1
|
Passi M, Stöckl JB, Fröhlich T, Moser S, Vollmar AM, Zahler S. CDK5 interacts with MST2 and modulates the Hippo signalling pathway. FEBS Open Bio 2024. [PMID: 39739588 DOI: 10.1002/2211-5463.13962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 12/16/2024] [Indexed: 01/02/2025] Open
Abstract
MST2 (STK3) is a major upstream kinase in the Hippo signalling pathway, an evolutionary conserved pathway in regulation of organ size, self-renewal and tissue homeostasis. Its downstream effectors are the transcriptional regulators YAP and TAZ. This pathway is regulated by a variety of factors, such as substrate stiffness or cell-cell contacts. Using a yeast two-hybrid screen, we detected a novel interaction between the kinases MST2 and CDK5, which we further confirmed by co-immunoprecipitation experiments. Cyclin-dependent kinase 5 (CDK5) is an unusual member of the family of cyclin-dependent kinases, involved in tumour growth and angiogenesis. Although a link between CDK5 and Hippo has been previously postulated, the mode of action is still elusive. Here, we show that knockdown of CDK5 causes reduced transcriptional activity of YAP and that CDK5 influences the phosphorylation levels of the Hippo upstream kinase LATS1. Moreover, a phosphoproteomics approach revealed that CDK5 interferes with the phosphorylation of DLG5, another upstream kinase, which regulates the Hippo pathway. Hence, CDK5 seems to act as a signalling hub for integrating the Hippo pathway and other signalling cascades. These interactions might have important implications for the use of CDK5 inhibitors, which are already in clinical use for tumour diseases.
Collapse
Affiliation(s)
- Mehak Passi
- Center for Drug Research, Ludwig-Maximilians-University Munich, Germany
| | - Jan B Stöckl
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Thomas Fröhlich
- Laboratory for Functional Genome Analysis, Gene Center Munich, Ludwig-Maximilians-University Munich, Germany
| | - Simone Moser
- Center for Drug Research, Ludwig-Maximilians-University Munich, Germany
- Institute of Pharmacy, University of Innsbruck, Austria
| | | | - Stefan Zahler
- Center for Drug Research, Ludwig-Maximilians-University Munich, Germany
| |
Collapse
|
2
|
Huang Y, Liu W, Zhao C, Shi X, Zhao Q, Jia J, Wang A. Targeting cyclin-dependent kinases: From pocket specificity to drug selectivity. Eur J Med Chem 2024; 275:116547. [PMID: 38852339 DOI: 10.1016/j.ejmech.2024.116547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/28/2024] [Accepted: 05/28/2024] [Indexed: 06/11/2024]
Abstract
The development of selective modulators of cyclin-dependent kinases (CDKs), a kinase family with numerous members and functional variations, is a significant preclinical challenge. Recent advancements in crystallography have revealed subtle differences in the highly conserved CDK pockets. Exploiting these differences has proven to be an effective strategy for achieving excellent drug selectivity. While previous reports briefly discussed the structural features that lead to selectivity in individual CDK members, attaining inhibitor selectivity requires consideration of not only the specific structures of the target CDK but also the features of off-target members. In this review, we summarize the structure-activity relationships (SARs) that influence selectivity in CDK drug development and analyze the pocket features that lead to selectivity using molecular-protein binding models. In addition, in recent years, novel CDK modulators have been developed, providing more avenues for achieving selectivity. These cases were also included. We hope that these efforts will assist in the development of novel CDK drugs.
Collapse
Affiliation(s)
- Yaoguang Huang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Wenwu Liu
- School of Pharmaceutical Sciences, Tsinghua University, Haidian Dist., Beijing, 100084, People's Republic of China
| | - Changhao Zhao
- Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China
| | - Xiaoyu Shi
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China
| | - Qingchun Zhao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China; Department of Pharmacy, General Hospital of Northern Theater Command, Shenyang, 110840, People's Republic of China.
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| | - Anhua Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang, 110016, People's Republic of China.
| |
Collapse
|
3
|
Song Y, Song Q, Tan F, Wang Y, Li C, Liao S, Yu K, Mei Z, Lv L. Seliciclib alleviates ulcerative colitis by inhibiting ferroptosis and improving intestinal inflammation. Life Sci 2024; 351:122794. [PMID: 38866218 DOI: 10.1016/j.lfs.2024.122794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 05/28/2024] [Accepted: 06/04/2024] [Indexed: 06/14/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) is a chronic, recurrent, non-specific inflammatory disease, and the pathogenesis of the disease remains unclear. Ferroptosis is a form of programmed cell death characterized by the accumulation of iron-dependent lipid peroxides, which are simultaneously closely related to reactive oxygen species (ROS). Although seliciclib is highly effective against immune inflammation, its mechanism on colitis is unclear. This study demonstrated that seliciclib administration partially inhibited ferroptosis, alleviating symptoms and inflammation in experimental colitis. METHODS The mouse UC model was induced by 3.0 % dextran sodium sulfate (DSS) for 7 days and treated with seliciclib (10 mg/kg) for 5 days. In the in vitro model, LPS (100 μg/mL) was used for induction and seliciclib (10 μM) was applied for 2 h. Meanwhile, appropriate histopathology, inflammatory response, oxidative stress, and ferroptosis regulators were measured. RESULTS This study primarily investigated the role of seliciclib in regulating ferroptosis in UC. Bioinformatics analysis indicated that Dual oxidase 2 (DUOX2) may serve a role involved in the ferroptosis of UC. The experimental findings demonstrated that seliciclib alleviates symptoms and inflammation in DSS-induced UC mice and partially mitigates the occurrence of ferroptosis both in vivo and in vitro, possibly through the modulation of DUOX2. CONCLUSIONS Ferroptosis is strongly associated with the development of colitis, and seliciclib plays an essential role in ferroptosis and inflammation in UC. The suppression of ferroptosis in the intestinal epithelium could be a therapeutic approach for UC.
Collapse
Affiliation(s)
- Ya Song
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Qian Song
- The Second College of Clinical Medicine, Chongqing Medical University, 1 Yixue Road, Yuzhong, 400016 Chongqing, China.
| | - Fangyan Tan
- Department of Nephrology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Yanhui Wang
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Chuanfei Li
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Shengtao Liao
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Keqi Yu
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China
| | - Zhechuan Mei
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| | - Lin Lv
- Department of Gastroenterology, The Second Affiliated Hospital of Chongqing Medical University, 74 Linjiang Road, Yuzhong, 400010 Chongqing, China.
| |
Collapse
|
4
|
Rossini E, Tamburello M, Abate A, Zini S, Ribaudo G, Gianoncelli A, Calza S, Valcamonico F, Suardi NR, Mirabella G, Berruti A, Sigala S. The CDK Inhibitor Dinaciclib Improves Cisplatin Response in Nonseminomatous Testicular Cancer: A Preclinical Study. Cells 2024; 13:368. [PMID: 38474332 DOI: 10.3390/cells13050368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 02/08/2024] [Accepted: 02/17/2024] [Indexed: 03/14/2024] Open
Abstract
BACKGROUND Most patients with testicular germ cell tumors (GCTs) are treated with cisplatin (CP)-based chemotherapy. However, some of them may develop CP resistance and therefore represent a clinical challenge. Cyclin-dependent kinase 5 (CDK5) is involved in chemotherapy resistance in different types of cancer. Here, we investigated the possible role of CDK5 and other CDKs targeted by dinaciclib in nonseminoma cell models (both CP-sensitive and CP-resistant), evaluating the potential of the CDK inhibitor dinaciclib as a single/combined agent for the treatment of advanced/metastatic testicular cancer (TC). METHODS The effects of dinaciclib and CP on sensitive and resistant NT2/D1 and NCCIT cell viability and proliferation were evaluated using MTT assays and direct count methods. Flow cytometry cell-cycle analysis was performed. The protein expression was assessed via Western blotting. The in vivo experiments were conducted in zebrafish embryos xenografted with TC cells. RESULTS Among all the CDKs analyzed, CDK5 protein expression was significantly higher in CP-resistant models. Dinaciclib reduced the cell viability and proliferation in each cell model, inducing changes in cell-cycle distribution. In drug combination experiments, dinaciclib enhances the CP effect both in vitro and in the zebrafish model. CONCLUSIONS Dinaciclib, when combined with CP, could be useful for improving nonseminoma TC response to CP.
Collapse
Affiliation(s)
- Elisa Rossini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Mariangela Tamburello
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Andrea Abate
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Silvia Zini
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Giovanni Ribaudo
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Alessandra Gianoncelli
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Stefano Calza
- Unit of Biostatistics and Bioinformatics, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| | - Francesca Valcamonico
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Nazareno R Suardi
- Urology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Giuseppe Mirabella
- Urology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Alfredo Berruti
- Oncology Unit, Department of Medical and Surgical Specialties, Radiological Sciences, and Public Health, University of Brescia at ASST Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Sandra Sigala
- Section of Pharmacology, Department of Molecular and Translational Medicine, University of Brescia, 25123 Brescia, Italy
| |
Collapse
|
5
|
Ros-Carrero C, Spiridon-Bodi M, Igual JC, Gomar-Alba M. The CDK Pho85 inhibits Whi7 Start repressor to promote cell cycle entry in budding yeast. EMBO Rep 2024; 25:745-769. [PMID: 38233717 PMCID: PMC10897450 DOI: 10.1038/s44319-023-00049-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/19/2024] Open
Abstract
Pho85 is a multifunctional CDK that signals to the cell when environmental conditions are favorable. It has been connected to cell cycle control, mainly in Start where it promotes the G1/S transition. Here we describe that the Start repressor Whi7 is a key target of Pho85 in the regulation of cell cycle entry. The phosphorylation of Whi7 by Pho85 inhibits the repressor and explains most of the contribution of the CDK in the activation of Start. Mechanistically, Pho85 downregulates Whi7 protein levels through the control of Whi7 protein stability and WHI7 gene transcription. Whi7 phosphorylation by Pho85 also restrains the intrinsic ability of Whi7 to associate with promoters. Furthermore, although Whi5 is the main Start repressor in normal cycling cells, in the absence of Pho85, Whi7 becomes the major repressor leading to G1 arrest. Overall, our results reveal a novel mechanism by which Pho85 promotes Start through the regulation of the Whi7 repressor at multiple levels, which may confer to Whi7 a functional specialization to connect the response to adverse conditions with the cell cycle control.
Collapse
Affiliation(s)
- Cristina Ros-Carrero
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - Mihai Spiridon-Bodi
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain
| | - J Carlos Igual
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| | - Mercè Gomar-Alba
- Institut de Biotecnologia i Biomedicina (BIOTECMED) and Departament de Bioquímica i Biologia Molecular, Universitat de València, 46100, Burjassot, Spain.
| |
Collapse
|
6
|
Zhang R, Wang J, Du Y, Yu Z, Wang Y, Jiang Y, Wu Y, Le T, Li Z, Zhang G, Lv L, Ma H. CDK5 destabilizes PD-L1 via chaperon-mediated autophagy to control cancer immune surveillance in hepatocellular carcinoma. J Immunother Cancer 2023; 11:e007529. [PMID: 38007240 PMCID: PMC10679996 DOI: 10.1136/jitc-2023-007529] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/31/2023] [Indexed: 11/27/2023] Open
Abstract
BACKGROUND In the past few years, immunotherapies of hepatocellular carcinoma (HCC) targeting programmed cell death protein 1 (PD-1) and its ligand programmed cell death ligand 1 (PD-L1), have achieved durable clinical benefits. However, only a fraction of HCC patients showed objective clinical response to PD-1/PD-L1 blockade alone. Despite the impact on post-translational modifications of PD-L1 being substantial, its significance in resistance to HCC immunotherapy remains poorly defined. METHODS Cyclin-dependent kinase 5 (CDK5) expression was knocked down in HCC cells, CDK5 and PD-L1 protein levels were examined by Western blot. Coimmunoprecipitation was conducted to evaluate the interaction between proteins. Preclinical HCC mice model was constructed to evaluate the effect of CDK5 inhibitor alone or in combination with PD-1 antibody. Clinical HCC samples were used to elucidate the clinical relevance of CDK5, PD-L1, and PD-L1 T290 phosphorylation in HCC. RESULTS We find that CDK5 deficiency upregulates PD-L1 protein expression in HCC cells and decipher a novel molecular mechanism under which PD-L1 is downregulated by CDK5, that is, CDK5 mediated PD-L1 phosphorylation at T290 promotes its binding with chaperon protein heat-shock cognate protein 70 (HSC70) and degradation through chaperon-mediated autophagy. Notably, treatment of CDK5 inhibitor, PNU112455A, effectively upregulates the tumorous PD-L1 level, promotes the response to anti-PD-1 immunotherapy,and prolongs the survival time of mice bearing HCC tumors. What is more, the T290 phosphorylation status of PD-L1 correlates with the prognosis of HCC. CONCLUSIONS Targeting CDK5 can synergize with PD-1 blockade to suppress HCC growth, which may have clinical benefits. Our study reveals a unique regulation of the degradation of PD-L1 in HCC, and provides an attractive therapeutic target, a potential drug, and a new prognostic marker for the clinical treatment of HCC.
Collapse
Affiliation(s)
- Ruonan Zhang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Jie Wang
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yu Du
- Nourse Centre for Pet Nutrition, Wuhu, Anhui, China
| | - Ze Yu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Yihan Wang
- School of Management, Xi'an Jiaotong University, Xi'an, Shanxi, China
| | - Yixiao Jiang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Yixin Wu
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ting Le
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Ziqi Li
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| | - Guoqiang Zhang
- Department of General Surgery, Zhoushan Hospital, Zhoushan, Zhejiang, China
| | - Lei Lv
- MOE Key Laboratory of Metabolism and Molecular Medicine, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Haijie Ma
- Cellular and Molecular Biology Laboratory, Affiliated Zhoushan Hospital of Wenzhou Medical University, Zhoushan, Zhejiang, China
| |
Collapse
|
7
|
Cao LL, Wu YK, Lin TX, Lin M, Chen YJ, Wang LQ, Wang JB, Lin JX, Lu J, Chen QY, Tu RH, Huang ZN, Lin JL, Zheng HL, Xie JW, Li P, Huang CM, Zheng CH. CDK5 promotes apoptosis and attenuates chemoresistance in gastric cancer via E2F1 signaling. Cancer Cell Int 2023; 23:286. [PMID: 37990321 PMCID: PMC10664659 DOI: 10.1186/s12935-023-03112-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2023] [Accepted: 10/26/2023] [Indexed: 11/23/2023] Open
Abstract
BACKGROUND Chemoresistance is a major clinical challenge that leads to tumor metastasis and poor clinical outcome. The mechanisms underlying gastric cancer resistance to chemotherapy are still unclear. METHODS We conducted bioinformatics analyses of publicly available patient datasets to establish an apoptotic phenotype and determine the key pathways and clinical significance. In vitro cell models, in vivo mouse models, and numerous molecular assays, including western blotting, qRT-PCR, immunohistochemical staining, and coimmunoprecipitation assays were used to clarify the role of factors related to apoptosis in gastric cancer in this study. Differences between datasets were analyzed using the Student's t-test and two-way ANOVA; survival rates were estimated based on Kaplan-Meier analysis; and univariate and multivariate Cox proportional hazards models were used to evaluate prognostic factors. RESULTS Bulk transcriptomic analysis of gastric cancer samples established an apoptotic phenotype. Proapoptotic tumors were enriched for DNA repair and immune inflammatory signaling and associated with improved prognosis and chemotherapeutic benefits. Functionally, cyclin-dependent kinase 5 (CDK5) promoted apoptosis of gastric cancer cells and sensitized cells and mice to oxaliplatin. Mechanistically, we demonstrate that CDK5 stabilizes DP1 through direct binding to DP1 and subsequent activation of E2F1 signaling. Clinicopathological analysis indicated that CDK5 depletion correlated with poor prognosis and chemoresistance in human gastric tumors. CONCLUSION Our findings reveal that CDK5 promotes cell apoptosis by stabilizing DP1 and activating E2F1 signaling, suggesting its potential role in the prognosis and therapeutic decisions for patients with gastric cancer.
Collapse
Affiliation(s)
- Long-Long Cao
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Kai Wu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Tong-Xin Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Mi Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Yu-Jing Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ling-Qian Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jia-Bin Wang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Xian Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jun Lu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Qi-Yue Chen
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ru-Hong Tu
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ze-Ning Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ju-Li Lin
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Hua-Long Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Jian-Wei Xie
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Ping Li
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China
| | - Chang-Ming Huang
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| | - Chao-Hui Zheng
- Department of Gastric Surgery, Fujian Medical University Union Hospital, No.29 Xinquan Road, Fuzhou, Fujian Province, 350001, China.
- Key Laboratory of Ministry of Education of Gastrointestinal Cancer, Fujian Medical University, Fuzhou, China.
- Fujian Key Laboratory of Tumor Microbiology, Fujian Medical University, Fuzhou, China.
| |
Collapse
|
8
|
Yi K, Kong H, Zheng C, Zhuo C, Jin Y, Zhong Q, Mintz RL, Ju E, Wang H, Lv S, Lao YH, Tao Y, Li M. A LIGHTFUL nanomedicine overcomes EGFR-mediated drug resistance for enhanced tyrosine-kinase-inhibitor-based hepatocellular carcinoma therapy. Biomaterials 2023; 302:122349. [PMID: 37844429 DOI: 10.1016/j.biomaterials.2023.122349] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/18/2023] [Accepted: 10/06/2023] [Indexed: 10/18/2023]
Abstract
Targeting the activated epidermal growth factor receptor (EGFR) via clustered regularly interspaced short palindromic repeat (CRISPR) technology is appealing to overcome the drug resistance of hepatocellular carcinoma (HCC) towards tyrosine kinase inhibitor (TKI) therapy. However, combining these two distinct drugs using traditional liposomes results in a suboptimal synergistic anti-HCC effect due to the limited CRISPR/Cas9 delivery efficiency caused by lysosomal entrapment after endocytosis. Herein, we developed a liver-targeting gene-hybridizing-TKI fusogenic liposome (LIGHTFUL) that can achieve high CRISPR/Cas9 expression to reverse the EGFR-mediated drug resistance for enhanced TKI-based HCC therapy efficiently. Coated with a galactose-modified membrane-fusogenic lipid layer, LIGHTFUL reached the targeting liver site to fuse with HCC tumor cells, directly and efficiently transporting interior CDK5- and PLK1-targeting CRISPR/Cas9 plasmids (pXG333-CPs) into the HCC cell cytoplasm and then the cell nucleus for efficient expression. Such membrane-fusion-mediated pXG333-CP delivery resulted in effective downregulation of both CDK5 and PLK1, sufficiently inactivating EGFR to improve the anti-HCC effects of the co-delivered TKI, lenvatinib. This membrane-fusion-participant codelivery strategy optimized the synergetic effect of CRISPR/Cas9 and TKI combinational therapy as indicated by the 0.35 combination index in vitro and the dramatic reduction of subcutaneous and orthotopic TKI-insensitive HCC tumor growth in mice. Therefore, the established LIGHTFUL provides a unique co-delivery platform to combine gene editing and TKI therapies for enhanced synergetic therapy.
Collapse
Affiliation(s)
- Ke Yi
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Huimin Kong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunxiong Zheng
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Chenya Zhuo
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuanyuan Jin
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Qingguo Zhong
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Rachel L Mintz
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, MO, 63110, USA
| | - Enguo Ju
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Haixia Wang
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China
| | - Shixian Lv
- School of Materials Science and Engineering, Peking University, Beijing, 100871, China
| | - Yeh-Hsing Lao
- Department of Pharmaceutical Sciences, University at Buffalo, The State University of New York, Buffalo, NY, 14214, USA
| | - Yu Tao
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China
| | - Mingqiang Li
- Laboratory of Biomaterials and Translational Medicine, Center for Nanomedicine, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510630, China; Guangdong Provincial Key Laboratory of Liver Disease Research, Guangzhou, 510630, China.
| |
Collapse
|
9
|
Pluta AJ, Studniarek C, Murphy S, Norbury CJ. Cyclin-dependent kinases: Masters of the eukaryotic universe. WILEY INTERDISCIPLINARY REVIEWS. RNA 2023; 15:e1816. [PMID: 37718413 PMCID: PMC10909489 DOI: 10.1002/wrna.1816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 07/21/2023] [Accepted: 08/03/2023] [Indexed: 09/19/2023]
Abstract
A family of structurally related cyclin-dependent protein kinases (CDKs) drives many aspects of eukaryotic cell function. Much of the literature in this area has considered individual members of this family to act primarily either as regulators of the cell cycle, the context in which CDKs were first discovered, or as regulators of transcription. Until recently, CDK7 was the only clear example of a CDK that functions in both processes. However, new data points to several "cell-cycle" CDKs having important roles in transcription and some "transcriptional" CDKs having cell cycle-related targets. For example, novel functions in transcription have been demonstrated for the archetypal cell cycle regulator CDK1. The increasing evidence of the overlap between these two CDK types suggests that they might play a critical role in coordinating the two processes. Here we review the canonical functions of cell-cycle and transcriptional CDKs, and provide an update on how these kinases collaborate to perform important cellular functions. We also provide a brief overview of how dysregulation of CDKs contributes to carcinogenesis, and possible treatment avenues. This article is categorized under: RNA Interactions with Proteins and Other Molecules > RNA-Protein Complexes RNA Processing > 3' End Processing RNA Processing > Splicing Regulation/Alternative Splicing.
Collapse
Affiliation(s)
| | | | - Shona Murphy
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| | - Chris J. Norbury
- Sir William Dunn School of PathologyUniversity of OxfordOxfordUK
| |
Collapse
|
10
|
Marciniak B, Kciuk M, Mujwar S, Sundaraj R, Bukowski K, Gruszka R. In Vitro and In Silico Investigation of BCI Anticancer Properties and Its Potential for Chemotherapy-Combined Treatments. Cancers (Basel) 2023; 15:4442. [PMID: 37760412 PMCID: PMC10526149 DOI: 10.3390/cancers15184442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 08/10/2023] [Accepted: 08/30/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND DUSP6 phosphatase serves as a negative regulator of MAPK kinases involved in numerous cellular processes. BCI has been identified as a potential allosteric inhibitor with anticancer activity. Our study was designed to test the anticancer properties of BCI in colon cancer cells, to characterize the effect of this compound on chemotherapeutics such as irinotecan and oxaliplatin activity, and to identify potential molecular targets for this inhibitor. METHODS BCI cytotoxicity, proapoptotic activity, and cell cycle distribution were investigated in vitro on three colon cancer cell lines (DLD1, HT-29, and Caco-2). In silico investigation was prepared to assess BCI drug-likeness and identify potential molecular targets. RESULTS The exposure of colorectal cancer cells with BCI resulted in antitumor effects associated with cell cycle arrest and induction of apoptosis. BCI exhibited strong cytotoxicity on DLD1, HT-29, and Caco-2 cells. BCI showed no significant interaction with irinotecan, but strongly attenuated the anticancer activity of oxaliplatin when administered together. Analysis of synergy potential further confirmed the antagonistic interaction between these two compounds. In silico investigation indicated CDK5 as a potential new target of BCI. CONCLUSIONS Our studies point to the anticancer potential of BCI but note the need for a precise mechanism of action.
Collapse
Affiliation(s)
- Beata Marciniak
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Mateusz Kciuk
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
- Doctoral School of Exact and Natural Sciences, University of Lodz, 90-237 Lodz, Poland
| | - Somdutt Mujwar
- Chitkara College of Pharmacy, Chitkara University, Rajpura 140401, Punjab, India;
| | - Rajamanikandan Sundaraj
- Centre for Drug Discovery, Department of Biochemistry, Karpagam Academy of Higher Education, Coimbatore 641021, Tamil Nadu, India;
| | - Karol Bukowski
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| | - Renata Gruszka
- Department of Molecular Biotechnology and Genetics, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland; (M.K.); (K.B.); (R.G.)
| |
Collapse
|
11
|
Atiya A, Batra S, Mohammad T, Alorfi NM, Abdulmonem WA, Alhumaydhi FA, Ashraf GM, Baeesa SS, Elasbali AM, Shahwan M. Desmodin and isopongachromene as potential inhibitors of cyclin-dependent kinase 5: phytoconstituents targeting anticancer and neurological therapy. J Biomol Struct Dyn 2023; 41:8042-8052. [PMID: 36184739 DOI: 10.1080/07391102.2022.2128877] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 09/20/2022] [Indexed: 10/07/2022]
Abstract
Cyclin-dependent kinase 5 (CDK5) is a proline-directed serine-threonine protein kinase vital for neuronal cell cycle arrest and differentiation. It activates by binding with p35 and p39 and is important for the functioning of the nervous system. A growing body of evidence suggests that CDK5 contributes to the onset and progression of neurodegeneration and tumorigenesis and represents itself as a potential therapeutic target. Our research illustrates virtual screening of phytochemicals from the IMPPAT (Indian Medicinal Plants, Phytochemistry and Therapeutics) library to search for potential inhibitors of CDK5. Initially, the compounds from the parent library were filtered out via their physicochemical properties following the Lipinski rule of five. Then sequentially, molecular docking-based virtual screening, PAINS filter, ADMET, PASS analysis, and molecular dynamics (MD) simulation were done using various computational tools to rule out adversities that can cause hindrances in the identification of potential inhibitors of CDK5. Finally, two compounds were selected via the extensive screening showing significant binding with CDK5 ATP-binding pocket and ultimately were selected as potent ATP-competitive inhibitors of CDK5. Finally, we propose that the elucidated compounds Desmodin and Isopongachromene can be used further in the drug discovery process and act as therapeutics in the medical industry to treat certain complex diseases, including cancer and neurodegeneration.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Akhtar Atiya
- Department of Pharmacognosy, College of Pharmacy, King Khalid University (KKU), Abha, Saudi Arabia
| | - Shivani Batra
- Amity Institute of Biotechnology, Amity University, Noida, Uttar Pradesh, India
| | - Taj Mohammad
- Centre for Interdisciplinary Research in Basic Sciences, Jamia Millia Islamia, New Delhi, India
| | - Nasser M Alorfi
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Kingdom of Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraidah, Saudi Arabia
| | - Ghulam Md Ashraf
- Pre-Clinical Research Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Department of Medical Laboratory Sciences, Faculty of Applied Medical Sciences, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Saleh S Baeesa
- Division of Neurosurgery, College of Medicine, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Moyad Shahwan
- College of Pharmacy, Ajman University, Abha, United Arab Emirates
- Centre of Medical and Bio-Allied Health Sciences Research, Ajman University, Abha, United Arab Emirates
| |
Collapse
|
12
|
Chowdhury I, Dashi G, Keskitalo S. CMGC Kinases in Health and Cancer. Cancers (Basel) 2023; 15:3838. [PMID: 37568654 PMCID: PMC10417348 DOI: 10.3390/cancers15153838] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/18/2023] [Accepted: 07/26/2023] [Indexed: 08/13/2023] Open
Abstract
CMGC kinases, encompassing cyclin-dependent kinases (CDKs), mitogen-activated protein kinases (MAPKs), glycogen synthase kinases (GSKs), and CDC-like kinases (CLKs), play pivotal roles in cellular signaling pathways, including cell cycle regulation, proliferation, differentiation, apoptosis, and gene expression regulation. The dysregulation and aberrant activation of these kinases have been implicated in cancer development and progression, making them attractive therapeutic targets. In recent years, kinase inhibitors targeting CMGC kinases, such as CDK4/6 inhibitors and BRAF/MEK inhibitors, have demonstrated clinical success in treating specific cancer types. However, challenges remain, including resistance to kinase inhibitors, off-target effects, and the need for better patient stratification. This review provides a comprehensive overview of the importance of CMGC kinases in cancer biology, their involvement in cellular signaling pathways, protein-protein interactions, and the current state of kinase inhibitors targeting these kinases. Furthermore, we discuss the challenges and future perspectives in targeting CMGC kinases for cancer therapy, including potential strategies to overcome resistance, the development of more selective inhibitors, and novel therapeutic approaches, such as targeting protein-protein interactions, exploiting synthetic lethality, and the evolution of omics in the study of the human kinome. As our understanding of the molecular mechanisms and protein-protein interactions involving CMGC kinases expands, so too will the opportunities for the development of more selective and effective therapeutic strategies for cancer treatment.
Collapse
Affiliation(s)
- Iftekhar Chowdhury
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Giovanna Dashi
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| | - Salla Keskitalo
- Institute of Biotechnology, University of Helsinki, 00014 Helsinki, Finland; (I.C.)
- Helsinki Institute of Life Science, University of Helsinki, 00014 Helsinki, Finland
| |
Collapse
|
13
|
Amin N, Wang H, Song Q, Bhaskar M, Yadav SP, Gilbert MR, Pant H, Tabouret E, Zhuang Z. TP5: A Novel Therapeutic Approach Targeting Aberrant and Hyperactive CDK5/p25 for the Treatment of Colorectal Carcinoma. Int J Mol Sci 2023; 24:11733. [PMID: 37511490 PMCID: PMC10380212 DOI: 10.3390/ijms241411733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/12/2023] [Accepted: 07/18/2023] [Indexed: 07/30/2023] Open
Abstract
Colorectal carcinoma (CRC) is a prevalent cancer worldwide with a high mortality rate. Evidence suggests that increased expression of Cyclin-dependent kinase 5 (CDK5) contributes to cancer progression, making it a promising target for treatment. This study examined the efficacy of selectively inhibiting CDK5 in colorectal carcinoma using TP5, a small peptide that selectively inhibits the aberrant and hyperactive CDK5/p25 complex while preserving physiological CDK5/p35 functions. We analyzed TP5's impact on CDK5 activity, cell survival, apoptosis, the cell cycle, DNA damage, ATM phosphorylation, and reactive oxygen species (ROS) signaling in mitochondria, in CRC cell lines, both alone and in combination with chemotherapy. We also assessed TP5's efficacy on a xenograft mouse model with HCT116 cells. Our results showed that TP5 decreased CDK5 activity, impaired cell viability and colony formation, induced apoptosis, increased DNA damage, and led to the G1 phase arrest of cell cycle progression. In combination with irinotecan, TP5 demonstrated a synergy by leading to the accumulation of DNA damage, increasing the γH2A.X foci number, and inhibiting G2/M arrest induced by Sn38 treatment. TP5 alone or in combination with irinotecan increased mitochondrial ROS levels and inhibited tumor growth, prolonging mouse survival in the CRC xenograft animal model. These results suggest that TP5, either alone or in combination with irinotecan, is a promising therapeutic option for colorectal carcinoma.
Collapse
Affiliation(s)
- Niranjana Amin
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Herui Wang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Qi Song
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Manju Bhaskar
- Translational Neuroscience Center, National Institutes of Health, Bethesda, MD 20892, USA
| | | | - Mark R Gilbert
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Harish Pant
- National Institute of Neurological Disorders and Stroke, Bethesda, MD 20892, USA
| | - Emeline Tabouret
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
- Institute of NeuroPhysiopathology (INP), National Centre for Scientific Research (CNRS), Aix-Marseille University, 13005 Marseille, France
| | - Zhengping Zhuang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
14
|
Wong DP, Fritz CE, Feinberg D, Huang AY, Parameswaran R. p35 is a Crucial Player in NK-cell Cytotoxicity and TGFβ-mediated NK-cell Dysfunction. CANCER RESEARCH COMMUNICATIONS 2023; 3:793-806. [PMID: 37377891 PMCID: PMC10162136 DOI: 10.1158/2767-9764.crc-22-0497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 02/14/2023] [Accepted: 04/14/2023] [Indexed: 06/29/2023]
Abstract
Natural killer (NK) cells are innate lymphocytes with cytotoxic activity. Understanding the factors regulating cytotoxicity is crucial for improving NK-cell adoptive therapies. Here, we studied a previously unknown role of p35 (CDK5R1), a coactivator of cyclin-dependent kinase 5 (CDK5) in NK-cell function. p35 expression was thought to be neuronal-specific and the majority of studies are still focused on neuronal cells. Here, we show that CDK5 and p35 are expressed in NK cells and are kinase-active. NK cells from p35 knockout mice were analyzed and showed significantly increased cytotoxicity against murine cancer cells, while they did not show any differences in cell numbers or maturation stages. We confirmed this using human NK cells transduced with p35 short hairpin RNA (shRNA), showing similar increase in cytotoxicity against human cancer cells. Overexpression of p35 in NK cells resulted in moderate decrease in cytotoxicity, while expressing a kinase-dead mutant of CDK5 displayed increased cytotoxicity. Together, these data suggest that p35 negatively regulates NK-cell cytotoxicity. Surprisingly, we found that TGFβ, a known negative regulator of NK-cell cytotoxicity, induces p35 expression in NK cells. NK cells cultured with TGFβ exhibit reduced cytotoxicity, while NK cells transduced with p35 shRNA or mutant CDK5 expression exhibited partial reversal of this inhibitory effect pointing to an interesting hypothesis that p35 plays an important role in TGFβ-mediated NK-cell exhaustion. Significance This study reports a role for p35 in NK-cell cytotoxicity and this might help to improve NK-cell adoptive therapy.
Collapse
Affiliation(s)
- Derek P. Wong
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Claire E. Fritz
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Daniel Feinberg
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Alex Y. Huang
- Pediatric Hematology and Oncology, The Angie Fowler Adolescent & Young Adult Cancer Institute, University Hospitals Rainbow Babies & Children's Hospital, Cleveland, Ohio
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
| | - Reshmi Parameswaran
- The Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, Ohio
- Division of Hematology/Oncology, Department of Medicine, Case Western Reserve University, Cleveland, Ohio
| |
Collapse
|
15
|
A review on cyclin-dependent kinase 5: An emerging drug target for neurodegenerative diseases. Int J Biol Macromol 2023; 230:123259. [PMID: 36641018 DOI: 10.1016/j.ijbiomac.2023.123259] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/13/2023]
Abstract
Cyclin-dependent kinase 5 (CDK5) is the serine/threonine-directed kinase mainly found in the brain and plays a significant role in developing the central nervous system. Recent evidence suggests that CDK5 is activated by specific cyclins regulating its expression and activity. P35 and p39 activate CDK5, and their proteolytic degradation produces p25 and p29, which are stable products involved in the hyperphosphorylation of tau protein, a significant hallmark of various neurological diseases. Numerous high-affinity inhibitors of CDK5 have been designed, and some are marketed drugs. Roscovitine, like other drugs, is being used to minimize neurological symptoms. Here, we performed an extensive literature analysis to highlight the role of CDK5 in neurons, synaptic plasticity, DNA damage repair, cell cycle, etc. We have investigated the structural features of CDK5, and their binding mode with the designed inhibitors is discussed in detail to develop attractive strategies in the therapeutic targeting of CDK5 for neurodegenerative diseases. This review provides deeper mechanistic insights into the therapeutic potential of CDK5 inhibitors and their implications in the clinical management of neurodegenerative diseases.
Collapse
|
16
|
Candido MF, Medeiros M, Veronez LC, Bastos D, Oliveira KL, Pezuk JA, Valera ET, Brassesco MS. Drugging Hijacked Kinase Pathways in Pediatric Oncology: Opportunities and Current Scenario. Pharmaceutics 2023; 15:pharmaceutics15020664. [PMID: 36839989 PMCID: PMC9966033 DOI: 10.3390/pharmaceutics15020664] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Revised: 02/09/2023] [Accepted: 02/10/2023] [Indexed: 02/18/2023] Open
Abstract
Childhood cancer is considered rare, corresponding to ~3% of all malignant neoplasms in the human population. The World Health Organization (WHO) reports a universal occurrence of more than 15 cases per 100,000 inhabitants around the globe, and despite improvements in diagnosis, treatment and supportive care, one child dies of cancer every 3 min. Consequently, more efficient, selective and affordable therapeutics are still needed in order to improve outcomes and avoid long-term sequelae. Alterations in kinases' functionality is a trademark of cancer and the concept of exploiting them as drug targets has burgeoned in academia and in the pharmaceutical industry of the 21st century. Consequently, an increasing plethora of inhibitors has emerged. In the present study, the expression patterns of a selected group of kinases (including tyrosine receptors, members of the PI3K/AKT/mTOR and MAPK pathways, coordinators of cell cycle progression, and chromosome segregation) and their correlation with clinical outcomes in pediatric solid tumors were accessed through the R2: Genomics Analysis and Visualization Platform and by a thorough search of published literature. To further illustrate the importance of kinase dysregulation in the pathophysiology of pediatric cancer, we analyzed the vulnerability of different cancer cell lines against their inhibition through the Cancer Dependency Map portal, and performed a search for kinase-targeted compounds with approval and clinical applicability through the CanSAR knowledgebase. Finally, we provide a detailed literature review of a considerable set of small molecules that mitigate kinase activity under experimental testing and clinical trials for the treatment of pediatric tumors, while discuss critical challenges that must be overcome before translation into clinical options, including the absence of compounds designed specifically for childhood tumors which often show differential mutational burdens, intrinsic and acquired resistance, lack of selectivity and adverse effects on a growing organism.
Collapse
Affiliation(s)
- Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Mariana Medeiros
- Regional Blood Center, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - Luciana Chain Veronez
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - David Bastos
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Karla Laissa Oliveira
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, University of São Paulo, Ribeirão Preto 14040-901, SP, Brazil
| | - Julia Alejandra Pezuk
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto 14049-900, SP, Brazil
| | - María Sol Brassesco
- Departament of Biotechnology and Innovation, Anhanguera University of São Paulo, UNIAN/SP, São Paulo 04119-001, SP, Brazil
- Correspondence: ; Tel.: +55-16-3315-9144; Fax: +55-16-3315-4886
| |
Collapse
|
17
|
Liu XW, Liu WJ, Meng Y, Hu J, Zhang CY. Development of a tandem signal amplification strategy for label-free sensing polynucleotide kinase activity in cancer cells. Talanta 2023. [DOI: 10.1016/j.talanta.2022.124001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
18
|
Ishii T, Warabi E, Mann GE. Stress Activated MAP Kinases and Cyclin-Dependent Kinase 5 Mediate Nuclear Translocation of Nrf2 via Hsp90α-Pin1-Dynein Motor Transport Machinery. Antioxidants (Basel) 2023; 12:antiox12020274. [PMID: 36829834 PMCID: PMC9952688 DOI: 10.3390/antiox12020274] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2022] [Revised: 01/19/2023] [Accepted: 01/22/2023] [Indexed: 01/28/2023] Open
Abstract
Non-lethal low levels of oxidative stress leads to rapid activation of the transcription factor nuclear factor-E2-related factor 2 (Nrf2), which upregulates the expression of genes important for detoxification, glutathione synthesis, and defense against oxidative damage. Stress-activated MAP kinases p38, ERK, and JNK cooperate in the efficient nuclear accumulation of Nrf2 in a cell-type-dependent manner. Activation of p38 induces membrane trafficking of a glutathione sensor neutral sphingomyelinase 2, which generates ceramide upon depletion of cellular glutathione. We previously proposed that caveolin-1 in lipid rafts provides a signaling hub for the phosphorylation of Nrf2 by ceramide-activated PKCζ and casein kinase 2 to stabilize Nrf2 and mask a nuclear export signal. We further propose a mechanism of facilitated Nrf2 nuclear translocation by ERK and JNK. ERK and JNK phosphorylation of Nrf2 induces the association of prolyl cis/trans isomerase Pin1, which specifically recognizes phosphorylated serine or threonine immediately preceding a proline residue. Pin1-induced structural changes allow importin-α5 to associate with Nrf2. Pin1 is a co-chaperone of Hsp90α and mediates the association of the Nrf2-Pin1-Hsp90α complex with the dynein motor complex, which is involved in transporting the signaling complex to the nucleus along microtubules. In addition to ERK and JNK, cyclin-dependent kinase 5 could phosphorylate Nrf2 and mediate the transport of Nrf2 to the nucleus via the Pin1-Hsp90α system. Some other ERK target proteins, such as pyruvate kinase M2 and hypoxia-inducible transcription factor-1, are also transported to the nucleus via the Pin1-Hsp90α system to modulate gene expression and energy metabolism. Notably, as malignant tumors often express enhanced Pin1-Hsp90α signaling pathways, this provides a potential therapeutic target for tumors.
Collapse
Affiliation(s)
- Tetsuro Ishii
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
- Correspondence:
| | - Eiji Warabi
- School of Medicine, University of Tsukuba, Tsukuba 305-8577, Japan
| | - Giovanni E. Mann
- King’s British Heart Foundation Centre of Research Excellence, School of Cardiovascular and Metabolic Medicine & Sciences, Faculty of Life Sciences & Medicine, King’s College London, 150 Stamford Street, London SE1 9NH, UK
| |
Collapse
|
19
|
Zhu S, Yan F, Yang L, Li B, Xue R, Yu W, Wang Y, Huang L, Wang L, Han R, Jiang Y. Low-dose X-ray radiodynamic therapy solely based on gold nanoclusters for efficient treatment of deep hypoxic solid tumors combined with enhanced antitumor immune response. Theranostics 2023; 13:1042-1058. [PMID: 36793856 PMCID: PMC9925321 DOI: 10.7150/thno.78649] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Accepted: 12/16/2022] [Indexed: 02/04/2023] Open
Abstract
Background: Radiodynamic therapy (RDT) is an emerging novel anti-cancer treatment based on the generation of cytotoxic reactive oxygen species (ROS) at the lesion site following the interaction between low-dose X-ray and a photosensitizer (PS) drug. For a classical RDT, scintillator nanomaterials loaded with traditional PSs are generally involved to generate singlet oxygen (1O2). However, this scintillator-mediated strategy generally suffers from insufficient energy transfer efficiency and the hypoxic tumor microenvironment, and finally severely impedes the efficacy of RDT. Methods: Gold nanoclusters were irradiated by low dose of X-ray (called RDT) to investigate the production of ROS, killing efficiency of cell level and living body level, antitumor immune mechanism and biosafety. Results: A novel dihydrolipoic acid coated gold nanoclusters (AuNC@DHLA) RDT, without additional scintillator or photosensitizer assisted, has been developed. In contrast to scintillator-mediated strategy, AuNC@DHLA can directly absorb the X-ray and exhibit excellent radiodynamic performance. More importantly, the radiodynamic mechanism of AuNC@DHLA involves electron-transfer mode resulting in O2 -• and HO•, and excess ROS has been generated even under hypoxic conditions. Highly efficient in vivo treatment of solid tumors had been achieved via only single drug administration and low-dose X-ray radiation. Interestingly, enhanced antitumor immune response was involved, which could be effective against tumor recurrence or metastasis. Negligible systemic toxicity was also observed as a consequence of the ultra-small size of AuNC@DHLA and rapid clearance from body after effective treatment. Conclusions: Highly efficient in vivo treatment of solid tumors had been achieved, enhanced antitumor immune response and negligible systemic toxicity were observed. Our developed strategy will further promote the cancer therapeutic efficiency under low dose X-ray radiation and hypoxic conditions, and bring hope for clinical cancer treatment.
Collapse
Affiliation(s)
- Shengcang Zhu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Feihong Yan
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lulu Yang
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Bingyi Li
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China
| | - Ruxian Xue
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Wenwen Yu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yu Wang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lu Huang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Lijun Wang
- Single-Molecule and Nanobiology Laboratory, Department of Biochemistry and Biophysics, School of Basic Medical Sciences, Peking University, Beijing 100191, China
| | - Rongcheng Han
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuqiang Jiang
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China.,University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
20
|
Mogenet A, Barlesi F, Besse B, Michiels S, Karimi M, Tran-Dien A, Girard N, Mazieres J, Audigier-Valette C, Locatelli-Sanchez M, Kamal M, Gestraud P, Hamza A, Jacquet A, Jimenez M, Yara S, Greillier L, Bertucci F, Planchard D, Soria JC, Bieche I, Tomasini P. Molecular profiling of non-small-cell lung cancer patients with or without brain metastases included in the randomized SAFIR02-LUNG trial and association with intracranial outcome. Lung Cancer 2022; 169:31-39. [DOI: 10.1016/j.lungcan.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 04/13/2022] [Accepted: 05/10/2022] [Indexed: 10/18/2022]
|
21
|
Howard D, James D, Garcia-Parra J, Pan-Castillo B, Worthington J, Williams N, Coombes Z, Rees SC, Lutchman-Singh K, Francis LW, Rees P, Margarit L, Conlan RS, Gonzalez D. Dinaciclib as an effective pan-cyclin dependent kinase inhibitor in platinum resistant ovarian cancer. Front Oncol 2022; 12:1014280. [PMID: 36505806 PMCID: PMC9732436 DOI: 10.3389/fonc.2022.1014280] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/07/2022] [Indexed: 11/27/2022] Open
Abstract
Background Ovarian cancer (OC) is amongst the most lethal of common cancers in women. Lacking in specific symptoms in the early stages, OC is predominantly diagnosed late when the disease has undergone metastatic spread and chemotherapy is relied on to prolong life. Platinum-based therapies are preferred and although many tumors respond initially, the emergence of platinum-resistance occurs in the majority of cases after which prognosis is very poor. Upregulation of DNA damage pathways is a common feature of platinum resistance in OC with cyclin dependent kinases (CDKs) serving as key regulators of this process and suggesting that CDK inhibitors (CDKis) could be effective tools in the treatment of platinum resistant and refractory OC. Aim The aim of this study was to evaluate the efficacy of CDKis in platinum resistant OC models and serve as a predictor of potential clinical utility. Methods The efficacy of CDKi, dinaciclib, was determined in wildtype and platinum resistant cell line pairs representing different OC subtypes. In addition, dinaciclib was evaluated in primary cells isolated from platinum-sensitive and platinum-refractory tumors to increase the clinical relevance of the study. Results and conclusions Dinaciclib proved highly efficacious in OC cell lines and primary cells, which were over a thousand-fold more sensitive to the CDKi than to cisplatin. Furthermore, cisplatin resistance in these cells did not influence sensitivity to dinaciclib and the two drugs combined additively in both platinum-sensitive and platinum-resistant OC cells suggesting a potential role for pan-CDKis (CDKis targeting multiple CDKs), such as dinaciclib, in the treatment of advanced and platinum-resistant OC.
Collapse
Affiliation(s)
- David Howard
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - David James
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Jezabel Garcia-Parra
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Belen Pan-Castillo
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | | | | | - Zoe Coombes
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Sophie Colleen Rees
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, United Kingdom
| | - Kerryn Lutchman-Singh
- Department of Gynaecology Oncology, Singleton Hospital, Swansea Bay University Health Board, Swansea, United Kingdom
| | - Lewis W Francis
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Paul Rees
- College of Engineering, Swansea University, Swansea, United Kingdom
| | - Lavinia Margarit
- Department of Obstetrics and Gynaecology, Princess of Wales Hospital, Cwm Taf Morgannwg University Health Board, Bridgend, United Kingdom
| | - R Steven Conlan
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| | - Deyarina Gonzalez
- Reproductive Biology and Gynaecology (RBGO) Group, Medical School, Swansea University, Swansea, United Kingdom
| |
Collapse
|
22
|
Chen W, Zhou Y, Wu G, Sun P. CCNI2 promotes the progression of human gastric cancer through HDGF. Cancer Cell Int 2021; 21:661. [PMID: 34895232 PMCID: PMC8665640 DOI: 10.1186/s12935-021-02352-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 11/19/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Gastric cancer is a highly aggressive malignant tumor with heterogeneity and is still a global health problem. The present study aimed to investigate the role of Cyclin I-like (CCNI2) in the regulation of phenotype and tumorigenesis, as well as its underlying mechanisms. METHOD The expression profile of CCNI2 in gastric cancer was determined based on The Cancer Genome Atlas (TCGA) database and immunohistochemical staining. The effects of altered CCNI2 expression on the biological phenotypes such as proliferation, clone formation, apoptosis and migration of gastric cancer cell lines BGC-823 and SGC-7901 were investigated. Mice xenograft models were established to reveal the role of CCNI2 knockdown on tumorigenesis. The potential mechanism of CCNI2 regulating gastric cancer was preliminarily determined by RNA sequencing. RESULT CCNI2 was abundantly expressed in gastric cancer and was positively correlated with pathological stage. Knockdown of CCNI2 slowed down the malignant progression of gastric cancer by inhibiting tumor cell proliferation, increasing the susceptibility to apoptosis and suppressing migration. Moreover, downregulation of CCNI2 attenuated the ability of gastric cancer cells to form tumors in mice. Additionally, there was an interaction between CCNI2 and transcription factor hepatoma-derived growth factor (HDGF) in SGC-7901 cells. Knockdown of CCNI2 alleviated the promoting effects of HDGF overexpression in gastric cancer cells. CONCLUSIONS CCNI2 promoted the progression of human gastric cancer through HDGF, which drew further interest regarding its clinical application as a potential therapeutic target.
Collapse
Affiliation(s)
- Wenchao Chen
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Yang Zhou
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China
| | - Gang Wu
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| | - Peichun Sun
- Department of Gastrointestinal Surgery, Henan Provincial People's Hospital, Zhengzhou University People's Hospital, Henan University People's Hospital, Zhengzhou, 450003, Henan, China.
| |
Collapse
|
23
|
Sharapova T, Talaty N, Buck WR, Fossey S, Liguori MJ, Van Vleet TR. Reduced hepatic global hydroxymethylation in mice treated with non-genotoxic carcinogens is transiently reversible with a methyl supplemented diet. Toxicol Appl Pharmacol 2021; 415:115439. [PMID: 33549593 DOI: 10.1016/j.taap.2021.115439] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 01/20/2021] [Accepted: 01/31/2021] [Indexed: 01/05/2023]
Abstract
Non-genotoxic carcinogens (NGCs) are known to cause perturbations in DNA methylation, which can be an early event leading to changes in gene expression and the onset of carcinogenicity. Phenobarbital (PB) has been shown to alter liver DNA methylation and hydroxymethylation patterns in mice in a time dependent manner. The goals of this study were to assess if clofibrate (CFB), a well-studied rodent NGC, would produce epigenetic changes in mice similar to PB, and if a methyl donor supplementation (MDS) would modulate epigenetic and gene expression changes induced by phenobarbital. CByB6F1 mice were treated with 0.5% clofibrate or 0.14% phenobarbital for 7 and 28 days. A subgroup of PB treated and control mice were also fed MDS diet. Liquid Chromatography-Ionization Mass Spectrometry (LC-MS) was used to quantify global liver 5-methylcytosine (5mC) and 5-hydroxymethylcytosine (5hmC) levels. Gene expression analysis was conducted using Affymetrix microarrays. A decrease in liver 5hmC but not 5mC levels was observed upon treatment with both CFB and PB with varying time of onset. We observed moderate increases in 5hmC levels in PB-treated mice when exposed to MDS diet and lower expression levels of several phenobarbital induced genes involved in cell proliferation, growth, and invasion, suggesting an early modulating effect of methyl donor supplementation. Overall, epigenetic profiling can aid in identifying early mechanism-based biomarkers of non-genotoxic carcinogenicity and increases the quality of cancer risk assessment for candidate drugs. Global DNA methylation assessment by LC-MS is an informative first step toward understanding the risk of carcinogenicity.
Collapse
Affiliation(s)
- T Sharapova
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States.
| | - N Talaty
- Discovery Platform Technologies, AbbVie Inc., North Chicago, IL, United States
| | - W R Buck
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - S Fossey
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - M J Liguori
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| | - T R Van Vleet
- Investigative Toxicology and Pathology, AbbVie Inc., North Chicago, IL, United States
| |
Collapse
|
24
|
Shi S, Luo H, Wang L, Li H, Liang Y, Xia J, Wang Z, Cheng B, Huang L, Liao G, Xu B. Combined inhibition of RNA polymerase I and mTORC1/2 synergize to combat oral squamous cell carcinoma. Biomed Pharmacother 2021; 133:110906. [PMID: 33190037 DOI: 10.1016/j.biopha.2020.110906] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 10/13/2020] [Accepted: 10/16/2020] [Indexed: 01/27/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is the major cause of morbidity and mortality in head and neck cancer patients worldwide. This malignant disease is challenging to treat because of the lack of effective curative strategies and the high incidence of recurrence. This study aimed to investigate the efficacy of a single and dual approach targeting ribosome biogenesis and protein translation to treat OSCC associated with the copy number variation (CNV) of ribosomal DNA (rDNA). Here, we found that primary OSCC tumors frequently exhibited a partial loss of 45S rDNA copy number and demonstrated a high susceptibility to CX5461 (a selective inhibitor of RNA polymerase I) and the coadministration of CX5461 and INK128 (a potent inhibitor of mTORC1/2). Combined treatment displayed the promising synergistic effects that induced cell apoptosis and reactive oxygen species (ROS) generation, and inhibited cell growth and proliferation. Moreover, INK128 compromised NHEJ-DNA repair pathway to reinforce the antitumor activity of CX5461. In vivo, the cotreatment synergistically suppressed tumor growth, triggered apoptosis and strikingly extended the survival time of tumor-bearing mice. Additionally, treatment with the individual compounds and coadministration appeared to reduce the incidence of enlarged inguinal lymph nodes. Our study supports that the combination of CX5461 and INK128 is a novel and efficacious therapeutic strategy that can combat this cancer and that 45S rDNA may serve as a useful indicator to predict the efficacy of this cotreatment.
Collapse
Affiliation(s)
- Shanwei Shi
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Huigen Luo
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Lihong Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Hua Li
- The Stowers Institute for Medical Research, Kansas City, Missouri, United States
| | - Yujie Liang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Juan Xia
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Zhi Wang
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Bin Cheng
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China
| | - Linfeng Huang
- Division of Natural and Applied Sciences, Duke Kunshan University, Kunshan, Jiangsu, China
| | - Guiqing Liao
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| | - Baoshan Xu
- Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Guanghua School of Stomatology, Institute of Stomatological Research, Sun Yat-sen University, Guangzhou, Guangdong Province, China.
| |
Collapse
|
25
|
Do PA, Lee CH. The Role of CDK5 in Tumours and Tumour Microenvironments. Cancers (Basel) 2020; 13:E101. [PMID: 33396266 PMCID: PMC7795262 DOI: 10.3390/cancers13010101] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 12/27/2020] [Accepted: 12/28/2020] [Indexed: 12/11/2022] Open
Abstract
Cyclin-dependent kinase 5 (CDK5), which belongs to the protein kinase family, regulates neuronal function but is also associated with cancer development and has been proposed as a target for cancer treatment. Indeed, CDK5 has roles in cell proliferation, apoptosis, angiogenesis, inflammation, and immune response. Aberrant CDK5 activation triggers tumour progression in numerous types of cancer. In this review, we summarise the role of CDK5 in cancer and neurons and CDK5 inhibitors. We expect that our review helps researchers to develop CDK5 inhibitors as treatments for refractory cancer.
Collapse
Affiliation(s)
| | - Chang Hoon Lee
- Phamaceutical Biochemistry, College of Pharmacy, BK21 FOUR Team, and Integrated Research Institute for Drug Development, Dongguk University, Goyang 100-715, Korea;
| |
Collapse
|
26
|
Zeng Y, Liu Q, Wang Y, Tian C, Yang Q, Zhao Y, Liu L, Wu G, Xu S. CDK5 Activates Hippo Signaling to Confer Resistance to Radiation Therapy Via Upregulating TAZ in Lung Cancer. Int J Radiat Oncol Biol Phys 2020; 108:758-769. [PMID: 32407930 DOI: 10.1016/j.ijrobp.2020.05.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Revised: 04/17/2020] [Accepted: 05/01/2020] [Indexed: 12/15/2022]
Abstract
PURPOSE Tumor resistance to radiation therapy is a therapeutic challenge in the treatment of patients with non-small cell lung cancer. Cyclin-dependent kinase 5 (CDK5) has been proposed to participate in cell proliferation, migration and invasion, drug resistance, and immune evasion. However, the functions and regulatory mechanisms of CDK5 in lung cancer radioresistance have not been investigated. METHODS AND MATERIALS DNA damage response and repair were measured by neutral comet assay and γ-H2AX and Rad51 foci staining. The biological functions of CDK5 in lung cancer radioresistance were investigated with clonogenic survival assays and xenograft tumor models. Small interfering RNAs and short hairpin RNAs were used to knock down CDK5 in A549 and H1299 cells. The effects of CDK5 depletion on the tumorigenic behaviors of lung cancer cells were evaluated in vitro and in vivo. Gene expression was examined by RNA-seq and quantitative real-time polymerase chain reaction. RESULTS We report that CDK5 depletion impairs lung cancer progression and radioresistance in vitro and in vivo. Mechanistically, we identify TAZ, a component of the Hippo pathway, as a critical downstream effector of CDK5. Loss of CDK5 downregulates TAZ expression and attenuates Hippo signaling activation. Importantly, we provide evidence that TAZ is the major effector mediating the biological functions of CDK5 in lung cancer. CONCLUSIONS These results illustrate that CDK5 activates Hippo signaling via TAZ to participate in tumorigenesis and radioresistance, suggesting that CDK5 may be a promising radiosensitization target for the treatment of lung cancer.
Collapse
Affiliation(s)
- Yulan Zeng
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Quan Liu
- Department of Thoracic Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chen Tian
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qifan Yang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Li Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Gang Wu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| | - Shuangbing Xu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
27
|
TP5, a Peptide Inhibitor of Aberrant and Hyperactive CDK5/p25: A Novel Therapeutic Approach against Glioblastoma. Cancers (Basel) 2020; 12:cancers12071935. [PMID: 32708903 PMCID: PMC7409269 DOI: 10.3390/cancers12071935] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/13/2020] [Indexed: 11/17/2022] Open
Abstract
We examined the efficacy of selective inhibition of cyclin-dependent kinase 5 (CDK5) in glioblastoma by TP5. We analyzed its impact in vitro on CDK5 expression and activity, cell survival, apoptosis and cell cycle. DNA damage was analyzed using the expression of γH2A.X and phosphorylated ATM. Its tolerance and efficacy were assessed on in vivo xenograft mouse models. We showed that TP5 decreased the activity but not the expression of CDK5 and p35. TP5 alone impaired cell viability and colony formation of glioblastoma cell lines and induced apoptosis. TP5 increased DNA damage by inhibiting the phosphorylation of ATM, leading to G1 arrest. Whereas CDK5 activity is increased by DNA-damaging agents such as temozolomide and irradiation, TP5 was synergistic with either temozolomide or irradiation due to an accumulation of DNA damage. Concomitant use of TP5 and either temozolomide or irradiation reduced the phosphorylation of ATM, increased DNA damage, and inhibited the G2/M arrest induced by temozolomide or irradiation. TP5 alone suppressed the tumor growth of orthotopic glioblastoma mouse model. The treatment was well tolerated. Finally, alone or in association with irradiation or temozolomide, TP5 prolonged mouse survival. TP5 alone or in association with temozolomide and radiotherapy is a promising therapeutic option for glioblastoma.
Collapse
|
28
|
Glover K, Coombs KM. ZIKV Infection Induces DNA Damage Response and Alters the Proteome of Gastrointestinal Cells. Viruses 2020; 12:v12070771. [PMID: 32708879 PMCID: PMC7412063 DOI: 10.3390/v12070771] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 07/08/2020] [Accepted: 07/15/2020] [Indexed: 02/07/2023] Open
Abstract
The zika virus (ZIKV) is a neurotropic virus that causes congenital abnormalities in babies when they are infected in utero. Some studies have reported these congenital abnormalities result from ZIKV attacking neural progenitor cells within the brain which differentiate into neurons, oligodendrocytes, and astrocytes. Each of these glial cells play important roles during development of the fetal brain. In addition to ZIKV-induced congenital abnormalities, infected patients experience gastrointestinal complications. There are presently no reports investigating the role of this virus at the proteomic level in gastrointestinal associated cells, so we conducted an in vitro proteomic study of ZIKV-induced changes in Caco-2, a colon-derived human cell line which is known to be permissive to ZIKV infection. We used SomaScan, a new aptamer-based proteomic tool to identify host proteins that are dysregulated during ZIKV infection at 12, 24, and 48 h post-infection. Bioinformatic analyses predicted that dysregulation of differentially-regulated host proteins results in various gastrointestinal diseases. Validation of the clinical relevance of these promising protein targets will add to the existing knowledge of ZIKV biology. These potential proteins may be useful targets towards the development of therapeutic interventions.
Collapse
Affiliation(s)
- Kathleen Glover
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
| | - Kevin M. Coombs
- Department of Medical Microbiology and Infectious Diseases, Manitoba Centre for Proteomics & Systems Biology, Room 799, University of Manitoba, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada;
- Children’s Hospital Research Institute of Manitoba, Room 513, John Buhler Research Centre, 715 McDermot Avenue, Winnipeg, MB R3E 3P4, Canada
- Correspondence: ; Tel.: +1-204-789-3976
| |
Collapse
|
29
|
Contributions of DNA Damage to Alzheimer's Disease. Int J Mol Sci 2020; 21:ijms21051666. [PMID: 32121304 PMCID: PMC7084447 DOI: 10.3390/ijms21051666] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/20/2020] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common type of neurodegenerative disease. Its typical pathology consists of extracellular amyloid-β (Aβ) plaques and intracellular tau neurofibrillary tangles. Mutations in the APP, PSEN1, and PSEN2 genes increase Aβ production and aggregation, and thus cause early onset or familial AD. Even with this strong genetic evidence, recent studies support AD to result from complex etiological alterations. Among them, aging is the strongest risk factor for the vast majority of AD cases: Sporadic late onset AD (LOAD). Accumulation of DNA damage is a well-established aging factor. In this regard, a large amount of evidence reveals DNA damage as a critical pathological cause of AD. Clinically, DNA damage is accumulated in brains of AD patients. Genetically, defects in DNA damage repair resulted from mutations in the BRAC1 and other DNA damage repair genes occur in AD brain and facilitate the pathogenesis. Abnormalities in DNA damage repair can be used as diagnostic biomarkers for AD. In this review, we discuss the association, the causative potential, and the biomarker values of DNA damage in AD pathogenesis.
Collapse
|
30
|
Birot A, Tormos-Pérez M, Vaur S, Feytout A, Jaegy J, Alonso Gil D, Vazquez S, Ekwall K, Javerzat JP. The CDK Pef1 and protein phosphatase 4 oppose each other for regulating cohesin binding to fission yeast chromosomes. eLife 2020; 9:e50556. [PMID: 31895039 PMCID: PMC6954021 DOI: 10.7554/elife.50556] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2019] [Accepted: 01/02/2020] [Indexed: 12/19/2022] Open
Abstract
Cohesin has essential roles in chromosome structure, segregation and repair. Cohesin binding to chromosomes is catalyzed by the cohesin loader, Mis4 in fission yeast. How cells fine tune cohesin deposition is largely unknown. Here, we provide evidence that Mis4 activity is regulated by phosphorylation of its cohesin substrate. A genetic screen for negative regulators of Mis4 yielded a CDK called Pef1, whose closest human homologue is CDK5. Inhibition of Pef1 kinase activity rescued cohesin loader deficiencies. In an otherwise wild-type background, Pef1 ablation stimulated cohesin binding to its regular sites along chromosomes while ablating Protein Phosphatase 4 had the opposite effect. Pef1 and PP4 control the phosphorylation state of the cohesin kleisin Rad21. The CDK phosphorylates Rad21 on Threonine 262. Pef1 ablation, non-phosphorylatable Rad21-T262 or mutations within a Rad21 binding domain of Mis4 alleviated the effect of PP4 deficiency. Such a CDK/PP4-based regulation of cohesin loader activity could provide an efficient mechanism for translating cellular cues into a fast and accurate cohesin response.
Collapse
Affiliation(s)
- Adrien Birot
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Marta Tormos-Pérez
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Sabine Vaur
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Amélie Feytout
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Julien Jaegy
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Dácil Alonso Gil
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Stéphanie Vazquez
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| | - Karl Ekwall
- Department of Biosciences and NutritionKarolinska InstitutetHuddingeSweden
| | - Jean-Paul Javerzat
- Institut de Biochimie et Génétique Cellulaires, UMR 5095 CNRS - Université de BordeauxBordeauxFrance
| |
Collapse
|
31
|
Prince GMSH, Yang TY, Lin H, Chen MC. Mechanistic insight of cyclin-dependent kinase 5 in modulating lung cancer growth. CHINESE J PHYSIOL 2019; 62:231-240. [PMID: 31793458 DOI: 10.4103/cjp.cjp_67_19] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Lung harbors the growth of primary and secondary tumors. Even though numerous factors regulate the complex signal transduction and cytoskeletal remodeling toward the progression of lung cancer, cyclin-dependent kinase 5 (Cdk5), a previously known kinase in the central nervous system, has raised much attention in the recent years. Patients with aberrant Cdk5 expression also lead to poor survival. Cdk5 has already been employed in various cellular processes which shape the fate of cancer. In lung cancer, Cdk5 mainly regulates tumor suppressor genes, carcinogenesis, cytoskeletal remodeling, and immune checkpoints. Inhibiting Cdk5 by using drugs, siRNA or CRISP-Cas9 system has rendered crucial therapeutic advantage in the combat against lung cancer. Thus, the relation of Cdk5 to lung cancer needs to be addressed in detail. In this review, we will discuss various cellular events modulated by Cdk5 and we will go further into their underlying mechanism in lung cancer.
Collapse
Affiliation(s)
| | - Tsung-Ying Yang
- Department of Internal Medicine, Division of Chest Medicine, Taichung Veterans General Hospital, Taichung; Faculty of Medicine, School of Medicine, National Yang-Ming University, Taipei, Taiwan
| | - Ho Lin
- Department of Life Sciences; Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Mei-Chih Chen
- Department of Nursing, Asia University; Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung, Taiwan
| |
Collapse
|
32
|
Shen S, Dean DC, Yu Z, Duan Z. Role of cyclin-dependent kinases (CDKs) in hepatocellular carcinoma: Therapeutic potential of targeting the CDK signaling pathway. Hepatol Res 2019; 49:1097-1108. [PMID: 31009153 DOI: 10.1111/hepr.13353] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 02/23/2019] [Accepted: 03/28/2019] [Indexed: 12/12/2022]
Abstract
Liver cancer is the fourth leading cause of cancer related mortality in the world, with hepatocellular carcinoma (HCC) representing the most common primary subtype. Two-thirds of HCC patients have advanced disease when diagnosed, and for these patients, treatment strategies remain limited. In addition, there is a high incidence of tumor recurrence after surgical resection with the current treatment regimens. The development of novel and more effective agents is required. Cyclin-dependent kinases (CDKs) constitute a family of 21 different protein kinases involved in regulating cell proliferation, apoptosis, and drug resistance, and are evaluated in preclinical and clinical trials as chemotherapeutics. To summarize and discuss the therapeutic potential of targeting CDKs in HCC, recent published articles identified from PubMed were comprehensively reviewed. The key words included hepatocellular carcinoma, cyclin-dependent kinases, and CDK inhibitors. This review focuses on the emerging evidence from studies describing the genetic and functional aspects of CDKs in HCC. We also present an overview of CDK inhibitors that have shown efficacy in laboratory studies of HCC. Although many of the studies assessing CDK-targeting therapies in HCC are at the preclinical stage, there is significant evidence that CDK inhibitors used alone or in combination with established chemotherapy drugs could have significant applications in HCC.
Collapse
Affiliation(s)
- Shen Shen
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Dylan C Dean
- Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| | - Zujiang Yu
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Zhenfeng Duan
- Precision Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China.,Sarcoma Biology Laboratory, Department of Orthopedic Surgery, David Geffen School of Medicine at University of Los Angeles, Los Angeles, CA, USA
| |
Collapse
|
33
|
Zhang X, Wang J, Jia Y, Liu T, Wang M, Lv W, Zhang R, Shi J, Liu L. CDK5 neutralizes the tumor suppressing effect of BIN1 via mediating phosphorylation of c-MYC at Ser-62 site in NSCLC. Cancer Cell Int 2019; 19:226. [PMID: 31496920 PMCID: PMC6720419 DOI: 10.1186/s12935-019-0952-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 08/27/2019] [Indexed: 02/07/2023] Open
Abstract
Background Bridging integrator 1 (BIN1) has showed outstanding tumor-suppressive potential via inhibiting c-MYC-mediated tumorigenesis. However, a frequent phosphorylation of c-MYC at Ser-62 site could block the BIN1/c-MYC interaction and limits the tumor-suppressive effect of BIN1. Cyclin-dependent kinase 5 (CDK5), a generally dysregulated protein in various carcinomas, can mediate c-MYC phosphorylation at Ser-62 site. However, whether the existence of CDK5 could block the BIN1/c-MYC interaction remains unclear. Materials and methods The expression of CDK5 and BIN1 in non-small cell lung cancer (NSCLC) cell lines were measured. CDK5 was knocked down and overexpressed in H460 and PC9 cells, respectively. CCK-8, wound healing and transwell were used to detect the proliferation, migration and invasion ability of NSCLC cells. Tumor-bearing nude mouse model was built with H460 cells. Dinaciclib was added to realize the effect of CDK5 inhibition in vivo. NSCLC and matched para-carcinoma specimens were collected from 153 patients who underwent radical operation. IHC was performed to determine the expression of CDK5 in the specimens. Kaplan–Meier analysis was used to analyze the correlation between the postoperative survival and CDK5 expression. Results CDK5 was highly expressed in H460 cells, and knockdown of CDK5 could restore the BIN1/c-MYC interaction. Meanwhile, low expression of CDK5 was observed in PC9 cells, and overexpression of CDK5 blocked the BIN1/c-MYC interaction. Consequently, the growth, migration, invasion and epithelial mesenchymal transition (EMT) ability of H460 and PC9 cells could be facilitated by CDK5. The addition of CDK5 inhibitor Dinaciclib significantly suppressed the tumorigenesis ability of NSCLC cells in tumor-bearing mouse model. Furthermore, high expression of CDK5, along with low expression of BIN1, could predict poor postoperative prognosis of NSCLC patients. The patients with high expression of CDK5 and low expression of BIN1 showed similar prognosis, indicating that CDK5 could neutralize the tumor suppressing effect of BIN1 in clinical situation. Conclusions CDK5 blocked the interaction of BIN1 and c-MYC via promoting phosphorylation of c-MYC at ser-62 site, ultimately facilitated the progression of NSCLC.
Collapse
Affiliation(s)
- Xiangyu Zhang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Jiali Wang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Yunlong Jia
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Tianxu Liu
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Mengjie Wang
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Wei Lv
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| | - Rong Zhang
- 2Department of Toxicology, Hebei Medical University, Shijiazhuang, China
| | - Juan Shi
- 3State Key Laboratory of Molecular Biology, Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Lihua Liu
- 1Department of Tumor Immunotherapy, Fourth Hospital of Hebei Medical University and Hebei Cancer Institute, Tianshan Street 169, Shijiazhuang, China
| |
Collapse
|
34
|
Oner M, Lin E, Chen MC, Hsu FN, Shazzad Hossain Prince GM, Chiu KY, Teng CLJ, Yang TY, Wang HY, Yue CH, Yu CH, Lai CH, Hsieh JT, Lin H. Future Aspects of CDK5 in Prostate Cancer: From Pathogenesis to Therapeutic Implications. Int J Mol Sci 2019; 20:ijms20163881. [PMID: 31395805 PMCID: PMC6720211 DOI: 10.3390/ijms20163881] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2019] [Revised: 08/06/2019] [Accepted: 08/07/2019] [Indexed: 01/03/2023] Open
Abstract
Cyclin-dependent kinase 5 (CDK5) is a unique member of the cyclin-dependent kinase family. CDK5 is activated by binding with its regulatory proteins, mainly p35, and its activation is essential in the development of the central nervous system (CNS) and neurodegeneration. Recently, it has been reported that CDK5 plays important roles in regulating various biological and pathological processes, including cancer progression. Concerning prostate cancer, the androgen receptor (AR) is majorly involved in tumorigenesis, while CDK5 can phosphorylate AR and promotes the proliferation of prostate cancer cells. Clinical evidence has also shown that the level of CDK5 is associated with the progression of prostate cancer. Interestingly, inhibition of CDK5 prevents prostate cancer cell growth, while drug-triggered CDK5 hyperactivation leads to apoptosis. The blocking of CDK5 activity by its small interfering RNAs (siRNA) or Roscovitine, a pan-CDK inhibitor, reduces the cellular AR protein level and triggers the death of prostate cancer cells. Thus, CDK5 plays a crucial role in the growth of prostate cancer cells, and AR regulation is one of the important pathways. In this review paper, we summarize the significant studies on CDK5-mediated regulation of prostate cancer cells. We propose that the CDK5–p35 complex might be an outstanding candidate as a diagnostic marker and potential target for prostate cancer treatment in the near future.
Collapse
Affiliation(s)
- Muhammet Oner
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | - Eugene Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
- Department of Urology, Chang Bing Show Chwan Memorial Hospital, Changhua 505, Taiwan
| | - Mei-Chih Chen
- Translational Cell Therapy Center, Department of Medical Research, China Medical University Hospital, Taichung 40447, Taiwan
| | - Fu-Ning Hsu
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan
| | | | - Kun-Yuan Chiu
- Division of Urology, Department of Surgery, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chieh-Lin Jerry Teng
- Division of Hematology/Medical Oncology, Department of Internal, Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Tsung-Ying Yang
- Division of Chest Medicine, Department of Internal Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Hsin-Yi Wang
- Department of Nuclear Medicine, Taichung Veterans General Hospital, Taichung 40705, Taiwan
| | - Chia-Herng Yue
- Department of Surgery, Tung's Taichung Metro Harbor Hospital, Taichung 435, Taiwan
| | - Ching-Han Yu
- Department of Physiology, School of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan
| | - Chih-Ho Lai
- Department of Microbiology and Immunology, Chang Gung Medical University, Taoyuan 33302, Taiwan
| | - Jer-Tsong Hsieh
- Department of Urology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ho Lin
- Department of Life Sciences, National Chung Hsing University, Taichung 40227, Taiwan.
- Program in Translational Medicine and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung 40227, Taiwan.
| |
Collapse
|
35
|
Jin G, Mao X, Qiao Z, Chen B, Jin F. RAP80 expression in breast cancer and its relationship with apoptosis in breast cancer cells. Onco Targets Ther 2019; 12:625-634. [PMID: 30705591 PMCID: PMC6343510 DOI: 10.2147/ott.s186981] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background RAP80 is a member of BRCA1-A complex, which plays an important role in regulating the cell cycle checkpoint and DNA damage repair in the nucleus. Method We investigated RAP80 expression in breast cancer and its paired normal breast tissues to further analyze its role in the biological behavior of breast cancer cells. Results RAP80 expression in breast cancer (62.3%, 101/162) was significantly lower than that in adjacent normal breast tissues (P<0.05). RAP80 expression was related to tumor size, lymph node metastasis, TNM stage, and molecular subtype (P<0.05). RAP80 mRNA expression was significantly lower in triple-negative breast cancer than other types. The mRNA and protein of RAP80 were obvious in MCF-7 and very weak in ZR-75 or MDA-MB-231, so we picked MCF-7 to be transfected with RAP80 siRNA. The survival rate of both cells decreased in a dose-dependent manner and the IC50 value for cisplatin in MCF-7 RAP80 siRNA cells was 0.83 µg/mL, and 1.69 µg/mL in wild-type MCF-7 according to MTT. RAP80 siRNA transfection upregulated the apoptosis and downregulated invasive or migrating ability of MCF-7. RAP80 siRNA also upregulated the protein expression of Caspase-3, cleaved Caspase-3, Apaf-1, Cytochrome C, Bax, and Fas, and downregulated the protein expression of Bcl-2. Conclusion RAP80 expression was related to ER or PR activity. Inhibition of RAP80 expression can induce apoptosis in breast cancer cells and improve chemosensitivity to cisplatin. Tumor cells can activate protective responses to inhibit cell cycle progression, which may be related to RAP80, and repair cisplatin-induced DNA damage. RAP80 is related to BRCA1's effect, which can be used as an interesting target for pharmacological modulation that can increase the efficiency of cisplatin chemotherapy.
Collapse
Affiliation(s)
- Guanghua Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Xiaoyun Mao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Zhen Qiao
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Bo Chen
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| | - Feng Jin
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning 110001, People's Republic of China,
| |
Collapse
|
36
|
Peng H, Zhang J, Zhang PP, Chen L, Tang LL, Yang XJ, He QM, Wen X, Sun Y, Liu N, Li YQ, Ma J. ARNTL hypermethylation promotes tumorigenesis and inhibits cisplatin sensitivity by activating CDK5 transcription in nasopharyngeal carcinoma. J Exp Clin Cancer Res 2019; 38:11. [PMID: 30621723 PMCID: PMC6325889 DOI: 10.1186/s13046-018-0997-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Accepted: 12/06/2018] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Increasing evidence support an important role for DNA methylation in nasopharyngeal carcinoma (NPC). Here, we explored the role of circadian clock gene Aryl Hydrocarbon Receptor Nuclear Translocator-Like (ARNTL) methylation in NPC. METHODS We employed bisulfite pyrosequencing to determine the epigenetic change of ARNTL in NPC cell lines and tissues. ARNTL mRNA and protein expression in cell lines and tissues were detected by real-time PCR and western blotting. Then, we constructed cell lines overexpressing ARNTL and knocked down ARNTL to explore its function and effect on chemotherapy sensitivity of NPC cell lines to cisplatin in vitro and vivo. Finally, we investigated the potential molecular mechanism of ARNTL by gene set enrichment analysis (GSEA), dual Luciferase reporter assay and chromatin immunoprecipitation assay. RESULTS ARNTL was hypermethylated, and its mRNA and protein were significantly down-regulated in NPC cell lines and tissues. When treated by 5-aza-2'-deoxycytidine, mRNA expression was up-regulated. Overexpression of ARNTL could suppress NPC cells proliferation in vitro and vivo while silencing of ARNTL using shRNA achieved opposite results. GSEA assay found that ARNTL was associated with cell cycle and ectopic ARNTL overexpression could induce G2-M phase arrest. Then, we identified and validated cyclin-dependent kinase 5 (CDK5) as the targeting gene of ARNTL by dual Luciferase reporter assay and chromatin immunoprecipitation assay. When transiently infected ARNTL-overexpression cells with PENTER-vector or PENTER-CDK5 plasmids, the later could reverse the suppressive effects of ARNTL on NPC cell proliferation. Moreover, ARNTL significantly enhanced sensitivity to cisplatin in NPC cells. CONCLUSIONS ARNTL suppresses NPC cell proliferation and enhances sensitivity to cisplatin by targeting CDK5. ARNTL may represent a novel therapeutic target for NPC.
Collapse
Affiliation(s)
- Hao Peng
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Jian Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Pan-Pan Zhang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Lei Chen
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Ling-Long Tang
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Xiao-Jing Yang
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Qing-Mei He
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Xin Wen
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Ying Sun
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Na Liu
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Ying-Qin Li
- Department of Experimental Research, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| | - Jun Ma
- Department of Radiation Oncology, State Key Laboratory of Oncology in Southern China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy, Sun Yat-sen University Cancer Center, Guangdong, 510060 People’s Republic of China
| |
Collapse
|
37
|
Synthesis of aminopyrazole analogs and their evaluation as CDK inhibitors for cancer therapy. Bioorg Med Chem Lett 2018; 28:3736-3740. [PMID: 30343954 DOI: 10.1016/j.bmcl.2018.10.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2018] [Revised: 10/11/2018] [Accepted: 10/14/2018] [Indexed: 02/07/2023]
Abstract
We synthesized a library of aminopyrazole analogs to systematically explore the hydrophobic pocket adjacent to the hinge region and the solvent exposed region of cyclin dependent kinases. Structure-activity relationship studies identified an optimal substitution for the hydrophobic pocket and analog 24 as a potent and selective CDK2/5 inhibitor.
Collapse
|
38
|
Carey JPW, Karakas C, Bui T, Chen X, Vijayaraghavan S, Zhao Y, Wang J, Mikule K, Litton JK, Hunt KK, Keyomarsi K. Synthetic Lethality of PARP Inhibitors in Combination with MYC Blockade Is Independent of BRCA Status in Triple-Negative Breast Cancer. Cancer Res 2017; 78:742-757. [PMID: 29180466 DOI: 10.1158/0008-5472.can-17-1494] [Citation(s) in RCA: 94] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2017] [Revised: 09/29/2017] [Accepted: 11/07/2017] [Indexed: 12/21/2022]
Abstract
PARP inhibitors (PARPi) benefit only a fraction of breast cancer patients. Several of those patients exhibit intrinsic/acquired resistance mechanisms that limit efficacy of PARPi monotherapy. Here we show how the efficacy of PARPi in triple-negative breast cancers (TNBC) can be expanded by targeting MYC-induced oncogenic addiction. In BRCA-mutant/sporadic TNBC patients, amplification of the MYC gene is correlated with increased expression of the homologous DNA recombination enzyme RAD51 and tumors overexpressing both genes are associated with worse overall survival. Combining MYC blockade with PARPi yielded synthetic lethality in MYC-driven TNBC cells. Using the cyclin-dependent kinase inhibitor dinaciclib, which downregulates MYC expression, we found that combination with the PARPi niraparib increased DNA damage and downregulated homologous recombination, leading to subsequent downregulation of the epithelial-mesenchymal transition and cancer stem-like cell phenotypes. Notably, dinaciclib resensitized TBNC cells, which had acquired resistance to niraparib. We found that the synthetic lethal strategy employing dinaciclib and niraparib was also highly efficacious in ovarian, prostate, pancreatic, colon, and lung cancer cells. Taken together, our results show how blunting MYC oncogene addiction can leverage cancer cell sensitivity to PARPi, facilitating the clinical use of c-myc as a predictive biomarker for this treatment.Significance: Dual targeting of MYC-regulated homologous recombination and PARP-mediated DNA repair yields potent synthetic lethality in triple-negative breast tumors and other aggressive tumors characterized by MYC overexpression. Cancer Res; 78(3); 742-57. ©2017 AACR.
Collapse
Affiliation(s)
- Jason P W Carey
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Cansu Karakas
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Tuyen Bui
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xian Chen
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Smruthi Vijayaraghavan
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yang Zhao
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jing Wang
- Department of Bioinformatics and Computational Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keith Mikule
- Tesaro Biopharmaceuticals, Waltham, Massacheusetts
| | - Jennifer K Litton
- Department of Breast Medical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kelly K Hunt
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Khandan Keyomarsi
- Department of Experimental Radiation Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
39
|
Abstract
Selective abrogation of cyclin-dependent kinases (CDK) activity is a highly promising strategy in cancer treatment. The atypical CDK, CDK5 has long been known for its role in neurodegenerative diseases, and is becoming an attractive drug target for cancer therapy. Myriads of recent studies have uncovered that aberrant expression of CDK5 contributes to the oncogenic initiation and progression of multiple solid and hematological malignancies. CDK5 is also implicated in the regulation of cancer stem cell biology. In this review, we present the current state of knowledge of CDK5 as a druggable target for cancer treatment. We also provide a detailed outlook of designing selective and potent inhibitors of this enzyme.
Collapse
|
40
|
Zhang H, Jiao Y, Shi C, Song X, Chang Y, Ren Y, Shi X. Berbamine suppresses cell viability and induces apoptosis in colorectal cancer via activating p53-dependent apoptotic signaling pathway. Cytotechnology 2017; 70:321-329. [PMID: 28965196 DOI: 10.1007/s10616-017-0146-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2017] [Accepted: 09/11/2017] [Indexed: 01/18/2023] Open
Abstract
Berbamine has been shown to exhibit anti-cancer activities in various types of cancers. The effects of berbamine on colorectal colon cancer (CRC) have not been examined, and the present study aimed to investigate the anti-cancer effects of berbamine in CRC and explore its underlying molecular mechanisms. The effect of berbamine on the CRC cells was determined by MTT assay. Flow cytometry was performed to examine the effect of berbamine on cell apoptosis and cell cycle as well as mitochondrial membrane potential in CRC cell lines. The specific apoptosis-related factors were evaluated by western blot assay. In vivo anti-cancer effect of berbamine was assessed in SW480 xenografts. Berbamine suppressed the cell viability of CRC cells in concentration-dependent and time-dependent manners. Flow cytometry experiments showed that berbamine increased cell apoptotic rate and induced cell cycle arrest at G0/G1 phase. Berbamine treatment also decreased the mitochondrial membrane potential in CRC cells. Western blot assay showed that berbamine increased the protein levels of p53, caspase-3, caspase-9, Bax and poly ADP ribose polymerase, and decreased the protein levels of Bcl-2 in CRC cells. Berbamine failed to increase the cell apoptotic rate in p53 mutant CRC cell lines. Tumor growth by grafted SW480 cells were significantly suppressed in berbamine group. Expression of p53, caspase-3 and -9 in tumor tissues was significantly up-regulated by berbamine. Berbamine exerts anti-cancer effects in vitro and in vivo via induction of apoptosis, partially associated with the activation of p53-dependent apoptosis signaling pathway.
Collapse
Affiliation(s)
- Heng Zhang
- Department of Pharmacy, the Northwest Women and Children's Hospital, Xi'an, 710065, Shaanxi Province, China
| | - Yunping Jiao
- Department of Pharmacy, Shaanxi No. 2 People's Hospital, Xi'an, Shaanxi Province, China
| | - Chunyang Shi
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, Shaanxi Province, China
| | - Xiao Song
- Department of Pharmacy, the Northwest Women and Children's Hospital, Xi'an, 710065, Shaanxi Province, China
| | - Ying Chang
- Department of Pharmacy, the Northwest Women and Children's Hospital, Xi'an, 710065, Shaanxi Province, China
| | - Yong Ren
- Department of Pharmacy, the First Affiliated Hospital of Xi'an Medical University, Xi'an, Shaanxi Province, China
| | - Xiaolin Shi
- Department of Pharmacy, the Northwest Women and Children's Hospital, Xi'an, 710065, Shaanxi Province, China.
| |
Collapse
|
41
|
Park SJ, Kim E, Yoo M, Lee JY, Park CH, Hwang JY, Ha JD. Synthesis and biological evaluation of N9-cis-cyclobutylpurine derivatives for use as cyclin-dependent kinase (CDK) inhibitors. Bioorg Med Chem Lett 2017; 27:4399-4404. [DOI: 10.1016/j.bmcl.2017.08.018] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2017] [Revised: 08/08/2017] [Accepted: 08/10/2017] [Indexed: 12/17/2022]
|