1
|
Seidler V, Utazi EC, Finaret AB, Luckeneder S, Zens G, Bodarenko M, Smith AW, Bradley SEK, Tatem AJ, Webb P. Subnational variations in the quality of household survey data in sub-Saharan Africa. Nat Commun 2025; 16:3771. [PMID: 40263256 PMCID: PMC12015360 DOI: 10.1038/s41467-025-58776-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 04/02/2025] [Indexed: 04/24/2025] Open
Abstract
Nationally representative household surveys collect geocoded data that are vital to tackling health and other development challenges in sub-Saharan Africa. Scholars and practitioners generally assume uniform data quality but subnational variation of errors in household data has never been investigated at high spatial resolution. Here, we explore within-country variation in the quality of most recent household surveys for 35 African countries at 5 × 5 km resolution and district levels. Findings show a striking heterogeneity in the subnational distribution of sampling and measurement errors. Data quality degrades with greater distance from settlements, and missing data as well as imprecision of estimates add to quality problems that can result in vulnerable remote populations receiving less than optimal services and needed resources. Our easy-to-access geospatial estimates of survey data quality highlight the need to invest in better targeting of household surveys in remote areas.
Collapse
Affiliation(s)
| | - Edson C Utazi
- WorldPop, School of Geography and Environmental Sciencevundefined, University of Southampton, Southampton, UK
| | - Amelia B Finaret
- University of Edinburgh, Global Academy of Agriculture and Food Systems, Edinburgh, Scotland, UK
- Allegheny College, Department of Global Health Studies, Meadville, PA, USA
| | - Sebastian Luckeneder
- Vienna University of Economics and Business, Department of Socioeconomics, Vienna, Austria
| | - Gregor Zens
- International Institute for Applied Systems Analysis (IIASA), Laxenburg, Austria
| | - Maksym Bodarenko
- WorldPop, School of Geography and Environmental Sciencevundefined, University of Southampton, Southampton, UK
| | - Abigail W Smith
- Allegheny College, Department of Global Health Studies, Meadville, PA, USA
| | | | - Andrew J Tatem
- WorldPop, School of Geography and Environmental Sciencevundefined, University of Southampton, Southampton, UK
| | - Patrick Webb
- Tufts University, Friedman School of Nutrition Science and Policy, Boston, Massachusetts, USA
| |
Collapse
|
2
|
Galick DS, Vaz LM, Ondo L, Iyanga MM, Bikie FEE, Avue RMN, Donfack OT, Eyono JNM, Ondo Mifumu TA, Hergott DEB, Phiri WP, Smith DL, Guerra CA, García GA. Reconsidering indoor residual spraying coverage targets: A retrospective analysis of high-resolution programmatic malaria control data. Proc Natl Acad Sci U S A 2025; 122:e2421531122. [PMID: 40228135 PMCID: PMC12037036 DOI: 10.1073/pnas.2421531122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 03/07/2025] [Indexed: 04/16/2025] Open
Abstract
Indoor residual spraying (IRS) is one of the core vector control interventions available to malaria control programs. Normative and scientific guidance has long held that very high IRS coverage (at least 80 to 85% houses sprayed) is necessary to provide community protection, but there is little evidence backing these recommendations, in large part due to the operational and ethical concerns that conducting appropriate trials of differing IRS coverage levels would raise. The present study leverages data from four years of targeted IRS implementation on Bioko Island, Equatorial Guinea, to estimate a dose-response curve of IRS coverage. Due to the observational nature of the data, a double robust causal inference technique was utilized. The results suggest that at all spatial scales examined a threshold providing community protection was reached at much lower coverage levels than previously assumed (30 to 50%). Sensitivity analysis corroborated this result across multiple methods, but there was less agreement on whether extremely high coverage ([Formula: see text]85%) has additional benefit. A secondary analysis of the impact of changing operational coverage targets found that significantly reducing coverage targets (to 30 to 60%) could provide nearly the same protection as maintaining the existing 80% target in Bioko. While these findings are limited in strength by the observational nature of the data and may be specific to the context of Bioko Island, they raise important questions for further research on how IRS coverage impacts epidemiological outcomes and on how malaria control programs should set programmatic IRS coverage targets.
Collapse
Affiliation(s)
| | | | - Lucas Ondo
- MCD Global Health, Malabo, Equatorial Guinea
| | | | | | | | | | | | | | - Dianna E. B. Hergott
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA98195
| | | | - David L. Smith
- Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA98195
| | | | | |
Collapse
|
3
|
Weiss DJ, Dzianach PA, Saddler A, Lubinda J, Browne A, McPhail M, Rumisha SF, Sanna F, Gelaw Y, Kiss JB, Hafsia S, Jayaseelen R, Baggen HS, Amratia P, Bertozzi-Villa A, Nesbit O, Whisnant J, Battle KE, Nguyen M, Alene KA, Cameron E, Penny MA, Bhatt S, Smith DL, Symons TL, Mosser JF, Murray CJL, Hay SI, Gething PW. Mapping the global prevalence, incidence, and mortality of Plasmodium falciparum and Plasmodium vivax malaria, 2000-22: a spatial and temporal modelling study. Lancet 2025; 405:979-990. [PMID: 40056919 PMCID: PMC11928297 DOI: 10.1016/s0140-6736(25)00038-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/30/2024] [Accepted: 01/07/2025] [Indexed: 03/24/2025]
Abstract
BACKGROUND Malaria remains a leading cause of illness and death globally, with countries in sub-Saharan Africa bearing a disproportionate burden. Global high-resolution maps of malaria prevalence, incidence, and mortality are crucial for tracking spatially heterogeneous progress against the disease and to inform strategic malaria control efforts. We present the latest such maps, the first since 2019, which cover the years 2000-22. The maps are accompanied by administrative-level summaries and include estimated COVID-19 pandemic-related impacts on malaria burden. METHODS We initially modelled prevalence of Plasmodium falciparum malaria infection in children aged 2-10 years in high-burden African countries using a geostatistical modelling framework. The model was trained on a large database of spatiotemporal observations of community infection prevalence; environmental and anthropogenic covariates; and modelled intervention coverages for insecticide-treated bednets, indoor residual spraying, and effective treatment with an antimalarial drug. We developed an additional model to incorporate disruptions to malaria case management caused by the COVID-19 pandemic. The resulting high-resolution maps of infection prevalence from 2000 to 2022 were subsequently translated to estimates of case incidence and malaria mortality. For other malaria-endemic countries and for Plasmodium vivax estimates, we used routine surveillance data to model annual case incidence at administrative levels. We then converted these estimates to infection prevalence and malaria mortality, and spatially disaggregated administrative-level results to produce high-resolution maps. Lastly, we combined the modelled outputs to produce global maps and summarised tables that are suitable for assessing changing malaria burden from subnational to global scales. FINDINGS We found an ongoing plateau in rates of malaria infection prevalence and case incidence within sub-Saharan Africa, with consistent year-on-year improvements not evident since 2015. Due to the concentration of malaria burden in sub-Saharan Africa and the region's rapid population growth relative to other endemic regions, we estimate that 2022 had 234·8 (95% uncertainty interval 179·2-299·0) million clinical cases of P falciparum malaria, the most since 2004. Despite these findings, deaths from malaria continued to decline in sub-Saharan Africa and consequently globally after 2015, except for the COVID-19-impacted years of 2020-22. Similarly, progress in reducing P falciparum and P vivax morbidity outside Africa continued despite stalled progress globally. However, a major malaria outbreak in Pakistan following intense flooding in 2022 resulted in a reversal in this improving trend and contributed heavily to the global total of 12·4 (10·7-14·8) million clinical cases of P vivax malaria. Within Africa, we found that the plateau in infection prevalence occurred earlier in more densely populated areas, whereas more sparsely populated regions have continued a trajectory of modest improvement. INTERPRETATION The unprecedented investment in malaria control since the early 2000s has averted an enormous amount of malaria burden. However, case incidence rates in Africa have flattened, and with a rapidly growing population at risk, the number of P falciparum cases in Africa, and thus globally, is now comparable to levels before the surge of investment. Outside Africa progress against malaria morbidity continued after 2015, but a resurgence of P vivax cases in 2022 underscores the fragility of progress against malaria in the face of climatic shocks. COVID-19-related disruptions led to increased malaria cases and deaths, but the impact was less severe than feared, in part because endemic countries continued to prioritise malaria control during the pandemic. Nevertheless, improved tools and strategies remain urgently needed to regain momentum against this disease. FUNDING Bill & Melinda Gates Foundation and Australian National Health and Medical Research Council.
Collapse
Affiliation(s)
- Daniel J Weiss
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia.
| | | | - Adam Saddler
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Jailos Lubinda
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Annie Browne
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Michael McPhail
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Susan F Rumisha
- The Kids Research Institute Australia, Nedlands, WA, Australia; Ifakara Health Institute, Dar es Salaam, Tanzania
| | - Francesca Sanna
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Yalemzewod Gelaw
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Juniper B Kiss
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Sarah Hafsia
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | | | - Hunter S Baggen
- The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Punam Amratia
- The Kids Research Institute Australia, Nedlands, WA, Australia; Ifakara Health Institute, Dar es Salaam, Tanzania
| | | | - Olivia Nesbit
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Joanna Whisnant
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Katherine E Battle
- Institute for Disease Modeling, Bill & Melinda Gates Foundation, Seattle, WA, USA
| | | | - Kefyalew Addis Alene
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Ewan Cameron
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Melissa A Penny
- The Kids Research Institute Australia, Nedlands, WA, Australia; University of Western Australia, Crawley, WA, Australia
| | - Samir Bhatt
- University of Copenhagen, Copenhagen, Denmark; Imperial College London, London, UK
| | - David L Smith
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Tasmin L Symons
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia
| | - Jonathan F Mosser
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Christopher J L Murray
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Simon I Hay
- The Institute for Health Metrics and Evaluation, University of Washington, Seattle, WA, USA
| | - Peter W Gething
- Curtin University, Bentley, WA, Australia; The Kids Research Institute Australia, Nedlands, WA, Australia
| |
Collapse
|
4
|
Echodu R, Oyet WS, Iwiru T, Apili F, Lutwama JJ, Opiyo EA, Otim O. Household predictors of malaria episode in northern Uganda: its implication for future malaria control. BMC Public Health 2025; 25:974. [PMID: 40075381 PMCID: PMC11905491 DOI: 10.1186/s12889-025-22175-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Accepted: 03/03/2025] [Indexed: 03/14/2025] Open
Abstract
BACKGROUND Uses of indoor residual spraying (IRS), long-lasting insecticidal nets (LLINS) and treatment with artemisinin-based combination therapy (ACT) are greatly promoted in the northern part of Uganda as mitigating strategies for malaria episodes. Unfortunately, the region remains the fourth highest malaria burden in Uganda with a prevalence of 12%. This study assesses household predictors of malaria episodes in northern Uganda and their impact on malaria episodes at the household level. METHODS A cross-sectional study was conducted in four districts of Gulu, Oyam, Kitgum and Agago covering sixteen villages in northern Uganda. Data was collected through a pre-tested structured questionnaire and systematically coded for analysis using R software. RESULTS In total, 193 households were surveyed with 112 (58%) of them headed by women and 605 individuals were declared to have spent the night before the interview in the 193 households. On average, there were at least two-bed nets (317/159) per household and a total of 460 individuals out of 535 (86%) spent the night before the interview under a bed net. The usage of bed nets in the study area overall was 86% while malaria incidence was 50% higher in children than in adults. Hierarchical clustering on principal components (HCPC) categorizes households in northern Uganda into three types: 1) households that use bed nets and sleep in houses sprayed with insecticides; 2) households that use bed nets but no indoor residual spraying with insecticides and 3) households that have no bed nets and no indoor residual spraying. When given a choice between IRS and treated bed nets, 1 in 3 households preferred treated bed nets. At the same time, data suggests that bed nets were perceived as unnecessary once the IRS was applied. If true, the driving force for spraying insecticides indoors then becomes the lack of a bed net. CONCLUSIONS Malaria episodes were strongly related to lack of bed nets or use thereof, and directly linked to the number of individuals in a household. Children were prone to malaria more than adults by a ratio of 2:1. The three categories of households in northern Uganda as revealed by HCPC provide an opportunity to tailor-make preventive/intervention malaria messages to fit the individual household clusters.
Collapse
Affiliation(s)
- Richard Echodu
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda.
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda.
| | - William Sam Oyet
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Tereza Iwiru
- Gulu University Multifunctional Research Laboratories, P. O. Box 166, Gulu City, Uganda
| | - Felister Apili
- Department of Midwifery, Faculty of Nursing and Midwifery, Lira University, P. O. Box 1035, Lira City, Uganda
| | - Julius Julian Lutwama
- Department of Arbovirology, Emerging and Re-Emerging Infectious Diseases, Uganda Virus Research Institute, P. O. Box 49, Entebbe, Uganda
| | - Elizabeth Auma Opiyo
- Department of Biology, Faculty of Science, Gulu University, P. O. Box 166, Gulu City, Uganda
| | - Ochan Otim
- Department of Health Sciences and Sciences, University of California, City of Los Angeles, CA, USA
- Department of Chemistry, Faculty of Science, Gulu University, P.O. Box 166, Gulu City, Uganda
| |
Collapse
|
5
|
Saran RK, Hoppé M, Mayor S, Long C, Blakely B, Eppler L, Cartwright B, Scherer CW. Efficacy and utility of isocycloseram a novel isoxazoline insecticide against urban pests and public health disease vectors. PEST MANAGEMENT SCIENCE 2025; 81:978-989. [PMID: 39535487 DOI: 10.1002/ps.8497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Revised: 08/23/2024] [Accepted: 10/11/2024] [Indexed: 11/16/2024]
Abstract
BACKGROUND Isoxazolines inhibit γ-aminobutyric acid chloride channels in insects and acarids by binding to postsynaptic receptors. This prevents chloride influx, leading to depolarization/hyperexcitation, paralysis, and death. Here, we evaluated the potential utility of a novel isoxazoline, isocycloseram, against several urban insect pests. RESULTS Isocycloseram was active at low doses against the German cockroach, Blattella germanica (L.) [median lethal dose (LD50) 5-15 ng per insect at 72 h, topical assays]; Argentine ant (Linepithema humile Mayr), Pharaoh ant (Monomorium pharaonis (L.), common bed bug (Cimex lectularius (L.) (approximately 40 mg m-2, residual surface spray); Eastern subterranean termite (Reticulitermes flavipes (Kollar) and Formosan subterranean termite (Coptotermes formosanus Shiraki) (5 μg g-1 w/w, tunneling assays); and mosquito, Anopheles stephensi Liston (120 and 150 mg m-2 treated surfaces, aged indoors for 9 months). Additionally, cockroach gel bait at 1% isocycloseram (w/w) caused 95-100% mortality in German, American (Periplaneta americana (L.), and oriental (Blatta orientalis (L.) cockroaches within 5-14 days. CONCLUSIONS Isocycloseram proved to be active against both laboratory and field populations of German cockroaches at doses lower or equal to those of other chemicals. Ants, bed bugs, and mosquitoes readily acquired lethal doses of isocycloseram from different surfaces treated with formulated products. Given its non-repellent nature, delayed effects, and activity at low rates, isocycloseram can be a very effective compound against subsocial, social, and other human disease vector insect pests. © 2024 Society of Chemical Industry.
Collapse
Affiliation(s)
- Raj Kumar Saran
- Global R&D Professional Solutions, Syngenta, Vero Beach Research Center, Vero Beach, USA
| | - Mark Hoppé
- Public Health Research, Syngenta Crop Protection AG, Stein, Switzerland
| | | | - Catherine Long
- Global R&D Professional Solutions, Syngenta, Vero Beach Research Center, Vero Beach, USA
| | - Brittny Blakely
- Global R&D Professional Solutions, Syngenta, Vero Beach Research Center, Vero Beach, USA
| | - Lisa Eppler
- Syngenta Crop Protection, LLC, Greensboro, NC, USA
| | | | | |
Collapse
|
6
|
Burnett SM, Davis KM, Assefa G, Gogue C, Hinneh LD, Littrell M, Mwesigwa J, Okoko OO, Rabeherisoa S, Sillah-Kanu M, Sheahan W, Slater HC, Uhomoibhi P, Yamba F, Ambrose K, Stillman K. Process and Methodological Considerations for Observational Analyses of Vector Control Interventions in Sub-Saharan Africa Using Routine Malaria Data. Am J Trop Med Hyg 2025; 112:17-34. [PMID: 37604476 PMCID: PMC11720682 DOI: 10.4269/ajtmh.22-0757] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 06/21/2023] [Indexed: 08/23/2023] Open
Abstract
Progress in malaria control has stalled in recent years. With growing resistance to existing malaria vector control insecticides and the introduction of new vector control products, national malaria control programs (NMCPs) increasingly need to make data-driven, subnational decisions to inform vector control deployment. As NMCPs are increasingly conducting subnational stratification of malaria control interventions, including malaria vector control, country-specific frameworks and platforms are increasingly needed to guide data use for vector control deployment. Integration of routine health systems data, entomological data, and vector control program data in observational longitudinal analyses offers an opportunity for NMCPs and research institutions to conduct evaluations of existing and novel vector control interventions. Drawing on the experience of implementing 22 vector control evaluations across 14 countries in sub-Saharan Africa, as well as published and gray literature on vector control impact evaluations using routine health information system data, this article provides practical guidance on the design of these evaluations, makes recommendations for key variables and data sources, and proposes methods to address challenges in data quality. Key recommendations include appropriate parameterization of impact and coverage indicators, incorporating explanatory covariates and contextual factors from multiple sources (including rapid diagnostic testing stockouts; insecticide susceptibility; vector density measures; vector control coverage, use, and durability; climate and other malaria and non-malaria health programs), and assessing data quality before the evaluation through either on-the-ground or remote data quality assessments. These recommendations may increase the frequency, rigor, and utilization of routine data sources to inform national program decision-making for vector control.
Collapse
Affiliation(s)
- Sarah M. Burnett
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Kelly M. Davis
- U.S. President’s Malaria Initiative (PMI) VectorLink Project, PATH, Washington, District of Columbia
| | - Gudissa Assefa
- National Malaria Elimination Programme, Addis Ababa, Ethiopia
| | | | | | | | | | | | - Saraha Rabeherisoa
- Programme National de Lutte Contre le Paludisme, Antananarivo, Madagascar
| | | | | | | | | | | | - Kelley Ambrose
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| | - Kathryn Stillman
- President’s Malaria Initiative (PMI) VectorLink Project, Abt Associates, Rockville, Maryland
| |
Collapse
|
7
|
Hien AS, Bayili K, Maiga S, Oumbouke W, Birba J, Soma DD, Ouattara AY, Karama DO, Coleman M, Snetselaar J, Small G, Niimi S, Ayumi K, Kompaoré S, Tsuchiya K, Dabiré RK, Diabaté A. Long-lasting residual efficacy of a new indoor residual spraying product, VECTRON ™ T500 (broflanilide), against pyrethroid-resistant malaria vectors and its acceptance in a community trial in Burkina Faso. Parasit Vectors 2024; 17:484. [PMID: 39580476 PMCID: PMC11585240 DOI: 10.1186/s13071-024-06577-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 11/07/2024] [Indexed: 11/25/2024] Open
Abstract
BACKGROUND The WHO Global Malaria Programme advocates for a comprehensive, strategic approach to managing insecticide resistance, highlighting the importance of using multiple insecticides with different modes of action through rotations and combinations. To slow the spread of resistance, it is essential to develop and evaluate new formulations that feature unique modes of action and extended residual effects. Addressing this need, Mitsui Chemicals Crop & Life Solutions, Inc., developed VECTRON™ T500, a new indoor residual spraying (IRS) formulation using broflanilide, applied at a dosage of 100 mg AI/m2. This formulation was tested in a Phase III community trial, alongside Actellic® 300CS, a commonly used IRS product containing pirimiphos-methyl, applied at the recommended dosage of 1000 mg AI/m2. METHODS Monthly WHO wall cone bioassays were performed to assess the efficacy of the interventions using three mosquito strains: the laboratory-bred, insecticide-susceptible Anopheles gambiae s.s. Kisumu strain, the insecticide-resistant Anopheles coluzzii VKPer strain, and wild Anopheles gambiae s.l. mosquitoes from the Vallée du Kou, where the study was conducted. Vector surveillance was carried out to compare the results between sites treated with VECTRON™ T500, Actellic® 300CS, and an untreated control site. In addition, any reported adverse effects were closely monitored to evaluate the community's acceptance of VECTRON™ T500. RESULTS VECTRON™ T500 consistently achieved 100% mortality across all wall types for both susceptible and resistant mosquito strains over the 12-month period. In comparison, Actellic® 300CS induced < 80% mortality for both strains, irrespective of the wall substrate. When assessing delayed mortality in An. gambiae s.l. mosquitoes collected from sites treated with Actellic® 300CS (VK1) and VECTRON™ T500 (VK3), a statistically significant difference was noted after a 72-h holding period compared to the control site (RR = 0.51, CI95% = [0.31-0.6], P = 0.0026). Additionally, no adverse events were reported in households sprayed with VECTRON™ T500. CONCLUSIONS The residual efficacy of VECTRON™ T500 extended for 12 months post-spraying, effectively covering the full malaria transmission season while maintaining high mortality rates in pyrethroid-resistant malaria vectors. VECTRON™ T500 demonstrated non-inferiority in performance compared to Actellic® 300CS, the standard reference product. This new IRS formulation has the potential to play a crucial role in managing insecticide resistance by being integrated into a rotational strategy alongside other IRS products containing insecticides with different modes of action.
Collapse
Affiliation(s)
- Aristide Sawdetuo Hien
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso.
| | - Koama Bayili
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Samina Maiga
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | | | - Jean Birba
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Dieudonné Diloma Soma
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Adissa Ya Ouattara
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Delphine Ouissamien Karama
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | | | | | - Graham Small
- Innovative Vector Control Consortium (IVCC), Liverpool, UK
| | - Shinya Niimi
- Mitsui Chemicals Crop & Life Solutions, Inc., Tokyo, Japan
| | - Kawase Ayumi
- Mitsui Chemicals Crop & Life Solutions, Inc., Tokyo, Japan
| | - Sidzabda Kompaoré
- Permanent Secretariat for Malaria Elimination, Ouagadougou, Burkina Faso
| | | | - Roch Kounbobr Dabiré
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| | - Abdoulaye Diabaté
- Institut de Recherches en Sciences de la Santé, Centre National de la Recherche Scientifique et Technologique, Ouagadougou, Burkina Faso
| |
Collapse
|
8
|
Mariën J, Mukomena E, Tevuzula VM, Leirs H, Huyse T. A century of medical records reveal earlier onset of the malaria season in Haut-Katanga induced by climate change. BMJ Glob Health 2024; 9:e015375. [PMID: 39438071 PMCID: PMC11499855 DOI: 10.1136/bmjgh-2024-015375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 10/01/2024] [Indexed: 10/25/2024] Open
Abstract
BACKGROUND Despite worldwide efforts to eradicate malaria over the past century, the disease remains a significant challenge in the Democratic Republic of the Congo (DRC) today. Climate change is even anticipated to worsen the situation in areas with higher altitudes and vulnerable populations. This study in Haut-Katanga, a highland region, aims to evaluate the effectiveness of past control measures and to explore the impact of climate change on the region's distinct seasonal malaria pattern throughout the last century. METHODS We integrated colonial medical records (1917-1983) from two major mining companies (Union Minière du Haut-Katanga and the Générale des Carrières et des Mines) with contemporary data (2003-2020) from Lubumbashi. Concurrently, we combined colonial climate records (1912-1946) with recent data from satellite images and weather stations (1940-2023). We used Generalised Additive Models to link the two data sources and to test for changing seasonal patterns in transmission. RESULTS Malaria transmission in Haut-Katanga has fluctuated significantly over the past century, influenced by evolving control strategies, political conditions and a changing climate. A notable decrease in cases followed the introduction of dichlorodiphenyltrichloroethane (DDT), while a surge occurred after the civil wars ended at the beginning of the new millennium. Recently, the malaria season began 1-2 months earlier than historically observed, likely due to a 2-5°C increase in mean minimum temperatures, which facilitates the sporogonic cycle of the parasite. CONCLUSION Despite contemporary control efforts, malaria incidence in Haut-Katanga is similar to levels observed in the 1930s, possibly influenced by climate change creating optimal conditions for malaria transmission. Our historical data shows that the lowest malaria incidence occurred during periods of intensive DDT use and indoor residual spraying. Consequently, we recommend the systematic reduction of vector populations as a key component of malaria control strategies in highland regions of sub-Saharan Africa.
Collapse
Affiliation(s)
- Joachim Mariën
- Evolutionary Ecology group, University of Antwerp, Antwerpen, Belgium
- Division of Invertebrates, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
- Virus Ecology group, Department of Biomedical sciences, Institute of Tropical Medicine, Antwerp, Belgium
| | - Eric Mukomena
- University of Lubumbashi, Lubumbashi, Congo (the Democratic Republic of the)
| | | | - Herwig Leirs
- Evolutionary Ecology group, University of Antwerp, Antwerpen, Belgium
| | - Tine Huyse
- Division of Invertebrates, Department of Biology, Royal Museum for Central Africa, Tervuren, Belgium
| |
Collapse
|
9
|
van Zyl L, Burke AM, Koekemoer LL, Coetzee BWT. Only incandescent light significantly decreases feeding of Anopheles funestus s.s. (Diptera: Culicidae) mosquitoes under laboratory conditions. Parasitol Res 2024; 123:355. [PMID: 39422781 PMCID: PMC11489244 DOI: 10.1007/s00436-024-08370-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2024] [Accepted: 10/04/2024] [Indexed: 10/19/2024]
Abstract
Recent work has demonstrated that exposure to artificial light at night (ALAN) may alter mosquito feeding behavior and so must be considered a moderator of vector-borne disease transfer. Anopheles funestus mosquitoes are a primary malaria vector in sub-Saharan Africa, but no study to date has tested the impact of ALAN on their feeding behavior. Here we test if the exposure to commonly used household lights (compact fluorescent lights, light-emitting diodes, and incandescent lights) alters Anopheles funestus feeding. Mated, unfed female mosquitoes were exposed to a light treatment, at the onset of darkness, followed by a blood-feeding assay. The light treatments consisted of a 30-min light pulse of one of the three household lights, each in individual experimental containers, versus controls. All three household lights resulted in a reduction in the percentage of females taking a blood meal, but only mosquitoes exposed to incandescent light showed a statistically significant reduction in feeding of 19.6% relative to controls which showed a 42.8% feeding rate. Our results suggest that exposure to some household lights during the night may have an immediate inhibitory effect on Anopheles funestus feeding. By helping identify which light types lead to a suppression of feeding, the findings of this study could provide insight necessary to design household lights that can help minimize mosquito feeding on humans.
Collapse
Affiliation(s)
- Layla van Zyl
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa
| | - Ashley M Burke
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Lizette L Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
- Centre for Emerging Zoonotic and Parasitic Diseases, National Institute for Communicable Diseases of the National Health Laboratory Service, Johannesburg, South Africa
| | - Bernard W T Coetzee
- Department of Zoology and Entomology, University of Pretoria, Pretoria, South Africa.
| |
Collapse
|
10
|
Hancock PA, North A, Leach AW, Winskill P, Ghani AC, Godfray HCJ, Burt A, Mumford JD. The potential of gene drives in malaria vector species to control malaria in African environments. Nat Commun 2024; 15:8976. [PMID: 39419965 PMCID: PMC11486997 DOI: 10.1038/s41467-024-53065-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Accepted: 09/30/2024] [Indexed: 10/19/2024] Open
Abstract
Gene drives are a promising means of malaria control with the potential to cause sustained reductions in transmission. In real environments, however, their impacts will depend on local ecological and epidemiological factors. We develop a data-driven model to investigate the impacts of gene drives that causes vector population suppression. We simulate gene drive releases in sixteen ~ 12,000 km2 areas of west Africa that span variation in vector ecology and malaria prevalence, and estimate reductions in vector abundance, malaria prevalence and clinical cases. Average reductions in vector abundance ranged from 71.6-98.4% across areas, while impacts on malaria depended strongly on which vector species were targeted. When other new interventions including RTS,S vaccination and pyrethroid-PBO bednets were in place, at least 60% more clinical cases were averted when gene drives were added, demonstrating the benefits of integrated interventions. Our results show that different strategies for gene drive implementation may be required across different African settings.
Collapse
Affiliation(s)
- Penelope A Hancock
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK.
| | - Ace North
- Department of Biology, University of Oxford, Oxford, UK
| | - Adrian W Leach
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| | - Peter Winskill
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - Azra C Ghani
- MRC Centre for Global Infectious Disease Analysis, School of Public Health, Imperial College London, London, UK
| | - H Charles J Godfray
- Department of Biology, University of Oxford, Oxford, UK
- Oxford Martin School, University of Oxford, Oxford, UK
| | - Austin Burt
- Department of Life Sciences, Imperial College London, Ascot, UK
| | - John D Mumford
- Centre for Environmental Policy, Imperial College London, Ascot, UK
| |
Collapse
|
11
|
Jobe NB, Erickson M, Rydberg SE, Huijben S, Paaijmans KP. Repelling Aedes aegypti mosquitoes with electric fields using insulated conductor wires. PLoS Negl Trop Dis 2024; 18:e0012493. [PMID: 39269948 PMCID: PMC11424001 DOI: 10.1371/journal.pntd.0012493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 09/25/2024] [Accepted: 08/19/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND The control and prevention of mosquito-borne diseases is mostly achieved with insecticides. However, their use has led to the rapid development and spread of insecticide resistance worldwide. Health experts have called for intensified efforts to find new approaches to reduce mosquito populations and human-mosquito contact. A promising new tool is the use of electrical fields (EFs), whereby mosquitoes are repelled by charged particles in their flight path. Such particles move between two or more conductors, and the use of uninsulated copper or aluminum plates as conductors has been proven to be effective at repelling mosquitoes. Here, for the first time, we assess if EFs generated using a single row of insulated conductor wires (ICWs) can also successfully repel mosquitoes, and whether mosquitoes are equally repelled at the same EF strength when the electrodes are a) orientated differently (horizontal vs. vertical placement), and b) spaced more apart. METHODOLOGY/PRINCIPAL FINDINGS Over a period of 23 hours, the number of host-seeking female Aedes aegypti mosquitoes that were successfully repelled by EFs, using ICWs, at EF strengths ranging from 0 kV/cm (control) to 9.15 kV/cm were quantified. Mosquitoes were released inside a 220×220×180 cm room and lured into a BG-Pro trap that was equipped with a BG-counter and baited with CO2 using dry ice. Mosquitoes had to pass through an EF window, that contained a single row of ICWs with alternating polarity, to reach the bait. The baseline interaction between EF strength and repellency was assessed first, after which the impact of different ICW orientations and ICW distances on repellency were determined. Over 50% of mosquitoes were repelled at EF strengths of ≥ 3.66 kV/cm. A linear regression model showed that a vertical ICW orientation (vertical vs. horizontal) had a small but insignificant increased impact on mosquito repellency (p = 0.059), and increasing ICW distance (while maintaining the same EF strength) significantly reduced repellency (p = 0.01). CONCLUSIONS/SIGNIFICANCE ICWs can be used to generate EFs that partially repel host-seeking mosquitoes, which will reduce human-mosquito contact. While future studies need to assess if (i) increased repellency can be achieved, and (ii) a repellency of 50-60% is sufficient to impact disease transmission, it is encouraging that EF repellency using ICWs is higher compared to that of some spatial repellent technologies currently in development. This technology can be used in the housing improvement toolkit (i.e. preventing mosquito entry through eaves, windows, and doors). Moreover, the use of cheap, over-the-counter ICWs will mean that the technology is more accessible worldwide, and easier to manufacture and implement locally.
Collapse
Affiliation(s)
- Ndey Bassin Jobe
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Michael Erickson
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Sarah E Rydberg
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
| | - Silvie Huijben
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States America
| | - Krijn P Paaijmans
- The Center for Evolution & Medicine, School of Life Sciences, Arizona State University, Tempe, Arizona, United States America
- Simon A. Levin Mathematical, Computational and Modeling Sciences Center, Arizona State University, Tempe, Arizona, United States America
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| |
Collapse
|
12
|
Hayes CC, Schal C. Review on the impacts of indoor vector control on domiciliary pests: good intentions challenged by harsh realities. Proc Biol Sci 2024; 291:20240609. [PMID: 39043243 PMCID: PMC11265923 DOI: 10.1098/rspb.2024.0609] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 05/16/2024] [Accepted: 05/28/2024] [Indexed: 07/25/2024] Open
Abstract
Arthropod vectored diseases have been a major impediment to societal advancements globally. Strategies to mitigate transmission of these diseases include preventative care (e.g. vaccination), primary treatment and most notably, the suppression of vectors in both indoor and outdoor spaces. The outcomes of indoor vector control (IVC) strategies, such as long-lasting insecticide-treated nets (LLINs) and indoor residual sprays (IRSs), are heavily influenced by individual and community-level perceptions and acceptance. These perceptions, and therefore product acceptance, are largely influenced by the successful suppression of non-target nuisance pests such as bed bugs and cockroaches. Adoption and consistent use of LLINs and IRS is responsible for immense reductions in the prevalence and incidence of malaria. However, recent observations suggest that failed control of indoor pests, leading to product distrust and abandonment, may threaten vector control programme success and further derail already slowed progress towards malaria elimination. We review the evidence of the relationship between IVC and nuisance pests and discuss the dearth of research on this relationship. We make the case that the ancillary control of indoor nuisance and public health pests needs to be considered in the development and implementation of new technologies for malaria elimination.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Campus Box 7613, Raleigh, NC27695-7613, USA
| |
Collapse
|
13
|
Francisco ME, Watanabe K. Innovative house structures for malaria vector control in Nampula district, Mozambique: assessing mosquito entry prevention, indoor comfort, and community acceptance. Front Public Health 2024; 12:1404493. [PMID: 38894994 PMCID: PMC11183294 DOI: 10.3389/fpubh.2024.1404493] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Accepted: 05/23/2024] [Indexed: 06/21/2024] Open
Abstract
Background Insecticide-treated mosquito bed nets and indoor residual spraying are widely used for malaria vector control. However, their effectiveness can be affected by household members' habits, requiring alternative approaches toward malaria vector control. Objective To assess the effectiveness of modified houses in preventing mosquito entry; to assess the impact of house modifications on indoor air conditions and evaluate the acceptability of modified houses in the community where the study was conducted. Methods Five traditional and five modified houses were constructed in Nampula district, Mozambique and underwent a 90-day overnight indoor mosquito collection using Centers for Disease Control and nitride ultraviolet light traps during the rainy season. Mosquitoes were identified morphologically. Indoor temperature, relative humidity, carbon dioxide levels and wind speed were also collected. The Student's t-test was used to compare the means of the number of mosquitos and environmental factors between both house types. A binomial form of the Generalized Linear Model identified the factors associated with the community volunteer's preference for house type. Results Modified houses reduced the number of Anopheles by an average of 14.97 mosquitos (95% CI, 11.38-18.56, p < 0.000) and non-Anopheles by 16.66 mosquitoes (95% CI, 8.23-25.09, p < 0.000). Although fewer mosquitoes were trapped in modified houses compared to traditional ones, the modifications were more effective against Anopheles (94% reduction) than for non-Anopheles (71% reduction). The average temperature increased at 0.25°C in modified houses but was not statistically significant (95% CI, -0.62 to 0.12, p = 0.181). Community volunteers preferred modified houses due to reduced mosquito buzzing. The efficacy of modified houses including its acceptability by community, highlight its potential to lower malaria risk. Effective integration of modified houses into the vector control strategy will require raising awareness among communities about malaria risks associated with house structure and training them to modify their houses.
Collapse
Affiliation(s)
- Micanaldo Ernesto Francisco
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
- Graduate School of Science and Engineering, Ehime University, Matsuyama, Japan
- Faculty of Architecture and Physical Planning (FAPF), Lurio University, Nampula, Mozambique
| | - Kozo Watanabe
- Center for Marine Environmental Studies (CMES), Ehime University, Matsuyama, Japan
| |
Collapse
|
14
|
Ndiaye F, Diop A, Chabi J, Sturm-Ramirez K, Senghor M, Diouf EH, Samb B, Diedhiou SM, Thiaw O, Zohdy S, Dotson E, Sene D, Diouf MB, Koscelnik V, Gerberg L, Bangoura A, Clark T, Faye O, Dia I, Konate L, Niang EHA. Distribution and dynamics of Anopheles gambiae s.l. larval habitats in three Senegalese cities with high urban malaria incidence. PLoS One 2024; 19:e0303473. [PMID: 38743768 PMCID: PMC11093314 DOI: 10.1371/journal.pone.0303473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 04/15/2024] [Indexed: 05/16/2024] Open
Abstract
Urban malaria has become a challenge for most African countries due to urbanization, with increasing population sizes, overcrowding, and movement into cities from rural localities. The rapid expansion of cities with inappropriate water drainage systems, abundance of water storage habitats, coupled with recurrent flooding represents a concern for water-associated vector borne diseases, including malaria. This situation could threaten progress made towards malaria elimination in sub-Saharan countries, including Senegal, where urban malaria has presented as a threat to national elimination gains. To assess drivers of urban malaria in Senegal, a 5-month study was carried out from August to December 2019 in three major urban areas and hotspots for malaria incidence (Diourbel, Touba, and Kaolack) including the rainy season (August-October) and partly dry season (November-December). The aim was to characterize malaria vector larval habitats, vector dynamics across both seasons, and to identify the primary eco- environmental entomological factors contributing to observed urban malaria transmission. A total of 145 Anopheles larval habitats were found, mapped, and monitored monthly. This included 32 in Diourbel, 83 in Touba, and 30 in Kaolack. The number of larval habitats fluctuated seasonally, with a decrease during the dry season. In Diourbel, 22 of the 32 monitored larval habitats (68.75%) were dried out by December and considered temporary, while the remaining 10 (31.25%) were classified as permanent. In the city of Touba 28 (33.73%) were temporary habitats, and of those 57%, 71% and 100% dried up respectively by October, November, and December. However, 55 (66.27%) habitats were permanent water storage basins which persisted throughout the study. In Kaolack, 12 (40%) permanent and 18 (60%) temporary Anopheles larval habitats were found and monitored during the study. Three malaria vectors (An. arabiensis, An. pharoensis and An. funestus s.l.) were found across the surveyed larval habitats, and An. arabiensis was found in all three cities and was the only species found in the city of Diourbel, while An. arabiensis, An. pharoensis, and An. funestus s.l. were detected in the cities of Touba and Kaolack. The spatiotemporal observations of immature malaria vectors in Senegal provide evidence of permanent productive malaria vector larval habitats year-round in three major urban centers in Senegal, which may be driving high urban malaria incidence. This study aimed to assess the presence and type of anopheline larvae habitats in urban areas. The preliminary data will better inform subsequent detailed additional studies and seasonally appropriate, cost-effective, and sustainable larval source management (LSM) strategies by the National Malaria Control Programme (NMCP).
Collapse
Affiliation(s)
- Fatou Ndiaye
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Abdoulaye Diop
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
- U.S. President’s Malaria Initiative VectorLink Project, Dakar, Senegal
| | - Joseph Chabi
- U.S. PMI VectorLink Project, Abt Associates, Rockville, MD, United States of America
| | | | - Massila Senghor
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - El Hadji Diouf
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Badara Samb
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Seynabou Mocote Diedhiou
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Omar Thiaw
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Sarah Zohdy
- U.S President’s Malaria Initiative, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Ellen Dotson
- U.S President’s Malaria Initiative, Centers for Disease Control and Prevention (CDC), Atlanta, GA, United States of America
| | - Doudou Sene
- National Malaria Control Programme, Dakar, Senegal
| | | | | | - Lilia Gerberg
- U.S. President’s Malaria Initiative, United States Agency for International Development (USAID), Washington, DC, United States of America
| | - Abdoulaye Bangoura
- U.S. PMI VectorLink Project, Abt Associates, Rockville, MD, United States of America
| | - Tiffany Clark
- U.S. PMI VectorLink Project, Abt Associates, Rockville, MD, United States of America
| | - Ousmane Faye
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - Ibrahima Dia
- Institut Pasteur de Dakar, Unité d’Entomologie Médicale, Dakar, Senegal
| | - Lassana Konate
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| | - El Hadji Amadou Niang
- Laboratoire d’Ecologie Vectorielle et Parasitaire, Université Cheikh Anta Diop de Dakar, Dakar, Sénégal
| |
Collapse
|
15
|
Balmith M, Basson C, Brand SJ. The Malaria Burden: A South African Perspective. J Trop Med 2024; 2024:6619010. [PMID: 38434493 PMCID: PMC10907104 DOI: 10.1155/2024/6619010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 01/30/2024] [Accepted: 02/14/2024] [Indexed: 03/05/2024] Open
Abstract
Malaria is a deadly disease caused by protozoan pathogens of the Plasmodium parasite. Transmission to humans occurs through the bite of an infected female Anopheles mosquito. According to the World Health Organization (WHO), an estimated 247 million cases of malaria were recorded worldwide in 2021, with approximately 619 000 malaria deaths. The initial signs of malaria can be mild and challenging to diagnose due to the signs and symptoms being similar to those of other illnesses. The malaria burden remains largely concentrated in the WHO sub-Saharan African region and has been recognised as a significant contributor to morbidity and mortality. This review aims to contribute to the existing knowledge on malaria in South Africa, a region within sub-Saharan Africa, focusing on the epidemiology and life cycle of the malaria parasite as well as diagnostic approaches for detecting malaria. In addition, nonpharmacological and pharmacological interventions for treating and preventing malaria infections will also be discussed herein. While there has been a significant reduction in the global burden of this disease, malaria remains a public health issue in South Africa. As such, the implementation of effective preventative measures and strategies, early diagnosis, and appropriate treatment regimens are crucial to reducing the malaria burden in South Africa.
Collapse
Affiliation(s)
- Marissa Balmith
- Department of Pharmacology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Charlise Basson
- Department of Physiology, School of Medicine, University of Pretoria, Pretoria, South Africa
| | - Sarel J. Brand
- Center of Excellence for Pharmaceutical Sciences, Department of Pharmacology, North-West University, Potchefstroom, South Africa
| |
Collapse
|
16
|
Zeleke G, Duchateau L, Yewhalaw D, Suleman S, Devreese M. In-vitro susceptibility and ex-vivo evaluation of macrocyclic lactone endectocides sub-lethal concentrations against Plasmodium vivax oocyst development in Anopheles arabiensis. Malar J 2024; 23:26. [PMID: 38238768 PMCID: PMC10797976 DOI: 10.1186/s12936-024-04845-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 01/05/2024] [Indexed: 01/22/2024] Open
Abstract
BACKGROUND Asymptomatic malaria transmission has become a public health concern across malaria-endemic Africa including Ethiopia. Specifically, Plasmodium vivax is more efficient at transmitting earlier in the infection and at lower densities than Plasmodium falciparum. Consequently, a greater proportion of individuals infected with P. vivax can transmit without detectable gametocytaemia. Mass treatment of livestock with macrocyclic lactones (MLs), e.g., ivermectin and doramectin, was suggested as a complementary malaria vector tool because of their insecticidal effects. However, the effects of MLs on P. vivax in Anopheles arabiensis has not yet been fully explored. Hence, comparative in-vitro susceptibility and ex-vivo studies were conducted to evaluate the effects of ivermectin, doramectin and moxidectin sub-lethal concentrations on P. vivax oocyst development in An. arabiensis. METHODS The 7-day sub-lethal concentrations of 25% (LC25) and 5% (LC5) were determined from in-vitro susceptibility tests on female An. arabiensis in Hemotek® membrane feeding assay. Next, an ex-vivo study was conducted using P. vivax gametocytes infected patient's blood spiked with the LC25 and LC5 of the MLs. At 7-days post-feeding, each mosquito was dissected under a dissection stereo microscope, stained with 0.5% (w/v) mercurochrome solution, and examined for the presence of P. vivax oocysts. Statistical analysis was based on a generalized mixed model with binomially distributed error terms. RESULTS A 7-day lethal concentration of 25% (LC25, in ng/mL) of 7.1 (95% CI: [6.3;8.0]), 20.0 (95%CI:[17.8;22.5]) and 794.3 (95%CI:[716.4;1516.3]) were obtained for ivermectin, doramectin and moxidectin, respectively. Similarly, a lethal concentration of 5% (LC5, in ng/mL) of 0.6 (95% CI: [0.5;0.7]), 1.8 (95% CI:[1.6;2.0]) and 53.7 (95% CI:[ 48.4;102.5]) were obtained respectively for ivermectin, doramectin and moxidectin. The oocyst prevalence in treatment and control groups did not differ significantly (p > 0.05) from each other. Therefore, no direct effect of ML endectocides on P. vivax infection in An. arabiensis mosquitoes was observed at the sub-lethal concentration (LC25 and LC5). CONCLUSIONS The effects of ivermectin and doramectin on malaria parasite is more likely via indirect effects, particularly by reducing the vectors lifespan and causing mortality before completing the parasite's sporogony cycle or reducing their vector capacity as it affects the locomotor activity of the mosquito.
Collapse
Affiliation(s)
- Gemechu Zeleke
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Luc Duchateau
- Biometrics Research Center, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium
| | - Delenasaw Yewhalaw
- School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Sultan Suleman
- Jimma University Laboratory of Drug Quality (JuLaDQ), and School of Pharmacy, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Mathias Devreese
- Department of Pathobiology, Pharmacology and Zoological Medicine, Faculty of Veterinary Medicine, Ghent University, Salisburylaan 133, Merelbeke, Belgium.
| |
Collapse
|
17
|
Dicko B, Kodio S, Samoura H, Traoré F, Sykes N, Drabo M, Thizy D, Coche I, Robinson B, Sanogo K, Yagouré B, Diop S, Coulibaly MB. Stakeholder engagement in the development of genetically modified mosquitoes for malaria control in West Africa: lessons learned from 10 years of Target Malaria's work in Mali. Front Bioeng Biotechnol 2024; 11:1286694. [PMID: 38249804 PMCID: PMC10797414 DOI: 10.3389/fbioe.2023.1286694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 12/05/2023] [Indexed: 01/23/2024] Open
Abstract
From 2012 to 2023, the Malaria Research and Training Center (MRTC), based out of the University of Sciences, Techniques and Technologies of Bamako (USTTB), was part of the Target Malaria research consortium working towards developing novel gene drive-based tools for controlling populations of malaria vector mosquitoes. As part of this work, Target Malaria Mali has undertaken a range of in-depth engagement activities with the communities where their research is conducted and with other stakeholders nationally. These activities were meant to ensure that the project's activities took place with the agreement of those communities, and that those communities were able to play a role in shaping the project's approach to ensure that its eventual outcomes were in line with their needs and concerns. This paper aims to conduct a critical assessment of those 10 years of stakeholder engagement in order to identify good practices which can inform future engagement work on gene drive research in West Africa. It sets out a range of approaches and practices that enabled the Target Malaria Mali team to engage a variety of stakeholders, to share information, collect feedback, and determine community agreement, in a manner that was inclusive, effective, and culturally appropriate. These can be useful tools for those working on gene drive research and other area-wide vector control methods in West African contexts to ensure that their research is aligned with the interests of the communities who are intended to be its ultimate beneficiaries, and to allow those communities to play a meaningful role in the research process.
Collapse
Affiliation(s)
- Bakara Dicko
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Souleymane Kodio
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Hatouma Samoura
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Fatoumata Traoré
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Naima Sykes
- Imperial College London, London, United Kingdom
| | | | | | | | | | - Kadiatou Sanogo
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Bilkissou Yagouré
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Samba Diop
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| | - Mamadou B. Coulibaly
- Malaria Research and Training Center at the University of Sciences, Techniques and Technologies of Bamako, Bamako, Mali
| |
Collapse
|
18
|
Wisden BH, Hewadikaram M, Dissanayake U, Maxwell C, Gunasekera P, Danso S, Katuwavila NP. Contextualizing Public Health Interventions in Eliminating Endemic Diseases: New Lessons From a Review of Sri Lanka's Success in Eliminating Malaria. INQUIRY : A JOURNAL OF MEDICAL CARE ORGANIZATION, PROVISION AND FINANCING 2024; 61:469580241308443. [PMID: 39692073 PMCID: PMC11653437 DOI: 10.1177/00469580241308443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2024] [Revised: 11/24/2024] [Accepted: 12/04/2024] [Indexed: 12/19/2024]
Abstract
Malaria remains a major global public health issue, demanding significant resources from governments, health organizations, and international organizations toward its elimination as an endemic disease. In 2016, Sri Lanka achieved the remarkable feat of being declared "malaria free" by the World Health Organisation (WHO), after over a century of indigenous disease. To identify significant lessons of global importance in eliminating endemic malaria by reviewing literature on Sri Lanka's successful elimination campaign. The history of malaria in Sri Lanka highlights the nation's journey from widespread malaria prevalence to achieving malaria-free status in 2016. Key interventions, such as the establishment of the Anti-Malaria Campaign in 1911, the introduction of Dichloro-Diphenyl-Trichloroethane (DDT) in 1946, and the launch of a malaria eradication program in 1958, played crucial roles in controlling the disease. However, challenges such as insecticide resistance, environmental changes, and civil war periodically caused resurgences. The 21st century saw intensified efforts in surveillance, vector control, and community engagement, culminating in the elimination of indigenous malaria cases in 2012. Despite this success, the risk of reintroduction from imported cases remains, necessitating ongoing vigilance and preventive measures. The case study of Sri Lanka is remarkable, and can provide valuable insight for stakeholders involved in eradicating malaria, with the caveat that this case is further evidence of the differential nature of malaria transmission worldwide.
Collapse
|
19
|
Ngufor C, Govoetchan R, Fongnikin A, Hueha C, Ahoga J, Syme T, Agbevo A, Daleb A, Small G, Nimmo D, Bradley J, Aikpon R, Iyikirenga L, Osse R, Tokponnon F, Padonou GG. Community evaluation of VECTRON™ T500, a broflanilide insecticide, for indoor residual spraying for malaria vector control in central Benin; a two arm non-inferiority cluster randomised trial. Sci Rep 2023; 13:17852. [PMID: 37857762 PMCID: PMC10587144 DOI: 10.1038/s41598-023-45047-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 10/15/2023] [Indexed: 10/21/2023] Open
Abstract
VECTRON™ T500 is a wettable powder IRS formulation of broflanilide, a newly discovered insecticide. We performed a two-arm non-inferiority community randomised evaluation of VECTRON™ T500, compared to Fludora® Fusion against pyrethroid-resistant Anopheles gambiae s.l. in an area of high coverage with pyrethroid-only nets in the Za-Kpota District of central Benin. One round of IRS was applied in all consenting households in the study area. Sixteen clusters were randomised (1:1) to receive VECTRON™ T500 (100 mg/m2 for broflanilide) or Fludora® Fusion (200 mg/m2 for clothianidin and 25 mg/m2 for deltamethrin). Surveys were performed to assess adverse events and the operational feasibility and acceptability of VECTRON™ T500 among spray operators and household inhabitants. Human landing catches were conducted in 6 households every 1-2 months for up to 18 months post-intervention to assess the impact on vector densities, sporozoite rates and entomological inoculation rates. Bottle bioassays were performed to monitor vector susceptibility to pyrethroids, broflanilide and clothianidin. Monthly wall cone bioassays were conducted for 24 months to assess the residual efficacy of the IRS formulations using susceptible and pyrethroid-resistant An. gambiae s.l. A total of 26,562 female mosquitoes were collected during the study, of which 40% were An. gambiae s.l., the main malaria vector in the study area. The vector population showed high intensity pyrethroid resistance but was susceptible to broflanilide (6 µg/bottle) and clothianidin (90 µg/bottle). Using a non-inferiority margin of 50%, vector density indicated by the human biting rate (bites/person/night) was non-inferior in the VECTRON™ T500 arm compared to the Fludora® Fusion arm both indoors (0.846 bites/p/n in Fludora® Fusion arm vs. 0.741 bites/p/n in VECTRON™ T500 arm, IRR 0.54, 95% CI 0.22-1.35, p = 0.150) and outdoors (0.691 bites/p/n in Fludora® Fusion arm vs. 0.590 bites/p/n in VECTRON™ T500 clusters, IRR 0.75, 95% CI 0.41-1.38, p = 0.297). Sporozoite rates and entomological inoculation rates did not differ significantly between study arms (sporozoite rate: 0.9% vs 1.1%, p = 0. 0.746, EIR: 0.008 vs 0.006 infective bites per person per night, p = 0.589). Cone bioassay mortality with both VECTRON™ T500 and Fludora® Fusion was 100% for 24 months post-IRS application on both cement and mud treated house walls with both susceptible and pyrethroid-resistant strains of An. gambiae s.l. Perceived adverse events reported by spray operators and householders were generally very low (< 6%) in both study arms. VECTRON™ T500 was non-inferior to Fludora® Fusion in reducing the risk of malaria transmission by pyrethroid resistant vectors when applied for IRS in communities in central Benin. The insecticide showed prolonged residual efficacy on house walls, lasting over 24 months and had a high acceptability with homeowners. Community application of VECTRON™ T500 for IRS provides improved and prolonged control of pyrethroid resistant malaria vectors and enhances our capacity to manage insecticide resistance.
Collapse
Affiliation(s)
- Corine Ngufor
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK.
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin.
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin.
| | - Renaud Govoetchan
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Augustin Fongnikin
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Corneille Hueha
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Juniace Ahoga
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Thomas Syme
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Abel Agbevo
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
- Panafrican Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Abdoulaye Daleb
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| | - Graham Small
- Innovative Vector Control Consortium, Liverpool, UK
| | - Derric Nimmo
- Innovative Vector Control Consortium, Liverpool, UK
| | - John Bradley
- London School of Hygiene and Tropical Medicine (LSHTM), London, WC1E 7HT, UK
| | - Rock Aikpon
- National Malaria Control Programme, Ministry of Health, Cotonou, Benin
| | | | - Razaki Osse
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| | - Filemon Tokponnon
- Centre de Recherches Entomologiques de Cotonou (CREC), Cotonou, Benin
| | | |
Collapse
|
20
|
Osman A, Amoako Johnson F, Mariwah S, Amoako-Sakyi D, Asiedu Owusu S, Ekor M, Hamill H, Hampshire K. Antimalarial stocking decisions among medicine retailers in Ghana: implications for quality management and control of malaria. BMJ Glob Health 2023; 6:e013426. [PMID: 37734858 PMCID: PMC10846845 DOI: 10.1136/bmjgh-2023-013426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 08/12/2023] [Indexed: 09/23/2023] Open
Abstract
Global health efforts such as malarial control require efficient pharmaceutical supply chains to ensure effective delivery of quality-assured medicines to those who need them. However, very little is currently known about decision-making processes within antimalarial supply chains and potential vulnerabilities to substandard and falsified medicines. Addressing this gap, we report on a study that investigated decision-making around the stocking of antimalarial products among private-sector medicine retailers in Ghana. Licensed retail pharmacies and over-the-counter (OTC) medicine retail outlets were sampled across six regions of Ghana using a two-stage stratified sampling procedure, with antimalarial medicines categorised as 'expensive,' 'mid-range,' and 'cheaper,' relative to other products in the shop. Retailers were asked about their motivations for choosing to stock particular products over others. The reasons were grouped into three categories: financial, reputation/experience and professional recommendation. Reputation/experience (76%, 95% CI 72.0% to 80.7%) were the drivers of antimalarial stocking decisions, followed by financial reasons (53.2%, 95% CI 48.1% to 58.3%) and recommendation by certified health professionals (24.7%, 95% CI 20.3% to 29.1%). Financial considerations were particularly influential in stocking decisions of cheaper medicines. Moreover, pharmacies and OTCs without a qualified pharmacist were significantly more likely to indicate financial reasons as a motivation for stocking decisions. No significant differences in stocking decisions were found by geographical location (zone and urban/rural) or outlet (pharmacy/OTC). These findings have implications for the management of antimalarial quality across supply chains in Ghana, with potentially important consequences for malaria control, particularly in lower-income areas where people rely on low-cost medication.
Collapse
Affiliation(s)
- Adams Osman
- Department of Geography Education, University of Education, Winneba, Ghana
| | - Fiifi Amoako Johnson
- Department of Population and Health, University of Cape Coast Faculty of Social Sciences, Cape Coast, Ghana
| | - Simon Mariwah
- Department of Geography and Regional Planning, University of Cape Coast Faculty of Social Sciences, Cape Coast, Ghana
| | | | - Samuel Asiedu Owusu
- Directorate of Research, Innovation and Consultancy, University of Cape Coast, Cape Coast, Ghana
| | - Martins Ekor
- School of Medical Sciences, University of Cape Coast, Cape Coast, Ghana
| | | | - Kate Hampshire
- Department of Anthropology, Durham University, Durham, UK
| |
Collapse
|
21
|
Fikadu M, Ashenafi E. Malaria: An Overview. Infect Drug Resist 2023; 16:3339-3347. [PMID: 37274361 PMCID: PMC10237628 DOI: 10.2147/idr.s405668] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/18/2023] [Indexed: 06/06/2023] Open
Abstract
Malaria is a global public health burden with an estimated 229 million cases reported worldwide in 2019. About 94% of the reported cases were recorded in the African region. About 200 different species of protozoa have been identified so far and among them, at least 13 species are known to be pathogenic to humans. The life cycle of the malaria parasite is a complex process comprising an Anopheles mosquito and a vertebrate host. Its pathophysiology is characterized by fever secondary to the rupture of erythrocytes, macrophage ingestion of merozoites, and/or the presence of antigen-presenting trophozoites in the circulation or spleen which mediates the release of tumor necrosis factor α (TNF-α). Malaria can be diagnosed through clinical observation of the signs and symptoms of the disease. Other diagnostic techniques used to diagnose malaria are the microscopic detection of parasites from blood smears and antigen-based rapid diagnostic tests. The management of malaria involves preventive and/or curative approaches. Since untreated uncomplicated malaria can progress to severe malaria. To prevent or delay the spread of antimalarial drug resistance, WHO recommends the use of combination therapy for all episodes of malaria with at least two effective antimalarial agents having a different mechanism of action. The Centers for Disease Control (CDC) emphasizes that there is no prophylactic agent that can prevent malaria 100%. Therefore, prophylaxis shall be augmented with the use of personal protective measures.
Collapse
Affiliation(s)
- Muluemebet Fikadu
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| | - Ephrem Ashenafi
- Department of Pharmacology and Clinical Pharmacy, School of Pharmacy, College of Health Sciences, Addis Ababa University, Addis Ababa, Ethiopia
| |
Collapse
|
22
|
Bezerra JJL, Pinheiro AAV, Dourado D. Antimalarial potential of Moringa oleifera Lam. (Moringaceae): A review of the ethnomedicinal, pharmacological, toxicological, and phytochemical evidence. J Venom Anim Toxins Incl Trop Dis 2023; 29:e20220079. [PMID: 37266375 PMCID: PMC10231345 DOI: 10.1590/1678-9199-jvatitd-2022-0079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/27/2023] [Indexed: 06/03/2023] Open
Abstract
Several regions of the world frequently use the species Moringa oleifera Lam. (Moringaceae) in traditional medicine. This situation is even more common in African countries. Many literature reports point to the antimalarial potential of this species, indicating the efficacy of its chemical compounds against malaria-causing parasites of the genus Plasmodium. From this perspective, the present study reviews the ethnobotanical, pharmacological, toxicological, and phytochemical (flavonoids) evidence of M. oleifera, focusing on the treatment of malaria. Scientific articles were retrieved from Google Scholar, PubMed®, ScienceDirect®, and SciELO databases. Only articles published between 2002 and 2022 were selected. After applying the inclusion and exclusion criteria, this review used a total of 72 articles. These documents mention a large use of M. oleifera for the treatment of malaria in African and Asian countries. The leaves (63%) of this plant are the main parts used in the preparation of herbal medicines. The in vivo antimalarial activity of M. oleifera was confirmed through several studies using polar and nonpolar extracts, fractions obtained from the extracts, infusion, pellets, and oils obtained from this plant and tested in rodents infected by the following parasites of the genus Plasmodium: P. berghei, P. falciparum, P. yoelii, and P. chabaudi. Extracts obtained from M. oleifera showed no toxicity in preclinical tests. A total of 46 flavonoids were identified in the leaves and seeds of M. oleifera by different chromatography and mass spectrometry methods. Despite the scarcity of research on the antimalarial potential of compounds isolated from M. oleifera, the positive effects against malaria-causing parasites in previous studies are likely to correlate with the flavonoids that occur in this species.
Collapse
Affiliation(s)
- José Jailson Lima Bezerra
- Graduate Program in Plant Biology, Department of Botany, Federal University of Pernambuco, Recife, PE, Brazil
| | | | - Douglas Dourado
- Graduate Program in Biosciences and Biotechnology in Health, Department of Immunology, Aggeu Magalhães-Fiocruz Institute, Recife, PE, Brazil
| |
Collapse
|
23
|
Ozodiegwu ID, Ambrose M, Galatas B, Runge M, Nandi A, Okuneye K, Dhanoa NP, Maikore I, Uhomoibhi P, Bever C, Noor A, Gerardin J. Application of mathematical modelling to inform national malaria intervention planning in Nigeria. Malar J 2023; 22:137. [PMID: 37101146 PMCID: PMC10130303 DOI: 10.1186/s12936-023-04563-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Accepted: 04/15/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND For their 2021-2025 National Malaria Strategic Plan (NMSP), Nigeria's National Malaria Elimination Programme (NMEP), in partnership with the World Health Organization (WHO), developed a targeted approach to intervention deployment at the local government area (LGA) level as part of the High Burden to High Impact response. Mathematical models of malaria transmission were used to predict the impact of proposed intervention strategies on malaria burden. METHODS An agent-based model of Plasmodium falciparum transmission was used to simulate malaria morbidity and mortality in Nigeria's 774 LGAs under four possible intervention strategies from 2020 to 2030. The scenarios represented the previously implemented plan (business-as-usual), the NMSP at an 80% or higher coverage level and two prioritized plans according to the resources available to Nigeria. LGAs were clustered into 22 epidemiological archetypes using monthly rainfall, temperature suitability index, vector abundance, pre-2010 parasite prevalence, and pre-2010 vector control coverage. Routine incidence data were used to parameterize seasonality in each archetype. Each LGA's baseline malaria transmission intensity was calibrated to parasite prevalence in children under the age of five years measured in the 2010 Malaria Indicator Survey (MIS). Intervention coverage in the 2010-2019 period was obtained from the Demographic and Health Survey, MIS, the NMEP, and post-campaign surveys. RESULTS Pursuing a business-as-usual strategy was projected to result in a 5% and 9% increase in malaria incidence in 2025 and 2030 compared with 2020, while deaths were projected to remain unchanged by 2030. The greatest intervention impact was associated with the NMSP scenario with 80% or greater coverage of standard interventions coupled with intermittent preventive treatment in infants and extension of seasonal malaria chemoprevention (SMC) to 404 LGAs, compared to 80 LGAs in 2019. The budget-prioritized scenario with SMC expansion to 310 LGAs, high bed net coverage with new formulations, and increase in effective case management rate at the same pace as historical levels was adopted as an adequate alternative for the resources available. CONCLUSIONS Dynamical models can be applied for relative assessment of the impact of intervention scenarios but improved subnational data collection systems are required to allow increased confidence in predictions at sub-national level.
Collapse
Affiliation(s)
- Ifeoma D Ozodiegwu
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA.
| | | | - Beatriz Galatas
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Manuela Runge
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Aadrita Nandi
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Kamaldeen Okuneye
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| | - Neena Parveen Dhanoa
- Weinberg College of Arts and Sciences, Northwestern University, Evanston, IL, USA
| | - Ibrahim Maikore
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | | | | | - Abdisalan Noor
- Global Malaria Programme, World Health Organization, Geneva, Switzerland
| | - Jaline Gerardin
- Department of Preventive Medicine and Institute for Global Health, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Vidal-Albalat A, Kindahl T, Rajeshwari R, Lindgren C, Forsgren N, Kitur S, Tengo LS, Ekström F, Kamau L, Linusson A. Structure-Activity Relationships Reveal Beneficial Selectivity Profiles of Inhibitors Targeting Acetylcholinesterase of Disease-Transmitting Mosquitoes. J Med Chem 2023; 66:6333-6353. [PMID: 37094110 PMCID: PMC10184127 DOI: 10.1021/acs.jmedchem.3c00234] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/26/2023]
Abstract
Insecticide resistance jeopardizes the prevention of infectious diseases such as malaria and dengue fever by vector control of disease-transmitting mosquitoes. Effective new insecticidal compounds with minimal adverse effects on humans and the environment are therefore urgently needed. Here, we explore noncovalent inhibitors of the well-validated insecticidal target acetylcholinesterase (AChE) based on a 4-thiazolidinone scaffold. The 4-thiazolidinones inhibit AChE1 from the mosquitoes Anopheles gambiae and Aedes aegypti at low micromolar concentrations. Their selectivity depends primarily on the substitution pattern of the phenyl ring; halogen substituents have complex effects. The compounds also feature a pendant aliphatic amine that was important for activity; little variation of this group is tolerated. Molecular docking studies suggested that the tight selectivity profiles of these compounds are due to competition between two binding sites. Three 4-thiazolidinones tested for in vivo insecticidal activity had similar effects on disease-transmitting mosquitoes despite a 10-fold difference in their in vitro activity.
Collapse
Affiliation(s)
| | - Tomas Kindahl
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| | | | | | - Nina Forsgren
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Stanley Kitur
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Laura Sela Tengo
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Fredrik Ekström
- CBRN Defence and Security, Swedish Defence Research Agency, SE-90621 Umeå, Sweden
| | - Luna Kamau
- Centre for Biotechnology Research and Development, Kenya Medical Research Institute, PO Box 54840-00200 Nairobi, Kenya
| | - Anna Linusson
- Department of Chemistry, Umeå University, SE-90187 Umeå, Sweden
| |
Collapse
|
25
|
Wong ML, Zulzahrin Z, Vythilingam I, Lau YL, Sam IC, Fong MY, Lee WC. Perspectives of vector management in the control and elimination of vector-borne zoonoses. Front Microbiol 2023; 14:1135977. [PMID: 37025644 PMCID: PMC10070879 DOI: 10.3389/fmicb.2023.1135977] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2023] [Accepted: 02/28/2023] [Indexed: 04/08/2023] Open
Abstract
The complex transmission profiles of vector-borne zoonoses (VZB) and vector-borne infections with animal reservoirs (VBIAR) complicate efforts to break the transmission circuit of these infections. To control and eliminate VZB and VBIAR, insecticide application may not be conducted easily in all circumstances, particularly for infections with sylvatic transmission cycle. As a result, alternative approaches have been considered in the vector management against these infections. In this review, we highlighted differences among the environmental, chemical, and biological control approaches in vector management, from the perspectives of VZB and VBIAR. Concerns and knowledge gaps pertaining to the available control approaches were discussed to better understand the prospects of integrating these vector control approaches to synergistically break the transmission of VZB and VBIAR in humans, in line with the integrated vector management (IVM) developed by the World Health Organization (WHO) since 2004.
Collapse
Affiliation(s)
- Meng Li Wong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Zulhisham Zulzahrin
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Indra Vythilingam
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Yee Ling Lau
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - I-Ching Sam
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- Department of Medical Microbiology, University Malaya Medical Centre (UMMC), Kuala Lumpur, Malaysia
| | - Mun Yik Fong
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
| | - Wenn-Chyau Lee
- Department of Parasitology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, Malaysia
- A*STAR Infectious Diseases Labs (A*STAR ID Labs), Agency for Science, Technology and Research (A*STAR), Singapore, Singapore
| |
Collapse
|
26
|
Impact of the COVID-19 Pandemic on Malaria Control in Africa: A Preliminary Analysis. Trop Med Infect Dis 2023; 8:tropicalmed8010067. [PMID: 36668974 PMCID: PMC9863638 DOI: 10.3390/tropicalmed8010067] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/06/2023] [Accepted: 01/09/2023] [Indexed: 01/17/2023] Open
Abstract
Malaria remains a significant public health concern in Africa, and the emerging coronavirus disease 2019 (COVID-19) pandemic may have negatively impacted malaria control. Here, we conducted a descriptive epidemiological analysis of malaria globally, and preliminarily explored the impact of COVID-19 on the malaria elimination program in regions of Africa (AFR). The present analysis found that there was a vast heterogeneity of incidence of deaths caused by malaria globally in different continents, and the highest malaria burden was observed in AFR. In 2020, there was an obviously increasing trend in the malaria epidemic in AFR, while the other four continents exhibited stable and declining patterns. Historically, malaria has been largely concentrated in high-malaria-burden regions, such as West Africa, and there has been an obvious increasing trend in Nigeria. These data suggest that dynamic changes in the malaria epidemic situation worldwide have primarily originated from AFR, and West Africa has played an important role in the global malaria increase in recent years. Under the coercion of COVID-19, multiple factors have co-driven the increase in malaria in AFR, including insufficient financial investments, a high native malaria burden, weak surveillance systems, limited medical resources, and low socioeconomic development levels. In addition, the shift of medical resources (e.g., health workers and personal protective equipment (PPE), the manufacturing of diagnostic reagents, and drugs) from malaria control to emergency COVID-19 response in the pandemic's early stage caused disruptions, reductions, and delays in pillar malaria control measures, leading to a significant negative impact on malaria control. In particular, a funding shortfall at both the international and domestic levels led to a "significant threat," resulting in vast gaps in access to proven malaria control tools. Although there has been a declining trend in malaria control over time due to COVID-19, the effect still cannot be ignored. Hence, we recommend the implementation of medical and technical resource assistance as a priority strategy to support Africa (West Africa) in order to curb further transmission.
Collapse
|
27
|
Hayes CC, Schal C. Behavioral interactions of bed bugs with long-lasting pyrethroid-treated bed nets: challenges for vector control. Parasit Vectors 2022; 15:488. [PMID: 36572943 PMCID: PMC9791780 DOI: 10.1186/s13071-022-05613-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 12/07/2022] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Widespread vector control has been essential in reducing the global incidence and prevalence of malaria, despite now stalled progress. Long-lasting insecticide-treated nets (LLINs) have historically been, and remain, one of the most commonly used vector control tools in the campaign against malaria. LLINs are effective only with proper use, adherence, retention and community adoption, which historically have relied on the successful control of secondary pests, including bed bugs. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities and failure to control infestations have been suggested to interfere with the effective use of LLINs. Therefore, the behavioral interactions of bed bugs with commonly used bed nets should be better understood. METHODS To investigate the interactions between bed bugs (Cimex lectularius L.) and LLINs, insecticide-susceptible and pyrethroid-resistant bed bugs were challenged to pass through two commonly used LLINs in two behavioral assays, namely host (blood meal)-seeking and aggregation-seeking assays. The proportions blood-fed and aggregated bed bugs, aggregation time and mortality were quantified and analyzed in different bed bug life stages. RESULTS Overall, both the insecticide-susceptible bed bugs and highly resistant bed bugs showed a varying ability to pass through LLINs based on treatment status and net design. Deltamethrin-treated nets significantly impeded both feeding and aggregation by the susceptible bed bugs. While none of the tested LLINs significantly impeded feeding (passage of unfed bed bugs through the nets) of the pyrethroid-resistant bed bugs, the untreated bed net, which has small mesh holes, impeded passage of fed bed bugs. Mortality was only seen in the susceptible bed bugs, with significantly higher mortality on deltamethrin-treated nets (63.5 ± 10.7%) than on permethrin-treated nets (2.0 ± 0.9%). CONCLUSIONS Commonly used new LLINs failed to prevent the passage of susceptible and pyrethroid-resistant bed bugs in host- and aggregation-seeking bioassays. The overall low and variable mortality observed in susceptible bed bugs during both assays highlighted the potential of LLINs to impose strong selection pressure for the evolution of pyrethroid resistance. Already, the failure to control bed bug infestations has been implicated as a contributing factor to the abandonment or misuse of LLINs. For the first time to our knowledge, we have shown the potential of LLINs in selecting for resistant secondary pest populations and so their potential role in stalling malaria control programs should be further investigated. The emergence of pyrethroid-resistant bed bugs in malaria-endemic communities may interfere with the effective use of pyrethroid-impregnated bed nets. We assessed the interactions of two bed bug strains with commonly used bed nets using two behavioral assays, namely host (blood meal)-seeking by unfed bed bugs and aggregation-seeking by freshly fed bed bugs. These assays assessed the passage of bed bugs through various bed nets in response to host cues and aggregation stimuli, respectively. Conditioned paper is a section of file folder paper that has been exposed to bed bugs and has been impregnated with feces and aggregation pheromone; it is attractive to aggregation-seeking fed bed bugs. An unconditioned ramp is a similar section of file folder paper that allows bed bugs to traverse the bed net and gain access to a blood-meal source.
Collapse
Affiliation(s)
- Christopher C. Hayes
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| | - Coby Schal
- Department of Entomology and Plant Pathology, North Carolina State University, Raleigh, NC USA
| |
Collapse
|
28
|
Efa S, Elanga-Ndille E, Poumachu Y, Tene B, Mikande JZ, Zakariaou N, Wondji CS, Ndo C. Insecticide Resistance Profile and Mechanisms in An. gambiae s.l. from Ebolowa, South Cameroon. INSECTS 2022; 13:1133. [PMID: 36555042 PMCID: PMC9785700 DOI: 10.3390/insects13121133] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 11/25/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Monitoring the trend of insecticide resistance and understanding associated genetic mechanisms is important for designing efficient malaria vector control strategies. This study was conducted to provide temporal data on insecticide resistance status and mechanisms in the major malaria vector Anopheles gambiae s.l. from Ebolowa, Southern Cameroon. Methods: Larvae of An. gambiae s.l. were collected from typical breeding sites throughout the city and reared to adulthood. Emerging adults were morphologically identified and WHO tube assays were performed to determine their susceptibility to carbamate, organophosphate and pyrethroid insecticides at diagnostic doses. When resistance was observed, its intensity was determined by performing WHO tube tests using 5 and 10 times the concentration of the diagnostic dose. Metabolic resistance mechanisms were investigated using insecticide-synergist assays. Sibling species of the An. gambiae complex were identified using SINE-PCR protocol. TaqMan assay was used to genotype the L1014F and L1014S kdr mutations, and the N1575Y mutation, an amplifier of the resistance conferred by the L1014F mutation. Results: Anopheles coluzzii was by far the dominant (99%) member of the An. gambiae s.l. complex in Ebolowa. The species was fully susceptible to carbamates and organophosphates, but resistant to all pyrethroid insecticides tested. Resistance was of moderate intensity for deltamethrin (mortality: 37%, 70% and 99% for 1×, 5× and 10× insecticide concentration, respectively) but rather of high intensity for permethrin (5% for 1×; 62% for 5× and 75% for 10×) and for alphacypermethrin (4.4% for 1×; 57% for 5× and 80% for 10×). Pre-exposure to the synergist PBO resulted in a full recovery of the susceptibility to delthametrin, but this was not observed for the other two pyrethroids tested. L1014S (kdr-East) and the N1575Y mutations were absent, whereas the L1014F (kdr-West) mutation was present at a high frequency (75%), showing a significant association with resistance to permethrin (OR = 3.8; 95%; CI [1.9−7.4]; p < 0.0001) and alphacypermethrin (OR = 3; 95%; CI [1.6−5.4]; p = 0.0002). Conclusion: The increased resistance of An. gambiae s.l. to pyrethroid insecticides as observed in Ebolowa poses a threat to the efficacy of LLINs used to protect populations from the bites of Anopheles mosquitoes that transmit malaria parasites. The present study further highlights the urgent need to implement resistance management strategies in order to maintain the effectiveness of insecticide-based vector control interventions and prevent a rebound in malaria-related mortality.
Collapse
Affiliation(s)
- Salomon Efa
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Faculty of Sciences, University of Yaoundé I, Yaoundé P.O. Box 337, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Vector Borne Parasitic and Infectious Diseases Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Sciences, University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Yacouba Poumachu
- Vector Borne Parasitic and Infectious Diseases Unit of the Laboratory of Applied Biology and Ecology (VBID-LABEA), Department of Animal Biology, Faculty of Sciences, University of Dschang, Dschang P.O. Box 067, Cameroon
| | - Billy Tene
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
| | - Jacqueline Ze Mikande
- Department of Anesthesia and Reanimation, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O Box 1364, Cameroon
| | - Njoumémi Zakariaou
- Department of Anesthesia and Reanimation, Faculty of Medicine and Biomedical Sciences, University of Yaoundé I, Yaoundé P.O Box 1364, Cameroon
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool L3 5QA, UK
| | - Cyrille Ndo
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), Yaoundé P.O. Box 13591, Cameroon
- Faculty of Medicine and Pharmaceutical Sciences, University of Douala, Douala P.O. Box 2701, Cameroon
| |
Collapse
|
29
|
Yewhalaw D, Simma EA, Zemene E, Zeleke K, Degefa T. Residual efficacy of SumiShield™ 50WG for indoor residual spraying in Ethiopia. Malar J 2022; 21:364. [PMID: 36461066 PMCID: PMC9716761 DOI: 10.1186/s12936-022-04395-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 11/19/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND The rate of decay of the biological efficacy of insecticides used for indoor residual spraying (IRS) is an important factor when making decisions on insecticide choice for national malaria control programmes. A key roadblock to IRS programme is insecticide resistance. If resistance is detected to most of the existing insecticides used for IRS (DDT, pyrethroids, organophosphates and carbamates), the logical next choice could be neonicotinoid insecticides, as pyrethroids are used to treat nets. SumiShield™ 50WG belongs to the neonicotinoid class of insecticides and has shown promising results in several phase I, II and III trials in different settings. The aim of this study was to assess the persistence of SumiShield™ 50WG by spraying on different wall surfaces and determine its decay rates over time in Ethiopia. METHODS Five huts with different wall surface types (mud, dung, paint and cement) which represented the Ethiopian house wall surfaces were used to evaluate the residual efficacy of SumiShield™ 50WG. Actellic 300CS sprayed on similar wall surfaces of another five huts was used as a comparator insecticide and two huts sprayed with water were used as a control. All huts were sprayed uniformly by an experienced spray operator; non-stop starting from the door and moving clockwise to cover the entire wall surface of the hut. The treatments were assigned to huts randomly. The residual efficacy of the insecticide formulations was evaluated against a susceptible insectary-reared population of Anopheles arabiensis using WHO cone bioassays. RESULTS SumiShield™ 50WG resulted in mortality rates of over 80% at 120 h post-exposure on all surface types for up to nine months post-spray, while Actellic 300CS yielded mortality rates of over 80% for eight months after spray. CONCLUSIONS The results of this trial demonstrated that the residual efficacy of SumiShield™ 50WG extends up to nine months on all treated wall surface types. The long-lasting residual efficacy and unique mode of action of the SemiShield™ 50WG shows that it could be an ideal product to be considered as a potential candidate insecticide formulation for IRS in malaria endemic countries such as Ethiopia or other sub-Saharan countries where the transmission season lasts up to four months or longer.
Collapse
Affiliation(s)
- Delenasaw Yewhalaw
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia ,grid.411903.e0000 0001 2034 9160Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Eba Alemayehu Simma
- grid.411903.e0000 0001 2034 9160Departement of Biology, College of Natural Sciences, Jimma University, Jimma, Ethiopia
| | - Endalew Zemene
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| | - Kassahun Zeleke
- grid.411903.e0000 0001 2034 9160Tropical and Infectious Diseases Research Center (TIDRC), Jimma University, Jimma, Ethiopia
| | - Teshome Degefa
- grid.411903.e0000 0001 2034 9160School of Medical Laboratory Sciences, Institute of Health, Jimma University, Jimma, Ethiopia
| |
Collapse
|
30
|
Orishaba P, Kayongo E, Lusiba P, Nakalema C, Kasadha P, Kirya P, Kawooya I, Mijumbi-Deve R. Vulnerability of populations to malaria after indoor residual spraying is withdrawn from areas where its use has previously been sustained: a protocol for a systematic review. BMJ Open 2022; 12:e065115. [PMID: 36288839 PMCID: PMC9615991 DOI: 10.1136/bmjopen-2022-065115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
INTRODUCTION With its proven effectiveness, indoor residual spraying (IRS) as a malaria vector control strategy forms one of the reliable vector control strategies, especially when at least 80% of the population is covered. However, to date, there is uncertainty regarding the consequences of IRS withdrawal on malaria control when there is no clear exit strategy in place. Therefore, there is a need to comprehensively update literature regarding malaria burden indicators when IRS is withdrawn following sustained use. METHODS AND ANALYSIS This protocol follows the Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A systematic search of studies published between 2000 and 2022 will be performed in CINAHL, Embase, MEDLINE, ProQuest, PsychInfo, Scopus and OpenGrey. Preset eligibility criteria will be used to identify studies for inclusion by two independent reviewers. Title/abstracts will first be screened and potentially eligible ones screened using their full-text publications. Any conflicts/discrepancies at the two stages will be resolved through regular discussion sessions. Included studies will be extracted to capture study and patient characteristics and relevant outcomes (malaria incidence and malaria vector abundance). Relevant tools will be used to assess the risk of bias in the studies measuring the impact of withdrawal. A meta-analysis will be performed if sufficient homogeneity exists; otherwise, data arising will be presented using tables and by employing narrative synthesis techniques. Heterogeneity will be assessed using a combination of visual inspection of the forest plot along with consideration of the χ2 test and I2 statistic results. ETHICS AND DISSEMINATION Ethics approval is not applicable for this study since no original data will be collected. The results will be disseminated through peer-reviewed publications and conference presentations. Furthermore, this systematic review will inform the design of exit strategies for IRS-based programmes in malaria-endemic areas. PROSPERO REGISTRATION NUMBER CRD42022310655.
Collapse
Affiliation(s)
- Philip Orishaba
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Edward Kayongo
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Pastan Lusiba
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Caroline Nakalema
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Peter Kasadha
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Perez Kirya
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Ismael Kawooya
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| | - Rhona Mijumbi-Deve
- The Centre for Rapid Evidence Synthesis (ACRES), Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
31
|
Wesolowski A, Ippolito MM, Gebhardt ME, Ferriss E, Schue JL, Kobayashi T, Chaponda M, Kabuya JB, Muleba M, Mburu M, Matoba J, Musonda M, Katowa B, Lubinda M, Hamapumbu H, Simubali L, Mudenda T, Shields TM, Hackman A, Shiff C, Coetzee M, Koekemoer LL, Munyati S, Gwanzura L, Mutambu S, Stevenson JC, Thuma PE, Norris DE, Bailey JA, Juliano JJ, Chongwe G, Mulenga M, Simulundu E, Mharakurwa S, Agre P, Moss WJ. Policy Implications of the Southern and Central Africa International Center of Excellence for Malaria Research: Ten Years of Malaria Control Impact Assessments in Hypo-, Meso-, and Holoendemic Transmission Zones in Zambia and Zimbabwe. Am J Trop Med Hyg 2022; 107:68-74. [PMID: 36228913 PMCID: PMC9662215 DOI: 10.4269/ajtmh.21-1288] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 05/28/2022] [Indexed: 11/07/2022] Open
Abstract
The International Centers of Excellence for Malaria Research (ICEMR) were established by the National Institute of Allergy and Infectious Diseases more than a decade ago to provide multidisciplinary research support to malaria control programs worldwide, operating in endemic areas and contributing technology, expertise, and ultimately policy guidance for malaria control and elimination. The Southern and Central Africa ICEMR has conducted research across three main sites in Zambia and Zimbabwe that differ in ecology, entomology, transmission intensity, and control strategies. Scientific findings led to new policies and action by the national malaria control programs and their partners in the selection of methods, materials, timing, and locations of case management and vector control. Malaria risk maps and predictive models of case detection furnished by the ICEMR informed malaria elimination programming in southern Zambia, and time series analyses of entomological and parasitological data motivated several major changes to indoor residual spray campaigns in northern Zambia. Along the Zimbabwe-Mozambique border, temporal and geospatial data are currently informing investigations into a recent resurgence of malaria. Other ICEMR findings pertaining to parasite and mosquito genetics, human behavior, and clinical epidemiology have similarly yielded immediate and long-term policy implications at each of the sites, often with generalizable conclusions. The ICEMR programs thereby provide rigorous scientific investigations and analyses to national control and elimination programs, without which the impediments to malaria control and their potential solutions would remain understudied.
Collapse
Affiliation(s)
- Amy Wesolowski
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Matthew M. Ippolito
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Johns Hopkins University School of Medicine, Baltimore, Maryland
| | - Mary E. Gebhardt
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Ellen Ferriss
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Jessica L. Schue
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Tamaki Kobayashi
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | | | | | | | | | | | | | | | | | | | | | | | - Andre Hackman
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Clive Shiff
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - Maureen Coetzee
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Lizette L. Koekemoer
- Wits Research Institute for Malaria, Faculty of Health Sciences, University of the Witwatersrand and National Institute for Communicable Diseases, Johannesburg, South Africa
| | - Shungu Munyati
- Biomedical Research and Training Institute, Harare, Zimbabwe
| | - Lovemore Gwanzura
- Biomedical Research and Training Institute, Harare, Zimbabwe
- University of Zimbabwe Faculty of Medicine and Health Sciences, Harare, Zimbabwe
| | | | - Jennifer C. Stevenson
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Macha Research Trust, Choma, Zambia
| | - Philip E. Thuma
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
- Macha Research Trust, Choma, Zambia
| | - Douglas E. Norris
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Jonathan J. Juliano
- University of North Carolina School of Medicine, Chapel Hill, North Carolina
| | | | - Modest Mulenga
- Directorate of Research and Postgraduate Studies, Lusaka Apex Medical University, Lusaka, Zambia
| | | | - Sungano Mharakurwa
- Biomedical Research and Training Institute, Harare, Zimbabwe
- Africa University, Mutare, Zimbabwe
| | - Peter Agre
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | - William J. Moss
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| |
Collapse
|
32
|
Evolution of the Ace-1 and Gste2 Mutations and Their Potential Impact on the Use of Carbamate and Organophosphates in IRS for Controlling Anopheles gambiae s.l., the Major Malaria Mosquito in Senegal. Pathogens 2022; 11:pathogens11091021. [PMID: 36145453 PMCID: PMC9504234 DOI: 10.3390/pathogens11091021] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 11/17/2022] Open
Abstract
Widespread of insecticide resistance amongst the species of the Anopheles gambiae complex continues to threaten vector control in Senegal. In this study, we investigated the presence and evolution of the Ace-1 and Gste2 resistance genes in natural populations of Anopheles gambiae s.l., the main malaria vector in Senegal. Using historical samples collected from ten sentinel health districts, this study focused on three different years (2013, 2017, and 2018) marking the periods of shift between the main public health insecticides families (pyrethroids, carbamates, organophosphates) used in IRS to track back the evolutionary history of the resistance mutations on the Ace-1 and Gste2 loci. The results revealed the presence of four members of the Anopheles gambiae complex, with the predominance of An. arabiensis followed by An. gambiae, An. coluzzii, and An. gambiae–coluzzii hybrids. The Ace-1 mutation was only detected in An. gambiae and An. gambiae–coluzzii hybrids at low frequencies varying between 0.006 and 0.02, while the Gste2 mutation was found in all the species with a frequency ranging between 0.02 and 0.25. The Ace-1 and Gste2 genes were highly diversified with twenty-two and thirty-one different haplotypes, respectively. The neutrality tests on each gene indicated a negative Tajima’s D, suggesting the abundance of rare alleles. The presence and spread of the Ace-1 and Gste2 resistance mutations represent a serious threat to of the effectiveness and the sustainability of IRS-based interventions using carbamates or organophosphates to manage the widespread pyrethroids resistance in Senegal. These data are of the highest importance to support the NMCP for evidence-based vector control interventions selection and targeting.
Collapse
|
33
|
Oladipo HJ. Increasing challenges of malaria control in sub-Saharan Africa: Priorities for public health research and policymakers. Ann Med Surg (Lond) 2022; 81:104366. [PMID: 36046715 PMCID: PMC9421173 DOI: 10.1016/j.amsu.2022.104366] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Accepted: 08/11/2022] [Indexed: 11/21/2022] Open
Abstract
The ever-increasing cases and mortality due to malaria remains one of the most important public health threats, especially in sub-Saharan Africa-where this burden is considerably high. In 2020, sub-Saharan Africa accounted for about 95% of all cases and 96% of all malaria deaths with about 80% of these deaths reported in children under the age of 5. This review, adopting a public health focus, aimed to understand the challenges of malaria control in sub-Saharan Africa despite ongoing public health interventions. Our review highlights two important findings. First, the increasing resistance of malaria parasites to artemisinin-based combination therapy (ACT) and its partner drugs coupled with increased vector resistance to pyrethroids and insecticides is reversing the progress of public health interventions in keeping malaria under control. Second, the wanning for the efficacy of the WHO-approved vaccine i.e. RTS,S from 60 to 70% following 18 months of observation, and its short-term availability remains an impediment to achieving the WHO target of producing malaria vaccines with more than 75% efficacy by 2030. Our findings underline the need to reassess research priorities with a focus on vaccine production in sub-Saharan Africa. Furthermore, African governments and policymakers must be committed to invest both the political and financial capital in vaccine production and distribution.
Collapse
|
34
|
Nadew J, Obsa MS, Alemayehu A, Haji Y. Utilization of insecticide treated nets among pregnant women in sodo zuria woreda Southern Ethiopia. FRONTIERS IN TROPICAL DISEASES 2022. [DOI: 10.3389/fitd.2022.926893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
BackgroundThe malaria control strategy has shown an improvement in providing services and allocating resources to enhance malaria elimination. The world malaria report indicated that there was a marked increment of insecticide treated net (ITNs) utilization among pregnant women. However, in Ethiopia, the number of households with possession and utilization of ITNs is still far behind the WHO recommendations. Hence, this study was aimed to measure the magnitude of ITN utilization and to identify factors associated with its utilization among pregnant women from April 4, 2021 to April 15, 2021 in Sodo Zuria Woreda, in Wolaita Zone, Southern Ethiopia.MethodsA community based cross-sectional study was employed. Data were collected using interviewer administered pretested, structured questionnaires. Simple random sampling method was used to select 459 pregnant women. Data were entered into Epi Info version 7 and then exported to statistical package for the social sciences for further analysis. We used time period for data collection of current study. Binary’s logistic regression was used to determine factors affecting insecticides treated net (ITN) utilization. Adjusted Odd Ratios (OR) with 95% CI was used to measures the strengths of associations.ResultsOf 435 surveyed households with pregnant women, 341(78.39%) with 95% Confidence Interval (CI) (74.5%, 82.3%) possessed at least one insecticide treated net. Among them, 194(56.89%) with 95% CI (51.6%, 61.7%) interviewees had self-reported as they slept under insecticide treated net on the night preceding the data collection day. Utilization of insecticide treated nets by other family members, AOR: 6.615(95% CI: 3.358, 13.032), knowledge that the use of insecticide treated nets can prevent malaria, AOR: 3.221(95% CI: 1.737, 5.974), sleeping under insecticide treated nets, AOR: 3.726(95% CI: 1.974, 7.034), and attending ANC follow up visits, AOR: 1.956(95% CI: 1.097), were found to be significantly associated factors with pregnant women’s insecticide treated net utilization.ConclusionThe number of households with pregnant women who had possession and utilization of ITNs was much lower than the recommendations set by WHO. Therefore, information dissemination to malaria high risk groups about insecticide treated net utilization and replacement of worn-out insecticide treated nets should be emphasized.
Collapse
|
35
|
García GA, Atkinson B, Donfack OT, Hilton ER, Smith JM, Eyono JNM, Iyanga MM, Vaz LM, Mba Nguema Avue R, Pollock J, Ratsirarson J, Aldrich EM, Phiri WP, Smith DL, Schwabe C, Guerra CA. Real-time, spatial decision support to optimize malaria vector control: The case of indoor residual spraying on Bioko Island, Equatorial Guinea. PLOS DIGITAL HEALTH 2022; 1:e0000025. [PMID: 36812503 PMCID: PMC9931250 DOI: 10.1371/journal.pdig.0000025] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 03/15/2022] [Indexed: 06/18/2023]
Abstract
Public health interventions require evidence-based decision-making to maximize impact. Spatial decision support systems (SDSS) are designed to collect, store, process and analyze data to generate knowledge and inform decisions. This paper discusses how the use of a SDSS, the Campaign Information Management System (CIMS), to support malaria control operations on Bioko Island has impacted key process indicators of indoor residual spraying (IRS): coverage, operational efficiency and productivity. We used data from the last five annual IRS rounds (2017 to 2021) to estimate these indicators. IRS coverage was calculated as the percentage of houses sprayed per unit area, represented by 100x100 m map-sectors. Optimal coverage was defined as between 80% and 85%, and under and overspraying as coverage below 80% and above 85%, respectively. Operational efficiency was defined as the fraction of map-sectors that achieved optimal coverage. Daily productivity was expressed as the number of houses sprayed per sprayer per day (h/s/d). These indicators were compared across the five rounds. Overall IRS coverage (i.e. percent of total houses sprayed against the overall denominator by round) was highest in 2017 (80.2%), yet this round showed the largest proportion of oversprayed map-sectors (36.0%). Conversely, despite producing a lower overall coverage (77.5%), the 2021 round showed the highest operational efficiency (37.7%) and the lowest proportion of oversprayed map-sectors (18.7%). In 2021, higher operational efficiency was also accompanied by marginally higher productivity. Productivity ranged from 3.3 h/s/d in 2020 to 3.9 h/s/d in 2021 (median 3.6 h/s/d). Our findings showed that the novel approach to data collection and processing proposed by the CIMS has significantly improved the operational efficiency of IRS on Bioko. High spatial granularity during planning and deployment together with closer follow-up of field teams using real-time data supported more homogeneous delivery of optimal coverage while sustaining high productivity.
Collapse
Affiliation(s)
- Guillermo A. García
- Medical Care Development International, Silver Spring, MD, United States of America
| | - Brent Atkinson
- Medical Care Development International, Silver Spring, MD, United States of America
| | | | - Emily R. Hilton
- Institute for Health Metrics and Evaluation, Univeristy of Washington, Seattle, WA, United States of America
| | - Jordan M. Smith
- Medical Care Development International, Malabo, Equatorial Guinea
| | | | | | | | | | - John Pollock
- Medical Care Development, Augusta, ME, United States of America
| | - Josea Ratsirarson
- Medical Care Development International, Silver Spring, MD, United States of America
| | | | - Wonder P. Phiri
- Medical Care Development International, Malabo, Equatorial Guinea
| | - David L. Smith
- Institute for Health Metrics and Evaluation, Univeristy of Washington, Seattle, WA, United States of America
| | | | - Carlos A. Guerra
- Medical Care Development International, Silver Spring, MD, United States of America
| |
Collapse
|
36
|
Pyrethroid-piperonyl butoxide (PBO) nets reduce the efficacy of indoor residual spraying with pirimiphos-methyl against pyrethroid-resistant malaria vectors. Sci Rep 2022; 12:6857. [PMID: 35478216 PMCID: PMC9046380 DOI: 10.1038/s41598-022-10953-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 04/14/2022] [Indexed: 12/02/2022] Open
Abstract
Pirimiphos-methyl is a pro-insecticide requiring activation by mosquito cytochrome P450 enzymes to induce toxicity while PBO blocks activation of these enzymes in pyrethroid-resistant vector mosquitoes. PBO may thus antagonise the toxicity of pirimiphos-methyl IRS when combined with pyrethroid-PBO ITNs. The impact of combining Olyset Plus and PermaNet 3.0 with Actellic 300CS IRS was evaluated against pyrethroid-resistant Anopheles gambiae s.l. in two parallel experimental hut trials in southern Benin. The vector population was resistant to pyrethroids and PBO pre-exposure partially restored deltamethrin toxicity but not permethrin. Mosquito mortality in experimental huts was significantly improved in the combinations of bendiocarb IRS with pyrethroid-PBO ITNs (33–38%) compared to bendiocarb IRS alone (14–16%, p < 0.001), demonstrating an additive effect. Conversely, mortality was significantly reduced in the combinations of pirimiphos-methyl IRS with pyrethroid-PBO ITNs (55–59%) compared to pirimiphos-methyl IRS alone (77–78%, p < 0.001), demonstrating evidence of an antagonistic effect when both interventions are applied in the same household. Mosquito mortality in the combination was significantly higher compared to the pyrethroid-PBO ITNs alone (55–59% vs. 22–26% p < 0.001) showing potential of pirimiphos-methyl IRS to enhance vector control when deployed to complement pyrethroid-PBO ITNs in an area where PBO fails to fully restore susceptibility to pyrethroids.
Collapse
|
37
|
Fongnikin A, Odjo A, Akpi J, Kiki L, Ngufor C. Pirikool® 300 CS, a new long-lasting capsule suspension formulation of the organophosphate insecticide pirimiphos-methyl for indoor residual spraying against pyrethroid-resistant malaria vectors. PLoS One 2022; 17:e0267229. [PMID: 35436317 PMCID: PMC9015130 DOI: 10.1371/journal.pone.0267229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 04/05/2022] [Indexed: 11/18/2022] Open
Abstract
Background Indoor residual spraying (IRS) using a capsule suspension formulation of the organophosphate insecticide, pirimiphos-methyl, has provided substantial malaria control in many communities in Africa. However, only one brand of this product has been recommended by the World Health Organisation for IRS. To help increase the diversity of the portfolio of IRS insecticides and offer suitable options to procurers and malaria vector control programmes, additional product brands of this highly effective and long-lasting insecticide formulation for IRS will be needed. Methods We evaluated the efficacy of Pirikool® 300CS, a new capsule suspension formulation of pirimiphos-methyl developed by Tianjin Yorkool, International Trading, Co., Ltd in standard WHO laboratory bioassays and experimental hut studies. The efficacy of the insecticide applied at 1000mg/m2 was assessed in laboratory bioassays for 6 months on cement, plywood and mud block substrates and for 12 months in cement and mud-walled experimental huts against wild free-flying pyrethroid-resistant Anopheles gambiae sensu lato in Covè, Benin. Actellic® 300CS, a WHO-recommended capsule suspension formulation of pirimiphos-methyl was also tested. WHO cylinder tests were performed to determine the frequency of insecticide resistance in the wild vector population during the hut trial. Results The vector population at the hut station was resistant to pyrethroids but susceptible to pirimiphos-methyl. Overall mortality rates of wild free-flying pyrethroid-resistant An. gambiae (s.l.) entering Pirikool®300CS treated experimental huts during the 12-month trial were 86.7% in cement-walled huts and 88% in mud-walled huts. Mortality of susceptible An. gambiae (Kisumu) and pyrethroid-resistant An. gambiae s.l. (Covè) mosquitoes in monthly wall cone bioassays on Pirikool® 300CS treated hut walls remained over 80% for 10–12 months. The laboratory bioassays corroborated the hut findings with Pirikool® 300CS on mud and wood block substrates but not on cement block substrates. Conclusion Indoor residual spraying with Pirikool® 300CS induced high and prolonged mortality of wild pyrethroid-resistant malaria vectors for 10–12 months. Addition of Pirikool®300CS to the current portfolio of IRS insecticides will provide an extra choice of microencapsulated pirimiphos-methyl for IRS.
Collapse
Affiliation(s)
- Augustin Fongnikin
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Pan African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Abibath Odjo
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
| | - Joel Akpi
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Pan African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Laurette Kiki
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Pan African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
| | - Corine Ngufor
- Centre de Recherche Entomologique de Cotonou, Cotonou, Benin
- Pan African Malaria Vector Research Consortium (PAMVERC), Cotonou, Benin
- London School of Hygiene & Tropical Medicine, London, United Kingdom
- * E-mail:
| |
Collapse
|
38
|
Hancock PA, Lynd A, Wiebe A, Devine M, Essandoh J, Wat'senga F, Manzambi EZ, Agossa F, Donnelly MJ, Weetman D, Moyes CL. Modelling spatiotemporal trends in the frequency of genetic mutations conferring insecticide target-site resistance in African mosquito malaria vector species. BMC Biol 2022; 20:46. [PMID: 35164747 PMCID: PMC8845222 DOI: 10.1186/s12915-022-01242-1] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 01/28/2022] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND Resistance in malaria vectors to pyrethroids, the most widely used class of insecticides for malaria vector control, threatens the continued efficacy of vector control tools. Target-site resistance is an important genetic resistance mechanism caused by mutations in the voltage-gated sodium channel (Vgsc) gene that encodes the pyrethroid target-site. Understanding the geographic distribution of target-site resistance, and temporal trends across different vector species, can inform strategic deployment of vector control tools. RESULTS We develop a Bayesian statistical spatiotemporal model to interpret species-specific trends in the frequency of the most common resistance mutations, Vgsc-995S and Vgsc-995F, in three major malaria vector species Anopheles gambiae, An. coluzzii, and An. arabiensis over the period 2005-2017. The models are informed by 2418 observations of the frequency of each mutation in field sampled mosquitoes collected from 27 countries spanning western and eastern regions of Africa. For nine selected countries, we develop annual predictive maps which reveal geographically structured patterns of spread of each mutation at regional and continental scales. The results show associations, as well as stark differences, in spread dynamics of the two mutations across the three vector species. The coverage of ITNs was an influential predictor of Vgsc allele frequencies, with modelled relationships between ITN coverage and allele frequencies varying across species and geographic regions. We found that our mapped Vgsc allele frequencies are a significant partial predictor of phenotypic resistance to the pyrethroid deltamethrin in An. gambiae complex populations. CONCLUSIONS Our predictive maps show how spatiotemporal trends in insecticide target-site resistance mechanisms in African An. gambiae vary across individual vector species and geographic regions. Molecular surveillance of resistance mechanisms will help to predict resistance phenotypes and track their spread.
Collapse
Affiliation(s)
| | - Amy Lynd
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | | - Maria Devine
- Big Data Institute, University of Oxford, Oxford, OX3 7LF, UK
| | - John Essandoh
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - Francis Wat'senga
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Emile Z Manzambi
- Institut National de Recherche Biomédicale, PO Box 1192, Kinshasa, Democratic Republic of Congo
| | - Fiacre Agossa
- USAID President's Malaria Initiative, VectorLink Project, Abt Associates, 6130 Executive Blvd 16, Rockville, MD, 20852, USA
| | - Martin J Donnelly
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | - David Weetman
- Department of Vector Biology, Liverpool School of Tropical Medicine, Liverpool, L35QA, UK
| | | |
Collapse
|
39
|
Binyang AJ, Elanga-Ndille E, Tene-Fossog B, Ndo C, Nouage L, Assatse T, Fotso-Toguem Y, Tabue R, Zeukeng F, Nguiffo DN, Etang J, Njiokou F, Wondji CS. Distribution of acetylcholinesterase (Ace-1 R) target-site G119S mutation and resistance to carbamates and organophosphates in Anopheles gambiae sensu lato populations from Cameroon. Parasit Vectors 2022; 15:53. [PMID: 35164852 PMCID: PMC8842952 DOI: 10.1186/s13071-022-05174-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Accepted: 01/22/2022] [Indexed: 12/04/2022] Open
Abstract
BACKGROUND Cameroon is considering the implementation of indoor residual spraying (IRS) as a complementary measure to control malaria in the context of high pyrethroid resistance in major malaria vectors. Non-pyrethroid insecticide classes such as organophosphates and carbamates may be utilized in IRS due to widespread pyrethroid resistance. However, the success of this strategy depends on good knowledge of the resistance status of malaria vectors to carbamates and organophosphates. Here, we assessed the susceptibility profile of Anopheles gambiae sensu lato with respect to carbamates and organophosphate and the distribution of the molecular mechanism underlying resistance to these insecticides. METHODS Anopheles gambiae s.l. mosquitoes were collected from nine settings across the country and bio-assayed with bendiocarb, propoxur and pirimiphos-methyl. The Ace-1 target-site G119S mutation was genotyped using a TaqMan assay. To investigate the polymorphism in the Ace-1 gene, a region of 924 base pairs in a sequence of the gene was amplified from both live and dead females of An. gambiae exposed to bendiocarb. RESULTS Pirimiphos-methyl induced full mortality in An. gambiae s.l. from all study sites, whereas for carbamates, resistance was observed in four localities, with the lowest mortality rate recorded in Mangoum (17.78 ± 5.02% for bendiocarb and 18.61 ± 3.86% for propoxur) in the southern part of Cameroon. Anopheles coluzzii was found to be the predominant species in the northern tropical part of the country where it is sympatric with Anopheles arabiensis. In the localities situated in southern equatorial regions, this species was predominant in urban settings, while An. gambiae was the most abundant species in rural areas. The G119S Ace-1 target-site mutation was detected only in An. gambiae and only in the sites located in southern Cameroon. Phylogenetic analyses showed a clustering according to the phenotype. CONCLUSION The occurrence of the Ace-1 target-site substitution G119S in An. gambiae s.l. populations highlights the challenge associated with the impending deployment of IRS in Cameroon using carbamates or organophosphates. It is therefore important to think about a resistance management plan including the use of other insecticide classes such as neonicotinoids or pyrrole to guarantee the implementation of IRS in Cameroon.
Collapse
Affiliation(s)
- Achille Jerome Binyang
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Emmanuel Elanga-Ndille
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Vector Borne Diseases Laboratory of the Biology and Applied Ecology Research Unit (VBID-URBEA), Department of Animal Biology, Faculty of Science of the University of Dschang, Dschang, Cameroon
| | - Billy Tene-Fossog
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Cyrille Ndo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Biological Science, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
| | - Lynda Nouage
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Tatiane Assatse
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Yvan Fotso-Toguem
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Raymond Tabue
- Ministry of Public Health, National Malaria Control Programme, P.O. Box 14386, Yaoundé, Cameroon
| | - Francis Zeukeng
- National Reference Unit for Vector Control, The Biotechnology Centre, University of Yaoundé I, P.O. Box, 3851-Messa, Yaoundé, Cameroon
| | - Daniel Nguete Nguiffo
- Department of Parasitology and Microbiology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
| | - Josiane Etang
- Department of Biological Science, Faculty of Medicine and Pharmaceutical Sciences, University of Douala, P.O. Box 24157, Douala, Cameroon
- Organisation de Coordination Pour La Lutte Contre Les Endémies en Afrique Centrale, BP 288, Yaoundé, Cameroun
| | - Flobert Njiokou
- Department of Animal Biology and Physiology, Faculty of Science, University of Yaoundé 1, P.O. Box 812, Yaoundé, Cameroon
| | - Charles S. Wondji
- Department of Medical Entomology, Centre for Research in Infectious Diseases (CRID), P.O. BOX 13591, Yaoundé, Cameroon
- Department of Vector Biology, Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, L3 5QA UK
| |
Collapse
|
40
|
Nalinya S, Musoke D, Deane K. Malaria prevention interventions beyond long-lasting insecticidal nets and indoor residual spraying in low- and middle-income countries: a scoping review. Malar J 2022; 21:31. [PMID: 35109848 PMCID: PMC8812253 DOI: 10.1186/s12936-022-04052-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 01/17/2022] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Significant progress in malaria prevention during the past two decades has prompted increasing global dialogue on malaria elimination. Recent reviews on malaria strategies have focused mainly on long-lasting insecticidal nets (LLINs) and indoor residual spraying (IRS), with little emphasis on other prevention methods. This article is a scoping review of literature on malaria prevention methods beyond LLINs and IRS in low- and middle-income countries (LMICs). METHODS This scoping review found articles published between from 1994 to 2020. Studies were obtained from a search of the PubMed, the Cochrane Library and Social Science abstracts. Grey literature and manual search of secondary references was also done. The search strategy included all study designs but limited only to English. Three independent reviewers performed the selection and characterization of articles, and the data collected were synthesized qualitatively. RESULTS A total of 10,112 studies were identified among which 31 met the inclusion criteria. The results were grouped by the 3 emerging themes of: housing design; mosquito repellents; and integrated vector control. Housing design strategies included closing eves, screening of houses including windows, doors and ceilings, while mosquito repellents were mainly spatial repellents, use of repellent plants, and use of plant-based oils. Integrated vector control included larvae source management. Evidence consistently shows that improving housing design reduced mosquito entry and malaria prevalence. Spatial repellents also showed promising results in field experiments, while evidence on repellent plants is limited and still emerging. Recent literature shows that IVM has been largely ignored in recent years in many LMICs. Some malaria prevention methods such as spatial repellents and IVM are shown to have the potential to target both indoor and outdoor transmission of malaria, which are both important aspects to consider to achieve malaria elimination in LMICs. CONCLUSION The scoping review shows that other malaria prevention strategies beyond LLINs and IRS have increasingly become important in LMICs. These methods have a significant role in contributing to malaria elimination in endemic countries if they are adequately promoted alongside other conventional approaches.
Collapse
Affiliation(s)
- Sarah Nalinya
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | - David Musoke
- Department of Disease Control and Environmental Health, School of Public Health, College of Health Sciences, Makerere University, Kampala, Uganda
| | | |
Collapse
|
41
|
Synthesis and antiplasmodial activity of regioisomers and epimers of second-generation dual acting ivermectin hybrids. Sci Rep 2022; 12:564. [PMID: 35022455 PMCID: PMC8755717 DOI: 10.1038/s41598-021-04532-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 12/23/2021] [Indexed: 12/15/2022] Open
Abstract
With its strong effect on vector-borne diseases, and insecticidal effect on mosquito vectors of malaria, inhibition of sporogonic and blood-stage development of Plasmodium falciparum, as well as in vitro and in vivo impairment of the P. berghei development inside hepatocytes, ivermectin (IVM) continues to represent an antimalarial therapeutic worthy of investigation. The in vitro activity of the first-generation IVM hybrids synthesized by appending the IVM macrolide with heterocyclic and organometallic antimalarial pharmacophores, against the blood-stage and liver-stage infections by Plasmodium parasites prompted us to design second-generation molecular hybrids of IVM. Here, a structural modification of IVM to produce novel molecular hybrids by using sub-structures of 4- and 8-aminoquinolines, the time-tested antiplasmodial agents used for treating the blood and hepatic stage of Plasmodium infections, respectively, is presented. Successful isolation of regioisomers and epimers has been demonstrated, and the evaluation of their in vitro antiplasmodial activity against both the blood stages of P. falciparum and the hepatic stages of P. berghei have been undertaken. These compounds displayed structure-dependent antiplasmodial activity, in the nM range, which was more potent than that of IVM, its aglycon or primaquine, highlighting the superiority of this hybridization strategy in designing new antiplasmodial agents.
Collapse
|
42
|
Review of the ecology and behaviour of Aedes aegypti and Aedes albopictus in Western Africa and implications for vector control. CURRENT RESEARCH IN PARASITOLOGY & VECTOR-BORNE DISEASES 2022; 2:100074. [PMID: 35726222 PMCID: PMC7612875 DOI: 10.1016/j.crpvbd.2021.100074] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Western Africa is vulnerable to arboviral disease transmission, having recently experienced major outbreaks of chikungunya, dengue, yellow fever and Zika. However, there have been relatively few studies on the natural history of the two major human arbovirus vectors in this region, Aedes aegypti and Ae. albopictus, potentially limiting the implementation of effective vector control. We systematically searched for and reviewed relevant studies on the behaviour and ecology of Ae. aegypti and Ae. albopictus in Western Africa, published over the last 40 years. We identified 73 relevant studies, over half of which were conducted in Nigeria, Senegal, or Côte d'Ivoire. Most studies investigated the ecology of Ae. aegypti and Ae. albopictus, exploring the impact of seasonality and land cover on mosquito populations and identifying aquatic habitats. This review highlights the adaptation of Ae. albopictus to urban environments and its invasive potential, and the year-round maintenance of Ae. aegypti populations in water storage containers. However, important gaps were identified in the literature on the behaviour of both species, particularly Ae. albopictus. In Western Africa, Ae. aegypti and Ae. albopictus appear to be mainly anthropophilic and to bite predominantly during the day, but further research is needed to confirm this to inform planning of effective vector control strategies. We discuss the public health implications of these findings and comment on the suitability of existing and novel options for control in Western Africa.
Collapse
|
43
|
Recent trends in global insecticide use for disease vector control and potential implications for resistance management. Sci Rep 2021; 11:23867. [PMID: 34903838 PMCID: PMC8669011 DOI: 10.1038/s41598-021-03367-9] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2021] [Accepted: 10/19/2021] [Indexed: 11/08/2022] Open
Abstract
Insecticides have played a major role in the prevention, control, and elimination of vector-borne diseases, but insecticide resistance threatens the efficacy of available vector control tools. A global survey was conducted to investigate vector control insecticide use from 2010 to 2019. Out of 140 countries selected as sample for the study, 87 countries responded. Also, data on ex-factory deliveries of insecticide-treated nets (ITNs) were analyzed. Insecticide operational use was highest for control of malaria, followed by dengue, leishmaniasis and Chagas disease. Vector control relied on few insecticide classes with pyrethroids the most used overall. Results indicated that IRS programs have been slow to react to detection of pyrethroid resistance, while proactive resistance management using insecticides with unrelated modes of action was generally weak. The intensive use of recently introduced insecticide products raised concern about product stewardship regarding the preservation of insecticide susceptibility in vector populations. Resistance management was weakest for control of dengue, leishmaniasis or Chagas disease. Therefore, it will be vital that vector control programs coordinate on insecticide procurement, planning, implementation, resistance monitoring, and capacity building. Moreover, increased consideration should be given to alternative vector control tools that prevent the development of insecticide resistance.
Collapse
|
44
|
Sarkar R, Kessler A, Mawkhlieng B, Sullivan SA, Wilson ML, Carlton JM, Albert S. Household and individual level risk factors associated with declining malaria incidence in Meghalaya, India: implications for malaria elimination in low-endemic settings. Malar J 2021; 20:460. [PMID: 34895233 PMCID: PMC8665616 DOI: 10.1186/s12936-021-03982-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Accepted: 11/12/2021] [Indexed: 01/02/2023] Open
Abstract
Background A detailed analysis of household and individual level Plasmodium infection patterns in two low-endemic districts of Meghalaya was undertaken to better understand the epidemiology of malaria in northeast India. Methods Socio-demographic and behavioural information from residents (aged 1–69 years) of households were collected through pre-tested, questionnaire conducted in 2018 and 2019. Blood samples collected from participants were tested for Plasmodium falciparum and/or Plasmodium vivax infection using rapid diagnostic test, microscopy and PCR. Plasma samples from a subset of participants were analysed for antibodies against thirteen P. falciparum and four P. vivax antigens. Associations between household and individual level risk factors, and Plasmodium infections were evaluated using multilevel logistic regression models. Results A total of 2753 individuals from 827 households were enrolled in 2018, and 834 individuals from 222 households were enrolled in 2019. Of them, 33 (1.2%) were positive by PCR for P. falciparum in 2018 and none were positive for P. vivax. In 2019, no PCR-positive individuals were detected. All, but one, infections were asymptomatic; all 33 infections were sub-microscopic. Reported history of malaria in the past 12 months (OR = 8.84) and history of travel in the past 14 days (OR = 10.06) were significantly associated with Plasmodium infection. A significant trend of increased seropositivity with age was noted for all 17 antigens. Although adults (≥ 18 years) consistently had the highest seropositivity rates, a sizeable proportion of under-five children were also found to be seropositive. Almost all individuals (99.4%) reported sleeping under an insecticide-treated bed-net, and household indoor residual spray coverage in the 12 months preceding the survey was low (23%). Most participants correctly identified common signs and symptoms of malaria, i.e., fever (96.4%), headache (71.2%), chills (83.2%) and body-ache (61.8%). Almost all participants (94.3%) used government-provided services for treatment of malaria. Conclusion This study explored the epidemiology of malaria in two communities in Meghalaya, India, in the context of declining transmission. The presence of widespread asymptomatic infections and seropositivity among under-five children suggest that low-level Plasmodium transmission persists in this region. Implications of the study findings for malaria elimination efforts in low-transmission settings are discussed.
Collapse
Affiliation(s)
- Rajiv Sarkar
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India. .,Martin Luther Christian University, Shillong, Meghalaya, 793006, India.
| | - Anne Kessler
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | | | - Steven A Sullivan
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA
| | - Mark L Wilson
- Department of Epidemiology, School of Public Health, University of Michigan, Ann Arbor, MI, 48109, USA
| | - Jane M Carlton
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY, 10003, USA.,Department of Epidemiology, School of Global Public Health, New York University, New York, NY, 10003, USA
| | - Sandra Albert
- Indian Institute of Public Health - Shillong, Shillong, Meghalaya, 793001, India.,Martin Luther Christian University, Shillong, Meghalaya, 793006, India
| |
Collapse
|
45
|
Kaindoa EW, Mmbando AS, Shirima R, Hape EE, Okumu FO. Insecticide-treated eave ribbons for malaria vector control in low-income communities. Malar J 2021; 20:415. [PMID: 34688285 PMCID: PMC8542300 DOI: 10.1186/s12936-021-03945-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 10/06/2021] [Indexed: 12/03/2022] Open
Abstract
Supplementary tools are required to address the limitations of insecticide-treated nets (ITNs) and indoor residual spraying (IRS), which are currently the core vector control methods against malaria in Africa. The eave ribbons technology exploits the natural house-entry behaviours of major malaria vectors to deliver mosquitocidal or repellent actives around eave spaces through which the Anopheles mosquitoes usually enter human dwellings. They confer protection by preventing biting indoors and in the peri-domestic outdoor spaces, and also killing a significant proportion of the mosquitoes. Current versions of eave ribbons are made of low-cost hessian fabric infused with candidate insecticides and can be easily fitted onto multiple house types without any additional modifications. This article reviews the evidence for efficacy of the technology, and discusses its potential as affordable and versatile supplementary approach for targeted and efficient control of mosquito-borne diseases, particularly malaria. Given their simplicity and demonstrated potential in previous studies, future research should investigate ways to optimize scalability and effectiveness of the ribbons. It is also important to assess whether the ribbons may constitute a less-cumbersome, but more affordable substitute for other interventions, such as IRS, by judiciously using lower quantities of selected insecticides targeted around eave spaces to deliver equivalent or greater suppression of malaria transmission.
Collapse
Affiliation(s)
- Emmanuel W Kaindoa
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania. .,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania.
| | - Arnold S Mmbando
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Department of Biosciences, Durham University, DH13LE, Durham, UK
| | - Ruth Shirima
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania
| | - Emmanuel E Hape
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK
| | - Fredros O Okumu
- Environmental Health and Ecological Science Department, Ifakara Health Institute, P. O. Box 53, Ifakara, Tanzania.,School of Public Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, G12 8QQ, Glasgow, UK.,School of Life Science and Bioengineering, The Nelson Mandela African Institution of Science and Technology, P. O. Box 447, Arusha, Tanzania
| |
Collapse
|
46
|
Coleman S, Yihdego Y, Sherrard-Smith E, Thomas CS, Dengela D, Oxborough RM, Dadzie SK, Boakye D, Gyamfi F, Obiri-Danso K, Johns B, Siems LV, Lucas B, Tongren JE, Zigirumugabe S, Dery D, Fornadel C, George K, Belemvire A, Carlson J, Irish SR, Armistead JS, Seyoum A. Partial indoor residual spraying with pirimiphos-methyl as an effective and cost-saving measure for the control of Anopheles gambiae s.l. in northern Ghana. Sci Rep 2021; 11:18055. [PMID: 34508114 PMCID: PMC8433436 DOI: 10.1038/s41598-021-97138-1] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/19/2021] [Indexed: 11/09/2022] Open
Abstract
The scale up of indoor residual spraying (IRS) and insecticide treated nets have contributed significantly to global reductions in malaria prevalence over the last two decades. However, widespread pyrethroid resistance has necessitated the use of new and more expensive insecticides for IRS. Partial IRS with pirimiphos-methyl in experimental huts and houses in a village-wide trial was evaluated against Anopheles gambiae s.l. in northern Ghana. Four different scenarios in which either only the top or bottom half of the walls of experimental huts were sprayed, with or without also spraying the ceiling were compared. Mortality of An. gambiae s.l. on partially sprayed walls was compared with the standard procedures in which all walls and ceiling surfaces are sprayed. A small-scale trial was then conducted to assess the effectiveness, feasibility, and cost of spraying only the upper walls and ceiling as compared to full IRS and no spraying in northern Ghana. Human landing catches were conducted to estimate entomological indices and determine the effectiveness of partial IRS. An established transmission dynamics model was parameterized by an analysis of the experimental hut data and used to predict the epidemiological impact and cost effectiveness of partial IRS for malaria control in northern Ghana. In the experimental huts, partial IRS of the top (IRR 0.89, p = 0.13) or bottom (IRR 0.90, p = 0.15) half of walls and the ceiling was not significantly less effective than full IRS in terms of mosquito mortality. In the village trial, the annual entomological inoculation rate was higher for the unsprayed control (217 infective bites/person/year (ib/p/yr)) compared with the fully and partially sprayed sites, with 28 and 38 ib/p/yr, respectively. The transmission model predicts that the efficacy of partial IRS against all-age prevalence of malaria after six months would be broadly equivalent to a full IRS campaign in which 40% reduction is expected relative to no spray campaign. At scale, partial IRS in northern Ghana would have resulted in a 33% cost savings ($496,426) that would enable spraying of 36,000 additional rooms. These findings suggest that partial IRS is an effective, feasible, and cost saving approach to IRS that could be adopted to sustain and expand implementation of this key malaria control intervention.
Collapse
Affiliation(s)
- Sylvester Coleman
- PMI VectorLink Project, Abt Associates, Plot 11 Waterson Road, Fuo, Tamale, Ghana.
| | - Yemane Yihdego
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Ellie Sherrard-Smith
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Churcher S Thomas
- Department of Infectious Disease Epidemiology, MRC Centre for Global Infectious Disease Analysis, Imperial College London, London, UK
| | - Dereje Dengela
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Richard M Oxborough
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Samuel K Dadzie
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Daniel Boakye
- Noguchi Memorial Institute for Medical Research, University of Ghana, Legon, Ghana
| | - Frank Gyamfi
- PMI VectorLink Project, Abt Associates, Plot 11 Waterson Road, Fuo, Tamale, Ghana
| | - Kwasi Obiri-Danso
- Department of Theoretical and Applied Biology, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Ben Johns
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Lilly V Siems
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Bradford Lucas
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| | - Jon Eric Tongren
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Sixte Zigirumugabe
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Dominic Dery
- US. President's Malaria Initiative, U.S. Agency for International Development, Accra, Ghana
| | - Christen Fornadel
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Kristen George
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Allison Belemvire
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Jenny Carlson
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Seth R Irish
- U.S. President's Malaria Initiative, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Jennifer S Armistead
- U.S. President's Malaria Initiative, U.S. Agency for International Development, Washington, DC, USA
| | - Aklilu Seyoum
- PMI VectorLink Project, Abt Associates, 6130 Executive Blvd, Rockville, MD, 20852, USA
| |
Collapse
|
47
|
Njau J, Silal SP, Kollipara A, Fox K, Balawanth R, Yuen A, White LJ, Moya M, Pillay Y, Moonasar D. Investment case for malaria elimination in South Africa: a financing model for resource mobilization to accelerate regional malaria elimination. Malar J 2021; 20:344. [PMID: 34399767 PMCID: PMC8365569 DOI: 10.1186/s12936-021-03875-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Accepted: 08/05/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Malaria continues to be a public health problem in South Africa. While the disease is mainly confined to three of the nine provinces, most local transmissions occur because of importation of cases from neighbouring countries. The government of South Africa has reiterated its commitment to eliminate malaria within its borders. To support the achievement of this goal, this study presents a cost-benefit analysis of malaria elimination in South Africa through simulating different scenarios aimed at achieving malaria elimination within a 10-year period. METHODS A dynamic mathematical transmission model was developed to estimate the costs and benefits of malaria elimination in South Africa between 2018 and 2030. The model simulated a range of malaria interventions and estimated their impact on the transmission of Plasmodium falciparum malaria between 2018 and 2030 in the three endemic provinces of Limpopo, Mpumalanga and KwaZulu-Natal. Local financial, economic, and epidemiological data were used to calibrate the transmission model. RESULTS Based on the three primary simulated scenarios: Business as Usual, Accelerate and Source Reduction, the total economic burden was estimated as follows: for the Business as Usual scenario, the total economic burden of malaria in South Africa was R 3.69 billion (USD 223.3 million) over an 11-year period (2018-2029). The economic burden of malaria was estimated at R4.88 billion (USD 295.5 million) and R6.34 billion (~ USD 384 million) for the Accelerate and Source Reduction scenarios, respectively. Costs and benefits are presented in midyear 2020 values. Malaria elimination was predicted to occur in all three provinces if the Source Reduction strategy was adopted to help reduce malaria rates in southern Mozambique. This could be achieved by limiting annual local incidence in South Africa to less than 1 indigenous case with a prediction of this goal being achieved by the year 2026. CONCLUSIONS Malaria elimination in South Africa is feasible and economically worthwhile with a guaranteed positive return on investment (ROI). Findings of this study show that through securing funding for the proposed malaria interventions in the endemic areas of South Africa and neighbouring Mozambique, national elimination could be within reach in an 8-year period.
Collapse
Affiliation(s)
- Joseph Njau
- JoDon Consulting Group, 4501 Forest View Court, Lilburn, GA, 30047, USA
| | - Sheetal P Silal
- Modelling and Simulation Hub, Africa (MASHA), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa.
- Nuffield Department of Medicine, Centre for Global Health, Oxford University, Oxford, UK.
| | - Aparna Kollipara
- Health Economist and Health Financing Specialist, California Public Health Department, Sacramento, USA
| | - Katie Fox
- Department of Global Health at the School of Medicine and Packard Foundation, University of California San Francisco, San Francisco, CA, USA
| | - Ryleen Balawanth
- Clinton Health Access Initiative (CHAI), South Africa Regional Office, Pretoria, South Africa
| | - Anthony Yuen
- Clinton Health Access Initiative (CHAI), South Africa Regional Office, Pretoria, South Africa
| | - Lisa J White
- Big Data Institute, Nuffield Department of Medicine, Li Ka Shing Centre for Health Information and Discovery, University of Oxford, Oxford, UK
| | - Mandisi Moya
- Modelling and Simulation Hub, Africa (MASHA), Department of Statistical Sciences, University of Cape Town, Cape Town, South Africa
| | - Yogan Pillay
- Center for Innovation in Global Health, Georgetown University, Georgetown, USA
- Malaria Vector and Zoonotic Disease Directorate, National Department of Health, Pretoria, South Africa
| | - Devanand Moonasar
- Malaria Vector and Zoonotic Disease Directorate, National Department of Health, Pretoria, South Africa
- School of Health Systems and Public Health, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
48
|
Singh L, Singh K. Ivermectin: A Promising Therapeutic for Fighting Malaria. Current Status and Perspective. J Med Chem 2021; 64:9711-9731. [PMID: 34242031 DOI: 10.1021/acs.jmedchem.1c00498] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Finding new chemotherapeutic interventions to treat malaria through repurposing of time-tested drugs and rigorous design of new drugs using tools of rational drug design remains one of the most sought strategies at the disposal of medicinal chemists. Ivermectin, a semisynthetic derivative of avermectin B1, is among the efficacious drugs used in mass drug administration drives employed against onchocerciasis, lymphatic filariasis, and several other parasitic diseases in humans. In this review, we present the prowess of ivermectin, a potent endectocide, in the control of malaria through vector control to reduce parasite transmission combined with efficacious chemoprevention to reduce malaria-related fatalities.
Collapse
Affiliation(s)
- Lovepreet Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| | - Kamaljit Singh
- Department of Chemistry, UGC Centre for Advanced Studies-II, Guru Nanak Dev University, Amritsar-143 005, India
| |
Collapse
|
49
|
Ekusai-Sebatta D, Arinaitwe E, Mpimbaza A, Nankabirwa JI, Drakeley C, Rosenthal PJ, Staedke SG, Muyinda H. Challenges and opportunities for use of long-lasting insecticidal nets to prevent malaria during overnight travel in Uganda: a qualitative study. Malar J 2021; 20:283. [PMID: 34174892 PMCID: PMC8235645 DOI: 10.1186/s12936-021-03811-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 06/11/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Travel is a well-recognized risk factor for malaria. Within sub-Saharan Africa, travellers from areas of lower to higher transmission intensity are potentially at high risk of malaria. Long-lasting insecticidal nets (LLINs) are the primary tool for prevention of malaria, and their widespread use has contributed to substantial reductions in malaria burden. However, travellers often fail to use LLINs. To further explore the challenges and opportunities of using LLINs, travellers were interviewed in Uganda. METHODS In August and September 2019, 20 participants attending outpatient clinics at Naguru General Hospital in Kampala with a history of travel out of Kampala within the previous 60 days were purposively selected. Data were collected through in-depth interviews and analysed thematically using NVivo 12. RESULTS Of the 20 participants, 13 were male. Thirteen of the 20 participants tested positive for malaria by microscopy, and 5 reported using of LLINs during travel. The main reasons for travel were to attend social events (weddings, funerals, overnight prayers) and for work. travellers who attended social events reported using LLINs less commonly than those who travelled for work. Challenges to using LLINs during travel included: (1) limited access to LLINs; (2) challenges in planning ahead of travel; (3) lack of space or ability to hang LLINs while travelling; (4) impression that LLINs in lodging places were unhygienic; (5) cultural beliefs discouraging use of LLINs during social events; (6) participation in overnight ceremonies; and (7) doubts about efficacy of LLINs. Positive factors influencing use of LLINs during travel included knowledge regarding malaria prevention and good affordability and availability of LLINs. CONCLUSIONS Despite good traveller knowledge regarding malaria control measures, use of LLINs was limited. Use of LLINs in the prevention of malaria among travellers from low to high transmission settings needs to be prioritized. This calls for increased behaviour change oriented communication to improve traveller preparedness and consideration of use of repellents in situations where LLINs may not be feasible. The Uganda Ministry of Health and Malaria Control Division should use educational messages to increase awareness about the risks of getting malaria during overnight travel through the media. Truck drivers should be sensitized through their companies to use the available space at the back of the trucks for hanging nets and consider using pop-up nets.
Collapse
Affiliation(s)
| | - Emmanuel Arinaitwe
- Infectious Diseases Research Collaboration, Kampala, Uganda.,London School of Hygiene and Tropical Medicine, London, UK
| | - Arthur Mpimbaza
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Child Health & Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| | - Joaniter I Nankabirwa
- Infectious Diseases Research Collaboration, Kampala, Uganda.,Department of Medicine, Makerere University, Kampala, Uganda
| | - Chris Drakeley
- Infectious Diseases Research Collaboration, Kampala, Uganda
| | | | | | - Herbert Muyinda
- Child Health & Development Centre, Makerere University College of Health Sciences, Kampala, Uganda
| |
Collapse
|
50
|
Efficacy of broflanilide (VECTRON T500), a new meta-diamide insecticide, for indoor residual spraying against pyrethroid-resistant malaria vectors. Sci Rep 2021; 11:7976. [PMID: 33846394 PMCID: PMC8042056 DOI: 10.1038/s41598-021-86935-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 03/18/2021] [Indexed: 11/09/2022] Open
Abstract
The rotational use of insecticides with different modes of action for indoor residual spraying (IRS) is recommended for improving malaria vector control and managing insecticide resistance. Insecticides with new chemistries are urgently needed. Broflanilide is a newly discovered insecticide under consideration. We investigated the efficacy of a wettable powder (WP) formulation of broflanilide (VECTRON T500) for IRS on mud and cement wall substrates in laboratory and experimental hut studies against pyrethroid-resistant malaria vectors in Benin, in comparison with pirimiphos-methyl CS (Actellic 300CS). There was no evidence of cross-resistance to pyrethroids and broflanilide in CDC bottle bioassays. In laboratory cone bioassays, broflanilide WP-treated substrates killed > 80% of susceptible and pyrethroid-resistant An. gambiae sl for 6–14 months. At application rates of 100 mg/m2 and 150 mg/m2, mortality of wild pyrethroid-resistant An. gambiae sl entering experimental huts in Covè, Benin treated with VECTRON T500 was similar to pirimiphos-methyl CS (57–66% vs. 56%, P > 0.05). Throughout the 6-month hut trial, monthly wall cone bioassay mortality on VECTRON T500 treated hut walls remained > 80%. IRS with broflanilide shows potential to significantly improve the control of malaria transmitted by pyrethroid-resistant mosquito vectors and could thus be a crucial addition to the current portfolio of IRS insecticides.
Collapse
|