1
|
Seum T, Frick C, Cardoso R, Bhardwaj M, Hoffmeister M, Brenner H. Potential of pre-diagnostic metabolomics for colorectal cancer risk assessment or early detection. NPJ Precis Oncol 2024; 8:244. [PMID: 39462072 PMCID: PMC11514036 DOI: 10.1038/s41698-024-00732-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
This systematic review investigates the efficacy of metabolite biomarkers for risk assessment or early detection of colorectal cancer (CRC) and its precursors, focusing on pre-diagnostic biospecimens. Searches in PubMed, Web of Science, and SCOPUS through December 2023 identified relevant prospective studies. Relevant data were extracted, and the risk of bias was assessed with the QUADAS-2 tool. Among the 26 studies included, significant heterogeneity existed for case numbers, metabolite identification, and validation approaches. Thirteen studies evaluated individual metabolites, mainly lipids, while eleven studies derived metabolite panels, and two studies did both. Nine panels were internally validated, resulting in an area under the curve (AUC) ranging from 0.69 to 0.95 for CRC precursors and 0.72 to 1.0 for CRC. External validation was limited to one panel (AUC = 0.72). Metabolite panels and lipid-based biomarkers show promise for CRC risk assessment and early detection but require standardization and extensive validation for clinical use.
Collapse
Affiliation(s)
- Teresa Seum
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Clara Frick
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- Medical Faculty Heidelberg, Heidelberg University, Im Neuenheimer Feld 672, 69120, Heidelberg, Germany
| | - Rafael Cardoso
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Megha Bhardwaj
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany
| | - Michael Hoffmeister
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany
| | - Hermann Brenner
- Division of Clinical Epidemiology and Aging Research, German Cancer Research Center (DKFZ), Im Neuenheimer Feld 581, 69120, Heidelberg, Germany.
- German Cancer Consortium (DKTK), German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, 69120, Heidelberg, Germany.
| |
Collapse
|
2
|
Wang H, Cui G, Meng X, Wang X, Luan Z, Gong J, Dai S, Gao T. Association of serum fatty acids with bone health in rural elderly population in Qingdao, China: A cross-sectional study. Lipids 2024. [PMID: 39394914 DOI: 10.1002/lipd.12421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2024] [Revised: 08/11/2024] [Accepted: 09/29/2024] [Indexed: 10/14/2024]
Abstract
As a type of macronutrient, fatty acids (FA) play significant roles in the bone health of elderly people. However, the specific association between different types of FA and bone health is not fully understood, especially in rural elderly populations. To address this gap, a study was conducted in rural areas of Qingdao, China. Participants aged 65 and older were randomly recruited from 11 rural villages in Licha town, Qingdao City. The levels of serum FA in their serum were measured to investigate the associations between FA and bone mass. The results showed that levels of saturated fatty acids (SFA), n-3 polyunsaturated fatty acids (n-3 PUFA), and n-6 polyunsaturated fatty acids (n-6 PUFA) were all significantly associated with bone mass. Specifically, higher levels of SFA were positively correlated with low bone mass (LBM), while PUFA levels were inversely correlated with LBM. Furthermore, the odds ratio (OR) for LBM exhibited a significant nonlinear dose-response relationship (pnonlinearity = 0.1989) with SFA levels, and a significant nonlinear dose-dependent relationship was also observed with the levels of n-3PUFA and n-6PUFA (pnonlinearity = 0.6183, 0.5808, respectively), indicating that increasing dietary PUFA intake appropriately and controlling SFA intake may benefit the bone health of elderly individuals in rural areas.
Collapse
Affiliation(s)
- Haoyu Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Guangwei Cui
- Health Service Center of Licha Community, Qingdao, China
| | - Xiangyuan Meng
- School of Public Health, Jilin University, Changchun, China
| | - Xingxu Wang
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Zhaohui Luan
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
- School of Public Health, Qingdao University, Qingdao, China
| | - Jianbao Gong
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Shiyou Dai
- Qingdao Hospital, University of Health and Rehabilitation Sciences (Qingdao Municipal Hospital), Qingdao, China
| | - Tianlin Gao
- School of Public Health, Qingdao University, Qingdao, China
| |
Collapse
|
3
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Norris S, Sperry J, Nakashima J, Tavanaie N, Winata H, Fitz-Gibbon ST, Yamaguchi TN, Jeong JH, Dry S, Singh AS, Chmielowski B, Crompton JG, Kalbasi AK, Eilber FC, Hornicek F, Bernthal NM, Nelson SD, Boutros PC, Federman NC, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. Cell Stem Cell 2024; 31:1524-1542.e4. [PMID: 39305899 DOI: 10.1016/j.stem.2024.08.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 06/14/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024]
Abstract
Sarcomas are rare malignancies with over 100 distinct histological subtypes. Their rarity and heterogeneity pose significant challenges to identifying effective therapies, and approved regimens show varied responses. Novel, personalized approaches to therapy are needed to improve patient outcomes. Patient-derived tumor organoids (PDTOs) model tumor behavior across an array of malignancies. We leverage PDTOs to characterize the landscape of drug resistance and sensitivity in sarcoma, collecting 194 specimens from 126 patients spanning 24 distinct sarcoma subtypes. Our high-throughput organoid screening pipeline tested single agents and combinations, with results available within a week from surgery. Drug sensitivity correlated with clinical features such as tumor subtype, treatment history, and disease trajectory. PDTO screening can facilitate optimal drug selection and mirror patient outcomes in sarcoma. We could identify at least one FDA-approved or NCCN-recommended effective regimen for 59% of the specimens, demonstrating the potential of our pipeline to provide actionable treatment information.
Collapse
Affiliation(s)
- Ahmad Al Shihabi
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Peyton J Tebon
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA, USA
| | - Huyen Thi Lam Nguyen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jomjit Chantharasamee
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sara Sartini
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Ardalan Davarifar
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alexandra Y Jensen
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Miranda Diaz-Infante
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Hannah Cox
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | - Summer Norris
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | | | | | - Nasrin Tavanaie
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Helena Winata
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sorel T Fitz-Gibbon
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Takafumi N Yamaguchi
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jae H Jeong
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA
| | - Sarah Dry
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Arun S Singh
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Bartosz Chmielowski
- Division of Hematology-Oncology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Joseph G Crompton
- Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Anusha K Kalbasi
- Department of Radiation Oncology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Fritz C Eilber
- Division of Surgical Oncology David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Francis Hornicek
- Department of Orthopedic Surgery, University of Miami, Miami, FL, USA
| | - Nicholas M Bernthal
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Scott D Nelson
- Department of Pathology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Paul C Boutros
- Department of Human Genetics, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Institute for Precision Health, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA; Department of Urology, University of California, Los Angeles, Los Angeles, CA, USA
| | - Noah C Federman
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Jane Yanagawa
- Department of Surgery, Division of Thoracic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Alice Soragni
- Department of Orthopaedic Surgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA; Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, CA, USA; Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, University of California, Los Angeles, Los Angeles, CA, USA.
| |
Collapse
|
4
|
Pelosi AC, Silva AAR, Fernandes AMAP, Scariot PPM, Oliveira MSP, Porcari AM, Priolli DG, Messias LHD. Metabolomics of 3D cell co-culture reveals alterations in energy metabolism at the cross-talk of colorectal cancer-adipocytes. Front Med (Lausanne) 2024; 11:1436866. [PMID: 39421865 PMCID: PMC11484090 DOI: 10.3389/fmed.2024.1436866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024] Open
Abstract
Introduction Colorectal cancer (CRC) is the third most incident and the second most lethal malignant tumor. Despite the recognized association between obesity and CRC, further clarification is necessary regarding the lipids that are overexpressed during the development of CRC. In this scenario, the combination of metabolomics and a three-dimensional (3D) co-culture model involving CRC tumor cells and lipids can enhance the knowledge of energy metabolism modifications at the cross-talk between colorectal cancer and adipocytes. This study aimed to screen potential metabolites in the three dimensional (3D) co-culture of CRC and adipocytes by investigating the metabolome composition of this co-culture released into the extracellular space, which is known as the secretome. Methods Pre-adipocyte cells (3T3-L1), human colon carcinoma (HT-29), and the 3D co-culture (3T3-L1 + HT-29) were cultured for the secretome obtention. Then, ultra-high-performance liquid chromatography coupled with high-resolution mass spectrometry (LC-HRMS) was employed to analyze the metabolomics of each secretome. Results Overall, 3.731 molecules were detected independent of the cell culture. When comparing the three cultures, 105 molecules presented a statistically significant difference in abundance between groups. Among these molecules, 16 were identified, with a particular emphasis on six lipids (PG 20:0, octadecenal, 3-Hydroxytetracosanoyl-CoA, 9,10-dihydroxy-octadecenoic acid, palmitoleic acid, and PA 18:4) and one amino acid derivative (acetylglutamic acid), which presented significant scores during the partial least-squares discriminant analysis (PLS-DA). Discussion Although it is too early to determine the possible impact of such molecules in a CRC microenvironment, these results open new avenues for further studies on the energy metabolism at the cross-talk of colorectal cancer adipocytes.
Collapse
Affiliation(s)
- Andrea Corazzi Pelosi
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Alex Ap. Rosini Silva
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Anna Maria Alves Piloto Fernandes
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Pedro Paulo Menezes Scariot
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Manoela Stahl Parisotto Oliveira
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Andreia M. Porcari
- MS4Life Laboratory of Mass Spectrometry, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| | - Denise Gonçalves Priolli
- Coloproctology Service of the Federal University of São Paulo, São Paulo and Faculty of Health Sciences Pitágoras de Codó, Codó, Brazil
| | - Leonardo Henrique Dalcheco Messias
- Research Group on Technology Applied to Exercise Physiology—GTAFE, Health Sciences Postgraduate Program, São Francisco University, Bragança Paulista, SP, Brazil
| |
Collapse
|
5
|
Dallavilla T, Galiè S, Sambruni G, Borin S, Fazio N, Fumagalli-Romario U, Manzo T, Nezi L, Schaefer MH. Differences in the molecular organisation of tumours along the colon are linked to interactions within the tumour ecosystem. Biochim Biophys Acta Mol Basis Dis 2024; 1870:167311. [PMID: 38909851 DOI: 10.1016/j.bbadis.2024.167311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Revised: 05/22/2024] [Accepted: 06/14/2024] [Indexed: 06/25/2024]
Abstract
Tumours exhibit significant heterogeneity in their molecular profiles across patients, largely influenced by the tissue of origin, where certain driver gene mutations are predominantly associated with specific cancer types. Here, we unveil an additional layer of complexity: some cancer types display anatomic location-specific mutation profiles akin to tissue-specificity. To better understand this phenomenon, we concentrate on colon cancer. While prior studies have noted changes of the frequency of molecular alterations along the colon, the underlying reasons and whether those changes occur rather gradual or are distinct between the left and right colon, remain unclear. Developing and leveraging stringent statistical models on molecular data from 522 colorectal tumours from The Cancer Genome Atlas, we reveal disparities in molecular properties between the left and right colon affecting many genes. Interestingly, alterations in genes responsive to environmental cues and properties of the tumour ecosystem, including metabolites which we quantify in a cohort of 27 colorectal cancer patients, exhibit continuous trends along the colon. Employing network methodologies, we uncover close interactions between metabolites and genes, including drivers of colon cancer, showing continuous abundance or alteration profiles. This underscores how anatomic biases in the composition and interactions within the tumour ecosystem help explaining gradients of carcinogenesis along the colon.
Collapse
Affiliation(s)
- Tiziano Dallavilla
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Serena Galiè
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Gaia Sambruni
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Simona Borin
- Digestive Surgery, European Institute of Oncology-IRCCS, Milano, Italy
| | - Nicola Fazio
- Division of Gastrointestinal Medical Oncology and Neuroendocrine Tumors, European Institute of Oncology-IRCCS, Milano, Italy
| | | | - Teresa Manzo
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Luigi Nezi
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy
| | - Martin H Schaefer
- Department of Experimental Oncology, European Institute of Oncology-IRCCS, Milano, Italy.
| |
Collapse
|
6
|
Boullier C, Lamaze FC, Haince JF, Bux RA, Orain M, Zheng J, Zhang L, Wishart DS, Bossé Y, Manem VSK, Joubert P. Metabolomic Profiling of Pulmonary Neuroendocrine Neoplasms. Cancers (Basel) 2024; 16:3179. [PMID: 39335151 PMCID: PMC11429548 DOI: 10.3390/cancers16183179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 09/05/2024] [Accepted: 09/12/2024] [Indexed: 09/30/2024] Open
Abstract
BACKGROUND/OBJECTIVES Pulmonary neuroendocrine neoplasms (NENs) account for 20% of malignant lung tumors. Their management is challenging due to their diverse clinical features and aggressive nature. Currently, metabolomics offers a range of potential cancer biomarkers for diagnosis, monitoring tumor progression, and assessing therapeutic response. However, a specific metabolomic profile for early diagnosis of lung NENs has yet to be identified. This study aims to identify specific metabolomic profiles that can serve as biomarkers for early diagnosis of lung NENs. METHODS We measured 153 metabolites using liquid chromatography combined with mass spectrometry (LC-MS) in the plasma of 120 NEN patients and compared them with those of 71 healthy individuals. Additionally, we compared these profiles with those of 466 patients with non-small-cell lung cancers (NSCLCs) to ensure clinical relevance. RESULTS We identified 21 metabolites with consistently altered plasma concentrations in NENs. Compared to healthy controls, 18 metabolites were specific to carcinoid tumors, 5 to small-cell lung carcinomas (SCLCs), and 10 to large-cell neuroendocrine carcinomas (LCNECs). These findings revealed alterations in various metabolic pathways, such as fatty acid biosynthesis and beta-oxidation, the Warburg effect, and the citric acid cycle. CONCLUSIONS Our study identified biomarker metabolites in the plasma of patients with each subtype of lung NENs and demonstrated significant alterations in several metabolic pathways. These metabolomic profiles could potentially serve as biomarkers for early diagnosis and better management of lung NENs.
Collapse
Affiliation(s)
- Clémence Boullier
- Centre de Recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
- Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Fabien C Lamaze
- Centre de Recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | | | | | - Michèle Orain
- Centre de Recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
| | - Jiamin Zheng
- The Metabolomics Innovation Center (TMIC), University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Lun Zhang
- The Metabolomics Innovation Center (TMIC), University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - David S Wishart
- The Metabolomics Innovation Center (TMIC), University of Alberta, Edmonton, AB T6G 1C9, Canada
| | - Yohan Bossé
- Centre de Recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
- Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| | - Venkata S K Manem
- Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
- Department of Mathematics and Computer Science, University of Quebec at Trois-Riviere, Trois-Riviere, QC G8Z 4M3, Canada
- Centre de Recherche du CHU de Québec, Quebec City, QC G1E 6W2, Canada
| | - Philippe Joubert
- Centre de Recherche de l'institut Universitaire de Cardiologie et de Pneumologie de Québec (IUCPQ), Quebec City, QC G1V 4G5, Canada
- Faculty of Medicine, Laval University, Quebec City, QC G1V 0A6, Canada
| |
Collapse
|
7
|
Liu K, Fu H, Chen Y, Li B, Huang H, Liao X. Relationship between residual cholesterol and cognitive performance: a study based on NHANES. Front Nutr 2024; 11:1458970. [PMID: 39323568 PMCID: PMC11423777 DOI: 10.3389/fnut.2024.1458970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Accepted: 08/21/2024] [Indexed: 09/27/2024] Open
Abstract
Background and aims Age-related cognitive impairment impacts a significant portion of the elderly population. Remnant cholesterol (RC) has attracted increased attention in relation to cardiovascular disease, diabetes, hypertension, and fatty liver disease. Nevertheless, its role in cognitive function is still enigmatic, prompting our exploration into the potential associations between them. Methods A total of 1,331 participants from the NHANES (2011-2014) database, all aged over 60, were included in this investigation. Cognitive function was assessed using four widely applied tests, including the Consortium to Establish a Registry for Alzheimer's Disease Word Learning (CERAD-WL), CERAD Delayed Recall (CERAD-DR), Animal Fluency Test (AFT), as well as Digit Symbol Substitution test (DSST). Z-score is calculated by scores from the above four tests. The association between RC, total cholesterol (TC) to RC and cognitive performance was assessed by logistic regression analyses. In addition, restricted cubic spline (RCS) regression was performed to assess non-linearity between RC and cognitive function. Subgroup analysis was performed to evaluate the robustness of the results in populations with relevant covariate variables. Results Those with Z-scores below the 25% quartile are defined as having cognitive impairment, totaling 498 individuals. Observationally, higher RC levels and a lower TC/RC were associated with an increased risk of cognitive impairment. After adjusting for confounding factors, the impact of RC levels on cognitive performance quartiles was consistent across various subgroups, except in individuals with trouble sleeping, no/unknown alcohol use, and no hypertension. Americans with high RC levels and trouble sleeping are more likely to develop cognitive impairment, with an odds ratio of 2.33 (95% CI: 1.18-4.59). Conclusion This study suggests that higher RC levels and lower levels of TC/RC are associated with an increased likelihood of cognitive impairment, suggesting that RC can serve as a novel and convenient indicator for predicting the risk of cognitive impairment in the US population.
Collapse
Affiliation(s)
- Kepeng Liu
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Haishou Fu
- Department of Clinical Laboratory, Fujian Provincial Hospital, Fuzhou University Affiliated Provincial Hospital, Fuzhou, Fujian, China
| | - Yong Chen
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Binfei Li
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| | - Huaqing Huang
- Department of Pain Medicine, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaozu Liao
- Department of Anesthesiology, Zhongshan City People's Hospital, Zhongshan, Guangdong, China
| |
Collapse
|
8
|
Zhang Q, Du Z, Zhou W, Li W, Yang Q, Yu H, Liu T. ZDHHC1 downregulates LIPG and inhibits colorectal cancer growth via IGF2BP1 Palmitoylation. Cancer Gene Ther 2024; 31:1427-1437. [PMID: 39069526 PMCID: PMC11405259 DOI: 10.1038/s41417-024-00808-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/05/2024] [Accepted: 07/10/2024] [Indexed: 07/30/2024]
Abstract
Alteration in lipid metabolism is recognized as a hallmark feature of colorectal cancer (CRC). Protein S-palmitoylation plays a critical role in many different cellular processes including protein-lipid interaction. Zinc Finger DHHC-Type Containing 1 (ZDHHC1, also known as ZNF377) belongs to the palmitoyl-transferase ZDHHC family, and is a potential tumor suppressor. However, our knowledge of the functional roles of ZDHHC1 in CRC is limited. We discovered that ZDHHC1 expression was downregulated in CRC tissues and that low levels of ZDHHC1 were associated with unfavorable prognosis. Functional studies showed that ZDHHC1 inhibited CRC cell proliferation and invasion in vitro and in vivo. We also found that lipase G (LIPG) is negatively regulated by ZDHHC1 and plays a key role in CRC cell growth through lipid storage. Additionally, we demonstrated that ZDHHC1 functions as a IGF2BP1-palmitoylating enzyme that induces S-palmitoylation at IGF2BP1-C337, which results in downregulated LIPG expression via m6A modification. Mechanistic investigations revealed that the ZDHHC1/IGF2BP1/LIPG signaling axis is associated with inhibition of CRC cell growth. Our study uncovers the potential role of ZDHHC1 in CRC, including inhibition of CRC growth by reducing the stability of LIPG mRNA in an m6A dependent-manner by palmitoylation of IGF2BP1.
Collapse
Affiliation(s)
- Qun Zhang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zhouyuan Du
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Zhou
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Wei Li
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Qinglin Yang
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Haixin Yu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Tao Liu
- Department of Digestive Surgical Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
9
|
Brydon SC, Poad BLJ, Fang M, Rustam YH, Young RSE, Mouradov D, Sieber OM, Mitchell TW, Reid GE, Blanksby SJ, Marshall DL. Cross-Validation of Lipid Structure Assignment Using Orthogonal Ion Activation Modalities on the Same Mass Spectrometer. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1976-1990. [PMID: 39037040 DOI: 10.1021/jasms.4c00221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/23/2024]
Abstract
The onset and progression of cancer is associated with changes in the composition of the lipidome. Therefore, better understanding of the molecular mechanisms of these disease states requires detailed structural characterization of the individual lipids within the complex cellular milieu. Recently, changes in the unsaturation profile of membrane lipids have been observed in cancer cells and tissues, but assigning the position(s) of carbon-carbon double bonds in fatty acyl chains carried by membrane phospholipids, including the resolution of lipid regioisomers, has proven analytically challenging. Conventional tandem mass spectrometry approaches based on collision-induced dissociation of ionized glycerophospholipids do not yield spectra that are indicative of the location(s) of carbon-carbon double bonds. Ozone-induced dissociation (OzID) and ultraviolet photodissociation (UVPD) have emerged as alternative ion activation modalities wherein diagnostic product ions can enable de novo assignment of position(s) of unsaturation based on predictable fragmentation behaviors. Here, for the first time, OzID and UVPD (193 nm) mass spectra are acquired on the same mass spectrometer to evaluate the relative performance of the two modalities for lipid identification and to interrogate the respective fragmentation pathways under comparable conditions. Based on investigations of lipid standards, fragmentation rules for each technique are expanded to increase confidence in structural assignments and exclude potential false positives. Parallel application of both methods to unsaturated phosphatidylcholines extracted from isogenic colorectal cancer cell lines provides high confidence in the assignment of multiple double bond isomers in these samples and cross-validates relative changes in isomer abundance.
Collapse
Affiliation(s)
- Samuel C Brydon
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Berwyck L J Poad
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - Mengxuan Fang
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
| | - Yepy H Rustam
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Reuben S E Young
- Molecular Horizons and School of Chemistry and Molecular Bioscience, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Dmitri Mouradov
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Oliver M Sieber
- Personalized Oncology Division, The Walter and Eliza Hall Institute of Medical Research, Parkville, VIC 3052, Australia
| | - Todd W Mitchell
- Molecular Horizons and School of Medical, Indigenous and Health Sciences, University of Wollongong, Wollongong, NSW 2522, Australia
| | - Gavin E Reid
- School of Chemistry, University of Melbourne, Parkville, VIC 3010, Australia
- Department of Biochemistry and Pharmacology, University of Melbourne, Parkville, VIC 3010, Australia
- Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC 3010, Australia
| | - Stephen J Blanksby
- School of Chemistry and Physics, Queensland University of Technology, Brisbane, QLD 4001, Australia
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| | - David L Marshall
- Central Analytical Research Facility, Queensland University of Technology, Brisbane, QLD 4001, Australia
| |
Collapse
|
10
|
Wang SG, Wang YG, Qian GW, Tang LN, Zhou X, Cheng DD, Zhou CL, Yang QC, Shen Z, Huang GZ, Li HT. Alterations in Serum Lipids and Lipoproteins Induced by Neoadjuvant Chemotherapy in Patients with Osteosarcoma around the Knee Joint: A Retrospective Analysis. Curr Med Sci 2024; 44:741-747. [PMID: 38926330 DOI: 10.1007/s11596-024-2852-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 01/23/2024] [Indexed: 06/28/2024]
Abstract
OBJECTIVE To investigate the serum lipid profiles of patients with localized osteosarcoma around the knee joint before and after neoadjuvant chemotherapy. METHODS After retrospectively screening the data of 742 patients between January 2007 and July 2020, 50 patients aged 13 to 39 years with Enneking stage II disease were included in the study. Serum lipid levels, including total cholesterol (TC), triglycerides (TG), high-density lipoprotein cholesterol (HDL-C), low-density lipoprotein cholesterol (LDL-C), lipoprotein-α [Lp(a)], and apolipoprotein A1, B, and E (ApoA1, ApoB, and ApoE), and clinicopathological characteristics were collected before and after neoadjuvant chemotherapy. RESULTS The mean levels of TC, TG, and ApoB were significantly increased following neoadjuvant chemotherapy (16%, 38%, and 20%, respectively, vs. pretreatment values; P<0.01). The mean levels of LDL-C and ApoE were also 19% and 16% higher, respectively (P<0.05). No correlation was found between the pretreatment lipid profile and the histologic response to chemotherapy. An increase in Lp(a) was strongly correlated with the Ki-67 index (R=0.31, P=0.023). Moreover, a trend toward longer disease-free survival (DFS) was observed in patients with decreased TG and increased LDL-C following chemotherapy, although this difference was not statistically significant (P=0.23 and P=0.24, respectively). CONCLUSION Significant elevations in serum lipids were observed after neoadjuvant chemotherapy in patients with localized osteosarcoma. There was no prognostic significance of pretreatment serum lipid levels on histologic response to neoadjuvant chemotherapy. The scale of increase in serum Lp(a) might have a potential prognostic role in osteosarcoma. Patients with increased LDL-C or reduced TG after chemotherapy seem to exhibit a trend toward favorable DFS.
Collapse
Affiliation(s)
- Su-Guo Wang
- Department of General Medicine, Shenzhen Third People's Hospital, Shenzhen, 518112, China
- Department of VIP Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Yong-Gang Wang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Guo-Wei Qian
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Li-Na Tang
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Xin Zhou
- Cancer Research Institute of Jilin University, The First Hospital of Jilin University, Changchun, 130021, China
| | - Dong-Dong Cheng
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Chen-Liang Zhou
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Qing-Cheng Yang
- Department of Orthopedics, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Zan Shen
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China
| | - Gao-Zhong Huang
- Department of VIP Clinic, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| | - Hong-Tao Li
- Department of Oncology, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai, 200233, China.
| |
Collapse
|
11
|
Suska K, Piotrowski M, Fichna J. Lipid biomarkers in colorectal cancer, with particular emphasis on exosomes - current status and future inferences. Expert Rev Gastroenterol Hepatol 2024; 18:441-456. [PMID: 39192805 DOI: 10.1080/17474124.2024.2393180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/16/2024] [Accepted: 08/13/2024] [Indexed: 08/29/2024]
Abstract
INTRODUCTION Colorectal cancer (CRC) is one of the most deadly cancers on a global scale. Diagnosis of CRC is challenging and it is often detected at a late stage. Identification of relevant biomarkers could lead to the development of effective diagnostic methods for CRC. AREAS COVERED We reviewed the literature on lipid (including exosomal) biomarkers that have the potential to become common, minimally invasive and effective diagnostic tools for CRC. We showed that differences in lipid levels (single compounds and entire panels) make it possible to classify patients into diseased or healthy groups, determine the stage of CRC, as well as accompanying inflammation and immune reactions associated with tumorigenesis. We also discussed exosomes which are important components of the tumor microenvironment that influence tumor progression and for which only a small number of studies were conducted so far in this area. EXPERT OPINION A rapid development in the field of lipid-based biomarkers, including exosomal lipid biomarkers, is expected as growing evidence shows their potential application and good accuracy. However, one of the major issues that needs to be addressed within this topic is to translate findings into a noninvasive and versatile diagnostic test robustly validated in clinical conditions.
Collapse
Affiliation(s)
- Kinga Suska
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | - Marcin Piotrowski
- Department of Biochemistry, Faculty of Medicine, Medical University of Lodz, Lodz, Poland
| | | |
Collapse
|
12
|
Klekowski J, Chabowski M, Krzystek-Korpacka M, Fleszar M. The Utility of Lipidomic Analysis in Colorectal Cancer Diagnosis and Prognosis-A Systematic Review of Recent Literature. Int J Mol Sci 2024; 25:7722. [PMID: 39062964 PMCID: PMC11277303 DOI: 10.3390/ijms25147722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/28/2024] Open
Abstract
Colorectal cancer (CRC) is among the most prevalent and lethal malignancies. Lipidomic investigations have revealed numerous disruptions in lipid profiles across various cancers. Studies on CRC exhibit potential for identifying novel diagnostic or prognostic indicators through lipidomic signatures. This review examines recent literature regarding lipidomic markers for CRC. PubMed database was searched for eligible articles concerning lipidomic biomarkers of CRC. After selection, 36 articles were included in the review. Several studies endeavor to establish sets of lipid biomarkers that demonstrate promising potential to diagnose CRC based on blood samples. Phosphatidylcholine, phosphatidylethanolamine, ceramides, and triacylglycerols (TAGs) appear to offer the highest diagnostic accuracy. In tissues, lysophospholipids, ceramides, and TAGs were among the most altered lipids, while unsaturated fatty acids also emerged as potential biomarkers. In-depth analysis requires both cell culture and animal studies. CRC involves multiple lipid metabolism alterations. Although numerous lipid species have been suggested as potential diagnostic markers, the establishment of standardized methods and the conduct of large-scale studies are necessary to facilitate their clinical application.
Collapse
Affiliation(s)
- Jakub Klekowski
- Department of Nursing and Obstetrics, Division of Anesthesiological and Surgical Nursing, Faculty of Health Science, Wroclaw Medical University, 50-367 Wroclaw, Poland;
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
| | - Mariusz Chabowski
- Department of Surgery, 4th Military Clinical Hospital, 50-981 Wroclaw, Poland
- Department of Clinical Surgical Sciences, Faculty of Medicine, Wroclaw University of Science and Technology, 50-556 Wroclaw, Poland
| | - Małgorzata Krzystek-Korpacka
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
| | - Mariusz Fleszar
- Department of Biochemistry and Immunochemistry, Wroclaw Medical University, 50-368 Wroclaw, Poland; (M.K.-K.); (M.F.)
- Omics Research Center, Wroclaw Medical University, 50-368 Wroclaw, Poland
| |
Collapse
|
13
|
Yang Q, Qu R, Lu S, Zhang Y, Zhang Z, Fu W. Biological and Clinical Characteristics of Proximal Colon Cancer: Far from Its Anatomical Subsite. Int J Med Sci 2024; 21:1824-1839. [PMID: 39113889 PMCID: PMC11302569 DOI: 10.7150/ijms.97574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 07/02/2024] [Indexed: 08/10/2024] Open
Abstract
Colorectal cancer is a heterogeneous disease which can be divided into proximal colon cancer, distal colon cancer and rectal cancer according to the anatomical location of the tumor. Each anatomical location of colorectal cancer exhibits distinct characteristics in terms of incidence, clinical manifestations, molecular phenotypes, treatment, and prognosis. Notably, proximal colon cancer differs significantly from cancers of other anatomical subsites. An increasing number of studies have highlighted the presence of unique tumor biological characteristics in proximal colon cancer. Gaining a deeper understanding of these characteristics will facilitate accurate diagnosis and treatment approaches.
Collapse
Affiliation(s)
- Qing Yang
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| | - Ruize Qu
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| | - Siyi Lu
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| | - Yi Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| | - Zhipeng Zhang
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| | - Wei Fu
- Department of General Surgery, Peking University Third Hospital, Beijing China
- Cancer Center, Peking University Third Hospital, Beijing China
| |
Collapse
|
14
|
Sarcinelli GM, Varinelli L, Ghislanzoni S, Padelli F, Lorenzini D, Vingiani A, Milione M, Guaglio M, Kusamura S, Deraco M, Pruneri G, Gariboldi M, Baratti D, Bongarzone I. Sulfatide imaging identifies tumor cells in colorectal cancer peritoneal metastases. Cancer Metab 2024; 12:18. [PMID: 38943216 PMCID: PMC11212237 DOI: 10.1186/s40170-024-00345-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 06/19/2024] [Indexed: 07/01/2024] Open
Abstract
Even with systemic chemotherapy, cytoreductive surgery (CRS), and hyperthermic intraperitoneal chemotherapy (HIPEC), peritoneal metastases (PM) remain a common site of disease progression for colorectal cancer (CRC) and are frequently associated with a poor prognosis. The mass spectrometry (MS) method known as Matrix-Assisted Laser Desorption/Ionization - Time of Flight (MALDI-TOF) is frequently used in medicine to identify structural compounds and biomarkers. It has been demonstrated that lipids are crucial in mediating the aggressive growth of tumors. In order to investigate the lipid profiles, particularly with regard to histological distribution, we used MALDI-TOF MS (MALDI-MS) and MALDI-TOF imaging MS (MALDI-IMS) on patient-derived tumor organoids (PDOs) and PM clinical samples. According to the MALDI-IMS research shown here, the predominant lipid signature of PDOs in PM tissues, glycosphingolipid (GSL) sulfates or sulfatides, or STs, is unique to the areas containing tumor cells and absent from the surrounding stromal compartments. Bioactive lipids are derived from arachidonic acid (AA), and AA-containing phosphatidylinositol (PI), or PI (18:0-20:4), is shown to be highly expressed in the stromal components. On the other hand, the tumor components contained a higher abundance of PI species with shorter and more saturated acyl chains (C34 and C36 carbons). The cellular subversion of PI and ST species may alter in ways that promote the growth, aggressiveness, and metastasis of tumor cells. Together, these findings suggest that the GSL/ST metabolic programming of PM may contain novel therapeutic targets to impede or halt PM progression.
Collapse
Affiliation(s)
- G M Sarcinelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy
| | - L Varinelli
- Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy
| | - S Ghislanzoni
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy
| | - F Padelli
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy
| | - D Lorenzini
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - A Vingiani
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - M Milione
- Department of Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - M Guaglio
- Peritoneal Surface Malignancies Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - S Kusamura
- Peritoneal Surface Malignancies Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - M Deraco
- Peritoneal Surface Malignancies Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - G Pruneri
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - M Gariboldi
- Department of Research, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy
| | - D Baratti
- Peritoneal Surface Malignancies Unit, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Venezian 1, 20133, Milan, Italy
| | - I Bongarzone
- Department of Diagnostic Innovation, Fondazione IRCCS Istituto Nazionale Dei Tumori, Via G. Amadeo 42, 20133, Milan, Italy.
| |
Collapse
|
15
|
Kowalczyk A, Dziubak D, Kasprzak A, Sobczak K, Ruzycka-Ayoush M, Bamburowicz-Klimkowska M, Sęk S, Rios-Mondragon I, Żołek T, Runden-Pran E, Shaposhnikov S, Cimpan MR, Dusinska M, Grudzinski IP, Nowicka AM. Surface-Bioengineered Extracellular Vesicles Seeking Molecular Biotargets in Lung Cancer Cells. ACS APPLIED MATERIALS & INTERFACES 2024; 16:31997-32016. [PMID: 38869318 PMCID: PMC11212023 DOI: 10.1021/acsami.4c04265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 04/30/2024] [Accepted: 05/29/2024] [Indexed: 06/14/2024]
Abstract
Personalized medicine is a new approach to modern oncology. Here, to facilitate the application of extracellular vesicles (EVs) derived from lung cancer cells as potent advanced therapy medicinal products in lung cancer, the EV membrane was functionalized with a specific ligand for targeting purposes. In this role, the most effective heptapeptide in binding to lung cancer cells (PTHTRWA) was used. The functionalization process of EV surface was performed through the C- or N-terminal end of the heptapeptide. To prove the activity of the EVs functionalized with PTHTRWA, both a model of lipid membrane mimicking normal and cancerous cell membranes as well as human adenocarcinomic alveolar basal epithelial cells (A549) and human normal bronchial epithelial cells (BEAS-2B) have been exposed to these bioconstructs. Magnetic resonance imaging (MRI) showed that the as-bioengineered PTHTRWA-EVs loaded with superparamagnetic iron oxide nanoparticle (SPIO) cargos reach the growing tumor when dosed intravenously in NUDE Balb/c mice bearing A549 cancer. Molecular dynamics (MD) in silico studies elucidated a high affinity of the synthesized peptide to the α5β1 integrin. Preclinical safety assays did not evidence any cytotoxic or genotoxic effects of the PTHTRWA-bioengineered EVs.
Collapse
Affiliation(s)
- Agata Kowalczyk
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
| | - Damian Dziubak
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Artur Kasprzak
- Faculty
of Chemistry, Warsaw University of Technology, Noakowskiego Str. 3, Warsaw 00-664, Poland
| | - Kamil Sobczak
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Monika Ruzycka-Ayoush
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Magdalena Bamburowicz-Klimkowska
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Sławomir Sęk
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
- Faculty
of Chemistry, Biological and Chemical Research
Centre, University of Warsaw, Żwirki i Wigury 101 Street, Warsaw PL-02-089, Poland
| | - Ivan Rios-Mondragon
- Biomaterials
- Department for Clinical Dentistry, University
of Bergen, Årstadveien
19, Bergen 5009, Norway
| | - Teresa Żołek
- Department
of Organic and Physical Chemistry, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Elise Runden-Pran
- Health
Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller 2007, Norway
| | | | - Mihaela Roxana Cimpan
- Biomaterials
- Department for Clinical Dentistry, University
of Bergen, Årstadveien
19, Bergen 5009, Norway
| | - Maria Dusinska
- Health
Effects Laboratory, Department of Environmental Chemistry, Norwegian Institute for Air Research, Kjeller 2007, Norway
| | - Ireneusz P. Grudzinski
- Department
of Toxicology and Food Science, Faculty of Pharmacy, Medical University of Warsaw, Banacha Str. 1, Warsaw PL-02-097, Poland
| | - Anna M. Nowicka
- Faculty
of Chemistry, University of Warsaw, Pasteura Str. 1, Warsaw PL-02-093, Poland
| |
Collapse
|
16
|
Jiang Y, Wang C, Shen J. Predictive value of dynamic changes in peripheral blood inflammation and blood lipid-related indices for the lung cancer treatment efficacy. Am J Cancer Res 2024; 14:3130-3141. [PMID: 39005676 PMCID: PMC11236780 DOI: 10.62347/jovt3911] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Accepted: 06/14/2024] [Indexed: 07/16/2024] Open
Abstract
To investigate the dynamics of inflammation and lipid-related indicators in lung cancer patients and their impact on treatment efficacy. A retrospective analysis was conducted on 133 lung cancer patients who seek for primary treatment at Wujin Hospital Affiliated to Jiangsu University from January 2019 to August 2022. The inflammation and blood lipid-related indicators were collected 1 week before treatment and after 2 cycles of treatment. We compared the changes in these indicators among patients with different treatment methods and outcomes. The diagnostic value of the dynamic changes in each index for disease progression was calculated using the ROC curve. The risk factors influencing disease development were identified using multifactorial logistic regression analysis. After 2 cycles of treatment, the white blood cell count (WBC, P<0.001), neutrophil count (NC, P<0.001), neutrophil-to-lymphocyte ratio (NLR, P<0.001) in the disease progression (PD) group were significantly increased, triglyceride (TG, P=0.023), apolipoprotein A1 (APO-A1, P=0.009) was significantly decreased. The results showed that ∆NC had the highest sensitivity (88.24%) in predicting disease progression, and ∆WBC had the best specificity (77.78%). Multivariate regression analysis showed that ΔWBC (P<0.001), ΔTG (P=0.041), and treatment method (P=0.010) were independent risk factors for disease progression (PD). The changes of WBC and TG before and after treatment are promising indicators for predicting the progression of lung cancer and may offer a new direction for lung cancer treatment.
Collapse
Affiliation(s)
- Yi Jiang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou 213000, Jiangsu, China
- Department of Clinical Laboratory, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213000, Jiangsu, China
| | - Chaoping Wang
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou 213000, Jiangsu, China
- Department of Clinical Laboratory, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213000, Jiangsu, China
| | - Jiali Shen
- Department of Clinical Laboratory, Wujin Hospital Affiliated to Jiangsu UniversityChangzhou 213000, Jiangsu, China
- Department of Clinical Laboratory, Wujin Clinical College of Xuzhou Medical UniversityChangzhou 213000, Jiangsu, China
| |
Collapse
|
17
|
Li S, Liu Z, Chen Q, Chen Y, Ji S. A novel fatty acid metabolism-related signature identifies MUC4 as a novel therapy target for esophageal squamous cell carcinoma. Sci Rep 2024; 14:12476. [PMID: 38816411 PMCID: PMC11139939 DOI: 10.1038/s41598-024-62917-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/01/2024] Open
Abstract
Fatty acid metabolism has been identified as an emerging hallmark of cancer, which was closely associated with cancer prognosis. Whether fatty acid metabolism-related genes (FMGs) signature play a more crucial role in biological behavior of esophageal squamous cell carcinoma (ESCC) prognosis remains unknown. Thus, we aimed to identify a reliable FMGs signature for assisting treatment decisions and prognosis evaluation of ESCC. In the present study, we conducted consensus clustering analysis on 259 publicly available ESCC samples. The clinical information was downloaded from The Cancer Genome Atlas (TCGA, 80 ESCC samples) and Gene Expression Omnibus (GEO) database (GSE53625, 179 ESCC samples). A consensus clustering arithmetic was used to determine the FMGs molecular subtypes, and survival outcomes and immune features were evaluated among the different subtypes. Kaplan-Meier analysis and the receiver operating characteristic (ROC) was applied to evaluate the reliability of the risk model in training cohort, validation cohort and all cohorts. A nomogram to predict patients' 1-year, 3-year and 5-year survival rate was also studied. Finally, CCK-8 assay, wound healing assay, and transwell assay were implemented to evaluate the inherent mechanisms of FMGs for tumorigenesis in ESCC. Two subtypes were identified by consensus clustering, of which cluster 2 is preferentially associated with poor prognosis, lower immune cell infiltration. A fatty acid (FA) metabolism-related risk model containing eight genes (FZD10, TACSTD2, MUC4, PDLIM1, PRSS12, BAALC, DNAJA2 and ALOX12B) was established. High-risk group patients displayed worse survival, higher stromal, immune and ESTIMATE scores than in the low-risk group. Moreover, a nomogram revealed good predictive ability of clinical outcomes in ESCC patients. The results of qRT-PCR analysis revealed that the MUC4 and BAALC had high expression level, and FZD10, PDLIM1, TACSTD2, ALOX12B had low expression level in ESCC cells. In vitro, silencing MUC4 remarkably inhibited ESCC cell proliferation, invasion and migration. Our study fills the gap of FMGs signature in predicting the prognosis of ESCC patients. These findings revealed that cluster subtypes and risk model of FMGs had effects on survival prediction, and were expected to be the potential promising targets for ESCC.
Collapse
Affiliation(s)
- Shanshan Li
- Department of Operating Room, Weifang Traditional Chinese Hospital, Weifang, China
| | - Zhengcao Liu
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Qingqing Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Yuetong Chen
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China
| | - Shengjun Ji
- Department of Radiotherapy & Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Gusu School, Nanjing Medical University, No.16 Baita Road, Suzhou, 215001, China.
| |
Collapse
|
18
|
Anastasio C, Donisi I, Del Vecchio V, Colloca A, Mele L, Sardu C, Marfella R, Balestrieri ML, D'Onofrio N. SGLT2 inhibitor promotes mitochondrial dysfunction and ER-phagy in colorectal cancer cells. Cell Mol Biol Lett 2024; 29:80. [PMID: 38811901 PMCID: PMC11134909 DOI: 10.1186/s11658-024-00599-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/17/2024] [Indexed: 05/31/2024] Open
Abstract
BACKGROUND Sodium-glucose transporter 2 (SGLT2) inhibitors (iSGLT2) are approved medications for type 2 diabetes. Recent studies indicate that iSGLT2 inhibit the growth of some cancer cells. However, the mechanism(s) remains to be fully elucidated. METHODS The SGLT2 levels were determined in normal colon CCD 841 CoN and, HCT 116, HT-29, SW480 and LoVo colorectal cancer (CRC) cell lines by quantitative real-time PCR and western blot. The effect of iSGLT2 canagliflozin on cell proliferation was examined using CCK-8, as its role on CRC cells metabolism and tumorigenesis has been evaluated by XF HS Seahorse Bioanalyzer and flow cytometric analyses. Transient gene silencing experiments and analysis of protein-protein interaction network were conducted to evaluate the SGLT2 molecular targets in CRC cells. RESULTS Data showed that the treatment with iSGLT2 (50 µM) for 72 h induced cell cycle arrest (p < 0.001), impaired glucose and energetic metabolism (p < 0.001), promoted apoptotic cell death and ER stress flowing into autophagy (p < 0.001) in HCT 116 and HT-29 cells. These cellular events were accompanied by sirtuin 3 (SIRT3) upregulation (p < 0.01), as also supported by SIRT3 transient silencing experiments resulting in the attenuation of the effects of iSGLT2 on the cellular metabolic/energetic alterations and the induction of programmed cell death. The identification and validation of dipeptidyl peptidase 4 (DPP4) as potential common target of SGLT2 and SIRT3 were also assessed. CONCLUSIONS These results deepened knowledge on the iSGLT2 contribution in limiting CRC tumorigenesis unveiling the SGLT2/SIRT3 axis in the cytotoxic mechanisms.
Collapse
Affiliation(s)
- Camilla Anastasio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Isabella Donisi
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Vitale Del Vecchio
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Antonino Colloca
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Luigi Mele
- Department of Experimental Medicine, University of Campania Luigi Vanvitelli, Via Luciano Armanni 5, 80138, Naples, Italy
| | - Celestino Sardu
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Raffaele Marfella
- Department of Advanced Clinical and Surgical Sciences, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Maria Luisa Balestrieri
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy
| | - Nunzia D'Onofrio
- Department of Precision Medicine, University of Campania Luigi Vanvitelli, 80138, Naples, Italy.
| |
Collapse
|
19
|
Hu KY, Cheng YQ, Shi ZL, Ren FP, Xiao GF. Casual associations between blood metabolites and colon cancer. World J Gastrointest Oncol 2024; 16:1995-2005. [PMID: 38764807 PMCID: PMC11099440 DOI: 10.4251/wjgo.v16.i5.1995] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/02/2024] [Accepted: 03/13/2024] [Indexed: 05/09/2024] Open
Abstract
BACKGROUND Limited knowledge exists regarding the casual associations linking blood metabolites and the risk of developing colorectal cancer. AIM To investigate causal associations between blood metabolites and colon cancer. METHODS The study utilized a two-sample Mendelian randomization (MR) analysis to investigate the causal impact of 486 blood metabolites on colorectal cancer. The primary method of analysis used was the inverse variance weighted model. To further validate the results several sensitivity analyses were performed, including Cochran's Q test, MR-Egger intercept test, and MR robust adjusted profile score. These additional analyses were conducted to ensure the reliability and robustness of the findings. RESULTS After rigorous selection for genetic variation, 486 blood metabolites were included in the MR analysis. We found Mannose [odds ratio (OR) = 2.09 (1.10-3.97), P = 0.024], N-acetylglycine [OR = 3.14 (1.78-5.53), P = 7.54 × 10-8], X-11593-O-methylascorbate [OR = 1.68 (1.04-2.72), P = 0.034], 1-arachidonoylglycerophosphocholine [OR = 4.23 (2.51-7.12), P = 6.35 × 10-8] and 1-arachidonoylglycerophosphoethanolamine 4 [OR = 3.99 (1.17-13.54), P = 0.027] were positively causally associated with colorectal cancer, and we also found a negative causal relationship between Tyrosine [OR = 0.08 (0.01-0.63), P = 0.014], Urate [OR = 0.25 (0.10-0.62), P = 0.003], N-acetylglycine [0.73 (0.54-0.98), P = 0.033], X-12092 [OR = 0.89 (0.81-0.99), P = 0.028], Succinylcarnitine [OR = 0.48 (0.27-0.84), P = 0.09] with colorectal cancer. A series of sensitivity analyses were performed to confirm the rigidity of the results. CONCLUSION This study showed a causal relationship between 10 blood metabolites and colorectal cancer, of which 5 blood metabolites were found to be causal for the development of colorectal cancer and were confirmed as risk factors. The other five blood metabolites are protective factors.
Collapse
Affiliation(s)
- Ke-Yue Hu
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Yi-Quan Cheng
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Zhi-Long Shi
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Fu-Peng Ren
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| | - Gang-Feng Xiao
- Department of Hematology and Oncology, Ningbo No. 2 Hospital, Ningbo 315000, Zhejiang Province, China
| |
Collapse
|
20
|
Masci D, Puxeddu M, Silvestri R, La Regina G. Metabolic Rewiring in Cancer: Small Molecule Inhibitors in Colorectal Cancer Therapy. Molecules 2024; 29:2110. [PMID: 38731601 PMCID: PMC11085455 DOI: 10.3390/molecules29092110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/16/2024] [Accepted: 04/29/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cellular metabolism, such as dysregulation in glycolysis, lipid metabolism, and glutaminolysis in response to hypoxic and low-nutrient conditions within the tumor microenvironment, are well-recognized hallmarks of cancer. Therefore, understanding the interplay between aerobic glycolysis, lipid metabolism, and glutaminolysis is crucial for developing effective metabolism-based therapies for cancer, particularly in the context of colorectal cancer (CRC). In this regard, the present review explores the complex field of metabolic reprogramming in tumorigenesis and progression, providing insights into the current landscape of small molecule inhibitors targeting tumorigenic metabolic pathways and their implications for CRC treatment.
Collapse
Affiliation(s)
- Domiziana Masci
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Catholic University of the Sacred Heart, Largo Francesco Vito 1, 00168 Rome, Italy;
| | - Michela Puxeddu
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Romano Silvestri
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| | - Giuseppe La Regina
- Laboratory Affiliated to Istituto Pasteur Italia-Fondazione Cenci Bolognetti, Department of Drug Chemistry and Technologies, Sapienza University of Rome, Piazzale Aldo Moro 5, 00185 Rome, Italy; (M.P.); (R.S.)
| |
Collapse
|
21
|
Teng C, Ren R, Liu Z, Wang J, Shi S, Kang YE, Koo BS, Lu W, Shan Y. C15:0 and C17:0 partially mediate the association of milk and dairy products with bladder cancer risk. J Dairy Sci 2024; 107:2586-2605. [PMID: 38056566 DOI: 10.3168/jds.2023-24186] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023]
Abstract
The relationship between saturated fatty acids (SFA) and bladder cancer (BC) risk has been conflicting. Our aim was to investigate the relationship between erythrocyte membrane SFA and BC risk. A total of 404 participants were enrolled in the study (including 112 cases and 292 controls). A validated food frequency questionnaire was used to assess the food intake. The constitutive composition of fatty acids in the erythrocyte membrane was measured by gas chromatography. After adjustment for BC risk factors, SFA had no significant association with BC risk. However, C18:0 was positively linked with BC risk with an odds ratio (OR; 95% CI) of 2.99 (1.37-6.53). In contrast, very-long-chain saturated fatty acids (VLCSFA), especially C24:0, were negatively related to BC risk with an OR (95% CI) of 0.28 (0.12-0.65) for VLCSFA and 0.33 (0.15-0.75) for C24:0. Higher total odd-chain SFA (C15:0 and C17:0) were associated with a lower risk of BC with OR (95% CI) of 0.18 (0.076-0.44), 0.18 (0.068-0.47), 0.34 (0.14-0.81), respectively. After subgroup analysis, the protective effects C15:0 and C17:0 were still remained. Receiver operating characteristic analysis displayed that the combination of C15:0 and C17:0 indexes increased the accurate predictive rate of BC risk. Further mediation effect analysis showed that C15:0 and C17:0 could be used as partial mediation effectors for milk and dairy products and bladder carcinogenesis. Overall, the combination of odd-chain SFA (C15:0 and C17:0) in the erythrocyte membrane could serve as a reliable mediator and predictor, indicating a relationship between a high intake of milk and dairy products and a lower risk of BC.
Collapse
Affiliation(s)
- Chunying Teng
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China
| | - Rui Ren
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China; Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325000, China
| | - Zhipeng Liu
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
| | - Jiaxin Wang
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
| | - Shengchao Shi
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China
| | - Yea Eun Kang
- Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon 35015, Republic of Korea
| | - Bon Seok Koo
- Department of Otolaryngology-Head and Neck Surgery, Research Institute for Medical Science, Chungnam National University School of Medicine, Daejeon 35015, Republic of Korea
| | - Weihong Lu
- Department of Food Science and Engineering, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, Harbin 150001, China.
| | - Yujuan Shan
- School of Public Health and Management, Wenzhou Medical University, Wenzhou 325000, China; Southern Zhejiang Institute of Radiation Medicine and Nuclear Technology, Wenzhou 325000, China.
| |
Collapse
|
22
|
Huang P, Zhang H, Liu Y, Li L. Rapid Characterization of Phospholipids from Biological Matrix Enabled by Indium Tin Oxide (ITO) Coated Slide Assisted Enrichment MALDI Mass Spectrometry. ANALYSIS & SENSING 2024; 4:e202300097. [PMID: 39309316 PMCID: PMC11415247 DOI: 10.1002/anse.202300097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Indexed: 09/25/2024]
Abstract
Lipidomic analysis of human serum is essential to monitor the individual's health status. Herein, we develop a facile strategy for rapid characterization of phospholipids in human serum via indium tin oxide (ITO) coated glass slide solid phase extraction MALDI mass spectrometry (ITO-SPE-MALDI-MS). Phospholipid species are retained on ITO slide via solid phase extraction owing to the unique property of the ITO material; the measurement of phospholipid species from 1 μl human serum within 2 min is achievable. A comparison of ITO-SPE strategy with conventional extraction methods was further carried out using liquid chromatography-mass spectrometry (LC-MS) and ion-mobility mass spectrometry (IM-MS), resulting in a comparable enrichment performance for the phospholipid analysis. Furthermore, rapid lipidomic profiling of serum samples from human colorectal cancer patients and cell lines was demonstrated. Our results indicate that ITO-SPE-MALDI-MS provides a higher throughput strategy for the analysis of phospholipid species in complex biological mixtures, showcasing its potential for applications in the analysis of clinical biofluids.
Collapse
Affiliation(s)
- Penghsuan Huang
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
| | - Hua Zhang
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Yuan Liu
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| | - Lingjun Li
- Department of Chemistry, University of Wisconsin-Madison, Madison, WI 53706 (USA)
- School of Pharmacy, University of Wisconsin-Madison, 777 Highland Ave, Madison, WI 53705 (USA)
| |
Collapse
|
23
|
Beton-Mysur K, Kopec M, Brozek-Pluska B. Raman Imaging-A Valuable Tool for Tracking Fatty Acid Metabolism-Normal and Cancer Human Colon Single-Cell Study. Int J Mol Sci 2024; 25:4508. [PMID: 38674093 PMCID: PMC11050638 DOI: 10.3390/ijms25084508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Revised: 04/14/2024] [Accepted: 04/17/2024] [Indexed: 04/28/2024] Open
Abstract
Altered metabolism of lipids is a key factor in many diseases including cancer. Therefore, investigations into the impact of unsaturated and saturated fatty acids (FAs) on human body homeostasis are crucial for understanding the development of lifestyle diseases. In this paper, we focus on the impact of palmitic (PA), linoleic (LA), and eicosapentaenoic (EPA) acids on human colon normal (CCD-18 Co) and cancer (Caco-2) single cells using Raman imaging and spectroscopy. The label-free nature of Raman imaging allowed us to evaluate FAs dynamics without modifying endogenous cellular metabolism. Thanks to the ability of Raman imaging to visualize single-cell substructures, we have analyzed the changes in chemical composition of endoplasmic reticulum (ER), mitochondria, lipid droplets (LDs), and nucleus upon FA supplementation. Analysis of Raman band intensity ratios typical for lipids, proteins, and nucleic acids (I1656/I1444, I1444/I1256, I1444/I750, I1304/I1256) proved that, using Raman mapping, we can observe the metabolic pathways of FAs in ER, which is responsible for the uptake of exogenous FAs, de novo synthesis, elongation, and desaturation of FAs, in mitochondria responsible for energy production via FA oxidation, in LDs specialized in cellular fat storage, and in the nucleus, where FAs are transported via fatty-acid-binding proteins, biomarkers of human colon cancerogenesis. Analysis for membranes showed that the uptake of FAs effectively changed the chemical composition of this organelle, and the strongest effect was noticed for LA. The spectroscopy studies have been completed using XTT tests, which showed that the addition of LA or EPA for Caco-2 cells decreases their viability with a stronger effect observed for LA and the opposite effect observed for PA. For normal cells, CCD-18 Co supplementation using LA or EPA stimulated cells for growing, while PA had the opposite impact.
Collapse
Affiliation(s)
| | | | - Beata Brozek-Pluska
- Laboratory of Laser Molecular Spectroscopy, Institute of Applied Radiation Chemistry, Faculty of Chemistry, Lodz University of Technology, Wroblewskiego 15, 93-590 Lodz, Poland; (K.B.-M.); (M.K.)
| |
Collapse
|
24
|
Yang T, Tang S, Feng J, Yan X. Lipid Isobaric Mass Tagging for Enhanced Relative Quantification of Unsaturated sn-Positional Isomers. ACS MEASUREMENT SCIENCE AU 2024; 4:213-222. [PMID: 38645577 PMCID: PMC11027206 DOI: 10.1021/acsmeasuresciau.3c00062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2023] [Revised: 12/14/2023] [Accepted: 12/27/2023] [Indexed: 04/23/2024]
Abstract
Changes in the levels of lipid sn-positional isomers are associated with perturbation of the physiological environment within the biological system. Consequently, knowing the concentrations of these lipids holds significant importance for unraveling their involvement in disease diagnosis and pathological mechanisms. However, existing methods for lipid quantification often fall short in accuracy due to the structural diversity and isomeric forms of lipids. To address this challenge, we have developed an aziridine-based isobaric tag labeling strategy that allows (i) differentiation and (ii) enhanced relative quantification of lipid sn-positional isomers from distinct samples in a single run. The methodology enabled by aziridination, isobaric tag labeling, and lithiation has been applied to various phospholipids, enabling the determination of the sn-positions of fatty acyl chains and enhanced relative quantification. The analysis of Escherichia coli lipid extracts demonstrated the enhanced determination of the concentration ratios of lipid isomers by measuring the intensity ratios of mass reporters released from sn-positional diagnostic ions. Moreover, we applied the method to the analysis of human colon cancer plasma. Intriguingly, 17 PC lipid sn-positional isomers were identified and quantified simultaneously, and among them, 7 showed significant abundance changes in the colon cancer plasma, which can be used as potential plasma markers for diagnosis of human colon cancer.
Collapse
Affiliation(s)
- Tingyuan Yang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Shuli Tang
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Jiaxin Feng
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| | - Xin Yan
- Department
of Chemistry, Texas A&M University, 580 Ross Street, College Station, Texas 77843, United States
| |
Collapse
|
25
|
Duché G, Sanderson JM. The Chemical Reactivity of Membrane Lipids. Chem Rev 2024; 124:3284-3330. [PMID: 38498932 PMCID: PMC10979411 DOI: 10.1021/acs.chemrev.3c00608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 02/27/2024] [Accepted: 02/28/2024] [Indexed: 03/20/2024]
Abstract
It is well-known that aqueous dispersions of phospholipids spontaneously assemble into bilayer structures. These structures have numerous applications across chemistry and materials science and form the fundamental structural unit of the biological membrane. The particular environment of the lipid bilayer, with a water-poor low dielectric core surrounded by a more polar and better hydrated interfacial region, gives the membrane particular biophysical and physicochemical properties and presents a unique environment for chemical reactions to occur. Many different types of molecule spanning a range of sizes, from dissolved gases through small organics to proteins, are able to interact with membranes and promote chemical changes to lipids that subsequently affect the physicochemical properties of the bilayer. This Review describes the chemical reactivity exhibited by lipids in their membrane form, with an emphasis on conditions where the lipids are well hydrated in the form of bilayers. Key topics include the following: lytic reactions of glyceryl esters, including hydrolysis, aminolysis, and transesterification; oxidation reactions of alkenes in unsaturated fatty acids and sterols, including autoxidation and oxidation by singlet oxygen; reactivity of headgroups, particularly with reactive carbonyl species; and E/Z isomerization of alkenes. The consequences of reactivity for biological activity and biophysical properties are also discussed.
Collapse
Affiliation(s)
- Genevieve Duché
- Génie
Enzimatique et Cellulaire, Université
Technologique de Compiègne, Compiègne 60200, France
| | - John M Sanderson
- Chemistry
Department, Durham University, Durham DH1 3LE, United Kingdom
| |
Collapse
|
26
|
Kelson CO, Zaytseva YY. Altered lipid metabolism in APC-driven colorectal cancer: the potential for therapeutic intervention. Front Oncol 2024; 14:1343061. [PMID: 38590663 PMCID: PMC10999677 DOI: 10.3389/fonc.2024.1343061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/12/2024] [Indexed: 04/10/2024] Open
Abstract
Altered lipid metabolism is a well-recognized feature of solid cancers, including colorectal cancer. In colorectal cancer, upregulation of lipid metabolism contributes to initiation, progression, and metastasis; thus, aberrant lipid metabolism contributes to a poor patient outcome. The inactivating mutation of APC, a vital tumor suppressor in the Wnt signaling pathway, is a key event that occurs early in the majority of colorectal cancer cases. The potential crosstalk between lipid metabolism and APC-driven colorectal cancer is poorly understood. This review collectively highlights and summarizes the limited understanding between mutations in APC and the upregulation of Wnt/beta-catenin signaling and lipid metabolism. The interconnection between APC inactivation and aberrant lipid metabolism activates Wnt/beta-catenin signaling which causes transcriptome, epigenetic, and microbiome changes to promote colorectal cancer initiation and progression. Furthermore, the downstream effects of this collaborative effort between aberrant Wnt/beta-catenin signaling and lipid metabolism are enhanced stemness, cellular proliferation, prooncogenic signaling, and survival. Understanding the mechanistic link between APC inactivation and alterations in lipid metabolism may foster identification of new therapeutic targets to enable development of more efficacious strategies for prevention and/or treatment of colorectal cancer.
Collapse
Affiliation(s)
- Courtney O. Kelson
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
| | - Yekaterina Y. Zaytseva
- Department of Toxicology and Cancer Biology, University of Kentucky, Lexington, KY, United States
- Markey Cancer Center, University of Kentucky, Lexington, KY, United States
| |
Collapse
|
27
|
Zhang C, Hu Z, Pan Z, Ji Z, Cao X, Yu H, Qin X, Guan M. The arachidonic acid metabolome reveals elevation of prostaglandin E2 biosynthesis in colorectal cancer. Analyst 2024; 149:1907-1920. [PMID: 38372525 DOI: 10.1039/d3an01723k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
Arachidonic acid metabolites are a family of bioactive lipids derived from membrane phospholipids. They are involved in cancer progression, but arachidonic acid metabolite profiles and their related biosynthetic pathways remain uncertain in colorectal cancer (CRC). To compare the arachidonic acid metabolite profiles between CRC patients and healthy controls, quantification was performed using a liquid chromatography-mass spectrometry-based analysis of serum and tissue samples. Metabolomics analysis delineated the distinct oxidized lipids in CRC patients and healthy controls. Prostaglandin (PGE2)-derived metabolites were increased, suggesting that the PGE2 biosynthetic pathway was upregulated in CRC. The qRT-PCR and immunohistochemistry analyses showed that the expression level of PGE2 synthases, the key protein of PGE2 biosynthesis, was upregulated in CRC and positively correlated with the CD68+ macrophage density and CRC development. Our study indicates that the PGE2 biosynthetic pathway is associated with macrophage infiltration and progression of CRC tumors.
Collapse
Affiliation(s)
- Cuiping Zhang
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Zuojian Hu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ziyue Pan
- Shanghai Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Zhaodong Ji
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Xinyi Cao
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| | - Hongxiu Yu
- Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032, China
- Shanghai Stomatological Hospital & School of Stomatology, Fudan University, Shanghai, China
| | - Xue Qin
- Department of Clinical Laboratory, First Affiliated Hospital of Guangxi Medical University, Nanning 530021, China.
| | - Ming Guan
- Department of Laboratory Medicine, Shanghai Medical College, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
28
|
Shang X, Zhang C, Kong R, Zhao C, Wang H. Construction of a Diagnostic Model for Small Cell Lung Cancer Combining Metabolomics and Integrated Machine Learning. Oncologist 2024; 29:e392-e401. [PMID: 37706531 PMCID: PMC10911920 DOI: 10.1093/oncolo/oyad261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 08/09/2023] [Indexed: 09/15/2023] Open
Abstract
BACKGROUND To date, no study has systematically explored the potential role of serum metabolites and lipids in the diagnosis of small cell lung cancer (SCLC). Therefore, we aimed to conduct a case-cohort study that included 191 cases of SCLC, 91 patients with lung adenocarcinoma, 82 patients with squamous cell carcinoma, and 97 healthy controls. METHODS Metabolomics and lipidomics were applied to analyze different metabolites and lipids in the serum of these patients. The SCLC diagnosis model (d-model) was constructed using an integrated machine learning technology and a training cohort (n = 323) and was validated in a testing cohort (n=138). RESULTS Eight metabolites, including 1-mristoyl-sn-glycero-3-phosphocholine, 16b-hydroxyestradiol, 3-phosphoserine, cholesteryl sulfate, D-lyxose, dioctyl phthalate, DL-lactate and Leu-Phe, were successfully selected to distinguish SCLC from controls. The d-model was constructed based on these 8 metabolites and showed improved diagnostic performance for SCLC, with the area under curve (AUC) of 0.933 in the training cohort and 0.922 in the testing cohort. Importantly, the d-model still had an excellent diagnostic performance after adjusting the stage and related clinical variables and, combined with the progastrin-releasing peptide (ProGRP), showed the best diagnostic performance with 0.975 of AUC for limited-stage patients. CONCLUSION This study is the first to analyze the difference between metabolomics and lipidomics and to construct a d-model to detect SCLC using integrated machine learning. This study may be of great significance for the screening and early diagnosis of SCLC patients.
Collapse
Affiliation(s)
- Xiaoling Shang
- Department of Clinical Laboratory, Shandong Cancer Hospital and Institute, Shandong University, Jinan, People’s Republic of China
| | - Chenyue Zhang
- Department of Integrated Therapy, Fudan University Shanghai Cancer Center, Shanghai Medical College, Shanghai, People’s Republic of China
| | - Ronghua Kong
- Department of Breast Surgery, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| | - Chenglong Zhao
- Department of Pathology, The First Affiliated Hospital of Shandong First Medical University and Shandong Provincial Qianfoshan Hospital, Jinan, Shandong, People’s Republic of China
| | - Haiyong Wang
- Department of Internal Medicine-Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, People’s Republic of China
| |
Collapse
|
29
|
Ye C, Sun Q, Yan J, Xue D, Xu J, Ma H, Li F. Development of fatty acid metabolism score based on gene signature for predicting prognosis and immunotherapy response in colon cancer. Clin Transl Oncol 2024; 26:630-643. [PMID: 37480430 DOI: 10.1007/s12094-023-03282-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 07/11/2023] [Indexed: 07/24/2023]
Abstract
PURPOSE Metabolic reprogramming is a novel hallmark and therapeutic target of cancer. Our study aimed to establish fatty acid metabolism-associated scores based on gene signature and investigated its effects on immunotherapy in colon cancer. METHODS Gene expression and clinical information were collected from Gene Expression Omnibus (GEO) database to identify a gene signature by non-negative matrix factorization (NMF) clustering and Cox regression analysis. Subsequently, we constructed the fatty acid metabolism score (FA-score) model by principal component analysis (PCA) and explored its relativity of prognosis and the response to immunotherapy in colon cancer. Finally, the Cancer Genome Atlas (TCGA) database was introduced and in vitro study was performed for verification. RESULTS The FA-score-high group had a higher level of fatty acid metabolism and was associated with worse patient overall survival. Significantly, FA-score correlated closely with the biomarkers of immunotherapy, and the FA-score-high group had a poorer therapeutic efficacy of immune checkpoint blockade. In vitro experiments demonstrated that ACSL5 may be a critical metabolic regulatory target. CONCLUSIONS Our study provided a comprehensive analysis of the heterogeneity of fatty acid metabolism in colon cancer. We highlighted the potential clinical utility of fatty acid metabolism-related genes to be biomarkers of colon cancer prognosis and targets to improve the effect of immunotherapy.
Collapse
Affiliation(s)
- Changchun Ye
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Qi Sun
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jun Yan
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Dong Xue
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Jiarui Xu
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Haiyun Ma
- Department of General Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, China
| | - Fanni Li
- Department of Talent Highland, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta West Road, Xi'an 710061, Shaanxi, China.
| |
Collapse
|
30
|
Xu H, Chen S, Li J, Weng S, Ren Y, Zhang Y, Wang L, Liu L, Guo C, Xing Z, Luo P, Cheng Q, Han X, Liu Z. Cellular Ligand-Receptor Perturbations Unravel MEIS2 as a Key Factor for the Aggressive Progression and Prognosis in Stage II/III Colorectal Cancer. J Proteome Res 2024; 23:760-774. [PMID: 38153233 DOI: 10.1021/acs.jproteome.3c00626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2023]
Abstract
Approximately 10-15% of stage II and 25-30% of stage III colorectal cancer (CRC) patients experience recurrence within 5 years after surgery, and existing taxonomies are insufficient to meet the needs of clinical precision treatment. Thus, robust biomarkers and precise management were urgently required to stratify stage II and III CRC and identify potential patients who will benefit from postoperative adjuvant therapy. Alongside, interactions of ligand-receptor pairs point to an emerging direction in tumor signaling with far-reaching implications for CRC, while their impact on tumor subtyping has not been elucidated. Herein, based on multiple large-sample multicenter cohorts and perturbations of the ligand-receptor interaction network, four well-characterized ligand-receptor-driven subtypes (LRDS) were established and further validated. These molecular taxonomies perform with unique heterogeneity in terms of molecular characteristics, immune and mutational landscapes, and clinical features. Specifically, MEIS2, a key LRDS4 factor, performs significant associations with proliferation, invasion, migration, and dismal prognosis of stage II/III CRC, revealing promising directions for prognostic assessment and individualized treatment of CRC patients. Overall, our study sheds novel insights into the implications of intercellular communication on stage II/III CRC from a ligand-receptor interactome perspective and revealed MEIS2 as a key factor in the aggressive progression and prognosis for stage II/III CRC.
Collapse
Affiliation(s)
- Hui Xu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Shuang Chen
- Center of Reproductive Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Jing Li
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Siyuan Weng
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Yuqing Ren
- Department of Respiratory and Critical Care Medicine, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Yuyuan Zhang
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Libo Wang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Long Liu
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Chunguang Guo
- Department of Endovascular Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Zhe Xing
- Department of Neurosurgery, The Fifth Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou 510282, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha 410008, Hunan, P. R. China
| | - Xinwei Han
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Institute of Zhengzhou University, Zhengzhou, Henan 450052, China
- Interventional Treatment and Clinical Research Center of Henan Province, Zhengzhou, Henan 450052, China
| | - Zaoqu Liu
- Department of Interventional Radiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan 450052, China
- State Key Laboratory of Proteomics, Beijing Proteome Research Center, National Center for Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing 102206, China
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, China
| |
Collapse
|
31
|
Kang ZR, Jiang S, Han JX, Gao Y, Xie Y, Chen J, Liu Q, Yu J, Zhao X, Hong J, Chen H, Chen YX, Chen H, Fang JY. Deficiency of BCAT2-mediated branched-chain amino acid catabolism promotes colorectal cancer development. Biochim Biophys Acta Mol Basis Dis 2024; 1870:166941. [PMID: 37926361 DOI: 10.1016/j.bbadis.2023.166941] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 10/19/2023] [Accepted: 10/29/2023] [Indexed: 11/07/2023]
Abstract
OBJECTIVE Branched-chain amino acid (BCAA) metabolism is involved in the development of colorectal cancer (CRC); however, the underlying mechanism remains unclear. Therefore, this study investigates the role of BCAA metabolism in CRC progression. METHODS Dietary BCAA was administered to both azoxymethane-induced and azoxymethane/dextran sodium sulfate-induced CRC mouse models. The expression of genes related to BCAA metabolism was determined using RNA sequencing. Adjacent tissue samples, obtained from 58 patients with CRC, were subjected to quantitative real-time PCR and immunohistochemical analysis. Moreover, the suppressive role of branched-chain aminotransferase 2 (BCAT2) in cell proliferation, apoptosis, and xenograft mouse models was investigated. Alterations in BCAAs and activation of downstream pathways were also assessed using metabolic analysis and western blotting. RESULTS High levels of dietary BCAA intake promoted CRC tumorigenesis in chemical-induced CRC and xenograft mouse models. Both the mRNA and protein levels of BCAT2 were decreased in tumor tissues of patients with CRC compared to those in normal tissues. Proliferation assays and xenograft models confirmed the suppressive role of BCAT2 in CRC progression. Furthermore, the accumulation of BCAAs caused by BCAT2 deficiency facilitated the chronic activation of mTORC1, thereby mediating the oncogenic effect of BCAAs. CONCLUSION BCAT2 deficiency promotes CRC progression through inhibition of BCAAs metabolism and chronic activation of mTORC1.
Collapse
Affiliation(s)
- Zi-Ran Kang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shanshan Jiang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ji-Xuan Han
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yaqi Gao
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Yile Xie
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jinxian Chen
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Qiang Liu
- Department of Pathology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jun Yu
- Institute of Digestive Disease and The Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, The Chinese University of Hong Kong, Hong Kong
| | - Xin Zhao
- CAS Key Laboratory of Pathogen Microbiology and Immunology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jie Hong
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Haoyan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Ying-Xuan Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Huimin Chen
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Jing-Yuan Fang
- Division of Gastroenterology and Hepatology, Shanghai Institute of Digestive Disease, NHC Key Laboratory of Digestive Diseases, State Key Laboratory for Oncogenes and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
32
|
Che G, Wang W, Wang J, He C, Yin J, Chen Z, He C, Wang X, Yang Y, Liu J. Sulfotransferase SULT2B1 facilitates colon cancer metastasis by promoting SCD1-mediated lipid metabolism. Clin Transl Med 2024; 14:e1587. [PMID: 38372484 PMCID: PMC10875708 DOI: 10.1002/ctm2.1587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Revised: 01/24/2024] [Accepted: 01/31/2024] [Indexed: 02/20/2024] Open
Abstract
Metastasis is responsible for at least 90% of colon cancer (CC)-related deaths. Lipid metabolism is a critical factor in cancer metastasis, yet the underlying mechanism requires further investigation. Herein, through the utilisation of single-cell sequencing and proteomics, we identified sulfotransferase SULT2B1 as a novel metastatic tumour marker of CC, which was associated with poor prognosis. CC orthotopic model and in vitro assays showed that SULT2B1 promoted lipid metabolism and metastasis. Moreover, SULT2B1 directly interacted with SCD1 to facilitate lipid metabolism and promoted metastasis of CC cells. And the combined application of SCD1 inhibitor CAY with SULT2B1- konockout (KO) demonstrated a more robust inhibitory effect on lipid metabolism and metastasis of CC cells in comparison to sole application of SULT2B1-KO. Notably, we revealed that lovastatin can block the SULT2B1-induced promotion of lipid metabolism and distant metastasis in vivo. Further evidence showed that SMC1A transcriptionally upregulated the expression of SULT2B1. Our findings unveiled the critical role of SULT2B1 in CC metastasis and provided a new perspective for the treatment of CC patients with distant metastasis.
Collapse
Affiliation(s)
- Gang Che
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Wankun Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jiawei Wang
- Department of Colorectal SurgerySir Run Run Shaw Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Cheng He
- Department of Thoracic SurgeryThe First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jie Yin
- Department of Colorectal MedicineZhejiang Cancer HospitalHangzhouZhejiangChina
| | - Zhendong Chen
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Chao He
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Xujing Wang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Yan Yang
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| | - Jian Liu
- Department of Surgical OncologyThe First Affiliated Hospital, School of MedicineZhejiang UniversityHangzhouZhejiangChina
- Center Laboratory, The First Affiliated Hospital, School of Medicine, Zhejiang UniversityHangzhouZhejiangChina
| |
Collapse
|
33
|
Larson TS, DiProspero TJ, Glish GL, Lockett MR. Differential lipid analysis of oxaliplatin-sensitive and resistant HCT116 cells reveals different levels of drug-induced lipid droplet formation. Anal Bioanal Chem 2024; 416:151-162. [PMID: 37917349 PMCID: PMC10771862 DOI: 10.1007/s00216-023-05010-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/12/2023] [Accepted: 10/13/2023] [Indexed: 11/04/2023]
Abstract
Lipid droplets (LDs) are intracellular storage vesicles composed of a neutral lipid core surrounded by a glycerophospholipid membrane. LD accumulation is associated with different stages of cancer progression and stress responses resulting from chemotherapy. In previous work, a novel dual nano-electrospray ionization source and data-dependent acquisition method for measuring the relative abundances of lipid species between two extracts were described and validated. Here, this same source and method were used to determine if oxaliplatin-sensitive and resistant cells undergo similar lipid profile changes, with the goal of identifying potential signatures that could predict the effectiveness of an oxaliplatin-containing treatment. Oxaliplatin is commonly used in the treatment of colorectal cancer. When compared to a no-drug control, oxaliplatin dosing caused significant increases in triglyceride (TG) and cholesterol ester (CE) species. These increases were more pronounced in the oxaliplatin-sensitive cells than in oxaliplatin-resistant cells. The increased neutral lipid abundance correlated with LD formation, as confirmed by confocal micrographs of Nile Red-stained cells. Untargeted proteomic analyses also support LD formation after oxaliplatin treatment, with an increased abundance of LD-associated proteins in both the sensitive and resistant cells.
Collapse
Affiliation(s)
- Tyler S Larson
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Thomas J DiProspero
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA
| | - Gary L Glish
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA.
| | - Matthew R Lockett
- Department of Chemistry, University of North Carolina at Chapel Hill, Kenan and Caudill Laboratories, Chapel Hill, NC, 27599-3290, USA.
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC, 27599-7295, USA.
| |
Collapse
|
34
|
Jovičić SM. Uncovering novel therapeutic targets in glucose, nucleotides and lipids metabolism during cancer and neurological diseases. Int J Immunopathol Pharmacol 2024; 38:3946320241250293. [PMID: 38712748 PMCID: PMC11080811 DOI: 10.1177/03946320241250293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 04/11/2024] [Indexed: 05/08/2024] Open
Abstract
BACKGROUND Cell metabolism functions without a stop in normal and pathological cells. Different metabolic changes occur in the disease. Cell metabolism influences biochemical and metabolic processes, signaling pathways, and gene regulation. Knowledge regarding disease metabolism is limited. OBJECTIVE The review examines the cell metabolism of glucose, nucleotides, and lipids during homeostatic and pathological conditions of neurotoxicity, neuroimmunological disease, Parkinson's disease, thymoma in myasthenia gravis, and colorectal cancer. METHODS Data collection includes electronic databases, the National Center for Biotechnology Information, and Google Scholar, with several inclusion criteria: cell metabolism, glucose metabolism, nucleotide metabolism, and lipid metabolism in health and disease patients suffering from neurotoxicity, neuroinflammation, Parkinson's disease, thymoma in myasthenia gravis. The initial number of collected and analyzed papers is 250. The final analysis included 150 studies out of 94 selected papers. After the selection process, 62.67% remains useful. RESULTS AND CONCLUSION A literature search shows that signaling molecules are involved in metabolic changes in cells. Differences between cancer and neuroimmunological diseases are present in the result section. Our finding enables insight into novel therapeutic targets and the development of scientific approaches for cancer and neurological disease onset, outcome, progression, and treatment, highlighting the importance of metabolic dysregulation. Current understanding, emerging research technologies and potential therapeutic interventions in metabolic programming is disucussed and highlighted.
Collapse
Affiliation(s)
- Snežana M Jovičić
- Department of Genetics, Faculty of Biology, University of Belgrade, Belgrade, Serbia
| |
Collapse
|
35
|
ZHANG HENG, CHENG WENJING, ZHAO HAIBO, CHEN WEIDONG, ZHANG QIUJIE, YU QINGQING. Identification and validation of novel prognostic fatty acid metabolic gene signatures in colon adenocarcinoma through systematic approaches. Oncol Res 2023; 32:297-308. [PMID: 38186579 PMCID: PMC10765130 DOI: 10.32604/or.2023.043138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 08/09/2023] [Indexed: 01/09/2024] Open
Abstract
Background Colorectal cancer (CRC) belongs to the class of significantly malignant tumors found in humans. Recently, dysregulated fatty acid metabolism (FAM) has been a topic of attention due to its modulation in cancer, specifically CRC. However, the regulatory FAM pathways in CRC require comprehensive elucidation. Methods The clinical and gene expression data of 175 fatty acid metabolic genes (FAMGs) linked with colon adenocarcinoma (COAD) and normal cornerstone genes were gathered through The Cancer Genome Atlas (TCGA)-COAD corroborating with the Molecular Signature Database v7.2 (MSigDB). Initially, crucial prognostic genes were selected by uni- and multi-variate Cox proportional regression analyses; then, depending upon these identified signature genes and clinical variables, a nomogram was generated. Lastly, to assess tumor immune characteristics, concomitant evaluation of tumor immune evasion/risk scoring were elucidated. Results A 8-gene signature, including ACBD4, ACOX1, CD36, CPT2, ELOVL3, ELOVL6, ENO3, and SUCLG2, was generated, and depending upon this, CRC patients were categorized within high-risk (H-R) and low-risk (L-R) cohorts. Furthermore, risk and age-based nomograms indicated moderate discrimination and good calibration. The data confirmed that the 8-gene model efficiently predicted CRC patients' prognosis. Moreover, according to the conjoint analysis of tumor immune evasion and the risk scorings, the H-R cohort had an immunosuppressive tumor microenvironment, which caused a substandard prognosis. Conclusion This investigation established a FAMGs-based prognostic model with substantially high predictive value, providing the possibility for improved individualized treatment for CRC individuals.
Collapse
Affiliation(s)
- HENG ZHANG
- Department of Laboratory, Shandong Daizhuang Hospital, Jining, 272051, China
| | - WENJING CHENG
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, China
| | - HAIBO ZHAO
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, China
| | - WEIDONG CHEN
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, China
| | - QIUJIE ZHANG
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, China
| | - QING-QING YU
- Jining No.1 People’s Hospital, Shandong First Medical University, Jining, 272000, China
| |
Collapse
|
36
|
Chen H, Tang X, Su W, Li S, Yang R, Cheng H, Zhang G, Zhou X. Causal effects of lipid-lowering therapies on aging-related outcomes and risk of cancers: a drug-target Mendelian randomization study. Aging (Albany NY) 2023; 15:15228-15242. [PMID: 38127052 PMCID: PMC10781452 DOI: 10.18632/aging.205347] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 11/13/2023] [Indexed: 12/23/2023]
Abstract
BACKGROUND Despite the widespread use of statins, newer lipid-lowering drugs have been emerging. It remains unclear how the long-term use of novel lipid-lowering drugs affects the occurrence of cancers and age-related diseases. METHODS A drug-target Mendelian randomization study was performed. Genetic variants of nine lipid-lowering drug-target genes (HMGCR, PCKS9, NPC1L1, LDLR, APOB, CETP, LPL, APOC3, and ANGPTL3) were extracted as exposures from the summary data of Global Lipids Genetics Consortium Genome-Wide Association Studies (GWAS). GWAS summary data of cancers and noncancerous diseases were used as outcomes. The inverse-variance weighted method was applied as the main statistical approach. Sensitivity tests were conducted to evaluate the robustness, pleiotropy, and heterogeneity of the results. RESULTS In addition to marked effects on decreased risks of atherosclerotic cardiovascular diseases, genetically proxied lipid-lowering variants of PCKS9, CETP, LPL, LDLR, and APOC3 were associated with longer human lifespans (q<0.05). Lipid-lowering variants of ANGPTL3 and LDLR were associated with reduced risks of colorectal cancer, and ANGPTL3 was also associated with lower risks of gastric cancer (q<0.05). Lipid-lowering LPL variants were associated with decreased risks of hypertension, type 2 diabetes, nonalcoholic fatty liver disease, and bladder cancer (q<0.05). Lipid-lowering variants of PCKS9 and HMGCR were associated with decreased risks of osteoporosis (q<0.05). Lipid-lowering APOB variants were associated with a decreased risk of thyroid cancer (q<0.05). CONCLUSIONS Our study provides genetic evidence that newer nonstatin lipid-lowering agents have causal effects on decreased risks of several common cancers and cardiometabolic diseases. These data provide genetic insights into the potential benefits of newer nonstatin therapies.
Collapse
Affiliation(s)
- Han Chen
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xinyu Tang
- Department of Radiation Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Wei Su
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Shuo Li
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Ruoyun Yang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hong Cheng
- Department of Neurology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Guoxin Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Xiaoying Zhou
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
37
|
Huang X, Sun Y, Song J, Huang Y, Shi H, Qian A, Cao Y, Zhou Y, Wang Q. Prognostic value of fatty acid metabolism-related genes in colorectal cancer and their potential implications for immunotherapy. Front Immunol 2023; 14:1301452. [PMID: 38045683 PMCID: PMC10693327 DOI: 10.3389/fimmu.2023.1301452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 10/31/2023] [Indexed: 12/05/2023] Open
Abstract
Introduction Colorectal cancer is one of the most common gastrointestinal cancers and the second leading cause of cancer-related death. Although colonoscopy screening has greatly improved the early diagnosis of colorectal cancer, its recurrence and metastasis are still significant problems. Tumour cells usually have the hallmark of metabolic reprogramming, while fatty acids play important roles in energy storage, cell membrane synthesis, and signal transduction. Many pathways of fatty acid metabolism (FAM) are involved in the occurrence and development of colon cancer, and the complex molecular interaction network contains a variety of genes encoding key enzymes and related products. Methods Clinical information and RNA sequencing data were collected from TCGA and GEO databases. The prognosis model of colon cancer was constructed by LASSO-Cox regression analysis among the selected fatty acid metabolism genes with differential expression. Nomogram for the prognosis model was also constructed in order to analyze its value in evaluating the survival and clinical stage of the colon cancer patients. The differential expression of the selected genes was verified by qPCR and immunohistochemistry. GSEA and GSVA were used to analyze the enrichment pathways for high- and low-risk groups. CIBERSORT was used to analyze the immune microenvironment of colon cancer and to compare the infiltration of immune cells in the high- and low-risk groups. The "circlize" package was used to explore the correlation between the risk score signature and immunotherapy for colon cancer. Results We analysed the differential expression of 704 FAM-related genes between colon tumour and normal tissue and screened 10 genes with prognostic value. Subsequently, we constructed a prognostic model for colon cancer based on eight optimal FAM genes through LASSO Cox regression analysis in the TCGA-COAD dataset, and its practicality was validated in the GSE39582 dataset. Moreover, the risk score calculated based on the prognostic model was validated as an independent prognostic factor for colon cancer patients. We further constructed a nomogram composed of the risk score signature, age and American Joint Committee on Cancer (AJCC) stage for clinical application. The colon cancer cohort was divided into high- and low-risk groups according to the optimal cut-off value, and different enrichment pathways and immune microenvironments were depicted in the groups. Discussion Since the risk score signature was significantly correlated with the expression of immune checkpoint molecules, the prognostic model might be able to predict the immunotherapy response of colon cancer patients. In summary, our findings expand the prognostic value of FAM-related genes in colon cancer and provide evidence for their application in guiding immunotherapy.
Collapse
Affiliation(s)
- Xi Huang
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Yiwen Sun
- School of Public Health, The University of Sydney Faculty of Medicine and Health, NSW, Sydney, Australia
| | - Jia Song
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yusong Huang
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huizhong Shi
- Department of Cardiology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Aihua Qian
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Youci Zhou
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Qijun Wang
- Department of Laboratory Medicine, Department of Gastroenterology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, China, College of Health Sciences and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
38
|
Li SY, Li Y, Wu ZH, Zhou ZJ, Li CY, Wu TT, Fu SJ, Wang ZY, Zhong ZX, Zhong Y. Study on the mechanism of action of effective monomeric, berberine of Xianglian Pill in inhibiting human colon cancer cells based on fatty acid synthase target. J Tradit Complement Med 2023; 13:538-549. [PMID: 38020547 PMCID: PMC10658341 DOI: 10.1016/j.jtcme.2023.05.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 05/08/2023] [Accepted: 05/30/2023] [Indexed: 12/01/2023] Open
Abstract
Background and aim Xianglian Wan (XLW) as a classic prescription of traditional Chinese medicine protects digestive function; however, few studies have investigated its anti-colorectal cancer effects. This study verified that the effective monomer berberine of XLW plays an antitumo r role by regulating the acetyl-CoA carboxylase (ACC)/fatty acid synthase (FASN) lipid metabolism-related signaling pathway. Experimental procedure The connection between XLW and FASN was identified through literature mining, bioinformatics and structural biology. In vivo experiments verified the rationality of the antitumor effect of berberine by regulating the ACC/FASN pathway, and in vitro experiments verified the regulatory relationship between berberine and FASN. Results and conclusion The most frequent Chinese medicine component in XLW was Coptis chinensis. Berberine, the active ingredient of XLW, has a FASN binding site. FASN expression is higher in tumor tissues than in normal tissues. FASN is related to colorectal adenocarcinoma occurrence and patient survival time. Experiments showed that XLW, berberine and orlistat (FASN inhibitor) can cooperate with palmitic acid (PA) to inhibit tumors in mice. Berberine can downregulate FASN and ACC expression in tumor tissues and inhibit the increase in acetyl-CoA, the intermediate product of exogenous PA intake. The mechanism by which berberine inhibits colon cancer cell proliferation by lowering lipids is related to its downregulation of FASN protein expression. The ACC/FASN signaling pathway is a critical pathway through which berberine, the effective monomer of XLW, plays an antitumor role in colon cancer.
Collapse
Affiliation(s)
- Shi-ying Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yun Li
- Oncology Department, Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhong-hua Wu
- Science and Technology Experiment Center, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Zhang-jie Zhou
- Oncology Department, Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Cun-ya Li
- Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Ting-ting Wu
- Oncology Department, Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shu-juan Fu
- Oncology Department, Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | | | | | - Yi Zhong
- Oncology Department, Shanghai TCM-integrated Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
39
|
Kang C, Zhang J, Xue M, Li X, Ding D, Wang Y, Jiang S, Chu FF, Gao Q, Zhang M. Metabolomics analyses of cancer tissue from patients with colorectal cancer. Mol Med Rep 2023; 28:219. [PMID: 37772396 PMCID: PMC10568249 DOI: 10.3892/mmr.2023.13106] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 07/31/2023] [Indexed: 09/30/2023] Open
Abstract
The alteration of metabolism is essential for the initiation and progression of numerous types of cancer, including colorectal cancer (CRC). Metabolomics has been used to study CRC. At present, the reprogramming of the metabolism in CRC remains to be fully elucidated. In the present study, comprehensive untargeted metabolomics analysis was performed on the paired CRC tissues and adjacent normal tissues from patients with CRC (n=35) using ultra‑high‑performance liquid chromatography‑mass spectrometry. Subsequently, bioinformatic analysis was performed on the differentially expressed metabolites. The changes in these differential metabolites were compared among groups of patients based on sex, anatomical tumor location, grade of tumor differentiation and stage of disease. A total of 927 metabolites were detected in the tissue samples, and 24 metabolites in the CRC tissue were significantly different compared with the adjacent normal tissue. The present study revealed that the levels of three amino acid metabolites were increased in the CRC tissue, specifically, N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, cyclo(Glu‑Glu) and cyclo(Phe‑Glu). The metabolites with decreased levels in the CRC tissue included quinaldic acid (also referred to as quinoline‑2‑carboxilic acid), 17α‑ and 17β‑estradiol, which are associated with tumor suppression activities, as well as other metabolites such as, anhydro‑β‑glucose, Asp‑Arg, lysophosphatidylcholine, lysophosphatidylethanolamine (lysoPE), lysophosphatidylinositol, carnitine, 5'‑deoxy‑5'‑(methylthio) adenosine, 2'‑deoxyinosine‑5'‑monophosphate and thiamine monophosphate. There was no difference in the levels of the differential metabolites between male and female patients. The differentiation of CRC also showed no impact on the levels of the differential metabolites. The levels of lysoPE were increased in the right side of the colon compared with the left side of the colon and rectum. Analysis of the different tumor stages indicated that 2‑aminobenzenesulfonic acid, P‑sulfanilic acid and quinoline‑4‑carboxylic acid were decreased in stage I CRC tissue compared with stage II, III and IV CRC tissue. The levels of N‑α‑acetyl‑ε‑(2‑propenal)‑Lys, methylcysteine and 5'‑deoxy‑5'‑(methylthio) adenosine varied at different stages of tumorigenesis. These differential metabolites were implicated in multiple metabolism pathways, including carbohydrate, amino acid, lipid, nucleotide and hormone. In conclusion, the present study demonstrated that CRC tumors had altered metabolites compared with normal tissue. The data from the metabolic profile of CRC tissues in the present study provided supportive evidence to understand tumorigenesis.
Collapse
Affiliation(s)
- Chunbo Kang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Jie Zhang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mei Xue
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Xiaowei Li
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Danyang Ding
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Ye Wang
- Department of Surgery, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Shujing Jiang
- Department of Acute Medicine, Queen Elizabeth Hospital, London SE18 4QH, UK
| | - Fong-Fong Chu
- Department of Cancer Genetics and Epigenetics, Beckman Research Institute of The City of Hope, Duarte, CA 91010, USA
| | - Qiang Gao
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| | - Mengqiao Zhang
- Department of Gastroenterology and Hepatology, Center of Gastrointestinal Rehabilitation, Beijing Rehabilitation Hospital, Capital Medical University, Beijing 100144, P.R. China
| |
Collapse
|
40
|
Jia L, Liao L, Jiang Y, Hu X, Lu G, Xiao W, Gong W, Jia X. Low-dose adropin stimulates inflammasome activation of macrophage via mitochondrial ROS involved in colorectal cancer progression. BMC Cancer 2023; 23:1042. [PMID: 37904094 PMCID: PMC10614368 DOI: 10.1186/s12885-023-11519-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Accepted: 10/11/2023] [Indexed: 11/01/2023] Open
Abstract
Adropin is encoded by the energy homeostasis-associated (ENHO) gene and widely present in liver, pancreas, heart, kidney, brain, and vascular tissues. Abnormal adropin is associated with metabolic, inflammatory, immune, and central nervous disorders. Whether adropin is involved in the development of colorectal cancer (CRC) is still unclear. Here, decreased adropin expression of tumor-nest cells in advanced-stage CRC was demonstrated. Adropin expressed by carcinoma cells was negatively correlated with macrophage infiltration in the matrix of CRC tissues. However, tumor macrophages enhanced adropin expression and were positively correlated with tumor invasion and metastasis. ENHO gene transfection into colon cancer (MC38) cells inhibited tumor growth in vivo, accompanying the increase of M1 macrophages. Treatment with low-dose adropin (< 100 ng/mL) on macrophages ex vivo directly increased mitochondrial reactive oxygen species for inflammasome activation. Furthermore, ENHO-/- mice had less M1 macrophages in vivo, and ENHO-/- macrophages were inert to be induced into the M1 subset ex vivo. Finally, low-dose adropin promoted glucose utilization, and high-dose adropin enhanced the expression of CPT1α in macrophages. Therefore, variations of adropin level in carcinoma cells or macrophages in tumor tissues are differently involved in CRC progression. Low-dose adropin stimulates the antitumor activity of macrophages, but high-dose adropin facilitates the pro-tumor activity of macrophages. Increasing or decreasing the adropin level can inhibit tumor progression at different CRC stages.
Collapse
Affiliation(s)
- Linghui Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Liting Liao
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Yongshuai Jiang
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Xiangyu Hu
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
| | - Guotao Lu
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China
| | - Weiming Xiao
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China
| | - Weijuan Gong
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, P. R. China
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, P. R. China
| | - Xiaoqin Jia
- Department of Basic Medicine, School of Medicine, Yangzhou University, Yangzhou, 225001, P. R. China.
- Department of Gastroenterology, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China.
- Department of General Surgery, The Affiliated Hospital of Yangzhou University, Yangzhou, 225001, P. R. China.
- Jiangsu Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Treatment of Senile Diseases, Yangzhou, 225001, P. R. China.
- Jiangsu Key Laboratory of Zoonosis, Yangzhou, 225001, P. R. China.
| |
Collapse
|
41
|
Shi DD, Fang YJ, Jiang YL, Dong T, Zhang ZL, Ma T, Zhou RL, Ou QJ, Zhang CX. Serum levels of n-3 PUFA and colorectal cancer risk in Chinese population. Br J Nutr 2023; 130:1239-1249. [PMID: 36746393 DOI: 10.1017/s0007114523000351] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Circulating n-3 PUFA, which integrate endogenous and exogenous n-3 PUFA, can be better used to investigate the relationship between n-3 PUFA and disease. However, studies examining the associations between circulating n-3 PUFA and colorectal cancer (CRC) risk were limited, and the results remained inconclusive. This case–control study aimed to examine the association between serum n-3 PUFA and CRC risk in Chinese population. A total of 680 CRC cases and 680 sex- and age-matched (5-year interval) controls were included. Fatty acids were assayed by GC. OR and 95 % CI were calculated using multivariable logistic regression after adjustment for potential confounders. Higher level of serum α-linolenic acid (ALA), docosapentaenoic acid (DPA), DHA, long-chain n-3 PUFA and total n-3 PUFA were associated with lower odds of CRC. The adjusted OR and 95 % CI were 0·34 (0·24, 0·49, Pfor trend < 0·001) for ALA, 0·57 (0·40, 0·80, Pfor trend < 0·001) for DPA, 0·48 (0·34, 0·68, Pfor trend < 0·001) for DHA, 0·39 (0·27, 0·56, Pfor trend < 0·001) for long-chain n-3 PUFA and 0·31 (0·22, 0·45, Pfor trend < 0·001) for total n-3 PUFA comparing the highest with the lowest quartile. However, there was no statistically significant association between EPA and odds of CRC. Analysis stratified by sex showed that ALA, DHA, long-chain n-3 PUFA and total n-3 PUFA were inversely associated with odds of CRC in both sexes. This study indicated that serum ALA, DPA, DHA, long-chain n-3 PUFA and total n-3 PUFA were inversely associated with odds of having CRC in Chinese population.
Collapse
Affiliation(s)
- Dan-Dan Shi
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Yu-Jing Fang
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou510060, People's Republic of China
| | - Yi-Ling Jiang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Ting Dong
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Zhuo-Lin Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Ting Ma
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Ruo-Lin Zhou
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| | - Qing-Jian Ou
- Department of Experimental Research, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651 Dongfeng Road East, Guangzhou510060, People's Republic of China
| | - Cai-Xia Zhang
- Department of Epidemiology, School of Public Health, Sun Yat-sen University, Guangzhou510080, People's Republic of China
| |
Collapse
|
42
|
Szrok-Jurga S, Czumaj A, Turyn J, Hebanowska A, Swierczynski J, Sledzinski T, Stelmanska E. The Physiological and Pathological Role of Acyl-CoA Oxidation. Int J Mol Sci 2023; 24:14857. [PMID: 37834305 PMCID: PMC10573383 DOI: 10.3390/ijms241914857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2023] [Revised: 09/27/2023] [Accepted: 09/30/2023] [Indexed: 10/15/2023] Open
Abstract
Fatty acid metabolism, including β-oxidation (βOX), plays an important role in human physiology and pathology. βOX is an essential process in the energy metabolism of most human cells. Moreover, βOX is also the source of acetyl-CoA, the substrate for (a) ketone bodies synthesis, (b) cholesterol synthesis, (c) phase II detoxication, (d) protein acetylation, and (d) the synthesis of many other compounds, including N-acetylglutamate-an important regulator of urea synthesis. This review describes the current knowledge on the importance of the mitochondrial and peroxisomal βOX in various organs, including the liver, heart, kidney, lung, gastrointestinal tract, peripheral white blood cells, and other cells. In addition, the diseases associated with a disturbance of fatty acid oxidation (FAO) in the liver, heart, kidney, lung, alimentary tract, and other organs or cells are presented. Special attention was paid to abnormalities of FAO in cancer cells and the diseases caused by mutations in gene-encoding enzymes involved in FAO. Finally, issues related to α- and ω- fatty acid oxidation are discussed.
Collapse
Affiliation(s)
- Sylwia Szrok-Jurga
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Aleksandra Czumaj
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Jacek Turyn
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Areta Hebanowska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| | - Julian Swierczynski
- Institue of Nursing and Medical Rescue, State University of Applied Sciences in Koszalin, 75-582 Koszalin, Poland;
| | - Tomasz Sledzinski
- Department of Pharmaceutical Biochemistry, Faculty of Pharmacy, Medical University of Gdansk, 80-211 Gdansk, Poland;
| | - Ewa Stelmanska
- Department of Biochemistry, Faculty of Medicine, Medical University of Gdansk, 80-211 Gdansk, Poland; (S.S.-J.); (J.T.); (A.H.)
| |
Collapse
|
43
|
Zhang ZD, Hou XR, Cao XL, Wang XP. Long non‑coding RNAs, lipid metabolism and cancer (Review). Exp Ther Med 2023; 26:470. [PMID: 37664674 PMCID: PMC10468807 DOI: 10.3892/etm.2023.12169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Accepted: 07/14/2023] [Indexed: 09/05/2023] Open
Abstract
Cancer has emerged as the most common cause of death in China. The change in lipid metabolism has been confirmed to have a role in several tumor types, such as esophageal, gastric, colorectal and liver cancer. Cancer cells use lipid metabolism for energy and then rapidly proliferate, invade and migrate. The main pathway by which cancer cell lipid metabolism influences cancer progression is increased fatty acid synthesis. Long non-coding (lnc)RNAs are important ncRNAs that were indicated to have significant roles in the development of human tumors. They are considered potential tumor biomarkers. Increased lipid synthesis or uptake due to deregulation of lncRNAs contributes to rapid tumor growth. In the present review, current studies on the relationship between lncRNAs, lipid metabolism and the occurrence and development of tumors were collated and summarized, and their mechanism of action was discussed. The review is expected to provide a theoretical basis for tumor treatment and prognosis evaluation based on the effective regulation of lncRNAs and lipid metabolism.
Collapse
Affiliation(s)
- Zhen-Dong Zhang
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xin-Rui Hou
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Lan Cao
- Graduate School, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| | - Xiao-Ping Wang
- Key Laboratory of High-Altitude Hypoxia Environment and Life Health, Joint Laboratory for Research on Active Components and Pharmacological Mechanism of Tibetan Medicine, Materia Medica of Tibetan Medical Research Center of Tibet, School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
- School of Medicine, Xizang Minzu University, Xianyang, Shaanxi 712082, P.R. China
| |
Collapse
|
44
|
Jung YH, Yun IL, Park EC, Jang SI. New-onset dyslipidemia in adult cancer survivors from medically underserved areas: a 10-year retrospective cohort study. BMC Cancer 2023; 23:904. [PMID: 37752422 PMCID: PMC10521396 DOI: 10.1186/s12885-023-11384-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
BACKGROUND Cancer survival rates are increasing; however, studies on dyslipidemia as a comorbidity of cancer are limited. For efficient management of the disease burden, this study aimed to understand new-onset dyslipidemia in medically underserved areas (MUA) among cancer survivors > 19 years. METHODS This study used 11-year (2009-2019) data from the Korean National Health Insurance Service sample cohort. Cancer survivors for five years or more (diagnosed with ICD-10 codes 'C00-C97') > 19 years were matched for sex, age, cancer type, and survival years using a 1:1 ratio with propensity scores. New-onset dyslipidemia outpatients based on MUA were analyzed using the Cox proportional hazards model. RESULTS Of the 5,736 cancer survivors included in the study, the number of new-onset dyslipidemia patients was 855 in MUA and 781 in non-MUA. Cancer survivors for five years or more from MUA had a 1.22-fold higher risk of onset of dyslipidemia (95% CI = 1.10-1.34) than patients from non-MUA. The prominent factors for the risk of dyslipidemia in MUA include women, age ≥ 80 years, high income, disability, complications, and fifth-year cancer survivors. CONCLUSIONS Cancer survivors for five years or more from MUA had a higher risk of new-onset dyslipidemia than those from non-MUA. Thus, cancer survivors for five years or more living in MUA require healthcare to prevent and alleviate dyslipidemia.
Collapse
Affiliation(s)
- Yun Hwa Jung
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - I L Yun
- Department of Public Health, Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
| | - Eun-Cheol Park
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea
- Department of Preventive Medicine &, Institute of Health Services Research, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea
| | - Sung-In Jang
- Institute of Health Services Research, Yonsei University, Seoul, Republic of Korea.
- Department of Preventive Medicine &, Institute of Health Services Research, Yonsei University College of Medicine, 50 Yonsei-Ro, Seodaemun-Gu, Seoul, 03722, Republic of Korea.
| |
Collapse
|
45
|
Ghasemitarei M, Ghorbi T, Yusupov M, Zhang Y, Zhao T, Shali P, Bogaerts A. Effects of Nitro-Oxidative Stress on Biomolecules: Part 1-Non-Reactive Molecular Dynamics Simulations. Biomolecules 2023; 13:1371. [PMID: 37759771 PMCID: PMC10527456 DOI: 10.3390/biom13091371] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 09/04/2023] [Accepted: 09/04/2023] [Indexed: 09/29/2023] Open
Abstract
Plasma medicine, or the biomedical application of cold atmospheric plasma (CAP), is an expanding field within plasma research. CAP has demonstrated remarkable versatility in diverse biological applications, including cancer treatment, wound healing, microorganism inactivation, and skin disease therapy. However, the precise mechanisms underlying the effects of CAP remain incompletely understood. The therapeutic effects of CAP are largely attributed to the generation of reactive oxygen and nitrogen species (RONS), which play a crucial role in the biological responses induced by CAP. Specifically, RONS produced during CAP treatment have the ability to chemically modify cell membranes and membrane proteins, causing nitro-oxidative stress, thereby leading to changes in membrane permeability and disruption of cellular processes. To gain atomic-level insights into these interactions, non-reactive molecular dynamics (MD) simulations have emerged as a valuable tool. These simulations facilitate the examination of larger-scale system dynamics, including protein-protein and protein-membrane interactions. In this comprehensive review, we focus on the applications of non-reactive MD simulations in studying the effects of CAP on cellular components and interactions at the atomic level, providing a detailed overview of the potential of CAP in medicine. We also review the results of other MD studies that are not related to plasma medicine but explore the effects of nitro-oxidative stress on cellular components and are therefore important for a broader understanding of the underlying processes.
Collapse
Affiliation(s)
- Maryam Ghasemitarei
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Tayebeh Ghorbi
- Department of Physics, Sharif University of Technology, Tehran 14588-89694, Iran
| | - Maksudbek Yusupov
- School of Engineering, New Uzbekistan University, Tashkent 100007, Uzbekistan
- School of Engineering, Central Asian University, Tashkent 111221, Uzbekistan
- Laboratory of Thermal Physics of Multiphase Systems, Arifov Institute of Ion-Plasma and Laser Technologies, Academy of Sciences of Uzbekistan, Tashkent 100125, Uzbekistan
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| | - Yuantao Zhang
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Tong Zhao
- School of Electrical Engineering, Shandong University, Jinan 250061, China
| | - Parisa Shali
- Research Unit Plasma Technology, Department of Applied Physics, Faculty of Engineering and Agriculture, Ghent University, 9000 Ghent, Belgium
| | - Annemie Bogaerts
- Research Group PLASMANT, Department of Chemistry, University of Antwerp, 2610 Antwerp, Belgium
| |
Collapse
|
46
|
Zhang Y, Barupal DK, Fan S, Gao B, Zhu C, Flenniken AM, McKerlie C, Nutter LMJ, Lloyd KCK, Fiehn O. Sexual Dimorphism of the Mouse Plasma Metabolome Is Associated with Phenotypes of 30 Gene Knockout Lines. Metabolites 2023; 13:947. [PMID: 37623890 PMCID: PMC10456929 DOI: 10.3390/metabo13080947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Revised: 08/03/2023] [Accepted: 08/08/2023] [Indexed: 08/26/2023] Open
Abstract
Although metabolic alterations are observed in many monogenic and complex genetic disorders, the impact of most mammalian genes on cellular metabolism remains unknown. Understanding the effect of mouse gene dysfunction on metabolism can inform the functions of their human orthologues. We investigated the effect of loss-of-function mutations in 30 unique gene knockout (KO) lines on plasma metabolites, including genes coding for structural proteins (11 of 30), metabolic pathway enzymes (12 of 30) and protein kinases (7 of 30). Steroids, bile acids, oxylipins, primary metabolites, biogenic amines and complex lipids were analyzed with dedicated mass spectrometry platforms, yielding 827 identified metabolites in male and female KO mice and wildtype (WT) controls. Twenty-two percent of 23,698 KO versus WT comparison tests showed significant genotype effects on plasma metabolites. Fifty-six percent of identified metabolites were significantly different between the sexes in WT mice. Many of these metabolites were also found to have sexually dimorphic changes in KO lines. We used plasma metabolites to complement phenotype information exemplified for Dhfr, Idh1, Mfap4, Nek2, Npc2, Phyh and Sra1. The association of plasma metabolites with IMPC phenotypes showed dramatic sexual dimorphism in wildtype mice. We demonstrate how to link metabolomics to genotypes and (disease) phenotypes. Sex must be considered as critical factor in the biological interpretation of gene functions.
Collapse
Affiliation(s)
- Ying Zhang
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
- Department of Chemistry, University of California Davis, Davis, CA 95616, USA
| | - Dinesh K. Barupal
- Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA;
| | - Sili Fan
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| | - Bei Gao
- School of Marine Sciences, Nanjing University of Information Science and Technology, Nanjing 210044, China
| | - Chao Zhu
- College of Medicine & Nursing, Dezhou University, Dezhou 253023, China
| | - Ann M. Flenniken
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, ON M5G 1X5, Canada
| | - Colin McKerlie
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Lauryl M. J. Nutter
- The Centre for Phenogenomics, Toronto, ON M5T 3H7, Canada; (A.M.F.); (C.M.); (L.M.J.N.)
- The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
| | - Kevin C. Kent Lloyd
- Department of Surgery, School of Medicine, and Mouse Biology Program, University of California Davis, Davis, CA 95616, USA;
| | - Oliver Fiehn
- West Coast Metabolomics Center, University of California Davis, Davis, CA 95616, USA
| |
Collapse
|
47
|
Farahzadi R, Hejazi MS, Molavi O, Pishgahzadeh E, Montazersaheb S, Jafari S. Clinical Significance of Carnitine in the Treatment of Cancer: From Traffic to the Regulation. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2023; 2023:9328344. [PMID: 37600065 PMCID: PMC10435298 DOI: 10.1155/2023/9328344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/24/2022] [Revised: 10/12/2022] [Accepted: 03/23/2023] [Indexed: 08/22/2023]
Abstract
Metabolic reprogramming is a common hallmark of cancer cells. Cancer cells exhibit metabolic flexibility to maintain high proliferation and survival rates. In other words, adaptation of cellular demand is essential for tumorigenesis, since a diverse supply of nutrients is required to accommodate tumor growth and progression. Diversity of carbon substrates fueling cancer cells indicate metabolic heterogeneity, even in tumors sharing the same clinical diagnosis. In addition to the alteration of glucose and amino acid metabolism in cancer cells, there is evidence that cancer cells can alter lipid metabolism. Some tumors rely on fatty acid oxidation (FAO) as the primary energy source; hence, cancer cells overexpress the enzymes involved in FAO. Carnitine is an essential cofactor in the lipid metabolic pathways. It is crucial in facilitating the transport of long-chain fatty acids into the mitochondria for β-oxidation. This role and others played by carnitine, especially its antioxidant function in cellular processes, emphasize the fine regulation of carnitine traffic within tissues and subcellular compartments. The biological activity of carnitine is orchestrated by specific membrane transporters that mediate the transfer of carnitine and its derivatives across the cell membrane. The concerted function of carnitine transporters creates a collaborative network that is relevant to metabolic reprogramming in cancer cells. Here, the molecular mechanisms relevant to the role and expression of carnitine transporters are discussed, providing insights into cancer treatment.
Collapse
Affiliation(s)
- Raheleh Farahzadi
- Hematology and Oncology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Saeid Hejazi
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Ommoleila Molavi
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Elahe Pishgahzadeh
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Soheila Montazersaheb
- Molecular Medicine Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Sevda Jafari
- Nutrition Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
48
|
Al Shihabi A, Tebon PJ, Nguyen HTL, Chantharasamee J, Sartini S, Davarifar A, Jensen AY, Diaz-Infante M, Cox H, Gonzalez AE, Swearingen S, Tavanaie N, Dry S, Singh A, Chmielowski B, Crompton JG, Kalbasi A, Eilber FC, Hornicek F, Bernthal N, Nelson SD, Boutros PC, Federman N, Yanagawa J, Soragni A. The landscape of drug sensitivity and resistance in sarcoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.25.542375. [PMID: 37292676 PMCID: PMC10245988 DOI: 10.1101/2023.05.25.542375] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Sarcomas are a family of rare malignancies composed of over 100 distinct histological subtypes. The rarity of sarcoma poses significant challenges in conducting clinical trials to identify effective therapies, to the point that many rarer subtypes of sarcoma do not have standard-of-care treatment. Even for established regimens, there can be substantial heterogeneity in responses. Overall, novel, personalized approaches for identifying effective treatments are needed to improve patient out-comes. Patient-derived tumor organoids (PDTOs) are clinically relevant models representative of the physiological behavior of tumors across an array of malignancies. Here, we use PDTOs as a tool to better understand the biology of individual tumors and characterize the landscape of drug resistance and sensitivity in sarcoma. We collected n=194 specimens from n=126 sarcoma patients, spanning 24 distinct subtypes. We characterized PDTOs established from over 120 biopsy, resection, and metastasectomy samples. We leveraged our organoid high-throughput drug screening pipeline to test the efficacy of chemotherapeutics, targeted agents, and combination therapies, with results available within a week from tissue collection. Sarcoma PDTOs showed patient-specific growth characteristics and subtype-specific histopathology. Organoid sensitivity correlated with diagnostic subtype, patient age at diagnosis, lesion type, prior treatment history, and disease trajectory for a subset of the compounds screened. We found 90 biological pathways that were implicated in response to treatment of bone and soft tissue sarcoma organoids. By comparing functional responses of organoids and genetic features of the tumors, we show how PDTO drug screening can provide an orthogonal set of information to facilitate optimal drug selection, avoid ineffective therapies, and mirror patient outcomes in sarcoma. In aggregate, we were able to identify at least one effective FDA-approved or NCCN-recommended regimen for 59% of the specimens tested, providing an estimate of the proportion of immediately actionable information identified through our pipeline. Highlights Standardized organoid culture preserve unique sarcoma histopathological featuresDrug screening on patient-derived sarcoma organoids provides sensitivity information that correlates with clinical features and yields actionable information for treatment guidanceHigh-throughput screenings provide orthogonal information to genetic sequencingSarcoma organoid response to treatment correlates with patient response to therapyLarge scale, functional precision medicine programs for rare cancers are feasible within a single institution.
Collapse
|
49
|
Li G, Jin Y, Chen B, Lin A, Wang E, Xu F, Hu G, Xiao C, Liu H, Hou X, Zhang B, Song J. Exploring the Relationship between the Gut Mucosal Virome and Colorectal Cancer: Characteristics and Correlations. Cancers (Basel) 2023; 15:3555. [PMID: 37509218 PMCID: PMC10376985 DOI: 10.3390/cancers15143555] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 07/01/2023] [Accepted: 07/03/2023] [Indexed: 07/30/2023] Open
Abstract
The fecal virome has been reported to be associated with CRC. However, little is known about the mucosal virome signature in CRC. This study aimed to determine the viral community within CRC tissues and their contributions to colorectal carcinogenesis. Colonic mucosal biopsies were harvested from patients with CRC (biopsies of both neoplasia and adjacent normal tissue (CRC-A)) and healthy controls (HC). The shot-gun metagenomic sequencing of virus-like particles (VLPs) was performed on the biopsies. Viral community, functional pathways, and their correlations to clinical data were analyzed. Fluorescence in situ hybridizations (FISH) for the localization of viruses in the intestine was performed, as well as quantitative PCR for the detection of Torque teno virus load in human mucosal VLP DNA. A greater number and proportion of core species were found in CRC tissues than in CRC-A and HC tissues. The diversity of the mucosal virome in CRC tissues was significantly increased compared to that in HC and CRC-A tissues. The mucosal virome signature of CRC tissues were significantly different from those of HC and CRC-A tissues at the species level. The abundances of eukaryotic viruses from the Anelloviridae family and its sub-species Torque teno virus (TTV) were significantly higher in CRC patients than in HC. Furthermore, increased levels of TTV in the intestinal lamina propria were found in the CRC group. Multiple viral functions of TTV associated with carcinogenesis were enriched in CRC tissues. We revealed for the first time that the mucosal virobiota signature of CRC is characterized by a higher diversity and more eukaryotic viruses. The enrichment of TTV species in CRC tissues suggests that they may play an oncogenic role in CRC. Targeting eukaryotic viruses in the gut may provide novel strategies for the prevention and treatment of CRC.
Collapse
Affiliation(s)
- Gangping Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Jin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Baolong Chen
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Aiqiang Lin
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Erchuan Wang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Fenghua Xu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Gengcheng Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Chuanxing Xiao
- Xiamen Treatgut Biotechnology Co., Ltd., Xiamen 361115, China
| | - Hongli Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Bangzhou Zhang
- Institute for Microbial Ecology, School of Medicine, Xiamen University, Xiamen 361102, China
| | - Jun Song
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| |
Collapse
|
50
|
Hammoudeh N, Soukkarieh C, Murphy DJ, Hanano A. Mammalian lipid droplets: structural, pathological, immunological and anti-toxicological roles. Prog Lipid Res 2023; 91:101233. [PMID: 37156444 DOI: 10.1016/j.plipres.2023.101233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 04/30/2023] [Accepted: 05/05/2023] [Indexed: 05/10/2023]
Abstract
Mammalian lipid droplets (LDs) are specialized cytosolic organelles consisting of a neutral lipid core surrounded by a membrane made up of a phospholipid monolayer and a specific population of proteins that varies according to the location and function of each LD. Over the past decade, there have been significant advances in the understanding of LD biogenesis and functions. LDs are now recognized as dynamic organelles that participate in many aspects of cellular homeostasis plus other vital functions. LD biogenesis is a complex, highly-regulated process with assembly occurring on the endoplasmic reticulum although aspects of the underpinning molecular mechanisms remain elusive. For example, it is unclear how many enzymes participate in the biosynthesis of the neutral lipid components of LDs and how this process is coordinated in response to different metabolic cues to promote or suppress LD formation and turnover. In addition to enzymes involved in the biosynthesis of neutral lipids, various scaffolding proteins play roles in coordinating LD formation. Despite their lack of ultrastructural diversity, LDs in different mammalian cell types are involved in a wide range of biological functions. These include roles in membrane homeostasis, regulation of hypoxia, neoplastic inflammatory responses, cellular oxidative status, lipid peroxidation, and protection against potentially toxic intracellular fatty acids and lipophilic xenobiotics. Herein, the roles of mammalian LDs and their associated proteins are reviewed with a particular focus on their roles in pathological, immunological and anti-toxicological processes.
Collapse
Affiliation(s)
- Nour Hammoudeh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Chadi Soukkarieh
- Department of Animal Biology, Faculty of Sciences, University of Damascus, Damascus, Syria
| | - Denis J Murphy
- School of Applied Sciences, University of South Wales, Pontypridd, CF37 1DL, Wales, United Kingdom..
| | - Abdulsamie Hanano
- Department of Molecular Biology and Biotechnology, Atomic Energy Commission of Syria (AECS), P.O. Box 6091, Damascus, Syria..
| |
Collapse
|