1
|
Satapathy BS, Zafar A, Warsi MH, Behera S, Mohanty DI, Mujtaba MA, Mohanty M, Upadhyay AK, Khalid M. Luliconazole-niacinamide lipid nanocarrier laden gel for enhanced treatment of vaginal candidiasis: in vitro, ex vivo, in silico and preclinical insights. RSC Adv 2025; 15:5665-5680. [PMID: 39980997 PMCID: PMC11836644 DOI: 10.1039/d4ra08397k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2024] [Accepted: 02/11/2025] [Indexed: 02/22/2025] Open
Abstract
A lipid-based nanocarrier system is a novel technique for the delivery of poorly soluble drugs through topical delivery. This study developed a dual-drug (luliconazole: LZ, and niacinamide: NM) loaded lipid nanocarrier (LN)-laden gel for the treatment of vaginal candidiasis. The LNs were prepared using cholesterol and soya-α-lecithin through a thin-film hydration technique. The average vesicle size, polydispersity index, and zeta potential of the optimized LZNMLNs were 126.40 ± 1.30 nm, 0.276, and -34.6 ± 0.8 mV, respectively, and the formulation showed the sustained release of both drugs over an extended period. Selected LZNMLNs were incorporated into a bio-adhesive gel. The optimized LZNMLNs-gel showed excellent viscosity, spreadability, and bio-adhesiveness. The optimized LZNMLNs-gel exhibited significantly higher permeation of LZ (1.46-fold) and NM (1.55-fold) than LZNM gel. The optimized LZNMLNs-gel showed significantly higher in vitro antifungal activity (ZOI = 34 ± 2 mm) than commercial Candid V gel (18 ± 1 mm). The optimized LZNMLNs-gel did not show any cytotoxicity against vaginal epithelial cells. The bioavailability of LZNMLNs-gel was significantly (P < 0.05) increased (1.94-fold for LZ and 1.33-fold for NM) compared to Candid V, with a decrease in total clearance indicating sustained release of the drug, which may lead to the maintenance of therapeutic concentration for an extended period. In vivo antifungal activity showed that the optimized LZNMLNs-gel completely treated the infection on the 7th day of treatment in an induced rabbit model, compared to the commercial gel (Candid V gel, 10 days). Based the findings, it can be concluded that LN-laden gel is an alternative carrier for improvement of the topical delivery of drugs for the treatment of vaginal candidiasis.
Collapse
Affiliation(s)
| | - Ameeduzzafar Zafar
- Department of Pharmaceutics, College of Pharmacy, Jouf University Sakaka 72341 Al-Jouf Saudi Arabia
| | - Musarrat Husain Warsi
- Department of Pharmaceutics and Industrial Pharmacy, College of Pharmacy, Taif University Taif 21944 Saudi Arabia
| | - Sritam Behera
- Nityananda College of Pharmacy, Biju Patnaik University of Technology Sergarh Balasore Odisha India
| | - Dibya Iochan Mohanty
- Centre for Nanomedicine, Department of Pharmaceutics, School of Pharmacy, Anurag University Hyderabad Telangana Pin 500088 India
| | - Md Ali Mujtaba
- Department of Pharmaceutics, Faculty of Pharmacy, Northern Border University Arar Saudi Arabia
- Center for Health Research, Northern Border University Arar Saudi Arabia
| | - Mahaprasad Mohanty
- School of Pharmaceutical Sciences, Siksha 'O' Anusandhan University Odisha India
| | - Atul Kumar Upadhyay
- Department of Biotechnology, Thapar Institute of Engineering and Technology Patiala Punjab India
| | - Mohammad Khalid
- Department of Pharmacognosy, College of Pharmacy, Prince Sattam Bin Abdulaziz University Al-Kharj 11942 Saudi Arabia
| |
Collapse
|
2
|
Tomašek I, Eychenne J, Damby DE, Hornby AJ, Romanias MN, Moune S, Uzu G, Schiavi F, Dole M, Gardès E, Laumonier M, Gorce C, Minet‐Quinard R, Durif J, Belville C, Traoré O, Blanchon L, Sapin V. Physicochemical Properties and Bioreactivity of Sub-10 μm Geogenic Particles: Comparison of Volcanic Ash and Desert Dust. GEOHEALTH 2025; 9:e2024GH001171. [PMID: 39790373 PMCID: PMC11711107 DOI: 10.1029/2024gh001171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Revised: 11/29/2024] [Accepted: 12/04/2024] [Indexed: 01/12/2025]
Abstract
Exposure to ambient particulate matter (PM) with an aerodynamic diameter of <10 μm (PM10) is a well-established health hazard. There is increasing evidence that geogenic (Earth-derived) particles can induce adverse biological effects upon inhalation, though there is high variability in particle bioreactivity that is associated with particle source and physicochemical properties. In this study, we investigated physicochemical properties and biological reactivity of volcanic ash from the April 2021 eruption of La Soufrière volcano, St. Vincent, and two desert dust samples: a standardized test dust from Arizona and an aeolian Gobi Desert dust sampled in China. We determined particle size, morphology, mineralogy, surface texture and chemistry in sub-10 μm material to investigate associations between particle physicochemical properties and observed bioreactivity. We assessed cellular responses (cytotoxic and pro-inflammatory effects) to acute particle exposures (24 hr) in monocultures at the air-liquid interface using two types of cells of the human airways: BEAS-2B bronchial epithelial cells and A549 alveolar type II epithelial cells. In acellular assays, we also assessed particle oxidative potential and the presence of microorganisms. The results showed that volcanic ash and desert dust exhibit intrinsically different particle morphology, surface textures and chemistry, and variable mineralogical content. We found that Gobi Desert dust is more bioreactive than freshly erupted volcanic ash and Arizona test dust, which is possibly linked to the presence of microorganisms (bacteria) and/or nanoscale elongated silicate minerals (potentially clay such as illite or vermiculite) on particle surfaces.
Collapse
Affiliation(s)
- Ines Tomašek
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Istituto Nazionale di Geofisica e Vulcanologia (INGV)Osservatorio EtneoCataniaItaly
| | - Julia Eychenne
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - David E. Damby
- U.S. Geological Survey (USGS)Volcano Science CenterMenlo ParkCAUSA
| | - Adrian J. Hornby
- Department of Earth and Atmospheric SciencesCornell UniversityIthacaNYUSA
- Department of Cellular and Molecular BiologySchool of MedicineUniversity of Texas at TylerTylerTXUSA
| | - Manolis N. Romanias
- Institut Mines‐Télécom (IMT) Nord EuropeCentre for Energy and EnvironmentUniversité LilleDouaiFrance
| | - Severine Moune
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Gaëlle Uzu
- IRDCNRSINRAEINP‐GIGE (UMR 5001)Université Grenoble AlpesGrenobleFrance
| | - Federica Schiavi
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Maeva Dole
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Emmanuel Gardès
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Mickael Laumonier
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Clara Gorce
- Laboratoire Magmas et Volcans (LMV)CNRSIRDOPGCUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Régine Minet‐Quinard
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| | - Julie Durif
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| | - Corinne Belville
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Ousmane Traoré
- Infection Control DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
- Laboratoire Microorganismes: Génome Environnement (LMGE)UMRCNRSUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Loïc Blanchon
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
| | - Vincent Sapin
- Institute of Genetic Reproduction and Development (iGReD)Translational Approach to Epithelial Injury and Repair TeamCNRSINSERMUniversité Clermont AuvergneClermont‐FerrandFrance
- Biochemistry and Molecular Genetics DepartmentCentre Hospitalier Universitaire (CHU) Clermont‐FerrandClermont‐FerrandFrance
| |
Collapse
|
3
|
Furxhi I, Perucca M, Koivisto AJ, Bengalli R, Mantecca P, Nicosia A, Burrueco-Subirà D, Vázquez-Campos S, Lahive E, Blosi M, de Ipiña JL, Oliveira J, Carriere M, Vineis C, Costa A. A roadmap towards safe and sustainable by design nanotechnology: Implementation for nano-silver-based antimicrobial textile coatings production by ASINA project. Comput Struct Biotechnol J 2024; 25:127-142. [PMID: 39040658 PMCID: PMC11262112 DOI: 10.1016/j.csbj.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/24/2024] Open
Abstract
This report demonstrates a case study within the ASINA project, aimed at instantiating a roadmap with quantitative metrics for Safe(r) and (more) Sustainable by Design (SSbD) options. We begin with a description of ASINA's methodology across the product lifecycle, outlining the quantitative elements within: Physical-Chemical Features (PCFs), Key Decision Factors (KDFs), and Key Performance Indicators (KPIs). Subsequently, we delve in a proposed decision support tool for implementing the SSbD objectives across various dimensions-functionality, cost, environment, and human health safety-within a broader European context. We then provide an overview of the technical processes involved, including design rationales, experimental procedures, and tools/models developed within ASINA in delivering nano-silver-based antimicrobial textile coatings. The result is pragmatic, actionable metrics intended to be estimated and assessed in future SSbD applications and to be adopted in a common SSbD roadmap aligned with the EU's Green Deal objectives. The methodological approach is transparently and thoroughly described to inform similar projects through the integration of KPIs into SSbD and foster data-driven decision-making. Specific results and project data are beyond this work's scope, which is to demonstrate the ASINA roadmap and thus foster SSbD-oriented innovation in nanotechnology.
Collapse
Affiliation(s)
- Irini Furxhi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Massimo Perucca
- Project HUB360, C.so Laghi 22, 10051 Avigliana, Turin, Italy
| | - Antti Joonas Koivisto
- APM Air Pollution Management, Mattilanmäki 38, FI-33610 Tampere, Finland
- INAR Institute for Atmospheric and Earth System Research, University of Helsinki, PL 64, UHEL, FI-00014 Helsinki, Finland
- ARCHE Consulting, Liefkensstraat 35D, Wondelgem B-9032, Belgium
| | - Rossella Bengalli
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Paride Mantecca
- POLARIS Research Center, Dept. of Earth and Environmental Sciences, University of Milano Bicocca, Piazza della Scienza 1, 20126 Milano, Italy
| | - Alessia Nicosia
- CNR-ISAC Institute of Atmospheric Sciences and Climate, Via Gobetti 101, 40129 Bologna, Italy
| | | | | | - Elma Lahive
- Centre for Ecology & Hydrology (UKCEH), England, United Kingdom
| | - Magda Blosi
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| | - Jesús Lopez de Ipiña
- TECNALIA Research and Innovation - Basque Research and Technology Alliance (BRTA), Parque Tecnológico de Alava, Leonardo Da Vinci 11, 01510 Miñano, Spain
| | - Juliana Oliveira
- CeNTI - Centre of Nanotechnology and Smart Materials, Rua Fernando Mesquita 2785, 4760-034 Vila Nova de Famalicão, Portugal
| | - Marie Carriere
- CEA, CNRS, Univ. Grenoble Alpes, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Claudia Vineis
- CNR-STIIMA Istituto di Sistemi e Tecnologie Industriali Intelligenti per il Manifatturiero Avanzato, Italy
| | - Anna Costa
- CNR-ISSMC Istituto di Scienza e Tecnologia dei Materiali Ceramici, Via Granarolo, 64, 48018 Faenza, RA, Italy
| |
Collapse
|
4
|
Carrillo-Romero J, Mentxaka G, García-Salvador A, Katsumiti A, Carregal-Romero S, Goñi-de-Cerio F. Assessing the Toxicity of Metal- and Carbon-Based Nanomaterials In Vitro: Impact on Respiratory, Intestinal, Skin, and Immune Cell Lines. Int J Mol Sci 2024; 25:10910. [PMID: 39456693 PMCID: PMC11507852 DOI: 10.3390/ijms252010910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2024] [Revised: 10/04/2024] [Accepted: 10/08/2024] [Indexed: 10/28/2024] Open
Abstract
The field of nanotechnology has experienced exponential growth, with the unique properties of nanomaterials (NMs) being employed to enhance a wide range of products across diverse industrial sectors. This study examines the toxicity of metal- and carbon-based NMs, with a particular focus on titanium dioxide (TiO2), zinc oxide (ZnO), silica (SiO2), cerium oxide (CeO2), silver (Ag), and multi-walled carbon nanotubes (MWCNTs). The potential health risks associated with increased human exposure to these NMs and their effect on the respiratory, gastrointestinal, dermal, and immune systems were evaluated using in vitro assays. Physicochemical characterisation of the NMs was carried out, and in vitro assays were performed to assess the cytotoxicity, genotoxicity, reactive oxygen species (ROS) production, apoptosis/necrosis, and inflammation in cell lines representative of the systems evaluated (3T3, Caco-2, HepG2, A549, and THP-1 cell lines). The results obtained show that 3T3 and A549 cells exhibit high cytotoxicity and ROS production after exposure to ZnO NMs. Caco-2 and HepG2 cell lines show cytotoxicity when exposed to ZnO and Ag NMs and oxidative stress induced by SiO2 and MWCNTs. THP-1 cell line shows increased cytotoxicity and a pro-inflammatory response upon exposure to SiO2. This study emphasises the importance of conducting comprehensive toxicological assessments of NMs given their physicochemical interactions with biological systems. Therefore, it is of key importance to develop robust and specific methodologies for the assessment of their potential health risks.
Collapse
Affiliation(s)
- Juliana Carrillo-Romero
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
| | - Gartze Mentxaka
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Adrián García-Salvador
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Alberto Katsumiti
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| | - Susana Carregal-Romero
- Center for Cooperative Research in Biomaterials (CIC biomaGUNE), Basque Research and Technology Alliance (BRTA), 20014 San Sebastián, Spain;
- CIBER de Enfermedades Respiratorias (CIBERES), 28029 Madrid, Spain
- Ikerbasque, Basque Foundation for Science, 48013 Bilbao, Spain
| | - Felipe Goñi-de-Cerio
- GAIKER Technology Centre, Basque Research and Technology Alliance (BRTA), 48170 Zamudio, Spain; (J.C.-R.); (G.M.); (A.G.-S.); (A.K.)
| |
Collapse
|
5
|
Amani H, Alipour M, Shahriari E, Taboas JM. Immunomodulatory Biomaterials: Tailoring Surface Properties to Mitigate Foreign Body Reaction and Enhance Tissue Regeneration. Adv Healthc Mater 2024:e2401253. [PMID: 39370571 DOI: 10.1002/adhm.202401253] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 08/28/2024] [Indexed: 10/08/2024]
Abstract
The immune cells have demonstrated the ability to promote tissue repair by removing debris, breaking down the extracellular matrix, and regulating cytokine secretion profile. If the behavior of immune cells is not well directed, chronic inflammation and foreign body reaction (FBR) will lead to scar formation and loss of biomaterial functionality. The immunologic response toward tissue repair or chronic inflammation after injury and implantation can be modulated by manipulating the surface properties of biomaterials. Tailoring surface properties of biomaterials enables the regulation of immune cell fate such as adhesion, proliferation, recruitment, polarization, and cytokine secretion profile. This review begins with an overview of the role of immune cells in tissue healing and their interactions with biomaterials. It then discusses how the surface properties of biomaterials influence immune cell behavior. The core focus is reviewing surface modification methods to create innovative materials that reduce foreign body reactions and enhance tissue repair and regeneration by modulating immune cell activities. The review concludes with insights into future advancements in surface modification techniques and the associated challenges.
Collapse
Affiliation(s)
- Hamed Amani
- Department of Medical Nanotechnology, Faculty of Advanced Technologies in Medicine, Iran University of Medical Science, Tehran, Iran
| | - Mahdieh Alipour
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| | - Elahe Shahriari
- Department of Physiology, Faculty of Medicine, Hamadan University of Medical Sciences, Hamadan, Iran
| | - Juan M Taboas
- Department of Oral and Craniofacial Sciences, School of Dental Medicine, University of Pittsburgh, Pittsburgh, PA, 15261, USA
| |
Collapse
|
6
|
Choi JH, Haizan I, Choi JW. Recent advances in two-dimensional materials for the diagnosis and treatment of neurodegenerative diseases. DISCOVER NANO 2024; 19:151. [PMID: 39289310 PMCID: PMC11408446 DOI: 10.1186/s11671-024-04099-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 08/28/2024] [Indexed: 09/19/2024]
Abstract
With the size of the aging population increasing worldwide, the effective diagnosis and treatment of neurodegenerative diseases (NDDs) has become more important. Two-dimensional (2D) materials offer specific advantages for the diagnosis and treatment of NDDs due to their high sensitivity, selectivity, stability, and biocompatibility, as well as their excellent physical and chemical characteristics. As such, 2D materials offer a promising avenue for the development of highly sensitive, selective, and biocompatible theragnostics. This review provides an interdisciplinary overview of advanced 2D materials and their use in biosensors, drug delivery, and tissue engineering/regenerative medicine for the diagnosis and/or treatment of NDDs. The development of 2D material-based biosensors has enabled the early detection and monitoring of NDDs via the precise detection of biomarkers or biological changes, while 2D material-based drug delivery systems offer the targeted and controlled release of therapeutics to the brain, crossing the blood-brain barrier and enhancing treatment effectiveness. In addition, when used in tissue engineering and regenerative medicine, 2D materials facilitate cell growth, differentiation, and tissue regeneration to restore neuronal functions and repair damaged neural networks. Overall, 2D materials show great promise for use in the advanced treatment of NDDs, thus improving the quality of life for patients in an aging population.
Collapse
Affiliation(s)
- Jin-Ha Choi
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Izzati Haizan
- School of Chemical Engineering, Clean Energy Research Center, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Woo Choi
- Department of Chemical and Biomolecular Engineering, Sogang University, Seoul, 04107, Republic of Korea.
| |
Collapse
|
7
|
Kim MJ, Hwang HS, Choi JH, Yoo ES, Jang MI, Lee J, Oh SM. Development of a multi-analysis model using an epithelial-fibroblast co-culture system as an alternative to animal testing. Environ Anal Health Toxicol 2024; 39:e2024024-0. [PMID: 39536704 PMCID: PMC11560297 DOI: 10.5620/eaht.2024024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Accepted: 09/13/2024] [Indexed: 11/16/2024] Open
Abstract
The evaluation of respiratory chemical substances has been mostly performed in animal tests (OECD TG 403, TG 412, TG 413, etc.). However, there have been ongoing discussions about the limited use of these inhalation toxicity tests due to differences in the anatomical structure of the respiratory tract, difficulty in exposure, laborious processes, and ethical reasons. Alternative animal testing methods that mimic in vivo testing are required. Therefore, in this study, we established a co-culture system composed of differentiated epithelial cells under an air-liquid interface (ALI) system in the apical part and fibroblasts in the basal part. This system was designed to mimic the wound-healing mechanism in the respiratory system. In addition, we developed a multi-analysis system that simultaneously performs toxicological and functional evaluations. Several individual assays were used sequentially in a multi-analysis model for pulmonary toxicity. Briefly, cytokine analysis, histology, and cilia motility were measured in the apical part, and cell migration and gel contraction assay were performed by exposing MRC-5 cells to the basal culture. First, human airway epithelial cells from bronchial (hAECB) were cultured under air-liquid interface (ALI) system conditions and validated pseudostratified epithelium by detecting differentiation-related epithelial markers using Transepithelial Electrical Resistance (TEER) measurement, Hematoxylin and Eosin (H&E) staining, and immunocytochemistry (ICC) staining. Afterward, the co-culture cells exposed to Transforming growth factor-beta 1 (TGF-β1), a key mediator of pulmonary fibrosis, induced significant toxicological responses such as cytotoxicity, cell migration, and gel contraction, which are wound-healing markers. In addition, cilia motility in epithelial cells was significantly decreased compared to control. Therefore, the multi-analysis model with a 3D epithelial-fibroblast co-culture system is expected to be useful in predicting pulmonary toxicity as a simple and efficient high-throughput screening method and as an alternative to animal testing.
Collapse
Affiliation(s)
- Min-Ju Kim
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Hee-Sung Hwang
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Jee Hoon Choi
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Eun-Seon Yoo
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Mi-Im Jang
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
| | - Juhee Lee
- Department of ICT Automotive Engineering, Hoseo University, Asan, Republic of Korea
| | - Seung Min Oh
- Department of Bio-application toxicity, Hoseo University, Asan, Republic of Korea
- Department of Animal Health and Welfare, Hoseo University, Asan, Republic of Korea
| |
Collapse
|
8
|
Lee CE, Rezaee F. Nanoparticles and Airway Epithelial Cells: Exploring the Impacts and Methodologies in Toxicity Assessment. Int J Mol Sci 2024; 25:7885. [PMID: 39063127 PMCID: PMC11277209 DOI: 10.3390/ijms25147885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 07/09/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024] Open
Abstract
The production of nanoparticles has recently surged due to their varied applications in the biomedical, pharmaceutical, textile, and electronic sectors. However, this rapid increase in nanoparticle manufacturing has raised concerns about environmental pollution, particularly its potential adverse effects on human health. Among the various concerns, inhalation exposure to nanoparticles poses significant risks, especially affecting the respiratory system. Airway epithelial cells play a crucial role as the primary defense against inhaled particulate matter and pathogens. Studies have shown that nanoparticles can disrupt the airway epithelial barrier, triggering inflammatory responses, generating reactive oxygen species, and compromising cell viability. However, our understanding of how different types of nanoparticles specifically impact the airway epithelial barrier remains limited. Both in vitro cell culture and in vivo murine models are commonly utilized to investigate nanoparticle-induced cellular responses and barrier dysfunction. This review discusses the methodologies frequently employed to assess nanoparticle toxicity and barrier disruption. Furthermore, we analyze and compare the distinct effects of various nanoparticle types on the airway epithelial barrier. By elucidating the diverse responses elicited by different nanoparticles, we aim to provide insights that can guide future research endeavors in assessing and mitigating the potential risks associated with nanoparticle exposure.
Collapse
Affiliation(s)
- Claire E. Lee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Department of Cognitive Science, College of Arts and Sciences, Case Western Reserve University, Cleveland, OH 44106, USA
| | - Fariba Rezaee
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, OH 44195, USA;
- Center for Pediatric Pulmonary Medicine, Cleveland Clinic Children’s, Cleveland, OH 44195, USA
| |
Collapse
|
9
|
Hooshyar MR, Raygan S, Mehdinavaz Aghdam R. Investigating layer-by-layer chitosan-dextran sulfate-coated mesoporous silica as a pH-sensitive drug delivery system. JOURNAL OF MATERIALS SCIENCE. MATERIALS IN MEDICINE 2024; 35:29. [PMID: 38884680 PMCID: PMC11182833 DOI: 10.1007/s10856-024-06797-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 05/03/2024] [Indexed: 06/18/2024]
Abstract
Mesoporous silica nanoparticles (MSNPs) coated by chitosan (CS) were shown to be a proper candidate as a carrier for drug delivery purposes. However, choosing the suitable drug-containing complexes to be applied on MSNPs-CS is of much greater importance to evaluate the possible candidate for an efficient combination of cell viability, drug release kinetics, and atherosclerosis prevention. In this regard, this study concentrates on the synthesis and assessment of coated MSNPs-CS designed for drug delivery purposes. The MSNPs are coated with polyelectrolyte complexes (PEC) composed of CS and dextran sulfate (MSNPs-CS-DX), serving as a versatile drug carrier with favorable biological characteristics. CS-DX is applied to MSNPs without requiring complex or multi-step synthesis procedures. Rosuvastatin, a cholesterol-lowering medication, is chosen for its therapeutic relevance. Additionally, CS-DX is found to relatively impede the uptake of low-density lipoproteins (LDLs) by macrophages, enhancing their potential therapeutic utility. FTIR pattern, FESEM, and TEM images prove MSNPs-CS-DX formation. DLS measurement demonstrates the average particle size of 110 nm for MSNPs, with the combined thickness of CS and DX layers ranging from 10 to 15 nm. BET test is carried out to evaluate the pore size and porosity of structure, showing outstanding results that cause an entrapment efficiency of 57% for MSNPs-CS-DX. Furthermore, the findings demonstrate the pH sensitivity of MSNPs-CS-DX on drug release kinetics. Notably, the CS-DX layer exhibits a significant enhancement in cell viability of human umbilical vein endothelial cells (HUVEC) by approximately 24% within a 24 h timeframe compared to MSNPs lacking CS-DX.
Collapse
Affiliation(s)
- Mohammad Reza Hooshyar
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Shahram Raygan
- Synthesis and Extraction of Materials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran.
| | - Rouhollah Mehdinavaz Aghdam
- Biomaterials Lab., School of Metallurgy and Materials Engineering, College of Engineering, University of Tehran, P.O. Box 11155-4563, Tehran, Iran
| |
Collapse
|
10
|
Rezaei N, Zarkesh I, Fotouhi A, Alikhani HK, Hassan M, Vosough M. Chitosan-coated nanoparticles in innovative cancer bio-medicine. Drug Dev Res 2024; 85:e22189. [PMID: 38678548 DOI: 10.1002/ddr.22189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/13/2024] [Accepted: 03/20/2024] [Indexed: 05/01/2024]
Abstract
In the recent decade, nanoparticles (NPs) have had enormous implications in cancer biomedicine, including research, diagnosis, and therapy. However, their broad application still faces obstacles due to some practical limitations and requires further development. Recently, there has been more interest in the coated class of nanoparticles to address those challenges. Chitosan-coated NPs are simple to produce, biodegradable, biocompatible, exhibit antibacterial activity, and have less cytotoxicity. This study provides an updated and comprehensive overview of the application of chitosan-coated NPs as a promising class of NPs in cancer biomedicine. Additionally, we discussed chitosan-coated lipid, metal, and polymer-based nanoparticles in biomedical applications. Furthermore, different coating methods and production/characterization procedures were reviewed. Moreover, the biological and physicochemical advantages of chitosan-coated NPs, including facilitated controlled release, greater physicochemical stability, improved cell/tissue interaction, and enhanced bioavailability of medications, were highlighted. Finally, the prospects of chitosan-coated NPs in cancer biomedicine were discussed.
Collapse
Affiliation(s)
- Niloufar Rezaei
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Ibrahim Zarkesh
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Alireza Fotouhi
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Department of Biomedical Engineering, Amirkabir University of Technology (Tehran Polytechnique), Tehran, Iran
| | - Hani Keshavarz Alikhani
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
| | - Moustapha Hassan
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| | - Massoud Vosough
- Department of Regenerative Medicine, Cell Science Research Center, Royan Institute for Stem Cell Biology and Technology, ACECR, Tehran, Iran
- Experimental Cancer Medicine, Institution for Laboratory Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
11
|
Basharat Z, Alghamdi YS, Mashraqi MM, Makkawi M, Alasmari S, Alshamrani S. Subtractive sequence-mediated therapeutic targets from the conserved gene clusters of Campylobacter hyointestinalis and computational inhibition assessment. J Biomol Struct Dyn 2024; 42:2782-2792. [PMID: 37144725 DOI: 10.1080/07391102.2023.2208229] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 04/20/2023] [Indexed: 05/06/2023]
Abstract
Campylobacter hyointestinalis is a causative agent of enteritis, proctitis, human gastroenteritis, and diarrhea. Reported transmission is from pigs to humans. Link with gastrointestinal carcinoma has also been established in non-Helicobacter pylori patients carrying this strain. The genome size of the strain LMG9260 is 1.8 MB with 1785 chromosomal and seven plasmid proteins. No therapeutic targets have been identified and reported in this bacterium. Therefore, subtractive computational screening of its genome was carried out for the purpose. In total, 31 such targets were mined and riboflavin synthase was utilized for screening natural product inhibitors against it. Among more than 30,000 screened natural compounds from the NPASS library, three (NPC472060, NPC33653, and NPC313886) were prioritized to have the potential to be developed into new antimicrobial drugs. Dynamics simulation assay along with other relevant parameters like absorption, toxicity, and distribution of the inhibiting compounds were also predicted and NPC33653 was identified as having the best drug-like properties among the prioritized compounds. Thus, it has potential to be pursued further for the inhibition of riboflavin synthesis in C. hyointestinalis for subsequent obstruction of its growth and survival.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
| | | | - Mutaib M Mashraqi
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| | - Mohammed Makkawi
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Sultan Alasmari
- Department of Clinical Laboratory Sciences, Faculty of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Saleh Alshamrani
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, Najran University, Najran, Saudi Arabia
| |
Collapse
|
12
|
Yang C, Ding Y, Mao Z, Wang W. Nanoplatform-Mediated Autophagy Regulation and Combined Anti-Tumor Therapy for Resistant Tumors. Int J Nanomedicine 2024; 19:917-944. [PMID: 38293604 PMCID: PMC10826716 DOI: 10.2147/ijn.s445578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Accepted: 01/04/2024] [Indexed: 02/01/2024] Open
Abstract
The overall cancer incidence and death toll have been increasing worldwide. However, the conventional therapies have some obvious limitations, such as non-specific targeting, systemic toxic effects, especially the multidrug resistance (MDR) of tumors, in which, autophagy plays a vital role. Therefore, there is an urgent need for new treatments to reduce adverse reactions, improve the treatment efficacy and expand their therapeutic indications more effectively and accurately. Combination therapy based on autophagy regulators is a very feasible and important method to overcome tumor resistance and sensitize anti-tumor drugs. However, the less improved efficacy, more systemic toxicity and other problems limit its clinical application. Nanotechnology provides a good way to overcome this limitation. Co-delivery of autophagy regulators combined with anti-tumor drugs through nanoplatforms provides a good therapeutic strategy for the treatment of tumors, especially drug-resistant tumors. Notably, the nanomaterials with autophagy regulatory properties have broad therapeutic prospects as carrier platforms, especially in adjuvant therapy. However, further research is still necessary to overcome the difficulties such as the safety, biocompatibility, and side effects of nanomedicine. In addition, clinical research is also indispensable to confirm its application in tumor treatment.
Collapse
Affiliation(s)
- Caixia Yang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Yuan Ding
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| | - Zhengwei Mao
- MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou, Zhejiang, People’s Republic of China
| | - Weilin Wang
- Department of Hepatobiliary and Pancreatic Surgery, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang, People’s Republic of China
- Key Laboratory of Precision Diagnosis and Treatment for Hepatobiliary and Pancreatic Tumor of Zhejiang Province, Hangzhou, Zhejiang, People’s Republic of China
| |
Collapse
|
13
|
Uthman A, AL-Rawi N, Saeed MH, Eid B, Al-Rawi NH. Tunable theranostics: innovative strategies in combating oral cancer. PeerJ 2024; 12:e16732. [PMID: 38188167 PMCID: PMC10771769 DOI: 10.7717/peerj.16732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 12/06/2023] [Indexed: 01/09/2024] Open
Abstract
Objective This study aims to assess and compare the potential of advanced nano/micro delivery systems, including quantum dots, carbon nanotubes, magnetic nanoparticles, dendrimers, and microneedles, as theranostic platforms for oral cancer. Furthermore, we seek to evaluate their respective advantages and disadvantages over the past decade. Materials and Methods A comprehensive literature search was performed using Google Scholar and PubMed, with a focus on articles published between 2013 and 2023. Search queries included the specific advanced delivery system as the primary term, followed by oral cancer as the secondary term (e.g., "quantum dots AND oral cancer," etc.). Results The advanced delivery platforms exhibited notable diagnostic and therapeutic advantages when compared to conventional techniques or control groups. These benefits encompassed improved tumor detection and visualization, enhanced precision in targeting tumors with reduced harm to neighboring tissues, and improved drug solubility and distribution, leading to enhanced drug absorption and tumor uptake. Conclusion The findings suggest that advanced nano/micro delivery platforms hold promise for addressing numerous challenges associated with chemotherapy. By enabling precise targeting of cancerous cells, these platforms have the potential to mitigate adverse effects on surrounding healthy tissues, thus encouraging the development of innovative diagnostic and therapeutic strategies for oral cancer.
Collapse
Affiliation(s)
- Asmaa Uthman
- Department of Diagnostic and Surgical Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, United Arab Emirates
| | - Noor AL-Rawi
- Department of Pharmaceutics and Pharmaceutical Technology, University of Sharjah, Sharjah, United Arab Emirates
| | - Musab Hamed Saeed
- Department of Clinical Sciences, College of Dentistry, Ajman University, Ajman, United Arab Emirates
- Ajman University, Centre of Medical and Bio-allied Health Sciences Research,, Ajman, United Arab Emirates
| | - Bassem Eid
- Department of Restorative Dental Sciences, College of Dentistry, Gulf Medical University, Ajman, Ajman, United Arab Emirates
| | - Natheer H. Al-Rawi
- University of Sharjah, Sharjah Institute of Medical Research, Sharjah, United Arab Emirates
- Department of Oral and Craniofacial Health Sciences, College of Dental Medicine, University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
14
|
Lomboni DJ, Ozgun A, de Medeiros TV, Staines W, Naccache R, Woulfe J, Variola F. Electroconductive Collagen-Carbon Nanodots Nanocomposite Elicits Neurite Outgrowth, Supports Neurogenic Differentiation and Accelerates Electrophysiological Maturation of Neural Progenitor Spheroids. Adv Healthc Mater 2024; 13:e2301894. [PMID: 37922888 PMCID: PMC11481026 DOI: 10.1002/adhm.202301894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 10/04/2023] [Indexed: 11/07/2023]
Abstract
Neuronal disorders are characterized by the loss of functional neurons and disrupted neuroanatomical connectivity, severely impacting the quality of life of patients. This study investigates a novel electroconductive nanocomposite consisting of glycine-derived carbon nanodots (GlyCNDs) incorporated into a collagen matrix and validates its beneficial physicochemical and electro-active cueing to relevant cells. To this end, this work employs mouse induced pluripotent stem cell (iPSC)-derived neural progenitor (NP) spheroids. The findings reveal that the nanocomposite markedly augmented neuronal differentiation in NP spheroids and stimulate neuritogenesis. In addition, this work demonstrates that the biomaterial-driven enhancements of the cellular response ultimately contribute to the development of highly integrated and functional neural networks. Lastly, acute dizocilpine (MK-801) treatment provides new evidence for a direct interaction between collagen-bound GlyCNDs and postsynaptic N-methyl-D-aspartate (NMDA) receptors, thereby suggesting a potential mechanism underlying the observed cellular events. In summary, the findings establish a foundation for the development of a new nanocomposite resulting from the integration of carbon nanomaterials within a clinically approved hydrogel, toward an effective biomaterial-based strategy for addressing neuronal disorders by restoring damaged/lost neurons and supporting the reestablishment of neuroanatomical connectivity.
Collapse
Affiliation(s)
- David J. Lomboni
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
| | - Alp Ozgun
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Tayline V. de Medeiros
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - William Staines
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| | - Rafik Naccache
- Department of Chemistry and Biochemistry and the Centre for NanoScience ResearchConcordia UniversityMontrealQCH4B 1R6Canada
- Quebec Centre for Advanced MaterialsDepartment of Chemistry and BiochemistryConcordia UniversityMontrealQCH4B 1R6Canada
| | - John Woulfe
- The Ottawa Hospital Research InstituteOttawaONK1Y 4E9Canada
| | - Fabio Variola
- Department of Mechanical EngineeringUniversity of OttawaOttawaONK1N 6N5Canada
- Ottawa‐Carleton Institute for Biomedical Engineering (OCIBME)OttawaONK1N 6N5Canada
- Department of Cellular and Molecular MedicineUniversity of OttawaOttawaONK1H 8M5Canada
| |
Collapse
|
15
|
Lai C, Lin S, Liu W, Jin Y. Research Progress of Chitosan-based Multifunctional Nanoparticles in Cancer Targeted Therapy. Curr Med Chem 2024; 31:3074-3092. [PMID: 37062062 DOI: 10.2174/0929867330666230416153352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/01/2023] [Accepted: 03/03/2023] [Indexed: 04/17/2023]
Abstract
Conventional tumor therapeutic modalities, such as radiotherapy, chemotherapy, and surgery, involve low tumor inhibition efficiency, non-targeted drug delivery, and side effects. The development of novel and practical nano-drug delivery systems (DDSs) for targeted tumor therapy has become particularly important. Among various bioactive nanoparticles, chitosan is considered a suitable candidate for drug delivery due to its nontoxicity, good biocompatibility, and biodegradability. The amino and hydroxyl groups of chitosan endow it with the diverse function of chemical modification, thereby improving its physical and biological properties to meet the requirements of advanced biomedical applications. Therefore, it is necessary to review the property and applications of chitosan- based materials in biomedicine. In this review, the characteristics of chitosan related to its applications are first introduced, and then the preparation and modification of chitosan-based nanoparticles, including the function tailoring of chitosan-modified nanoparticles, are demonstrated and discussed. Finally, the opportunities and challenges of chitosan- based nanomaterials in this emerging field are proposed from the perspective of the rational and systematic design for the biomedicine field.
Collapse
Affiliation(s)
- Chunmei Lai
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
- College of Chemistry, Fuzhou University, Fuzhou, 350108, China
| | - Simin Lin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| | - Wei Liu
- Fujian College Association Instrumental Analysis Center of Fuzhou University, Fuzhou University, Fuzhou, 350108, China
| | - Yanqiao Jin
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, China
| |
Collapse
|
16
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Functionalized Gold Nanoparticles Suppress the Proliferation of Human Lung Alveolar Adenocarcinoma Cells by Deubiquitinating Enzymes Inhibition. ACS OMEGA 2023; 8:40622-40638. [PMID: 37929120 PMCID: PMC10620884 DOI: 10.1021/acsomega.3c05452] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 10/06/2023] [Accepted: 10/11/2023] [Indexed: 11/07/2023]
Abstract
Functionalized gold nanoparticles (AuNPs) are widely used in therapeutic applications, but little is known regarding the impact of their surface functionalization in the process of toxicity against cancer cells. This study investigates the anticancer effects of 5 nm spherical AuNPs functionalized with tannate, citrate, and PVP on deubiquitinating enzymes (DUBs) in human lung alveolar adenocarcinoma (A549) cells. Our findings show that functionalized AuNPs reduce the cell viability in a concentration- and time-dependent manner as measured by modified lactate dehydrogenase (mLDH) and 3-[4,5-dimethylthiazole-2-yl]-2,5-diphenyltetrazolium bromide (MTT) assays. An increased generation of intracellular reactive oxygen species (ROS) and depletion of glutathione (GSH/GSSG) ratio was observed with the highest AuNP concentration of 10 μg/mL. The expression of DUBs such as ubiquitin specific proteases (USP7, USP8, and USP10) was slightly inhibited when treated with concentrations above 2.5 μg/mL. Moreover, functionalized AuNPs showed an inhibitory effect on protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and wingless-related integration site (Wnt) signaling proteins, and this could further trigger mitochondrial related-apoptosis by the upregulation of caspase-3, caspase-9, and PARP in A549 cells. Furthermore, our study shows a mechanistic understanding of how functionalized AuNPs inhibit the DUBs, consequently suppressing cell proliferation, and can be modulated as an approach toward anticancer therapy. The study also warrants the need for future work to investigate the effect of functionalized AuNPs on DUB on other cancer cell lines both in vitro and in vivo.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Taiwo Hassan Akere
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Swaroop Chakraborty
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Eugenia Valsami-Jones
- School
of Geography, Earth and Environmental Sciences, College of Life and
Environmental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| | - Hanene Ali-Boucetta
- Nanomedicine,
Drug Delivery & Nanotoxicology (NDDN) Lab, School of Pharmacy,
College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, U.K.
| |
Collapse
|
17
|
Demirbas A, Karsli B, Dadi S, Arabacı N, Koca FD, Halici MG, Ocsoy I. Formation of Umbilicaria decussata (Antarctic and Turkey) Extracts Based Nanoflowers with Their Peroxidase Mimic, Dye Degradation and Antimicrobial Properties. Chem Biodivers 2023; 20:e202300090. [PMID: 37172105 DOI: 10.1002/cbdv.202300090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 05/14/2023]
Abstract
This work describes a unique and environmentally friendly approach for creating three-dimensional (3D) organic-inorganic flower shaped hybrid nanostructures called "nanoflower (NF)" by using Umbilicaria decussate (U. decussate) extract and copper ions (Cu2+ ). U. decussate species were collected from certain place in Antarctic and Turkey and extraction of each species were completed in methanol and water. The U. decussate extracts were used as organic components and Cu2+ acted as inorganic components for formation of U. decussate extracts based hybrid NFs. We rationally used these NFs as novel nanobiocatalyst and antimicrobial agents. These NFs exhibited peroxidase mimic, dye degradation and antimicrobial properties. The NFs were characterized with various techniques. For instance, the morphologies of the NFs were monitored by scanning electron microscope (SEM), presence of elements in the NFs were presented using Energy Dispersive X-Ray Analysis (EDX). Fourier-transform infrared spectroscopy (FT-IR) was used to elucidate corresponding bending and stretching of bonds in the NFs. The NFs acted as effective Fenton agents in the presence of hydrogen peroxide, and we demonstrated their peroxidase-like activity against guaiacol, dye degradation property towards malachite green and antimicrobial activity for Aeromonas hydrophila, Aeromonas sobria, Escherichia coli, Salmonella enterica and Staphylococcus aureus.
Collapse
Affiliation(s)
- Ayse Demirbas
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Seafood Processing and Technology, Rize, Turkey
| | - Baris Karsli
- Recep Tayyip Erdogan University, Faculty of Fisheries, Department of Seafood Processing and Technology, Rize, Turkey
| | - Seyma Dadi
- Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, Kayseri, 38039, Turkey
| | - Nihan Arabacı
- Department of Biology, Faculty of Arts and Sciences, Çukurova University, Adana, Turkey
| | - Fatih Dogan Koca
- Erciyes University, Faculty of Veterinary Medicine, Department of Aquatic Animal and Diseases, 38039, Kayseri, Turkey
| | - M Gokhan Halici
- Erciyes University, Faculty of Science, Department of Biology, Kayseri, 38039, Turkey
| | - Ismail Ocsoy
- Erciyes University, Faculty of Pharmacy, Department of Analytical Chemistry, Kayseri, 38039, Turkey
| |
Collapse
|
18
|
Li Z, Liu J, Ballard K, Liang C, Wang C. Low-dose albumin-coated gold nanorods induce intercellular gaps on vascular endothelium by causing the contraction of cytoskeletal actin. J Colloid Interface Sci 2023; 649:844-854. [PMID: 37390532 DOI: 10.1016/j.jcis.2023.06.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 06/17/2023] [Accepted: 06/22/2023] [Indexed: 07/02/2023]
Abstract
Cytotoxicity of nanoparticles, typically evaluated by biochemical-based assays, often overlook the cellular biophysical properties such as cell morphology and cytoskeletal actin, which could serve as more sensitive indicators for cytotoxicity. Here, we demonstrate that low-dose albumin-coated gold nanorods (HSA@AuNRs), although being considered noncytotoxic in multiple biochemical assays, can induce intercellular gaps and enhance the paracellular permeability between human aortic endothelial cells (HAECs). The formation of intercellular gaps can be attributed to the changed cell morphology and cytoskeletal actin structures, as validated at the monolayer and single cell levels using fluorescence staining, atomic force microscopy, and super-resolution imaging. Molecular mechanistic study shows the caveolae-mediated endocytosis of HSA@AuNRs induces the calcium influx and activates actomyosin contraction in HAECs. Considering the important roles of endothelial integrity/dysfunction in various physiological/pathological conditions, this work suggests a potential adverse effect of albumin-coated gold nanorods on the cardiovascular system. On the other hand, this work also offers a feasible way to modulate the endothelial permeability, thus promoting drug and nanoparticle delivery across the endothelium.
Collapse
Affiliation(s)
- Zhengqiang Li
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Jinyuan Liu
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Katherine Ballard
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA
| | - Chao Liang
- Department of Anesthesiology, Zhongshan Hospital (Xiamen) Fudan University, Xiamen 361015, China; Department of Anesthesiology, Zhongshan Hospital, Fudan University, Shanghai 200032, China.
| | - Congzhou Wang
- Nanoscience and Biomedical Engineering, South Dakota School of Mines and Technology, 501 E St Joseph Street, Rapid City, SD 57701, USA; BioSystems Networks & Translational Research (BioSNTR), 501 E St Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
19
|
Liu J, Rickel A, Smith S, Hong Z, Wang C. "Non-cytotoxic" doses of metal-organic framework nanoparticles increase endothelial permeability by inducing actin reorganization. J Colloid Interface Sci 2023; 634:323-335. [PMID: 36535168 PMCID: PMC9840705 DOI: 10.1016/j.jcis.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 11/28/2022] [Accepted: 12/05/2022] [Indexed: 12/13/2022]
Abstract
Cytotoxicity of nanoparticles is routinely characterized by biochemical assays such as cell viability and membrane integrity assays. However, these approaches overlook cellular biophysical properties including changes in the actin cytoskeleton, cell stiffness, and cell morphology, particularly when cells are exposed to "non-cytotoxic" doses of nanoparticles. Zeolitic imidazolate framework-8 nanoparticles (ZIF-8 NPs), a member of metal-organic framework family, has received increasing interest in various fields such as environmental and biomedical sciences. ZIF-8 NPs may enter the blood circulation system after unintended oral and inhalational exposure or intended intravenous injection for diagnostic and therapeutic applications, yet the effect of ZIF-8 NPs on vascular endothelial cells is not well understood. Here, the biophysical impact of "non-cytotoxic" dose ZIF-8 NPs on human aortic endothelial cells (HAECs) is investigated. We demonstrate that "non-cytotoxic" doses of ZIF-8 NPs, pre-defined by a series of biochemical assays, can increase the endothelial permeability of HAEC monolayers by causing cell junction disruption and intercellular gap formation, which can be attributed to actin reorganization within adjacent HAECs. Nanomechanical atomic force microscopy and super resolution fluorescence microscopy further confirm that "non-cytotoxic" doses of ZIF-8 NPs change the actin structure and cell morphology of HAECs at the single cell level. Finally, the underlying mechanism of actin reorganization induced by the "non-cytotoxic" dose ZIF-8 NPs is elucidated. Together, this study indicates that the "non-cytotoxic" doses of ZIF-8 NPs, intentionally or unintentionally introduced into blood circulation, may still pose a threat to human health, considering increased endothelial permeability is essential to the progression of a variety of diseases. From a broad view of cytotoxicity evaluation, it is important to consider the biophysical properties of cells, since they can serve as novel and more sensitive markers to assess nanomaterial's cytotoxicity.
Collapse
Affiliation(s)
- Jinyuan Liu
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Alex Rickel
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Steve Smith
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA
| | - Zhongkui Hong
- Biomedical Engineering, University of South Dakota, 4800 N Career Avenue, Sioux Falls, SD 57107, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA; Mechanical Engineering, Texas Tech University, 805 Boston Ave, Lubbock, TX 79409, USA.
| | - Congzhou Wang
- Nanoscience and Nanoengineering, South Dakota School of Mines and Technology, 501 East Saint Joseph Street, Rapid City, SD 57701, USA; BioSystems, Networks & Translational Research (BioSNTR), 501 East Saint Joseph Street, Rapid City, SD 57701, USA.
| |
Collapse
|
20
|
Furxhi I, Bengalli R, Motta G, Mantecca P, Kose O, Carriere M, Haq EU, O’Mahony C, Blosi M, Gardini D, Costa A. Data-Driven Quantitative Intrinsic Hazard Criteria for Nanoproduct Development in a Safe-by-Design Paradigm: A Case Study of Silver Nanoforms. ACS APPLIED NANO MATERIALS 2023; 6:3948-3962. [PMID: 36938492 PMCID: PMC10012170 DOI: 10.1021/acsanm.3c00173] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 01/20/2023] [Indexed: 06/18/2023]
Abstract
The current European (EU) policies, that is, the Green Deal, envisage safe and sustainable practices for chemicals, which include nanoforms (NFs), at the earliest stages of innovation. A theoretically safe and sustainable by design (SSbD) framework has been established from EU collaborative efforts toward the definition of quantitative criteria in each SSbD dimension, namely, the human and environmental safety dimension and the environmental, social, and economic sustainability dimensions. In this study, we target the safety dimension, and we demonstrate the journey toward quantitative intrinsic hazard criteria derived from findable, accessible, interoperable, and reusable data. Data were curated and merged for the development of new approach methodologies, that is, quantitative structure-activity relationship models based on regression and classification machine learning algorithms, with the intent to predict a hazard class. The models utilize system (i.e., hydrodynamic size and polydispersity index) and non-system (i.e., elemental composition and core size)-dependent nanoscale features in combination with biological in vitro attributes and experimental conditions for various silver NFs, functional antimicrobial textiles, and cosmetics applications. In a second step, interpretable rules (criteria) followed by a certainty factor were obtained by exploiting a Bayesian network structure crafted by expert reasoning. The probabilistic model shows a predictive capability of ≈78% (average accuracy across all hazard classes). In this work, we show how we shifted from the conceptualization of the SSbD framework toward the realistic implementation with pragmatic instances. This study reveals (i) quantitative intrinsic hazard criteria to be considered in the safety aspects during synthesis stage, (ii) the challenges within, and (iii) the future directions for the generation and distillation of such criteria that can feed SSbD paradigms. Specifically, the criteria can guide material engineers to synthesize NFs that are inherently safer from alternative nanoformulations, at the earliest stages of innovation, while the models enable a fast and cost-efficient in silico toxicological screening of previously synthesized and hypothetical scenarios of yet-to-be synthesized NFs.
Collapse
Affiliation(s)
- Irini Furxhi
- Transgero
Ltd, Limerick V42V384, Ireland
- Department
of Accounting and Finance, Kemmy Business School, University of Limerick, Limerick V94T9PX, Ireland
| | - Rossella Bengalli
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Giulia Motta
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Paride Mantecca
- Department
of Earth and Environmental Sciences, University
of Milano-Bicocca, Piazza
della Scienza 1, Milano 20126, Italy
| | - Ozge Kose
- Univ.
Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Marie Carriere
- Univ.
Grenoble Alpes, CEA, CNRS, Grenoble INP, IRIG, SYMMES, Grenoble 38000, France
| | - Ehtsham Ul Haq
- Department
of Physics, and Bernal Institute, University
of Limerick, Limerick V94TC9PX, Ireland
| | - Charlie O’Mahony
- Department
of Physics, and Bernal Institute, University
of Limerick, Limerick V94TC9PX, Ireland
| | - Magda Blosi
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| | - Davide Gardini
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| | - Anna Costa
- Istituto
di Scienza e Tecnologia dei Materiali Ceramici (CNR-ISTEC), Via Granarolo, 64, Faenza 48018, Ravenna, Italy
| |
Collapse
|
21
|
Bessa MJ, Brandão F, Rosário F, Moreira L, Reis AT, Valdiglesias V, Laffon B, Fraga S, Teixeira JP. Assessing the in vitro toxicity of airborne (nano)particles to the human respiratory system: from basic to advanced models. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART B, CRITICAL REVIEWS 2023; 26:67-96. [PMID: 36692141 DOI: 10.1080/10937404.2023.2166638] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Several studies have been conducted to address the potential adverse health risks attributed to exposure to nanoscale materials. While in vivo studies are fundamental for identifying the relationship between dose and occurrence of adverse effects, in vitro model systems provide important information regarding the mechanism(s) of action at the molecular level. With a special focus on exposure to inhaled (nano)particulate material toxicity assessment, this review provides an overview of the available human respiratory models and exposure systems for in vitro testing, advantages, limitations, and existing investigations using models of different complexity. A brief overview of the human respiratory system, pathway and fate of inhaled (nano)particles is also presented.
Collapse
Affiliation(s)
- Maria João Bessa
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fátima Brandão
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Instituto de Ciências Biomédicas Abel Salazar (ICBAS), Universidade do Porto, Porto, Portugal
| | - Fernanda Rosário
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Luciana Moreira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Ana Teresa Reis
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| | - Vanessa Valdiglesias
- Departamento de Biología, Universidade da Coruña, Grupo NanoToxGen, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
| | - Blanca Laffon
- Instituto de Investigación Biomédica de A Coruña (INIBIC), A Coruña, Spain
- Departamento de Psicología, Universidade da Coruña, Grupo DICOMOSA, Centro Interdisciplinar de Química e Bioloxía - CICA, A Coruña, Spain
| | - Sónia Fraga
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
- Department of Biomedicine, Unit of Pharmacology and Therapeutics, Faculty of Medicine, University of Porto, Porto, Portugal
| | - João Paulo Teixeira
- Departamento de Saúde Ambiental, Instituto Nacional de Saúde Doutor Ricardo Jorge, Porto, Portugal
- EPIUnit, Instituto de Saúde Pública, Universidade do Porto, Porto, Portugal
- Laboratório para a Investigação Integrativa e Translacional em Saúde Populacional (ITR), Porto, Portugal
| |
Collapse
|
22
|
Ibrahim B, Akere TH, Chakraborty S, Valsami-Jones E, Ali-Boucetta H. Gold Nanoparticles Induced Size Dependent Cytotoxicity on Human Alveolar Adenocarcinoma Cells by Inhibiting the Ubiquitin Proteasome System. Pharmaceutics 2023; 15:pharmaceutics15020432. [PMID: 36839757 PMCID: PMC9961554 DOI: 10.3390/pharmaceutics15020432] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/20/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023] Open
Abstract
Gold nanoparticles (AuNPs) are widely used in biomedicine due to their remarkable therapeutic applications. However, little is known about their cytotoxic effects on the ubiquitin proteasome system (UPS). Herein, the cytotoxicity of different sizes of AuNPs (5, 10, and 80 nm) on the UPS was investigated with a particular focus on deubiquitinating enzymes (DUBs) such as ubiquitin-specific proteases (USP) and ubiquitin carboxyl-terminal hydrolases (UCHL-1) in human alveolar epithelial adenocarcinoma (A549). It was found that all sizes of AuNPs reduced the percentage of viable A549 cells and increased lactate dehydrogenase (LDH) release, measured using the MTT and LDH assays, respectively. Furthermore, the 5 nm AuNPs were found to exhibit greater cytotoxicity than the 10 and 80 nm AuNPs. In addition, apoptosis and necrosis were activated through reactive oxygen species (ROS) generation due to AuNPs exposure. The internalisation of AuNPs in A549 cells increased with increasing particle size (80 > 10 > 5 nm). Interestingly, the expression of USP7, USP8, USP10, and UCHL-1 was significantly (p < 0.001) downregulated upon treatment with 5-30 µg/mL of all the AuNPs sizes compared to control cells. Moreover, the inhibition of these proteins triggered mitochondrial-related apoptosis through the upregulation of poly (ADP-ribose) polymerase (PARP), caspase-3, and caspase-9. Collectively, these results indicate that AuNPs suppress the proliferation of A549 cells and can potentially be used as novel inhibitors of the proteasome.
Collapse
Affiliation(s)
- Bashiru Ibrahim
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Taiwo Hassan Akere
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Swaroop Chakraborty
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
| | - Eugenia Valsami-Jones
- School of Geography, Earth and Environmental Sciences, College of Life and Environmental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| | - Hanene Ali-Boucetta
- Nanomedicine, Drug Delivery & Nanotoxicology (NDDN) Laboratory, School of Pharmacy, College of Medical and Dental Sciences, University of Birmingham, Birmingham B15 2TT, UK
- Correspondence: (E.V.-J.); (H.A.-B.)
| |
Collapse
|
23
|
Elje E, Mariussen E, McFadden E, Dusinska M, Rundén-Pran E. Different Sensitivity of Advanced Bronchial and Alveolar Mono- and Coculture Models for Hazard Assessment of Nanomaterials. NANOMATERIALS (BASEL, SWITZERLAND) 2023; 13:407. [PMID: 36770370 PMCID: PMC9921680 DOI: 10.3390/nano13030407] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/03/2023] [Accepted: 01/13/2023] [Indexed: 06/18/2023]
Abstract
For the next-generation risk assessment (NGRA) of chemicals and nanomaterials, new approach methodologies (NAMs) are needed for hazard assessment in compliance with the 3R's to reduce, replace and refine animal experiments. This study aimed to establish and characterize an advanced respiratory model consisting of human epithelial bronchial BEAS-2B cells cultivated at the air-liquid interface (ALI), both as monocultures and in cocultures with human endothelial EA.hy926 cells. The performance of the bronchial models was compared to a commonly used alveolar model consisting of A549 in monoculture and in coculture with EA.hy926 cells. The cells were exposed at the ALI to nanosilver (NM-300K) in the VITROCELL® Cloud. After 24 h, cellular viability (alamarBlue assay), inflammatory response (enzyme-linked immunosorbent assay), DNA damage (enzyme-modified comet assay), and chromosomal damage (cytokinesis-block micronucleus assay) were measured. Cytotoxicity and genotoxicity induced by NM-300K were dependent on both the cell types and model, where BEAS-2B in monocultures had the highest sensitivity in terms of cell viability and DNA strand breaks. This study indicates that the four ALI lung models have different sensitivities to NM-300K exposure and brings important knowledge for the further development of advanced 3D respiratory in vitro models for the most reliable human hazard assessment based on NAMs.
Collapse
Affiliation(s)
- Elisabeth Elje
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Molecular Medicine, Institute of Basic Medical Sciences, University of Oslo, 0372 Oslo, Norway
| | - Espen Mariussen
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
- Department of Air Quality and Noise, Norwegian Institute of Public Health, 0456 Oslo, Norway
| | - Erin McFadden
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Maria Dusinska
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| | - Elise Rundén-Pran
- Health Effects Laboratory, Department for Environmental Chemistry, NILU—Norwegian Institute for Air Research, 2007 Kjeller, Norway
| |
Collapse
|
24
|
Diversified component incorporated hybrid nanoflowers: A versatile material for biosensing and biomedical applications. KOREAN J CHEM ENG 2023. [DOI: 10.1007/s11814-022-1292-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
25
|
Zhang M, Zhou Y, Wu B, Lu C, Quan G, Huang Z, Wu C, Pan X. An oxygen-generating metal organic framework nanoplatform as a “synergy motor” for extricating dilemma over photodynamic therapy. MATERIALS ADVANCES 2023; 4:5420-5430. [DOI: 10.1039/d3ma00382e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/25/2024]
Abstract
Photodynamic therapy (PDT) combined with metal organic frameworks (MOFs) addresses current obstacles.
Collapse
Affiliation(s)
- Meihong Zhang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Yixian Zhou
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Biyuan Wu
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| | - Chao Lu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Guilan Quan
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Zhengwei Huang
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Chuanbin Wu
- College of Pharmacy, Jinan University, Guangzhou 510632, P. R. China
| | - Xin Pan
- College of Pharmacy, Sun Yat-sen University, Guangzhou 510275, P. R. China
| |
Collapse
|
26
|
Alimardani V, Sadat Abolmaali S, Yousefi G, Hossein Nowroozzadeh M, Mohammad Tamaddon A. In-situ nanomicelle forming microneedles of poly NIPAAm-b-poly glutamic acid for trans-scleral delivery of dexamethasone. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.11.072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
27
|
van den Berg AET, Plantinga M, Vethaak D, Adriaans KJ, Bol-Schoenmakers M, Legler J, Smit JJ, Pieters RHH. Environmentally weathered polystyrene particles induce phenotypical and functional maturation of human monocyte-derived dendritic cells. J Immunotoxicol 2022; 19:125-133. [PMID: 36422989 DOI: 10.1080/1547691x.2022.2143968] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Micro- and nanoplastics (MNP) are ubiquitously present in the environment due to their high persistence and bioaccumulative properties. Humans get exposed to MNP via various routes and consequently, they will encounter dendritic cells (DC) which are antigen-presenting cells involved in regulating immune responses. The consequences of DC exposure to MNP are an important, yet understudied, cause of concern. Therefore, this study aimed to assess the uptake and effect of MNP in vitro by exposing human monocyte-derived dendritic cells (MoDC) to virgin and environmentally weathered polystyrene (PS) particles of different sizes (0.2, 1, and 10 µm), at different concentrations ranging from 1 to 100 µg/ml. The effects of these particles were examined by measuring co-stimulatory surface marker (i.e. CD83 and CD86) expression. In addition, T-cell proliferation was measured via a mixed-leukocyte reaction (MLR) assay. The results showed that MoDC were capable of absorbing PS particles, and this was facilitated by pre-incubation in heat-inactivated (HI) plasma. Furthermore, depending on their size, weathered PS particles in particular caused increased expression of CD83 and CD86 on MoDC. Lastly, weathered 0.2 µm PS particles were able to functionally activate MoDC, leading to an increase in T-cell activation. These in vitro data suggest that, depending on their size, weathered PS particles might act as an immunostimulating adjuvant, possibly leading to T-cell sensitization.
Collapse
Affiliation(s)
| | - Maud Plantinga
- Center for Translational Immunology, University Medical Centre Utrecht, Utrecht, The Netherlands
| | - Dick Vethaak
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands.,Department of Environment and Health, Vrije Universiteit, Amsterdam, The Netherlands
| | - Kas J Adriaans
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | | | - Juliette Legler
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Joost J Smit
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| | - Raymond H H Pieters
- Institute for Risk Assessment Sciences, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
28
|
Elkomy MH, Ali AA, Eid HM. Chitosan on the surface of nanoparticles for enhanced drug delivery: A comprehensive review. J Control Release 2022; 351:923-940. [DOI: 10.1016/j.jconrel.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 11/26/2022]
|
29
|
Gudkov SV, Serov DA, Astashev ME, Semenova AA, Lisitsyn AB. Ag 2O Nanoparticles as a Candidate for Antimicrobial Compounds of the New Generation. Pharmaceuticals (Basel) 2022; 15:ph15080968. [PMID: 36015116 PMCID: PMC9415021 DOI: 10.3390/ph15080968] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 07/29/2022] [Accepted: 08/04/2022] [Indexed: 12/16/2022] Open
Abstract
Antibiotic resistance in microorganisms is an important problem of modern medicine which can be solved by searching for antimicrobial preparations of the new generation. Nanoparticles (NPs) of metals and their oxides are the most promising candidates for the role of such preparations. In the last few years, the number of studies devoted to the antimicrobial properties of silver oxide NPs have been actively growing. Although the total number of such studies is still not very high, it is quickly increasing. Advantages of silver oxide NPs are the relative easiness of production, low cost, high antibacterial and antifungal activities and low cytotoxicity to eukaryotic cells. This review intends to provide readers with the latest information about the antimicrobial properties of silver oxide NPs: sensitive organisms, mechanisms of action on microorganisms and further prospects for improving the antimicrobial properties.
Collapse
Affiliation(s)
- Sergey V. Gudkov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
- Correspondence:
| | - Dmitriy A. Serov
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Maxim E. Astashev
- Prokhorov General Physics Institute of the Russian Academy of Sciences, 119991 Moscow, Russia
| | - Anastasia A. Semenova
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| | - Andrey B. Lisitsyn
- V. M. Gorbatov Federal Research Center for Food Systems of Russian Academy of Sciences, 109316 Moscow, Russia
| |
Collapse
|
30
|
Sun BK, Wang RY, Li B, Fan X, Zhou Y, Gu B, Yan YY. Rapid identification of polypeptide from carbapenem-resistant and susceptible Escherichia coli via Orbitrap-MS and pattern recognition analyses. Chem Biodivers 2022; 19:e202200118. [PMID: 35925667 DOI: 10.1002/cbdv.202200118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 08/03/2022] [Indexed: 11/10/2022]
Abstract
A rapid and accurate analytical method was established to identify CREC and CSEC. Orbitrap-MS was used to detect the polypeptide of CREC and CSEC strains, and MS data were analyzed by pattern recognition analyses such as hierarchical cluster analysis (HCA), principal component analysis (PCA), partial least squares discriminant analysis (PLS-DA), and orthogonal partial least squares discriminant analysis (OPLS-DA). HCA based on the farthest distance method could well distinguish the two types of E. coli, and the cophenetic correlation coefficient of the farthest distance method was 0.901. Comparing the results of PCA, PLS-DA, and OPLS-DA, OPLS-DA exhibited the highest accuracy in predicting the CREC and CSEC strains. A total of 26 compounds were identified, and six of the compounds were the highly significant difference between the two types of strains. MS combined with pattern recognition can achieve a more comprehensive and efficient statistical analysis of complex biological samples.
Collapse
Affiliation(s)
- Bing-Kang Sun
- China University of Mining and Technology, Low Carbon Energy Institute, No. 1, University Road, Xuzhou, CHINA
| | - Rui-Yu Wang
- China University of Mining and Technology, Low Carbon Energy Institute, No. 1, University Road, Xuzhou, CHINA
| | - Bei Li
- China University of Mining and Technology, Low Carbon Energy Institute, No. 1, University Road, Xuzhou, CHINA
| | - Xing Fan
- Shandong University of Science and Technology, 579 Qianwangang Road, 266590, Qingdao, CHINA
| | - Yuan Zhou
- Xuzhou Medical University, College of Medical Technology, 209 Tongshan Road, Xuzhou, CHINA
| | - Bing Gu
- Xuzhou Medical University, College of Medical Technology, No. 209 Tongshan Road, Xuzhou, CHINA
| | - Yang-Yang Yan
- China University of Mining and Technology, Low Carbon Energy Institute, No. 1, University Road, Xuzhou, CHINA
| |
Collapse
|
31
|
Synthesis of highly swellable silver nanocomposite ionic double network (Ag-IDN) hydrogels and study of their characteristic properties. Polym Bull (Berl) 2022. [DOI: 10.1007/s00289-021-03816-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
32
|
Lung Models to Evaluate Silver Nanoparticles’ Toxicity and Their Impact on Human Health. NANOMATERIALS 2022; 12:nano12132316. [PMID: 35808152 PMCID: PMC9268743 DOI: 10.3390/nano12132316] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/25/2022] [Accepted: 06/27/2022] [Indexed: 12/17/2022]
Abstract
Nanomaterials (NMs) solve specific problems with remarkable results in several industrial and scientific areas. Among NMs, silver nanoparticles (AgNPs) have been extensively employed as drug carriers, medical diagnostics, energy harvesting devices, sensors, lubricants, and bioremediation. Notably, they have shown excellent antimicrobial, anticancer, and antiviral properties in the biomedical field. The literature analysis shows a selective cytotoxic effect on cancer cells compared to healthy cells, making its potential application in cancer treatment evident, increasing the need to study the potential risk of their use to environmental and human health. A large battery of toxicity models, both in vitro and in vivo, have been established to predict the harmful effects of incorporating AgNPs in these numerous areas or those produced due to involuntary exposure. However, these models often report contradictory results due to their lack of standardization, generating controversy and slowing the advances in nanotoxicology research, fundamentally by generalizing the biological response produced by the AgNP formulations. This review summarizes the last ten years’ reports concerning AgNPs’ toxicity in cellular respiratory system models (e.g., mono-culture models, co-cultures, 3D cultures, ex vivo and in vivo). In turn, more complex cellular models represent in a better way the physical and chemical barriers of the body; however, results should be used carefully so as not to be misleading. The main objective of this work is to highlight current models with the highest physiological relevance, identifying the opportunity areas of lung nanotoxicology and contributing to the establishment and strengthening of specific regulations regarding health and the environment.
Collapse
|
33
|
Wang XJ, Cheng J, Zhang LY, Zhang JG. Self-assembling peptides-based nano-cargos for targeted chemotherapy and immunotherapy of tumors: recent developments, challenges, and future perspectives. Drug Deliv 2022; 29:1184-1200. [PMID: 35403517 PMCID: PMC9004497 DOI: 10.1080/10717544.2022.2058647] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Affiliation(s)
- Xue-Jun Wang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jian Cheng
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| | - Le-Yi Zhang
- Department of General Surgery, Chun’an First People’s Hospital (Zhejiang Provincial People’s Hospital Chun’an Branch), Hangzhou, China
| | - Jun-Gang Zhang
- General Surgery, Cancer Center, Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital, Hangzhou Medical College), Hangzhou, China
- Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People’s Hospital (Affiliated People’s Hospital of Hangzhou Medical College), Hangzhou, China
| |
Collapse
|
34
|
Jeong GJ, Castels H, Kang I, Aliya B, Jang YC. Nanomaterial for Skeletal Muscle Regeneration. Tissue Eng Regen Med 2022; 19:253-261. [PMID: 35334091 PMCID: PMC8971233 DOI: 10.1007/s13770-022-00446-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/15/2022] [Accepted: 02/20/2022] [Indexed: 12/12/2022] Open
Abstract
Skeletal muscle has an innate regenerative capacity to restore their structure and function following acute damages and injuries. However, in congenital muscular dystrophies, large volumetric muscle loss, cachexia, or aging, the declined regenerative capacity of skeletal muscle results in muscle wasting and functional impairment. Recent studies indicate that muscle mass and function are closely correlated with morbidity and mortality due to the large volume and location of skeletal muscle. However, the options for treating neuromuscular disorders are limited. Biomedical engineering strategies such as nanotechnologies have been implemented to address this issue.In this review, we focus on recent studies leveraging nano-sized materials for regeneration of skeletal muscle. We look at skeletal muscle pathologies and describe various proof-of-concept and pre-clinical studies that have used nanomaterials, with a focus on how nano-sized materials can be used for skeletal muscle regeneration depending on material dimensionality.Depending on the dimensionality of nano-sized materials, their application have been changed because of their different physical and biochemical properties.Nanomaterials have been spotlighted as a great candidate for addressing the unmet needs of regenerative medicine. Nanomaterials could be applied to several types of tissues and diseases along with the unique characteristics of nanomaterials. However, when confined to muscle tissue, the targets of nanomaterial applications are limited and can be extended in future research.
Collapse
Affiliation(s)
- Gun-Jae Jeong
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Hannah Castels
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Innie Kang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Berna Aliya
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA
| | - Young C Jang
- Department of Orthopedics, Emory Musculoskeletal Institute, Emory School of Medicine, Atlanta, GA, 30329, USA.
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Emory School of Medicine, Atlanta, GA, 30332, USA.
- Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
- School of Biological Sciences, Georgia Institute of Technology, Atlanta, GA, 30332, USA.
| |
Collapse
|
35
|
Domanico M, Fukuto A, Tran LM, Bustamante JM, Edwards PC, Pinkerton KE, Thomasy SM, Van Winkle LS. Cytotoxicity of 2D engineered nanomaterials in pulmonary and corneal epithelium. NANOIMPACT 2022; 26:100404. [PMID: 35560287 PMCID: PMC9205178 DOI: 10.1016/j.impact.2022.100404] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/18/2022] [Accepted: 04/26/2022] [Indexed: 05/28/2023]
Abstract
Two-dimensional (2D) engineered nanomaterials are widely used in consumer and industrial goods due to their unique chemical and physical characteristics. Engineered nanomaterials are incredibly small and capable of being aerosolized during manufacturing, with the potential for biological interaction at first-contact sites such as the eye and lung. The unique properties of 2D nanomaterials that make them of interest to many industries may also cause toxicity towards epithelial cells. Using murine and human respiratory epithelial cell culture models, we tested the cytotoxicity of eight 2D engineered nanomaterials: graphene (110 nm), graphene oxide (2 um), graphene oxide (400 nm), reduced graphene oxide (2 um), reduced graphene oxide (400 nm), partially reduced graphene oxide (400 nm), molybdenum disulfide (400 nm), and hexagonal boron nitride (150 nm). Non-graphene nanomaterials were also tested in human corneal epithelial cells for ocular epithelial cytotoxicity. Hexagonal boron nitride was found to be cytotoxic in mouse tracheal, human alveolar, and human corneal epithelial cells. Hexagonal boron nitride was also tested for inhibition of wound healing in alveolar epithelial cells; no inhibition was seen at sub-cytotoxic doses. Nanomaterials should be considered with care before use, due to specific regional cytotoxicity that also varies by cell type. Supported by U01ES027288 and T32HL007013 and T32ES007059.
Collapse
Affiliation(s)
- Morgan Domanico
- Center for Health and the Environment, University of California-Davis, Davis, CA, USA
| | - Atsuhiko Fukuto
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA; Department of Ophthalmology and Visual Sciences, Graduate School of Biomedical Sciences, Hiroshima University, Hiroshima, Japan
| | - Lisa M Tran
- Center for Health and the Environment, University of California-Davis, Davis, CA, USA
| | | | - Patricia C Edwards
- Center for Health and the Environment, University of California-Davis, Davis, CA, USA
| | - Kent E Pinkerton
- Center for Health and the Environment, University of California-Davis, Davis, CA, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA
| | - Sara M Thomasy
- Department of Surgical and Radiological Sciences, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA; Department of Ophthalmology & Vision Science, School of Medicine, University of California-Davis, Davis, CA, USA
| | - Laura S Van Winkle
- Center for Health and the Environment, University of California-Davis, Davis, CA, USA; Department of Anatomy, Physiology and Cell Biology, School of Veterinary Medicine, University of California-Davis, Davis, CA, USA.
| |
Collapse
|
36
|
Aimonen K, Imani M, Hartikainen M, Suhonen S, Vanhala E, Moreno C, Rojas OJ, Norppa H, Catalán J. Surface functionalization and size modulate the formation of reactive oxygen species and genotoxic effects of cellulose nanofibrils. Part Fibre Toxicol 2022; 19:19. [PMID: 35296350 PMCID: PMC8925132 DOI: 10.1186/s12989-022-00460-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Accepted: 03/02/2022] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Cellulose nanofibrils (CNFs) have emerged as a sustainable and environmentally friendly option for a broad range of applications. The fibrous nature and high biopersistence of CNFs call for a thorough toxicity assessment, but it is presently unclear which physico-chemical properties could play a role in determining the potential toxic response to CNF. Here, we assessed whether surface composition and size could modulate the genotoxicity of CNFs in human bronchial epithelial BEAS-2B cells. We examined three size fractions (fine, medium and coarse) of four CNFs with different surface chemistry: unmodified (U-CNF) and functionalized with 2,2,6,6-tetramethyl-piperidin-1-oxyl (TEMPO) (T-CNF), carboxymethyl (C-CNF) and epoxypropyltrimethylammonium chloride (EPTMAC) (E-CNF). In addition, the source fibre was also evaluated as a non-nanosized material. RESULTS The presence of the surface charged groups in the functionalized CNF samples resulted in higher amounts of individual nanofibrils and less aggregation compared with the U-CNF. T-CNF was the most homogenous, in agreement with its high surface group density. However, the colloidal stability of all the CNF samples dropped when dispersed in cell culture medium, especially in the case of T-CNF. CNF was internalized by a minority of BEAS-2B cells. No remarkable cytotoxic effects were induced by any of the cellulosic materials. All cellulosic materials, except the medium fraction of U-CNF, induced a dose-dependent intracellular formation of reactive oxygen species (ROS). The fine fraction of E-CNF, which induced DNA damage (measured by the comet assay) and chromosome damage (measured by the micronucleus assay), and the coarse fraction of C-CNF, which produced chromosome damage, also showed the most effective induction of ROS in their respective size fractions. CONCLUSIONS Surface chemistry and size modulate the in vitro intracellular ROS formation and the induction of genotoxic effects by fibrillated celluloses. One cationic (fine E-CNF) and one anionic (coarse C-CNF) CNF showed primary genotoxic effects, possibly partly through ROS generation. However, the conclusions cannot be generalized to all types of CNFs, as the synthesis process and the dispersion method used for testing affect their physico-chemical properties and, hence, their toxic effects.
Collapse
Affiliation(s)
- Kukka Aimonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Monireh Imani
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
| | - Mira Hartikainen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Satu Suhonen
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Esa Vanhala
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Carlos Moreno
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain
| | - Orlando J Rojas
- Department of Bioproducts and Biosystems, Aalto University, Espoo, Finland
- Bioproducts Institute, Departments of Chemical and Biological Engineering, Chemistry and Wood Science, The University of British Columbia, Vancouver, BC, Canada
| | - Hannu Norppa
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland
| | - Julia Catalán
- Finnish Institute of Occupational Health, Työterveyslaitos, Box 40, 00032, Helsinki, Finland.
- Department of Anatomy, Embryology and Genetics, University of Zaragoza, Zaragoza, Spain.
| |
Collapse
|
37
|
Sozer SC, Akdogan Y. Characterization of Water Solubility and Binding of Spin Labeled Drugs in the Presence of Albumin Nanoparticles and Proteins by Electron Paramagnetic Resonance Spectroscopy. ChemistrySelect 2022. [DOI: 10.1002/slct.202103890] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Sumeyra C. Sozer
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| | - Yasar Akdogan
- Materials Science and Engineering Department Izmir Institute of Technology Urla Izmir Turkey
| |
Collapse
|
38
|
Boyles M, Murphy F, Mueller W, Wohlleben W, Jacobsen NR, Braakhuis H, Giusti A, Stone V. Development of a standard operating procedure for the DCFH 2-DA acellular assessment of reactive oxygen species produced by nanomaterials. Toxicol Mech Methods 2022; 32:439-452. [PMID: 35086424 DOI: 10.1080/15376516.2022.2029656] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Improved strategies are required for testing nanomaterials (NMs) to make hazard and risk assessment more efficient and sustainable. Including reduced reliance on animal models, without decreasing the level of human health protection. Acellular detection of reactive oxygen species (ROS) may be useful as a screening assay to prioritize NMs of high concern. To improve reliability and reproducibility, and minimize uncertainty, a standard operating procedure (SOP) has been developed for the detection of ROS using the 2',7'-dichlorodihydrofluorescein diacetate (DCFH2-DA) assay. The SOP has undergone an inter- and intra-laboratory comparison, to evaluate robustness, reliability, and reproducibility, using representative materials (ZnO, CuO, Mn2O3, and BaSO4 NMs), and a number of calibration tools to normalize data. The SOP includes an NM positive control (nanoparticle carbon black (NPCB)), a chemical positive control (SIN-1), and a standard curve of fluorescein fluorescence. The interlaboratory comparison demonstrated that arbitrary fluorescence units show high levels of partner variability; however, data normalization improved variability. With statistical analysis, it was shown that the SIN-1 positive control provided an extremely high level of reliability and reproducibility as a positive control and as a normalization tool. The NPCB positive control can be used with a relatively high level of reproducibility, and in terms of the representative materials, the reproducibility CuO induced-effects was better than for Mn2O3. Using this DCFH2-DA acellular assay SOP resulted in a robust intra-laboratory reproduction of ROS measurements from all NMs tested, while effective reproduction across different laboratories was also demonstrated; the effectiveness of attaining reproducibility within the interlaboratory assessment was particle-type-specific.
Collapse
Affiliation(s)
| | - Fiona Murphy
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| | | | - Wendel Wohlleben
- Department of Material Physics and Department of Experimental Toxicology & Ecology, BASF SE, Ludwigshafen, Germany
| | | | - Hedwig Braakhuis
- National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | - Anna Giusti
- Department of Chemical and Product Safety, German Federal Institute for Risk Assessment (BfR), Berlin, Germany
| | - Vicki Stone
- NanoSafety Group, Heriot-Watt University, Edinburgh, UK
| |
Collapse
|
39
|
Lambhiya S, Patel G, Banerjee UC. Immobilization of transaminase from Bacillus licheniformis on copper phosphate nanoflowers and its potential application in the kinetic resolution of RS-α-methyl benzyl amine. BIORESOUR BIOPROCESS 2021; 8:126. [PMID: 38650298 PMCID: PMC10992165 DOI: 10.1186/s40643-021-00474-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2021] [Accepted: 11/28/2021] [Indexed: 11/10/2022] Open
Abstract
This study reports the isolation and partial purification of transaminase from the wild species of Bacillus licheniformis. Semi-purified transaminase was immobilized on copper nanoflowers (NFs) synthesized through sonochemical method and explored it as a nanobiocatalyst. The conditions for the synthesis of transaminase NFs [TA@Cu3(PO4)2NF] were optimized. Synthesized NFs revealed the protein loading and activity yield-60 ± 5% and 70 ± 5%, respectively. The surface morphology of the synthesized hybrid NFs was examined by scanning electron microscopy (SEM) and transmission electron microscopy (TEM), which revealed the average size to be around 1 ± 0.5 μm. Fourier-transform infrared (FTIR) was used to confirm the presence of the enzyme inside the immobilized matrix. In addition, circular dichroism and florescence spectroscopy were also used to confirm the integrity of the secondary and tertiary structures of the protein in the immobilized material. The transaminase hybrid NFs exhibited enhanced kinetic properties and stability over the free enzyme and revealed high reusability. Furthermore, the potential application of the immobilized transaminase hybrid NFs was demonstrated in the resolution of racemic α-methyl benzylamine.
Collapse
Affiliation(s)
- Shraddha Lambhiya
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
| | - Gopal Patel
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India
- Sagar Institute of Pharmacy and Technology, Gandhi Nagar Campus Opposite International Airport, Bhopal, 462036, MP, India
| | - Uttam Chand Banerjee
- Department of Pharmaceutical Technology (Biotechnology), National Institute of Pharmaceutical Education and Research, Sector-67, S.A.S. Nagar, 160062, Punjab, India.
- Departments of Biotechnology, Amity University, Sector 82A, IT City, International Airport Road, Mohali, 5300016, India.
| |
Collapse
|
40
|
Fatima SW, Imtiyaz K, Alam Rizvi MM, Khare SK. Microbial transglutaminase nanoflowers as an alternative nanomedicine for breast cancer theranostics. RSC Adv 2021; 11:34613-34630. [PMID: 35494746 PMCID: PMC9042677 DOI: 10.1039/d1ra04513j] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Accepted: 10/18/2021] [Indexed: 12/24/2022] Open
Abstract
Breast cancer is the most common malignancy among women. With the aim of decreasing the toxicity of conventional breast cancer treatments, an alternative that could provide appropriate and effective drug utilization was envisioned. Thus, we contemplated and compared the in vitro effects of microbial transglutaminase nanoflowers (MTGase NFs) on breast cancer cells (MCF-7). Transglutaminase is an important regulatory enzyme acting as a site-specific cross-linker for proteins. With the versatility of MTGase facilitating the nanoflower formation by acting as molecular glue, it was demonstrated to have anti-cancer properties. The rational drug design based on a transglutaminase enzyme-assisted approach led to the uniform shape of petals in these nanoflowers, which had the capacity to act directly as an anti-cancer drug. Herein, we report the anti-cancer characteristics portrayed by enzymatic MTGase NFs, which are biocompatible in nature. This study demonstrated the prognostic and therapeutic significance of MTGase NFs as a nano-drug in breast cancer treatment. The results on MCF-7 cells showed a significantly improved in vitro therapeutic efficacy. MTGase NFs were able to exhibit inhibitory effects on cell viability (IC50-8.23 μg ml−1) within 24 h of dosage. To further substantiate its superior anti-proliferative role, the clonogenic potential was measured to be 62.8%, along with migratory inhibition of cells (3.76-fold change). Drastic perturbations were induced (4.61-fold increase in G0/G1 phase arrest), pointed towards apoptotic induction with a 58.9% effect. These results validated the role of MTGase NFs possessing a cytotoxic nature in mitigating breast cancer. Thus, MTGase bestows distinct functionality towards therapeutic nano-modality, i.e., nanoflowers, which shows promise in cancer treatment. Development of a novel therapeutic nano-modality in the form of enzymatic transglutaminase nanoflowers; endowed with anti-cancerous action against breast cancers.![]()
Collapse
Affiliation(s)
- Syeda Warisul Fatima
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| | - Khalid Imtiyaz
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Mohammad M Alam Rizvi
- Genome Biology Laboratory, Department of Biosciences, Jamia Millia Islamia New Delhi-110025 India
| | - Sunil K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi New Delhi-110016 India +91-112659 6533
| |
Collapse
|
41
|
Nicholas TP, Boyes WK, Scoville DK, Workman TW, Kavanagh TJ, Altemeier WA, Faustman EM. The effects of gene × environment interactions on silver nanoparticle toxicity in the respiratory system: An adverse outcome pathway. WILEY INTERDISCIPLINARY REVIEWS. NANOMEDICINE AND NANOBIOTECHNOLOGY 2021; 13:e1708. [PMID: 33768701 DOI: 10.1002/wnan.1708] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 01/07/2021] [Accepted: 01/30/2021] [Indexed: 11/07/2022]
Abstract
The Adverse Outcome Pathway (AOP) framework is serving as a basis to integrate new data streams in order to enhance the power of predictive toxicology. AOP development for engineered nanomaterials (ENM), including silver nanoparticles (AgNP), is currently lagging behind other chemicals of regulatory interest due to our limited understanding of the mechanism by which underlying genetics or diseases directly modify host response to AgNP exposures. This also highlights the importance of considering the Aggregate Exposure Pathway (AEP) framework, which precedes the AOP framework and outlines source to target site exposure. The AEP and AOP frameworks interface at the target site, where a molecular initiating event (MIE) occurs and is followed by key events (KE) for adverse cellular and organ responses along a biological pathway and ends with the adverse organism response. The primary goal of this study is to use AgNP to interrogate the AEP-AOP framework by organizing and integrating in vitro dose-response data and in vivo exposure-response data from previous studies to evaluate the effects of interactions between host genetic and acquired factors, or gene × environment interactions (G × E), on AgNP toxicity in the respiratory system. Using this framework will help us to identify plausible key event relationships (KER) between MIE and adverse organism responses when KE are not measured using the same assay in order to derive future predictive models, guide research, and support development of tools for making risk-based, regulatory decisions on ENM. This article is categorized under: Toxicology and Regulatory Issues in Nanomedicine > Toxicology of Nanomaterials Toxicology and Regulatory Issues in Nanomedicine > Regulatory and Policy Issues in Nanomedicine.
Collapse
Affiliation(s)
- Tyler P Nicholas
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William K Boyes
- Center for Public Health and Environmental Assessment, Office of Research and Development, U.S. Environmental Protection Agency, Research Triangle Park, North Carolina, USA
| | - David K Scoville
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Tomomi W Workman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| | - Terrance J Kavanagh
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - William A Altemeier
- Department of Medicine, Division of Pulmonary, Critical Care, and Sleep Medicine, University of Washington, Seattle, Washington, USA
| | - Elaine M Faustman
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle, Washington, USA
| |
Collapse
|
42
|
Wahab MA, Luming L, Matin MA, Karim MR, Aijaz MO, Alharbi HF, Abdala A, Haque R. Silver Micro-Nanoparticle-Based Nanoarchitectures: Synthesis Routes, Biomedical Applications, and Mechanisms of Action. Polymers (Basel) 2021; 13:2870. [PMID: 34502910 PMCID: PMC8433914 DOI: 10.3390/polym13172870] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 08/23/2021] [Accepted: 08/23/2021] [Indexed: 12/26/2022] Open
Abstract
Silver has become a potent agent that can be effectively applied in nanostructured nanomaterials with various shapes and sizes against antibacterial applications. Silver nanoparticle (Ag NP) based-antimicrobial agents play a major role in different applications, including biomedical applications, as surface treatment and coatings, in chemical and food industries, and for agricultural productivity. Due to advancements in nanoscience and nanotechnology, different methods have been used to prepare Ag NPs with sizes and shapes reducing toxicity for antibacterial applications. Studies have shown that Ag NPs are largely dependent on basic structural parameters, such as size, shape, and chemical composition, which play a significant role in preparing the appropriate formulation for the desired applications. Therefore, this review focuses on the important parameters that affect the surface interaction/state of Ag NPs and their influence on antimicrobial activities, which are essential for designing future applications. The mode of action of Ag NPs as antibacterial agents will also be discussed.
Collapse
Affiliation(s)
- Md Abdul Wahab
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| | - Li Luming
- Institute for Advanced Study, Chengdu University, Chengdu 610106, China;
| | - Md Abdul Matin
- Department of Pharmacy, NUB School of Health Sciences, Northern University Bangladesh, Globe Center, 24 Mirpur Road, Dhaka 1205, Bangladesh;
| | - Mohammad Rezaul Karim
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- K.A. CARE Energy Research and Innovation Center, Riyadh 11451, Saudi Arabia
| | - Mohammad Omer Aijaz
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
| | - Hamad Fahad Alharbi
- Center of Excellence for Research in Engineering Materials (CEREM), Deanship of Scientific Research (DSR), King Saud University, Riyadh 11421, Saudi Arabia; (M.R.K.); (M.O.A.); (H.F.A.)
- Mechanical Engineering Department, College of Engineering, King Saud University, Riyadh 11421, Saudi Arabia
| | - Ahmed Abdala
- Chemical Engineering Program, Texas A&M University at Qatar, Doha POB 23874, Qatar;
| | - Rezwanul Haque
- School of Science, Technology and Engineering, University of the Sunshine Coast, Sippy Downs, QLD 4556, Australia;
| |
Collapse
|
43
|
Lin MHC, Lai PS, Chang LC, Huang WC, Lee MH, Chen KT, Chung CY, Yang JT. Characterization and Optimization of Chitosan-Coated Polybutylcyanoacrylate Nanoparticles for the Transfection-Guided Neural Differentiation of Mouse Induced Pluripotent Stem Cells. Int J Mol Sci 2021; 22:8741. [PMID: 34445447 PMCID: PMC8395893 DOI: 10.3390/ijms22168741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2021] [Revised: 08/07/2021] [Accepted: 08/11/2021] [Indexed: 01/04/2023] Open
Abstract
Gene transfection is a valuable tool for analyzing gene regulation and function, and providing an avenue for the genetic engineering of cells for therapeutic purposes. Though efficient, the potential concerns over viral vectors for gene transfection has led to research in non-viral alternatives. Cationic polyplexes such as those synthesized from chitosan offer distinct advantages such as enhanced polyplex stability, cellular uptake, endo-lysosomal escape, and release, but are limited by the poor solubility and viscosity of chitosan. In this study, the easily synthesized biocompatible and biodegradable polymeric polysorbate 80 polybutylcyanoacrylate nanoparticles (PS80 PBCA NP) are utilized as the backbone for surface modification with chitosan, in order to address the synthetic issues faced when using chitosan alone as a carrier. Plasmid DNA (pDNA) containing the brain-derived neurotrophic factor (BDNF) gene coupled to a hypoxia-responsive element and the cytomegalovirus promotor gene was selected as the genetic cargo for the in vitro transfection-guided neural-lineage specification of mouse induced pluripotent stem cells (iPSCs), which were assessed by immunofluorescence staining. The chitosan-coated PS80 PBCA NP/BDNF pDNA polyplex measured 163.8 ± 1.8 nm and zeta potential measured -34.8 ± 1.8 mV with 0.01% (w/v) high molecular weight chitosan (HMWC); the pDNA loading efficiency reached 90% at a nanoparticle to pDNA weight ratio of 15, which also corresponded to enhanced polyplex stability on the DNA stability assay. The HMWC-PS80 PBCA NP/BDNF pDNA polyplex was non-toxic to mouse iPSCs for up to 80 μg/mL (weight ratio = 40) and enhanced the expression of BDNF when compared with PS80 PBCA NP/BDNF pDNA polyplex. Evidence for neural-lineage specification of mouse iPSCs was observed by an increased expression of nestin, neurofilament heavy polypeptide, and beta III tubulin, and the effects appeared superior when transfection was performed with the chitosan-coated formulation. This study illustrates the versatility of the PS80 PBCA NP and that surface decoration with chitosan enabled this delivery platform to be used for the transfection-guided differentiation of mouse iPSCs.
Collapse
Affiliation(s)
- Martin Hsiu-Chu Lin
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan;
- PhD Programme of Tissue Engineering and Regenerative Medicine, National Chung Hsing University, Taichung 40227, Taiwan
| | - Ping-Shan Lai
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan;
| | - Li-Ching Chang
- Department of Dentistry, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan;
- Department of Nursing, Chang Gung University of Science and Technology, Chia-Yi 61363, Taiwan
| | - Wei-Chao Huang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Ming-Hsueh Lee
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Kuo-Tai Chen
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Chiu-Yen Chung
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
| | - Jen-Tsung Yang
- Department of Neurosurgery, Chang Gung Memorial Hospital, Chia-Yi Branch, Chia-Yi 61363, Taiwan; (M.H.-C.L.); (W.-C.H.); (M.-H.L.); (K.-T.C.)
- College of Medicine, School of Traditional Chinese Medicine, Chang Gung University, Tao-Yuan 33302, Taiwan
| |
Collapse
|
44
|
Zhang P, Yu B, Jin X, Zhao T, Ye F, Liu X, Li P, Zheng X, Chen W, Li Q. Therapeutic Efficacy of Carbon Ion Irradiation Enhanced by 11-MUA-Capped Gold Nanoparticles: An in vitro and in vivo Study. Int J Nanomedicine 2021; 16:4661-4674. [PMID: 34262274 PMCID: PMC8275145 DOI: 10.2147/ijn.s313678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Accepted: 06/07/2021] [Indexed: 12/19/2022] Open
Abstract
PURPOSE Gold nanoparticles (AuNPs) are widely studied as radiosensitizers, but their radiosensitization in carbon ion radiotherapy is unsatisfactory. There is a lack of in vivo data on the radiosensitization of AuNPs under carbon ion irradiation. This study focused on the radiosensitization effect of AuNPs in the mouse melanoma cell line B16-F10 in vitro and in vivo. MATERIALS AND METHODS 11-mercaptoundecanoic acid (11-MUA)-coated gold (Au) nanoparticles (mAuNPs) formulations were prepared and characterized. To verify the radiosensitization effect of mAuNPs, hydroxyl radicals were generated in aqueous solution, and the detection of intracellular reactive oxygen species (ROS) and clone survival were carried out in vitro. The tumor growth rate (TGR) and survival of mice were analyzed to verify the radiosensitization effect of mAuNPs in vivo. The apoptosis of tumor cells was detected, and the expression of key proteins in the apoptosis pathway was verified by immunohistochemistry. RESULTS The intracellular ROS level in B16-F10 cells was enhanced by mAuNPs under carbon ion irradiation. The sensitization rate of mAuNPs was 1.22 with a 10% cell survival rate. Compared with irradiation alone, the inhibitory effect of mAuNPs combined with carbon ion irradiation on tumor growth was 1.94-fold higher, the survival time of mice was prolonged by 1.75-fold, and the number of apoptotic cells was increased by 1.43-fold. The ratio of key proteins Bax and Bcl2 in the apoptosis pathway was up-regulated, and the expression of caspase-3, a key executor of the apoptosis pathway, was up-regulated. CONCLUSION In in vivo and in vitro experiments, mAuNPs showed radiosensitivity to carbon ion irradiation. The sensitization effect of mAuNPs on mice tumor may be achieved by activating the mitochondrial apoptosis pathway and increasing tumor tissue apoptosis. To our best knowledge, the present study is the first in vivo evidence for radiosensitization of mAuNPs in tumor-bearing mice exposed to carbon ion irradiation.
Collapse
Affiliation(s)
- Pengcheng Zhang
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
- The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
- Department of Radiation Oncology, The First Hospital of Lanzhou University, Lanzhou, 730000, People’s Republic of China
| | - Boyi Yu
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiaodong Jin
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Ting Zhao
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Fei Ye
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiongxiong Liu
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Ping Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Xiaogang Zheng
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
| | - Weiqiang Chen
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| | - Qiang Li
- Institute of Modern Physics, Chinese Academy of Sciences; Key Laboratory of Heavy Ion Radiation Biology and Medicine of Chinese Academy of Sciences, Key Laboratory of Basic Research on Heavy Ion Radiation Application in Medicine, Lanzhou, Gansu Province, 730000, People’s Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People’s Republic of China
| |
Collapse
|
45
|
Shahen SM, Mohamed MR, Ali MRK, Samaka RM, Hamdy GM, Talaat RM. Therapeutic potential of targeted-gold nanospheres on collagen-induced arthritis in rats. Clin Exp Pharmacol Physiol 2021; 48:1346-1357. [PMID: 34060659 DOI: 10.1111/1440-1681.13531] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Revised: 05/24/2021] [Accepted: 05/27/2021] [Indexed: 11/29/2022]
Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory autoimmune disease that causes functional disability due to bone destruction and severe joint pain. Current anti-rheumatic treatments develop severe complications and do not provide complete remission. Gold nanoparticles (AuNPs) have garnered attention because of their unique physical and chemical properties. In this study, we have evaluated the therapeutic effects of gold nanospheres (AuNSs) with two different ligands (targeted-nanoparticles) against collagen-induced arthritis (CIA) and compared the outcomes with conventional methotrexate (MTX) and biological (infliximab) treatments. Clinical evaluation was performed by radiographic and histological examinations. The bioaccumulation of AuNSs in vital organs was assessed. The mechanistic studies targeting pro-inflammatory/anti-inflammatory and angiogenic mediators' expressions were performed. Radiographic examination showed that the targeted AuNSs reduced joint space narrowing and bone erosion. Moreover, histopathological examination of rat ankle joints demonstrated that targeted AuNSs reduce bone and cartilage degeneration/inflammation. Gold nanospheres-conjugated with nucleus localized peptide (nuclear membrane-targeted) (AuNSs@NLS) has resolved bone destruction and inflammation compared to gold nanospheres-conjugated at polyethylene glycol (AuNSs@PEG). Although the AuNSs accumulated in different organs in both cases, they did not induce any toxicity or tissue damage. The two different targeted AuNSs significantly suppress inflammatory and angiogenic mediators' expression and induced anti-inflammatory cytokine production, but the AuNSs@NLS had superior therapeutic efficacy. In conclusion, these results suggested that nuclear membrane-targeted AuNSs effectively attenuated arthritis progression without systemic side effects.
Collapse
Affiliation(s)
- Samar M Shahen
- Genetic Engineering and Biotechnology Research Institute (GEBRI), Molecular Biology Department, University of Sadat City (USC, Sadat City, Egypt.,Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Mohamed R Mohamed
- Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Moustafa R K Ali
- Massachusetts Institute of Technology, Biological Engineering Department, Cambridge, MA, USA
| | - Rehab M Samaka
- Faculty of Medicine, Pathology Department, Menoufia University, Shebin El Kom, Egypt
| | - Germine M Hamdy
- Faculty of Science, Biochemistry Department, Ain shams University, Cairo, Egypt
| | - Roba M Talaat
- Genetic Engineering and Biotechnology Research Institute (GEBRI), Molecular Biology Department, University of Sadat City (USC, Sadat City, Egypt
| |
Collapse
|
46
|
Korzuch J, Rak M, Balin K, Zubko M, Głowacka O, Dulski M, Musioł R, Madeja Z, Serda M. Towards water-soluble [60]fullerenes for the delivery of siRNA in a prostate cancer model. Sci Rep 2021; 11:10565. [PMID: 34012024 PMCID: PMC8134426 DOI: 10.1038/s41598-021-89943-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2021] [Accepted: 05/04/2021] [Indexed: 02/05/2023] Open
Abstract
This paper presents two water-soluble fullerene nanomaterials (HexakisaminoC60 and monoglucosamineC60, which is called here JK39) that were developed and synthesized as non-viral siRNA transfection nanosystems. The developed two-step Bingel-Hirsch reaction enables the chemical modification of the fullerene scaffold with the desired bioactive fragments such as D-glucosamine while keeping the crucial positive charged ethylenediamine based malonate. The ESI-MS and 13C-NMR analyses of JK39 confirmed its high Th symmetry, while X-ray photoelectron spectroscopy revealed the presence of nitrogen and oxygen-containing C-O or C-N bonds. The efficiency of both fullerenes as siRNA vehicles was tested in vitro using the prostate cancer cell line DU145 expressing the GFP protein. The HexakisaminoC60 fullerene was an efficient siRNA transfection agent, and decreased the GFP fluorescence signal significantly in the DU145 cells. Surprisingly, the glycofullerene JK39 was inactive in the transfection experiments, probably due to its high zeta potential and the formation of an extremely stable complex with siRNA.
Collapse
Affiliation(s)
- Julia Korzuch
- Institute of Chemistry, University of Silesia in Katowice, 40-006, Katowice, Poland
| | - Monika Rak
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Katarzyna Balin
- Institute of Physics and Silesian Center for Education and Interdisciplinary Research, University of Silesia in Katowice, 41-500, Chorzów, Poland
| | - Maciej Zubko
- Institute of Materials Engineering, University of Silesia in Katowice, 41-500, Chorzów, Poland.,Department of Physics, Faculty of Science, University of Hradec Králové, 500-03, Hradec Králové, Czech Republic
| | - Olga Głowacka
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Mateusz Dulski
- Institute of Materials Engineering, University of Silesia in Katowice, 41-500, Chorzów, Poland
| | - Robert Musioł
- Institute of Chemistry, University of Silesia in Katowice, 40-006, Katowice, Poland
| | - Zbigniew Madeja
- Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, 30-387, Kraków, Poland
| | - Maciej Serda
- Institute of Chemistry, University of Silesia in Katowice, 40-006, Katowice, Poland.
| |
Collapse
|
47
|
Khorsandi K, Hosseinzadeh R, Sadat Esfahani H, Keyvani-Ghamsari S, Ur Rahman S. Nanomaterials as drug delivery systems with antibacterial properties: current trends and future priorities. Expert Rev Anti Infect Ther 2021; 19:1299-1323. [PMID: 33755503 DOI: 10.1080/14787210.2021.1908125] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Introduction:Despite extensive advances in the production and synthesis of antibiotics, infectious diseases are one of the main problems of the 21st century due to multidrug-resistant (MDR) distributing in organisms. Therefore, researchers in nanotechnology have focused on new strategies to formulate and synthesis the different types of nanoparticles (NPs) with antimicrobial properties.Areas covered:The present review focuses on nanoparticles which are divided into two groups, organic (micelles, liposomes, polymer-based and lipid-based NPs) and inorganic (metals and metal oxides). NPs can penetrate the cell wall then destroy permeability of cell membrane, the structure and function of cell macromolecules by producing of reactive oxygen species (ROS) and eventually kill the bacteria. Moreover, their characteristics and mechanism in various bacteria especially MDR bacteria and finally their biocompatibility and the factors affecting their activity have been discussed.Expert opinion:Nanotechnology has led to higher drug absorption, targeted drug delivery and fewer side effects. NPs can overcome MDR through affecting several targets in the bacteria cell and synergistically increase the effectiveness of current antibiotics. Moreover, organic NPs with regard to their biodegradability and biocompatibility characteristics can be suitable agents for medical applications. However, they are less stable in environment in comparison to inorganic NPs.
Collapse
Affiliation(s)
- Khatereh Khorsandi
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Reza Hosseinzadeh
- Department of Medical Laser, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | - Homa Sadat Esfahani
- Department of Photodynamic, Medical Laser Research Center, Yara Institute, ACECR, Tehran, Iran
| | | | - Saeed Ur Rahman
- Interdisciplinary Research Centre in Biomedical Materials (IRCBM), COMSATS University Islamabad, Lahore Campus, Lahore, Pakistan.,Department of Oral Biology, Institute of Basic Medical Sciences, Khyber Medical University, Peshawar, Pakistan
| |
Collapse
|
48
|
Barbasz A, Oćwieja M, Piergies N, Duraczyńska D, Nowak A. Antioxidant-modulated cytotoxicity of silver nanoparticles. J Appl Toxicol 2021; 41:1863-1878. [PMID: 33881181 DOI: 10.1002/jat.4173] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Revised: 02/22/2021] [Accepted: 03/22/2021] [Indexed: 11/05/2022]
Abstract
The properties of silver nanoparticles (AgNPs) synthesized using compounds exhibiting biological activity seem to constitute an interesting issue worthy of examination. In these studies, two types of AgNPs were synthesized by a chemical reduction method using well-known antioxidants: gallic acid (GA) and ascorbic acid (AA). Transmission electron microscopy (TEM) and atomic force microscopy (AFM) revealed that the AgNPs were spherical. The average size was equal to 26 ± 6 nm and 20 ± 7 nm in the case of ascorbic acid-silver nanoparticles (AAgNPs) and gallic acid-silver nanoparticles (GAAgNPs), respectively. Surface-enhanced Raman spectroscopy (SERS) confirmed that the AgNPs were not stabilized by pure forms of applied antioxidants. Changes in mitochondrial activity and secretion of inflammatory and apoptosis mediators after the exposure of human promyelocytic (HL-60) and histiocytic lymphoma (U-937) cells to the AgNPs were studied to determine the impact of stabilizing layers on nanoparticle toxicity. The GAAgNPs were found to be more toxic for the cells than the AAgNPs. Their toxicity was manifested by a strong reduction in mitochondrial activity and induction of the secretion of interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), and caspase-9. The addition of pure antioxidants to the AgNP suspensions was found to influence their toxicity. There was a significant positive effect in the case of the mixture of AA with AAgNPs and GA with GAAgNPs. The results obtained suggest that the presence of stabilizing agents adsorbed on the surface of AgNPs is the main factor in shaping their toxicity. Nevertheless, the toxic effect can be also tuned by the introduction of free antioxidant molecules to the AgNP suspensions.
Collapse
Affiliation(s)
- Anna Barbasz
- Institute of Biology, Pedagogical University of Cracow, Krakow, Poland
| | - Magdalena Oćwieja
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Natalia Piergies
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| | - Dorota Duraczyńska
- Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Krakow, Poland
| | - Anna Nowak
- Institute of Nuclear Physics, Polish Academy of Sciences, Krakow, Poland
| |
Collapse
|
49
|
Sundar M, Suresh S, Lingakumar K. Influence of Caralluma adscendens Var. attenuata cold cream on UV-B damaged skin epidermal cells: a novel approach. 3 Biotech 2021; 11:155. [PMID: 33747705 PMCID: PMC7930170 DOI: 10.1007/s13205-021-02694-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Accepted: 02/13/2021] [Indexed: 02/08/2023] Open
Abstract
Ultraviolet radiation-induced sunburns are characterized by pigmented, wrinkled, and dried skin, with rashes and red spots. Chemical sunscreen lotion shows beneficial effects, but it shows the adverse side effect while in continuous usage. Natural substances of plant origin are deemed a possible cause of UV radiation through sunscreen resources. On this basis, we formulated the cold cream from the Caralluma adscendens Var. attenuata (CAVA) plant extract. The phytocompounds were studied by using GC-MS. The antioxidant potential of the plant extract was determined, and the CAVA showed cytotoxicity on A375 skin melanoma cells determined by MTT assay. The FT-IR spectra analysis confirmed the chemical nature of crude and crosslinking between cold creams. The cream was applied topically to rats pre-exposed to UV-B radiation (32,800 J/m2) four times/week (on alternate days). UV-B exposed without any treatment rats showed increased red spots or wrinkles (5 cm2). In contrast, the cold cream treatment application on irradiated skin has significantly reduced the size of rashes and red spots and the wound was contracted in a dose-dependent manner. Furthermore, histopathology of the experimental rat skin confirmed that CAVA cream treatment significantly reduced the epidermal thickening, damage in dermis and epidermis layers, and restructured the hair follicles. This study suggests that the cream formulated using CAVA can alleviate the damages caused by the UV-B-irradiation at a high level and safeguard the skin tissues. SUPPLEMENTARY INFORMATION The online version contains supplementary material available at 10.1007/s13205-021-02694-y.
Collapse
Affiliation(s)
- Madasamy Sundar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Sudan Suresh
- Department of Botany, Directorate of Distance Education, Madurai Kamaraj University, Madurai, Tamilnadu 625021 India
| | - Krishnasamy Lingakumar
- Centre for Research and Postgraduate Studies in Botany, Ayya Nadar Janaki Ammal College, Sivakasi, Tamilnadu 626124 India
| |
Collapse
|
50
|
Garcés M, Magnani ND, Pecorelli A, Calabró V, Marchini T, Cáceres L, Pambianchi E, Galdoporpora J, Vico T, Salgueiro J, Zubillaga M, Moretton MA, Desimone MF, Alvarez S, Valacchi G, Evelson P. Alterations in oxygen metabolism are associated to lung toxicity triggered by silver nanoparticles exposure. Free Radic Biol Med 2021; 166:324-336. [PMID: 33596456 DOI: 10.1016/j.freeradbiomed.2021.02.008] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/18/2021] [Accepted: 02/04/2021] [Indexed: 10/22/2022]
Abstract
Along with the AgNP applications development, the concern about their possible toxicity has increasingly gained attention. As the respiratory system is one of the main exposure routes, the aim of this study was to evaluate the harmful effects developed in the lung after an acute AgNP exposure. In vivo studies using Balb/c mice intranasally instilled with 0.1 mg AgNP/kg b.w, were performed. 99mTc-AgNP showed the lung as the main organ of deposition, where, in turn, AgNP may exert barrier injury observed by increased protein content and total cell count in BAL samples. In vivo acute exposure showed altered lung tissue O2 consumption due to increased mitochondrial active respiration and NOX activity. Both O2 consumption processes release ROS triggering the antioxidant system as observed by the increased SOD, catalase and GPx activities and a decreased GSH/GSSG ratio. In addition, increased protein oxidation was observed after AgNP exposure. In A549 cells, exposure to 2.5 μg/mL AgNP during 1 h resulted in augment NOX activity, decreased mitochondrial ATP associated respiration and higher H2O2 production rate. Lung 3D tissue model showed AgNP-initiated barrier alterations as TEER values decreased and morphological alterations. Taken together, these results show that AgNP exposure alters O2 metabolism leading to alterations in oxygen metabolism lung toxicity. AgNP-triggered oxidative damage may be responsible for the impaired lung function observed due to alveolar epithelial injury.
Collapse
Affiliation(s)
- Mariana Garcés
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Natalia D Magnani
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Alessandra Pecorelli
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Valeria Calabró
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Timoteo Marchini
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Lourdes Cáceres
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina
| | - Erika Pambianchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA
| | - Juan Galdoporpora
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Tamara Vico
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Jimena Salgueiro
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela Zubillaga
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Fisicomatemática, Cátedra de Física, Argentina
| | - Marcela A Moretton
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Tecnología Farmacéutica, Cátedra de Tecnología Farmacéutica I, Buenos Aires, Argentina
| | - Martin F Desimone
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química Analítica Instrumental, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Química y Metabolismo del Fármaco (IQUIMEFA), Facultad de Farmacia y Bioquímica, Argentina
| | - Silvia Alvarez
- Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina; Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Fisicoquímica, Argentina
| | - Giuseppe Valacchi
- NC State University, Plants for Human Health Institute, Animal Science Department, USA; Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy; Kyung Hee University, Department of Food and Nutrition, Seoul, South Korea
| | - Pablo Evelson
- Universidad de Buenos Aires, Facultad de Farmacia y Bioquímica, Departamento de Química Analítica y Fisicoquímica, Cátedra de Química General e Inorgánica, Argentina; Universidad de Buenos Aires, CONICET, Instituto de Bioquímica y Medicina Molecular (IBIMOL), Facultad de Farmacia y Bioquímica, Argentina.
| |
Collapse
|