promoters allowing expression alterations up to ~ 2.5-fold. Furthermore, we demonstrated the usability of the CRISPRa/i toolkit by improving the tolerance towards wheat straw hydrolysate of our industrial production strain. We anticipate that our CRISPRa/i toolkit can be widely used to assess novel targets for strain improvement and thus accelerate the design-build-test cycle for developing various industrial production strains.
Collapse
Affiliation(s)
- Elena Cámara
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Ibai Lenitz
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden
| | - Yvonne Nygård
- Division of Industrial Biotechnology, Department of Biology and Biological Engineering, Chalmers University of Technology, Kemivägen 10, 412 96, Gothenburg, Sweden.
| |
Collapse
|
41
|
Yang B, Feng X, Li C. Microbial Cell Factory for Efficiently Synthesizing Plant Natural Products via Optimizing the Location and Adaptation of Pathway on Genome Scale. Front Bioeng Biotechnol 2020; 8:969. [PMID: 32923436 PMCID: PMC7457125 DOI: 10.3389/fbioe.2020.00969] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2020] [Accepted: 07/27/2020] [Indexed: 01/03/2023] Open
Abstract
Plant natural products (PNPs) possess important pharmacological activities and are widely used in cosmetics, health care products, and as food additives. Currently, most PNPs are mainly extracted from cultivated plants, and the yield is limited by the long growth cycle, climate change and complex processing steps, which makes the process unsustainable. However, the complex structure of PNPs significantly reduces the efficiency of chemical synthesis. With the development of metabolic engineering and synthetic biology, heterologous biosynthesis of PNPs in microbial cell factories offers an attractive alternative. Based on the in-depth mining and analysis of genome and transcriptome data, the biosynthetic pathways of a number of natural products have been successfully elucidated, which lays the crucial foundation for heterologous production. However, there are several problems in the microbial synthesis of PNPs, including toxicity of intermediates, low enzyme activity, multiple auxotrophic dependence, and uncontrollable metabolic network. Although various metabolic engineering strategies have been developed to solve these problems, optimizing the location and adaptation of pathways on the whole-genome scale is an important strategy in microorganisms. From this perspective, this review introduces the application of CRISPR/Cas9 in editing PNPs biosynthesis pathways in model microorganisms, the influences of pathway location, and the approaches for optimizing the adaptation between metabolic pathways and chassis hosts for facilitating PNPs biosynthesis.
Collapse
Affiliation(s)
- Bo Yang
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Xudong Feng
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China
| | - Chun Li
- SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Key Laboratory of Systems Bioengineering, Ministry of Education, School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.,Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing, China.,Key Laboratory for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing, China
| |
Collapse
|
42
|
Ding W, Zhang Y, Shi S. Development and Application of CRISPR/Cas in Microbial Biotechnology. Front Bioeng Biotechnol 2020; 8:711. [PMID: 32695770 PMCID: PMC7338305 DOI: 10.3389/fbioe.2020.00711] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/08/2020] [Indexed: 02/06/2023] Open
Abstract
The clustered regularly interspaced short palindromic repeats (CRISPR)-associated (Cas) system has been rapidly developed as versatile genomic engineering tools with high efficiency, accuracy and flexibility, and has revolutionized traditional methods for applications in microbial biotechnology. Here, key points of building reliable CRISPR/Cas system for genome engineering are discussed, including the Cas protein, the guide RNA and the donor DNA. Following an overview of various CRISPR/Cas tools for genome engineering, including gene activation, gene interference, orthogonal CRISPR systems and precise single base editing, we highlighted the application of CRISPR/Cas toolbox for multiplexed engineering and high throughput screening. We then summarize recent applications of CRISPR/Cas systems in metabolic engineering toward production of chemicals and natural compounds, and end with perspectives of future advancements.
Collapse
Affiliation(s)
- Wentao Ding
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, College of Food Engineering and Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yang Zhang
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| | - Shuobo Shi
- Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, China
| |
Collapse
|
43
|
Adiego-Pérez B, Randazzo P, Daran JM, Verwaal R, Roubos JA, Daran-Lapujade P, van der Oost J. Multiplex genome editing of microorganisms using CRISPR-Cas. FEMS Microbiol Lett 2020; 366:5489186. [PMID: 31087001 PMCID: PMC6522427 DOI: 10.1093/femsle/fnz086] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2019] [Accepted: 05/10/2019] [Indexed: 12/13/2022] Open
Abstract
Microbial production of chemical compounds often requires highly engineered microbial cell factories. During the last years, CRISPR-Cas nucleases have been repurposed as powerful tools for genome editing. Here, we briefly review the most frequently used CRISPR-Cas tools and describe some of their applications. We describe the progress made with respect to CRISPR-based multiplex genome editing of industrial bacteria and eukaryotic microorganisms. We also review the state of the art in terms of gene expression regulation using CRISPRi and CRISPRa. Finally, we summarize the pillars for efficient multiplexed genome editing and present our view on future developments and applications of CRISPR-Cas tools for multiplex genome editing.
Collapse
Affiliation(s)
- Belén Adiego-Pérez
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| | - Paola Randazzo
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - Jean Marc Daran
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - René Verwaal
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Johannes A Roubos
- DSM Biotechnology Center, Alexander Fleminglaan 1, 2613 AX Delft, The Netherlands
| | - Pascale Daran-Lapujade
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ Delft, The Netherlands
| | - John van der Oost
- Laboratory of Microbiology, Wageningen University and Research, Stippeneng 4, 6708 WE Wageningen, The Netherlands
| |
Collapse
|
44
|
Diao J, Song X, Guo T, Wang F, Chen L, Zhang W. Cellular engineering strategies toward sustainable omega-3 long chain polyunsaturated fatty acids production: State of the art and perspectives. Biotechnol Adv 2020; 40:107497. [DOI: 10.1016/j.biotechadv.2019.107497] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 12/06/2019] [Accepted: 12/06/2019] [Indexed: 12/28/2022]
|
45
|
Dzanaeva L, Kruk B, Ruchala J, Nielsen J, Sibirny A, Dmytruk K. The role of peroxisomes in xylose alcoholic fermentation in the engineered
Saccharomyces cerevisiae. Cell Biol Int 2020; 44:1606-1615. [DOI: 10.1002/cbin.11353] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 02/02/2020] [Accepted: 03/19/2020] [Indexed: 12/22/2022]
Affiliation(s)
- Ljubov Dzanaeva
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| | - Barbara Kruk
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Justyna Ruchala
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Jens Nielsen
- Department of Biology and Biological EngineeringChalmers University of TechnologyGothenburg Sweden
| | - Andriy Sibirny
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
- Department of Biotechnology and MicrobiologyUniversity of RzeszowRzeszow Poland
| | - Kostyantyn Dmytruk
- Department of Molecular Genetics and Biotechnology, Institute of Cell BiologyNAS of UkraineLviv Ukraine
| |
Collapse
|
46
|
McCarty NS, Graham AE, Studená L, Ledesma-Amaro R. Multiplexed CRISPR technologies for gene editing and transcriptional regulation. Nat Commun 2020; 11:1281. [PMID: 32152313 PMCID: PMC7062760 DOI: 10.1038/s41467-020-15053-x] [Citation(s) in RCA: 253] [Impact Index Per Article: 63.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2019] [Accepted: 02/17/2020] [Indexed: 12/18/2022] Open
Abstract
Multiplexed CRISPR technologies, in which numerous gRNAs or Cas enzymes are expressed at once, have facilitated powerful biological engineering applications, vastly enhancing the scope and efficiencies of genetic editing and transcriptional regulation. In this review, we discuss multiplexed CRISPR technologies and describe methods for the assembly, expression and processing of synthetic guide RNA arrays in vivo. Applications that benefit from multiplexed CRISPR technologies, including cellular recorders, genetic circuits, biosensors, combinatorial genetic perturbations, large-scale genome engineering and the rewiring of metabolic pathways, are highlighted. We also offer a glimpse of emerging challenges and emphasize experimental considerations for future studies.
Collapse
Affiliation(s)
- Nicholas S McCarty
- Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA, 91125, USA
| | - Alicia E Graham
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Lucie Studená
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK
| | - Rodrigo Ledesma-Amaro
- Department of Bioengineering and Imperial College Centre for Synthetic Biology, Imperial College London, London, UK.
| |
Collapse
|
47
|
Payen C, Thompson D. The renaissance of yeasts as microbial factories in the modern age of biomanufacturing. Yeast 2019; 36:685-700. [DOI: 10.1002/yea.3439] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/09/2019] [Accepted: 08/04/2019] [Indexed: 12/18/2022] Open
Affiliation(s)
- Celia Payen
- DuPont Nutrition and Biosciences Wilmington Delaware
| | | |
Collapse
|
48
|
Establishment and application of multiplexed CRISPR interference system in Bacillus licheniformis. Appl Microbiol Biotechnol 2019; 104:391-403. [PMID: 31745574 DOI: 10.1007/s00253-019-10230-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2019] [Revised: 10/22/2019] [Accepted: 10/30/2019] [Indexed: 12/14/2022]
Abstract
Bacillus licheniformis has been regarded as an outstanding microbial cell factory for the production of biochemicals and enzymes. Due to lack of genetic tools to repress gene expression, metabolic engineering and gene function elucidation are limited in this microbe. In this study, an integrated CRISPR interference (CRISPRi) system was constructed in B. licheniformis. Several endogenous genes, including yvmC, cypX, alsD, pta, ldh, and essential gene rpsC, were severed as the targets to test this CRISPRi system, and the repression efficiencies were ranged from 45.02 to 94.00%. Moreover, the multiple genes were simultaneously repressed with high efficiency using this CRISPRi system. As a case study, the genes involved in by-product synthetic and L-valine degradation pathways were selected as the silence targets to redivert metabolic flux toward L-valine synthesis. Repression of acetolactate decarboxylase (alsD) and leucine dehydrogenase (bcd) led to 90.48% and 80.09 % increases in L-valine titer, respectively. Compared with the control strain DW9i△leuA (1.47 g/L and 1.79 g/L), the L-valine titers of combinatorial strain DW9i△leuA/pHYi-alsD-bcd were increased by 1.27-fold and 2.89-fold, respectively, in flask and bioreactor. Collectively, this work provides a feasible approach for multiplex metabolic engineering and functional genome studies of B. licheniformis.
Collapse
|
49
|
Ferreira R, Skrekas C, Hedin A, Sánchez BJ, Siewers V, Nielsen J, David F. Model-Assisted Fine-Tuning of Central Carbon Metabolism in Yeast through dCas9-Based Regulation. ACS Synth Biol 2019; 8:2457-2463. [PMID: 31577419 DOI: 10.1021/acssynbio.9b00258] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Engineering Saccharomyces cerevisiae for industrial-scale production of valuable chemicals involves extensive modulation of its metabolism. Here, we identified novel gene expression fine-tuning set-ups to enhance endogenous metabolic fluxes toward increasing levels of acetyl-CoA and malonyl-CoA. dCas9-based transcriptional regulation was combined together with a malonyl-CoA responsive intracellular biosensor to select for beneficial set-ups. The candidate genes for screening were predicted using a genome-scale metabolic model, and a gRNA library targeting a total of 168 selected genes was designed. After multiple rounds of fluorescence-activated cell sorting and library sequencing, the gRNAs that were functional and increased flux toward malonyl-CoA were assessed for their efficiency to enhance 3-hydroxypropionic acid (3-HP) production. 3-HP production was significantly improved upon fine-tuning genes involved in providing malonyl-CoA precursors, cofactor supply, as well as chromatin remodeling.
Collapse
Affiliation(s)
- Raphael Ferreira
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| | - Christos Skrekas
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| | - Alex Hedin
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| | - Benjamín J Sánchez
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| | - Verena Siewers
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| | - Jens Nielsen
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Technical University of Denmark , DK2800 Kgs . Lyngby , Denmark
| | - Florian David
- Department of Biology and Biological Engineering , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
- Novo Nordisk Foundation Center for Biosustainability , Chalmers University of Technology , SE412 96 Gothenburg , Sweden
| |
Collapse
|
50
|
Deaner M, Alper HS. Enhanced scale and scope of genome engineering and regulation using CRISPR/Cas in Saccharomyces cerevisiae. FEMS Yeast Res 2019; 19:foz076. [PMID: 31665284 DOI: 10.1093/femsyr/foz076] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Accepted: 10/24/2019] [Indexed: 12/13/2022] Open
Abstract
Although only 6 years old, the CRISPR system has blossomed into a tool for rapid, on-demand genome engineering and gene regulation in Saccharomyces cerevisiae. In this minireview, we discuss fundamental CRISPR technologies, tools to improve the efficiency and capabilities of gene targeting, and cutting-edge techniques to explore gene editing and transcriptional regulation at genome scale using pooled approaches. The focus is on applications to metabolic engineering with topics including development of techniques to edit the genome in multiplex, tools to enable large numbers of genetic modifications using pooled single-guide RNA libraries and efforts to enable programmable transcriptional regulation using endonuclease-null Cas enzymes.
Collapse
Affiliation(s)
- Matthew Deaner
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
| | - Hal S Alper
- McKetta Department of Chemical Engineering, The University of Texas at Austin, 200 E Dean Keeton St. Stop C0400, Austin, TX 78712, USA
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, 2500 Speedway Avenue, Austin, TX 78712, USA
| |
Collapse
|