1
|
Almeida-Toledano L, Navarro-Tapia E, Sebastiani G, Ferrero-Martínez S, Ferrer-Aguilar P, García-Algar Ó, Andreu-Fernández V, Gómez-Roig MD. Effect of prenatal phthalate exposure on fetal development and maternal/neonatal health consequences: A systematic review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 950:175080. [PMID: 39079634 DOI: 10.1016/j.scitotenv.2024.175080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/24/2024] [Accepted: 07/25/2024] [Indexed: 08/10/2024]
Abstract
The ubiquitous presence of phthalate compounds in cosmetics, personal care products and plastics commonly used in toys, food packaging or household products, results in human exposure with adverse effects on reproductive health and fetal development. Following the PRISMA methodology, this systematic review analyzes the effect of prenatal phthalate exposure on major pregnancy complications, such as gestational diabetes, pregnancy-induced hypertension, fetal growth restriction and preterm birth, and its role in fetal neurodevelopment. This review includes >100 articles published in the last 10 years, showing an association between maternal exposure to phthalates and the risk of developing pregnancy complications. Phthalates are negatively associated with motor skills and memory, and also increase the risk of delayed language acquisition, autism spectrum disorder traits, and behavioral deficits, such as attention deficit hyperactivity disorder in children prenatally exposed to phthalates. Di (2-ethylhexyl) phthalate and its metabolites (mono(2-ethylhexyl) phthalate, mono(3-carboxypropyl) phthalate, mono(2-ethyl-5-hydroxyhexyl) phthalate, mono(2-ethyl-5-oxohexyl) phthalate) are the main compounds associated with the above-mentioned pregnancy complications and fetal neurodevelopmental disorders. In addition, this review discusses the molecular mechanisms responsible for various pregnancy complications and neurodevelopmental disorders, and the critical window of exposure, in order to clarify these aspects. Globally, the most common molecular mechanisms involved in the effects of phthalates are endocrine disruption, oxidative stress induction, intrauterine inflammation, and DNA methylation disorders. In general, the critical window of exposure varies depending on the pathophysiology of the complication being studied, although the first trimester is considered an important period because some of the most vulnerable processes (embryogenesis and placentation) begin early in pregnancy. Future research should aim to understand the specific mechanism of the disruptive effect of each component and to establish the toxic dose of phthalates, as well as to elucidate the most critical period of pregnancy for exposure and the long-term consequences for human health.
Collapse
Affiliation(s)
- Laura Almeida-Toledano
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Elisabet Navarro-Tapia
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Faculty of Health Sciences, Valencian International University (VIU), 46002, Valencia, Spain.
| | - Giorgia Sebastiani
- Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Sílvia Ferrero-Martínez
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Patricia Ferrer-Aguilar
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| | - Óscar García-Algar
- BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain; Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Department of Neonatology, Hospital Clínic-Maternitat, ICGON, BCNatal, 08028 Barcelona, Spain.
| | - Vicente Andreu-Fernández
- Grup de Recerca Infancia i Entorn (GRIE), Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), 08036 Barcelona, Spain; Biosanitary Research Institute, Valencian International University (VIU), 46002, Valencia, Spain.
| | - María Dolores Gómez-Roig
- Institut de Recerca Sant Joan de Déu, 08950 Esplugues de Llobregat, Spain; BCNatal, Barcelona Center for Maternal-Fetal and Neonatal Medicine, Hospital Sant Joan de Déu and Hospital Clínic, Universitat de Barcelona, 08950 Barcelona, Spain.
| |
Collapse
|
2
|
Mo HY, Shan CH, Chen LW, Chen X, Han C, Wu D, Tao FB, Gao H. Antioxidant vitamins' modification of the adverse health effects induced by phthalate exposure: A scoping review of epidemiological and experimental studies. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 286:117190. [PMID: 39426110 DOI: 10.1016/j.ecoenv.2024.117190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 10/07/2024] [Accepted: 10/11/2024] [Indexed: 10/21/2024]
Abstract
The exposure to and health hazards of phthalates have received abundant attention. However, reducing phthalate exposure and further decreasing the associated health risks are difficult. Nonetheless, it is important to actively seek relevant measures. Recently, antioxidant vitamins have been frequently mentioned to improve phthalate-related issues. This scoping review summarizes the existing epidemiological and experimental studies on the interaction of phthalates with antioxidant vitamins. Through a systematic search, sparse epidemiological studies explored the effects of interaction between phthalates and vitamins on reproduction, the endocrine, respiratory, and nervous system and human aging. Four prospective studies were conducted in China, the United States, Canada and Netherlands. Only one study from Netherlands focused on the female reproductive system.The other three studies focused on neurological damage to fetuses caused by phthalate exposure, and its mitigation by vitamin supplementation during pregnancy. Four cross-sectional studies were conducted based on the United States National Health and Nutrition Examination Survey database. These studies involved hazards in different systems and interactions with different vitamins. Overall, epidemiological evidence suggests that antioxidant vitamins such as vitamin A, B, D, and folic acid probably may alter the health hazards induced by phthalate exposure. Current animal studies often focus on three phthalates, DBP, DEHP and DIDP,2 and most commonly, the first two phthalates. These chemicals cause reproductive, urinary, digestive and neurodevelopmental damage; the antioxidant vitamin C, E and B could mitigate the harm caused by phthalates. Possible mechanisms involve reducing oxidative stress, removing methylation,etc. Determining whether these mechanisms are similar to those in humans requires a rigorous experimental study.
Collapse
Affiliation(s)
- Hua-Yan Mo
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chun-Han Shan
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Li-Wen Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Xin Chen
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Chen Han
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - De Wu
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China
| | - Fang-Biao Tao
- Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| | - Hui Gao
- Department of Pediatrics, the First Affiliated Hospital of Anhui Medical University, No.218 Jixi Road, Hefei, Anhui 230022, China; Key Laboratory of Population Health Across Life Cycle (Anhui Medical University), Ministry of Education of the People's Republic of China, No. 81 Meishan Road, Hefei, Anhui 230032, China.
| |
Collapse
|
3
|
Choi JW, Oh J, Bennett DH, Kannan K, Tancredi DJ, Miller M, Schmidt RJ, Shin HM. Gestational exposure to organophosphate esters and autism spectrum disorder and other non-typical development in a cohort with elevated familial likelihood. ENVIRONMENTAL RESEARCH 2024; 263:120141. [PMID: 39395555 DOI: 10.1016/j.envres.2024.120141] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/14/2024]
Abstract
BACKGROUND Gestational exposure to organophosphate esters (OPEs) is known to affect offspring neurodevelopment in animal studies. However, epidemiological evidence is inconsistent. METHODS Participants were 277 mother-child pairs from MARBLES (Markers of Autism Risk in Babies - Learning Early Signs), a cohort with elevated familial likelihood of autism spectrum disorder (ASD). Nine OPE biomarker concentrations were quantified in maternal urine collected during the 2nd or 3rd trimesters of pregnancy. At age 3 years, children underwent clinical assessment for ASD and were classified into ASD, other non-typical development (non-TD), or typical development (TD). Multinomial logistic regression was used to estimate associations between each OPE biomarker and relative risk ratios for ASD and non-TD compared to TD. We examined effect modification by child sex and socioeconomic status. We also conducted a secondary analysis by using a continuous measure of ASD symptom severity as an outcome. Quantile-based g-computation was performed to examine the associations for an OPE mixture. RESULTS Overall, no significant association was observed between the concentrations of each OPE biomarker or their mixture and relative risk for either ASD or non-TD. Effect modifications by child sex and maternal education were not observed. When the analysis was stratified by homeownership, among non-homeowners, ASD likelihood was increased with increased levels of bis(1-chloro-2-propyl) phosphate, bis(butoxyethyl) phosphate, and sum of di-n-butyl phosphate and di-iso-butyl phosphate (DBUP/DIBP) (pint < 0.10). Higher DBUP/DIBP were associated with increased ASD symptom severity scores. CONCLUSION There was no clear evidence of gestational OPE exposure in association with relative risk for ASD; however, potential effect modification by homeownership was observed. Although our cohort includes children with elevated familial likelihood of ASD, this is the first study investigating the association between gestational OPE exposure and clinically-diagnosed ASD. Further research is needed to confirm our findings in the general population.
Collapse
Affiliation(s)
- Jeong Weon Choi
- Department of Environmental Science, Baylor University, Waco, TX, USA.
| | - Jiwon Oh
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Daniel J Tancredi
- Department of Pediatrics, University of California, Davis, Sacramento, CA, USA
| | - Meghan Miller
- Department of Psychiatry & Behavioral Sciences, University of California, Davis, Sacramento, CA, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, University of California Davis, Davis, CA, USA; MIND Institute, University of California Davis, Sacramento, CA, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX, USA
| |
Collapse
|
4
|
Dickerson AS, Schmidt RJ. Invited Perspective: Protect and Serve-The Potential Role of Folate in Lead Risk Reduction. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:101302. [PMID: 39412271 PMCID: PMC11481931 DOI: 10.1289/ehp16216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 09/26/2024] [Indexed: 10/19/2024]
Affiliation(s)
- Aisha S. Dickerson
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California Davis School of Medicine, Davis, California, USA
- MIND Institute, University of California Davis School of Medicine, Sacramento, California, USA
| |
Collapse
|
5
|
Alampi JD, Lanphear BP, MacFarlane AJ, Oulhote Y, Braun JM, Muckle G, Arbuckle TE, Ashley-Martin J, Hu JM, Chen A, McCandless LC. Combined Exposure to Folate and Lead during Pregnancy and Autistic-Like Behaviors among Canadian Children from the MIREC Pregnancy and Birth Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2024; 132:107003. [PMID: 39412272 PMCID: PMC11481933 DOI: 10.1289/ehp14479] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 08/29/2024] [Accepted: 09/20/2024] [Indexed: 10/19/2024]
Abstract
BACKGROUND Folic acid (FA) supplementation may attenuate the associations between gestational exposure to certain chemicals and autism or autistic-like behaviors, but to our knowledge, this has not been assessed for lead. OBJECTIVES We examined whether the relationship between gestational blood-lead levels (BLLs) and autistic-like behaviors was modified by gestational plasma total folate concentrations, FA supplementation, and maternal methylenetetrahydrofolate reductase (MTHFR) 677C>T genotype. METHODS We used data from the Maternal-Infant Research on Environmental Chemicals study (2008-2011), a Canadian pregnancy and birth cohort study. Childhood autistic-like behaviors were documented in 601 children 3-4 y of age with the Social Responsiveness Scale-2 (SRS-2), where higher scores denote more autistic-like behaviors. We measured BLLs and plasma total folate concentrations during the first and third trimesters of pregnancy. We also estimated gestational FA supplementation via surveys and genotyped the maternal MTHFR 677C>T single nucleotide polymorphism (SNP). We estimated the confounder-adjusted associations between log 2 -transformed BLLs and SRS-2 scores by two indicators of folate exposure and maternal MTHFR 677C>T genotype using linear regression. RESULTS Third-trimester BLLs were associated with increased SRS-2 scores [β a d j = 3.3 ; 95% confidence interval (CI): 1.1, 5.5] among participants with low (< 10 th percentile), third-trimester, plasma total folate concentrations, but BLL-SRS-2 associations were null (β a d j = - 0.3 ; 95% CI: - 1.2 , 0.5) among those in the middle category (≥ 10 th and < 80 th percentiles) (p-interaction < 0.001 ). FA supplementation also attenuated these associations. Both folate indicators modified first-trimester BLL-SRS-2 associations, but to a lesser extent. Third-trimester BLL-SRS-2 associations were slightly stronger among participants who were homozygous for the T (minor) allele of the MTHFR 677C>T SNP (β a d j = 0.9 ; 95% CI: - 1.2 , 3.1) than those without the T allele (β a d j = - 0.3 ; 95% CI: - 1.3 , 0.7), but the difference was not statistically significant (p -interaction = 0.28 ). DISCUSSION Folate may modify the associations between gestational lead exposure and childhood autistic-like behaviors, suggesting that it mitigates the neurotoxic effects of prenatal lead exposure. https://doi.org/10.1289/EHP14479.
Collapse
Affiliation(s)
- Joshua D. Alampi
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Amanda J. MacFarlane
- Texas A&M Agriculture, Food, and Nutrition Evidence Center, Fort Worth, Texas, USA
| | - Youssef Oulhote
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Gina Muckle
- Centre Hospitalier Universitaire de Québec Research Centre and School of Psychology, Laval University, Québec City, Québec, Canada
| | - Tye E. Arbuckle
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Jillian Ashley-Martin
- Environmental Health Science and Research Bureau, Healthy Environments and Consumer Safety Branch, Health Canada, Ottawa, Ontario, Canada
| | - Janice M.Y. Hu
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | | |
Collapse
|
6
|
Hajjar R, Hatoum S, Mattar S, Moawad G, Ayoubi JM, Feki A, Ghulmiyyah L. Endocrine Disruptors in Pregnancy: Effects on Mothers and Fetuses-A Review. J Clin Med 2024; 13:5549. [PMID: 39337036 PMCID: PMC11432155 DOI: 10.3390/jcm13185549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2024] [Revised: 09/10/2024] [Accepted: 09/17/2024] [Indexed: 09/30/2024] Open
Abstract
Background/Objectives: Endocrine disruptors are ubiquitous agents in the environment and are present in everyday consumer products. These agents can interfere with the endocrine system, and subsequently the reproductive system, especially in pregnancy. An increasing number of studies have been conducted to discover and describe the health effects of these agents on humans, including pregnant women, their fetuses, and the placenta. This review discusses prenatal exposure to various endocrine disruptors, focusing on bisphenols, phthalates, organophosphates, and perfluoroalkyl substances, and their effects on pregnancy and fetal development. Methods: We reviewed the literature via the PubMed and EBSCO databases and included the most relevant studies. Results: Our findings revealed that several negative health outcomes were linked to endocrine disruptors. However, despite the seriousness of this topic and the abundance of research on these agents, it remains challenging to draw strong conclusions about their effects from the available studies. This does not allow for strong, universal guidelines and might result in poor patient counseling and heterogeneous approaches to regulating endocrine disruptors. Conclusions: The seriousness of this matter calls for urgent efforts, and more studies are needed in this realm, to protect pregnant patients, and ultimately, in the long term, society.
Collapse
Affiliation(s)
- Rima Hajjar
- Department of Obstetrics, Gynecology and Reproductive Sciences, University of Miami Miller School of Medicine, Miami, FL 33136, USA
| | - Sana Hatoum
- Foundation for Research and Education Excellence, Vestavia, AL 35243, USA
| | - Serge Mattar
- Fertility & IVF Clinic, Dubai P.O. Box 72960, United Arab Emirates
| | - Gaby Moawad
- Department of Obstetrics and Gynecology, The George Washington University Hospital, Washington, DC 20037, USA
| | - Jean Marc Ayoubi
- Department of Obstetrics and Gynecology and Reproductive Medicine, Hôpital Foch-Faculté de Médecine, Suresnes, 92150 Paris, France
| | - Anis Feki
- Department of Obstetrics and Gynecology and Reproductive Medicine, HFR-Hopital Fribourgeois, Chemin des Pensionnats 2-6, 1708 Fribourg, Switzerland
| | - Labib Ghulmiyyah
- Women's Specialty Care of Florida, Pediatrix Medical Group, Fort Lauderdale, FL 33316, USA
| |
Collapse
|
7
|
Parenti M, Slupsky CM. Disrupted Prenatal Metabolism May Explain the Etiology of Suboptimal Neurodevelopment: A Focus on Phthalates and Micronutrients and their Relationship to Autism Spectrum Disorder. Adv Nutr 2024; 15:100279. [PMID: 39059765 PMCID: PMC11375317 DOI: 10.1016/j.advnut.2024.100279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/03/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Pregnancy is a time of high metabolic coordination, as maternal metabolism adapts to support the growing fetus. Many of these changes are coordinated by the placenta, a critical fetal endocrine organ and the site of maternal-fetal crosstalk. Dysregulation in maternal and placental metabolism during pregnancy has been linked to adverse outcomes, including altered neurodevelopment. Autism spectrum disorder (ASD) is a neurodevelopmental disorder linked to metabolic alterations in both children and their mothers. Prenatal environmental exposures have been linked to risk of ASD through dysregulated maternal, placental, and fetal metabolism. In this review, we focus on recent studies investigating the associations between prenatal metabolism in the maternal-placental-fetal unit and the impact of prenatal environmental exposures to phthalates and micronutrients on ASD risk. By identifying the mechanisms through which phthalates and other ubiquitous endocrine disrupting chemicals influence development, and how nutritional interventions can impact those mechanisms, we can identify promising ways to prevent suboptimal neurodevelopment.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA, United States
| | - Carolyn M Slupsky
- Department of Nutrition, University of California, Davis, CA, United States; Department of Food Science and Technology, University of California, Davis, CA, United States.
| |
Collapse
|
8
|
Jones K, Wessel LM, Schäfer KH, Tapia-Laliena MÁ. Use of Cosmetics in Pregnancy and Neurotoxicity: Can It Increase the Risk of Congenital Enteric Neuropathies? Biomolecules 2024; 14:984. [PMID: 39199372 PMCID: PMC11352589 DOI: 10.3390/biom14080984] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/01/2024] Open
Abstract
Pregnancy is a particularly vulnerable period for the growing fetus, when exposure to toxic agents, especially in the early phases, can decisively harm embryo development and compromise the future health of the newborn. The inclusion of various chemical substances in personal care products (PCPs) and cosmetic formulations can be associated with disruption and damage to the nervous system. Microplastics, benzophenones, parabens, phthalates and metals are among the most common chemical substances found in cosmetics that have been shown to induce neurotoxic mechanisms. Although cosmetic neurotoxin exposure is believed to be minimal, different exposure scenarios of cosmetics suggest that these neurotoxins remain a threat. Special attention should be paid to early exposure in the first weeks of gestation, when critical processes, like the migration and proliferation of the neural crest derived cells, start to form the ENS. Importantly, cosmetic neurotoxins can cross the placental barrier and affect the future embryo, but they are also secreted in breast milk, so babies remain exposed for longer periods, even after birth. In this review, we explore how neurotoxins contained in cosmetics and PCPs may have a role in the pathogenesis of various neurodevelopmental disorders and neurodegenerative diseases and, therefore, also in congenital enteric aganglionosis as well as in postnatal motility disorders. Understanding the mechanisms of these chemicals used in cosmetic formulations and their role in neurotoxicity is crucial to determining the safety of use for cosmetic products during pregnancy.
Collapse
Affiliation(s)
- Kendra Jones
- “Translational Medical Research” Master Program, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Lucas M. Wessel
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| | - Karl-Herbert Schäfer
- Working Group Enteric Nervous Systems (AGENS), University of Applied Sciences Kaiserslautern, Amerikastrasse 1, 66482 Kaiserslautern, Germany;
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty of Mannheim, University of Heidelberg, Theodor-Kutzer-Ufer 1-3, 68167 Mannheim, Germany
| |
Collapse
|
9
|
Sotelo-Orozco J, Calafat AM, Cook Botelho J, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Exposure to endocrine disrupting chemicals including phthalates, phenols, and parabens in infancy: Associations with neurodevelopmental outcomes in the MARBLES study. Int J Hyg Environ Health 2024; 261:114425. [PMID: 39047380 PMCID: PMC11484599 DOI: 10.1016/j.ijheh.2024.114425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/13/2024] [Accepted: 07/15/2024] [Indexed: 07/27/2024]
Abstract
BACKGROUND Endocrine disrupting chemicals (EDCs) are widely used compounds with the potential to affect child neurodevelopmental outcomes including autism spectrum disorders (ASD). We aimed to examine the urinary concentrations of biomarkers of EDCs, including phthalates, phenols, and parabens, and investigate whether exposure during early infancy was associated with increased risk of later ASD or other non-typical development (Non-TD) or adverse cognitive development. METHODS This analysis included infants from the Markers of Autism Risks in Babies-Learning Early Signs (MARBLES) study, a high-risk ASD cohort (n = 148; corresponding to 188 urine samples). Thirty-two EDC biomarkers were quantified in urine among infants 3 and/or 6 months of age. Trends in EDC biomarker concentrations were calculated using least square geometric means. At 36 months of age, children were clinically classified as having ASD (n = 36), nontypical development (Non-TD; n = 18), or typical development (TD; n = 81) through a clinical evaluation. Trinomial logistic regression analysis was used to test the associations between biomarkers with ASD, or Non-TD, as compared to children with TD. In single analyte analysis, generalized estimating equations were used to investigate the association between each EDC biomarkers and longitudinal changes in cognitive development using the Mullen Scales of Early Learning (MSEL) over the four assessment time points (6, 12, 24, and 36 months of age). Additionally, quantile g-computation was used to test for a mixture effect. RESULTS EDC biomarker concentrations generally decreased over the study period, except for mono-2-ethyl-5-carboxypentyl terephthalate. Overall, EDC biomarkers at 3 and/or 6 months of age were not associated with an increased risk of ASD or Non-TD, and a few showed significant inverse associations. However, when assessing longitudinal changes in MSEL scores over the four assessment time points, elevated monoethyl phthalate (MEP) was significantly associated with reduced scores in the composite score (β = -0.16, 95% CI: 0.31, -0.02) and subscales of fine motor skills (β = -0.09, 95%CI: 0.17, 0.00), and visual reception (β = -0.11, 95% CI: 0.23, 0.01). Additionally, the sum of metabolites of di (2-ethylhexyl) terephthalate (ƩDEHTP) was associated with poorer visual reception (β = -0.09, 95% CI: 0.16, -0.02), and decreased composite scores (β = -0.11, 95% CI: 0.21, -0.01). Mixtures analyses using quantile g-computation analysis did not show a significant association between mixtures of EDC biomarkers and MSEL subscales or composite scores. CONCLUSION These findings highlight the potential importance of infant exposures on cognitive development. Future research can help further investigate whether early infant exposures are associated with longer-term deficits and place special attention on EDCs with increasing temporal trends and whether they may adversely affect neurodevelopment.
Collapse
Affiliation(s)
- Jennie Sotelo-Orozco
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA.
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Julianne Cook Botelho
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, GA, 30341, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA; Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, School of Medicine, University of California Davis, Sacramento, CA, 95817, USA
| | - Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis, Davis, CA, 95616, USA
| |
Collapse
|
10
|
Bragg MG, Gorski-Steiner I, Song A, Chavarro JE, Hart JE, Tabb LP, Weisskopf MG, Volk H, Lyall K. Prenatal air pollution and children's autism traits score: Examination of joint associations with maternal intake of vitamin D, methyl donors, and polyunsaturated fatty acids using mixture methods. Environ Epidemiol 2024; 8:e316. [PMID: 38919264 PMCID: PMC11196080 DOI: 10.1097/ee9.0000000000000316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2024] [Accepted: 05/21/2024] [Indexed: 06/27/2024] Open
Abstract
Background Maternal nutrient intake may moderate associations between environmental exposures and children's neurodevelopmental outcomes, but few studies have assessed joint effects. We aimed to evaluate whether prenatal nutrient intake influences the association between air pollutants and autism-related trait scores. Methods We included 126 participants from the EARLI (Early Autism Risk Longitudinal Investigation, 2009-2012) cohort, which followed US pregnant mothers who previously had a child with autism. Bayesian kernel machine regression and traditional regression models were used to examine joint associations of prenatal nutrient intake (vitamins D, B12, and B6; folate, choline, and betaine; and total omega 3 and 6 polyunsaturated fatty acids, reported via food frequency questionnaire), air pollutant exposure (particulate matter <2.5 μm [PM2.5], nitrogen dioxide [NO2], and ozone [O3], estimated at the address level), and children's autism-related traits (measured by the Social Responsiveness Scale [SRS] at 36 months). Results Most participants had nutrient intakes and air pollutant exposures that met US standards. Bayesian kernel machine regression mixture models and traditional regression models provided little evidence of individual or joint associations of nutrients and air pollutants with SRS scores or of an association between the overall mixture and SRS scores. Conclusion In this cohort with a high familial likelihood of autism, we did not observe evidence of joint associations between air pollution exposures and nutrient intake with autism-related traits. Future work should examine the use of these methods in larger, more diverse samples, as our results may have been influenced by familial liability and/or relatively high nutrient intakes and low air pollutant exposures.
Collapse
Affiliation(s)
- Megan G. Bragg
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| | - Irena Gorski-Steiner
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Ashley Song
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Jorge E. Chavarro
- Department of Nutrition, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Jaime E. Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women’s Hospital and Harvard Medical School, Boston, Massachusetts
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Loni P. Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, Philadelphia, Pennsylvania
| | - Marc G. Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Heather Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, Maryland
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania
| |
Collapse
|
11
|
Toledano JM, Puche-Juarez M, Moreno-Fernandez J, Gonzalez-Palacios P, Rivas A, Ochoa JJ, Diaz-Castro J. Implications of Prenatal Exposure to Endocrine-Disrupting Chemicals in Offspring Development: A Narrative Review. Nutrients 2024; 16:1556. [PMID: 38892490 PMCID: PMC11173790 DOI: 10.3390/nu16111556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
During the last decades, endocrine-disrupting chemicals (EDCs) have attracted the attention of the scientific community, as a result of a deepened understanding of their effects on human health. These compounds, which can reach populations through the food chain and a number of daily life products, are known to modify the activity of the endocrine system. Regarding vulnerable groups like pregnant mothers, the potential damage they can cause increases their importance, since it is the health of two lives that is at risk. EDCs can affect the gestation process, altering fetal development, and eventually inducing the appearance of many disorders in their childhood and/or adulthood. Because of this, several of these substances have been studied to clarify the influence of their prenatal exposure on the cognitive and psychomotor development of the newborn, together with the appearance of non-communicable diseases and other disorders. The most novel research on the subject has been gathered in this narrative review, with the aim of clarifying the current knowledge on the subject. EDCs have shown, through different studies involving both animal and human investigation, a detrimental effect on the development of children exposed to the during pregnancy, sometimes with sex-specific outcomes. However, some other studies have failed to find these associations, which highlights the need for deeper and more rigorous research, that will provide an even more solid foundation for the establishment of policies against the extended use of these chemicals.
Collapse
Affiliation(s)
- Juan M. Toledano
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Maria Puche-Juarez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Nutrition and Food Sciences Ph.D. Program, University of Granada, 18071 Granada, Spain
| | - Jorge Moreno-Fernandez
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Patricia Gonzalez-Palacios
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Ana Rivas
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
- Department of Nutrition and Food Science, University of Granada, 18071 Granada, Spain
| | - Julio J. Ochoa
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| | - Javier Diaz-Castro
- Department of Physiology, Faculty of Pharmacy, Campus Universitario de Cartuja, University of Granada, 18071 Granada, Spain; (J.M.T.); (J.J.O.); (J.D.-C.)
- Institute of Nutrition and Food Technology “José Mataix Verdú”, University of Granada, 18071 Granada, Spain;
- Instituto de Investigación Biosanitaria (IBS), 18016 Granada, Spain;
| |
Collapse
|
12
|
Oskar S, Balalian AA, Stingone JA. Identifying critical windows of prenatal phenol, paraben, and pesticide exposure and child neurodevelopment: Findings from a prospective cohort study. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 920:170754. [PMID: 38369152 PMCID: PMC10960968 DOI: 10.1016/j.scitotenv.2024.170754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/19/2024] [Accepted: 02/04/2024] [Indexed: 02/20/2024]
Abstract
BACKGROUND This study aimed to investigate how exposure to a mixture of endocrine disrupting chemicals (EDCs) during two points in pregnancy affects early childhood neurodevelopment. METHODS We analyzed publicly-available data from a high-risk cohort of mothers and their children (2007-2014) that measured six EDCs including methyl-, ethyl- and propyl parabens (MEPB, ETPB, PRPB), Bisphenol-A (BPA), 3,5,6-trichloro-2-pyridinol (TCPy), 3-phenoxybenzoic acid (3-PBA) in prenatal urine samples during the second and third trimesters. Neurodevelopmental scores were assessed using Mullen Scales of Early Learning (MSEL) at age 3. We used mean field variational Bayes for lagged kernel machine regression (MFVB-LKMR) to investigate the association between trimester-specific co-exposure to the six EDCs and MSEL scores at age 3, stratified by sex. RESULTS The analysis included 130 children. For females, the relationship between BPA and 3PBA with MSEL score varied between the two trimesters. In the second trimester, effect estimates for BPA were null but inversely correlated with MSEL score in the third trimester. 3PBA had a negative relationship with MSEL in the second trimester and positive correlation in the third trimester. For males, effect estimates for all EDCs were in opposing directions across trimesters. MFVB-LKMR analysis identified significant two-way interaction between EDCs for MSEL scores in both trimesters. For example, in females, the MSEL scores associated with increased exposure to TCPy were 1.75 units (95%credible interval -0.04, -3.47) lower in the 2nd trimester and 4.61 (95%CI -3.39, -5.84) lower in the third trimester when PRPB was fixed at the 75th percentile compared to when PRPB was fixed at the 25th percentile. CONCLUSION Our study provides evidence that timing of EDC exposure within the prenatal period may impact neurodevelopmental outcomes in children. More of these varying effects were identified among females. Future research is needed to explore EDC mixtures and the timing of exposure during pregnancy to enhance our understanding of how these chemicals impact child health.
Collapse
Affiliation(s)
- Sabine Oskar
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA.
| | - Arin A Balalian
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| | - Jeanette A Stingone
- Department of Epidemiology, Columbia University Mailman School of Public Health, New York, NY, USA
| |
Collapse
|
13
|
Zhong C, Rando J, Patti MA, Braun JM, Chen A, Xu Y, Lanphear BP, Yolton K, Croen LA, Fallin MD, Hertz-Picciotto I, Newschaffer CJ, Lyall K. Gestational thyroid hormones and autism-related traits in the EARLI and HOME studies. Autism Res 2024; 17:716-727. [PMID: 38436527 DOI: 10.1002/aur.3115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Accepted: 02/20/2024] [Indexed: 03/05/2024]
Abstract
Thyroid hormones are essential for neurodevelopment. Few studies have considered associations with quantitatively measured autism spectrum disorder (ASD)-related traits, which may help elucidate associations for a broader population. Participants were drawn from two prospective pregnancy cohorts: the Early Autism Risk Longitudinal Investigation (EARLI), enrolling pregnant women who already had a child with ASD, and the Health Outcomes and Measures of the Environment (HOME) Study, following pregnant women from the greater Cincinnati, OH area. Gestational thyroid-stimulating hormone (TSH) and free thyroxine (FT4) were measured in mid-pregnancy 16 (±3) weeks gestation serum samples. ASD-related traits were measured using the Social Responsiveness Scale (SRS) at ages 3-8 years. The association was examined using quantile regression, adjusting for maternal and sociodemographic factors. 278 participants (132 from EARLI, 146 from HOME) were included. TSH distributions were similar across cohorts, while FT4 levels were higher in EARLI compared to HOME. In pooled analyses, particularly for those in the highest SRS quantile (95th percentile), higher FT4 levels were associated with increasing SRS scores (β = 5.21, 95% CI = 0.93, 9.48), and higher TSH levels were associated with decreasing SRS scores (β = -6.94, 95% CI = -11.04, -2.83). The association between TSH and SRS remained significant in HOME for the 95% percentile of SRS scores (β = -6.48, 95% CI = -12.16, -0.80), but not EARLI. Results for FT4 were attenuated when examined in the individual cohorts. Our results add to evidence that gestational thyroid hormones may be associated with ASD-related outcomes by suggesting that relationships may differ across the distribution of ASD-related traits and by familial likelihood of ASD.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Drexel University, Philadelphia, Pennsylvania, USA
| | - Juliette Rando
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Marisa A Patti
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| | - Joseph M Braun
- School of Public Health, Brown University, Providence, Rhode Island, USA
| | - Aimin Chen
- Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Yingying Xu
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Bruce P Lanphear
- Faculty of Health Sciences, Simon Fraser University, Burnaby, British Columbia, Canada
| | - Kimberly Yolton
- Department of Pediatrics, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Lisa A Croen
- Kaiser Permanente Northern California, Oakland, California, USA
| | - M Daniele Fallin
- Emory Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, UC Davis School of Medicine, Sacramento, California, USA
| | - Craig J Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
- College of Health and Human Development, Pennsylvania State University, University Park, Pennsylvania, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
14
|
Ko MY, Park H, Chon S, Lee B, Cha S, Hyun S, Ka M. Prenatal Di-methoxyethyl phthalate exposure impairs cortical neurogenesis and synaptic activity in the mice. Brain Pathol 2024; 34:e13221. [PMID: 37903655 PMCID: PMC10901619 DOI: 10.1111/bpa.13221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Accepted: 10/14/2023] [Indexed: 11/01/2023] Open
Abstract
Di-methoxyethyl phthalate (DMEP) is a well-known environmentally prevalent endocrine disruptor and may be associated with neurodevelopmental disorders including attention deficit/hyperactivity disorder and intellectual disability. However, the regulatory mechanisms leading to these neurodevelopmental disorders are still poorly understood. Here, we demonstrate that prenatal DMEP exposure causes abnormal brain morphology and function in the mice. DMEP (50 mg/kg) was chronically administered to pregnant mice orally once a day starting on embryonic day 0 (E0) to breast-feeding cessation for the fetus. We found that prenatal DMEP exposure significantly reduced the number of neurons in the parietal cortex by impairing neurogenesis and gliogenesis during the developing cortex. Moreover, we found that prenatal DMEP exposure impaired dendritic spine architectures and synaptic activity in the parietal cortex. Finally, prenatal DMEP exposure in mice induces hyperactivity and reduces anxiety behaviors. Altogether, our study demonstrates that prenatal DMEP exposure leads to abnormal behaviors via impairment of neurogenesis and synaptic activity.
Collapse
Affiliation(s)
- Moon Yi Ko
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| | - Heejin Park
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
- Collage of Veterinary of MedicineJeonbuk National UniversityJeonjuRepublic of Korea
| | - Sun‐Hwa Chon
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| | - Byoung‐Seok Lee
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| | - Sin‐Woo Cha
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| | - Sung‐Ae Hyun
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| | - Minhan Ka
- Department of Advanced Toxicology ResearchKorea Institute of ToxicologyDaejeonRepublic of Korea
| |
Collapse
|
15
|
Yu EX, Braun JM, Lyall K, Hertz-Picciotto I, Fallin MD, Croen LA, Chen A, Xu Y, Yolton K, Newschaffer CJ, Hamra GB. A Mixture of Urinary Phthalate Metabolite Concentrations During Pregnancy and Offspring Social Responsiveness Scale Scores. Epidemiology 2024; 35:84-93. [PMID: 37820223 PMCID: PMC10842958 DOI: 10.1097/ede.0000000000001682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/13/2023]
Abstract
BACKGROUND Phthalates are a group of chemicals with ubiquitous exposure worldwide. Exposures to phthalates during pregnancy may play a role in autism spectrum disorder (ASD) etiology by disrupting hormone levels or directly impacting fetal neurodevelopment. However, there is little research quantifying the aggregate effect of phthalates on child ASD-related behaviors. METHODS We used data from two prospective pregnancy and birth cohorts-the Health Outcomes and Measures of the Environment (HOME) and the Early Autism Risk Longitudinal Investigation (EARLI). HOME is a general population cohort while participants in EARLI were at higher familial risk for ASD. Using quantile g-computation and linear regression models, we assessed the joint and individual associations of a mixture of six phthalate metabolites during pregnancy with child ASD-related traits measured by Social Responsiveness Scale (SRS) scores at ages 3-8 years. RESULTS Our analyses included 271 participants from HOME and 166 participants from EARLI. There were imprecise associations between the phthalate mixture and SRS total raw scores in HOME (difference in SRS scores per decile increase in every phthalate = 1.3; 95% confidence interval [CI] = -0.2, 2.8) and EARLI (difference in SRS scores per decile increase in every phthalate = -0.9; 95% CI = -3.5, 1.7). CONCLUSIONS The cohort-specific effect sizes of the pthalates-SRS associations were small and CIs were imprecise. These results suggest that if there are associations between phthalate metabolites during pregnancy and child SRS scores, they may differ across populations with different familial liabilities. Further studies with larger sample sizes are warranted.
Collapse
Affiliation(s)
- Emma X. Yu
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University School of Public Health, Providence, RI, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, Philadelphia, PA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences and The MIND Institute, School of Medicine, University of California-Davis, Davis, CA, USA
| | | | - Lisa A. Croen
- Kaiser Permanente Division of Research, Oakland, CA, USA
| | - Aimin Chen
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yingying Xu
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Kimberly Yolton
- Cincinnati Children’s Hospital Medical Center, University of Cincinnati College of Medicine, Cincinnati, OH, USA
| | - Craig J. Newschaffer
- Department of Biobehavioral Health, Penn State University, University Park, PA, USA
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| |
Collapse
|
16
|
Mustieles V, Rolland M, Pin I, Thomsen C, Sakhi AK, Sabaredzovic A, Muckle G, Guichardet K, Slama R, Philippat C. Early-Life Exposure to a Mixture of Phenols and Phthalates in Relation to Child Social Behavior: Applying an Evidence-Based Prioritization to a Cohort with Improved Exposure Assessment. ENVIRONMENTAL HEALTH PERSPECTIVES 2023; 131:87006. [PMID: 37556305 PMCID: PMC10411634 DOI: 10.1289/ehp11798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 05/10/2023] [Accepted: 06/26/2023] [Indexed: 08/11/2023]
Abstract
BACKGROUND Previous studies aiming at relating exposure to phenols and phthalates with child social behavior characterized exposure using one or a few spot urine samples, resulting in substantial exposure misclassification. Moreover, early infancy exposure was rarely studied. OBJECTIVES We aimed to examine the associations of phthalates and phenols with child social behavior in a cohort with improved exposure assessment and to a priori identify the chemicals supported by a higher weight of evidence. METHODS Among 406 mother-child pairs from the French Assessment of Air Pollution exposure during Pregnancy and Effect on Health (SEPAGES) cohort, 25 phenols/phthalate metabolites were measured in within-subject pools of repeated urine samples collected at the second and third pregnancy trimesters (∼ 21 samples/trimester) and at 2 months and 1-year of age (∼ 7 samples/period). Social behavior was parent-reported at 3 years of age of the child using the Social Responsiveness Scale (SRS). A structured literature review of the animal and human evidence was performed to prioritize the measured phthalates/phenols based on their likelihood to affect social behavior. Both adjusted linear regression and Bayesian Weighted Quantile Sum (BWQS) regression models were fitted. False discovery rate (FDR) correction was applied only to nonprioritized chemicals. RESULTS Prioritized compounds included bisphenol A, bisphenol S, triclosan (TCS), diethyl-hexyl phthalate (Σ DEHP ), mono-ethyl phthalate (MEP), mono-n -butyl phthalate (MnBP), and mono-benzyl phthalate (MBzP). With the exception of bisphenols, which showed a mixed pattern of positive and negative associations in pregnant mothers and neonates, few prenatal associations were observed. Most associations were observed with prioritized chemicals measured in 1-y-old infants: Each doubling in urinary TCS (β = 0.78 ; 95% CI: 0.00, 1.55) and MEP (β = 0.92 ; 95% CI: - 0.11 , 1.96) concentrations were associated with worse total SRS scores, whereas MnBP and Σ DEHP were associated with worse Social Awareness (β = 0.25 ; 95% CI: 0.01, 0.50) and Social Communication (β = 0.43 ; 95% CI: - 0.02 , 0.89) scores, respectively. BWQS also suggested worse total SRS [Beta 1 = 1.38 ; 95% credible interval (CrI): - 0.18 , 2.97], Social Awareness (Beta 1 = 0.37 ; 95% CrI: 0.06, 0.70), and Social Communication (Beta 1 = 0.91 ; 95% CrI: 0.31, 1.53) scores per quartile increase in the mixture of prioritized compounds assessed in 1-y-old infants. The few associations observed with nonprioritized chemicals did not remain after FDR correction, with the exception of benzophenone-3 exposure in 1-y-old infants, which was suggestively associated with worse Social Communication scores (corrected p = 0.07 ). DISCUSSION The literature search allowed us to adapt our statistical analysis according to the weight of evidence and create a corpus of experimental and epidemiological knowledge to better interpret our findings. Early infancy appears to be a sensitive exposure window that should be further investigated. https://doi.org/10.1289/EHP11798.
Collapse
Affiliation(s)
- Vicente Mustieles
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Matthieu Rolland
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Isabelle Pin
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | | | | | | | - Gina Muckle
- Centre Hospitalier Universitaire de Québec - Université Laval Research Center, Québec City, Canada
| | - Karine Guichardet
- Pediatric Department, Grenoble Alpes University Hospital, La Tronche, France
| | - Rémy Slama
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| | - Claire Philippat
- University Grenoble Alpes, Inserm U 1209, CNRS UMR 5309, Team of Environmental Epidemiology Applied to Development and Respiratory Health, Institute for Advanced Biosciences, Grenoble, France
| |
Collapse
|
17
|
Cunha YGDO, do Amaral GCB, Felix AA, Blumberg B, Amato AA. Early-life exposure to endocrine-disrupting chemicals and autistic traits in childhood and adolescence: a systematic review of epidemiological studies. Front Endocrinol (Lausanne) 2023; 14:1184546. [PMID: 37361542 PMCID: PMC10289191 DOI: 10.3389/fendo.2023.1184546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Accepted: 05/26/2023] [Indexed: 06/28/2023] Open
Abstract
Aims Exposure to endocrine-disrupting chemicals (EDCs) during critical neurodevelopmental windows has been associated with the risk of autistic traits. This systematic review of epidemiological studies examined the association between maternal exposure to EDCs during pregnancy and the risk of autism spectrum disorder (ASD) in the offspring. Methods We searched PubMed, Web of Science, Scopus, and Google Scholar from inception to November 17, 2022, for studies investigating the association between prenatal exposure to EDCs and outcomes related to ASD. Two independent reviewers screened studies for eligibility, extracted data, and assessed the risk of bias. The review was registered in PROSPERO (CRD42023389386). Results We included 27 observational studies assessing prenatal exposure to phthalates (8 studies), polychlorinated biphenyls (8 studies), organophosphate pesticides (8 studies), phenols (7 studies), perfluoroalkyl substances (6 studies), organochlorine pesticides (5 studies), brominated flame retardants (3 studies), dioxins (1 study), and parabens (1 study). The number of examined children ranged from 77 to 1,556, the age at the assessment of autistic traits ranged from 3 to 14 years, and most studies assessed autistic traits using the Social Responsiveness Scale. All but one study was considered to have a low risk of bias. Overall, there was no association between maternal exposure to specific ECDs during pregnancy and the occurrence of autistic traits in offspring. Conclusions Findings from the epidemiological studies evaluated here do not support an association between prenatal exposure to ECDs and the likelihood of autistic traits in later in life. These findings should not be interpreted as definitive evidence of the absence of neurodevelopment effects of EDCs affecting ASD risk, given the limitations of current studies such as representative exposure assessment, small sample sizes, inadequacy to assess sexually dimorphic effects, or the effects of EDC mixtures. Future studies should carefully address these limitations.
Collapse
Affiliation(s)
| | | | - Alana Almeida Felix
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| | - Bruce Blumberg
- Department of Developmental and Cell Biology, University of California, Irvine, CA, United States
- Department of Pharmaceutical Sciences, University of California, Irvine, CA, United States
- Department of Biomedical Engineering, University of California, Irvine, CA, United States
| | - Angelica Amorim Amato
- Laboratory of Molecular Pharmacology, Department of Pharmaceutical Sciences, University of Brasilia, Brasilia, Brazil
| |
Collapse
|
18
|
Rolland M, Lyon-Caen S, Thomsen C, Sakhi AK, Sabaredzovic A, Bayat S, Slama R, Méary D, Philippat C. Effects of early exposure to phthalates on cognitive development and visual behavior at 24 months. ENVIRONMENTAL RESEARCH 2023; 219:115068. [PMID: 36528043 DOI: 10.1016/j.envres.2022.115068] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/07/2022] [Accepted: 12/13/2022] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND OBJECTIVES Studies focusing on the neurodevelopmental effects of phthalates seldom consider exposure during infancy, a critical period for brain development. Most rely on parent-completed questionnaires to assess child neurodevelopment, which may be subject to reporting error. We studied the associations between prenatal and infancy exposure to phthalates and objective measures of neurodevelopment at the age of two. METHODS We relied on 151 mother-child pairs from the SEPAGES mother-child cohort. Women were asked to collect three spot urine samples per day over seven consecutive days during the second (median: 18.0 gestational weeks) and third (median: 34.2 gestational weeks) trimesters of pregnancy. They then collected one urine sample per day over seven consecutive days from their infants around the age of 12 months. Metabolites of phthalates and non-phthalate plasticizers were measured in within-subject and within-period pools of repeated urine samples. Eye tracking tasks were performed at two years allowing to compute four indicators linked with cognitive development and visual behavior: mean fixation duration, novelty preference, percent time spent looking at the eyes and mean reaction time. RESULTS Pre-natal exposure to monobenzyl phthalate at the second and third trimesters was associated with shorter fixation durations. In models allowing for interaction with child sex, these associations were only observed among girls. Exposure to di(2-ethylhexyl) phthalate at the third but not the second trimester was associated with increased time spent looking at a novel face and eyes. We observed faster reaction times and decreased time spent looking at the eyes in a face recognition task, with increased post-natal exposure to monoethyl, mono-iso-butyl and mono-n-butyl phthalates. DISCUSSION Relying on improved exposure assessment, we highlighted associations of pre- and post-natal exposure to phthalates with indicators derived from eye tracking tasks, mainly in girls. Some of these indicators have been affected in individuals with neurodevelopmental disorders.
Collapse
Affiliation(s)
- Matthieu Rolland
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | - Sarah Lyon-Caen
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | | | | | | | - Sam Bayat
- Department of Pulmonology and Physiology, CHU Grenoble Alpes, Grenoble, France
| | - Rémy Slama
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France
| | - David Méary
- Laboratoire de Psychologie et Neurocognition, LPNC, UMR 5105, Université Grenoble Alpes, Grenoble, France
| | - Claire Philippat
- Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble Alpes University, Inserm, CNRS, 38700 La Tronche, France.
| |
Collapse
|
19
|
Jiang Y, Wang D, Zhang C, Jiao Y, Pu Y, Cheng R, Li C, Chen Y. Nicotinamide mononucleotide restores oxidative stress-related apoptosis of oocyte exposed to benzyl butyl phthalate in mice. Cell Prolif 2023:e13419. [PMID: 36756972 PMCID: PMC10392047 DOI: 10.1111/cpr.13419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/19/2023] [Accepted: 01/27/2023] [Indexed: 02/10/2023] Open
Abstract
Benzyl butyl phthalate (BBP) is a chemical softener and plasticizer commonly used in toys, food packaging, wallpaper, detergents and shampoos. The estrogenic actions of BBP have detrimental effects on humans and animals. In this study, the specific influence of BBP on mouse oocyte maturation was investigated using in vivo and in vitro models. The experiment first verified that BBP exposure significantly affected the rate of oocyte exclusion of the first polar body, although it did not affect germinal vesicle breakdown (GVBD) through in vitro oocyte culture system. Results of in vitro fertilization show that BBP exposure affects blastocyst rate. Subsequently, the results obtained by immunofluorescence staining technology showed that oocyte spindle organization, chromosomal arrangement and the distribution of cortical actin were disrupted by BBP exposure, and led to the failure of oocyte meiotic maturation and the subsequent early embryo development. Singe-cell transcriptome analysis found that BBP exposure altered the expression levels of 588 genes, most associated with mitochondria-related oxidative stress. Further analysis demonstrated that the detrimental effects of BBP involved the disruption of mitochondrial function and oxidative stress-induced early apoptosis. Nicotinamide mononucleotide (NMN) supplementation reduced the adverse effects of BBP. Collectively, these findings revealed a mechanism of BBP-induced toxicity on female reproduction and showed that NMN provides an effective treatment for BBP actions.
Collapse
Affiliation(s)
- Yi Jiang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Di Wang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Cheng Zhang
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yangyang Jiao
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yanan Pu
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Rong Cheng
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Chunyu Li
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China
| | - Yan Chen
- Outpatient & Emergency Management Department, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China.,Emergency Management Department, School of Health Policy & Management, Nanjing Medical University, Nanjing, China.,Research Institute of Health Jiangsu, Nanjing Medical University, Nanjing, China
| |
Collapse
|
20
|
Thomson S, Drummond K, O'Hely M, Symeonides C, Chandran C, Mansell T, Saffery R, Sly P, Mueller J, Vuillermin P, Ponsonby AL. Increased maternal non-oxidative energy metabolism mediates association between prenatal di-(2-ethylhexyl) phthalate (DEHP) exposure and offspring autism spectrum disorder symptoms in early life: A birth cohort study. ENVIRONMENT INTERNATIONAL 2023; 171:107678. [PMID: 36516674 DOI: 10.1016/j.envint.2022.107678] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 11/08/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
Prenatal phthalate exposure has previously been linked to the development of autism spectrum disorder (ASD). However, the underlying biological mechanisms remain unclear. We investigated whether maternal and child central carbon metabolism is involved as part of the Barwon Infant Study (BIS), a population-based birth cohort of 1,074 Australian children. We estimated phthalate daily intakes using third-trimester urinary phthalate metabolite concentrations and other relevant indices. The metabolome of maternal serum in the third trimester, cord serum at birth and child plasma at 1 year were measured by nuclear magnetic resonance. We used the Small Molecule Pathway Database and principal component analysis to construct composite metabolite scores reflecting metabolic pathways. ASD symptoms at 2 and 4 years were measured in 596 and 674 children by subscales of the Child Behavior Checklist and the Strengths and Difficulties Questionnaire, respectively. Multivariable linear regression analyses demonstrated (i) prospective associations between higher prenatal di-(2-ethylhexyl) phthalate (DEHP) levels and upregulation of maternal non-oxidative energy metabolism pathways, and (ii) prospective associations between upregulation of these pathways and increased offspring ASD symptoms at 2 and 4 years of age. Counterfactual mediation analyses indicated that part of the mechanism by which higher prenatal DEHP exposure influences the development of ASD symptoms in early childhood is through a maternal metabolic shift in pregnancy towards non-oxidative energy pathways, which are inefficient compared to oxidative metabolism. These results highlight the importance of the prenatal period and suggest that further investigation of maternal energy metabolism as a molecular mediator of the adverse impact of prenatal environmental exposures such as phthalates is warranted.
Collapse
Affiliation(s)
- Sarah Thomson
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Katherine Drummond
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Martin O'Hely
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Christos Symeonides
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Chitra Chandran
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia
| | - Toby Mansell
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Richard Saffery
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Peter Sly
- Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia; Child Health Research Centre, The University of Queensland, 62 Graham St, South Brisbane, QLD 4101, Australia
| | - Jochen Mueller
- Queensland Alliance for Environmental Health Sciences (QAEHS), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Peter Vuillermin
- Deakin University, IMPACT - the Institute for Mental and Physical Health and Clinical Translation, School of Medicine, Barwon Health, 299 Ryrie Street, Geelong, VIC 3220, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia
| | - Anne-Louise Ponsonby
- Florey Institute of Neuroscience and Mental Health, 30 Royal Parade, Parkville, VIC 3052, Australia; Murdoch Children's Research Institute, Royal Children's Hospital, The University of Melbourne, 50 Flemington Rd, Parkville, VIC 3052, Australia.
| |
Collapse
|
21
|
Liu Y, Guo Z, Zhu R, Gou D, Jia PP, Pei DS. An insight into sex-specific neurotoxicity and molecular mechanisms of DEHP: A critical review. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2023; 316:120673. [PMID: 36400143 DOI: 10.1016/j.envpol.2022.120673] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Revised: 11/03/2022] [Accepted: 11/13/2022] [Indexed: 06/16/2023]
Abstract
Di-2-Ethylhexyl Phthalate (DEHP) is often used as an additive in polyvinyl chloride (PVC) to give plastics flexibility, which makes DEHP widely used in food packaging, daily necessities, medical equipment, and other products. However, due to the unstable combination of DEHP and polymer, it will migrate to the environment in the materials and eventually contact the human body. It has been recorded that low-dose DEHP will increase neurotoxicity in the nervous system, and the human health effects of DEHP have been paid attention to because of the extensive exposure to DEHP and its high absorption during brain development. In this study, we review the evidence that DEHP exposure is associated with neurodevelopmental abnormalities and neurological diseases based on human epidemiological and animal behavioral studies. Besides, we also summarized the oxidative damage, apoptosis, and signal transduction disorder related to neurobehavioral abnormalities and nerve injury, and described the potential mechanisms of neurotoxicity caused by DEHP. Overall, we found exposure to DEHP during the critical developmental period will increase the risk of neurobehavioral abnormalities, depression, and autism spectrum disorders. This effect is sex-specific and will continue to adulthood and even have an intergenerational effect. However, the research results on the sex-dependence of DEHP neurotoxicity are inconsistent, and there is a lack of systematic mechanisms research as theoretical support. Future investigations need to be carried out in a large-scale population and model organisms to produce more consistent and convincing results. And we emphasize the importance of mechanism research, which can enhance the understanding of the environmental and human health risks of DEHP exposure.
Collapse
Affiliation(s)
- Yiyun Liu
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Zhiling Guo
- School of Geography, Earth and Environmental Sciences, University of Birmingham, Birmingham, B15 2TT, UK
| | - Ruihong Zhu
- State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Dongzhi Gou
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - Pan-Pan Jia
- School of Public Health, Chongqing Medical University, Chongqing, China
| | - De-Sheng Pei
- School of Public Health, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
22
|
Parenti M, Schmidt RJ, Ozonoff S, Shin HM, Tancredi DJ, Krakowiak P, Hertz-Picciotto I, Walker CK, Slupsky CM. Maternal Serum and Placental Metabolomes in Association with Prenatal Phthalate Exposure and Neurodevelopmental Outcomes in the MARBLES Cohort. Metabolites 2022; 12:829. [PMID: 36144233 PMCID: PMC9500898 DOI: 10.3390/metabo12090829] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 08/26/2022] [Accepted: 08/27/2022] [Indexed: 01/16/2023] Open
Abstract
Prenatal exposure to phthalates, a family of endocrine-disrupting plasticizers, is associated with disruption of maternal metabolism and impaired neurodevelopment. We investigated associations between prenatal phthalate exposure and alterations of both the maternal third trimester serum metabolome and the placental metabolome at birth, and associations of these with child neurodevelopmental outcomes using data and samples from the Markers of Autism Risk in Babies Learning Early Signs (MARBLES) cohort. The third trimester serum (n = 106) and placental (n = 132) metabolomes were investigated using 1H nuclear magnetic resonance spectroscopy. Children were assessed clinically for autism spectrum disorder (ASD) and cognitive development. Although none of the urinary phthalate metabolite concentrations were associated with maternal serum metabolites after adjustment for covariates, mixture analysis using quantile g-computation revealed alterations in placental metabolites with increasing concentrations of phthalate metabolites that included reduced concentrations of 2-hydoxybutyrate, carnitine, O-acetylcarnitine, glucitol, and N-acetylneuraminate. Child neurodevelopmental outcome was not associated with the third trimester serum metabolome, but it was correlated with the placental metabolome in male children only. Maternal phthalate exposure during pregnancy is associated with differences in the placental metabolome at delivery, and the placental metabolome is associated with neurodevelopmental outcomes in males in a cohort with high familial ASD risk.
Collapse
Affiliation(s)
- Mariana Parenti
- Department of Nutrition, University of California, Davis, CA 95616, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Sally Ozonoff
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Psychiatry and Behavioral Sciences, University of California, Davis, CA 95616, USA
| | - Hyeong-Moo Shin
- Department of Environmental Science, Baylor University, Waco, TX 76798, USA
| | - Daniel J. Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA 95616, USA
| | - Paula Krakowiak
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
| | - Cheryl K. Walker
- Medical Investigation of Neurodevelopmental Disorders (MIND) Institute, University of California, Davis, CA 95616, USA
- Department of Obstetrics & Gynecology, School of Medicine, University of California, Davis, CA 95616, USA
| | - Carolyn M. Slupsky
- Department of Nutrition, University of California, Davis, CA 95616, USA
- Department of Food Science and Technology, University of California, Davis, CA 95616, USA
| |
Collapse
|
23
|
Welch BM, Keil AP, Buckley JP, Calafat AM, Christenbury KE, Engel SM, O'Brien KM, Rosen EM, James-Todd T, Zota AR, Ferguson KK. Associations Between Prenatal Urinary Biomarkers of Phthalate Exposure and Preterm Birth: A Pooled Study of 16 US Cohorts. JAMA Pediatr 2022; 176:895-905. [PMID: 35816333 PMCID: PMC9274448 DOI: 10.1001/jamapediatrics.2022.2252] [Citation(s) in RCA: 32] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/04/2022] [Indexed: 01/16/2023]
Abstract
Importance Phthalate exposure is widespread among pregnant women and may be a risk factor for preterm birth. Objective To investigate the prospective association between urinary biomarkers of phthalates in pregnancy and preterm birth among individuals living in the US. Design, Setting, and Participants Individual-level data were pooled from 16 preconception and pregnancy studies conducted in the US. Pregnant individuals who delivered between 1983 and 2018 and provided 1 or more urine samples during pregnancy were included. Exposures Urinary phthalate metabolites were quantified as biomarkers of phthalate exposure. Concentrations of 11 phthalate metabolites were standardized for urine dilution and mean repeated measurements across pregnancy were calculated. Main Outcomes and Measures Logistic regression models were used to examine the association between each phthalate metabolite with the odds of preterm birth, defined as less than 37 weeks of gestation at delivery (n = 539). Models pooled data using fixed effects and adjusted for maternal age, race and ethnicity, education, and prepregnancy body mass index. The association between the overall mixture of phthalate metabolites and preterm birth was also examined with logistic regression. G-computation, which requires certain assumptions to be considered causal, was used to estimate the association with hypothetical interventions to reduce the mixture concentrations on preterm birth. Results The final analytic sample included 6045 participants (mean [SD] age, 29.1 [6.1] years). Overall, 802 individuals (13.3%) were Black, 2323 (38.4%) were Hispanic/Latina, 2576 (42.6%) were White, and 328 (5.4%) had other race and ethnicity (including American Indian/Alaskan Native, Native Hawaiian, >1 racial identity, or reported as other). Most phthalate metabolites were detected in more than 96% of participants. Higher odds of preterm birth, ranging from 12% to 16%, were observed in association with an interquartile range increase in urinary concentrations of mono-n-butyl phthalate (odds ratio [OR], 1.12 [95% CI, 0.98-1.27]), mono-isobutyl phthalate (OR, 1.16 [95% CI, 1.00-1.34]), mono(2-ethyl-5-carboxypentyl) phthalate (OR, 1.16 [95% CI, 1.00-1.34]), and mono(3-carboxypropyl) phthalate (OR, 1.14 [95% CI, 1.01-1.29]). Among approximately 90 preterm births per 1000 live births in this study population, hypothetical interventions to reduce the mixture of phthalate metabolite levels by 10%, 30%, and 50% were estimated to prevent 1.8 (95% CI, 0.5-3.1), 5.9 (95% CI, 1.7-9.9), and 11.1 (95% CI, 3.6-18.3) preterm births, respectively. Conclusions and Relevance Results from this large US study population suggest that phthalate exposure during pregnancy may be a preventable risk factor for preterm delivery.
Collapse
Affiliation(s)
- Barrett M. Welch
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | | - Jessie P. Buckley
- Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland
| | | | - Kate E. Christenbury
- Social & Scientific Systems, Inc, a DLH Holdings Company, Raleigh, North Carolina
| | | | - Katie M. O'Brien
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | - Emma M. Rosen
- University of North Carolina at Chapel Hill, Chapel Hill
| | | | - Ami R. Zota
- Milken School of Public Health, George Washington University, Washington, DC
| | - Kelly K. Ferguson
- National Institute of Environmental Health Sciences, Research Triangle Park, Durham, North Carolina
| | | |
Collapse
|
24
|
Bragg M, Chavarro JE, Hamra GB, Hart JE, Tabb LP, Weisskopf MG, Volk HE, Lyall K. Prenatal Diet as a Modifier of Environmental Risk Factors for Autism and Related Neurodevelopmental Outcomes. Curr Environ Health Rep 2022; 9:324-338. [PMID: 35305256 DOI: 10.1007/s40572-022-00347-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/24/2022] [Indexed: 12/15/2022]
Abstract
PURPOSE OF REVIEW Environmental chemicals and toxins have been associated with increased risk of impaired neurodevelopment and specific conditions like autism spectrum disorder (ASD). Prenatal diet is an individually modifiable factor that may alter associations with such environmental factors. The purpose of this review is to summarize studies examining prenatal dietary factors as potential modifiers of the relationship between environmental exposures and ASD or related neurodevelopmental outcomes. RECENT FINDINGS Twelve studies were identified; five examined ASD diagnosis or ASD-related traits as the outcome (age at assessment range: 2-5 years) while the remainder addressed associations with neurodevelopmental scores (age at assessment range: 6 months to 6 years). Most studies focused on folic acid, prenatal vitamins, or omega-3 fatty acids as potentially beneficial effect modifiers. Environmental risk factors examined included air pollutants, endocrine disrupting chemicals, pesticides, and heavy metals. Most studies took place in North America. In 10/12 studies, the prenatal dietary factor under study was identified as a significant modifier, generally attenuating the association between the environmental exposure and ASD or neurodevelopment. Prenatal diet may be a promising target to mitigate adverse effects of environmental exposures on neurodevelopmental outcomes. Further research focused on joint effects is needed that encompasses a broader variety of dietary factors, guided by our understanding of mechanisms linking environmental exposures with neurodevelopment. Future studies should also aim to include diverse populations, utilize advanced methods to optimize detection of novel joint effects, incorporate consideration of timing, and consider both synergistic and antagonistic potential of diet.
Collapse
Affiliation(s)
- Megan Bragg
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Jorge E Chavarro
- Department of Nutrition, Harvard School of Public Health, Boston, MA, USA
| | - Ghassan B Hamra
- Department of Epidemiology, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Jaime E Hart
- Channing Division of Network Medicine, Department of Medicine, Brigham and Women's Hospital and Harvard Medical School, Boston, MA, USA.,Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Loni Philip Tabb
- Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA
| | - Marc G Weisskopf
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Heather E Volk
- Department of Mental Health, Johns Hopkins Bloomberg School of Public Health, Johns Hopkins University, Baltimore, MD, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA. .,Department of Epidemiology and Biostatistics, Dornsife School of Public Health, Drexel University, 3020 Market St., Philadelphia, PA, 19104, USA.
| |
Collapse
|
25
|
Bennett DH, Busgang SA, Kannan K, Parsons PJ, Takazawa M, Palmer CD, Schmidt RJ, Doucette JT, Schweitzer JB, Gennings C, Hertz-Picciotto I. Environmental exposures to pesticides, phthalates, phenols and trace elements are associated with neurodevelopment in the CHARGE study. ENVIRONMENT INTERNATIONAL 2022; 161:107075. [PMID: 35085933 PMCID: PMC9317896 DOI: 10.1016/j.envint.2021.107075] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 12/21/2021] [Accepted: 12/31/2021] [Indexed: 05/11/2023]
Abstract
OBJECTIVE To determine if higher exposures measured in early childhood to environmental phenols, phthalates, pesticides, and/or trace elements, are associated with increased odds of having a diagnosis of Autism Spectrum Disorder (ASD), Developmental Delay (DD), or Other Early Concerns (OEC) compared to typically developing children (TD). METHODS This study included 627 children between the ages of 2-5 who participated in the Childhood Autism Risks from Genetics and Environment (CHARGE) study. Urine samples were collected at the same study visit where diagnostic assessments to confirm diagnosis indicated during the recruitment process were performed. Adjusted multinomial regression models of each chemical with diagnosis as the outcome were conducted. Additionally, two methods were used to analyze mixtures: repeated holdout multinomial weighted quantile sum (WQS) regression for each chemical class; and a total urinary mixture effect was assessed with repeated holdout random subset WQS. RESULTS Many urinary chemicals were associated with increased odds of ASD, DD or OEC compared to TD; however, most did not remain significant after false discovery rate adjustment. Repeated holdout WQS indices provided evidence for associations of both a phenol/paraben mixture effect and a trace element mixture effect on DD independently. In analyses adjusted for confounders and other exposures, results suggested an association of a pesticide mixture effect with increased risk for ASD. Results also suggested associations of a total urinary mixture with greater odds of both ASD and DD separately. CONCLUSION Higher concentrations of urinary biomarkers were associated with ASD, DD, and OEC compared to TD, with consistency of the results comparing single chemical analyses and mixture analyses. Given that the biospecimens used for chemical analysis were generally collected many months after diagnoses were made, the direction of any causal association is unknown. Hence findings may reflect higher exposures among children with non-typical development than TD children due to differences in behaviors, metabolism, or toxicokinetics.
Collapse
Affiliation(s)
- Deborah H Bennett
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, CA, USA.
| | - Stefanie A Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Kurunthachalam Kannan
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA; Department of Pediatrics and Department of Environmental Medicine, New York University School of Medicine, New York, NY, USA
| | - Patrick J Parsons
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Mari Takazawa
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA
| | - Christopher D Palmer
- Division of Environmental Health Sciences, Wadsworth Center, New York State Department of Health, Albany, NY, USA; Department of Environmental Health Sciences, University at Albany, State University of New York, Albany, NY, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, CA, USA
| | - John T Doucette
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Julie B Schweitzer
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, CA, USA; Department of Psychiatry and Behavioral Sciences, School of Medicine, University of California at Davis (UC Davis), Sacramento, CA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California at Davis (UC Davis), Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, Sacramento, CA, USA
| |
Collapse
|
26
|
Shin HM, Oh J, Kim K, Busgang SA, Barr DB, Panuwet P, Schmidt RJ, Picciotto IH, Bennett DH. Variability of Urinary Concentrations of Phenols, Parabens, and Triclocarban during Pregnancy in First Morning Voids and Pooled Samples. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:16001-16010. [PMID: 34817155 PMCID: PMC8858442 DOI: 10.1021/acs.est.1c04140] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
Urinary concentrations of phenols, parabens, and triclocarban have been extensively used as biomarkers of exposure. However, because these compounds are quickly metabolized and excreted in urine, characterizing participants' long-term average exposure from a few spot samples is challenging. To examine the variability of urinary concentrations of these compounds during pregnancy, we quantified four phenols, four parabens, and triclocarban in 357 first morning voids (FMVs) and 203 pooled samples collected during the second and third trimesters of 173 pregnancies. We computed intraclass correlation coefficients (ICCs) by the sample type (FMV and pool) across two trimesters and by the number of composite samples in pools, ranging from 2 to 4, within the same trimester. Among the three compounds detected in more than 50% of the samples, the ICCs across two trimesters were higher in pools (0.29-0.68) than in FMVs (0.17-0.52) and the highest ICC within the same trimester was observed when pooling either two or three composites. Methyl paraben and propyl paraben primarily exposed via cosmetic use had approximately 2-3 times higher ICCs than bisphenol A primarily exposed via diet. Our findings support that within-subject pooling of biospecimens can increase the reproducibility of pregnant women's exposure to these compounds and thus could potentially minimize exposure misclassification.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., Department of Earth and Environmental Sciences, University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, TX, 76019, ; Voice: 949-648-1614
| | - Jiwon Oh
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
| | - Kyunghoon Kim
- Department of Environmental Engineering, Seoul National University of Science and Technology, Seoul, Korea
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Irva Hertz Picciotto
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
| |
Collapse
|
27
|
Kim JI, Lee J, Lee KS, Lee YA, Shin CH, Hong YC, Kim BN, Lim YH. Association of phthalate exposure with autistic traits in children. ENVIRONMENT INTERNATIONAL 2021; 157:106775. [PMID: 34314979 DOI: 10.1016/j.envint.2021.106775] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2021] [Revised: 07/08/2021] [Accepted: 07/12/2021] [Indexed: 05/23/2023]
Abstract
BACKGROUND Phthalates are synthetic chemicals with endocrine-disrupting properties. They are reportedly associated with various neurotoxic outcomes. Studies on exposure to phthalates and children's autistic traits have shown inconsistent results with respect to sex and susceptible time periods. We investigated the association of phthalate exposure during the prenatal period and childhood with autistic traits over time using a birth cohort in South Korea. METHODS Five phthalate metabolites were measured during mid-term pregnancy and children's follow-up at ages of 4, 6, and 8 years among a total of 547 mother-child pairs. The social communication questionnaire (SCQ) was used to assess autistic traits of children at each time point. The relationship between phthalate metabolites and SCQ scores were analyzed by exposure windows and sex. RESULTS A 2.7 fold increase in di-(2-ethylhexyl) phthalate metabolite levels, mono-(2-ethyl-5-hydroxyhexyl) phthalate (MEHHP) and mono-(2-ethyl-5-oxohexyl) phthalate (MEOHP) during pregnancy was associated with increased SCQ scores at 4 years by 8.5% (95% confidence intervals [CI]: 1.9%, 15.5%) and 7.4% (95% CI: 0.3%, 15.0%), respectively, but not at the age of 6 or 8 years. Moreover, MEHHP levels at ages of 4 and 8 years were associated with increased SCQ scores at 8 years by 9.9% (95% CI: 1.8%, 18.6%) and 9.6% (95% CI: 1.3%, 18.6%), respectively. Boys showed stronger associations between phthalate exposure and SCQ scores than girls. CONCLUSION The study suggested different susceptible time windows of phthalate exposure: exposure during pregnancy is associated with autistic traits in young children, whereas exposure during early childhood years leads to autistic traits in school-aged children, particularly boys.
Collapse
Affiliation(s)
- Johanna Inhyang Kim
- Department of Psychiatry, Hanyang University Medical Center, Seoul, Republic of Korea
| | - Jung Lee
- Integrative Care Hub, Children's Hospital, Seoul National University Hospital, Seoul, Republic of Korea
| | - Kyung-Shin Lee
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Young Ah Lee
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Choong Ho Shin
- Department of Pediatrics, Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Yun-Chul Hong
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Environmental Health Center, Seoul National University College of Medicine, Seoul, Republic of Korea; Institute of Environmental Medicine, Seoul National University Medical Research Center, Seoul, South Korea
| | - Bung-Nyun Kim
- Division of Children and Adolescent Psychiatry, Department of Psychiatry, Seoul National University College of Medicine, Seoul, Republic of Korea.
| | - Youn-Hee Lim
- Department of Preventive Medicine, Seoul National University College of Medicine, Seoul, Republic of Korea; Section of Environmental Health, Department of Public Health, University of Copenhagen, Copenhagen, Denmark.
| |
Collapse
|
28
|
Mathew L, Snyder NW, Lyall K, Lee BK, McClure LA, Elliott AJ, Newschaffer CJ. Prenatal phthalate exposure measurement: A comparison of metabolites quantified in prenatal maternal urine and newborn's meconium. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 796:148898. [PMID: 34280640 PMCID: PMC8440376 DOI: 10.1016/j.scitotenv.2021.148898] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 07/03/2021] [Accepted: 07/04/2021] [Indexed: 05/29/2023]
Abstract
Phthalates are chemicals suspected to adversely affect fetal neurodevelopment, but quantifying the fetal exposure is challenging. While prenatal phthalate exposure is commonly quantified in maternal urine, the newborn's meconium may better capture cumulative prenatal exposure. Currently, data on phthalates measured in meconium is sparse. We measured phthalate metabolites in 183 maternal second and 140 third trimester (T2, T3) urine, and in 190 meconium samples collected in an autism enriched-risk pregnancy cohort of 236 mothers. Eleven and eight metabolites were detected in over 90% of urine and meconium samples, respectively. Hydrophilic and hydrophobic metabolites were detected in both biosamples. Most urine phthalate metabolite distributions were similar between T2 and T3. Among metabolites detected in both biosamples, those of di(2-ethylhexyl) phthalate displayed a similar pattern in magnitude across metabolite type. Specifically, T2 creatinine adjusted distribution [median (25%, 75%)] of urine measured mono(2-ethylhexyl-carboxypentyl) (MECPP), mono(2-ethyl-5-hydroxyhexyl) (MEHHP), and mono(2-ethyl-5-oxohexyl) phthalate (MEOHP) were 18.8(11.9, 31.4), 11.8(7.2, 19.1), and 8.9(6.2, 14.2) ng/mg. In meconium these were 16.6(10.9, 23.7), 2.5(1.5, 3.8), and 1.3(0.8, 2.3) ng/g, respectively. Metabolite-to-metabolite correlations were lower in meconium than urine, but patterns were similar. For example, correlation (95% CI) between mono(2-ethylhexyl) phthalate and MECPP was 0.73 (0.66, 0.78), and between MEOHP and MEHHP was 0.96 (0.95, 0.97) in urine as compared to 0.10 (-0.04, 0.24) and 0.31 (0.18, 0.43) respectively in meconium. Correlations between same metabolites measured in urine and meconium were low and differed by metabolite and trimester. Correlation between MEHHP in urine and meconium, for example, was 0.20 (0.008, 0.37) at T3, but 0.05 (-0.12, 0.21) at T2. Our study provides evidence of general population-level prenatal phthalate exposure in a population at high risk for neurodevelopmental disorders and supports the utility of meconium to measure prenatal phthalate exposure but provides little evidence of correlation with exposure measured in prenatal maternal urine.
Collapse
Affiliation(s)
- Leny Mathew
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA.
| | - Nathaniel W Snyder
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; Center for Metabolic Disease Research, Department of Microbiology and Immunology, Temple University Lewis Katz School of Medicine, 3500 N Broad St. Room 455, Philadelphia, PA 19140, USA
| | - Kristen Lyall
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA
| | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA
| | - Leslie A McClure
- Department of Epidemiology and Biostatistics, Drexel University Dornsife School of Public Health, 3215 Market Street, Philadelphia, PA 19104, USA
| | | | - Craig J Newschaffer
- AJ Drexel Autism Institute, Drexel University, 3020 Market St, Suite 560, Philadelphia, PA 19104, USA; College of Health and Human Development, Pennsylvania State University, 325 HHD Building, University Park, PA 16802, USA
| |
Collapse
|
29
|
Alampi JD, Lanphear BP, Braun JM, Chen A, Takaro TK, Muckle G, Arbuckle TE, McCandless LC. Association Between Gestational Exposure to Toxicants and Autistic Behaviors Using Bayesian Quantile Regression. Am J Epidemiol 2021; 190:1803-1813. [PMID: 33779718 DOI: 10.1093/aje/kwab065] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 03/02/2021] [Accepted: 03/11/2021] [Indexed: 12/12/2022] Open
Abstract
Autism spectrum disorder, which is characterized by impaired social communication and stereotypic behaviors, affects 1%-2% of children. Although prenatal exposure to toxicants has been associated with autistic behaviors, most studies have been focused on shifts in mean behavior scores. We used Bayesian quantile regression to assess the associations between log2-transformed toxicant concentrations and autistic behaviors across the distribution of behaviors. We used data from the Maternal-Infant Research on Environmental Chemicals study, a pan-Canadian cohort (2008-2011). We measured metal, pesticide, polychlorinated biphenyl, phthalate, bisphenol-A, and triclosan concentrations in blood or urine samples collected during the first trimester of pregnancy. Using the Social Responsiveness Scale (SRS), in which higher scores denote more autistic-like behaviors, autistic behaviors were assessed in 478 children aged 3-4 years old. Lead, cadmium, and most phthalate metabolites were associated with mild increases in SRS scores at the 90th percentile of the SRS distribution. Manganese and some pesticides were associated with mild decreases in SRS scores at the 90th percentile of the SRS distribution. We identified several monotonic trends in which associations increased in magnitude from the bottom to the top of the SRS distribution. These results suggest that quantile regression can reveal nuanced relationships and, thus, should be more widely used by epidemiologists.
Collapse
|
30
|
O'Shaughnessy KL, Fischer F, Zenclussen AC. Perinatal exposure to endocrine disrupting chemicals and neurodevelopment: How articles of daily use influence the development of our children. Best Pract Res Clin Endocrinol Metab 2021; 35:101568. [PMID: 34565681 PMCID: PMC10111869 DOI: 10.1016/j.beem.2021.101568] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Substances that interfere with the body's hormonal balance or their function are called endocrine disrupting chemicals (EDCs). Many EDCs are ubiquitous in the environment and are an unavoidable aspect of daily life, including during early embryogenesis. Developmental exposure to these chemicals is of critical relevance, as EDCs can permanently alter developmental programs, including those that pattern and wire the brain. Of emerging interest is how these chemicals may also affect the immune response, given the cross-talk between the endocrine and immune systems. As brain development is strongly dependent on hormones including thyroid, androgens, and estrogens, and can also be affected by immunomodulation, this complicated interplay may have long-lasting neurodevelopmental consequences. This review focuses on data available from human cohorts, in vivo models, and in vitro assays regarding the impact of EDCs after a gestational and/or lactational exposure, and how they may impact the immune system and/or neurodevelopment.
Collapse
Affiliation(s)
- Katherine L O'Shaughnessy
- Center for Public Health and Environmental Assessment, Public Health Integrated Toxicology Division, US Environmental Protection Agency, Research Triangle Park, NC, USA.
| | - Florence Fischer
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany
| | - Ana C Zenclussen
- Department of Environmental Immunology, Helmholtz Centre for Environmental Research, Leipzig, Germany.
| |
Collapse
|
31
|
Influence of the Aryl Hydrocarbon Receptor Activating Environmental Pollutants on Autism Spectrum Disorder. Int J Mol Sci 2021; 22:ijms22179258. [PMID: 34502168 PMCID: PMC8431328 DOI: 10.3390/ijms22179258] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/22/2021] [Accepted: 06/28/2021] [Indexed: 02/07/2023] Open
Abstract
Autism spectrum disorder (ASD) is an umbrella term that includes many different disorders that affect the development, communication, and behavior of an individual. Prevalence of ASD has risen exponentially in the past couple of decades. ASD has a complex etiology and traditionally recognized risk factors only account for a small percentage of incidence of the disorder. Recent studies have examined factors beyond the conventional risk factors (e.g., environmental pollution). There has been an increase in air pollution since the beginning of industrialization. Most environmental pollutants cause toxicities through activation of several cellular receptors, such as the aryl hydrocarbon receptor (AhR)/cytochrome P450 (CYPs) pathway. There is little research on the involvement of AhR in contributing to ASD. Although a few reviews have discussed and addressed the link between increased prevalence of ASD and exposure to environmental pollutants, the mechanism governing this effect, specifically the role of AhR in ASD development and the molecular mechanisms involved, have not been discussed or reviewed before. This article reviews the state of knowledge regarding the impact of the AhR/CYP pathway modulation upon exposure to environmental pollutants on ASD risk, incidence, and development. It also explores the molecular mechanisms involved, such as epigenesis and polymorphism. In addition, the review explores possible new AhR-mediated mechanisms of several drugs used for treatment of ASD, such as sulforaphane, resveratrol, haloperidol, and metformin.
Collapse
|
32
|
Kim K, Shin HM, Busgang SA, Barr DB, Panuwet P, Schmidt RJ, Hertz-Picciotto I, Bennett DH. Temporal Trends of Phenol, Paraben, and Triclocarban Exposure in California Pregnant Women during 2007-2014. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2021; 55:11155-11165. [PMID: 34347462 PMCID: PMC8405127 DOI: 10.1021/acs.est.1c01564] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Little is known about temporal trends of pregnant women's exposures to environmental phenols and parabens. We quantified four phenols [bisphenol A (BPA), bisphenol F, bisphenol S, and triclosan), four parabens [butyl paraben, ethyl paraben (ETPB), methyl paraben (MEPB), and propyl paraben (PRPB)], and triclocarban in 760 urine samples collected during 2007-2014 from 218 California pregnant women participating in a high-familial risk autism spectrum disorder cohort. We applied multiple regression to compute least square geometric means of urinary concentrations and computed average annual percent changes. We compared our urinary concentrations with those of other study populations to examine geographic variations in pregnant women's exposure to these target compounds. Urinary concentrations of BPA, MEPB, ETPB, and PRPB in this study population decreased over the study period [percent change per year (95% confidence interval): -5.7% (-8.2%, -3.2%); -13.0% (-18.1%, -7.7%); -5.5% (-11.0%, 0.3%); and -13.3% (-18.3%, -8.1%), respectively] and were consistently lower than those in pregnant women in other U.S. regions during the same study period. In recent years, certain phenols and parabens with known adverse health effects are being regulated or replaced with alternatives, which explains decreased body burdens observed in this study population. Either the national regulations or the advocacy campaigns in California may have influenced exposures or consumer product choices.
Collapse
Affiliation(s)
- Kyunghoon Kim
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
| | - Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, TX, 76019, , Voice: 949-648-1614
| | - Stefanie A. Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Dana Boyd Barr
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Parinya Panuwet
- Gangarosa Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, Georgia, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopment Disorders) Institute, UC Davis, Davis, California, USA
| | - Deborah H. Bennett
- Department of Public Health Sciences, University of California, Davis (UC Davis), California, USA
| |
Collapse
|
33
|
Engel SM, Patisaul HB, Brody C, Hauser R, Zota AR, Bennet DH, Swanson M, Whyatt RM. Neurotoxicity of Ortho-Phthalates: Recommendations for Critical Policy Reforms to Protect Brain Development in Children. Am J Public Health 2021; 111:687-695. [PMID: 33600256 PMCID: PMC7958063 DOI: 10.2105/ajph.2020.306014] [Citation(s) in RCA: 51] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 11/04/2022]
Abstract
Robust data from longitudinal birth cohort studies and experimental studies of perinatally exposed animals indicate that exposure to ortho-phthalates can impair brain development and increase risks for learning, attention, and behavioral disorders in childhood. This growing body of evidence, along with known adverse effects on male reproductive tract development, calls for immediate action.Exposures are ubiquitous; the majority of people are exposed to multiple ortho-phthalates simultaneously. We thus recommend that a class approach be used in assessing health impacts as has been done with other chemical classes. We propose critically needed policy reforms to eliminate ortho-phthalates from products that lead to exposure of pregnant women, women of reproductive age, infants, and children. Specific attention should be focused on reducing exposures among socially vulnerable populations such as communities of color, who frequently experience higher exposures.Ortho-phthalates are used in a vast array of products and elimination will thus necessitate a multipronged regulatory approach at federal and state levels. The fact that manufacturers and retailers have already voluntarily removed ortho-phthalates from a wide range of products indicates that this goal is feasible.
Collapse
Affiliation(s)
- Stephanie M Engel
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Heather B Patisaul
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Charlotte Brody
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Russ Hauser
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Ami R Zota
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Deborah H Bennet
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Maureen Swanson
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| | - Robin M Whyatt
- Stephanie M. Engel is with the Department of Epidemiology, Gillings School of Global Public Health, University of North Carolina at Chapel Hill. Heather B. Patisaul is with the Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh. Charlotte Brody is with Healthy Babies Bright Futures, Charlottesville, VA. Russ Hauser is with the Department of Environmental Health at the Harvard T. H. Chan School of Public Health, Boston, MA. Ami R. Zota is with the Department of Environmental and Occupational Health, George Washington University Milken School of Public Health, Washington, DC. Deborah H. Bennet is with the Department of Public Health Sciences, School of Medicine, University of California at Davis. Maureen Swanson is with The Arc of the United States, Washington, DC. Robin M. Whyatt is with the Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY
| |
Collapse
|
34
|
Minatoya M, Kishi R. A Review of Recent Studies on Bisphenol A and Phthalate Exposures and Child Neurodevelopment. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18073585. [PMID: 33808331 PMCID: PMC8036555 DOI: 10.3390/ijerph18073585] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Revised: 03/20/2021] [Accepted: 03/25/2021] [Indexed: 01/17/2023]
Abstract
Purpose of Review: Bisphenol A and phthalate have been found in the environment, as well as in humans. In this narrative review pre- and postnatal bisphenol A and phthalate exposures, their relationship to neurodevelopment, and the behavioral outcomes of children are elucidated, focusing in particular on the recent case-control, cross-sectional, and longitudinal studies. This review also introduces some of the possible mechanisms behind the observed associations between exposures and outcomes. Recent Findings: Although bisphenol A and phthalate exposure have been reported to influence neurobehavioral development in children, there are various kinds of test batteries for child neurodevelopmental assessment at different ages whose findings have been inconsistent among studies. In addition, the timing and number of exposure assessments have varied. Summary: Overall, this review suggests that prenatal exposure to bisphenol A and phthalates may contribute to neurobehavioral outcomes in children. The evidence is still limited; however, Attention Deficit Hyperactivity Disorder (ADHD) symptoms, especially among boys, constantly suggested association with both prenatal and concurrent exposure to bisphenol A. Although there is limited evidence on the adverse effects of prenatal and postnatal bisphenol A and phthalate exposures provided, pregnant women and young children should be protected from exposure based on a precautionary approach.
Collapse
|
35
|
Hansen JB, Bilenberg N, Timmermann CAG, Jensen RC, Frederiksen H, Andersson AM, Kyhl HB, Jensen TK. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and5 years from the Odense Child Cohort. Environ Health 2021; 20:24. [PMID: 33712018 PMCID: PMC7955642 DOI: 10.1186/s12940-021-00709-y] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 02/25/2021] [Indexed: 05/11/2023]
Abstract
BACKGROUND Bisphenol A (BPA) is a non-persistent chemical with endocrine disrupting abilities used in a variety of consumer products. Fetal exposure to BPA is of concern due to the elevated sensitivity, which particularly relates to the developing brain. Several epidemiological studies have investigated the association between prenatal BPA exposure and neurodevelopment, but the results have been inconclusive. OBJECTIVE To assess the association between in utero exposure to BPA and Attention Deficit/Hyperactivity Disorder (ADHD-) symptoms and symptoms of Autism Spectrum Disorder (ASD) in 2 and 5-year old Danish children. METHOD In the prospective Odense Child Cohort, BPA was measured in urine samples collected in gestational week 28 and adjusted for osmolality. ADHD and ASD symptoms were assessed with the use of the ADHD scale and ASD scale, respectively, derived from the Child Behaviour Checklist preschool version (CBCL/1½-5) at ages 2 and 5 years. Negative binomial and multiple logistic regression analyses were performed to investigate the association between maternal BPA exposure (continuous ln-transformed or divided into tertiles) and the relative differences in ADHD and ASD problem scores and the odds (OR) of an ADHD and autism score above the 75th percentile adjusting for maternal educational level, maternal age, pre-pregnancy BMI, parity and child age at evaluation in 658 mother-child pairs at 2 years of age for ASD-score, and 427 mother-child pairs at 5 years of age for ADHD and ASD-score. RESULTS BPA was detected in 85.3% of maternal urine samples even though the exposure level was low (median 1.2 ng/mL). No associations between maternal BPA exposure and ASD at age 2 years or ADHD at age 5 years were found. Trends of elevated Odds Ratios (ORs) were seen among 5 year old children within the 3rd tertile of BPA exposure with an ASD-score above the 75th percentile (OR = 1.80, 95% CI 0.97,3.32), being stronger for girls (OR = 3.17, 95% CI 1.85,9.28). A dose-response relationship was observed between BPA exposure and ASD-score at 5 years of age (p-trend 0.06) in both boys and girls, but only significant in girls (p-trend 0.03). CONCLUSION Our findings suggest that prenatal BPA exposure even in low concentrations may increase the risk of ASD symptoms which may predict later social abilities. It is therefore important to follow-up these children at older ages, measure their own BPA exposure, and determine if the observed associations persist.
Collapse
Affiliation(s)
- Julie Bang Hansen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Niels Bilenberg
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
- Department of Child and Adolescent Psychiatry, Mental Health Services in the Region of Southern Denmark, Odense, Denmark
| | - Clara Amalie Gade Timmermann
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Richard Christian Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
| | - Hanne Frederiksen
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Anna-Maria Andersson
- Department of Growth and Reproduction, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
- International Center for Research and Research Training in Endocrine Disruption of Male Reproduction and Child Health (EDMaRC), Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Henriette Boye Kyhl
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| | - Tina Kold Jensen
- Department of Clinical Pharmacology, Pharmacy and Environmental Medicine, Institute of Public Health, University of Southern Denmark, Odense, Denmark
- Hans Christian Andersen Children’s Hospital, Odense University Hospital, Odense, Denmark
- OPEN Patient data Explorative Network (OPEN), Odense, Denmark
| |
Collapse
|
36
|
Barkoski JM, Philippat C, Tancredi D, Schmidt RJ, Ozonoff S, Barr DB, Elms W, Bennett D, Hertz-Picciotto I. In utero pyrethroid pesticide exposure in relation to autism spectrum disorder (ASD) and other neurodevelopmental outcomes at 3 years in the MARBLES longitudinal cohort. ENVIRONMENTAL RESEARCH 2021; 194:110495. [PMID: 33220244 PMCID: PMC7946720 DOI: 10.1016/j.envres.2020.110495] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 11/12/2020] [Accepted: 11/13/2020] [Indexed: 05/09/2023]
Abstract
BACKGROUND We assessed the relationships between prenatal pyrethroid pesticide exposure and autism spectrum disorders (ASD) or non-typical development (non-TD) at 3 years. METHODS Participants were mother-child pairs (n = 201) in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) cohort. Because familial recurrence risk is high, MARBLES enrolls pregnant women with a family history of ASD. Children from these pregnancies were clinically assessed at 3 years of age and classified into 3 outcome categories: ASD, typically developing (TD), or non-TD (neither TD or ASD). Repeated maternal second and third trimester urine samples were analyzed for pyrethroid metabolite 3-phenoxybenzoic acid (3-PBA). Multinomial logistic regression was used to obtain relative risk ratios (RRR) linking 3-PBA concentrations averaged across each trimester and over pregnancy with child's outcome: ASD or non-TD vs. TD. Models were adjusted for specific gravity, maternal pre-pregnancy BMI, prenatal vitamin use, birth year, home-ownership, and pregnancy concentrations of TCPy (3,5,6-trichloro-2-pyridinol, a metabolite of chlorpyrifos). RESULTS The median specific gravity corrected 3-PBA concentration of all samples was 1.46 ng/mL. Greater second trimester 3-PBA concentrations were associated with a relative risk ratio (RRR) for ASD of (RRR: 1.50 (95% CI 0.89 to 2.51), p = 0.12). There were no differences between non-TD and TD. CONCLUSIONS This study found no evidence for differences in 3-PBA comparing non-TD with TD. A modestly elevated RRR was found comparing second trimester urinary 3-PBA concentrations for ASD versus TD; however, the confidence interval was wide and hence, these findings cannot be considered definitive.
Collapse
Affiliation(s)
- Jacqueline M. Barkoski
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Claire Philippat
- Institute for Advanced Biosciences, INSERM U1209, CNRS UMR 5309, University Grenoble Alpes, 38000 Grenoble, France
| | - Daniel Tancredi
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
- MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Sally Ozonoff
- MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, University of California, Davis, CA, USA
| | - Dana Boyd Barr
- Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - William Elms
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
| | - Deborah Bennett
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
- Corresponding Author: Jacqueline M. Barkoski, MS1C, One Shields Ave, University of California, Davis, Davis, CA 95616, Telephone: 530-754-8282, Fax: (530) 752-3239,
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California, Davis, CA, USA
- Department of Pediatrics, School of Medicine, University of California, Davis, CA, USA
| |
Collapse
|
37
|
Day DB, Collett BR, Barrett ES, Bush NR, Swan SH, Nguyen RHN, Szpiro AA, Sathyanarayana S. Phthalate mixtures in pregnancy, autistic traits, and adverse childhood behavioral outcomes. ENVIRONMENT INTERNATIONAL 2021; 147:106330. [PMID: 33418196 PMCID: PMC9291724 DOI: 10.1016/j.envint.2020.106330] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 10/28/2020] [Accepted: 12/07/2020] [Indexed: 05/22/2023]
Abstract
BACKGROUND Prenatal exposure to multiple phthalates is ubiquitous, and yet few studies have evaluated these exposures as a mixture in relation to child autistic traits and behavioral problems. OBJECTIVES To assess cumulative associations between prenatal phthalate mixtures and child behaviors, including effect modification by exposure timing and child sex. METHODS Analyses included 501 mother/child pairs from the multicenter pregnancy cohort The Infant Development and Environment Study (TIDES). Nine maternal urinary phthalate metabolites were measured in early and late pregnancy, and behavior was assessed at ages 4-5 years using composite T scores for the Behavioral Assessment System for Children (BASC-2), which measures several dimensions of child behavior, and the Social Responsiveness Scale (SRS-2), which measures social impairment consistent with autistic traits. We utilized weighted quantile sum (WQS) regressions to examine pregnancy period-specific associations between phthalate mixtures and behavioral outcomes. Full-sample 95% WQS confidence intervals are known to be anti-conservative, so we calculated a confirmatory p-value using a permutation test. Effect modification by sex was examined with stratified analyses. RESULTS A one-quintile increase in the early pregnancy phthalate mixture was associated with increased SRS-2 total score (coefficient = 1.0, confirmatory p = 0.01) and worse adaptive skills (coefficient = -1.0, confirmatory p = 0.06) in both sexes. In sex-stratified analyses, the early pregnancy phthalate mixture was associated with increased SRS-2 total score in boys (coefficient = 1.2, confirmatory p = 0.04) and girls (coefficient = 1.0, confirmatory p = 0.10) and worse BASC-2 adaptive skills score in girls (coefficient = -1.5, confirmatory p = 0.06), while the late pregnancy phthalate mixture was associated with increased BASC-2 externalizing score in boys (coefficient = 1.3, confirmatory p = 0.03). CONCLUSION Our results suggest cumulative adverse associations between prenatal phthalate mixtures and multiple facets of childhood behavior.
Collapse
Affiliation(s)
- Drew B Day
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA.
| | - Brent R Collett
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA; Department of Psychiatry and Behavioral Sciences, University of Washington, 1959 NE Pacific Street, Seattle, WA 98195, USA.
| | - Emily S Barrett
- Department of Epidemiology, Environmental and Occupational Health Sciences Institute, Rutgers School of Public Health, 170 Frelinghuysen Road, Piscataway, NJ 08854, USA.
| | - Nicole R Bush
- Center for Health and Community, Department of Psychiatry and Behavioral Sciences, Weill Institute for Neurosciences, Department of Pediatrics, University of California, San Francisco, 401 Parnassus Avenue, San Francisco, CA 94143, USA.
| | - Shanna H Swan
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, 17 E. 102nd Street, CAM Building, 3 West, One Gustave L. Levy Place, New York, NY 10029, USA.
| | - Ruby H N Nguyen
- Department of Epidemiology and Community Health, University of Minnesota, 420 Delaware Street Southeast, Minneapolis, MN 55455, USA.
| | - Adam A Szpiro
- Department of Biostatistics, University of Washington, 1705 Northeast Pacific Street, Seattle, WA 98195, USA.
| | - Sheela Sathyanarayana
- Center for Child Health, Behavior, and Development, Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98101, USA; Department of Pediatrics, University of Washington, 1959 Northeast Pacific Street, Seattle, WA 98195, USA.
| |
Collapse
|
38
|
Patti MA, Newschaffer C, Eliot M, Hamra GB, Chen A, Croen LA, Fallin MD, Hertz-Picciotto I, Kalloo G, Khoury JC, Lanphear BP, Lyall K, Yolton K, Braun JM. Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:1254. [PMID: 33573264 PMCID: PMC7908417 DOI: 10.3390/ijerph18031254] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 01/18/2021] [Accepted: 01/22/2021] [Indexed: 12/24/2022]
Abstract
Linear regression is often used to estimate associations between chemical exposures and neurodevelopment at the mean of the outcome. However, the potential effect of chemicals may be greater among individuals at the 'tails' of outcome distributions. Here, we investigated distributional effects on the associations between gestational phthalate exposure and child Autism Spectrum Disorder (ASD)-related behaviors using quantile regression. We harmonized data from the Early Autism Risk Longitudinal Investigation (EARLI) (n = 140) Study, an enriched-risk cohort of mothers who had a child with ASD, and the Health Outcomes and Measures of the Environment (HOME) Study (n = 276), a general population cohort. We measured concentrations of 9 phthalate metabolites in urine samples collected twice during pregnancy. Caregivers reported children's ASD-related behaviors using the Social Responsiveness Scale (SRS) at age 3-8 years; higher scores indicate more ASD-related behaviors. In EARLI, associations between phthalate concentrations and SRS scores were predominately inverse or null across SRS score quantiles. In HOME, positive associations of mono-n-butyl phthalate, monobenzyl phthalate, mono-isobutyl phthalate, and di-2-ethylhexyl phthalate concentrations with SRS scores increased in strength from the median to 95th percentile of SRS scores. These results suggest associations between phthalate concentrations and SRS scores may be stronger in individuals with higher SRS scores.
Collapse
Affiliation(s)
- Marisa A. Patti
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| | - Craig Newschaffer
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA; (C.N.); (K.L.)
- College of Health & Human Development, Pennsylvania State University, State College, PA 16801, USA
| | - Melissa Eliot
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| | - Ghassan B. Hamra
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Aimin Chen
- Department of Biostatistics Epidemiology and Informatics, University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lisa A. Croen
- Division of Research, Kaiser Permanente Northern California, Oakland, CA 94612, USA;
| | - M. Daniele Fallin
- Department of Mental Health, Johns Hopkins University, Baltimore, MD 21205, USA;
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA 95616, USA;
| | | | - Jane C. Khoury
- Division of Biostatistics and Epidemiology, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267, USA;
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
| | - Bruce P. Lanphear
- Faculty of Health Sciences, Simon Fraser University, Vancouver, BC, Canada;
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Drexel University, Philadelphia, PA 19104, USA; (C.N.); (K.L.)
| | - Kimberly Yolton
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA;
- Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45267, USA
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, RI 02903, USA; (M.E.); (J.M.B.)
| |
Collapse
|
39
|
Haggerty DK, Strakovsky RS, Talge NM, Carignan CC, Glazier-Essalmi AN, Ingersoll BR, Karthikraj R, Kannan K, Paneth NS, Ruden DM. Prenatal phthalate exposures and autism spectrum disorder symptoms in low-risk children. Neurotoxicol Teratol 2021; 83:106947. [PMID: 33412243 PMCID: PMC7825926 DOI: 10.1016/j.ntt.2021.106947] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Revised: 12/17/2020] [Accepted: 12/28/2020] [Indexed: 10/22/2022]
Abstract
BACKGROUND Prenatal exposure to environmental chemicals has been associated with Autism Spectrum Disorder (ASD) symptoms in some, but not all, studies, but most research has not accounted for other childhood behavior problems. OBJECTIVES To evaluate the specific associations of prenatal phthalate exposures with ASD symptoms in children (ages 3-6) accounting for other behavior problems, and to assess sex differences in these associations. METHODS We measured phthalate metabolites in prenatal urine samples. Mothers completed the Social Responsiveness Scale-2nd edition (SRS-2) to assess child ASD symptoms and the Child Behavior Checklist (CBCL) to assess general behavior problems. We assessed associations of the sum of di-(2-ethylhexyl) phthalate metabolites, monobutyl phthalate, mono-isobutyl phthalate, and monoethyl phthalate (mEP) with ASD symptoms, adjusting for other behavior problems, using linear regression models (n=77). RESULTS Most associations were null, and the sample size limited power to detect associations, particularly in the stratified analyses. After adjusting for internalizing and externalizing problems from the CBCL, ASD symptoms increased for each doubling of prenatal mEP concentration among boys only. CONCLUSIONS Further investigation of maternal prenatal urinary phthalate metabolite concentrations and ASD symptoms while adjusting for other behavioral problems is warranted.
Collapse
Affiliation(s)
- Diana K Haggerty
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Rita S Strakovsky
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | - Nicole M Talge
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Courtney C Carignan
- Department of Food Science and Human Nutrition, Michigan State University, East Lansing, MI 48824, USA
| | | | - Brooke R Ingersoll
- Department of Psychology, Michigan State University, East Lansing, MI 48824, USA
| | | | - Kurunthachalam Kannan
- Department of Pediatrics, New York University School of Medicine, New York, NY 10016, USA
| | - Nigel S Paneth
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA
| | - Douglas M Ruden
- Department of Ob/Gyn, Reproductive Endocrinology and Infertility, CS Mott Center for Human Growth and Development, Wayne State University School of Medicine, Detroit, MI, USA; Institutes for Environmental Health Science, Wayne State University School of Medicine, Detroit, MI, USA.
| |
Collapse
|
40
|
Philippat C, Calafat AM. Comparison of strategies to efficiently combine repeated urine samples in biomarker-based studies. ENVIRONMENTAL RESEARCH 2021; 192:110275. [PMID: 33022216 PMCID: PMC7879377 DOI: 10.1016/j.envres.2020.110275] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/24/2020] [Accepted: 09/24/2020] [Indexed: 05/06/2023]
Abstract
BACKGROUND In biomarker-based studies, collecting repeated biospecimens per participant can decrease measurement error, particularly for biomarkers displaying high within-subject variability. Guidelines to combine such repeated biospecimens do not exist. AIMS To compare the efficiency of several designs relying on repeated biospecimens to estimate exposure over 7 days. METHODS We quantified triclosan and bisphenol A (BPA) in all urine voids (N = 427) collected over seven days from eight individuals. We estimated the volume-weighted concentrations for all urine samples collected during a week and compared these gold standards with the concentrations obtained for equal-volume pools (standardized or not for urine dilution), unequal-volume pools (based on sample volume or creatinine concentration), and for the mean of the creatinine-standardized concentrations measured in each spot sample. RESULTS For both chemicals, correlations with gold standards were similar for equal- and unequal-volume pooling designs. Only for BPA, correlation coefficients were markedly lower after standardization for specific gravity or creatinine of concentrations estimated in equal-volume pools. Averaging BPA creatinine-standardized concentrations measured in each spot sample led also to lower correlations with gold standards compared to those obtained for unstandardized pooling designs. CONCLUSION For BPA and triclosan, considering individual urine sample volume or creatinine concentrations when pooling is unnecessary because equal-volume pool adequately estimates concentrations in gold standards. Standardization for specific gravity or creatinine of the concentrations assessed in equal-volume pool as well as averaging creatinine-standardized concentrations measured in each individual spot sample are not suitable for BPA. These results provide a practical framework on how to combine repeated biospecimens in epidemiological studies.
Collapse
Affiliation(s)
- Claire Philippat
- University Grenoble Alpes, Inserm, CNRS, Team of Environmental Epidemiology Applied to Reproduction and Respiratory Health, Institute for Advanced Biosciences (IAB), Grenoble, France.
| | | |
Collapse
|
41
|
Shin HM, Dhar U, Calafat AM, Nguyen V, Schmidt RJ, Hertz-Picciotto I. Temporal Trends of Exposure to Phthalates and Phthalate Alternatives in California Pregnant Women during 2007-2013: Comparison with Other Populations. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2020; 54:13157-13166. [PMID: 32940456 PMCID: PMC8237562 DOI: 10.1021/acs.est.0c03857] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
Phthalates with potential adverse health effects are being replaced by other phthalates or phthalate alternatives. Little is known about temporal trends of phthalate exposure in pregnant women in the United States. We quantified 16 metabolites of eight phthalates and di(isononyl) cyclohexane-1,2-dicarboxylate (DINCH) in 656 urine samples collected from 192 California pregnant women in 2007-2013 during their second and third trimesters of pregnancy who participated in the MARBLES (Markers of Autism Risk in Babies-Learning Early Signs) study. We used multiple regression to estimate least squares geometric means of phthalate biomarker concentrations and annual percent changes over the study period. Biomarker concentrations of diethyl phthalate (DEP) and three phthalates with known toxicity and adverse health effects (i.e., butyl benzyl phthalate [BBzP], dibutyl phthalate [DBP], di(2-ethylhexyl) phthalate [DEHP]) decreased, while those of di-isobutyl phthalate [DiBP], di-isononyl phthalate [DiNP], and di-n-octyl phthalate [DOP] increased in California pregnant women during our study period. To understand broad social forces that may influence temporal trends and geographic variations in phthalate exposure across countries, we compared our phthalate biomarker concentrations with those of other populations. We observed over a factor of 2 differences in exposure across countries for some phthalate biomarkers and between pregnant and nonpregnant women for DEP.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
- Corresponding author: Hyeong-Moo Shin, Ph.D., University of Texas, Arlington, 500 Yates Street, Box 19049, Arlington, Texas 76019,
| | - Upasana Dhar
- Department of Earth and Environmental Sciences, University of Texas, Arlington, Texas, USA
| | | | - Vy Nguyen
- Department of Environmental Health Sciences, University of Michigan, Ann Arbor, Michigan, USA
- Department of Computational Medicine and Bioinformatics, University of Michigan, Ann Arbor, Michigan, USA
| | - Rebecca J. Schmidt
- Department of Public Health Sciences, University of California, Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, California, USA
- UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, California, USA
| |
Collapse
|
42
|
Zhong C, Tessing J, Lee BK, Lyall K. Maternal Dietary Factors and the Risk of Autism Spectrum Disorders: A Systematic Review of Existing Evidence. Autism Res 2020; 13:1634-1658. [PMID: 33015977 PMCID: PMC9234972 DOI: 10.1002/aur.2402] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/07/2020] [Accepted: 09/12/2020] [Indexed: 01/15/2023]
Abstract
Prenatal maternal diet is a critical factor in offspring neurodevelopment. Emerging evidence suggests that prenatal diet may also play a role in the etiology autism spectrum disorder (ASD). This review summarizes studies published in English that examined prenatal nutrients or maternal diet in association with ASD from PubMed as of July 2020. Thiry-six studies from nine countries were included in this systematic review; these focused on multivitamin (n = 5), prenatal vitamin (n = 3), folic acid (FA; n = 14), Vitamin D (n = 11), polyunsaturated fatty acid or fish/supplement intake (n = 7), iron (n = 3), Vitamin B12 (n = 1), calcium (n = 1), magnesium (n = 1), and broad maternal dietary habits (n = 3). Overall, higher or moderate intake of prenatal/multivitamin, FA, and Vitamin D was associated with reductions in odds of ASD, though results have not been uniform and there is a need to clarify differences in findings based on biomarkers versus reported intake. Evidence was inconclusive or insufficient for other nutrients. Differences in the timing and measurement of these dietary factors, as well as potential residual confounding, may contribute to existing discrepancies. Key areas for future research to better understand the role of maternal diet in ASD include the need to address potential critical windows, examine the combined effect of multiple nutrients, and consider interactions with genetic or environmental factors. LAY SUMMARY: Maternal diet during pregnancy is important for child neurodevelopment. We reviewed 36 studies examining maternal diet and autism spectrum disorder (ASD) and found that prenatal vitamin/multivitamin use and adequate intake of folic acid and Vitamin D were each associated with lower likelihood of having a child with ASD. Future studies on these and other dietary factors are needed to better understand the role of maternal diet in the development of ASD. Autism Res 2020, 13: 1634-1658. © 2020 International Society for Autism Research and Wiley Periodicals LLC.
Collapse
Affiliation(s)
- Caichen Zhong
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA
| | | | - Brian K Lee
- Department of Epidemiology and Biostatistics, Drexel University School of Public Health, Philadelphia, Pennsylvania, USA
| | - Kristen Lyall
- A.J. Drexel Autism Institute, Philadelphia, Pennsylvania, USA
| |
Collapse
|
43
|
Konkel L. Phthalates and Autistic Traits: Exploring the Association between Prenatal Exposures and Child Behavior. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:104001. [PMID: 33021396 PMCID: PMC7537731 DOI: 10.1289/ehp7127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Accepted: 03/25/2020] [Indexed: 06/11/2023]
|
44
|
Shin HM, Bennett DH, Calafat AM, Tancredi D, Hertz-Picciotto I. Modeled prenatal exposure to per- and polyfluoroalkyl substances in association with child autism spectrum disorder: A case-control study. ENVIRONMENTAL RESEARCH 2020; 186:109514. [PMID: 32353786 PMCID: PMC7363534 DOI: 10.1016/j.envres.2020.109514] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 04/08/2020] [Accepted: 04/09/2020] [Indexed: 05/21/2023]
Abstract
BACKGROUND/OBJECTIVE Per- and polyfluoroalkyl substances (PFAS) display neurobehavioral toxicity in laboratory animal studies. We examined associations of modeled prenatal maternal exposure to PFAS with child diagnosis of autism spectrum disorder (ASD). METHODS Participants were 453 mother-child pairs from CHARGE (CHildhood Autism Risk from Genetics and Environment), a population-based case-control study. Children underwent psychometric testing and were clinically confirmed for ASD (n = 239) or typical development (TD, n = 214). At the end of the clinic visit, maternal blood specimens were collected. We quantified nine PFAS in maternal serum samples collected when their child was 2-5 years old. As surrogate in utero exposure, we used a model built from external prospective data in pregnancy and 24 months post-partum and then reconstructed maternal PFAS serum concentrations during pregnancy in this case-control sample. We used logistic regression to evaluate associations of modeled prenatal maternal PFAS concentrations with child ASD. RESULTS Modeled prenatal maternal perfluorohexane sulfonate (PFHxS) and perfluorooctane sulfonate (PFOS) were borderline associated with increased odds of child diagnosis of ASD (per nanogram per milliliter increase: odds ratio [OR] = 1.46; 95% confidence interval [CI]: 0.98, 2.18 for PFHxS, OR = 1.03; 95% CI: 0.99, 1.08 for PFOS). When compared to the lowest quartile (reference category), the highest quartile of modeled prenatal maternal PFHxS was associated with increased odds of child diagnosis of ASD (OR = 1.95; 95% CI: 1.02, 3.72). CONCLUSIONS In analyses where modeled prenatal maternal PFAS serum concentrations served as in utero exposure, we observed that prenatal PFHxS and PFOS exposure, but not other PFAS, were borderline associated with increased odds of child diagnosis of ASD. Further studies in which PFAS concentrations are prospectively measured in mothers and children at a range of developmental stages are needed to confirm these findings.
Collapse
Affiliation(s)
- Hyeong-Moo Shin
- Department of Earth and Environmental Sciences, University of Texas, Arlington, TX, USA.
| | - Deborah H Bennett
- Department of Public Health Sciences, University of California, Davis, CA, USA
| | | | - Daniel Tancredi
- Department of Pediatrics, University of California, Davis, CA, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, University of California, Davis, CA, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, Sacramento, CA, USA
| |
Collapse
|
45
|
Hollander JA, Cory-Slechta DA, Jacka FN, Szabo ST, Guilarte TR, Bilbo SD, Mattingly CJ, Moy SS, Haroon E, Hornig M, Levin ED, Pletnikov MV, Zehr JL, McAllister KA, Dzierlenga AL, Garton AE, Lawler CP, Ladd-Acosta C. Beyond the looking glass: recent advances in understanding the impact of environmental exposures on neuropsychiatric disease. Neuropsychopharmacology 2020; 45:1086-1096. [PMID: 32109936 PMCID: PMC7234981 DOI: 10.1038/s41386-020-0648-5] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2019] [Accepted: 02/17/2020] [Indexed: 12/22/2022]
Abstract
The etiologic pathways leading to neuropsychiatric diseases remain poorly defined. As genomic technologies have advanced over the past several decades, considerable progress has been made linking neuropsychiatric disorders to genetic underpinnings. Interest and consideration of nongenetic risk factors (e.g., lead exposure and schizophrenia) have, in contrast, lagged behind heritable frameworks of explanation. Thus, the association of neuropsychiatric illness to environmental chemical exposure, and their potential interactions with genetic susceptibility, are largely unexplored. In this review, we describe emerging approaches for considering the impact of chemical risk factors acting alone and in concert with genetic risk, and point to the potential role of epigenetics in mediating exposure effects on transcription of genes implicated in mental disorders. We highlight recent examples of research in nongenetic risk factors in psychiatric disorders that point to potential shared biological mechanisms-synaptic dysfunction, immune alterations, and gut-brain interactions. We outline new tools and resources that can be harnessed for the study of environmental factors in psychiatric disorders. These tools, combined with emerging experimental evidence, suggest that there is a need to broadly incorporate environmental exposures in psychiatric research, with the ultimate goal of identifying modifiable risk factors and informing new treatment strategies for neuropsychiatric disease.
Collapse
Affiliation(s)
- Jonathan A Hollander
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA.
| | - Deborah A Cory-Slechta
- Department of Environmental Medicine, Box EHSC, University of Rochester Medical Center, Rochester, NY, USA
| | - Felice N Jacka
- Food & Mood Centre, IMPACT SRC, School of Medicine, Deakin University, Geelong, VIC, Australia
- iMPACT (the Institute for Mental and Physical Health and Clinical Translation), Food & Mood Centre, Deakin University, Geelong, VIC, Australia
- Centre for Adolescent Health, Murdoch Children's Research Institute, Melbourne, VIC, Australia
- Black Dog Institute, Sydney, NSW, Australia
- James Cook University, Townsville, QLD, Australia
| | - Steven T Szabo
- Duke University Medical Center, Durham, NC, USA
- Durham Veterans Affairs Medical Center, Durham, NC, USA
| | - Tomás R Guilarte
- Department of Environmental Health Sciences Robert Stempel College of Public Health and Social Work, Florida International University, Miami, FL, USA
| | - Staci D Bilbo
- Department of Psychology & Neuroscience, Duke University, Durham, NC, USA
| | - Carolyn J Mattingly
- Department of Biological Sciences, Center for Human Health and the Environment, North Carolina State University, Raleigh, NC, USA
| | - Sheryl S Moy
- Department of Psychiatry and Carolina Institute for Developmental Disabilities, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Ebrahim Haroon
- Department of Psychiatry and Behavioral Sciences, Emory University School of Medicine, Atlanta, GA, USA
| | - Mady Hornig
- Department of Epidemiology, Mailman School of Public Health, Columbia University, New York, NY, USA
| | - Edward D Levin
- Department of Psychiatry and Behavioral Sciences, Duke University, Durham, NC, USA
| | - Mikhail V Pletnikov
- Departments of Psychiatry, Neuroscience, Molecular and Comparative Pathobiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Julia L Zehr
- Developmental Mechanisms and Trajectories of Psychopathology Branch, National Institute of Mental Health, NIH, Rockville, MD, USA
| | - Kimberly A McAllister
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Anika L Dzierlenga
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Amanda E Garton
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Cindy P Lawler
- Genes, Environment and Health Branch, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, NC, USA
| | - Christine Ladd-Acosta
- Department of Epidemiology and Wendy Klag Center for Autism and Developmental Disabilities, Johns Hopkins University, Baltimore, MD, USA
| |
Collapse
|
46
|
Radke EG, Braun JM, Nachman RM, Cooper GS. Phthalate exposure and neurodevelopment: A systematic review and meta-analysis of human epidemiological evidence. ENVIRONMENT INTERNATIONAL 2020; 137:105408. [PMID: 32045779 PMCID: PMC8453372 DOI: 10.1016/j.envint.2019.105408] [Citation(s) in RCA: 128] [Impact Index Per Article: 32.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Revised: 09/30/2019] [Accepted: 12/09/2019] [Indexed: 05/09/2023]
Abstract
OBJECTIVE We performed a systematic review of the epidemiology literature to identify the neurodevelopmental effects associated with phthalate exposure. DATA SOURCES AND STUDY ELIGIBILITY CRITERIA Six phthalates were included in the review: di(2-ethylhexyl) phthalate (DEHP), diisononyl phthalate (DINP), dibutyl phthalate (DBP), diisobutyl phthalate (DIBP), butyl benzyl phthalate (BBP), and diethyl phthalate (DEP). The initial literature search (of PubMed, Web of Science, and Toxline) included all studies of neurodevelopmental effects in humans, and outcomes were selected for full systematic review based on data availability. STUDY EVALUATION AND SYNTHESIS METHODS Studies of neurodevelopmental effects were evaluated using criteria defined a priori for risk of bias and sensitivity by two reviewers using a domain-based approach. Evidence was synthesized by outcome and phthalate and strength of evidence was summarized using a structured framework. For studies of cognition and motor effects in children ≤4 years old, a random effects meta-analysis was performed. RESULTS The primary outcomes reviewed here are (number of studies in parentheses): cognition (14), motor effects (9), behavior, including attention deficit hyperactivity disorder (20), infant behavior (3), and social behavior, including autism spectrum disorder (7). For each phthalate/outcome combination, there was slight or indeterminate evidence of an association, with the exception of motor effects for BBP, which had moderate evidence. CONCLUSIONS AND IMPLICATIONS OF KEY FINDINGS Overall, there is not a clear pattern of association between prenatal phthalate exposures and neurodevelopment. There are several possible reasons for the observed null associations related to exposure misclassification, periods of heightened susceptibility, sex-specific effects, and the effects of phthalate mixtures. Until these limitations are adequately addressed in the epidemiology literature, these findings should not be interpreted as evidence that there are no neurodevelopmental effects of phthalate exposure. The views expressed are those of the authors and do not necessarily represent the views or policies of the U.S. EPA.
Collapse
Affiliation(s)
- Elizabeth G Radke
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States.
| | - Joseph M Braun
- Brown University, School of Public Health, United States
| | - Rebecca M Nachman
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States
| | - Glinda S Cooper
- U.S. Environmental Protection Agency, National Center for Environmental Assessment, United States; The Innocence Project, United States
| |
Collapse
|
47
|
Oulhote Y, Lanphear B, Braun JM, Webster GM, Arbuckle TE, Etzel T, Forget-Dubois N, Seguin JR, Bouchard MF, MacFarlane A, Ouellet E, Fraser W, Muckle G. Gestational Exposures to Phthalates and Folic Acid, and Autistic Traits in Canadian Children. ENVIRONMENTAL HEALTH PERSPECTIVES 2020; 128:27004. [PMID: 32073305 PMCID: PMC7064316 DOI: 10.1289/ehp5621] [Citation(s) in RCA: 56] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
BACKGROUND The etiology of autism spectrum disorder is poorly understood. Few studies have investigated the link between endocrine-disrupting chemicals and autistic traits. We examined the relationship between gestational phthalates and autistic traits in 3- to 4-y-old Canadian children. We also investigated potential effect modification by sex and folic acid supplementation. METHODS We enrolled 2,001 women>18 years of age during the first trimester of pregnancy between 2008 and 2011 from 10 cities in Canada. At 3-4 years of age, 610 children underwent neuropsychological assessments including the Social Responsiveness Scale-II (SRS-2) as a measure of autistic traits and social impairment. We measured 11 phthalate metabolites in maternal first trimester urine samples and assessed folic acid supplementation from reported intakes. We estimated covariate-adjusted differences in SRS-2 T-scores with a doubling in phthalate concentrations in 510 children with complete data. RESULTS Mean total SRS T-score was 45.3 (SD=6.1). Children with higher gestational exposure to mono-n-butyl (MBP) and mono-3-carboxypropyl (MCPP) concentrations exhibited significantly higher total SRS T-scores, indicating greater overall social impairment, as well as higher scores on subdomains, indicating deficits in social cognition, social communication, social motivation, and restricted interests/repetitive behaviors. A doubling in MBP or MCPP concentrations was associated with 0.6 (95% CI: 0.1, 1.0) and 0.5 (95% CI: 0.1, 0.8) higher total SRS T-scores. Associations were consistently and significantly stronger in boys (βMBP=1.0; 95% CI: 0.4, 1.6; n=252) compared with girls (βMBP=0.1; 95% CI: -0.6, 0.7; n=258) and among children who had lower prenatal folic acid supplementation (<400μg/d) (βMBP=1.3; 95% CI: 0.4, 2.3; n=59) compared with those who had adequate folic acid supplementation (≥400μg/d) (βMBP=0.4; 95% CI: -0.1, 0.8; n=451). CONCLUSIONS Higher gestational concentrations of some phthalate metabolites were associated with higher scores of autistic traits as measured by the SRS-2 in boys, but not girls; these small size effects were mitigated by first trimester-of-pregnancy folic acid supplementation. https://doi.org/10.1289/EHP5621.
Collapse
Affiliation(s)
- Youssef Oulhote
- Department of Biostatistics and Epidemiology, School of Public Health and Health Sciences, University of Massachusetts at Amherst, Amherst, Massachusetts, USA
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and School of Psychology, Laval University, Quebec, Quebec, Canada
| | - Bruce Lanphear
- Child and Family Research Institute, BC Children’s Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Joseph M. Braun
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Glenys M. Webster
- Child and Family Research Institute, BC Children’s Hospital Research Institute and Faculty of Health Sciences, Simon Fraser University, Vancouver, British Columbia, Canada
| | - Tye E. Arbuckle
- Population Studies Division, Environmental Health Science and Research Bureau, Health Canada, Ottawa, Ontario, Canada
| | - Taylor Etzel
- Department of Epidemiology, Brown University, Providence, Rhode Island, USA
| | - Nadine Forget-Dubois
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and School of Psychology, Laval University, Quebec, Quebec, Canada
| | - Jean R. Seguin
- CHU Sainte-Justine Research Centre and Department of Psychiatry, School of Medicine, Université de Montréal, Montreal, Quebec, Canada
| | - Maryse F. Bouchard
- CHU Sainte-Justine Research Centre and Department of Environmental and Occupational Health, School of Public Health, Université de Montréal, Montreal, Quebec, Canada
| | | | - Emmanuel Ouellet
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and School of Psychology, Laval University, Quebec, Quebec, Canada
| | - William Fraser
- Centre de Sherbrooke Research Centre, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Gina Muckle
- Centre Hospitalier Universitaire (CHU) de Québec Research Centre and School of Psychology, Laval University, Quebec, Quebec, Canada
| |
Collapse
|
48
|
Barkoski JM, Busgang SA, Bixby M, Bennett D, Schmidt RJ, Barr DB, Panuwet P, Gennings C, Hertz-Picciotto I. Prenatal phenol and paraben exposures in relation to child neurodevelopment including autism spectrum disorders in the MARBLES study. ENVIRONMENTAL RESEARCH 2019; 179:108719. [PMID: 31627027 PMCID: PMC6948181 DOI: 10.1016/j.envres.2019.108719] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/10/2019] [Accepted: 09/02/2019] [Indexed: 05/09/2023]
Abstract
BACKGROUND Environmental phenols and parabens are endocrine disrupting chemicals (EDCs) with the potential to affect child neurodevelopment including autism spectrum disorders (ASD). Our aim was to assess whether exposure to environmental phenols and parabens during pregnancy was associated with an increased risk of clinical ASD or other nontypical development (non-TD). METHODS This study included mother-child pairs (N = 207) from the Markers of Autism Risks in Babies - Learning Early Signs (MARBLES) Cohort Study with urinary phenol and paraben metabolites analyzed using liquid chromatography-tandem mass spectrometry (LC-MS/MS) from repeated pregnancy urine samples. Because family recurrence risks in siblings are about 20%, MARBLES enrolls pregnant women who already had a child with ASD. Children were clinically assessed at 3 years of age and classified into 3 outcome categories: ASD, non-TD, or typically developing (TD). Single analyte analyses were conducted with trinomial logistic regression and weighted quantile sum (WQS) regression was used to test for mixture effects. RESULTS Regression models were adjusted for pre-pregnancy body mass index, prenatal vitamin use (yes/no), homeowner status (yes/no), birth year, and child's sex. In single chemical analyses phenol exposures were not significantly associated with child's diagnosis. Mixture analyses using trinomial WQS regression showed a significantly increased risk of non-TD compared to TD (OR = 1.58, 95% CI: 1.04, 2.04) with overall greater prenatal phenol and paraben metabolites mixture. Results for ASD also showed an increased risk, but it was not significant. DISCUSSION This is the first study to provide evidence that pregnancy environmental phenol exposures may increase the risk for non-TD in a high-risk population.
Collapse
Affiliation(s)
- Jacqueline M Barkoski
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), California, USA.
| | - Stefanie A Busgang
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Moira Bixby
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Deborah Bennett
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), California, USA
| | - Rebecca J Schmidt
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), California, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, California, Davis, CA, USA
| | - Dana Boyd Barr
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Parinya Panuwet
- Department of Environmental Health, Rollins School of Public Health, Emory University, Atlanta, GA, USA
| | - Chris Gennings
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Irva Hertz-Picciotto
- Department of Public Health Sciences, School of Medicine, University of California Davis (UC Davis), California, USA; UC Davis MIND (Medical Investigations of Neurodevelopmental Disorders) Institute, UC Davis, California, Davis, CA, USA
| |
Collapse
|
49
|
Hyland C, Mora AM, Kogut K, Calafat AM, Harley K, Deardorff J, Holland N, Eskenazi B, Sagiv SK. Prenatal Exposure to Phthalates and Neurodevelopment in the CHAMACOS Cohort. ENVIRONMENTAL HEALTH PERSPECTIVES 2019; 127:107010. [PMID: 31652105 PMCID: PMC6867166 DOI: 10.1289/ehp5165] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
BACKGROUND Previous studies suggest that prenatal exposure to phthalates, ubiquitous synthetic chemicals, may adversely affect neurodevelopment. However, data are limited on how phthalates affect cognition, executive function, and behavioral function into adolescence. OBJECTIVE We aimed to investigate associations of prenatal phthalate exposure with neurodevelopment in childhood and adolescence in the Center for the Health Assessment of Mothers and Children of Salinas (CHAMACOS) study. METHODS We examined associations between maternal urinary phthalate metabolite concentrations measured twice during pregnancy and a range of neurodevelopmental outcomes from ages 7 through 16 y in the CHAMACOS birth cohort (n=334). We used age-specific linear regression models and generalized estimating equation models to assess longitudinal effects and examined differences by sex. RESULTS Phthalate metabolites were detected in 88%-100% of samples, depending on the metabolite. Associations of phthalates with neurodevelopmental outcomes were largely null with some noteworthy patterns. Higher prenatal concentrations of metabolites of low-molecular weight phthalates (ΣLMW) were associated with more self-reported hyperactivity [β=0.8, 95% confidence interval (CI): 0.1, 1.4 per 2-fold increase in ΣLMW phthalates], attention problems (β=1.5, 95% CI: 0.7, 2.2), and anxiety (β=0.9, 95% CI: 0.0, 1.8) at age 16. We observed sex-specific differences for the sums of high-molecular-weight and di(2-ethylhexyl) metabolites and cognitive outcomes (e.g., β for Full-Scale IQ for boys=-1.9, 95% CI: -4.1, 0.3 and -1.7, 95% CI: -3.8, 0.3, respectively; β for girls=1.8, 95% CI: 0.1, 3.4 and 1.6, 95% CI: 0.0, 3.2, respectively; p-int=0.01 for both). CONCLUSION We found predominantly null associations of prenatal phthalates with neurodevelopment in CHAMACOS, and weak associations of ΣLMW phthalates with internalizing and externalizing behaviors in adolescence. No previous studies have examined associations of prenatal phthalate exposure with neurodevelopment into adolescence, an important time for manifestations of effects. https://doi.org/10.1289/EHP5165.
Collapse
Affiliation(s)
- Carly Hyland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Ana M Mora
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
- Central American Institute for Studies on Toxic Substances (IRET), Universidad Nacional, Heredia, Costa Rica
| | - Katherine Kogut
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Antonia M Calafat
- Division of Laboratory Sciences, National Center for Environmental Health, Centers for Disease Control and Prevention, Atlanta, Georgia, USA
| | - Kim Harley
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Julianna Deardorff
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Nina Holland
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Brenda Eskenazi
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| | - Sharon K Sagiv
- Center for Environmental Research and Children's Health (CERCH), School of Public Health, University of California at Berkeley, Berkeley, California, USA
| |
Collapse
|
50
|
Risk and Protective Environmental Factors Associated with Autism Spectrum Disorder: Evidence-Based Principles and Recommendations. J Clin Med 2019; 8:jcm8020217. [PMID: 30744008 PMCID: PMC6406684 DOI: 10.3390/jcm8020217] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Revised: 02/03/2019] [Accepted: 02/05/2019] [Indexed: 02/06/2023] Open
Abstract
Autism Spectrum Disorder (ASD) is a complex condition with early childhood onset, characterized by a set of common behavioral features. The etiology of ASD is not yet fully understood; however, it reflects the interaction between genetics and environment. While genetics is now a well-established risk factor, several data support a contribution of the environment as well. This paper summarizes the conclusions of a consensus conference focused on the potential pathogenetic role of environmental factors and on their interactions with genetics. Several environmental factors have been discussed in terms of ASD risk, namely advanced parental age, assisted reproductive technologies, nutritional factors, maternal infections and diseases, environmental chemicals and toxicants, and medications, as well as some other conditions. The analysis focused on their specific impact on three biologically relevant time windows for brain development: the periconception, prenatal, and early postnatal periods. Possible protective factors that might prevent or modify an ASD trajectory have been explored as well. Recommendations for clinicians to reduce ASD risk or its severity have been proposed. Developments in molecular biology and big data approaches, which are able to assess a large number of coexisting factors, are offering new opportunities to disentangle the gene⁻environment interplay that can lead to the development of ASD.
Collapse
|