1
|
Dong C, Yang L, Zhao G. Circ-PGAM1 Enhances Matrine Resistance of Non-Small Cell Lung Cancer via the miR-326/CXCR5 Axis. Cancer Biother Radiopharm 2024; 39:593-599. [PMID: 36576783 DOI: 10.1089/cbr.2022.0039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Background: Circular RNAs (circ-RNAs) have been demonstrated to influence initiation, drug resistance, and metastasis of tumors. However, the effects of circular-phosphoglycerate mutase 1 (circ-PGAM1) on matrine resistance in nonsmall cell lung cancer (NSCLC) remain unknown. Materials and Methods: The reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was used to determine gene expression. The terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) and cell colony formation assays were used to evaluate NSCLC apoptosis and cell proliferation after indicated treatments, respectively. Results: circ-PGAM1 was upregulated in human NSCLC cell lines (H1299 and A549) compared with the human normal lung epithelial (BEAS-2B) cells. circ-PGAM1 overexpression reversed the matrine treatment-induced inhibition on proliferation of NSCLC cells (A549 and H1299) and rescued the matrine treatment-stimulated apoptosis of these cells. miR-326 was demonstrated to interact with circ-PGAM1. circ-PGAM1 knockdown enhanced the antitumor effect of matrine on NSCLC cell proliferation and apoptosis, which was reversed by miR-326 inhibition. The authors also identified CXCR5 as a key downstream target of miR-326 in A549 cells. Conclusions: circ-PGAM1 enhances matrine resistance of NSCLC cells through the miR-326/CXCR5 axis. The authors' findings provide new insights into NSCLC-targeted therapy.
Collapse
Affiliation(s)
- Caijun Dong
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Liangwei Yang
- Department of Cardiothoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| | - Guofang Zhao
- Department of Thoracic Surgery, Hwamei Hospital, University of Chinese Academy of Sciences, Ningbo, China
| |
Collapse
|
2
|
Aswani BS, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Almubarak HA, Sethi G, Kunnumakkara AB. Tackling exosome and nuclear receptor interaction: an emerging paradigm in the treatment of chronic diseases. Mil Med Res 2024; 11:67. [PMID: 39327610 PMCID: PMC11426102 DOI: 10.1186/s40779-024-00564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 08/06/2024] [Indexed: 09/28/2024] Open
Abstract
Nuclear receptors (NRs) function as crucial transcription factors in orchestrating essential functions within the realms of development, host defense, and homeostasis of body. NRs have garnered increased attention due to their potential as therapeutic targets, with drugs directed at NRs demonstrating significant efficacy in impeding chronic disease progression. Consequently, these pharmacological agents hold promise for the treatment and management of various diseases. Accumulating evidence emphasizes the regulatory role of exosome-derived microRNAs (miRNAs) in chronic inflammation, disease progression, and therapy resistance, primarily by modulating transcription factors, particularly NRs. By exploiting inflammatory pathways such as protein kinase B (Akt)/mammalian target of rapamycin (mTOR), nuclear factor kappa-B (NF-κB), signal transducer and activator of transcription 3 (STAT3), and Wnt/β-catenin signaling, exosomes and NRs play a pivotal role in the panorama of development, physiology, and pathology. The internalization of exosomes modulates NRs and initiates diverse autocrine or paracrine signaling cascades, influencing various processes in recipient cells such as survival, proliferation, differentiation, metabolism, and cellular defense mechanisms. This comprehensive review meticulously examines the involvement of exosome-mediated NR regulation in the pathogenesis of chronic ailments, including atherosclerosis, cancer, diabetes, liver diseases, and respiratory conditions. Additionally, it elucidates the molecular intricacies of exosome-mediated communication between host and recipient cells via NRs, leading to immunomodulation. Furthermore, it outlines the implications of exosome-modulated NR pathways in the prophylaxis of chronic inflammation, delineates current limitations, and provides insights into future perspectives. This review also presents existing evidence on the role of exosomes and their components in the emergence of therapeutic resistance.
Collapse
Affiliation(s)
- Babu Santha Aswani
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Hassan Ali Almubarak
- Division of Radiology, Department of Medicine, College of Medicine and Surgery, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore.
- NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
3
|
Chen H, Liu L, Zhang M, Wu S, Wu J. Correlation of LOXL2 expression in non-small cell lung cancer with immunotherapy. INTERNATIONAL JOURNAL OF CLINICAL AND EXPERIMENTAL PATHOLOGY 2024; 17:268-286. [PMID: 39399656 PMCID: PMC11470429 DOI: 10.62347/zieg9007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2024] [Accepted: 08/25/2024] [Indexed: 10/15/2024]
Abstract
Lung cancer is the most prevalent and lethal disease globally, with approximately 80% of cases being non-small cell lung cancer (NSCLC). NSCLC is primarily composed of lung squamous cell carcinoma (LUSC) and lung adenocarcinoma (LUAD). Despite chemotherapy currently being the primary treatment for NSCLC, chemotherapy resistance remains a significant challenge for patients. Recent studies have proposed immunotherapy as a promising new avenue for treating NSCLC. The association between the lysyl oxidase-like 2 (LOXL2) gene and NSCLC was explored using multiple online tools and bioinformatics analysis software based on the available datasets from TCGA. The immune microenvironment of the tumor was explored by calculating ImmuneScore, StromalScore, and TumorPurity of LUAD and LUSC and analyzing the infiltration of 22 immune cells in lung cancer tissues. LOXL2-related loads were obtained from the Xena database for LUSC and LUAD patients, and relevant prognostic genes were identified by analyzing survival curves. Functional and pathway enrichment analyses of prognostic, predictive genes were performed using Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG). The expression of LOXL2 in NSCLC was detected by RT-qPCR. LOXL2 may be involved in the progression of LUAD and LUSC and is closely related to the T-lymphocyte subpopulation, T-reg cells. SEMA7A and VEGFC are identified as the genes that interact with LOXL2 and could be used as prognostic signature genes in NSCLC patients. LOXL2 may become a prognostic marker and a new target for immunotherapy.
Collapse
Affiliation(s)
- Haoyan Chen
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Lele Liu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Mingjiong Zhang
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Shuangshuang Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| | - Jianqing Wu
- Department of Geriatrics, Key Laboratory of Geriatrics of Jiangsu Province, The First Affiliated Hospital of Nanjing Medical University 300 Guangzhou Road, Nanjing 210029, Jiangsu, China
| |
Collapse
|
4
|
Yang R, Sun S, Zhang Q, Liu H, Wang L, Meng Y, Chen N, Wang Z, Liu H, Ji F, Dai Y, He G, Xu W, Ye Z, Zhang J, Ma Q, Xu J. Pharmacological Inhibition of TXNRD1 by a Small Molecule Flavonoid Butein Overcomes Cisplatin Resistance in Lung Cancer Cells. Biol Trace Elem Res 2024:10.1007/s12011-024-04331-0. [PMID: 39141196 DOI: 10.1007/s12011-024-04331-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 07/29/2024] [Indexed: 08/15/2024]
Abstract
Mammalian cytosolic selenoprotein thioredoxin reductase (TXNRD1) is crucial for maintaining the reduced state of cellular thioredoxin 1 (TXN1) and is commonly up-regulated in cancer cells. TXNRD1 has been identified as an effective target in cancer chemotherapy. Discovering novel TXNRD1 inhibitors and elucidating the cellular effects of TXNRD1 inhibition are valuable for developing targeted therapies based on redox regulation strategies. In this study, we demonstrated that butein, a plant-derived small molecule flavonoid, is a novel TXNRD1 inhibitor. We found that butein irreversibly inhibited recombinant TXNRD1 activity in a time-dependent manner. Using TXNRD1 mutant variants and LC-MS, we identified that butein modifies the catalytic cysteine (Cys) residues of TXNRD1. In cellular contexts, butein promoted the accumulation of reactive oxygen species (ROS) and exhibited cytotoxic effects in HeLa cells. Notably, we found that pharmacological inhibition of TXNRD1 by butein overcame the cisplatin resistance of A549 cisplatin-resistant cells, accompanied by increased cellular ROS levels and enhanced expression of p53. Taken together, the results of this study demonstrate that butein is an effective small molecule inhibitor of TXNRD1, highlighting the therapeutic potential of inhibiting TXNRD1 in platinum-resistant cancer cells.
Collapse
Affiliation(s)
- Rui Yang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- Shenzhen Key Laboratory of Soft Mechanics & Smart Manufacturing, Department of Mechanics and Aerospace Engineering, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Shibo Sun
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Qiuyu Zhang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haowen Liu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Ling Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Yao Meng
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Na Chen
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Zihan Wang
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
| | - Haiyan Liu
- College of Chemistry and Environmental Engineering, Yingkou Institute of Technology, Yingkou, 115014, China
| | - Fengyun Ji
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Yan Dai
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Gaohong He
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Weiping Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China
- State Key Laboratory of Fine Chemicals, School of Chemical Engineering (CE), Dalian University of Technology, Dalian, 116023, China
| | - Zhiwei Ye
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Jie Zhang
- Department of Cell and Molecular Pharmacology and Experimental Therapeutics, Medical University of South Carolina, Charleston, SC, 29425, USA
| | - Qiang Ma
- Chinese Academy of Inspection and Quarantine, Beijing, 100176, China.
| | - Jianqiang Xu
- Liaoning Key Laboratory of Chemical Additive Synthesis and Separation (CASS), School of Chemical Engineering, Ocean Technology and Life Science (CEOTLS) & Panjin Institute of Industrial Technology (PIIT), Dalian University of Technology, Panjin, 124221, China.
| |
Collapse
|
5
|
Kong Y, Jiang R, Zhou H, Ge M, Lin H, Wang Y, Yao R, Wang Q, Liang X, Li J, Zhou X. PHF12 regulates HDAC1 to promote tumorigenesis via EGFR/AKT signaling pathway in non-small cell lung cancer. J Transl Med 2024; 22:689. [PMID: 39075515 PMCID: PMC11287983 DOI: 10.1186/s12967-024-05488-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2023] [Accepted: 07/03/2024] [Indexed: 07/31/2024] Open
Abstract
BACKGROUND Lung cancer stands as the second most prevalent malignant neoplasm worldwide. Addressing the underlying mechanisms propelling the progression of non-small cell lung cancer is of paramount importance. In this study, we have elucidated the pivotal role of PHF12 in this context. MATERIALS AND METHODS We harnessed clinical lung cancer tissue samples and non-small cell lung cancer cell lines to discern the expression pattern of PHF12. In vitro assays probing cell proliferation were conducted to substantiate the functional impact of PHF12. Furthermore, an in vivo Xenograft model was employed to dissect the role of PHF12. Employing ChIP assays and qRT-PCR, we delved into the intricate binding dynamics between PHF12 and HDAC1. Mechanistic insights into the PHF12-HDAC1 axis in lung cancer progression were pursued via RNA-seq and GSEA analyses. RESULTS Notably, PHF12 exhibited a substantial upregulation within tumor tissue, concomitant with its correlation to HDAC1. The trilogy of cell proliferation assays, transwell assays, and the Xenograft model collectively underscored the promoting influence of PHF12 on lung cancer proliferation, both in vitro and in vivo. The ChIP assay unveiled the transcriptional regulatory role of PHF12 in governing HDAC1 expression. This correlation extended to both mRNA and protein levels. PHF12 promotes NSCLC progression through regulating HDCA1 expression. Intriguingly, the rescue of function within NSCLC cell lines post PHF12 knockdown was achievable through HDAC1 overexpression. Additionally, our findings unveiled the capacity of the PHF12-HDAC1 axis to activate the EGFR/AKT signaling pathway, thereby further corroborating its significance in lung cancer progression. CONCLUSION Our study identified PHF12 as an oncogenic role in lung cancer proliferation and migration for the first time. PHF12 transcriptionally regulate HDAC1 and activate EGFR/AKT signaling pathway in NSCLC progression. PHF12 may serve as an important target in lung cancer therapy.
Collapse
Affiliation(s)
- Yiru Kong
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Rongrong Jiang
- Department of Cardiothoracic Surgery, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Hui Zhou
- Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Mengxi Ge
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Hao Lin
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Yu Wang
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Rongrong Yao
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Qing Wang
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Xiaohua Liang
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China
| | - Jing Li
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China.
| | - Xinli Zhou
- Department of Oncology, Huashan Hospital Fudan University, 12 Middle Urumqi Road, Shanghai, 200000, China.
| |
Collapse
|
6
|
Zheng W, Peng W, Qian F, Zhang M, Duan B, Fan Z, Xie Y, Fu X. Vitamin D suppresses CD133+/CD44 + cancer stem cell stemness by inhibiting NF-κB signaling and reducing NLRP3 expression in triple-negative breast cancer. Cancer Chemother Pharmacol 2024; 94:67-78. [PMID: 38456956 DOI: 10.1007/s00280-024-04660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 02/20/2024] [Indexed: 03/09/2024]
Abstract
BACKGROUND AND OBJECTIVE This study aims to investigate the role of Vitamin D (VD) in regulating the stemness and survival of CD133+/CD44 + breast cancer stem cells, and to explore the role of NLRP3 in this process. METHODS Breast cancer tissues were collected for RXRα and VDR expression analysis. A triple-negative breast cancer cell line was cultured and stem-like cells (CD133 + CD44+) isolated using flow cytometry. These cells were treated with VD, analyzing their stem-like properties, apoptosis and proliferation, as well as P65 nuclear expression and NLRP3 expression. After NLRP3 inflammasome activator treatment, the parameters were reassessed. RXRα and VDR interaction was confirmed using co-immunoprecipitation (CoIP). Finally, a subcutaneous xenograft model of triple-negative breast cancer was treated with VD and subsequently analyzed for stem-like properties, proliferation, apoptosis, and NLRP3 expression levels. RESULTS CD133+/CD44 + stem cells expressed high levels of SOX2 and OCT4. VD treatment resulted in a significant decrease in SOX2 and OCT4 expression, fewer sphere-forming colonies, lower proliferation ability, and more apoptosis. Additionally, VD treatment inhibited NF-κB signaling and reduced NLRP3 expression. The NLRP3 activator BMS-986,299 counteracted the effects of VD in vitro. In vivo, VD inhibited the growth of breast cancer stem cells, reducing both tumor volume and weight, and decreased NLRP3, SOX2, and OCT4 expression within tumor tissues. CONCLUSION Findings elucidate that VD mediates the modulation of stemness in CD133+/CD44 + breast cancer stem cells through the regulation of NLRP3 expression. The research represents novel insights on the implications for the application of VD in cancer therapies.
Collapse
Affiliation(s)
- Wei Zheng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China.
| | - Wei Peng
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Fuyong Qian
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Mingshuai Zhang
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Bofeng Duan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Zhifeng Fan
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Yi Xie
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| | - Xiaoying Fu
- Department of Thyroid and Breast Surgery, The Third People's Hospital of Shenzhen (The Second Affiliated Hospital of Southern University of Science and Technology), 29 Bulan Road, Longgang District, Shenzhen, Guangdong, 518112, PR China
| |
Collapse
|
7
|
Shi Z, Liu M, Zhang X, Wang J, Zhang J, Peng Z, Meng L, Wang R, Guo L, Zhang Q, Li J, Yang L, Liu J, Xu Y, Yan J, Cui J, Ren S, Gao Y, Wang Y, Qi Z. A novel selenium analog of HDACi-based twin drug induces apoptosis and cell cycle arrest via CDC25A to improve prostate cancer therapy. Theranostics 2024; 14:3565-3582. [PMID: 38948069 PMCID: PMC11209715 DOI: 10.7150/thno.92119] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Accepted: 05/02/2024] [Indexed: 07/02/2024] Open
Abstract
Cancer therapy has moved from single agents to more mechanism-based targeted approaches. In recent years, the combination of HDAC inhibitors and other anticancer chemicals has produced exciting progress in cancer treatment. Herein, we developed a novel prodrug via the ligation of dichloroacetate to selenium-containing potent HDAC inhibitors. The effect and mechanism of this compound in the treatment of prostate cancer were also studied. Methods: The concerned prodrug SeSA-DCA was designed and synthesized under mild conditions. This compound's preclinical studies, including the pharmacokinetics, cell toxicity, and anti-tumor effect on prostate cancer cell lines, were thoroughly investigated, and its possible synergistic mechanism was also explored and discussed. Results: SeSA-DCA showed good stability in physiological conditions and could be rapidly decomposed into DCA and selenium analog of SAHA (SeSAHA) in the tumor microenvironment. CCK-8 experiments identified that SeSA-DCA could effectively inhibit the proliferation of a variety of tumor cell lines, especially in prostate cancer. In further studies, we found that SeSA-DCA could also inhibit the metastasis of prostate cancer cell lines and promote cell apoptosis. At the animal level, oral administration of SeSA-DCA led to significant tumor regression without obvious toxicity. Moreover, as a bimolecular coupling compound, SeSA-DCA exhibited vastly superior efficacy than the mixture with equimolar SeSAHA and DCA both in vitro and in vivo. Our findings provide an important theoretical basis for clinical prostate cancer treatment. Conclusions: Our in vivo and in vitro results showed that SeSA-DCA is a highly effective anti-tumor compound for PCa. It can effectively induce cell cycle arrest and growth suppression and inhibit the migration and metastasis of PCa cell lines compared with monotherapy. SeSA-DCA's ability to decrease the growth of xenografts is a little better than that of docetaxel without any apparent signs of toxicity. Our findings provide an important theoretical basis for clinical prostate cancer treatment.
Collapse
Affiliation(s)
- Zhiyong Shi
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Miaomiao Liu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Xiaowen Zhang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jingyang Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Junwei Zhang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zeyan Peng
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Li Meng
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Ruijing Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Lihong Guo
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China
| | - Qiang Zhang
- Department of Clinical Laboratory, Branch of Tianjin Third Central Hospital, Tianjin 300250, China
| | - Jing Li
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Liang Yang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jie Liu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Yang Xu
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jie Yan
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Jianlin Cui
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Shan Ren
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
| | - Yang Gao
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China
| | - Yanming Wang
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
| | - Zhi Qi
- Department of Molecular Pharmacology, School of Medicine; College of Pharmacy, Tianjin Key Laboratory of Molecular Drug Research, Nankai University, Tianjin 300350, China
- Institute of Digestive Disease, Shengli Oilfield Central Hospital, Dongying 257000, China
- The First Department of Critical Care Medicine, The First Affiliated Hospital of Shihezi University, Shihezi, 832003, China
- Tianjin Key Laboratory of General Surgery in Construction, Tianjin Union Medical Center, Tianjin 300122, China
| |
Collapse
|
8
|
Thng DKH, Hooi L, Siew BE, Lee KY, Tan IJW, Lieske B, Lin NS, Kow AWC, Wang S, Rashid MBMA, Ang C, Koh JJM, Toh TB, Tan KK, Chow EKH. A functional personalised oncology approach against metastatic colorectal cancer in matched patient derived organoids. NPJ Precis Oncol 2024; 8:52. [PMID: 38413740 PMCID: PMC10899621 DOI: 10.1038/s41698-024-00543-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/08/2024] [Indexed: 02/29/2024] Open
Abstract
Globally, colorectal cancer (CRC) is the third most frequently occurring cancer. Progression on to an advanced metastatic malignancy (metCRC) is often indicative of poor prognosis, as the 5-year survival rates of patients decline rapidly. Despite the availability of many systemic therapies for the management of metCRC, the long-term efficacies of these regimens are often hindered by the emergence of treatment resistance due to intratumoral and intertumoral heterogeneity. Furthermore, not all systemic therapies have associated biomarkers that can accurately predict patient responses. Hence, a functional personalised oncology (FPO) approach can enable the identification of patient-specific combinatorial vulnerabilities and synergistic combinations as effective treatment strategies. To this end, we established a panel of CRC patient-derived organoids (PDOs) as clinically relevant biological systems, of which three pairs of matched metCRC PDOs were derived from the primary sites (ptCRC) and metastatic lesions (mCRC). Histological and genomic characterisation of these PDOs demonstrated the preservation of histopathological and genetic features found in the parental tumours. Subsequent application of the phenotypic-analytical drug combination interrogation platform, Quadratic Phenotypic Optimisation Platform, in these pairs of PDOs identified patient-specific drug sensitivity profiles to epigenetic-based combination therapies. Most notably, matched PDOs from one patient exhibited differential sensitivity patterns to the rationally designed drug combinations despite being genetically similar. These findings collectively highlight the limitations of current genomic-driven precision medicine in guiding treatment strategies for metCRC patients. Instead, it suggests that epigenomic profiling and application of FPO could complement the identification of novel combinatorial vulnerabilities to target synchronous ptCRC and mCRC.
Collapse
Affiliation(s)
- Dexter Kai Hao Thng
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
| | - Lissa Hooi
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bei En Siew
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Kai-Yin Lee
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Ian Jse-Wei Tan
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Bettina Lieske
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Norman Sihan Lin
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Alfred Wei Chieh Kow
- Division of Hepatobiliary & Pancreatic Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore
| | - Shi Wang
- Department of Pathology, National University Hospital, National University Health System, Singapore, Singapore
| | | | - Chermaine Ang
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Jasmin Jia Min Koh
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Tan Boon Toh
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore
- The Institute for Digital Medicine (WisDM), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ker-Kan Tan
- Department of Surgery, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Division of Colorectal Surgery, Department of Surgery, National University Hospital, National University Health System, Singapore, Singapore.
| | - Edward Kai-Hua Chow
- Cancer Science Institute of Singapore, National University of Singapore, Singapore, Singapore.
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- The N.1 Institute for Health, National University of Singapore, Singapore, Singapore.
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Department of Biomedical Engineering, College of Design and Engineering, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
9
|
Zhang Q, Shi Y, Liu S, Yang W, Chen H, Guo N, Sun W, Zhao Y, Ren Y, Ren Y, Jia L, Yang J, Yun Y, Chen G, Wang L, Wu C. EZH2/G9a interact to mediate drug resistance in non-small-cell lung cancer by regulating the SMAD4/ERK/c-Myc signaling axis. Cell Rep 2024; 43:113714. [PMID: 38306271 DOI: 10.1016/j.celrep.2024.113714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 11/18/2023] [Accepted: 01/12/2024] [Indexed: 02/04/2024] Open
Abstract
Drug resistance is the leading problem in non-small-cell lung cancer (NSCLC) therapy. The contribution of histone methylation in mediating malignant phenotypes of NSCLC is well known. However, the role of histone methylation in NSCLC drug-resistance mechanisms remains unclear. Here, our data show that EZH2 and G9a, two histone methyltransferases, are involved in the drug resistance of NSCLC. Gene manipulation results indicate that the combination of EZH2 and G9a promotes tumor growth and mediates drug resistance in a complementary manner. Importantly, clinical study demonstrates that co-expression of both enzymes predicts a poor outcome in patients with NSCLC. Mechanistically, G9a and EZH2 interact and promote the silencing of the tumor-suppressor gene SMAD4, activating the ERK/c-Myc signaling pathway. Finally, SU08, a compound targeting both EZH2 and G9a, is demonstrated to sensitize resistant cells to therapeutic drugs by regulating the SMAD4/ERK/c-Myc signaling axis. These findings uncover the resistance mechanism and a strategy for reversing NSCLC drug resistance.
Collapse
Affiliation(s)
- Qiuyue Zhang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yajie Shi
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Sen Liu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Weiming Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Huiping Chen
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Ning Guo
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Wanyu Sun
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuxiang Ren
- Department of Biochemistry and Molecular Biology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Lina Jia
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yi Yun
- Biobank Center, The Second Affiliated Hospital of Nanchang University, Nanchang 330006, China
| | - Guoliang Chen
- Key Laboratory of Structure-Based Drug Design & Discovery of Ministry of Education, School of Pharmaceutical Engineering, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Lihui Wang
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| | - Chunfu Wu
- Department of Pharmacology, School of Life Science and Biopharmaceutics, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
10
|
Manickasamy MK, Jayaprakash S, Girisa S, Kumar A, Lam HY, Okina E, Eng H, Alqahtani MS, Abbas M, Sethi G, Kumar AP, Kunnumakkara AB. Delineating the role of nuclear receptors in colorectal cancer, a focused review. Discov Oncol 2024; 15:41. [PMID: 38372868 PMCID: PMC10876515 DOI: 10.1007/s12672-023-00808-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2023] [Accepted: 10/20/2023] [Indexed: 02/20/2024] Open
Abstract
Colorectal cancer (CRC) stands as one of the most prevalent form of cancer globally, causing a significant number of deaths, surpassing 0.9 million in the year 2020. According to GLOBOCAN 2020, CRC ranks third in incidence and second in mortality in both males and females. Despite extensive studies over the years, there is still a need to establish novel therapeutic targets to enhance the patients' survival rate in CRC. Nuclear receptors (NRs) are ligand-activated transcription factors (TFs) that regulate numerous essential biological processes such as differentiation, development, physiology, reproduction, and cellular metabolism. Dysregulation and anomalous expression of different NRs has led to multiple alterations, such as impaired signaling cascades, mutations, and epigenetic changes, leading to various diseases, including cancer. It has been observed that differential expression of various NRs might lead to the initiation and progression of CRC, and are correlated with poor survival outcomes in CRC patients. Despite numerous studies on the mechanism and role of NRs in this cancer, it remains of significant scientific interest primarily due to the diverse functions that various NRs exhibit in regulating key hallmarks of this cancer. Thus, modulating the expression of NRs with their agonists and antagonists, based on their expression levels, holds an immense prospect in the diagnosis, prognosis, and therapeutical modalities of CRC. In this review, we primarily focus on the role and mechanism of NRs in the pathogenesis of CRC and emphasized the significance of targeting these NRs using a variety of agents, which may represent a novel and effective strategy for the prevention and treatment of this cancer.
Collapse
Affiliation(s)
- Mukesh Kumar Manickasamy
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sujitha Jayaprakash
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Sosmitha Girisa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Aviral Kumar
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Hiu Yan Lam
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Elena Okina
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Huiyan Eng
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, 61421, Abha, Saudi Arabia
- BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, UK
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, 61421, Abha, Saudi Arabia
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore
| | - Alan Prem Kumar
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117600, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Queenstown, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
11
|
Gao L, Qiao L, Li Y, Jia L, Cui W, Yang J, Wu C, Wang L. ALKBH5 regulates paclitaxel resistance in NSCLC via inhibiting CEMIP-mediated EMT. Toxicol Appl Pharmacol 2024; 483:116807. [PMID: 38199493 DOI: 10.1016/j.taap.2024.116807] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/14/2023] [Accepted: 01/07/2024] [Indexed: 01/12/2024]
Abstract
N6-methyladenosine (m6A) is the most prevalent mRNA modification, and it is verified to be closely correlated with cancer occurrence and progression. The m6A demethylase ALKBH5 (alkB homolog 5) is dysregulated in various cancers. However, the role and underlying mechanism of ALKBH5 in the pathogenesis and especially the chemo-resistance of non-small cell lung cancer (NSCLC) is poorly elucidated. The current study shows that ALKBH5 expression is reduced in paclitaxel (PTX) resistant NSCLC cells and down-regulation of ALKBH5 usually implies poor prognosis of NSCLC patients. Over-expression of ALKBH5 in PTX-resistant cells can suppress cell proliferation and enhance chemo-sensitivity, while knockdown of ALKBH5 exerts the opposite effect, which further supports the tumor suppressive role of ALKBH5. Over-expression of ALKBH5 can also reverse the epithelial-mesenchymal transition (EMT) process in PTX-resistant cancer cells. Mechanistically, data from RNA-seq, real-time PCR and western blotting indicate that CEMIP (cell migration inducing hyaluronidase 1), also known as KIAA1199, may be the downstream target of ALKBH5. Furthermore, ALKBH5 negatively regulates the CEMIP level by reducing the stability of CEMIP mRNA. Collectively, the current data demonstrate that the ALKBH5/CEMIP axis modulates the EMT process in NSCLC, which in turn regulates the chemo-sensitivity of cancer cells to PTX.
Collapse
Affiliation(s)
- Lingyue Gao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Li Qiao
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Yingying Li
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, 103 Wenhua Road, Shenhe District, Shenyang 110016, China.
| |
Collapse
|
12
|
Zhu Y, Zhu Y, Chen S, Cai Q. Identifying the cancer-associated fibroblast signature to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma. Comput Methods Biomech Biomed Engin 2023:1-11. [PMID: 38015040 DOI: 10.1080/10255842.2023.2287418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 11/15/2023] [Indexed: 11/29/2023]
Abstract
Cancer-associated fibroblasts (CAFs) are an important component of the tumor microenvironment that contribute toward the development of tumors. This study aimed to establish a new algorithm based on CAF scores to predict the prognosis and immunotherapy response in patients with lung squamous cell carcinoma (LUSC). The RNA-seq data of LUSC patients were obtained from two databases and merged after removing inter-batch differences. The CAF-related data for each sample were obtained through three different algorithms. Consistency cluster analysis was performed to obtain different CAF clusters, which were analyzed to identify differentially expressed genes. These were subjected to uniform cluster analysis to obtain different gene clusters. The Boruta algorithm was used to calculate the CAF score. Three CAF clusters and two gene clusters were obtained, all of which differed in their patient prognoses and the content of infiltrating immune cells. Patients with high CAF scores exhibited worse overall survival, higher expression of biomarkers related to immune checkpoints and immune activity, and lower tumor mutation burden. The CAF score could also predict the immunotherapy response of patients. This study suggests that the CAF score can accurately predict the prognosis and immunotherapy response of LUSC patients.
Collapse
Affiliation(s)
- Yinhui Zhu
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Changsha, Hunan, China
| | - Yingqun Zhu
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Changsha, Hunan, China
| | - Sirui Chen
- Department of Emergency Medicine, The Third Hospital of Changsha, Hunan, China
| | - Qian Cai
- Department of Respiratory and Critical Care Medicine, The Third Hospital of Changsha, Hunan, China
| |
Collapse
|
13
|
Shi J, Peng B, Zhou X, Wang C, Xu R, Lu T, Chang X, Shen Z, Wang K, Xu C, Zhang L. An anoikis-based gene signature for predicting prognosis in malignant pleural mesothelioma and revealing immune infiltration. J Cancer Res Clin Oncol 2023; 149:12089-12102. [PMID: 37421452 DOI: 10.1007/s00432-023-05128-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/04/2023] [Indexed: 07/10/2023]
Abstract
INTRODUCTION Malignant pleural mesothelioma (MPM) is an aggressive, treatment-resistant tumor. Anoikis is a particular type of programmed apoptosis brought on by the separation of cell-cell or extracellular matrix (ECM). Anoikis has been recognized as a crucial element in the development of tumors. However, few studies have comprehensively examined the role of anoikis-related genes (ARGs) in malignant mesothelioma. METHODS ARGs were gathered from the GeneCard database and the Harmonizome portals. We obtained differentially expressed genes (DEGs) using the GEO database. Univariate Cox regression analysis, and the least absolute shrinkage and selection operator (LASSO) algorithm were utilized to select ARGs associated with the prognosis of MPM. We then developed a risk model, and time-dependent receiver operating characteristic (ROC) analysis and calibration curves were employed to confirm the ability of the model. The patients were divided into various subgroups using consensus clustering analysis. Based on the median risk score, patients were divided into low- and high-risk groups. Functional analysis and immune cell infiltration analysis were conducted to estimate molecular mechanisms and the immune infiltration landscape of patients. Finally, drug sensitivity analysis and tumor microenvironment landscape were further explored. RESULTS A novel risk model was constructed based on the six ARGs. The patients were successfully divided into two subgroups by consensus clustering analysis, with a striking difference in the prognosis and landscape of immune infiltration. The Kaplan-Meier survival analysis indicated that the OS rate of the low-risk group was significantly higher than the high-risk group. Functional analysis, immune cell infiltration analysis, and drug sensitivity analysis showed that high- and low-risk groups had different immune statuses and drug sensitivity. CONCLUSIONS In summary, we developed a novel risk model to predict MPM prognosis based on six selected ARGs, which could broaden comprehension of personalized and precise therapy approaches for MPM.
Collapse
Affiliation(s)
- Jiaxin Shi
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Bo Peng
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiang Zhou
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chenghao Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Ran Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Tong Lu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Xiaoyan Chang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Zhiping Shen
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Kaiyu Wang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Chengyu Xu
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China
| | - Linyou Zhang
- Department of Thoracic Surgery, The Second Affiliated Hospital of Harbin Medical University, No. 246 Xuefu Road, Nangang District, Harbin, 150081, Heilongjiang, People's Republic of China.
| |
Collapse
|
14
|
Merle DA, Sen M, Armento A, Stanton CM, Thee EF, Meester-Smoor MA, Kaiser M, Clark SJ, Klaver CCW, Keane PA, Wright AF, Ehrmann M, Ueffing M. 10q26 - The enigma in age-related macular degeneration. Prog Retin Eye Res 2023; 96:101154. [PMID: 36513584 DOI: 10.1016/j.preteyeres.2022.101154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 11/21/2022] [Accepted: 12/01/2022] [Indexed: 12/14/2022]
Abstract
Despite comprehensive research efforts over the last decades, the pathomechanisms of age-related macular degeneration (AMD) remain far from being understood. Large-scale genome wide association studies (GWAS) were able to provide a defined set of genetic aberrations which contribute to disease risk, with the strongest contributors mapping to distinct regions on chromosome 1 and 10. While the chromosome 1 locus comprises factors of the complement system with well-known functions, the role of the 10q26-locus in AMD-pathophysiology remains enigmatic. 10q26 harbors a cluster of three functional genes, namely PLEKHA1, ARMS2 and HTRA1, with most of the AMD-associated genetic variants mapping to the latter two genes. High linkage disequilibrium between ARMS2 and HTRA1 has kept association studies from reliably defining the risk-causing gene for long and only very recently the genetic risk region has been narrowed to ARMS2, suggesting that this is the true AMD gene at this locus. However, genetic associations alone do not suffice to prove causality and one or more of the 14 SNPs on this haplotype may be involved in long-range control of gene expression, leaving HTRA1 and PLEKHA1 still suspects in the pathogenic pathway. Both, ARMS2 and HTRA1 have been linked to extracellular matrix homeostasis, yet their exact molecular function as well as their role in AMD pathogenesis remains to be uncovered. The transcriptional regulation of the 10q26 locus adds an additional level of complexity, given, that gene-regulatory as well as epigenetic alterations may influence expression levels from 10q26 in diseased individuals. Here, we provide a comprehensive overview on the 10q26 locus and its three gene products on various levels of biological complexity and discuss current and future research strategies to shed light on one of the remaining enigmatic spots in the AMD landscape.
Collapse
Affiliation(s)
- David A Merle
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department of Ophthalmology, Medical University of Graz, 8036, Graz, Austria.
| | - Merve Sen
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Angela Armento
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany
| | - Chloe M Stanton
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Eric F Thee
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Magda A Meester-Smoor
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands
| | - Markus Kaiser
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Simon J Clark
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Lydia Becker Institute of Immunology and Inflammation, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, M13 9PT, UK
| | - Caroline C W Klaver
- Department of Ophthalmology, Erasmus University Medical Center, 3015GD, Rotterdam, Netherlands; Department of Epidemiology, Erasmus University Medical Center, 3015CE, Rotterdam, Netherlands; Department of Ophthalmology, Radboudumc, 6525EX, Nijmegen, Netherlands; Institute of Molecular and Clinical Ophthalmology Basel, CH-4031, Basel, Switzerland
| | - Pearse A Keane
- Institute for Health Research, Biomedical Research Centre for Ophthalmology, Moorfields Eye Hospital NHS Foundation Trust, UCL Institute of Ophthalmology, London, EC1V 2PD, UK
| | - Alan F Wright
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, EH4 2XU, UK
| | - Michael Ehrmann
- Center of Medical Biotechnology, Faculty of Biology, University Duisburg-Essen, 45117, Essen, Germany
| | - Marius Ueffing
- Institute for Ophthalmic Research, Department for Ophthalmology, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany; Department for Ophthalmology, University Eye Clinic, Eberhard Karls University of Tübingen, 72076, Tübingen, Germany.
| |
Collapse
|
15
|
Tang J, Shu D, Fang Z, Yang G. Prominin 2 decreases cisplatin sensitivity in non-small cell lung cancer and is modulated by CTCC binding factor. Radiol Oncol 2023; 57:325-336. [PMID: 37665741 PMCID: PMC10476904 DOI: 10.2478/raon-2023-0033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/21/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Non-small cell lung cancer (NSCLC) is the major pathological type of lung cancer and accounts for the majority of lung cancer-related deaths worldwide. We investigated the molecular mechanism of prominin 2 (PROM2) involved in cisplatin resistance in NSCLC. PATIENTS AND METHODS The GEO database was analyzed to obtain differential genes to target PROM2. Immunohistochemistry and western blotting were used to detect protein expression levels. To examine the role of PROM2 in NSCLC, we overexpressed or knocked down PROM2 by transfection of plasmid or small interfering RNA. In functional experiments, CCK8 was used to detect cell viability. Cell migration and invasion and apoptosis were detected by transwell assay and flow cytometry, respectively. Mechanistically, the regulation of PROM2 by CTCF was detected by ChIP-PCR. In vivo experiments confirmed the role of PROM2 in NSCLC. RESULTS GEO data analysis revealed that PROM2 was up-regulated in NSCLC, but its role in NSCLC remains unclear. Our clinical samples confirmed that the expression of PROM2 was markedly increased in NSCLC tissue. Functionally, Overexpression of PROM2 promotes cell proliferation, migration and invasion, and cisplatin resistance. CTCF up-regulates PROM2 expression by binding to its promoter region. In vivo experiments confirmed that PROM2 knockdown could inhibit tumor growth and increase the sensitivity of tumor cells to cisplatin. CONCLUSIONS PROM2 up-regulation in NSCLC can attenuate the sensitivity of NSCLC cells to cisplatin and promote the proliferation, migration and invasion of tumor cells. PROM2 may provide a new target for the treatment of NSCLC.
Collapse
Affiliation(s)
- Jiyang Tang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Dejun Shu
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Zhimin Fang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| | - Gaolan Yang
- Department of Thoracic Surgery, The Third Affiliated Hospital of ZunYi Medical University (The First People's Hospital of ZunYi), Zunyi, Guizhou, China
| |
Collapse
|
16
|
Li Z, Bu D, Wang X, Zhu L, Lei D, Tang F, Sun X, Chen C, Ji X, Bai S. Chidamide and Oxaliplatin Synergistically Inhibit Colorectal Cancer Growth by Regulating the RPS27A-MDM2-P53 Axis. Onco Targets Ther 2023; 16:703-721. [PMID: 37667747 PMCID: PMC10475304 DOI: 10.2147/ott.s416824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 08/13/2023] [Indexed: 09/06/2023] Open
Abstract
Purpose The present study explored the anti-tumor effects of chidamide plus oxaliplatin on colorectal cancer (CRC) and examined its underlying mechanism. Material and Methods First, the Combination Index (CI) of chidamide and oxaliplatin was evaluated via CCK-8 assay. Second, the effects of chidamide and oxaliplatin monotherapy and the combined treatment on cell proliferation, invasion, migration, and apoptosis were detected. Third, whole-transcriptome RNA sequencing (RNA-seq) was performed to seek the potential targeted gene by which chidamide plus oxaliplatin exerted anti-tumor effects. Fourth, the validation of the targeted gene and the signal pathway it regulated were performed. Finally, the anti-tumor effect of chidamide plus oxaliplatin on mice xenograft was examined. Results Chidamide and oxaliplatin acted synergistically to inhibit CRC growth in vitro and in vivo (CI<1). Besides, compared with oxaliplatin monotherapy, chidamide could significantly enhance oxaliplatin-induced inhibition in cell proliferation, invasion, and migration, and promotion in HCT-116 and RKO cell apoptosis (P<0.05). The RNA-seq displayed that, compared to oxaliplatin monotherapy, RPS27A mRNA was evidently decreased in HCT-116 cells treated with chidamide plus oxaliplatin (P<0.001). Then, we found RPS27A was highly expressed in CRC tissues and CRC cell lines (P<0.001). Silence of RPS27A attenuated proliferation and induced apoptosis in HCT-116 and RKO cells via downregulation of MDM2 expression and upregulation of P53. Next, RPS27A overexpression could partially reverse chidamide plus oxaliplatin induced growth inhibition and apoptosis in HCT-116 and RKO cells (P<0.01). RPS27A overexpression could promote the upregulation of MDM2 and downregulation of P53 after the combined treatment of chidamide with oxaliplatin. Conclusion Chidamide and oxaliplatin acted synergistically to suppress CRC growth by the inhibition of the RPS27A-MDM2-p53 axis.
Collapse
Affiliation(s)
- Zhaopeng Li
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Deyong Bu
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiaobin Wang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Lin Zhu
- Department of Ultrasound, the Affiliated Nanchong Central Hospital of North Sichuan Medical College, Nanchong, Sichuan, 637000, People’s Republic of China
| | - Daoyan Lei
- Department of Ultrasound, Jiangchuan District People’s Hospital, Yuxi, Yunnan, 652600, People’s Republic of China
| | - Fengling Tang
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xianghua Sun
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Cheng Chen
- Department of Breast Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Xiang Ji
- Department of Day Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| | - Song Bai
- Department of Geriatric General Surgery, the First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650000, People’s Republic of China
| |
Collapse
|
17
|
Tan X, Wang X, Liao X, Wang X, Jiang Z, Liang W, Cao C, Gong D, Hu Z, Tian X. Downregulation of VPS13C promotes cisplatin resistance in cervical cancer by upregulating GSTP1. iScience 2023; 26:107315. [PMID: 37520723 PMCID: PMC10372835 DOI: 10.1016/j.isci.2023.107315] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/05/2023] [Accepted: 07/04/2023] [Indexed: 08/01/2023] Open
Abstract
Cisplatin resistance remains a major obstacle limiting the effectiveness of chemotherapy in cervical cancer. However, the underlying mechanism of cisplatin resistance is still unclear. In this study, we demonstrate that vacuolar protein sorting 13 homolog C (VPS13C) deficiency promotes cisplatin resistance in cervical cancer. Moreover, through an RNA sequencing screen, VPS13C deficiency was identified as negatively correlated with the high expression of glutathione S-transferase pi gene (GSTP1). Mechanistically, loss of VPS13C contributes to cisplatin resistance by influencing the expression of GSTP1 and inhibiting the downstream c-Jun N-terminal kinase (JNK) pathway. In addition, targeting GSTP1 with the inhibitor NBDHEX effectively rescued the cisplatin resistance induced by VPS13C deficiency. Overall, our findings provide insights into the underlying mechanisms of VPS13C in cisplatin resistance and identify VPS13C as a promising candidate for the treatment of chemoresistance in cervical cancer.
Collapse
Affiliation(s)
- Xiangyu Tan
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430110, China
| | - Xueqian Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430110, China
| | - Xueyao Liao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Xin Wang
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430110, China
| | - Zhichao Jiang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Wenjia Liang
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Chen Cao
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Danni Gong
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Zheng Hu
- Department of Gynecologic Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan 430071 Hubei, China
- Hubei Key Laboratory of Tumor Biological Behaviors, Zhongnan Hospital of Wuhan University, Wuhan 430071 Hubei, China
- Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, Wuhan 430071 Hubei, China
| | - Xun Tian
- Department of Obstetrics and Gynecology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
- Department of Obstetrics and Gynecology, Academician Expert Workstation, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
- National Clinical Research Center for Obstetrics and Gynecology, Cancer Biology Research Center (Key Laboratory of the Ministry of Education), Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430110, China
| |
Collapse
|
18
|
Zhang J, Yang T, Han M, Wang X, Yang W, Guo N, Ren Y, Cui W, Li S, Zhao Y, Zhai X, Jia L, Yang J, Wu C, Wang L. Gain-of-function mutations in the catalytic domain of DOT1L promote lung cancer malignant phenotypes via the MAPK/ERK signaling pathway. SCIENCE ADVANCES 2023; 9:eadc9273. [PMID: 37256945 PMCID: PMC10413674 DOI: 10.1126/sciadv.adc9273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 04/25/2023] [Indexed: 06/02/2023]
Abstract
Lung cancer is a lethal malignancy lacking effective therapies. Emerging evidence suggests that epigenetic enzyme mutations are closely related to the malignant phenotype of lung cancer. Here, we identified a series of gain-of-function mutations in the histone methyltransferase DOT1L. The strongest of them is R231Q, located in the catalytic DOT domain. R231Q can enhance the substrate binding ability of DOT1L. Moreover, R231Q promotes cell growth and drug resistance of lung cancer cells in vitro and in vivo. Mechanistic studies also revealed that the R231Q mutant specifically activates the MAPK/ERK signaling pathway by enriching H3K79me2 on the RAF1 promoter and epigenetically regulating the expression of downstream targets. The combination of a DOT1L inhibitor (SGC0946) and a MAPK/ERK axis inhibitor (binimetinib) can effectively reverse the R231Q-induced phenomena. Our results reveal gain-of-function mutations in an epigenetic enzyme and provide promising insights for the precise treatment of lung cancer patients.
Collapse
Affiliation(s)
- Jiayu Zhang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ting Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Mei Han
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Xiaoxuan Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Weiming Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Ning Guo
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan 430070, China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Shangxiao Li
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yongshan Zhao
- Department of Biochemistry and Molecular Biology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Xin Zhai
- Key Laboratory of Structure-Based Drug Design and Discovery, Ministry of Education, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang 110016, China
- Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Benxi 117004, China
| |
Collapse
|
19
|
Huang Y, Guo DM, Bu S, Xu W, Cai QC, Xu J, Jiang YQ, Teng F. Systematic Analysis of the Prognostic Significance and Roles of the Integrin Alpha Family in Non-Small Cell Lung Cancers. Adv Ther 2023; 40:2186-2204. [PMID: 36892810 DOI: 10.1007/s12325-023-02469-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 02/17/2023] [Indexed: 03/10/2023]
Abstract
INTRODUCTION Lung cancer is one of the most common cancer malignancies and the principal cause of cancer-associated deaths worldwide. Non-small cell lung cancers (NSCLCs) account for more than 80% of all lung cancer cases. Recent studies showed that the genes of the integrin alpha (α) (ITGA) subfamily play a fundamental role in various cancers. However, little is known about the expression and roles of distinct ITGA proteins in NSCLCs. METHODS Gene Expression Profiling Interactive Analysis and UALCAN (University of ALabama at Birmingham CANcer) web resources and The Cancer Genome Atlas (TCGA), ONCOMINE, cBioPortal, GeneMANIA, and Tumor Immune Estimation Resource databases were used to evaluate differential expression, correlations between the expression levels of individual genes, the prognostic value of overall survival (OS) and stage, genetic alterations, protein-protein interactions, and the immune cell infiltration of ITGAs in NSCLCs. We used R (v. 4.0.3) software to conduct gene correlation, gene enrichment, and clinical correlation of RNA sequencing data of 1016 NSCLCs from TCGA. To evaluate the expression of ITGA5/8/9/L at the expression and protein levels, qRT-PCR, immunohistochemistry (IHC), and hematoxylin and eosin (H&E) were performed, respectively. RESULTS Upregulated levels of ITGA11 messenger RNA and downregulated levels of ITGA1/3/5/7/8/9/L/M/X were observed in the NSCLC tissues. Lower expression of ITGA5/6/8/9/10/D/L was discovered to be expressively associated with advanced tumor stage or poor patient prognosis in patients with NSCLC. A high mutation rate (44%) of the ITGA family was observed in the NSCLCs. Gene Ontology functional enrichment analyses results revealed that the differentially expressed ITGAs could be involved in roles related to extracellular matrix (ECM) organization, collagen-containing ECM cellular components, and ECM structural constituent molecular functions. The results of the Kyoto Encyclopedia of Genes and Genomes analysis revealed that ITGAs may be involved in focal adhesion, ECM-receptor interaction, and amoebiasis; the expression of ITGAs was significantly correlated with the infiltration of diverse immune cells in NSCLCs. ITGA5/8/9/L was also highly correlated with PD-L1 expression. The validation results for marker gene expression in NSCLC tissues by qRT-PCR, IHC, and H&E staining indicated that the expression of ITGA5/8/9/L decreased compared with that in normal tissues. CONCLUSION As potential prognostic biomarkers in NSCLCs, ITGA5/8/9/L may fulfill important roles in regulating tumor progression and immune cell infiltration.
Collapse
Affiliation(s)
- Yu Huang
- School of Medicine, Chongqing University, Chongqing, 400030, China
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Dong-Ming Guo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Shi Bu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Wei Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Qing-Chun Cai
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Jian Xu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China
| | - Yue-Quan Jiang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China.
| | - Fei Teng
- Key Laboratory for Biorheological Science and Technology of Ministry of Education (Chongqing University), Chongqing University Cancer Hospital, No. 181 of Hanyu Road, Shapingba District, Chongqing, 400030, China.
| |
Collapse
|
20
|
Ren L, Yang Y, Li W, Yang H, Zhang Y, Ge B, Zhang S, Du G, Wang J. Recent advances in epigenetic anticancer therapeutics and future perspectives. Front Genet 2023; 13:1085391. [PMID: 36685834 PMCID: PMC9845602 DOI: 10.3389/fgene.2022.1085391] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 12/12/2022] [Indexed: 01/05/2023] Open
Abstract
Tumor development is frequently accompanied by abnormal expression of multiple genomic genes, which can be broadly viewed as decreased expression of tumor suppressor genes and upregulated expression of oncogenes. In this process, epigenetic regulation plays an essential role in the regulation of gene expression without alteration of DNA or RNA sequence, including DNA methylation, RNA methylation, histone modifications and non-coding RNAs. Therefore, drugs developed for the above epigenetic modulation have entered clinical use or preclinical and clinical research stages, contributing to the development of antitumor drugs greatly. Despite the efficacy of epigenetic drugs in hematologic caners, their therapeutic effects in solid tumors have been less favorable. A growing body of research suggests that epigenetic drugs can be applied in combination with other therapies to increase efficacy and overcome tumor resistance. In this review, the progress of epigenetics in tumor progression and oncology drug development is systematically summarized, as well as its synergy with other oncology therapies. The future directions of epigenetic drug development are described in detail.
Collapse
Affiliation(s)
- Liwen Ren
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yihui Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Wan Li
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Hong Yang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Yizhi Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Binbin Ge
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Sen Zhang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Guanhua Du
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China
| | - Jinhua Wang
- The State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Beijing, China,Key Laboratory of Drug Target Research and Drug Screen, Institute of Materia Medica, Chinese Academy of Medical Science and Peking Union Medical College, Beijing, China,*Correspondence: Jinhua Wang,
| |
Collapse
|
21
|
Tan Q, Ma J, Zhang H, Wu X, Li Q, Zuo X, Jiang Y, Liu H, Yan L. miR-125b-5p upregulation by TRIM28 induces cisplatin resistance in non-small cell lung cancer through CREB1 inhibition. BMC Pulm Med 2022; 22:469. [PMID: 36476351 PMCID: PMC9730690 DOI: 10.1186/s12890-022-02272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 12/01/2022] [Indexed: 12/12/2022] Open
Abstract
OBJECTIVE miR-125b-5p plays an important role in the development of cancer and drug resistance. However, in cisplatin resistance of non-small cell lung cancer (NSCLC), the function and potential mechanism of miR-125b-5p is still unclear. The aim of this study was to investigate the role and molecular mechanism of miR-125b-5p in cisplatin resistance of NSCLC. METHODS A GEO dataset (GSE168707) was analyzed to find high miR-125b-5p levels were associated with DDP resistance. miR-125b-5p expression levels were detected in A549 and A549/DDP cells via real-time quantitative RT-PCR (qRT-PCR). Luciferase reporter assays, western blots and mouse model xenografted were performed to identify CREB1 as a direct target gene of miR-125b-5p. Cell proliferation and apoptosis were also performed to identify whether miR-125b-5p upregulation by TRIM28 induces DDP resistance in NSCLC through CREB1 inhibition. RESULTS In A549/DDP cells, miR-125b-5p expression was upregulated compared to A549 cells. Then miR-125b-5p was found to increase DDP resistance in NSCLC in vivo and in vitro by increasing cell proliferation and suppressing cell apoptosis. Bioinformatic analyses were used to search for gene which miR-125b-5p can target. We identified miR-125b-5p can regulate CREB1 via luciferase reporter assays, qRT-PCR and western blots. Cell proliferation and apoptosis were also performed to confirm miR-125b-5p could impact on CREB1 and induce the DDP resistance in NSCLC. Additionally, we used bioinformatic analyses to find tripartite motif-containing 28 (TRIM28) as a transcriptional enhance factor of miR-125b-5p. The expression of TRIM28 was upregulated in A549/DDP cells compared with that in A549 cells by qRT-PCR. Finally, we found TRIM28 could mediate DDP resistance through miR-125b-5p/CREB1 axis via cell proliferation, western blot and apoptosis assay. CONCLUSIONS Overall, our findings demonstrated novel functions and mechanisms underlying DDP resistance in NSCLC through the TRIM28/miR-125b-5p/CREB1 axis. These may serve as novel therapeutic targets to improve the treatment efficacy using DDP for NSCLC in the future.
Collapse
Affiliation(s)
- Qiuyu Tan
- grid.452929.10000 0004 8513 0241The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002 Anhui China ,grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Jinzhu Ma
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Hao Zhang
- grid.411525.60000 0004 0369 1599Department of Orthopedics, Changhai Hospital, Navy Medical University, Shanghai, 200433 China
| | - Xu Wu
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Qiang Li
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Xiaoxuan Zuo
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| | - Yuxin Jiang
- grid.411870.b0000 0001 0063 8301Department of Pathogen Biology and Immunology, Jiaxing University College of Medicine, Jiaxing, 314000 Zhejiang China
| | - Haijun Liu
- grid.452929.10000 0004 8513 0241The First Affiliated Hospital of Wannan Medical College (Yijishan Hospital of Wannan Medical College), Wuhu, 241002 Anhui China
| | - Liang Yan
- grid.443626.10000 0004 1798 4069Provincial Key Laboratory of Biological Macro-Molecules Research, Wannan Medical College, Wuhu, 241002 Anhui China
| |
Collapse
|
22
|
Lin X, Yang T, Liu X, Fan F, Zhou X, Li H, Luo Y. TGF-β/Smad Signalling Activation by HTRA1 Regulates the Function of Human Lens Epithelial Cells and Its Mechanism in Posterior Subcapsular Congenital Cataract. Int J Mol Sci 2022; 23:14431. [PMID: 36430917 PMCID: PMC9692351 DOI: 10.3390/ijms232214431] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/22/2022] Open
Abstract
Congenital cataract is the leading cause of blindness among children worldwide. Patients with posterior subcapsular congenital cataract (PSC) in the central visual axis can result in worsening vision and stimulus deprivation amblyopia. However, the pathogenesis of PSC remains unclear. This study aims to explore the functional regulation and mechanism of HTRA1 in human lens epithelial cells (HLECs). HTRA1 was significantly downregulated in the lens capsules of children with PSC compared to normal controls. HTRA1 is a suppression factor of transforming growth factor-β (TGF-β) signalling pathway, which plays a key role in cataract formation. The results showed that the TGF-β/Smad signalling pathway was activated in the lens tissue of PSC. The effect of HTRA1 on cell proliferation, migration and apoptosis was measured in HLECs. In primary HLECs, the downregulation of HTRA1 can promote the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway and can significantly upregulate the TGF-β/Smad downstream target genes FN1 and α-SMA. HTRA1 was also knocked out in the eyes of C57BL/6J mice via adeno-associated virus-mediated RNA interference. The results showed that HTRA1 knockout can significantly upregulate p-Smad2/3 and activate the TGF-β/Smad signalling pathway, resulting in abnormal proliferation and irregular arrangement of lens epithelial cells and leading to the occurrence of subcapsular cataract. To conclude, HTRA1 was significantly downregulated in children with PSC, and the downregulation of HTRA1 enhanced the proliferation and migration of HLECs by activating the TGF-β/Smad signalling pathway, which led to the occurrence of PSC.
Collapse
Affiliation(s)
- Xiaolei Lin
- Department of Ophthalmology, Shanghai Eye Disease Prevention and Treatment Center, Shanghai Eye Hospital, Shanghai 200040, China;
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Tianke Yang
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xin Liu
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Fan Fan
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Xiyue Zhou
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Hongzhe Li
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| | - Yi Luo
- Department of Ophthalmology, Eye & ENT Hospital, Shanghai Medical College, Fudan University, Shanghai 200031, China; (T.Y.); (X.L.); (F.F.); (X.Z.); (H.L.)
| |
Collapse
|
23
|
Khan FH, Bhat BA, Sheikh BA, Tariq L, Padmanabhan R, Verma JP, Shukla AC, Dowlati A, Abbas A. Microbiome dysbiosis and epigenetic modulations in lung cancer: From pathogenesis to therapy. Semin Cancer Biol 2022; 86:732-742. [PMID: 34273520 DOI: 10.1016/j.semcancer.2021.07.005] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 06/25/2021] [Accepted: 07/11/2021] [Indexed: 02/07/2023]
Abstract
The lung microbiome plays an essential role in maintaining healthy lung function, including host immune homeostasis. Lung microbial dysbiosis or disruption of the gut-lung axis can contribute to lung carcinogenesis by causing DNA damage, inducing genomic instability, or altering the host's susceptibility to carcinogenic insults. Thus far, most studies have reported the association of microbial composition in lung cancer. Mechanistic studies describing host-microbe interactions in promoting lung carcinogenesis are limited. Considering cancer as a multifaceted disease where epigenetic dysregulation plays a critical role, epigenetic modifying potentials of microbial metabolites and toxins and their roles in lung tumorigenesis are not well studied. The current review explains microbial dysbiosis and epigenetic aberrations in lung cancer and potential therapeutic opportunities.
Collapse
Affiliation(s)
- Faizan Haider Khan
- Discipline of Pathology, Lambe Institute for Translational Research, School of Medicine, National University of Ireland Galway, Galway, Ireland
| | | | | | - Lubna Tariq
- Department of Biotechnology, Baba Ghulam Shah Badshah University, Rajouri, India
| | - Roshan Padmanabhan
- Department of Medicine, Case Western Reserve University, and University Hospital, Cleveland, OH, 44106, USA
| | - Jay Prakash Verma
- Institute of Environment and Sustainable Development, Banaras Hindu University Varanasi, India
| | | | - Afshin Dowlati
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; University Hospitals Seidman Cancer Center, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA
| | - Ata Abbas
- Division of Hematology and Oncology, Department of Medicine, Case Western Reserve University, Cleveland, OH, 44106, USA; Developmental Therapeutics Program, Case Comprehensive Cancer Center, Case Western Reserve University School of Medicine, Cleveland, OH, 44116, USA.
| |
Collapse
|
24
|
Wu J, Hu Y, Ye H, Zhang S, Zhu J, Ji D, Zhang Y, Ding Y, Huang Z. One Stone Two Birds: Redox-Sensitive Colocalized Delivery of Cisplatin and Nitric Oxide through Cascade Reactions. JACS AU 2022; 2:2339-2351. [PMID: 36311834 PMCID: PMC9597859 DOI: 10.1021/jacsau.2c00390] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 09/22/2022] [Accepted: 09/23/2022] [Indexed: 06/16/2023]
Abstract
Bio-orthogonal bond-cleavage reactions have been used in cancer therapy for improving the biological specificity of prodrug activation, but the spatiotemporal consistency of reactants is still a huge challenge. Although, in most cases, the cleavage catalysts and caged prodrugs are administrated separately, it is difficult to avoid the reactions in advance before they meet at the tumor site. Herein, we design and construct novel coordinative nanoparticles, integrating two prodrugs A and B as ligands and ferric ions as coordinative centers. After nanoparticles accumulated in tumor through passive targeting, inert Pt(IV) prodrug A is specifically and spontaneously reduced into active Pt(II) cisplatin, which acts as the cleavage catalyst to subsequently initiate the in situ bio-orthogonal depropargylation of B, that is, O 2-propargyl nitric oxide (NO) donor. The unique structure of coordinative nanoparticles ensures the spatiotemporal consistency of reactants (prodrugs A and B) and products (cytotoxic cisplatin and tumoricidal NO) for the bio-orthogonal bond-cleavage reaction, which leads to an improved synergistic therapeutic activity for triple-negative breast cancer (TNBC). This new concept of bio-orthogonal dual-prodrug coordinative nanoparticles may inspire further applications in bio-orthogonal chemistry and drug delivery for combination chemotherapy.
Collapse
Affiliation(s)
- Jianbing Wu
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| | - Yihui Hu
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, China Pharmaceutical University, Nanjing210009, P. R. China
- Institute
for Regenerative Medicine, Shanghai East Hospital, The Institute for
Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai200092, P. R.
China
| | - Hui Ye
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| | - Sheng Zhang
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, China Pharmaceutical University, Nanjing210009, P. R. China
| | - Jie Zhu
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| | - Duorui Ji
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| | - Yihua Zhang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| | - Ya Ding
- Key
Laboratory of Drug Quality Control and Pharmacovigilance, Ministry
of Education, China Pharmaceutical University, Nanjing210009, P. R. China
| | - Zhangjian Huang
- State
Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Drug
Discovery for Metabolic Diseases, China
Pharmaceutical University, Nanjing210009, P. R. China
| |
Collapse
|
25
|
Contreras-Sanzón E, Prado-Garcia H, Romero-Garcia S, Nuñez-Corona D, Ortiz-Quintero B, Luna-Rivero C, Martínez-Cruz V, Carlos-Reyes Á. Histone deacetylases modulate resistance to the therapy in lung cancer. Front Genet 2022; 13:960263. [PMID: 36263432 PMCID: PMC9574126 DOI: 10.3389/fgene.2022.960263] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Accepted: 09/07/2022] [Indexed: 12/07/2022] Open
Abstract
The acetylation status of histones located in both oncogenes and tumor suppressor genes modulate cancer hallmarks. In lung cancer, changes in the acetylation status are associated with increased cell proliferation, tumor growth, migration, invasion, and metastasis. Histone deacetylases (HDACs) are a group of enzymes that take part in the elimination of acetyl groups from histones. Thus, HDACs regulate the acetylation status of histones. Although several therapies are available to treat lung cancer, many of these fail because of the development of tumor resistance. One mechanism of tumor resistance is the aberrant expression of HDACs. Specific anti-cancer therapies modulate HDACs expression, resulting in chromatin remodeling and epigenetic modification of the expression of a variety of genes. Thus, HDACs are promising therapeutic targets to improve the response to anti-cancer treatments. Besides, natural compounds such as phytochemicals have potent antioxidant and chemopreventive activities. Some of these compounds modulate the deregulated activity of HDACs (e.g. curcumin, apigenin, EGCG, resveratrol, and quercetin). These phytochemicals have been shown to inhibit some of the cancer hallmarks through HDAC modulation. The present review discusses the epigenetic mechanisms by which HDACs contribute to carcinogenesis and resistance of lung cancer cells to anticancer therapies.
Collapse
Affiliation(s)
| | - Heriberto Prado-Garcia
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Susana Romero-Garcia
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - David Nuñez-Corona
- Posgrado de Ciencias Genómicas, Universidad Autónoma de la Ciudad de México, Ciudad de México, México
| | - Blanca Ortiz-Quintero
- Departamento de Investigación en Bioquímica, Unidad de Investigación, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Cesar Luna-Rivero
- Servicio de Patología, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
| | - Victor Martínez-Cruz
- Laboratorio de Biología Molecular, Instituto Nacional de Pediatría, Ciudad de México, México
| | - Ángeles Carlos-Reyes
- Laboratorio de Onco-Inmunobiologia, Departamento de Enfermedades Crónico-Degenerativas, Instituto Nacional de Enfermedades Respiratorias Ismael Cosio Villegas, Ciudad de México, México
- *Correspondence: Ángeles Carlos-Reyes,
| |
Collapse
|
26
|
Yu F, Tan W, Chen Z, Shen X, Mo X, Mo X, He J, Deng Z, Wang J, Luo Z, Yang J. Nitidine chloride induces caspase 3/GSDME-dependent pyroptosis by inhibting PI3K/Akt pathway in lung cancer. Chin Med 2022; 17:115. [PMID: 36175965 PMCID: PMC9524076 DOI: 10.1186/s13020-022-00671-y] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 09/12/2022] [Indexed: 01/09/2023] Open
Abstract
BACKGROUND As the increasing mortality and incidence of lung cancer (LC), there is an urgent need to discover novel treatment agent. In this study, we aimed to investigate the anti-LC effects of nitidine chloride (NC), a small molecular compound extracted from Chinese herbal medicine, while detailing its underlying mechanisms. METHODS Cell viability was detected by MTT assays and five cell death inhibitors, including ferrostatin-1 (Fer-1), Z-VAD-FMK, necrostatin-1 (Nec-1), disulfiram (DSF) and IM-54 were used to explore the type of cell death induced by NC. The microscopic features of NC-induced pyroptosis were assessed by transmission electron microscopy (TEM) and the pyroptotic-related proteins such as caspase and gasdermin family, were examined by western blot. Network pharmacology was employed to predict the potential mechanisms of NC in lung cancer treatment. CETSA and DARTs were used to determine the activity of NC binding to targeted protein. Xenograft mice model was established to further investigate the inhibitory effect and mechanism of NC against LC. RESULTS The pyroptosis inhibitor (DSF) and apoptosis inhibitor (Z-VAD-FMK) but not IM-54, necrostatin-1, or Ferrostatin-1 rescued NC-induced cell death. Morphologically, H1688 and A549 cells treated with NC showed notably pyroptotic features, such as cell swelling and large bubbles emerging from the plasma membrane. Gasdermin E (GSDME) rather than GSDMC or GSDMD was cleaved in NC-treated H1688 and A549 cells with an increased cleavage of caspase 3. Combined with network pharmacology and molecule docking, PI3K/Akt signaling axis was predicted and was further verified by CETSA and DARTs assay. In addition, the activation of PI3K is able to rescue the pyroptosis induced by NC in vitro. In xenograft model of LC, NC significantly hindered the transduction of PI3K-AKT pathway, inducing pyroptosis of tumor. CONCLUSION Our data indicated that NC is a potential therapeutic agent for the treatment of LC via triggering GSDME-dependent pyroptosis.
Collapse
Affiliation(s)
- Fei Yu
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Weidan Tan
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhiquan Chen
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaoju Shen
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaoxiang Mo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Xiaocheng Mo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jingchuan He
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhihua Deng
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Wang
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Zhuo Luo
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| | - Jie Yang
- grid.256607.00000 0004 1798 2653Department of Pharmacology, School of Pharmacy, 406 Graduate School of Guangxi Medical University, Nanning, 530021 Guangxi People’s Republic of China
| |
Collapse
|
27
|
Identification of the effects of COVID-19 on patients with pulmonary fibrosis and lung cancer: a bioinformatics analysis and literature review. Sci Rep 2022; 12:16040. [PMID: 36163484 PMCID: PMC9512912 DOI: 10.1038/s41598-022-20040-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 09/07/2022] [Indexed: 11/19/2022] Open
Abstract
Coronavirus disease 2019 (COVID-19) poses a serious threat to human health and life. The effective prevention and treatment of COVID-19 complications have become crucial to saving patients’ lives. During the phase of mass spread of the epidemic, a large number of patients with pulmonary fibrosis and lung cancers were inevitably infected with the SARS-CoV-2 virus. Lung cancers have the highest tumor morbidity and mortality rates worldwide, and pulmonary fibrosis itself is one of the complications of COVID-19. Idiopathic lung fibrosis (IPF) and various lung cancers (primary and metastatic) become risk factors for complications of COVID-19 and significantly increase mortality in patients. Therefore, we applied bioinformatics and systems biology approaches to identify molecular biomarkers and common pathways in COVID-19, IPF, colorectal cancer (CRC) lung metastasis, SCLC and NSCLC. We identified 79 DEGs between COVID-19, IPF, CRC lung metastasis, SCLC and NSCLC. Meanwhile, based on the transcriptome features of DSigDB and common DEGs, we identified 10 drug candidates. In this study, 79 DEGs are the common core genes of the 5 diseases. The 10 drugs were found to have positive effects in treating COVID-19 and lung cancer, potentially reducing the risk of pulmonary fibrosis.
Collapse
|
28
|
The Potential Mechanism of HDAC1-Catalyzed Histone Crotonylation of Caspase-1 in Nonsmall Cell Lung Cancer. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:5049116. [PMID: 35958929 PMCID: PMC9363190 DOI: 10.1155/2022/5049116] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 06/22/2022] [Accepted: 06/23/2022] [Indexed: 11/18/2022]
Abstract
Nonsmall cell lung cancer (NSCLC) is a predominant subtype of lung cancer and accounts for over 80% of all lung cancer cases. The resistance to pemetrexed (PEM) is frequently occurred and severely affects the NSCLC therapy. Proteomic analysis of histones indicated that the histone deacetylase 1 (HDAC1) complex could hydrolyze lysine crotonylation on histone3 (H3K18cr), affecting epigenetic regulation in cancers. However, the effect of HDAC1-mediated H3K18cr on the PEM resistance of NSCLC is still unclear. Here, we aimed to explore the function of HDAC1-mediated H3K18cr in NSCLC PEM resistance. The expression of HDAC1 was upregulated in clinical NSCLC tissues and cell lines and correlated with the poor prognosis of NSCLC samples. We constructed the PEM-resistant NSCLC cell lines, and the depletion of HDAC1 remarkably reduced the viability of the cells. The proliferation of PEM-resistant NSCLC cells was decreased by HDAC1 knockdown, and the IC50 of PEM was repressed by the silencing of HDAC1 in the cells. Mechanically, we identified the enrichment of HDAC1 on the promoter of caspase-1 in PEM-resistant NSCLC cells. The depletion of HDAC1 inhibited the enrichment of histone H3K18cr and RNA polymerase II (RNA pol II) on the caspase-1 promoter in the cells. The expression of caspase-1 was suppressed by HDAC1 knockdown. The knockdown of HDAC1 reduced proliferation of PEM-resistant NSCLC cells, in which caspase-1 or GSDMD depletion reversed the effect. Clinically, the HDAC1 expression was negatively associated with caspase-1 and GSDMD in clinical NSCLC tissues, while caspase-1 and GSDMD expression was positively correlated in the samples. Therefore, we concluded that HDAC1-catalyzed histone crotonylation of caspase-1 modulates PEM sensitivity of NSCLC by targeting GSDMD.
Collapse
|
29
|
Jiang M, Qi F, Zhang K, Zhang X, Ma J, Xia S, Chen L, Yu Z, Chen J, Chen D. MARCKSL1-2 reverses docetaxel-resistance of lung adenocarcinoma cells by recruiting SUZ12 to suppress HDAC1 and elevate miR-200b. Mol Cancer 2022; 21:150. [PMID: 35864549 PMCID: PMC9306054 DOI: 10.1186/s12943-022-01605-w] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/06/2022] [Indexed: 11/10/2022] Open
Abstract
Background Long non-coding RNAs (lncRNAs) are implicated in the development of multiple cancers. In our previous study, we demonstrated that HDAC1/4-mediated silencing of microRNA-200b (miR-200b) enhances docetaxel (DTX)-resistance of human lung adenocarcinoma (LAD) cells. Methods and results Herein, we probed the function of LncRNA MARCKSL1–2 (MARCKSL1-transcript variant 2, NR_052852.1) in DTX resistance of LAD cells. It was found that MARCKSL1–2 expression was markedly reduced in DTX-resistant LAD cells. Through gain- or loss- of function assays, colony formation assay, EdU assay, TUNEL assay, and flow cytometry analysis, we found that MARCKSL1–2 suppressed the growth and DTX resistance of both parental and DTX-resistant LAD cells. Moreover, we found that MARCKSL1–2 functioned in LAD through increasing miR-200b expression and repressing HDAC1. Mechanistically, MARCKSL1–2 recruited the suppressor of zeste 12 (SUZ12) to the promoter of histone deacetylase 1 (HDAC1) to strengthen histone H3 lysine 27 trimethylation (H3K27me3) of HDAC1 promoter, thereby reducing HDAC1 expression. MARCKSL1–2 up-regulated miR-200b by blocking the suppressive effect of HDAC1 on the histone acetylation modification at miR-200b promoter. Furthermore, in vivo analysis using mouse xenograft tumor model supported that overexpression of MARCKSL1–2 attenuated the DTX resistance in LAD tumors. Conclusions We confirmed that MARCKSL1–2 alleviated DTX resistance in LAD cells by abolishing the inhibitory effect of HDAC1 on miR-200b via the recruitment of SUZ12. MARCKSL1–2 could be a promising target to improve the chemotherapy of LAD. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01605-w.
Collapse
Affiliation(s)
- Min Jiang
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Feng Qi
- Department of Pharmacy, The Fourth Affiliated Hospital of Nantong University, Yancheng, 224005, Jiangsu, China
| | - Kai Zhang
- Department of Respiratory Medicine, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
| | - Xiaofei Zhang
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China
| | - Jingjing Ma
- Department of Pharmacy, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Suhua Xia
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China
| | - Longbang Chen
- Department of Medical Oncology, Nanjing Jinling Hospital, School of Medicine, Nanjing University, Nanjing, 210008, Jiangsu, China
| | - Zhengyuan Yu
- Department of Medical Oncology, The First Affiliated Hospital of Soochow University, No.188 Shizi Street, Gusu District, Suzhou, 215006, Jiangsu, China.
| | - Jing Chen
- Department of Biochemistry and Molecular Biology, School of Medicine & Holistic Integrative Medicine, Nanjing University of Chinese Medicine, No.138 Xianlin Avenue, Nanjing, 210023, Jiangsu, China.
| | - Dongqin Chen
- Department of Medical Oncology, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.160 Pujian Road, Pudong New District, Shanghai, 200127, China. .,Department of Medical Oncology, Baoshan Branch, Ren Ji Hospital, Shanghai Jiao Tong University School of Medicine, No.1058 Huanzhen North Road, Baoshan District, Shanghai, 200444, China. .,Department of Medical Oncology, The Affiliated Cancer Hospital of Nanjing Medical University & Jiangsu Cancer Hospital & Jiangsu Institute of Cancer Research, No.42 Baiziting Road, Xuanwu District, Nanjing, 210009, Jiangsu, China.
| |
Collapse
|
30
|
Ling Q, Wu S, Liao X, Liu C, Chen Y. Anesthetic propofol enhances cisplatin-sensitivity of non-small cell lung cancer cells through N6-methyladenosine-dependently regulating the miR-486-5p/RAP1-NF-κB axis. BMC Cancer 2022; 22:765. [PMID: 35836137 PMCID: PMC9281112 DOI: 10.1186/s12885-022-09848-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Accepted: 06/30/2022] [Indexed: 12/09/2022] Open
Abstract
BACKGROUND Drug resistance is a considerable challenge for chemotherapy in non-small cell lung cancer (NSCLC). Propofol, a commonly used intravenous anesthetics, has been reported to suppress the malignancy of various cancers. However, the effects of propofol on cisplatin (DDP) sensitivity in NSCLC and its molecular mechanisms have not been clearly clarified yet, and the present study aimed to resolve this problem. METHODS NSCLC cells were co-treated with propofol and DDP, Cell Counting kit-8 assay, colony formation assay and flow cytometry were conducted to test the role of propofol in regulating DDP-resistance in NSCLC. Next, through conducting quantitative real-time polymerase chain reaction, dual-luciferase gene reporter system and western blot, the responsible molecular axis in propofol regulating the DDP sensitivity in NSCLC was uncovered, and the function verification experiments were performed by transfection with the inhibitors or small interfering RNAs of those molecules. RESULTS Propofol suppressed cell viability, colony formation ability, tumorigenesis, and promoted cell apoptosis to enhance DDP-sensitivity in NSCLC in vitro and in vivo. Propofol increased miR-486-5p level in NSCLC cells and xenograft tumors tissues in a N6-methyladenosine (m6A)-dependent manner, thus inactivating the Ras-associated protein1 (RAP1)-NF-kappaB (NF-κB) axis. Propofol regulated the miR-486-5p/RAP1-NF-κB axis to improve DDP-sensitivity in NSCLC. CONCLUSIONS Taken together, this study firstly investigates the detailed molecular mechanisms by which propofol enhanced DDP-sensitivity in NSCLC cells, and a novel m6A-dependent miR-486-5p/RAP1-NF-κB axis is identified to be closely associated with the process.
Collapse
Affiliation(s)
- Quan Ling
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Shaoyong Wu
- Department of Anesthesiology, cancer prevention and treatment center, Sun Yat Sen University, Guangzhou, 510060, China
| | - Xiaozu Liao
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Chiyi Liu
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China
| | - Yong Chen
- The First Department of Anesthesia, Zhongshan City People's Hospital, No.2, Sunwen East Road, Shiqi District, Zhongshan, 528400, China.
| |
Collapse
|
31
|
HDAC4 promotes the growth and metastasis of gastric cancer via autophagic degradation of MEKK3. Br J Cancer 2022; 127:237-248. [PMID: 35637410 PMCID: PMC9296555 DOI: 10.1038/s41416-022-01805-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/12/2022] [Accepted: 03/24/2022] [Indexed: 11/09/2022] Open
Abstract
Background Histone deacetylases (HDACs) have been shown to be involved in tumorigenesis, but their precise role and molecular mechanisms in gastric cancer (GC) have not yet been fully elucidated. Methods Bioinformatics screening analysis, qRT-PCR, and immunohistochemistry (IHC) were used to identify the expression of HDAC4 in GC. In vitro and in vivo functional assays illustrated the biological function of HDAC4. RNA-seq, GSEA pathway analysis, and western blot revealed that HDAC4 activated p38 MAPK signalling. Immunofluorescence, western blot, and IHC verified the effect of HDAC4 on autophagy. ChIP and dual-luciferase reporter assays demonstrated that the transcriptional regulation mechanism of HDAC4 and ATG4B. Results HDAC4 is upregulated in GC and correlates with poor prognosis. In vitro and in vivo assays showed that HDAC4 contributes to the malignant phenotype of GC cells. HDAC4 inhibited the MEF2A-driven transcription of ATG4B and prevented MEKK3 from p62-dependent autophagic degradation, thus activating p38 MAPK signalling. Reciprocally, the downstream transcription factor USF1 enhanced HDAC4 expression by regulating HDAC4 promoter activity, forming a positive feedback loop and continuously stimulating HDAC4 expression and p38 MAPK signalling activation. Conclusion HDAC4 plays an oncogenic role in GC, and HDAC4-based targeted therapy would represent a novel strategy for GC treatment.
Collapse
|
32
|
Wang W, Wang J, Liu S, Ren Y, Wang J, Liu S, Cui W, Jia L, Tang X, Yang J, Wu C, Wang L. An EHMT2/NFYA-ALDH2 signaling axis modulates the RAF pathway to regulate paclitaxel resistance in lung cancer. Mol Cancer 2022; 21:106. [PMID: 35477569 PMCID: PMC9044593 DOI: 10.1186/s12943-022-01579-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2022] [Accepted: 04/19/2022] [Indexed: 12/24/2022] Open
Abstract
Background Lung cancer is a kind of malignancy with high morbidity and mortality worldwide. Paclitaxel (PTX) is the main treatment for non-small cell lung cancer (NSCLC), and resistance to PTX seriously affects the survival of patients. However, the underlying mechanism and potential reversing strategy need to be further explored. Methods We identified ALDH2 as a PTX resistance-related gene using gene microarray analysis. Subsequently, a series of functional analysis in cell lines, patient samples and xenograft models were performed to explore the functional role, clinical significance and the aberrant regulation mechanism of ALDH2 in PTX resistance of NSCLC. Furthermore, the pharmacological agents targeting ALDH2 and epigenetic enzyme were used to investigate the diverse reversing strategy against PTX resistance. Results Upregulation of ALDH2 expression is highly associated with resistance to PTX using in vitro and in vivo analyses of NSCLC cells along with clinicopathological analyses of NSCLC patients. ALDH2-overexpressing NSCLC cells exhibited significantly reduced PTX sensitivity and increased biological characteristics of malignancy in vitro and tumor growth and metastasis in vivo. EHMT2 (euchromatic histone lysine methyltransferase 2) inhibition and NFYA (nuclear transcription factor Y subunit alpha) overexpression had a cooperative effect on the regulation of ALDH2. Mechanistically, ALDH2 overexpression activated the RAS/RAF oncogenic pathway. NSCLC/PTX cells re-acquired sensitivity to PTX in vivo and in vitro when ALDH2 was inhibited by pharmacological agents, including the ALDH2 inhibitors Daidzin (DZN)/Disulfiram (DSF) and JIB04, which reverses the effect of EHMT2. Conclusion Our findings suggest that ALDH2 status can help predict patient response to PTX therapy and ALDH2 inhibition may be a promising strategy to overcome PTX resistance in the clinic. Supplementary Information The online version contains supplementary material available at 10.1186/s12943-022-01579-9.
Collapse
Affiliation(s)
- Wenjing Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jianmin Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Shuai Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Yong Ren
- Department of Pathology, General Hospital of Central Theater Command of People's Liberation Army, Wuhan, People's Republic of China
| | - Jingyu Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Sen Liu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Wei Cui
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Lina Jia
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Xing Tang
- Department of Pharmaceutics, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Jingyu Yang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China
| | - Chunfu Wu
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Lihui Wang
- Department of Pharmacology, Shenyang Pharmaceutical University, Shenyang, People's Republic of China. .,Benxi Institute of Pharmaceutical Research, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| |
Collapse
|
33
|
Liu L, Zeng F, Li Y, Li W, Yu H, Zeng Q, Chen Q, Qin H. Undifferentiated destruction of mitochondria by photoacoustic shockwave to overcome chemoresistance and radiation resistance in cancer therapy. NANOSCALE 2022; 14:4073-4081. [PMID: 35244120 DOI: 10.1039/d1nr07449k] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Resistance to either radiation or chemotherapy remains a complex and stubborn obstacle in cancer therapy and is responsible for a significant portion of the treatment failure. While the underlying mechanisms of the resistance are often associated with multiple factors, direct destruction of mitochondria is likely to ensure the ultimate death of the cell. Herein, a strategy of precise mitochondrial destruction using a photoacoustic (PA) shockwave was proposed to overcome chemoresistance and radiation resistance in cancer therapy. A nanoparticle featuring mitochondria-targeting and high near-infrared absorbance is constructed. The nanoparticle was found to indiscriminately localize in the mitochondria of both parental and its corresponding resistant tumor cells due to the mitochondrial transmembrane potential. By absorbing a controllable amount of energy from a pulsed laser, the nanoparticle could generate a mechanical PA shockwave that physically damages the mitochondria leading to the opening of apoptotic pathways and thus yielding a precision antitumor effect. The cell-killing efficiency was validated in vitro and in vivo. The results demonstrate that a PA shockwave can result in undifferentiated killing of the resistant tumor cells via destruction of mitochondria. Given the critical importance of resistant tumor cells, although at its preliminary stage, the proposed modality may open a new window in cancer therapy.
Collapse
Affiliation(s)
- Liming Liu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Fanchu Zeng
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Yujie Li
- Sixth Affiliated Hospital of Sun Yat-sen University, Guangzhou 510000, China
| | - Wenjing Li
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Hui Yu
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qingxing Zeng
- Radiotherapy Center, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, 510095, China
| | - Qun Chen
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
| | - Huan Qin
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China.
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, 510631, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou 510631, China
| |
Collapse
|
34
|
|
35
|
Niu X, Wu T, Li G, Gu X, Tian Y, Cui H. Insights into the critical role of the PXR in preventing carcinogenesis and chemotherapeutic drug resistance. Int J Biol Sci 2022; 18:742-759. [PMID: 35002522 PMCID: PMC8741843 DOI: 10.7150/ijbs.68724] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2021] [Accepted: 11/21/2021] [Indexed: 12/12/2022] Open
Abstract
Pregnane x receptor (PXR) as a nuclear receptor is well-established in drug metabolism, however, it has pleiotropic functions in regulating inflammatory responses, glucose metabolism, and protects normal cells against carcinogenesis. Most studies focus on its transcriptional regulation, however, PXR can regulate gene expression at the translational level. Emerging evidences have shown that PXR has a broad protein-protein interaction network, by which is implicated in the cross signaling pathways. Furthermore, the interactions between PXR and some critical proteins (e.g., p53, Tip60, p300/CBP-associated factor) in DNA damage pathway highlight its potential roles in this field. A thorough understanding of how PXR maintains genome stability and prevents carcinogenesis will help clinical diagnosis and finally benefit patients. Meanwhile, due to the regulation of CYP450 enzymes CYP3A4 and multidrug resistance protein 1 (MDR1), PXR contributes to chemotherapeutic drug resistance. It is worthy of note that the co-factor of PXR such as RXRα, also has contributions to this process, which makes the PXR-mediated drug resistance more complicated. Although single nucleotide polymorphisms (SNPs) vary between individuals, the amino acid substitution on exon of PXR finally affects PXR transcriptional activity. In this review, we have summarized the updated mechanisms that PXR protects the human body against carcinogenesis, and major contributions of PXR with its co-factors have made on multidrug resistance. Furthermore, we have also reviewed the current promising antagonist and their clinic applications in reversing chemoresistance. We believe our review will bring insight into PXR-targeted cancer therapy, enlighten the future study direction, and provide substantial evidence for the clinic in future.
Collapse
Affiliation(s)
- Xiaxia Niu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Ting Wu
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Gege Li
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| | - Xinsheng Gu
- Department of Pharmacology, College of Basic Medical Sciences, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Yanan Tian
- Department of Veterinary Physiology and Pharmacology, Texas A&M University, USA
| | - Hongmei Cui
- Institute of Toxicology, School of Public Health, Lanzhou University, 730000, Lanzhou, China
| |
Collapse
|
36
|
Ferroptosis in Non-Small Cell Lung Cancer: Progression and Therapeutic Potential on It. Int J Mol Sci 2021; 22:ijms222413335. [PMID: 34948133 PMCID: PMC8704137 DOI: 10.3390/ijms222413335] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/28/2021] [Accepted: 12/09/2021] [Indexed: 12/16/2022] Open
Abstract
As a main subtype of lung cancer, the current situation of non-small cell lung cancer (NSCLC) remains severe worldwide with a 19% survival rate at 5 years. As the conventional therapy approaches, such as chemotherapy, radiotherapy, targeted therapy, and immunotherapy, gradually develop into therapy resistance, searching for a novel therapeutic strategy for NSCLC is urgent. Ferroptosis, an iron-dependent programmed necrosis, has now been widely considered as a key factor affecting the tumorigenesis and progression in various cancers. Focusing on its effect in NSCLC, in different situations, ferroptosis can be triggered or restrained. When ferroptosis was induced in NSCLC, it was available to inhibit the tumor progression both in vitro and in vivo. The dominating mechanism was due to a regulation of the classic ferroptosis-repressed GSH-dependent GPX4 signaling pathway instead of other fractional regulating signal axes that regulated ferroptosis via impacting on the ROS, cellular iron levels, etc. In terms of the prevention of ferroptosis in NSCLC, an GSH-independent mechanism was also discovered, interestingly exhibiting the same upstream as the GPX4 signaling. In addition, this review summarizes the progression of ferroptosis in NSCLC and elaborates their association and specific mechanisms through bioinformatics analysis with multiple experimental evidence from different cascades. Finally, this review also points out the possibility of ferroptosis working as a novel strategy for therapy resistance in NSCLC, emphasizing its therapeutic potential.
Collapse
|
37
|
Peng X, Zhang S, Jiao W, Zhong Z, Yang Y, Claret FX, Elkabets M, Wang F, Wang R, Zhong Y, Chen ZS, Kong D. Hydroxychloroquine synergizes with the PI3K inhibitor BKM120 to exhibit antitumor efficacy independent of autophagy. J Exp Clin Cancer Res 2021; 40:374. [PMID: 34844627 PMCID: PMC8628289 DOI: 10.1186/s13046-021-02176-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2021] [Accepted: 11/08/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The critical role of phosphoinositide 3-kinase (PI3K) activation in tumor cell biology has prompted massive efforts to develop PI3K inhibitors (PI3Kis) for cancer therapy. However, recent results from clinical trials have shown only a modest therapeutic efficacy of single-agent PI3Kis in solid tumors. Targeting autophagy has controversial context-dependent effects in cancer treatment. As a FDA-approved lysosomotropic agent, hydroxychloroquine (HCQ) has been well tested as an autophagy inhibitor in preclinical models. Here, we elucidated the novel mechanism of HCQ alone or in combination with PI3Ki BKM120 in the treatment of cancer. METHODS The antitumor effects of HCQ and BKM120 on three different types of tumor cells were assessed by in vitro PrestoBlue assay, colony formation assay and in vivo zebrafish and nude mouse xenograft models. The involved molecular mechanisms were investigated by MDC staining, LC3 puncta formation assay, immunofluorescent assay, flow cytometric analysis of apoptosis and ROS, qRT-PCR, Western blot, comet assay, homologous recombination (HR) assay and immunohistochemical staining. RESULTS HCQ significantly sensitized cancer cells to BKM120 in vitro and in vivo. Interestingly, the sensitization mediated by HCQ could not be phenocopied by treatment with other autophagy inhibitors (Spautin-1, 3-MA and bafilomycin A1) or knockdown of the essential autophagy genes Atg5/Atg7, suggesting that the sensitizing effect might be mediated independent of autophagy status. Mechanistically, HCQ induced ROS production and activated the transcription factor NRF2. In contrast, BKM120 prevented the elimination of ROS by inactivation of NRF2, leading to accumulation of DNA damage. In addition, HCQ activated ATM to enhance HR repair, a high-fidelity repair for DNA double-strand breaks (DSBs) in cells, while BKM120 inhibited HR repair by blocking the phosphorylation of ATM and the expression of BRCA1/2 and Rad51. CONCLUSIONS Our study revealed that HCQ and BKM120 synergistically increased DSBs in tumor cells and therefore augmented apoptosis, resulting in enhanced antitumor efficacy. Our findings provide a new insight into how HCQ exhibits antitumor efficacy and synergizes with PI3Ki BKM120, and warn that one should consider the "off target" effects of HCQ when used as autophagy inhibitor in the clinical treatment of cancer.
Collapse
Affiliation(s)
- Xin Peng
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Shaolu Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenhui Jiao
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Zhenxing Zhong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China
| | - Yuqi Yang
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Francois X Claret
- Department of Systems Biology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Moshe Elkabets
- The Shraga Segal Department of Microbiology, Immunology and Genetics, Faculty of Health Sciences, Ben-Gurion University of the Negev, 84105, Beer-Sheva, Israel
| | - Feng Wang
- Department of Genetics, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Ran Wang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China.
| | - Yuxu Zhong
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China.
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Dexin Kong
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China. .,Key Laboratory of Immune Microenvironment and Diseases (Ministry of Education), Tianjin Medical University, Tianjin, 300070, China. .,School of Medicine, Tianjin Tianshi College, Tianyuan University, Tianjin, 301700, China.
| |
Collapse
|
38
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
39
|
Shi F, Zhang L, Liu X, Wang Y. Knock-down of microRNA miR-556-5p increases cisplatin-sensitivity in non-small cell lung cancer (NSCLC) via activating NLR family pyrin domain containing 3 (NLRP3)-mediated pyroptotic cell death. Bioengineered 2021; 12:6332-6342. [PMID: 34488537 PMCID: PMC8806686 DOI: 10.1080/21655979.2021.1971502] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs that are closely associated with cancer progression and drug resistance, however, up until now, the involvement of miR-556-5p in regulating cisplatin-sensitivity in non-small cell lung cancer (NSCLC) has not been studied. In the present study, we found that miR-556-5p was significantly upregulated in the cisplatin-resistant NSCLC (CR-NSCLC) patients’ tissues and cells, instead of the corresponding cisplatin-sensitive NSCLC (CS-NSCLC) tissues and cells. Further experiments validated that knock-down of miR-556-5p suppressed cell viability and tumorigenesis, and induced cell apoptosis in the cisplatin-treated CR-NSCLC cells, and conversely, upregulation of miR-556-5p increased cisplatin-resistance in CS-NSCLC cells. Interestingly, miR-556-5p ablation triggered pyroptotic cell death in cisplatin-treated CR-NSCLC cells via upregulating NLRP3, and the promoting effects of miR-556-5p silence on cisplatin-sensitivity in CR-NSCLC cells were abrogated by both cell pyroptosis inhibitor NSA and NLRP3 downregulation. Taken together, this study firstly evidenced that induction of NLRP3-mediated cell pyroptosis by miR-556-5p downregulation was effective to increase cisplatin-sensitivity in NSCLC, which provided new therapy strategies to overcome chemo-resistance for NSCLC patients in clinic.
Collapse
Affiliation(s)
- Feng Shi
- Department of Medical Oncology, Harbin Medical University Cancer Hospital, Harbin, China
| | - Luquan Zhang
- Department of Thoracic Surgery, Harbin Medical University Cancer Hospital, Harbin, China
| | - Xing Liu
- Department of Orthopedics, The First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yue Wang
- Department of Pharmacology and Toxicology, Wright State University, Dayton, OH, USA
| |
Collapse
|
40
|
HtrA serine proteases in cancers: A target of interest for cancer therapy. Biomed Pharmacother 2021; 139:111603. [PMID: 34243596 DOI: 10.1016/j.biopha.2021.111603] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Revised: 04/05/2021] [Accepted: 04/12/2021] [Indexed: 11/20/2022] Open
Abstract
The HtrA protein family is composed by evolutionally-conserved serine proteases, which are homologous to the HtrA protein of the model bacterium Escherichia coli. They are widely distributed in organisms including humans, prokaryotes and eukaryotes. Moreover, HtrA family proteins are important regulators of a variety of human physiological processes, which contains the maintenance of mitochondrial homeostasis, cellular signal transduction and apoptosis regulation. The HtrA family has been found to be associated with cancer and could be used as a target for future cancer treatments. The purpose of this article is to review the relationship between these HtrA and cancer and to summarize the latest researches on HtrA and cancer.
Collapse
|
41
|
Ashrafizaveh S, Ashrafizadeh M, Zarrabi A, Husmandi K, Zabolian A, Shahinozzaman M, Aref AR, Hamblin MR, Nabavi N, Crea F, Wang Y, Ahn KS. Long non-coding RNAs in the doxorubicin resistance of cancer cells. Cancer Lett 2021; 508:104-114. [PMID: 33766750 DOI: 10.1016/j.canlet.2021.03.018] [Citation(s) in RCA: 118] [Impact Index Per Article: 39.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 03/01/2021] [Accepted: 03/17/2021] [Indexed: 12/24/2022]
Abstract
Chemotherapy is the main treatment used for cancer patients failing surgery. Doxorubicin (DOX) is a well-known chemotherapeutic agent capable of suppressing proliferation in cancer cells and triggering apoptosis via inhibiting topoisomerase II activity and producing DNA breaks. This activity of DOX restrains mitosis and cell cycle progression. However, frequent application of DOX results in the emergence of resistance in the cancer cells. It seems that genetic and epigenetic factors can provide DOX resistance of cancer cells. Long non-coding RNAs (lncRNAs) are a subcategory of non-coding RNAs with role in the regulation of several cellular processes such as proliferation, migration, differentiation and apoptosis. LncRNA dysregulation has been associated with chemoresistance, and this profile occurs upon DOX treatment of cancer. In the present review, we focus on the role of lncRNAs in mediating DOX resistance and discuss the molecular pathways and mechanisms. LncRNAs can drive DOX resistance via activating pathways such as NF-κB, PI3K/Akt, Wnt, and FOXC2. Some lncRNAs can activate protective autophagy in response to the stress caused by DOX, which mediates resistance. In contrast, there are other lncRNAs involved in the sensitivity of cancer cells to DOX, such as GAS5, PTCSC3 and FENDRR. Some anti-tumor agents such as polydatin can regulate the expression of lncRNAs, enhancing DOX sensitivity. Overall, lncRNAs are potential players in DOX resistance, and their identification and targeting are of importance in chemosensitivity. Furthermore, these findings can be translated into clinical for treatment of cancer patients.
Collapse
Affiliation(s)
| | - Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, 34956 Istanbul, Turkey; Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey
| | - Kiavash Husmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Md Shahinozzaman
- Department of Nutrition and Food Science, University of Maryland, College Park, MD, 20742, USA
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Department of Translational Sciences, Xsphera Biosciences Inc. Boston, MA, USA
| | - Michael R Hamblin
- Laser Research Centre, Faculty of Health Science, University of Johannesburg, Doornfontein 2028, South Africa
| | - Noushin Nabavi
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Francesco Crea
- Cancer Research Group-School of Life Health and Chemical Sciences, The Open University, Walton Hall, Milton Keynes MK7 6AA, UK.
| | - Yuzhuo Wang
- Department of Urological Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada.
| | - Kwang Seok Ahn
- Department of Science in Korean Medicine, Kyung Hee University, 24 Kyungheedae-ro, Dongdaemun-gu, Seoul 02447, Republic of Korea; KHU-KIST Department of Converging Science and Technology, Kyung Hee University, Seoul 02447, Republic of Korea.
| |
Collapse
|
42
|
Mirzaei S, Gholami MH, Mahabady MK, Nabavi N, Zabolian A, Banihashemi SM, Haddadi A, Entezari M, Hushmandi K, Makvandi P, Samarghandian S, Zarrabi A, Ashrafizadeh M, Khan H. Pre-clinical investigation of STAT3 pathway in bladder cancer: Paving the way for clinical translation. Biomed Pharmacother 2020; 133:111077. [PMID: 33378975 DOI: 10.1016/j.biopha.2020.111077] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 02/07/2023] Open
Abstract
Effective cancer therapy requires identification of signaling networks and investigating their potential role in proliferation and invasion of cancer cells. Among molecular pathways, signal transducer and activator of transcription 3 (STAT3) has been of importance due to its involvement in promoting proliferation, and invasion of cancer cells, and mediating chemoresistance. In the present review, our aim is to reveal role of STAT3 pathway in bladder cancer (BC), as one of the leading causes of death worldwide. In respect to its tumor-promoting role, STAT3 is able to enhance the growth of BC cells via inhibiting apoptosis and cell cycle arrest. STAT3 also contributes to metastasis of BC cells via upregulating of MMP-2 and MMP-9 as well as genes in the EMT pathway. BC cells obtain chemoresistance via STAT3 overexpression and its inhibition paves the way for increasing efficacy of chemotherapy. Different molecular pathways such as KMT1A, EZH2, DAB2IP and non-coding RNAs including microRNAs and long non-coding RNAs can function as upstream mediators of STAT3 that are discussed in this review article.
Collapse
Affiliation(s)
- Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | | | - Mahmood Khaksary Mahabady
- Anatomical Sciences Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
| | - Noushin Nabavi
- Research Services, University of Victoria, Victoria, BC, V8W 2Y2, Canada
| | - Amirhossein Zabolian
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Amirabbas Haddadi
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Pooyan Makvandi
- IstitutoItaliano di Tecnologia, Centre for Micro-BioRobotics, viale Rinaldo Piaggio 34, 56025, Pontedera, Pisa, Italy
| | - Saeed Samarghandian
- Department of Basic Medical Sciences, Neyshabur University of Medical Sciences, Neyshabur, Iran
| | - Ali Zarrabi
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey.
| | - Milad Ashrafizadeh
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, 34956, Istanbul, Turkey; Faculty of Engineering and Natural Sciences, Sabanci University, OrtaMahalle, ÜniversiteCaddesi No. 27, Orhanlı, Tuzla, 34956, Istanbul, Turkey.
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan, 23200, Pakistan.
| |
Collapse
|