1
|
Alehagen U, Aaseth J, Schomburg L, Larsson A, Opstad T, Alexander J. Selenoprotein P increases upon selenium and coenzyme Q 10 supplementation and is associated with telomere length, quality of life and reduced inflammation and mortality. Free Radic Biol Med 2024; 222:403-413. [PMID: 38960007 DOI: 10.1016/j.freeradbiomed.2024.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2024] [Revised: 06/21/2024] [Accepted: 06/29/2024] [Indexed: 07/05/2024]
Abstract
BACKGROUND Selenoprotein P (SELENOP) transports selenium to extrahepatic tissues and is a biomarker of selenium status. Low soil selenium leads to low dietary selenium intake. A consequence is an increased risk of cardiovascular disease. OBJECTIVE To investigate clinical aspects associated with SELENOP deficiency, including biomarkers of inflammation, quality of life, and mortality within 12 years, and the effect of dietary selenium and coenzyme Q10 supplementation on SELENOP. METHODS SELENOP was determined at inclusion and after four years of supplementation in 403 elderly community-living participants low in selenium receiving selenium yeast (200 μg/day) and coenzyme Q10 (200 mg/day), or placebo. Pre-intervention, the average serum selenium level was 67 μg/L. T-tests, repeated measures of variance, Cox proportional regressions analyses, Kaplan-Meier graphs and ANCOVA analyses were applied. Associations with biomarkers of inflammation, telomere length, quality of life and mortality were investigated. Benchmark modelling was used to determine the serum selenium concentration at which the saturation levels of SELENOP and GPx3 was achieved. Comparison with GPx3 and serum selenium to identify increased mortality risk was performed, and the effect of supplementation on SELENOP levels were evaluated. RESULTS Inverse associations were observed between the level of SELENOP at inclusion and biomarkers for inflammation. At follow-up, shorter telomere lengths were seen in those with low levels of SELENOP at inclusion, whereas high levels of SELENOP were associated with better quality of life and decreased mortality. SELENOP had increased prognostic power compared to GPx3 and selenium. Saturation of SELENOP was achieved at a serum selenium level of 146 μg/L, and for GPx3 at 99 μg/L. Supplementation induced higher levels of SELENOP. CONCLUSION Significant associations between SELENOP and inflammation, length of telomeres, quality of life, and mortality were observed. Thus, selenium supplementation improved SELENOP expression, thereby facilitating systemic selenium bioavailability and resulting in the observed positive health effects.
Collapse
Affiliation(s)
- U Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, SE-581 85, Linköping, Sweden.
| | - J Aaseth
- Research Department, Innlandet Hospital Trust, N-2381, Brumunddal, Norway.
| | - L Schomburg
- Institute for Experimental Endocrinology, Charité-Universitätsmedizin Berlin, D-10115, Berlin, Germany.
| | - A Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85, Uppsala, Sweden.
| | - Trine Opstad
- Oslo Center for Clinical Heart Research - Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway; Faculty of Medicine, University of Oslo, Norway.
| | - J Alexander
- Norwegian Institute of Public Health, N-0403, Oslo, Norway.
| |
Collapse
|
2
|
Alehagen U, Alexander J, Aaseth JO, Larsson A, Opstad TB. Supplementation with selenium and coenzyme Q 10 in an elderly Swedish population low in selenium - positive effects on thyroid hormones, cardiovascular mortality, and quality of life. BMC Med 2024; 22:191. [PMID: 38714999 PMCID: PMC11077771 DOI: 10.1186/s12916-024-03411-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/29/2024] [Indexed: 05/12/2024] Open
Abstract
BACKGROUND Selenium-dependent deiodinases play a central role in thyroid hormone regulation and metabolism. In many European countries, insufficient selenium intake may consequently lead to adverse effects on thyroid function. In this randomised placebo-controlled double-blind study, we examined the effect of supplementation with selenium and coenzyme Q10 on thyroid hormonal status, cardiovascular (CV) mortality and health-related quality of life (Hr-QoL). METHODS Free T3, free T4, reverse T3, and TSH were determined in 414 individuals at baseline, and the effect of selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) supplementation on hormone concentrations, CV mortality and Hr-QoL was evaluated after 48 months using Short Form 36 (SF-36). Pre-intervention plasma selenium was low, mean 67 µg/L, corresponding to an estimated intake of 35 µg/day. Changes in concentrations of thyroid hormones following the intervention were assessed using T-tests, repeated measures of variance, and ANCOVA analyses. RESULTS In the total population, the group with the lowest selenium concentration at baseline presented with significantly higher levels of TSH and lower levels of fT3 as compared to subjects with the highest selenium concentration. Supplementation with selenium and coenzyme Q10 for 4 years significantly increased fT3 and rT3, decreased fT4, and diminished the increase in TSH levels compared with placebo treatment (p = 0.03, all). In the placebo group, TSH and fT4 values above the median were associated with an increase in 10-year CV mortality, as compared with the mortality rate among those with TSH and fT4 below the median (p < 0.04, both), with no difference in mortality rate according to TSH and fT4 levels in the active intervention group. Similarly, TSH > median and fT3 < median were associated with a decline in mental Hr-QoL measures vs. TSH < and fT3 > median in the placebo group during 4 years of follow-up, but this was wiped out in the active group. CONCLUSIONS Supplementation with selenium and coenzyme Q10 had a beneficial effect on thyroid hormones with respect to CV mortality and Hr-QoL outcomes. The initial deficient selenium status was associated with an impaired thyroid function and the changes in thyroid hormone levels can be explained by increased activity of deiodinases. We conclude that a substantial part of the elderly study population might suffer from suboptimal thyroidal function with adverse clinical implications due to selenium deficiency. TRIAL REGISTRATION This study was registered at ClinicalTrials.gov and has the identifier NCT01443780. Since it was not mandatory to register at the time the study began, the study has been registered retrospectively.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 85, Linköping, Sweden.
| | | | - Jan O Aaseth
- Department of Research, Innlandet Hospital Trust, Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, Uppsala, Sweden
| | - Trine B Opstad
- Center for Clinical Heart Research - Laboratory, Department of Cardiology, Oslo University Hospital Ullevål, Oslo, Norway
- Faculty of Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
3
|
Liao M, He X, Zhou Y, Peng W, Zhao XM, Jiang M. Coenzyme Q10 in atherosclerosis. Eur J Pharmacol 2024; 970:176481. [PMID: 38493916 DOI: 10.1016/j.ejphar.2024.176481] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 02/25/2024] [Accepted: 03/04/2024] [Indexed: 03/19/2024]
Abstract
Atherosclerotic disease is a chronic disease that predominantly affects the elderly and is the most common cause of cardiovascular death worldwide. Atherosclerosis is closely related to processes such as abnormal lipid transport and metabolism, impaired endothelial function, inflammation, and oxidative stress. Coenzyme Q10 (CoQ10) is a key component of complex Ⅰ in the electron transport chain and an important endogenous antioxidant that may play a role in decelerating the progression of atherosclerosis. Here, the different forms of CoQ10 presence in the electron transport chain are reviewed, as well as its physiological role in regulating processes such as oxidative stress, inflammatory response, lipid metabolism and cellular autophagy. It was also found that CoQ10 plays beneficial effects in atherosclerosis by mitigating lipid transportation, endothelial inflammation, metabolic abnormalities, and thrombotic processes from the perspectives of molecular mechanisms, animal experiments, and clinical evidence. Besides, the combined use of CoQ10 with other drugs has better synergistic therapeutic effects. It seems reasonable to suggest that CoQ10 could be used in the treatment of atherosclerotic cardiovascular diseases while more basic and clinical studies are needed.
Collapse
Affiliation(s)
- Minjun Liao
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xueke He
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China
| | - Yangyang Zhou
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Weiqiang Peng
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China; Department of Clinical Medicine, Hengyang Medical College, University of South China, Hengyang, Hunan 421001, PR China
| | - Xiao-Mei Zhao
- College of Public Health, University of South China, Hengyang, 421001, Hunan, PR China.
| | - Miao Jiang
- Institute of Cardiovascular Disease, Department of Pathophysiology, Key Laboratory for Arteriosclerology of Hunan Province, Hunan International Scientific and Technological Cooperation Base of Arteriosclerotic Disease, Hengyang Medical College, University of South China, Hengyang, 421001, PR China.
| |
Collapse
|
4
|
Alehagen U, Alexander J, Aaseth JO, Larsson A, Svensson E, Opstad TB. Effects of an Intervention with Selenium and Coenzyme Q 10 on Five Selected Age-Related Biomarkers in Elderly Swedes Low in Selenium: Results That Point to an Anti-Ageing Effect-A Sub-Analysis of a Previous Prospective Double-Blind Placebo-Controlled Randomised Clinical Trial. Cells 2023; 12:1773. [PMID: 37443807 PMCID: PMC10340529 DOI: 10.3390/cells12131773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/26/2023] [Accepted: 06/30/2023] [Indexed: 07/15/2023] Open
Abstract
Background: Ageing is associated with cardiovascular disease (CVD). As no single biomarker reflects the full ageing process, we aimed to investigate five CVD- and age-related markers and the effects of selenium and coenzyme Q10 intervention to elucidate the mechanisms that may influence the course of ageing. Methods: This is a sub-study of a previous prospective double-blind placebo-controlled randomized clinical trial that included 441 subjects low in selenium (mean age 77, 49% women). The active treatment group (n = 220) received 200 µg/day of selenium and 200 mg/day of coenzyme Q10, combined. Blood samples were collected at inclusion and after 48 months for measurements of the intercellular adhesion molecule (ICAM-1), adiponectin, leptin, stem cell factor (SCF) and osteoprotegerin (OPG), using ELISAs. Repeated measures of variance and ANCOVA evaluations were used to compare the two groups. In order to better understand and reduce the complexity of the relationship between the biomarkers and age, factor analyses and structural equation modelling (SEM) were performed, and a structural model is presented. Results: Correlation analyses of biomarker values at inclusion in relation to age, and relevant markers related to inflammation, endothelial dysfunction and fibrosis, demonstrated the biomarkers' association with these pathological processes; however, only ICAM1 and adiponectin were directly correlated with age. SEM analyses showed, however, that the biomarkers ICAM-1, adiponectin, SCF and OPG, but not leptin, all had significant associations with age and formed two independent structural factors, both significantly related to age. While no difference was observed at inclusion, the biomarkers were differently changed in the active treatment and placebo groups (decreasing and increasing levels, respectively) at 48 months (p ≤ 0.02 in all, adjusted), and in the SEM model, they showed an anti-ageing impact. Conclusions: Supplementation with selenium/Q10 influenced the analysed biomarkers in ways indicating an anti-ageing effect, and by applying SEM methodology, the interrelationships between two independent structural factors and age were validated.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 85 Linköping, Sweden
| | - Jan Alexander
- Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, 2382 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden
| | - Erland Svensson
- Swedish Defence Research Agency, 164 40 Stockholm, Sweden (Ret.)
| | - Trine B. Opstad
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway;
- Faculty of Medicine, University of Oslo, 0313 Oslo, Norway
| |
Collapse
|
5
|
Mortazavi Moghadam SG, Zarban A, Yaghobbi Marakieh R, Allahyari E. Some Beneficial Effects of Coenzyme Q10 Supplementation on Patients with Chronic Obstructive Pulmonary Disease. JOURNAL OF ADVANCES IN MEDICAL AND BIOMEDICAL RESEARCH 2023; 31:238-243. [DOI: 10.30699/jambs.31.146.238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2025]
|
6
|
Opstad TB, Alexander J, Aaseth J, Larsson A, Seljeflot I, Alehagen U. Increased SIRT1 Concentration Following Four Years of Selenium and Q 10 Intervention Associated with Reduced Cardiovascular Mortality at 10-Year Follow-Up-Sub-Study of a Previous Prospective Double-Blind Placebo-Controlled Randomized Clinical Trial. Antioxidants (Basel) 2023; 12:antiox12030759. [PMID: 36979007 PMCID: PMC10045001 DOI: 10.3390/antiox12030759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 03/02/2023] [Accepted: 03/16/2023] [Indexed: 03/30/2023] Open
Abstract
Background: Selenium and coenzyme Q10 (SeQ10) possess antioxidant and anti-inflammatory properties, potentially mediated via Sirtuin1 (SIRT1). We aimed to investigate the influence of a SeQ10 intervention on SIRT1 concentration, with potential interactions with microRNAs. Methods: In this sub-study of a prospective double-blind placebo-controlled clinical trial, healthy subjects (mean age 76 years) were randomized to receive an active treatment (n = 165, combined 200 µg/day of Se and 200 mg/day of Q10) or a placebo (n = 161). SIRT1 concentration and microRNAs were measured with ELISA and PCR, respectively. Results: After four years, SIRT1 concentration was increased in the active treatment group, with mean (SD) ng/mL of 469 (436) vs. 252 (162), p < 0.001, and decreased in the placebo group, 190 (186) vs. 269 (172), p = 0.002, and the differences between the groups were significant (p = 0.006, adjusted). Those who suffered CV death during a 10-year follow-up (n = 25 and n = 52 in the active treatment and placebo groups, respectively) had significantly lower baseline SIRT1 concentrations compared to the survivors (p < 0.001). MiR-130a-3p was significantly downregulated during the intervention and correlated inversely with SIRT1 at baseline (r = -0.466, p = 0.007). Conclusion: The increased SIRT1 concentration after the SeQ10 intervention associated with reduced CV mortality, partly mediated via miR-1303a-3p, suggests that SIRT1 is an additional mediator of the intervention, preventing vascular ageing.
Collapse
Affiliation(s)
- Trine Baur Opstad
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, P.O. Box 222, Skøyen, N-0213 Oslo, Norway
| | - Jan Aaseth
- Department of Research, Innlandet Hospital Trust, P.O. Box 104, N-2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, N-2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, SE-751 85 Uppsala, Sweden
| | - Ingebjørg Seljeflot
- Center for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, P.O. Box 4950, Nydalen, N-0424 Oslo, Norway
- Faculty of Medicine, University of Oslo, N-0370 Oslo, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-581 85 Linköping, Sweden
| |
Collapse
|
7
|
Kitwan L, Makobe C, Mdachi R, Maranga DN, Isaac AO, Nyariki JN. Coenzyme Q 10 prevented Trypanosoma brucei rhodesiense-mediated breach of the blood brain barrier, inflammation and organ damage in late stage of Human African Trypanosomiasis. J Parasit Dis 2023; 47:167-184. [PMID: 36910316 PMCID: PMC9998817 DOI: 10.1007/s12639-022-01553-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Accepted: 11/21/2022] [Indexed: 12/05/2022] Open
Abstract
During the late stage of Human African Trypanosomiasis (HAT), there is severe cytokine-driven inflammation, oxidative stress and organ damage. Controlling inflammation and oxidative damage presents unique therapeutic opportunities to improve treatment outcome. The current study sought to determine the putative impact of Coenzyme-Q10 (Co-Q10), a potent antioxidant and anti-inflammatory, on adverse inflammatory and oxidative events during Trypanosoma brucei rhodesiense (T.b.r) infection. Group one constituted the control; the second group was infected with T.b.r; the third group was orally administered with 200 mg/kg Co-Q10 for two weeks; thereafter, Co-Q10 administration continued after infection with T.b.r. Co-Q10 improved the survival rate of infected mice and prevented full blown parasite driven splenomegaly and hepatomegaly. Co-Q10 prevented characteristic T.b.r-driven breach of the blood brain barrier and improved neurological integrity among T.b.r infected mice. Co-Q10 protected from T.b.r-induced microcytic hypochromic anaemia and thrombocytopenia. T.b.r-induced oxidative stress in the vital organs was assuaged following exposure to Co-Q10. Co-Q10 blocked T.b.r-induced derangement of high density lipoprotein and triglyceride levels. Co-Q10 significantly abrogated T.b.r-driven elevation of serum TNF-α and IFN-γ levels. Moreover, T.b.r-induced kidney and liver damage was assuaged by Co-Q10 administration. Co-Q10 administration downregulated T.b.r-induced elevation of uric acid and C-reactive protein. Likewise, T.b.r infected mice receiving Co-Q10 exhibited normal brain architecture. In conclusion, treatment with Co-Q10 may be useful in protecting against T.b.r-mediated organ injury, lethal inflammation and oxidative stress commonly present in severe late stage HAT; and presents unique opportunities for an adjunct therapy for late stage HAT.
Collapse
Affiliation(s)
- Lynn Kitwan
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Celestine Makobe
- Department of Medical Microbiology Department, Jomo Kenyatta University of Agriculture and Technology (JKUAT), Nairobi, Kenya
| | - Raymond Mdachi
- Biotechnology Research Institute, Kenya Agricultural and Livestock Research Organization, Kikuyu, Kenya
| | | | - Alfred Orina Isaac
- Department of Pharmaceutical Sciences and Technology, Technical University of Kenya, Nairobi, Kenya
| | - James Nyabuga Nyariki
- Department of Biochemistry and Biotechnology, Technical University of Kenya, Nairobi, Kenya
| |
Collapse
|
8
|
Opstad TB, Alexander J, Aaseth JO, Larsson A, Seljeflot I, Alehagen U. Selenium and Coenzyme Q 10 Intervention Prevents Telomere Attrition, with Association to Reduced Cardiovascular Mortality-Sub-Study of a Randomized Clinical Trial. Nutrients 2022; 14:nu14163346. [PMID: 36014852 PMCID: PMC9412367 DOI: 10.3390/nu14163346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 08/05/2022] [Accepted: 08/12/2022] [Indexed: 11/16/2022] Open
Abstract
Short telomeres have been associated with ageing and cardiovascular disease. The influence on leukocyte telomere length (LTL) of long-term intervention with combined selenium and coenzyme Q10 is unknown. Our aim was to determine whether 42 months of selenium and coenzyme Q10 supplementation prevented telomere attrition and further cardiovascular mortality. The investigation is an explorative sub-study of a double-blind, placebo-controlled, randomized trial. Swedish citizens low in selenium (n = 118), aged 70−80 years, were included. Intervention time was 4 years, with 10 years’ follow-up time. LTL was relatively quantified with PCR at baseline and after 42 months. At baseline, LTL (SD) was 0.954 (0.260) in the active treatment group and 1.018 (0.317) in the placebo group (p = 0.23). At 42 months, less shortening of LTL was observed after active treatment compared with placebo (+0.019 vs. −0.129, respectively, p = 0.02), with a significant difference in change basing the analysis on individual changes in LTL (p < 0.001). Subjects suffering future death presented with significantly shorter LTL at 42 months than survivors [0.791 (0.190) vs. 0.941 (0.279), p = 0.01], with a significant difference in change of LTL according to cardiovascular mortality and survival (p = 0.03). To conclude, preservation of LTL after selenium and coenzyme Q10 supplementation associated with reduced cardiovascular mortality.
Collapse
Affiliation(s)
- Trine Baur Opstad
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
- Correspondence:
| | - Jan Alexander
- Norwegian Institute of Public Health, 0213 Oslo, Norway
| | - Jan O. Aaseth
- Department of Research, Innlandet Hospital Trust, 2381 Brumunddal, Norway
- Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2624 Lillehammer, Norway
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 752 36 Uppsala, Sweden
| | - Ingebjørg Seljeflot
- Centre for Clinical Heart Research, Department of Cardiology, Oslo University Hospital Ullevål, 0450 Oslo, Norway
- Faculty of Medicine, University of Oslo, 0315 Oslo, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 83 Linköping, Sweden
| |
Collapse
|
9
|
Czerwińska K, Poręba M, Prokopowicz A, Januszewska L, Jaremków A, Markiewicz-Górka I, Martynowicz H, Mazur G, Poręba R, Pawlas K, Gać P. Association Between Serum Selenium Concentration and OPG/RANKL/RANK Axis in Patients with Arterial Hypertension. Cardiovasc Toxicol 2022; 22:620-630. [PMID: 35412194 DOI: 10.1007/s12012-022-09741-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 03/31/2022] [Indexed: 12/26/2022]
Abstract
The aim of the study was to determine the relationship between the serum selenium concentration (Se-S) and the blood concentrations of osteoprotegerin (OPG), receptor activator of nuclear factor kappa-Β ligand (RANKL) and the OPG/RANKL ratio in patients with arterial hypertension. The study group comprised 138 patients with arterial hypertension (age: 56.04 ± 11.59 years). Se-S was determined in all the subjects. Based on the Se-S, the following subgroups were distinguished: a subgroup of patients with a lower Se-S ("low-Se", Se-S < median) and a subgroup of patients with a higher Se-S ("high-Se", Se-S ≥ median). Moreover, the blood concentrations of the parameters of bone metabolism and extraskeletal calcification were assessed: OPG and RANKL. The OPG/RANKL ratio was calculated. In the "low-Se" subgroup, the RANKL concentration was statistically significantly lower, and the OPG/RANKL ratio was statistically significantly higher than in the patients in the "high-Se" subgroup. The correlation analysis showed the negative linear relationships between Se-S and OPG (r = - 0.25, p < 0.05) and between Se-S and OPG/RANKL (r = - 0.47, p < 0.05). Moreover, Se-S positively correlated with RANKL (r = 0.33, p < 0.05). In regression analysis, higher body mass index (BMI), smoking and lower Se-S were independently associated with a higher OPG/RANKL ratio, while lower BMI, use of diuretics, β-blockers and ACE inhibitors and lower OPG/RANKL ratio with effective blood pressure control. In summary, in the group of patients with arterial hypertension, lower Se-S is associated with an unfavourable prognostic panel of parameters of bone metabolism and extraskeletal calcification. Lower Se-S is an independent risk factor for a higher OPG/RANKL ratio, which is an independent prediction factor of ineffective blood pressure control in patients with hypertension.
Collapse
Affiliation(s)
- Karolina Czerwińska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Małgorzata Poręba
- Department of Paralympic Sports, Wroclaw University of Health and Sport Sciences, Witelona 25a, 51-617, Wrocław, Poland
| | - Adam Prokopowicz
- Institute of Occupational Medicine and Environmental Health in Sosnowiec, Kościelna 13, 41-200, Sosnowiec, Poland
| | - Lidia Januszewska
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Aleksandra Jaremków
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Iwona Markiewicz-Górka
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Helena Martynowicz
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Grzegorz Mazur
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Rafał Poręba
- Department of Internal Medicine, Occupational Diseases and Hypertension, Wroclaw Medical University, Borowska 213, 50-556, Wrocław, Poland
| | - Krystyna Pawlas
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland
| | - Paweł Gać
- Department of Population Health, Division of Environmental Health and Occupational Medicine, Wroclaw Medical University, Mikulicza-Radeckiego 7, 50-368, Wrocław, Poland.
| |
Collapse
|
10
|
Alehagen U, Johansson P, Svensson E, Aaseth J, Alexander J. Improved cardiovascular health by supplementation with selenium and coenzyme Q10: applying structural equation modelling (SEM) to clinical outcomes and biomarkers to explore underlying mechanisms in a prospective randomized double-blind placebo-controlled intervention project in Sweden. Eur J Nutr 2022; 61:3135-3148. [PMID: 35381849 PMCID: PMC9363287 DOI: 10.1007/s00394-022-02876-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Accepted: 03/17/2022] [Indexed: 12/12/2022]
Abstract
Purpose Selenium and coenzyme Q10 have synergistic antioxidant functions. In a four-year supplemental trial in elderly Swedes with a low selenium status, we found improved cardiac function, less cardiac wall tension and reduced cardiovascular mortality up to 12 years of follow-up. Here we briefly review the main results, including those from studies on biomarkers related to cardiovascular risk that were subsequently conducted. In an effort, to explain underlying mechanisms, we conducted a structured analysis of the inter-relationship between biomarkers. Methods Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/ day), or placebo was given to 443 elderly community-living persons, for 48 months. Structural Equation Modelling (SEM) was used to investigate the statistical inter-relationships between biomarkers related to inflammation, oxidative stress, insulin-like growth factor 1, expression of microRNA, fibrosis, and endothelial dysfunction and their impact on the clinical effects. The main study was registered at Clinicaltrials.gov at 30th of September 2011, and has the identifier NCT01443780. Results In addition to positive clinical effects, the intervention with selenium and coenzyme Q10 was also associated with favourable effects on biomarkers of cardiovascular risk. Using these results in the SEM model, we showed that the weights of the first-order factors inflammation and oxidative stress were high, together forming a second-order factor inflammation/oxidative stress influencing the factors, fibrosis (β = 0.74; p < 0.001) and myocardium (β = 0.65; p < 0.001). According to the model, the intervention impacted fibrosis and myocardium through these factors, resulting in improved cardiac function and reduced CV mortality. Conclusion Selenium reduced inflammation and oxidative stress. According to the SEM analysis, these effects reduced fibrosis and improved myocardial function pointing to the importance of supplementation in those low on selenium and coenzyme Q10.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - Peter Johansson
- Department of Health, Medicine and Caring Sciences, Linköping University, 601 74, Norrköping, Sweden
| | | | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2381, Brumunddal, Norway.,Faculty of Health and Social Sciences, Inland Norway University of Applied Sciences, 2418, Elverum, Norway
| | - Jan Alexander
- Norwegian Institute of Public Health, 0403, Oslo, Norway
| |
Collapse
|
11
|
Antioxidant and Anti-Inflammatory Effects of Coenzyme Q10 Supplementation on Infectious Diseases. Healthcare (Basel) 2022; 10:healthcare10030487. [PMID: 35326965 PMCID: PMC8953254 DOI: 10.3390/healthcare10030487] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 02/25/2022] [Accepted: 03/02/2022] [Indexed: 12/14/2022] Open
Abstract
With the appearance of new viruses and infectious diseases (ID) such as COVID-19 in 2019, as well as the lack of specific pharmacological tools for the management of patients with severe complications or comorbidities, it is important to search for adjuvant treatments that help improve the prognosis of infectious disease patients. It is also important that these treatments limit the oxidative and hyperinflammatory damage caused as a response to pathogenic agents, since, in some cases, an inflammatory syndrome may develop that worsens the patient’s prognosis. The potential benefits of complementary nutrients and dietary interventions in the treatment of pathological processes in which oxidative stress and inflammation play a fundamental role have been widely evaluated. Coenzyme Q10 (CoQ10) is a supplement that has been shown to protect cells and be effective in cardiovascular diseases and obesity. Additionally, some studies have proposed it as a possible adjuvant treatment in viral infections. Preclinical and clinical studies have shown that CoQ10 has anti-inflammatory and antioxidant effects, and effects on mitochondrial dysfunction, which have been linked to the inflammatory response.
Collapse
|
12
|
Alehagen U, Aaseth J, Larsson A, Alexander J. Decreased Concentration of Fibroblast Growth Factor 23 (FGF-23) as a Result of Supplementation with Selenium and Coenzyme Q 10 in an Elderly Swedish Population: A Sub-Analysis. Cells 2022; 11:cells11030509. [PMID: 35159318 PMCID: PMC8834214 DOI: 10.3390/cells11030509] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 01/28/2022] [Accepted: 01/29/2022] [Indexed: 12/14/2022] Open
Abstract
There is a reduced intake of selenium in many countries due to low levels of selenium in the soil. This results in an increased cardiovascular risk. Fibroblast growth factor 23 (FGF-23) is active mainly in the metabolism of vitamin D and phosphorus. However, there are indications that FGF-23 may also provide information both on cardiovascular function and prognosis. The aim of the study was to evaluate the effect of supplementation with selenium and coenzyme Q10 on the FGF-23 concentration in an elderly population with low concentrations of both selenium and coenzyme Q10 and in which the supplementation improved cardiac function and mortality. In a randomised double-blind placebo-controlled trial, FGF-23 was measured in 219 individuals at the start and after 48 months. Selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 118) or placebo (n = 101) were given as a dietary supplement. The intervention time was 48 months. t-Tests, repeated measures of variance, and ANCOVA analyses were used to evaluate the differences in FGF-23 concentration. Following supplementation with selenium and coenzyme Q10, a significantly lower level of FGF-23 could be seen (p = 0.01). Applying 10 years of follow-up, those who later died a cardiovascular death had a significantly higher FGF-23 concentration after 48 months compared with those who survived (p = 0.036), and a significantly lower FGF-23 concentration could be seen in those with a normal renal function compared to those with an impaired renal function (p = 0.027). Supplementation with selenium and coenzyme Q10 to an elderly community-living population low in both substances prevented an increase of FGF-23 and also provided a reduced cardiovascular risk.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Health, Medicine and Caring Sciences, Linköping University, 81 85 Linköping, Sweden
- Correspondence: ; Tel.: +46-10-103-0000
| | - Jan Aaseth
- Research Department, Innlandet Hospital Trust, 2381 Brumunddal, Norway;
| | - Anders Larsson
- Department of Medical Sciences, Uppsala University, 751 85 Uppsala, Sweden;
| | - Jan Alexander
- Norwegian Institute of Public Health, 0403 Oslo, Norway;
| |
Collapse
|
13
|
Impact of Selenium on Biomarkers and Clinical Aspects Related to Ageing. A Review. Biomolecules 2021; 11:biom11101478. [PMID: 34680111 PMCID: PMC8533247 DOI: 10.3390/biom11101478] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 09/30/2021] [Accepted: 10/04/2021] [Indexed: 02/06/2023] Open
Abstract
Selenium (Se) is an essential dietary trace element that plays an important role in the prevention of inflammation, cardiovascular diseases, infections, and cancer. Selenoproteins contain selenocysteine in the active center and include, i.a., the enzymes thioredoxin reductases (TXNRD1–3), glutathione peroxidases (GPX1–4 and GPX6) and methionine sulfoxide reductase, involved in immune functions, metabolic homeostasis, and antioxidant defense. Ageing is an inevitable process, which, i.a., involves an imbalance between antioxidative defense and reactive oxygen species (ROS), changes in protein and mitochondrial renewal, telomere attrition, cellular senescence, epigenetic alterations, and stem cell exhaustion. These conditions are associated with mild to moderate inflammation, which always accompanies the process of ageing and age-related diseases. In older individuals, Se, by being a component in protective enzymes, operates by decreasing ROS-mediated inflammation, removing misfolded proteins, decreasing DNA damage, and promoting telomere length. Se-dependent GPX1–4 and TXNRD1–3 directly suppress oxidative stress. Selenoprotein H in the cell nucleus protects DNA, and selenoproteins residing in the endoplasmic reticulum (ER) assist in the removal of misfolded proteins and protection against ER stress. In this review, we highlight the role of adequate Se status for human ageing and prevention of age-related diseases, and further its proposed role in preservation of telomere length in middle-aged and elderly individuals.
Collapse
|
14
|
Copper, Iron, Selenium and Lipo-Glycemic Dysmetabolism in Alzheimer's Disease. Int J Mol Sci 2021; 22:ijms22179461. [PMID: 34502369 PMCID: PMC8431716 DOI: 10.3390/ijms22179461] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/25/2021] [Accepted: 08/26/2021] [Indexed: 12/18/2022] Open
Abstract
The aim of the present review is to discuss traditional hypotheses on the etiopathogenesis of Alzheimer's disease (AD), as well as the role of metabolic-syndrome-related mechanisms in AD development with a special focus on advanced glycation end-products (AGEs) and their role in metal-induced neurodegeneration in AD. Persistent hyperglycemia along with oxidative stress results in increased protein glycation and formation of AGEs. The latter were shown to possess a wide spectrum of neurotoxic effects including increased Aβ generation and aggregation. In addition, AGE binding to receptor for AGE (RAGE) induces a variety of pathways contributing to neuroinflammation. The existing data also demonstrate that AGE toxicity seems to mediate the involvement of copper (Cu) and potentially other metals in AD pathogenesis. Specifically, Cu promotes AGE formation, AGE-Aβ cross-linking and up-regulation of RAGE expression. Moreover, Aβ glycation was shown to increase prooxidant effects of Cu through Fenton chemistry. Given the role of AGE and RAGE, as well as metal toxicity in AD pathogenesis, it is proposed that metal chelation and/or incretins may slow down oxidative damage. In addition, selenium (Se) compounds seem to attenuate the intracellular toxicity of the deranged tau and Aβ, as well as inhibiting AGE accumulation and metal-induced neurotoxicity.
Collapse
|
15
|
Alekseenko SI, Skalny AV, Karpischenko SA, Tinkov AA. Serum, Whole Blood, Hair, and Mucosal Essential Trace Element and Mineral Levels in Children with Verified Chronic Rhinosinusitis Undergoing Functional Endoscopic Sinus Surgery. Biol Trace Elem Res 2021; 199:2112-2120. [PMID: 32789642 DOI: 10.1007/s12011-020-02333-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Accepted: 08/05/2020] [Indexed: 11/26/2022]
Abstract
The objective of the present study was to assess hair, serum, whole blood, and excised tissue essential element content in children with chronic rhinosinusitis (CRS). Eighty-eight children with chronic rhinosinusitis and 66 healthy controls were enrolled in the present study. Evaluation of endoscopic Lund-Kennedy and computed tomography Lund-Mackay scores, as well as tissue sampling, was performed only in children with chronic rhinosinusitis. Assessment of Sino-Nasal Outcome Test-20 (SNOT-20) scores was performed in both cases and controls. Hair, whole blood, blood serum, and excised mucosal tissue (only in patients) analysis was performed using inductively coupled argon plasma mass-spectrometry. The obtained data demonstrate that whole blood Ca, Mg, Se, and Zn, as well as hair Ca, Cu, Mg, and Zn levels in the examined patients were significantly lower as compared with the control values. Only serum Zn concentration in children with CRS exceeded the respective control values, whereas serum Cu levels only tended to decrease in CRS. In turn, hair Fe content in children with CRS exceeded that in healthy controls. Regression analysis demonstrate that hair Ca levels, as well as whole blood Ca, Se, and Zn concentrations, were considered as negative predictors, whereas increased hair iron level was significantly directly associated with CRS. Significant associations between hair, serum, whole blood, and tissue element levels and Lund-Kennedy and Lund-Mackay scores were also revealed. Generally, the obtained data demonstrate that chronic rhinosinusitis is associated with impaired essential metal levels in pediatric patients with chronic rhinosinusitis. The observed alterations may contribute to CRS pathogenesis through modulation of mucociliary clearance, immunity, inflammatory response, and redox environment.
Collapse
Affiliation(s)
- Svetlana I Alekseenko
- I.I. Mechnikov North-Western State Medical University, St. Petersburg, Russia
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
| | - Anatoly V Skalny
- Yaroslavl State University, Yaroslavl, Russia
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia
- Federal Research Centre of Biological Systems and Agro-technologies of the Russian Academy of Sciences, Orenburg, 460000, Russia
| | - Sergey A Karpischenko
- K.A. Rauhfus Children's City Multidisciplinary Clinical Center for High Medical Technologies, St. Petersburg, Russia
- Saint-Petersburg Research Institute of Ear, Throat, Nose and Speech, St. Petersburg, Russia
- First Pavlov State Medical University of Saint Petersburg, St. Petersburg, Russia
| | - Alexey A Tinkov
- Yaroslavl State University, Yaroslavl, Russia.
- IM Sechenov First Moscow State Medical University (Sechenov University), Moscow, Russia.
- Institute of Cellular and Intracellular Symbiosis, Ural Branch of the Russian Academy of Sciences, Orenburg, Russia.
| |
Collapse
|
16
|
Mantle D, Heaton RA, Hargreaves IP. Coenzyme Q10 and Immune Function: An Overview. Antioxidants (Basel) 2021; 10:759. [PMID: 34064686 PMCID: PMC8150987 DOI: 10.3390/antiox10050759] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 04/27/2021] [Accepted: 05/08/2021] [Indexed: 12/13/2022] Open
Abstract
Coenzyme Q10 (CoQ10) has a number of important roles in the cell that are required for optimal functioning of the immune system. These include its essential role as an electron carrier in the mitochondrial respiratory chain, enabling the process of oxidative phosphorylation to occur with the concomitant production of ATP, together with its role as a potential lipid-soluble antioxidant, protecting the cell against free radical-induced oxidation. Furthermore, CoQ10 has also been reported to have an anti-inflammatory role via its ability to repress inflammatory gene expression. Recently, CoQ10 has also been reported to play an important function within the lysosome, an organelle central to the immune response. In view of the differing roles CoQ10 plays in the immune system, together with the reported ability of CoQ10 supplementation to improve the functioning of this system, the aim of this article is to review the current literature available on both the role of CoQ10 in human immune function and the effect of CoQ10 supplementation on this system.
Collapse
Affiliation(s)
| | - Robert A. Heaton
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| | - Iain P. Hargreaves
- School of Pharmacy, Liverpool John Moores University, Liverpool L3 3AF, UK;
| |
Collapse
|
17
|
Dietary Supplementation with Selenium and Coenzyme Q 10 Prevents Increase in Plasma D-Dimer While Lowering Cardiovascular Mortality in an Elderly Swedish Population. Nutrients 2021; 13:nu13041344. [PMID: 33920725 PMCID: PMC8073286 DOI: 10.3390/nu13041344] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 04/02/2021] [Accepted: 04/13/2021] [Indexed: 12/27/2022] Open
Abstract
A low intake of selenium is associated with increased cardiovascular mortality. This could be reduced by supplementation with selenium and coenzyme Q10. D-dimer, a fragment of fibrin mirroring fibrinolysis, is a biomarker of thromboembolism, increased inflammation, endothelial dysfunction and is associated with cardiovascular mortality in ischemic heart disease. The objective was to examine the impact of selenium and coenzyme Q10 on the level of D-dimer, and its relationship to cardiovascular mortality. D-dimer was measured in 213 individuals at the start and after 48 months of a randomised double-blind placebo-controlled trial with selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 106) or placebo (n = 107). The follow-up time was 4.9 years. All included individuals were low in selenium (mean 67 μg/L, SD 16.8). The differences in D-dimer concentration were evaluated by the use of T-tests, repeated measures of variance and ANCOVA analyses. At the end, a significantly lower D-dimer concentration was observed in the active treatment group in comparison with those on placebo (p = 0.006). Although D-dimer values at baseline were weakly associated with high-sensitive CRP, while being more strongly associated with soluble tumour necrosis factor receptor 1 and sP-selectin, controlling for these in the analysis there was an independent effect on D-dimer. In participants with a D-dimer level above median at baseline, the supplementation resulted in significantly lower cardiovascular mortality compared to those on placebo (p = 0.014). All results were validated with a persisting significant difference between the two groups. Therefore, supplementation with selenium and coenzyme Q10 in a group of elderly low in selenium and coenzyme Q10 prevented an increase in D-dimer and reduced the risk of cardiovascular mortality in comparison with the placebo group. The obtained results also illustrate important associations between inflammation, endothelial function and cardiovascular risk.
Collapse
|
18
|
Giacconi R, Chiodi L, Boccoli G, Costarelli L, Piacenza F, Provinciali M, Malavolta M. Reduced levels of plasma selenium are associated with increased inflammation and cardiovascular disease in an Italian elderly population. Exp Gerontol 2020; 145:111219. [PMID: 33373712 DOI: 10.1016/j.exger.2020.111219] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/20/2020] [Accepted: 12/15/2020] [Indexed: 11/30/2022]
Abstract
Selenium (Se) is an essential micronutrient for human health that protects from oxidative damage. Se deficiency has been associated with the development of cardiovascular diseases (CVD). In this study we aimed to investigate the association between Se status, CVD risk, cardio-metabolic and inflammatory markers in elderly population. Se Plasma levels and inflammatory markers [neutrophil/lymphocyte ratio, serum C-reactive protein (CRP) levels and Copper/Zinc ratio (Cu/Zn)] were measured in 858 control subjects (mean age 73.4 ± 9.3) and 606 CVD patients (mean age 72.5± 8.7). A multivariate logistic regression was performed to evaluate the association between Se deficiency (Se< 60 μg/L) and the risk of CDV. In a subgroup of 46 CVD patients the gene expression of IL-1β, CCL5/RANTES, IL-6, IL-8, IL-10, platelet-derived growth factor-β (PDGFβ) and sirtuins in peripheral blood mononuclear cell (PBMC) were further examined. Increased values of neutrophil/lymphocyte ratio, CRP levels and Cu/Zn ratio were observed in Se deficiency condition both in controls and in CVD patients. Moreover, enhanced gene expression of cytokines and chemokines such as IL1β, CCL5 and PDGF- β, and a downregulation of SIRT-1, SIRT-5, SIRT-6, SIRT-7 were found in PBMCs from CVD patients with Se deficiency. A multivariate logistic regression showed that Se deficiency was associated with an increased CVD risk (odds ratio=1.946, 95% CI: 1.19-3.18, p < 0.01). The current study revealed that Se deficiency is independently associated with CVD, and with elevated circulating inflammatory markers and affects the expression of cytokines, chemokines and sirtuins in PBMCs.
Collapse
Affiliation(s)
- Robertina Giacconi
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy.
| | - Leonardo Chiodi
- Department of General and Vascular Surgery, IRCCS INRCA, Ancona, Italy
| | | | - Laura Costarelli
- Clinical Laboratory & Molecular Diagnostics, IRCCS INRCA, Ancona, Italy
| | - Francesco Piacenza
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Mauro Provinciali
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| | - Marco Malavolta
- Advanced Technology Center for Aging Research, IRCCS INRCA, Ancona, Italy
| |
Collapse
|
19
|
Vavougios GD, Ntoskas KT, Doskas TK. Impairment in selenocysteine synthesis as a candidate mechanism of inducible coagulopathy in COVID-19 patients. Med Hypotheses 2020; 147:110475. [PMID: 33421689 PMCID: PMC7831716 DOI: 10.1016/j.mehy.2020.110475] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/24/2020] [Accepted: 12/23/2020] [Indexed: 01/16/2023]
Abstract
Coagulopathy has recently been recognized as a recurring complication of COVID-19, most typically associated with critical illness. There are epidemiological, mechanistic and transcriptomic evidence that link Selenium with SARS-CoV-2’s intracellular latency. Taking into consideration the vital role of selenoproteins in maintaining an adequate immune response, endothelial homeostasis and a non-prothrombotic platelet activation status, we propose that impairment in selenocysteine synthesis, via perturbations in the aforementioned physiological functions, potentially constitutes a mechanism of coagulopathy in COVID 19 patients other than those developed in critical illness.
Collapse
Affiliation(s)
- George D Vavougios
- Department of Computer Science and Telecommunications, University of Thessaly, Papasiopoulou 2-4, P.C. 35 131, Galaneika, Lamia, Greece; Department of Respiratory Medicine, Faculty of Medicine, University of Thessaly, Biopolis, P.C. 41500 Larissa, Greece; Department of Neurology, Athens Naval Hospital, 70 Deinokratous Street, P.C. 115 21 Athens, Greece
| | | | - Triantafyllos K Doskas
- Department of Neurology, Athens Naval Hospital, 70 Deinokratous Street, P.C. 115 21 Athens, Greece.
| |
Collapse
|
20
|
Selenium and Coenzyme Q10 Supplementation Improves Renal Function in Elderly Deficient in Selenium: Observational Results and Results from a Subgroup Analysis of a Prospective Randomised Double-Blind Placebo-Controlled Trial. Nutrients 2020; 12:nu12123780. [PMID: 33317156 PMCID: PMC7764721 DOI: 10.3390/nu12123780] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/01/2020] [Accepted: 12/06/2020] [Indexed: 12/20/2022] Open
Abstract
A low selenium intake is found in European countries, and is associated with increased cardiovascular mortality. There is an association between selenium level and the severity of kidney disease. An association between inflammation and selenium intake is also reported. The coenzyme Q10 level is decreased in kidney disease. The aim of this study was to examine a possible association between selenium and renal function in an elderly population low in selenium and coenzyme Q10, and the impact of intervention with selenium and coenzyme Q10 on the renal function. The association between selenium status and creatinine was studied in 589 elderly persons. In 215 of these (mean age 71 years) a randomised double-blind placebo-controlled prospective trial with selenium yeast (200 µg/day) and coenzyme Q10 (200 mg/day) (n = 117) or placebo (n = 98) was conducted. Renal function was determined using measures of glomerular function at the start and after 48 months. The follow-up time was 5.1 years. All individuals were low on selenium (mean 67 μg/L (SD 16.8)). The changes in renal function were evaluated by measurement of creatinine, cystatin-C, and the use of the Chronic Kidney Disease Epidemiology Collaboration (CKD-EPI) algorithm, and by the use of T-tests, repeated measures of variance and ANCOVA analyses. An association between low selenium status and impaired renal function was observed. Intervention causes a significantly lower serum creatinine, and cystatin-C concentration in the active treatment group compared with those on placebo (p = 0.0002 and p = 0.001 resp.). The evaluation with CKD-EPI based on both creatinine and cystatin-C showed a corresponding significant difference (p < 0.0001). All validations showed corresponding significant differences. In individuals with a deficiency of selenium and coenzyme Q10, low selenium status is related to impaired renal function, and thus supplementation with selenium and coenzyme Q10 results in significantly improved renal function as seen from creatinine and cystatin-C and through the CKD-EPI algorithm. The explanation could be related to positive effects on inflammation and oxidative stress as a result of the supplementation.
Collapse
|
21
|
Alexander J, Tinkov A, Strand TA, Alehagen U, Skalny A, Aaseth J. Early Nutritional Interventions with Zinc, Selenium and Vitamin D for Raising Anti-Viral Resistance Against Progressive COVID-19. Nutrients 2020; 12:E2358. [PMID: 32784601 PMCID: PMC7468884 DOI: 10.3390/nu12082358] [Citation(s) in RCA: 145] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 08/04/2020] [Accepted: 08/05/2020] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES The novel coronavirus infection (COVID-19) conveys a serious threat globally to health and economy because of a lack of vaccines and specific treatments. A common factor for conditions that predispose for serious progress is a low-grade inflammation, e.g., as seen in metabolic syndrome, diabetes, and heart failure, to which micronutrient deficiencies may contribute. The aim of the present article was to explore the usefulness of early micronutrient intervention, with focus on zinc, selenium, and vitamin D, to relieve escalation of COVID-19. METHODS We conducted an online search for articles published in the period 2010-2020 on zinc, selenium, and vitamin D, and corona and related virus infections. RESULTS There were a few studies providing direct evidence on associations between zinc, selenium, and vitamin D, and COVID-19. Adequate supply of zinc, selenium, and vitamin D is essential for resistance to other viral infections, immune function, and reduced inflammation. Hence, it is suggested that nutrition intervention securing an adequate status might protect against the novel coronavirus SARS-CoV-2 (Severe Acute Respiratory Syndrome - coronavirus-2) and mitigate the course of COVID-19. CONCLUSION We recommended initiation of adequate supplementation in high-risk areas and/or soon after the time of suspected infection with SARS-CoV-2. Subjects in high-risk groups should have high priority as regards this nutritive adjuvant therapy, which should be started prior to administration of specific and supportive medical measures.
Collapse
Affiliation(s)
- Jan Alexander
- Division of Infection Control and Environment Health, Norwegian Institute of Public Health, P.O. Box 222 Skøyen, 0213 Oslo, Norway;
| | - Alexey Tinkov
- Laboratory of Biotechnology and Bioelementology, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia; (A.T.); (A.S.)
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., Moscow 119146, Russia;
| | - Tor A. Strand
- Centre for International Health, University of Bergen, P.O. Box 7804, 5020 Bergen, Norway;
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| | - Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, SE-58185 Linköping, Sweden
| | - Anatoly Skalny
- Laboratory of Biotechnology and Bioelementology, Yaroslavl State University, Sovetskaya Str. 14, Yaroslavl 150000, Russia; (A.T.); (A.S.)
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., Moscow 119146, Russia;
| | - Jan Aaseth
- IM Sechenov First Moscow State Medical University (Sechenov University), Bolshaya Pirogovskaya St., Moscow 119146, Russia;
- Research Department, Innlandet Hospital Trust, P.O. Box 104, 2381 Brumunddal, Norway
| |
Collapse
|
22
|
Alehagen U, Alexander J, Aaseth J, Larsson A, Lindahl TL. Significant decrease of von Willebrand factor and plasminogen activator inhibitor-1 by providing supplementation with selenium and coenzyme Q10 to an elderly population with a low selenium status. Eur J Nutr 2020; 59:3581-3590. [PMID: 32078064 PMCID: PMC7669787 DOI: 10.1007/s00394-020-02193-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Accepted: 01/28/2020] [Indexed: 02/07/2023]
Abstract
Purpose Endothelial dysfunction and inflammation are conditions which fuel atherosclerosis and ischaemic heart disease. We have previously reported reduced cardiovascular (CV) mortality following supplementation with selenium and coenzyme Q10 to 443 elderly individuals with low selenium status (mean 67 μg/L) for 4 years. Here, we wanted to evaluate a possible association between the supplementation and the plasma concentrations of the von Willebrand factor (vWf), and the plasminogen activator inhibitor-1 (PAI-1), as they, besides other functions, are also strongly associated with endothelial function. Methods In this sub-study, 308 individuals (active substance: 157, placebo: 151) were included. Blood samples were drawn after 6 and 36 months and vWf and PAI-1 were determined in plasma by ELISA. Changes in concentrations of the biomarkers were evaluated by the use of T tests, repeated measures of variance, and ANCOVA analyses. Results The active treatment group presented a lower level of vWf after 36 months compared with the placebo group (1.08 U/mL vs. 5.10 U/mL; p = 0.0007). The results were validated through the repeated measures of variance evaluation. The PAI-1 levels showed an equally significant decrease in the active group (26.2 ng/mL vs. 49.2 ng/mL; p = 0.0002) and were also validated through repeated measures of variance evaluation. Conclusion In this sub-study on elderly receiving selenium and coenzyme Q10, or placebo we found significantly lower levels of vWf and PAI-1 in the active treatment group as compared to the placebo group. We interpret this as a better endothelial function because of the intervention, which accords with a previous finding of reduced CV mortality.
Collapse
Affiliation(s)
- Urban Alehagen
- Division of Cardiovascular Medicine, Department of Medical and Health Sciences, Linköping University, 581 85, Linköping, Sweden.
| | - J Alexander
- Norwegian Institute of Public Health, 0403, Oslo, Norway
| | - J Aaseth
- Research Department, Innlandet Hospital Trust, 2381, Brumunddal, Norway
| | - A Larsson
- Department of Medical Sciences, Uppsala University, 751 85, Uppsala, Sweden
| | - T L Lindahl
- Division of Clinical Chemistry, Department of Experimental and Clinical Medicine, Linköping University, 581 85, Linköping, Sweden
| |
Collapse
|