1
|
Halabicky OM, Giang CW, Miller AL, Peterson KE. Lead exposure, glucocorticoids, and physiological stress across the life course: A systematic review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 345:123329. [PMID: 38281572 DOI: 10.1016/j.envpol.2024.123329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 12/13/2023] [Accepted: 01/06/2024] [Indexed: 01/30/2024]
Abstract
The biological pathways linking lead exposure to adverse outcomes are beginning to be understood. Rodent models suggest lead exposure induces dysfunction within the hypothalamic-pituitary-adrenal (HPA) axis and glucocorticoid regulation, a primary physiological stress response system. Over time, HPA axis and glucocorticoid dysfunction has been associated with adverse neurocognitive and cardiometabolic health, much like lead exposure. This systematic review utilized PRISMA guidelines to synthesize the literature regarding associations between lead exposure and downstream effector hormones of the HPA axis, including cortisol, a glucocorticoid, and dehydroepiandrosterone (DHEA), a glucocorticoid antagonist. We additionally determined the state of the evidence regarding lead exposure and allostatic load, a measure of cumulative body burden resultant of HPA axis and glucocorticoid dysfunction. A total of 18 articles were included in the review: 16 assessed cortisol or DHEA and 3 assessed allostatic load. Generally, the few available child studies suggest a significant association between early life lead exposure and altered cortisol, potentially suggesting the impact of developmental exposure. In adulthood, only cross sectional studies were available. These reported significant associations between lead and reduced cortisol awakening response and increased cortisol reactivity, but few associations with fasting serum cortisol. Two studies reported significant associations between increasing lead exposure and allostatic load in adults and another between early life lead exposure and adolescent allostatic load. The paucity of studies examining associations between lead exposure and allostatic load or DHEA and overall heterogeneity of allostatic load measurements limit conclusions. However, these findings cautiously suggest associations between lead and dysregulation of physiological stress pathways (i.e., glucocorticoids) as seen through cortisol measurement in children and adults. Future research would help to elucidate these associations and could further examine the physiological stress pathway as a mediator between lead exposure and detrimental health outcomes.
Collapse
Affiliation(s)
- O M Halabicky
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| | - C W Giang
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| | - A L Miller
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| | - K E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, 1415 Washington Heights, Ann Arbor, MI, USA.
| |
Collapse
|
2
|
Midya V, Nagdeo K, Lane JM, Torres-Olascoaga LA, Torres-Calapiz M, Gennings C, Horton MK, Téllez-Rojo MM, Wright RO, Arora M, Eggers S. Prenatal metal exposures and childhood gut microbial signatures are associated with depression score in late childhood. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 916:170361. [PMID: 38278245 PMCID: PMC10922719 DOI: 10.1016/j.scitotenv.2024.170361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 01/19/2024] [Accepted: 01/20/2024] [Indexed: 01/28/2024]
Abstract
BACKGROUND Childhood depression is a major public health issue worldwide. Previous studies have linked both prenatal metal exposures and the gut microbiome to depression in children. However, few, if any, have studied their interacting effect in specific subgroups of children. OBJECTIVES Using an interpretable machine-learning method, this study investigates whether children with specific combinations of prenatal metals and childhood microbial signatures (cliques or groups of metals and microbes) were more likely to have higher depression scores at 9-11 years of age. METHODS We leveraged data from a well-characterized pediatric longitudinal birth cohort in Mexico City and its microbiome substudy (n = 112). Eleven metal exposures were measured in maternal whole blood samples in the second and third trimesters of pregnancy. The gut microbial abundances were measured at 9-11-year-olds using shotgun metagenomic sequencing. Depression symptoms were assessed using the Child Depression Index (CDI) t-scores at 9-11 years of age. We used Microbial and Chemical Exposure Analysis (MiCxA), which combines interpretable machine-learning into a regression framework to identify and estimate joint associations of metal-microbial cliques in specific subgroups. Analyses were adjusted for relevant covariates. RESULTS We identified a subgroup of children (11.6 % of the sample) characterized by a four-component metal-microbial clique that had a significantly high depression score (15.4 % higher than the rest) in late childhood. This metal-microbial clique consisted of high Zinc in the second trimester, low Cobalt in the third trimester, a high abundance of Bacteroides fragilis, a high abundance of Faecalibacterium prausnitzii. All combinations of cliques (two-, three-, and four-components) were significantly associated with increased log-transformed t-scored CDI (β = 0.14, 95%CI = [0.05,0.23], P < 0.01 for the four-component clique). SIGNIFICANCE This study offers a new approach to chemical-microbial analysis and a novel demonstration that children with specific gut microbiome cliques and metal exposures during pregnancy may have a higher likelihood of elevated depression scores.
Collapse
Affiliation(s)
- Vishal Midya
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| | - Kiran Nagdeo
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Jamil M Lane
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Libni A Torres-Olascoaga
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Mariana Torres-Calapiz
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Manish Arora
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Shoshannah Eggers
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Epidemiology, University of Iowa College of Public Health, Iowa City, IA, USA
| |
Collapse
|
3
|
Halabicky OM, Téllez-Rojo MM, Miller AL, Goodrich JM, Dolinoy DC, Hu H, Peterson KE. Associations of prenatal and childhood Pb exposure with allostatic load in adolescence: Findings from the ELEMENT cohort study. ENVIRONMENTAL RESEARCH 2023; 235:116647. [PMID: 37442254 PMCID: PMC10839745 DOI: 10.1016/j.envres.2023.116647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 04/14/2023] [Accepted: 07/11/2023] [Indexed: 07/15/2023]
Abstract
The biological pathways which link lead (Pb) and long-term outcomes are unclear, though rodent models and a few human studies suggest Pb may alter the body's stress response systems, which over time, can elicit dysregulated stress responses with cumulative impacts. This study examined associations between prenatal and early childhood Pb exposure and adolescent allostatic load, an index of an individual's body burden of stress in multiple biological systems, and further examined sex-based associations. Among 391 (51% male) participants in the ELEMENT birth cohort, we related trimester-specific maternal blood Pb, 1-month postpartum maternal tibia and patella Pb, and child blood Pb at 12-24 months to an allostatic load index in adolescence comprised of biomarkers of cardiovascular, metabolic, neuroendocrine, and immune function. The results were overall mixed, with prenatal exposure, particularly maternal bone Pb, being positively associated with allostatic load, and early childhood Pb showing mixed results for males and females. In adjusted Poisson regression models, 1 mcg/g increase in tibia Pb was associated with a 1% change in expected allostatic load (IRR = 1.01; 95%CI 0.99, 1.02). We found a significant Pb × sex interaction (IRR = 1.05; 95%CI 1.01, 1.10); where males saw an increasing percent change in allostatic load as 12 month Pb levels increased compared to females who saw a decreasing allostatic load. Further examination of allostatic load will facilitate the determination of potential mechanistic pathways between developmental toxicant exposures and later-in-life cardiometabolic outcomes.
Collapse
Affiliation(s)
- O M Halabicky
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA.
| | - M M Téllez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - A L Miller
- Department of Health Behavior and Health Education, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - J M Goodrich
- Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - D C Dolinoy
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA; Department of Environmental Health Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| | - H Hu
- Department of Population and Public Health Sciences, Keck School of Medicine, University of Southern California, Los Angeles, CA, USA
| | - K E Peterson
- Department of Nutritional Sciences, School of Public Health, University of Michigan, Ann Arbor, MI, USA
| |
Collapse
|
4
|
Zhang H, Yan J, Nie G, Xie D, Luo B, Niu J, Wang H, Li X. Effects of cadmium and lead co-exposure on glucocorticoid levels in rural residents of northwest China. CHEMOSPHERE 2023; 317:137783. [PMID: 36638928 DOI: 10.1016/j.chemosphere.2023.137783] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 01/03/2023] [Accepted: 01/05/2023] [Indexed: 06/17/2023]
Abstract
Cadmium (Cd) and lead (Pb) are important environmental endocrine disruptors that are associated with adverse health problems. However, the effects of co-exposure to Cd and Pb on glucocorticoids (GCs) in the body at environmental levels are limited. A total of 468 subjects from the Dongdagou-Xinglong cohort (DDG-XL) were included in this study. We measured the serum levels of two representative endogenous GCs [cortisol (CRL) and cortisone (CRN)], and whole blood levels of Cd and Pb. Multiple linear regression models were constructed to explore the associations of single or combined Cd and Pb exposure with serum CRL and CRN levels. The interactive effects of Cd and Pb on GCs were further assessed using mediation analysis and moderation analysis. Single-heavy metal exposure analysis with adjustment for potential confounders showed that the serum CRL level decreased when the blood Cd or Pb concentration gradually increased (P trend <0.01). Additionally, subjects with high Cd or Pb exposure (Q4) had significantly reduced serum CRN levels compared to those with low Cd or Pb exposure (Q1) (P < 0.05). In Cd and Pb co-exposure analysis, significant negative dose-response relationships were observed between co-exposure to Cd and Pb and serum CRL and CRN levels. Furthermore, mediation analysis showed that Cd completely mediated the relationship between Pb and GCs, and moderation analysis suggested that Pb might weaken the negative relationship between Cd and GCs. These findings suggest that single or combined exposure to Cd and Pb interferes with the homeostasis of serum CRL and CRN levels. Furthermore, we innovatively propose that Cd and Pb may have interactive effects on GCs levels, and Pb can antagonize the negative relationship between Cd and GCs, which may provide clues for further studies on endocrine and metabolic disorders related to these heavy metals.
Collapse
Affiliation(s)
- Honglong Zhang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jun Yan
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Guole Nie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Danna Xie
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Haiping Wang
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China
| | - Xun Li
- The First School of Clinical Medical, Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Department of General Surgery, The First Hospital of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China; Key Laboratory of Biotherapy and Regenerative Medicine of Gansu Province, Lanzhou, 730000, Gansu, People's Republic of China; Hepatopancreatobiliary Surgery Institute of Gansu Province, Medical College Cancer Center of Lanzhou University, Lanzhou, 730000, Gansu, People's Republic of China.
| |
Collapse
|
5
|
McRae N, Gennings C, Rivera Rivera N, Tamayo-Ortiz M, Pantic I, Amarasiriwardena C, Schnaas L, Wright R, Tellez-Rojo MM, Wright RO, Rosa MJ. Association between prenatal metal exposure and adverse respiratory symptoms in childhood. ENVIRONMENTAL RESEARCH 2022; 205:112448. [PMID: 34848207 PMCID: PMC8768059 DOI: 10.1016/j.envres.2021.112448] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/15/2021] [Accepted: 11/24/2021] [Indexed: 06/13/2023]
Abstract
INTRODUCTION Manganese and lead have been cross-sectionally associated with adverse respiratory outcomes in childhood but there is limited data on their combined effects starting in utero. We examined associations between in utero exposure to metals and childhood respiratory symptoms. METHODS We assessed 633 mother-child dyads enrolled in the Programming Research in Obesity, Growth, Environment, and Social Stressors (PROGRESS) birth cohort in Mexico City. Blood manganese (BMn) and lead (BPb) were measured in mothers at 2nd and 3rd trimester. Ever wheeze, current wheeze and asthma diagnosis were ascertained at 4-5 and 6-7 year visits through the International Study of Asthma and Allergies in Childhood survey. Logistic mixed model regression was used to assess the association between prenatal metals and respiratory outcomes in children across the 4-5 and 6-7 year visits. Covariates included mother's age, education and asthma, environmental tobacco smoke, child's sex and assessment time. RESULTS In adjusted models, higher 2nd trimester BPb had a significant association with elevated odds of ever wheeze (Odds Ratio (OR): 1.97, 95% CI: 1.05, 3.67). BMn at 2nd trimester was associated with decreased (OR: 0.06, 95% CI: 0.01, 0.35) odds of current wheeze. We did not find any statistically significant associations with 3rd trimester blood metals. CONCLUSION Prenatal exposure to Pb was associated with higher odds of ever wheeze while Mn was negatively associated with odds of current wheeze. These findings underscore the need to consider prenatal metal exposure, including low exposure levels, in the study of adverse respiratory outcomes.
Collapse
Affiliation(s)
- Nia McRae
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nadya Rivera Rivera
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Marcela Tamayo-Ortiz
- Occupational Health Research Unit, Mexican Institute of Social Security (IMSS), Mexico City, Mexico
| | - Ivan Pantic
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Chitra Amarasiriwardena
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Lourdes Schnaas
- Department of Developmental Neurobiology, National Institute of Perinatology, Mexico City, Mexico
| | - Rosalind Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Kravis Children's Hospital, Department of Pediatrics, Division of Pediatric Pulmonology, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Martha M Tellez-Rojo
- Center for Nutrition and Health Research, National Institute of Public Health, Cuernavaca, Morelos, Mexico
| | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Institute for Exposomic Research, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Maria José Rosa
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
| |
Collapse
|
6
|
Lead (Pb) and neurodevelopment: A review on exposure and biomarkers of effect (BDNF, HDL) and susceptibility. Int J Hyg Environ Health 2021; 238:113855. [PMID: 34655857 DOI: 10.1016/j.ijheh.2021.113855] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/29/2021] [Accepted: 10/01/2021] [Indexed: 12/13/2022]
Abstract
Lead (Pb) is a ubiquitous environmental pollutant and a potent toxic compound. Humans are exposed to Pb through inhalation, ingestion, and skin contact via food, water, tobacco smoke, air, dust, and soil. Pb accumulates in bones, brain, liver and kidney. Fetal exposure occurs via transplacental transmission. The most critical health effects are developmental neurotoxicity in infants and cardiovascular effects and nephrotoxicity in adults. Pb exposure has been steadily decreasing over the past decades, but there are few recent exposure data from the general European population; moreover, no safe Pb limit has been set. Sensitive biomarkers of exposure, effect and susceptibility, that reliably and timely indicate Pb-associated toxicity are required to assess human exposure-health relationships in a situation of low to moderate exposure. Therefore, a systematic literature review based on PubMed entries published before July 2019 that addressed Pb exposure and biomarkers of effect and susceptibility, neurodevelopmental toxicity, epigenetic modifications, and transcriptomics was conducted. Finally included were 58 original papers on Pb exposure and 17 studies on biomarkers. The biomarkers that are linked to Pb exposure and neurodevelopment were grouped into effect biomarkers (serum brain-derived neurotrophic factor (BDNF) and serum/saliva cortisol), susceptibility markers (epigenetic markers and gene sequence variants) and other biomarkers (serum high-density lipoprotein (HDL), maternal iron (Fe) and calcium (Ca) status). Serum BDNF and plasma HDL are potential candidates to be further validated as effect markers for routine use in HBM studies of Pb, complemented by markers of Fe and Ca status to also address nutritional interactions related to neurodevelopmental disorders. For several markers, a causal relationship with Pb-induced neurodevelopmental toxicity is likely. Results on BDNF are discussed in relation to Adverse Outcome Pathway (AOP) 13 ("Chronic binding of antagonist to N-methyl-D-aspartate receptors (NMDARs) during brain development induces impairment of learning and memory abilities") of the AOP-Wiki. Further studies are needed to validate sensitive, reliable, and timely effect biomarkers, especially for low to moderate Pb exposure scenarios.
Collapse
|
7
|
Padula AM, Rivera-Núñez Z, Barrett ES. Combined Impacts of Prenatal Environmental Exposures and Psychosocial Stress on Offspring Health: Air Pollution and Metals. Curr Environ Health Rep 2021; 7:89-100. [PMID: 32347455 DOI: 10.1007/s40572-020-00273-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
PURPOSE OF REVIEW Pregnant women and their offspring are vulnerable to the adverse effects of environmental and psychosocial stressors, individually and in combination. Here, we review the literature on how air pollution and metal exposures may interact with structural and individual-level stressors (including poverty and stressful life events) to impact perinatal and child outcomes. RECENT FINDINGS The adverse associations between air pollution and metal exposures and adverse infant and child health outcomes are often exacerbated by co-exposure to psychosocial stressors. Although studies vary by geography, study population, pollutants, stressors, and outcomes considered, the effects of environmental exposures and psychosocial stressors on early health outcomes are sometimes stronger when considered in combination than individually. Environmental and psychosocial stressors are often examined separately, even though their co-occurrence is widespread. The evidence that combined associations are often stronger raises critical issues around environmental justice and protection of vulnerable populations.
Collapse
Affiliation(s)
- Amy M Padula
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of California San Francisco, San Francisco, CA, USA.
| | - Zorimar Rivera-Núñez
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| | - Emily S Barrett
- Department of Biostatistics and Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, Piscataway, NJ, USA
| |
Collapse
|
8
|
de la Rosa R, Vazquez S, Tachachartvanich P, Daniels SI, Sillé F, Smith MT. Cell-Based Bioassay to Screen Environmental Chemicals and Human Serum for Total Glucocorticogenic Activity. ENVIRONMENTAL TOXICOLOGY AND CHEMISTRY 2021; 40:177-186. [PMID: 33085113 PMCID: PMC7793542 DOI: 10.1002/etc.4903] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 06/24/2020] [Accepted: 10/12/2020] [Indexed: 05/27/2023]
Abstract
Glucocorticoids are steroid hormones that have systemic effects that are mediated by the glucocorticoid receptor. Environmental chemicals that disrupt glucocorticoid receptor signaling and/or glucocorticoid homeostasis could adversely affect the health of human and nonhuman vertebrates. A major challenge in identifying environmental chemicals that alter glucocorticoid receptor signaling and/or glucocorticoid homeostasis is a lack of adequate screening methods. We developed a cell-based bioassay to measure total glucocorticogenic activity (TGA) of environmental chemicals and human serum. Human MDA-MB-231 breast cancer cells were stably transfected with a luciferase reporter gene driven by 3 tandem glucocorticoid-response elements. Dose-response curves for 6 glucocorticoids and 4 non-glucocorticoid steroid hormones were generated to evaluate the specificity of the bioassay. Cells were also optimized to measure TGA of 176 structurally diverse environmental chemicals and human serum samples in a high-throughput format. Reporter activity was glucocorticoid-specific and induced 400-fold by 1 μM dexamethasone. Furthermore, 3 of the screened chemicals (3,4,4'-trichlorocarbanilide, isopropyl-N-phenylcarbamate, and benzothiazole derivative 2-[4-chlorophenyl]-benzothiazole) potentiated cortisol-induced glucocorticoid receptor activity. Serum TGA estimates from the bioassay were highly correlated with a cortisol enzyme-linked immunosorbent assay. The present study establishes an in vitro method to rapidly screen environmental chemicals and human serum for altered glucocorticogenic activity. Future studies can utilize this tool to quantify the joint effect of endogenous glucocorticoids and environmental chemicals. Environ Toxicol Chem 2021;40:177-186. © 2020 SETAC.
Collapse
Affiliation(s)
- Rosemarie de la Rosa
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Sergio Vazquez
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Phum Tachachartvanich
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Sarah I. Daniels
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| | - Fenna Sillé
- Department of Environmental Health and Engineering, Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD
| | - Martyn T. Smith
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA
| |
Collapse
|
9
|
Predictors of patterns of weight change 1 year after delivery in a cohort of Mexican women. Public Health Nutr 2020; 24:4113-4123. [PMID: 33000714 DOI: 10.1017/s1368980020002803] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
OBJECTIVE To evaluate the associations of pregestational BMI, gestational weight gain (GWG) and breast-feeding at 1 month postpartum with four patterns of weight change during the first year after delivery: postpartum weight retention (PPWR), postpartum weight gain (PPWG), postpartum weight retention + gain (PPWR + WG) and return to pregestational weight. DESIGN In this secondary analysis of a prospective study, we categorised postpartum weight change into four patterns using pregestational weight and weights at 1, 6 and 12 months postpartum. We evaluated their associations with pregestational BMI, GWG and breast-feeding using multinomial logistic regression. Results are presented as relative risk ratios (RRR) and 95 % CI. SETTING Mexico City. PARTICIPANTS Women participating in the Programming Research in Obesity, Growth, Environment and Social Stressors pregnancy cohort. RESULTS Five hundred women were included (53 % of the cohort). Most women returned to their pregestational weight by 1 year postpartum (57 %); 8 % experienced PPWR, 14 % PPWG and 21 % PPWR + WG. Compared with normal weight, pregestational overweight (RRR 2·5, 95 % CI 1·3, 4·8) and obesity (RRR 2·2, 95 % CI 1·0, 4·7) were associated with a higher risk of PPWG. Exclusive breast-feeding, compared with no breast-feeding, was associated with a lower risk of PPWR (RRR 0·3, 95 % CI 0·1, 0·9). Excessive GWG, compared with adequate, was associated with a higher risk of PPWR (RRR 3·3, 95 % CI 1·6, 6·9) and PPWR + WG (RRR 2·4, 95 % CI 1·4, 4·2). CONCLUSIONS Targeting women with pregestational overweight or obesity and excessive GWG, as well as promoting breast-feeding, may impact the pattern of weight change after delivery and long-term women's health.
Collapse
|
10
|
Flannery BM, Dolan LC, Hoffman-Pennesi D, Gavelek A, Jones OE, Kanwal R, Wolpert B, Gensheimer K, Dennis S, Fitzpatrick S. U.S. Food and Drug Administration's interim reference levels for dietary lead exposure in children and women of childbearing age. Regul Toxicol Pharmacol 2020; 110:104516. [DOI: 10.1016/j.yrtph.2019.104516] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Revised: 10/31/2019] [Accepted: 11/03/2019] [Indexed: 12/16/2022]
|
11
|
Patterns of Weight Change One Year after Delivery Are Associated with Cardiometabolic Risk Factors at Six Years Postpartum in Mexican Women. Nutrients 2020; 12:nu12010170. [PMID: 31936138 PMCID: PMC7019329 DOI: 10.3390/nu12010170] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 12/20/2019] [Accepted: 01/03/2020] [Indexed: 12/18/2022] Open
Abstract
Pregnancy is a contributor to the obesity epidemic in women, probably through postpartum weight retention (PPWR), weight gain (PPWG), or a combination of both (PPWR + WG). The contribution of these patterns of postpartum weight change to long-term maternal health remains understudied. In a secondary analysis of 361 women from the prospective cohort PROGRESS, we evaluated the associations between patterns of weight change one year after delivery and cardiometabolic risk factors at six years postpartum. Using principal component analysis, we grouped cardiometabolic risk factors into: (1) body mass index (BMI), waist circumference (WC), homeostatic model assessment of insulin resistance (HOMA-IR), high-density lipoprotein cholesterol (HDL-c), triglycerides (TG), and glucose; (2) systolic (SBP) and diastolic blood pressure (DBP); and (3) low-density lipoprotein cholesterol and total cholesterol. Using path analysis, we studied direct (patterns of weight change-outcomes) and indirect associations through BMI at six years postpartum. Around 60% of women returned to their pregestational weight (reference) by one year postpartum, 6.6% experienced PPWR, 13.9% PPWG, and 19.9% PPWR + WG. Women with PPWR + WG, vs. the reference, had higher BMI and WC at six years (2.30 kg/m2, 95% CI [1.67, 2.93]; 3.38 cm [1.14, 5.62]). This was also observed in women with PPWR (1.80 kg/m2 [0.80, 2.79]; 3.15 cm [−0.35, 6.65]) and PPWG (1.22 kg/m2 [0.53, 1.92]; 3.32 cm [0.85, 5.78]). PPWR + WG had a direct association with HOMA-IR (0.21 units [0.04, 0.39]). The three patterns of weight change, vs. the reference, had significant indirect associations with HOMA-IR, glucose, TG, HDL-c, SBP, and DBP through BMI at six years. In conclusion, women with PPWR + WG are at high-risk for obesity and insulin resistance. Interventions targeting women during pregnancy and the first year postpartum may have implications for their long-term risk of obesity and cardiovascular disease.
Collapse
|
12
|
Valdés Salgado MA, Schisterman E, Pino P, Bangdiwala S, Muñoz MP, Iglesias V. Is prenatal arsenic exposure associated with salivary cortisol in infants in Arica, Chile? An exploratory cohort study. ANNALS OF AGRICULTURAL AND ENVIRONMENTAL MEDICINE : AAEM 2019; 26:266-272. [PMID: 31232058 PMCID: PMC6592632 DOI: 10.26444/aaem/104586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
INTRODUCTION In animal models, gestational exposure to inorganic arsenic has been associated with higher corticosterone concentration and consequent impairment of stress control in offspring. An equivalent association relating cortisol, a glucocorticoid hormone, in humans has not been previously studied. OBJECTIVE The aim of the study was to explore the association between prenatal inorganic arsenic exposure and salivary cortisol in infants from Arica, Chile. MATERIAL AND METHODS A cohort study of 168 mother-child dyads was recruited. In the 2nd trimester of pregnancy, urinary inorganic arsenic was assessed; 18-24 months after delivery, salivary cortisol was measured in the children. Maternal cortisol, maternal depression, stress, and socio-economic status were also evaluated. RESULTS The adjusted association was estimated with multiple linear regression after evaluating confounding through a directed acyclic graph. Median urinary inorganic arsenic in pregnant women was 14.1 µg/L (IQR: 10.4-21.7) while salivary cortisol in the children was 0.17 µg/L (IQR: 0.11-0.38). Among children from the highest income families (> 614 USD/month), arsenic exposure was associated with salivary cortisol. Children in the third quartile of arsenic exposure had -0.769 units of the logarithm of salivary cortiso, compared with those in the first quartile (p = 0.045). CONCLUSIONS In this sample, prenatal exposure to arsenic was associated with salivary cortisol (third quartile of inorganic arsenic), only in infants belonging the highest income strata (> 614 USD). More studies are needed to confirm these preliminary results.
Collapse
Affiliation(s)
| | - Enrique Schisterman
- Epidemiology Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, Rockvill (MD), United States.
| | - Paulina Pino
- School of Public Health, Faculty of Medicine, University of Chile, Santiego, Chile.
| | - Shrikant Bangdiwala
- Population Health Research Institute. McMaster University, Hamilton, Ontario, Canada.
| | - María Pía Muñoz
- School of Public Health, Faculty of Medicine, University of Chile, Santiego, Chile.
| | - Verónica Iglesias
- School of Public Health, Faculty of Medicine, University of Chile, Santiego, Chile.
| |
Collapse
|
13
|
Rosa-Parra JA, Tamayo-Ortiz M, Lamadrid-Figueroa H, Cantoral-Preciado A, Montoya A, Wright RJ, Baccarelli AA, Just AC, Svensson K, Wright RO, Téllez-Rojo MM. Diurnal Cortisol Concentrations and Growth Indexes of 12- to 48-Month-Old Children From Mexico City. J Clin Endocrinol Metab 2018; 103:3386-3393. [PMID: 30020462 PMCID: PMC6126882 DOI: 10.1210/jc.2018-00550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2018] [Accepted: 07/12/2018] [Indexed: 11/19/2022]
Abstract
Context Early life cortisol plays an important role in bone, muscle, and fat mobilization processes, which could influence body composition, affecting anthropometric indicators such as weight and height. Objective To explore the association between diurnal cortisol levels and growth indexes in children from 12 to 48 months of age. Design This study includes data from 404 children from the Programming Research in Obesity, Growth, Environment and Social Stressors Mexican birth cohort. Cortisol was measured in eight saliva samples collected at four time points during the day (from wakeup to bedtime), over 2 days, when the child was either 12, 18, or 24 months old. Total daytime cortisol levels were calculated by averaging the area under the curve (AUC) for the 2 days. Height and weight were measured from 12 to 48 months of age. Growth indexes were constructed according to z scores following World Health Organization standards: weight-for-age z score (Z-WFA), height/length-for-age z score, weight-for-height/length z score (Z-WFH), and body mass index-for-age z score (Z-BMIFA). Mixed models were used to analyze the association between cortisol AUC quartiles and growth indexes. Results Cortisol showed an inverted U-shaped association with the four growth indexes. Compared with the first quartile, all quartiles had a positive association with indexes that include weight, with the second quartile having the strongest association, resulting in an average change of β (95% CI) 0.38 (0.13-0.64) for Z-WFA, 0.36 (0.10-0.62) for Z-WFH, and 0.43 (0.17-0.69) for Z-BMIFA. Conclusions Results suggest that early life daytime cortisol levels, as a reflection of hypothalamic-pituitary-adrenal axis development, might influence growth in early infancy.
Collapse
Affiliation(s)
| | - Marcela Tamayo-Ortiz
- National Institute of Public Health, Cuernavaca, Morelos, Mexico
- National Council of Science and Technology, Mexico City, Mexico D.F., Mexico
| | | | - Alejandra Cantoral-Preciado
- National Institute of Public Health, Cuernavaca, Morelos, Mexico
- National Council of Science and Technology, Mexico City, Mexico D.F., Mexico
| | | | | | | | - Allan C Just
- Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | | |
Collapse
|
14
|
de Water E, Proal E, Wang V, Medina SM, Schnaas L, Téllez-Rojo MM, Wright RO, Tang CY, Horton MK. Prenatal manganese exposure and intrinsic functional connectivity of emotional brain areas in children. Neurotoxicology 2017; 64:85-93. [PMID: 28610744 DOI: 10.1016/j.neuro.2017.06.006] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 05/30/2017] [Accepted: 06/01/2017] [Indexed: 10/19/2022]
Abstract
Manganese (Mn) is an essential trace metal that is neurotoxic at high levels of exposure. Disruption of brain maturation processes during the prenatal period may have lasting consequences. During this critical period, the developing human brain is uniquely vulnerable to exposure to environmental toxicants such as Mn, and prenatal Mn exposure has been associated with changes in brain areas involved in emotion processing and regulation. The goal of the present pilot study was to examine whether prenatal Mn exposure is associated with changes in the intrinsic functional connectivity (iFC) of the brain in childhood, focusing on changes in emotional brain areas. We selected 15 subjects (age 6-7 years) from an ongoing longitudinal birth cohort study to participate in a resting state functional magnetic resonance imaging (fMRI) study. Prenatal Mn exposure was determined from maternal blood collected during the 2nd and 3rd trimesters of pregnancy. We used seed-based correlation analyses and independent component analyses to examine whether prenatal Mn exposure was associated with the iFC of the brain in children. We found that the right globus pallidus showed reduced iFC with the dorsal anterior cingulate cortex and lateral prefrontal cortex in children who were exposed to higher prenatal Mn levels, after controlling for sociodemographic confounders (SES, maternal education, child sex, home environment support) and environmental confounders (prenatal lead exposure and air pollution). These findings suggest that prenatal Mn exposure is associated with reduced iFC of brain areas involved in emotion processing and regulation in children. Future studies should investigate whether this reduced iFC mediates the association between prenatal Mn exposure and emotional dysfunction in childhood.
Collapse
Affiliation(s)
- Erik de Water
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States.
| | - Erika Proal
- National Institute of Perinatology (INPer), Mexico City, Mexico
| | - Victoria Wang
- Departments of Radiology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | | | - Lourdes Schnaas
- National Institute of Perinatology (INPer), Mexico City, Mexico
| | | | - Robert O Wright
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Cheuk Y Tang
- Departments of Radiology and Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| | - Megan K Horton
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, United States
| |
Collapse
|
15
|
Souza-Talarico JN, Suchecki D, Juster RP, Plusquellec P, Barbosa Junior F, Bunscheit V, Marcourakis T, de Matos TM, Lupien SJ. Lead exposure is related to hypercortisolemic profiles and allostatic load in Brazilian older adults. ENVIRONMENTAL RESEARCH 2017; 154:261-268. [PMID: 28110240 DOI: 10.1016/j.envres.2017.01.012] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 01/10/2017] [Accepted: 01/10/2017] [Indexed: 06/06/2023]
Abstract
Lead levels (Pb) have been linked to both hyper- and hypo-reactivity of hypothalamic-pituitary-adrenal axis (HPA) axis to acute stress in animals and humans. Similarly, allostatic load (AL), the 'wear and tear' of chronic stress, is associated with inadequate HPA axis activity. We examined whether Pb levels would be associated with altered diurnal cortisol profile, as a primary mediator of AL, during aging. Pb levels were measured from blood samples (BPb) of 126 Brazilian individuals (105 women), between 50 and 82 years old. Six neuroendocrine, metabolic, and anthropometric biomarkers were analyzed and values were transformed into an AL index using clinical reference cut-offs. Salivary samples were collected at home over 2 days at awakening, 30-min after waking, afternoon, and evening periods to determine cortisol levels. A multiple linear regression model showed a positive association between BPb as the independent continuous variable and cortisol awakening response (R2=0.128; B=0.791; p=0.005) and overall cortisol concentration (R2=0.266; B=0.889; p<0.001) as the outcomes. Repeated measures ANOVA showed that individuals with high BPb levels showed higher cortisol at 30min after awakening (p=0.003), and in the afternoon (p=0.002) than those with low BPb values. Regarding AL, regression model showed that BPb was positively associated with AL index (R2=0.100; B=0.204; p=0.032). Correlation analyzes with individual biomarkers showed that BPb was positively correlated with HDL cholesterol (p=0.02) and negatively correlated with DHEA-S (p=0.049). These findings suggest that Pb exposure, even at levels below the reference blood lead level for adults recommended by the National Institute for Occupational Safety and Health and by the Center for Disease Control and Prevention, may contribute to AL and dysregulated cortisol functioning in older adults. Considering these findings were based on cross-sectional data future research is needed to confirm our exploratory results.
Collapse
Affiliation(s)
- Juliana N Souza-Talarico
- Department of Medical-Surgical Nursing, School of Nursing, Universidade de São Paulo, São Paulo 05403 000, Brazil.
| | - Deborah Suchecki
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Robert-Paul Juster
- Department of Psychiatry, Columbia University Medical Center, New York, NY 10032, United States
| | - Pierrich Plusquellec
- Centre for Studies on Human Stress, Mental Health University Institute, Department of Psychiatry, University of Montreal, QC, Canada H1N 3V2; School of Psychoeducation, Université de Montréal, Montreal, QC, Canada J1K 2R1
| | - Fernando Barbosa Junior
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences of Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto 14040903, Brazil
| | - Vinícius Bunscheit
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo 04023-062, Brazil
| | - Tania Marcourakis
- Department of Clinical Chemistry and Toxicology, School of Pharmaceutical Sciences, Universidade de São Paulo, São Paulo 05508-000, Brazil
| | - Tatiane Martins de Matos
- Department of Medical-Surgical Nursing, School of Nursing, Universidade de São Paulo, São Paulo 05403 000, Brazil
| | - Sonia J Lupien
- Centre for Studies on Human Stress, Mental Health University Institute, Department of Psychiatry, University of Montreal, QC, Canada H1N 3V2
| |
Collapse
|