1
|
Helmy MW, Youssef MH, Yamari I, Amr A, Moussa FI, El Wakil A, Chtita S, El-Samad LM, Hassan MA. Repurposing of sericin combined with dactolisib or vitamin D to combat non-small lung cancer cells through computational and biological investigations. Sci Rep 2024; 14:27034. [PMID: 39505930 PMCID: PMC11541877 DOI: 10.1038/s41598-024-76947-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/17/2024] [Indexed: 11/08/2024] Open
Abstract
This study aims to repurpose sericin in combating non-small lung cancer cells (A549 and H460) by combining it with dactolisib or vitamin D to reduce the dose of dactolisib and boost the anticancer effectiveness of dactolisib and vitamin D. Therefore, the binding affinities of individual and combined drugs were examined using in silico and protein-protein interaction studies, targeting NF-κB, Cyclin D1, p-AKT, and VEGF1 proteins. The findings manifested remarkable affinities for combinatorial drugs compared to individual compounds. To substantiate these findings, the combined IC50 for each combination (sericin + dactolisib and sericin + vitamin D) were determined, reporting 31.9 and 41.8 µg/ml, respectively, against A549 cells and 47.9 and 55.3 µg/ml, respectively, against H460 cells. Furthermore, combination indices were assessed to lower the doses of each drug. Interestingly, in vitro results exhibited marked diminutions in NF-κB, Cyclin D1, p-AKT, and VEGF1 after treatment with sericin + dactolisib and sericin + vitamin D compared to control lung cancer cells and those treated with a single drug. Moreover, A549 and H460 cells treated with both combinations demonstrated augmented caspase-3 levels, implying substantial apoptotic activity. Altogether, these results accentuated the prospective implementation of sericin in combination with dactolisib and vitamin D at low doses to preclude lung cancer cell proliferation.
Collapse
Affiliation(s)
- Maged W Helmy
- Pharmacology and Toxicology Department, Faculty of Pharmacy, Damanhour University, 22511, Damanhour, Egypt
| | - Mariam H Youssef
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Imane Yamari
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Alaa Amr
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Farouzia I Moussa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Abeer El Wakil
- Department of Biological and Geological Sciences, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Samir Chtita
- Laboratory of Analytical and Molecular Chemistry, Faculty of Sciences Ben M'Sik, Hassan II University of Casablanca, P. O. Box 7955, Casablanca, Morocco
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt.
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934, Alexandria, Egypt.
| |
Collapse
|
2
|
Shaw S, Mondal R, Dam P, Mandal A, Acharya R, Manna S, Gangopadhyay D, Mandal AK. Synthesis, characterization and application of silk sericin-based silver nanocomposites for antibacterial and food coating solutions. RSC Adv 2024; 14:33068-33079. [PMID: 39435006 PMCID: PMC11492224 DOI: 10.1039/d4ra07056a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Accepted: 10/15/2024] [Indexed: 10/23/2024] Open
Abstract
The rising demand for fresh and safe food is driving advancements in preservation technologies, with nanoparticles offering a revolutionary solution. These particles extend shelf life, preserve nutritional value, and enhance food safety, aligning with present consumer expectations. This study explores the eco-friendly synthesis, characterization, and application of silk sericin-based silver nanoparticles (SS-AgNPs) for antibacterial and food coating purposes. Silk sericin, a byproduct of the silk industry, is typically discarded despite its valuable properties like biocompatibility, biodegradability, and antimicrobial activity. In this research, sericin from Bombyx mori cocoons was used as a reducing and stabilizing agent to synthesize SS-AgNPs. Characterization was performed using UV-vis spectroscopy, Fourier-transform infrared spectroscopy (FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and dynamic light scattering (DLS). Antibacterial tests confirmed the efficacy of SS-AgNPs against Pseudomonas sp. and Staphylococcus sp., while food coating trials on tomatoes significantly reduced weight loss and microbial contamination. Biocompatibility was further verified through hemolysis and MTT assays, confirming SS-AgNPs' safety for biomedical and food-related uses. This study underscores the potential to convert sericin waste into a valuable resource, promoting sustainability and increasing the commercial value of sericulture.
Collapse
Affiliation(s)
- Shubhajit Shaw
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Rittick Mondal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Paulami Dam
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Avijit Mandal
- Department of Life Sciences, Presidency University Kolkata 700073 India
| | - Ritwik Acharya
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| | - Sanjeet Manna
- Central Instrumentation Facility, Odisha University of Agriculture and Technology Bhubaneswar 751003 Odisha India
| | | | - Amit Kumar Mandal
- Department of Sericulture, Raiganj University Raiganj 733134 West Bengal India
| |
Collapse
|
3
|
Hassan MA, Basha AA, Eraky M, Abbas E, El-Samad LM. Advancements in silk fibroin and silk sericin-based biomaterial applications for cancer therapy and wound dressing formulation: A comprehensive review. Int J Pharm 2024; 662:124494. [PMID: 39038721 DOI: 10.1016/j.ijpharm.2024.124494] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 06/25/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
Silks are a class of proteins generated naturally by different arthropods, including silkworms, spiders, scorpions, mites, wasps, and bees. This review discusses the silk fibroin and silk sericin fabricated by Bombyx mori silkworm as versatile fibers. This silk fiber is predominantly composed of hydrophobic silk fibroin and hydrophilic silk sericin. Fibroin is defined as a structural protein that bestows silk with strength, while sericin is characterized as a gum-like protein, tying the two fibrous proteins together and endowing silk proteins with elasticity. Due to their versatile structures, biocompatibility, and biodegradability, they could be tailored into intricate structures to warrant particular demands. The intrinsic functional groups of both proteins enable their functionalization and cross-linking with various biomaterials to endow the matrix with favorable antioxidant and antibacterial properties. Depending on the target applications, they can be integrated with other materials to formulate nanofibrous, hydrogels, films, and micro-nanoparticles. Given the outstanding biological and controllable physicochemical features of fibroin and sericin, they could be exploited in pharmaceutical applications involving tissue engineering, wound repair, drug delivery, and cancer therapy. This review comprehensively discusses the advancements in the implementation of different formulations of silk fibroin and sericin in wound healing and drug delivery systems, particularly for cancer treatment.
Collapse
Affiliation(s)
- Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, P.O. Box: 21934 Alexandria, Egypt; University Medical Center Göttingen, Georg-August-University, 37073 Göttingen, Germany.
| | - Amal A Basha
- Zoology Department, Faculty of Science, Damanhour University, Egypt
| | - Mohamed Eraky
- College of Engineering, Huazhong Agricultural University, 430070 Wuhan, China
| | - Eman Abbas
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| | - Lamia M El-Samad
- Zoology Department, Faculty of Science, Alexandria University, Egypt
| |
Collapse
|
4
|
Fong YX, Pakrath C, Kadavan FSP, Nguyen TT, Luu TQ, Stoilov B, Bright R, Nguyen MT, Ninan N, Tang Y, Vasilev K, Truong VK. Antibacterial Electrospun Membrane with Hierarchical Bead-on-String Structured Fibres for Wound Infections. NANOMATERIALS (BASEL, SWITZERLAND) 2024; 14:1429. [PMID: 39269091 PMCID: PMC11397722 DOI: 10.3390/nano14171429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 08/21/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024]
Abstract
Chronic wounds often result in multiple infections with various kinds of bacteria and uncontrolled wound exudate, resulting in several healthcare issues. Advanced medicated nanofibres prepared by electrospinning have gained much attention for their topical application on infected chronic wounds. The objective of this work is to enhance the critical variables of ciprofloxacin-loaded polycaprolactone-silk sericin (PCL/SS-PVA-CIP) nanofibre production via the process of electrospinning. To examine the antibacterial effectiveness of PCL/SS-PVA-CIP nanocomposites, the material was tested against P. aeruginosa and S. aureus. The combination of PCL/SS-PVA-CIP exhibited potent inhibitory properties, with the most effective concentrations of ciprofloxacin (CIP) being 3 μg/g and 7.0 μg/g for each bacterium, respectively. The biocompatibility was evaluated by conducting cell reduction and proliferation studies using the human epidermal keratinocyte (HaCaT) cells and human gingival fibroblasts (HGFs) in vitro cell lines. The PCL/SS-PVA-CIP showed good cell compatibility with HaCaT and HGF cells, with effective proliferation even at antibiotic doses of up to 7.0 μg/g. The drug release effectiveness of the nanocomposites was assessed at various concentrations of CIP, resulting in a maximum cumulative release of 76.5% and 74.4% after 72 h for CIP concentrations of 3 μg/g and 7 μg/g, respectively. In summary, our study emphasizes the possibility of combining silk sericin (SS) and polycaprolactone (PCL) loading with CIP nanocomposite for wound management.
Collapse
Affiliation(s)
- Yu Xuan Fong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Catherine Pakrath
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | | | - Tien Thanh Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Trong Quan Luu
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Borislav Stoilov
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Richard Bright
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Manh Tuong Nguyen
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Neethu Ninan
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Youhong Tang
- Institute for NanoScale Science and Technology, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
- Medical Device Research Institute, College of Science and Engineering, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Krasimir Vasilev
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| | - Vi Khanh Truong
- College of Medicine and Public Health, Flinders University, Bedford Park, Adelaide, SA 5042, Australia
| |
Collapse
|
5
|
Borges A, Calvo MLM, Vaz JA, Calhelha RC. Enhancing Wound Healing: A Comprehensive Review of Sericin and Chelidonium majus L. as Potential Dressings. MATERIALS (BASEL, SWITZERLAND) 2024; 17:4199. [PMID: 39274589 PMCID: PMC11395905 DOI: 10.3390/ma17174199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/16/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024]
Abstract
Wound healing, a complex physiological process orchestrating intricate cellular and molecular events, seeks to restore tissue integrity. The burgeoning interest in leveraging the therapeutic potential of natural substances for advanced wound dressings is a recent phenomenon. Notably, Sericin, a silk-derived protein, and Chelidonium majus L. (C. majus), a botanical agent, have emerged as compelling candidates, providing a unique combination of natural elements that may revolutionize conventional wound care approaches. Sericin, renowned for its diverse properties, displays unique properties that accelerate the wound healing process. Simultaneously, C. majus, with its diverse pharmacological compounds, shows promise in reducing inflammation and promoting tissue regeneration. As the demand for innovative wound care solutions increases, understanding the therapeutic potential of natural products becomes imperative. This review synthesizes current knowledge on Sericin and C. majus, envisioning their future roles in advancing wound management strategies. The exploration of these natural substances as constituents of wound dressings provides a promising avenue for developing sustainable, effective, and biocompatible materials that could significantly impact the field of wound healing.
Collapse
Affiliation(s)
- Ana Borges
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Grupo de Investigación en Desarrollo y Evaluación de Formas Farmacéuticas y Sistemas de Liberación Controlada, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - María Luisa Martín Calvo
- Grupo de Investigación en Fisiología y Farmacología, Facultad de Farmacia, Universidad de Salamanca, Campus Miguel de Unamuno s/n, 37007 Salamanca, Spain
| | - Josiana A Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Ricardo C Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| |
Collapse
|
6
|
Arango MC, Jaramillo-Quiceno N, Badia JD, Cháfer A, Cerisuelo JP, Álvarez-López C. The Impact of Green Physical Crosslinking Methods on the Development of Sericin-Based Biohydrogels for Wound Healing. Biomimetics (Basel) 2024; 9:497. [PMID: 39194476 DOI: 10.3390/biomimetics9080497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/01/2024] [Accepted: 08/12/2024] [Indexed: 08/29/2024] Open
Abstract
Silk sericin (SS)-based hydrogels show promise for wound healing due to their biocompatibility, moisture regulation, and cell proliferation properties. However, there is still a need to develop green crosslinking methods to obtain non-toxic, absorbent, and mechanically strong SS hydrogels. This study investigated the effects of three green crosslinking methods, annealing treatment (T), exposure to an absolute ethanol vapor atmosphere (V.E), and water vapor (V.A), on the physicochemical and mechanical properties of SS and poly (vinyl alcohol) (PVA) biohydrogels. X-ray diffraction and Fourier-transform infrared spectroscopy were used to determine chemical structures. Thermal properties and morphological changes were studied through thermogravimetric analysis and scanning electron microscopy, respectively. The water absorption capacity, mass loss, sericin release in phosphate-buffered saline (PBS), and compressive strength were also evaluated. The results showed that physical crosslinking methods induced different structural transitions in the biohydrogels, impacting their mechanical properties. In particular, V.A hydrogen presented the highest compressive strength at 80% deformation owing to its compact and porous structure with crystallization and bonding sites. Moreover, both the V.A and T hydrogels exhibited improved absorption capacity, stability, and slow SS release in PBS. These results demonstrate the potential of green physical crosslinking techniques for producing SS/PVA biomaterials for wound healing applications.
Collapse
Affiliation(s)
- Maria C Arango
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Natalia Jaramillo-Quiceno
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| | - José David Badia
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Amparo Cháfer
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Josep Pasqual Cerisuelo
- Materials Technology and Sustainability (MATS), Department of Chemical Engineering, Universitat de València, Av. de la Universitat s/n, 46100 Burjassot, Spain
| | - Catalina Álvarez-López
- Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia
| |
Collapse
|
7
|
Nadeem Butt E, Ali S, Summer M, Siddiqua Khan A, Noor S. Exploring the mechanistic role of silk sericin biological and chemical conjugates for effective acute and chronic wound repair and related complications. Drug Dev Ind Pharm 2024; 50:577-592. [PMID: 39087808 DOI: 10.1080/03639045.2024.2387814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 07/23/2024] [Accepted: 07/24/2024] [Indexed: 08/02/2024]
Abstract
OBJECTIVE The current review is designed to elaborate and reveal the underlying mechanism of sericin and its conjugates of drug delivery during wounds and wound-related issues. SIGNIFICANCE Wound healing is a combination of different humoral, molecular, and cellular mechanisms. Various natural products exhibit potential in wound healing but among them, sericin, catches much attention of researchers due to its bio-functional properties such as being biodegradable, biocompatible, anti-oxidant, anti-bacterial, photo-protector, anti-inflammatory and moisturizing agent. METHODS AND RESULTS Sericin triggers the activity of anti-inflammatory cytokines which decrease cell adhesion and promote epithelial cell formation. Moreover, sericin enhances the anti-oxidant enzymes in the wounded area which scavenge the toxic consequences of reactive species (ROS). CONCLUSIONS This article highlights the mechanisms of how topical administration of sericin formulations along with 4-hexylresorcinol,\Chitosan\Ag@MOF-GO, polyvinyl alcohol (PVA), platelet lysate and UV photo cross-linked hydrogel sericin methacrylate which recruits a large number of cytokines on wounded area that stimulate fibroblasts and keratinocyte production as well as collagen deposition that led to early wound contraction. It also reviews the different sericin-based nanoparticles that play a significant role in rapid wound healing.
Collapse
Affiliation(s)
- Esham Nadeem Butt
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad Summer
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Ayesha Siddiqua Khan
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shehzeen Noor
- Medical Toxicology and Biochemistry Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
8
|
Mariello M, Binetti E, Todaro MT, Qualtieri A, Brunetti V, Siciliano P, De Vittorio M, Blasi L. Eco-Friendly Production of Polyvinyl Alcohol/Carboxymethyl Cellulose Wound Healing Dressing Containing Sericin. Gels 2024; 10:412. [PMID: 38920958 PMCID: PMC11202596 DOI: 10.3390/gels10060412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 06/12/2024] [Accepted: 06/13/2024] [Indexed: 06/27/2024] Open
Abstract
Wound dressing production represents an important segment in the biomedical healthcare field, but finding a simple and eco-friendly method that combines a natural compound and a biocompatible dressing production for biomedical application is still a challenge. Therefore, the aim of this study is to develop wound healing dressings that are environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. Hydrogel wound healing dressings were prepared from polyvinyl alcohol/carboxymethyl cellulose and sericin using the freeze-thawing method as a crosslinking method. The morphological characterization was carried out by scanning electron microscopy (SEM), whereas the mechanical analysis was carried out by dynamic mechanical analysis (DMA) to test the tensile strength and compression properties. Then, the healing property of the wound dressing material was tested by in vitro and ex vivo tests. The results show a three-dimensional microporous structure with no cytotoxicity, excellent stretchability with compressive properties similar to those of human skin, and excellent healing properties. The proposed hydrogel dressing was tested in vitro with HaCaT keratinocytes and ex vivo with epidermal tissues, demonstrating an effective advantage on wound healing acceleration. Accordingly, this study was successful in developing wound healing dressings using natural agents and a simple and green crosslinking method.
Collapse
Affiliation(s)
- Massimo Mariello
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Dipartimento Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Enrico Binetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| | - Maria Teresa Todaro
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute of Nanotechnology NANOTEC-CNR, c/o Campus Ecotekne, Via Monteroni, 73100 Lecce, Italy
| | - Antonio Qualtieri
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
| | - Virgilio Brunetti
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
| | - Pietro Siciliano
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| | - Massimo De Vittorio
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Dipartimento Ingegneria dell’Innovazione, Università del Salento, via Monteroni, 73100 Lecce, Italy
| | - Laura Blasi
- Center for Biomolecular Nanotechnologies, Italian Institute of Technology, 73100 Lecce, Italy; (M.M.)
- Institute for Microelectronics and Microsystems IMM-CNR, UOS di Lecce Via Monteroni c/o Campus Universitario Ecotekne-Palazzina A3, 73100 Lecce, Italy
| |
Collapse
|
9
|
Bahremand K, Aghaz F, Bahrami K. Enhancing Cisplatin Efficacy with Low Toxicity in Solid Breast Cancer Cells Using pH-Charge-Reversal Sericin-Based Nanocarriers: Development, Characterization, and In Vitro Biological Assessment. ACS OMEGA 2024; 9:14017-14032. [PMID: 38560009 PMCID: PMC10976391 DOI: 10.1021/acsomega.3c09361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/23/2024] [Accepted: 03/04/2024] [Indexed: 04/04/2024]
Abstract
Platinum-based chemotherapeutic agents are widely employed in cancer treatment because of their effectiveness in targeting DNA. However, this indiscriminate action often affects both cancerous and normal cells, leading to severe side effects and highlighting the need for innovative approaches in achieving precise drug delivery. Nanotechnology presents a promising avenue for addressing these challenges. Protein-based nanocarriers exhibit promising capabilities in the realm of cancer drug delivery with silk sericin nanoparticles standing out as a leading contender. This investigation focuses on creating a sericin-based nanocarrier (SNC) featuring surface charge reversal designed to effectively transport cisplatin (Cispt-SNC) into MCF-7 breast cancer cells. Utilizing AutoDock4.2, our molecular docking analyses identified key amino acids and revealed distinctive conformational clusters, providing insights into the drug-protein interaction landscape and highlighting the potential of sericin as a carrier for controlled drug release. The careful optimization and fabrication of sericin as the carrier material were achieved through flash nanoprecipitation, a straightforward and reproducible method that is devoid of intricate equipment. The physicochemical properties of SNCs and Cispt-SNCs, particularly concerning size, surface charge, and morphology, were evaluated using dynamic light scattering (DLS) and scanning electron microscopy (SEM). Chemical and conformational analyses of the nanocarriers were conducted using Fourier-transform infrared spectroscopy (FTIR) and circular dichroism (CD), and elemental composition analysis was performed through energy-dispersive X-ray spectroscopy (EDX). This approach aimed to achieve the smallest nanoparticle size for Cispt-SNCs (180 nm) and high drug encapsulation efficiency (84%) at an optimal sericin concentration of 0.1% (w/v), maintaining a negative net charge at a physiological pH (7.4). Cellular uptake and cytotoxicity were investigated in MCF-7 breast cancer cells. SNCs demonstrated stability and exhibited a pH-dependent drug release behavior, aligning with the mildly acidic tumor microenvironment (pH 6.0-7.0). Efficient cellular uptake of Cispt-SNC, along with DNA fragmentation and chromatin condensation, was found at pH 6, leading to cell apoptosis. These results collectively indicate the potential of SNCs for achieving controlled drug release in a tumor-specific context. Our in vitro studies reveal the cytotoxicity of both cisplatin and Cispt-SNCs on MCF-7 cells. Cisplatin significantly reduced cell viability at 10 μM concentration (IC50), and the unique combination of sericin and cisplatin showcased enhanced cell viability compared to cisplatin alone, suggesting that controlled drug release is indicated by a gradient decrease in cell viability and highlighting SNCs as promising carriers. The study underscores the promise of protein-based nanocarriers in advancing targeted drug delivery for cancer therapy.
Collapse
Affiliation(s)
- Kiana Bahremand
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Faranak Aghaz
- Nano Drug Delivery
Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah 6715847141, Iran
| | - Kiumars Bahrami
- Nanoscience and Nanotechnology
Research Center (NNRC), Razi University, Kermanshah 67144-14971, Iran
| |
Collapse
|
10
|
Khan NU, Razzaq A, Rui Z, Chengfeng X, Khan ZU, Ullah A, Elbehairi SEI, Shati AA, Alfaifi MY, Iqbal H, Jin ZM. Bio-evaluations of sericin coated hesperidin nanoparticles for gastric ulcer management. Colloids Surf B Biointerfaces 2024; 234:113762. [PMID: 38244483 DOI: 10.1016/j.colsurfb.2024.113762] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 01/10/2024] [Accepted: 01/15/2024] [Indexed: 01/22/2024]
Abstract
Gastric ulcers are worrying, and their worsening conditions may result in bleeding in the internal lining of the stomach. The problem is annoying, and both patients and professionals are still not satisfied with the available treatment options. Hesperidin, a flavonoid molecule with potent anti-inflammatory and antioxidant effects, can work like witchcraft to repair gastric ulcers and preserve the stomach lining. Here, we employed a strategy that involved covering the surface of the nano-lipid carriers (NLCs) with sericin before encasing the hesperidin within (Se-He-NLC). Sericin, a biodegradable polymer increases the muco-adhesion with stomach lining and deployment of hesperidin in controlled manner. Se-He-NLCs were physico-chemically characterized for drug loading, encapsulation, particle size, morphology, drug release, chemical stability, and chemical bonding. The nanocarriers showed first order drug release in a controlled manner. Se-He-NLCs showed better in vitro permeation and ex vivo mucoadhesion, thereby by promoting the in vivo bioavailability. Se-He-NLCs also promoted the reduced glutathione (GSH) and glutathione-S-transferase (GST) levels by 2.24- and 1.61-folds, respectively in the stomach lining, and also the regulation of superoxide dismutase (SOD) and catalase (CAT) activities parallel to the control group. In addition, tissues lipid hydroperoxides (LOOH) and myeloperoxidase (MPO) activity were reduced significantly with Se-He-NLCs administration. Se-He-NLC therapy of stomach ulcers in vivo demonstrated better binding ratio and ulcer healing potential. This approach reveals huge capacity for delivering therapies to treat gastric ulcers based on the clinical significance of sericin coated hesperidin nanocarriers in gastric ulcer treatment.
Collapse
Affiliation(s)
- Naveed Ullah Khan
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Anam Razzaq
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Zhang Rui
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Xie Chengfeng
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China
| | - Zaheer Ullah Khan
- Department of Pharmacy, COMSATS University, Abbottabad Campus, Pakistan
| | - Asmat Ullah
- Clinical Research Institute, Zhejiang Provincial People's Hospital, Hangzhou 310014, Zhejiang, China
| | | | - Ali A Shati
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Mohammad Y Alfaifi
- King Khalid University, Faculty of Science, Biology Department, Abha 9004, Saudi Arabia
| | - Haroon Iqbal
- Eye Hospital, School of Ophthalmology and Optometry, Wenzhou Medical University, Wenzhou 325027, Zhejiang, China.
| | - Zhi Min Jin
- College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310012, China.
| |
Collapse
|
11
|
Rouhani DS, Singh NK, Chao JJ, Almutairi A, Badowski-Platz R, Seradj MH, Mofid MM. Silk Bioprotein as a Novel Surgical-Site Wound Dressing: A Prospective, Randomized, Single-Blinded, Superiority Clinical Trial. Aesthet Surg J Open Forum 2023; 5:ojad071. [PMID: 37899912 PMCID: PMC10603584 DOI: 10.1093/asjof/ojad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2023] Open
Abstract
Background Medical adhesive-related skin injuries (MARSIs) affect about 1.5 million patients annually in the United States. Complications include allergic contact dermatitis, skin blistering, skin tears, and surgical-site infections (SSIs). The authors hypothesize that a natural hypoallergenic silk bioprotein wound dressing will decrease the incidence of MARSI in comparison to a synthetic alternative. Objectives This study aimed to assess the efficacy and safety of a silk bioprotein wound dressing compared to the Dermabond Prineo (Ethicon, Inc., Somerville, NJ) skin closure system. Methods This prospective, randomized, single-blinded trial studied 25 patients who were dressed with Dermabond Prineo on one side of their body and on the contralateral side with the silk bioprotein dressing after undergoing abdominoplasty or reduction mammaplasty procedures. Data were collected over 5 postoperative visits using photographs and an investigator administered questionnaire to track rash, itch, discomfort, erythema, edema, SSIs, need for pharmaceutical intervention, mechanical injury, removal time, and bathing routines. Results Sixty-four percent (16/25) of patients characterized the severity of discomfort as a score of 4 out of 10 or greater on the Dermabond Prineo control side and only 4% (1/25) for the silk-dressing side (P < .001). Fifty-two percent (13/25) had a visible rash of 4 or higher on the Dermabond Prineo side of their incision and 0% (0/25) had a rash on the silk side (P < .001). Fifty-two percent (13/25) required steroids or antibiotics to treat MARSI to Dermabond Prineo and 0% (0/25) required pharmaceutical intervention on the silk side (P < .001). Conclusions The use of a silk bioprotein wound dressing significantly reduces the incidence of MARSI throughout the postoperative period. Level of Evidence 2
Collapse
Affiliation(s)
| | | | | | | | | | | | - Mehrdad Mark Mofid
- Corresponding Author: Dr Mehrdad Mark Mofid, 4150 Regents Park Row STE 300, La Jolla, CA 92037, USA. E-mail:
| |
Collapse
|
12
|
Saad M, El-Samad LM, Gomaa RA, Augustyniak M, Hassan MA. A comprehensive review of recent advances in silk sericin: Extraction approaches, structure, biochemical characterization, and biomedical applications. Int J Biol Macromol 2023; 250:126067. [PMID: 37524279 DOI: 10.1016/j.ijbiomac.2023.126067] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2023] [Revised: 07/26/2023] [Accepted: 07/28/2023] [Indexed: 08/02/2023]
Abstract
Silks are natural polymers that have been widely used for centuries. Silk consists of a filament core protein, termed fibroin, and a glue-like coating substance formed of sericin (SER) proteins. This protein is extracted from the silkworm cocoons (particularly Bombyx mori) and is mainly composed of amino acids like glycine, serine, aspartic acid, and threonine. Silk SER can be obtained using numerous methods, including enzymatic extraction, high-temperature, autoclaving, ethanol precipitation, cross-linking, and utilizing acidic, alkali, or neutral aqueous solutions. Given the versatility and outstanding properties of SER, it is widely fabricated to produce sponges, films, and hydrogels for further use in diverse biomedical applications. Hence, many authors reported that SER benefits cell proliferation, tissue engineering, and skin tissue restoration thanks to its moisturizing features, antioxidant and anti-inflammatory properties, and mitogenic effect on mammalian cells. Remarkably, SER is used in drug delivery depending on its chemical reactivity and pH-responsiveness. These unique features of SER enhance the bioactivity of drugs, facilitating the fabrication of biomedical materials at nano- and microscales, hydrogels, and conjugated molecules. This review thoroughly outlines the extraction techniques, biological properties, and respective biomedical applications of SER.
Collapse
Affiliation(s)
- Marwa Saad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Lamia M El-Samad
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Rehab A Gomaa
- Department of Zoology, Faculty of Science, Alexandria University, Alexandria, Egypt
| | - Maria Augustyniak
- Institute of Biology, Biotechnology and Environmental Protection, Faculty of Natural Sciences, University of Silesia in Katowice, Bankowa 9, 40-007 Katowice, Poland
| | - Mohamed A Hassan
- Protein Research Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), City of Scientific Research and Technological Applications (SRTA-City), New Borg El-Arab City, 21934 Alexandria, Egypt.
| |
Collapse
|
13
|
Bakadia BM, Qaed Ahmed AA, Lamboni L, Shi Z, Mutu Mukole B, Zheng R, Pierre Mbang M, Zhang B, Gauthier M, Yang G. Engineering homologous platelet-rich plasma, platelet-rich plasma-derived exosomes, and mesenchymal stem cell-derived exosomes-based dual-crosslinked hydrogels as bioactive diabetic wound dressings. Bioact Mater 2023; 28:74-94. [PMID: 37234363 PMCID: PMC10206161 DOI: 10.1016/j.bioactmat.2023.05.002] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/23/2023] [Accepted: 05/03/2023] [Indexed: 05/27/2023] Open
Abstract
The management of diabetic wounds remains a critical therapeutic challenge. Platelet-rich plasma (PRP) gel, PRP-derived exosomes (PRP-Exos), and mesenchymal stem cell-derived exosomes (MSC-Exos) have demonstrated therapeutic potential in wound treatment. Unfortunately, their poor mechanical properties, the short half-lives of growth factors (GFs), and the burst release of GFs and exosomes have limited their clinical applications. Furthermore, proteases in diabetic wounds degrade GFs, which hampers wound repair. Silk fibroin is an enzyme-immobilization biomaterial that could protect GFs from proteases. Herein, we developed novel dual-crosslinked hydrogels based on silk protein (SP) (sericin and fibroin), including SP@PRP, SP@MSC-Exos, and SP@PRP-Exos, to promote diabetic wound healing synergistically. SP@PRP was prepared from PRP and SP using calcium gluconate/thrombin as agonist, while SP@PRP-Exos and SP@MSC-Exos were derived from exosomes and SP with genipin as crosslinker. SP provided improved mechanical properties and enabled the sustained release of GFs and exosomes, thereby overcoming the limitations of PRP and exosomes in wound healing. The dual-crosslinked hydrogels displayed shear-induced thinning, self-healing, and eradication of microbial biofilms in a bone-mimicking environment. In vivo, the dual-crosslinked hydrogels contributed to faster diabetic wound healing than PRP and SP by upregulating GFs expression, down-regulating matrix metalloproteinase-9 expression, and by promoting an anti-NETotic effect, angiogenesis, and re-epithelialization. Hence, these dual-crosslinked hydrogels have the potential to be translated into a new generation of diabetic wound dressings.
Collapse
Affiliation(s)
- Bianza Moise Bakadia
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Abeer Ahmed Qaed Ahmed
- Department of Molecular Medicine, Biochemistry Unit, University of Pavia, 27100, Pavia, Italy
| | - Lallepak Lamboni
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Zhijun Shi
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | | | - Ruizhu Zheng
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Mazono Pierre Mbang
- Institut Supérieur des Techniques Médicales de Lubumbashi, Lubumbashi, Congo
| | - Bi Zhang
- College of Life Science and Technology, Key Laboratory of Molecular Biophysics of MOE, Huazhong University of Science and Technology, Wuhan, China
| | - Mario Gauthier
- Department of Chemistry, University of Waterloo, Waterloo, Ontario, N2L 3G1, Canada
| | - Guang Yang
- Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| |
Collapse
|
14
|
Lee HG, Jang MJ, Um IC. Fabrication, Structural Characteristics, and Properties of Sericin-Coated Wool Nonwoven Fabrics. Int J Mol Sci 2023; 24:14750. [PMID: 37834199 PMCID: PMC10572829 DOI: 10.3390/ijms241914750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 09/25/2023] [Accepted: 09/28/2023] [Indexed: 10/15/2023] Open
Abstract
Recently, nonwoven fabrics from natural silk have attracted considerable attention for biomedical and cosmetic applications because of their good mechanical properties and cytocompatibility. Although these fabrics can be easily fabricated using the binding character of sericin, the high cost of silk material may restrict its industrial use in certain areas. In this study, sericin was added as a binder to a cheaper material (wool) to prepare wool-based nonwoven fabrics and investigate the effect of the amount of sericin added on the structural characteristics and properties of the wool nonwoven fabric. It was found using SEM that sericin coated the surface of wool fibers and filled the space between them. With an increase in sericin addition, the porosity, moisture regain, and the contact angle of the sericin-coated wool nonwoven fabric decreased. The maximum stress and initial Young's modulus of the nonwoven fabric increased with the increase in sericin amount up to 32.5%, and decreased with a further increase in the amount of sericin. Elongation at the end steadily decreased with the increase in sericin addition. All of the nonwoven fabrics showed good cytocompatibility, which increased with the amount of sericin added. These results indicate that sericin-coated wool-based nonwoven fabrics may be successfully prepared by adding sericin to wool fibers, and that the properties of these fabrics may be diversely controlled by altering the amount of sericin added, making them promising candidates for biomedical and cosmetic applications.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
15
|
Vieira WT, da Silva MGC, de Oliveira Nascimento L, Vieira MGA. Development and characterization of crosslinked k-carrageenan/sericin blend with covalent agents or thermal crosslink for indomethacin extended release. Int J Biol Macromol 2023; 246:125558. [PMID: 37392907 DOI: 10.1016/j.ijbiomac.2023.125558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 06/03/2023] [Accepted: 06/23/2023] [Indexed: 07/03/2023]
Abstract
Modified release of multiparticulate pharmaceutical forms is a key therapeutic strategy to reduce side effects and toxicity caused by high and repeated doses of immediate-release oral drugs. This research focused on the encapsulation of indomethacin (IND) in the crosslinked k-Car/Ser polymeric matrix by covalent and thermal methods to evaluate drug delivery modulation and properties of the crosslinked blend. Therefore, the entrapment efficiency (EE %), drug loading (DL %) and physicochemical properties of the particles were investigated. The particles presented a spherical shape and a rough surface with a mean diameter of 1.38-2.15 mm (CCA) and 1.56-1.86 mm (thermal crosslink). FTIR investigation indicated the presence of IDM in the particles and X-ray pattern showed the maintenance of crystallinity of IDM. The in vitro release in acidic medium (pH 1.2) and phosphate buffer saline solution (pH 6.8) was 1.23-6.81 % and 81-100 %, respectively. Considering the results, the formulations remained stable after 6 months. The Weibull equation was adequately fitted for all formulations and a diffusion mechanism, swelling and relaxation of chain were observed. IDM-loaded k-carrageenan/sericin/CMC increases cell viability (> 75 % for neutral red and > 81 % for MTT). Finally, all formulations present gastro-resistance, pH response and altered release and have the potential to be used as drug delivery careers.
Collapse
Affiliation(s)
- Wedja Timóteo Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Meuris Gurgel Carlos da Silva
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil
| | - Laura de Oliveira Nascimento
- University of Campinas, School of Pharmaceutical Sciences, Cândido Portinari, St. 200, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-871, Brazil
| | - Melissa Gurgel Adeodato Vieira
- University of Campinas, School of Chemical Engineering, Albert Einstein Av., 500, Cidade Universitária "Zeferino Vaz", Campinas, SP 13083-852, Brazil.
| |
Collapse
|
16
|
Kim JY, Kim SG, Garagiola U. Relevant Properties and Potential Applications of Sericin in Bone Regeneration. Curr Issues Mol Biol 2023; 45:6728-6742. [PMID: 37623245 PMCID: PMC10453912 DOI: 10.3390/cimb45080426] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 08/10/2023] [Accepted: 08/12/2023] [Indexed: 08/26/2023] Open
Abstract
The potential of sericin, a protein derived from silkworms, is explored in bone graft applications. Sericin's biocompatibility, hydrophilic nature, and cost-effectiveness make it a promising candidate for enhancing traditional graft materials. Its antioxidant, anti-inflammatory, and UV-resistant properties contribute to a healthier bone-healing environment, and its incorporation into 3D-printed grafts could lead to personalized medical solutions. However, despite these promising attributes, there are still gaps in our understanding. The precise mechanism through which sericin influences bone cell growth and healing is not fully understood, and more comprehensive clinical trials are needed to confirm its long-term biocompatibility in humans. Furthermore, the best methods for incorporating sericin into existing graft materials are still under investigation, and potential allergic reactions or immune responses to sericin need further study.
Collapse
Affiliation(s)
- Jwa-Young Kim
- Department of Oral and Maxillofacial Surgery, Hallym University Kangnam Sacred Heart Hospital, Hallym University Medical Center, Seoul 07441, Republic of Korea;
| | - Seong-Gon Kim
- Department of Oral and Maxillofacial Surgery, College of Dentistry, Gangneung-Wonju National University, Gangneung 28644, Republic of Korea
| | - Umberto Garagiola
- Biomedical, Surgical and Oral Sciences Department, Maxillofacial and Dental Unit, School of Dentistry, University of Milan, 20122 Milan, Italy;
| |
Collapse
|
17
|
Lee HG, Jang MJ, Park BD, Um IC. Structural Characteristics and Properties of Redissolved Silk Sericin. Polymers (Basel) 2023; 15:3405. [PMID: 37631462 PMCID: PMC10459888 DOI: 10.3390/polym15163405] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Revised: 07/30/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Silk sericin has garnered the attention of researchers as a promising biomaterial because of its good biocompatibility and high water retention. However, despite its useful properties, the poor storage stability of sericin has restricted its extensive use in biorelated applications. This study extracted sericin from silkworm cocoon, dried and stored it as a solid, and then dissolved it in hot water conditions to improve the storage stability of sericin for its use. The dissolution behavior of the extracted sericin solids was examined in conjunction with the structural characteristics and properties of dissolved sericin. Consequently, the results of solution viscosity, gel strength, crystallinity index, and thermal decomposition temperature indicated that the molecular weight (MW) of the dissolved sericin remained constant until a dissolution time of 5 min, following which deterioration was observed. The optimum condition of dissolution of the extracted sericin solid was 5 min at 90 °C. Conclusively, the extracted sericin could be stored in a dry state and dissolved to prepare redissolved sericin aqueous solution with the same MW as extracted sericin, thereby improving the storage stability of the sericin aqueous solution.
Collapse
Affiliation(s)
- Hye Gyeoung Lee
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Mi Jin Jang
- Preclinical Research Center, Daegu-Gyeongbuk Medical Innovation Foundation, Daegu 41061, Republic of Korea
| | - Byung-Dae Park
- Department of Wood and Paper Science, Kyungpook National University, Daegu 41566, Republic of Korea
| | - In Chul Um
- Department of Biofibers and Biomaterials Science, Kyungpook National University, Daegu 41566, Republic of Korea
| |
Collapse
|
18
|
Aghaz F, Asadi Z, Sajadimajd S, Kashfi K, Arkan E, Rahimi Z. Codelivery of resveratrol melatonin utilizing pH responsive sericin based nanocarriers inhibits the proliferation of breast cancer cell line at the different pH. Sci Rep 2023; 13:11090. [PMID: 37422485 PMCID: PMC10329705 DOI: 10.1038/s41598-023-37668-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Accepted: 06/26/2023] [Indexed: 07/10/2023] Open
Abstract
Protein-based nanocarriers have demonstrated good potential for cancer drug delivery. Silk sericin nano-particle is arguably one of the best in this field. In this study, we developed a surface charge reversal sericin-based nanocarrier to co-deliver resveratrol and melatonin (MR-SNC) to MCF-7 breast cancer cells as combination therapy. MR-SNC was fabricated with various sericin concentrations via flash-nanoprecipitation as a simple and reproducible method without complicated equipment. The nanoparticles were subsequently characterized for their size, charge, morphology and shape by dynamic light scattering (DLS) and scanning electron microscope (SEM). Nanocarriers chemical and conformational analysis were done by fourier transform infrared spectroscopy (FT-IR) and circular dichroism (CD) respectively. In vitro drug release was determined at different pH values (7.45, 6.5 and 6). The cellular uptake and cytotoxicity were studies using breast cancer MCF-7 cells. MR-SNC fabricated with the lowest sericin concentration (0.1%), showed a desirable 127 nm size, with a net negative charge at physiological pH. Sericin structure was preserved entirely in the form of nano-particles. Among the three pH values we applied, the maximum in vitro drug release was at pH 6, 6.5, and 7.4, respectively. This pH dependency showed the charge reversal property of our smart nanocarrier via changing the surface charge from negative to positive in mildly acidic pH, destructing the electrostatic interactions between sericin surface amino acids. Cell viability studies demonstrated the significant toxicity of MR-SNC in MCF-7 cells at all pH values after 48 h, suggesting a synergistic effect of combination therapy with the two antioxidants. The efficient cellular uptake of MR-SNC, DNA fragmentation and chromatin condensation was found at pH 6. Nutshell, our result indicated proficient release of the entrapped drug combination from MR-SNC in an acidic environment leading to cell apoptosis. This work introduces a smart pH-responsive nano-platform for anti-breast cancer drug delivery.
Collapse
Affiliation(s)
- Faranak Aghaz
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Asadi
- Students Research Committee, Kermanshah University of Medical Sciences, Kermanshah, Iran
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Soraya Sajadimajd
- Department of Biology, Faculty of Science, Razi University, Kermanshah, Iran
| | - Khosrow Kashfi
- Department of Molecular, Cellular and Biomedical Sciences, Sophie Davis School of Biomedical Education, City University of New York School of Medicine, New York, USA
| | - Elham Arkan
- Nano Drug Delivery Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| | - Zohreh Rahimi
- Department of Clinical Biochemistry, Medical School, Kermanshah University of Medical Sciences, Kermanshah, Iran.
- Medical Biology Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
19
|
Li Y, Wei Y, Zhang G, Zhang Y. Sericin from Fibroin-Deficient Silkworms Served as a Promising Resource for Biomedicine. Polymers (Basel) 2023; 15:2941. [PMID: 37447586 DOI: 10.3390/polym15132941] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/15/2023] Open
Abstract
Sericin, a fascinating natural biomaterial derived from silkworms, has received increasing interest in recent years for its unique bioactivity and high compatibility. Silkworms can be divided into wild-type or silk fibroin-deficient mutants according to whether they synthesize and secrete silk fibroin. Silk fibroin-deficient mutant silkworms and their cocoons are convenient for us to obtain diverse and high-quality sericin, which has been applicated in various fields such as cell culture, tissue engineering, drug delivery, and cosmetics. Here, we present an overview of our silkworm varieties resources, especially silk fibroin-deficient mutant silkworms. We optimized various extraction methods of sericin and summarized the characteristics and advantages of sericin. Finally, we developed and discussed a series of sericin-based biomaterials for promising applications for a diverse set of needs.
Collapse
Affiliation(s)
- Yurong Li
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yongkang Wei
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
| | - Guozheng Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
| | - Yeshun Zhang
- College of Biotechnology, Jiangsu University of Science and Technology, Zhenjiang 212100, China
- Key Laboratory of Silkworm and Mulberry Genetic Improvement, Ministry of Agriculture and Rural Affairs, Sericultural Research Institute, Chinese Academy of Agricultural Sciences, Zhenjiang 212100, China
- Zhenjiang Zhongnong Biotechnology Co., Ltd., Zhenjiang 212121, China
| |
Collapse
|
20
|
Zahoor S, Tahir HM, Ali S, Ali A, Muzamil A, Murtaza Z, Zahoor N. Diabetic wound healing potential of silk sericin protein based hydrogels enriched with plant extracts. Int J Biol Macromol 2023:125184. [PMID: 37276909 DOI: 10.1016/j.ijbiomac.2023.125184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Revised: 05/29/2023] [Accepted: 05/30/2023] [Indexed: 06/07/2023]
Abstract
The complications associated with diabetic wounds make their healing process prolonged. Hydrogels could be ideal wound dressings therefore present research was conducted to prepare silk sericin (an adhesive protein polymer) based hydrogels in combination with plant extracts and to evaluate its effectiveness against wound healing process in mice with alloxan induced diabetes. Excision wounds were formed via a biopsy puncture (6 mm). Experimental hydrogels were prepared and applied topically on the diabetic wounds. All the hydrogel treatment groups showed significantly higher (P < 0.001) percent wound contraction from day 3 to day 11 as compared to the negative diabetic control group. The serum level of anti-inflammatory cytokine (Interleukin-10) and tissue inhibitor metalloproteinase (TIMP) was significantly higher (P < 0.001), while the level of pro-inflammatory cytokines (tumor necrosis factor-α, Interleukin-6) and matrix metalloproteinases (MMP-2, MMP-9) was significantly lower (P < 0.001) in hydrogels treatment groups as compared to diabetic control group. Although all the hydrogels showed effective results, however the best results were shown by 4 % sericin+4 % banyan+4 % onion based hydrogel. It can be concluded that Sericin based hydrogel enriched with banyan and onion extracts can be used as an effective remedy for the treatment of diabetic wounds due to their high healing and regenerative properties.
Collapse
Affiliation(s)
- Samia Zahoor
- Department of Zoology, Government College University Lahore, Pakistan
| | | | - Shaukat Ali
- Department of Zoology, Government College University Lahore, Pakistan
| | - Aamir Ali
- Department of Zoology, Government College University Lahore, Pakistan.
| | - Ayesha Muzamil
- Department of Zoology, Government College University Lahore, Pakistan
| | - Zainab Murtaza
- Department of Zoology, Government College University Lahore, Pakistan
| | - Nimbra Zahoor
- Department of Botany, Government College University Lahore, Pakistan
| |
Collapse
|
21
|
Shankar S, Murthy AN, Rachitha P, Raghavendra VB, Sunayana N, Chinnathambi A, Alharbi SA, Basavegowda N, Brindhadevi K, Pugazhendhi A. Silk sericin conjugated magnesium oxide nanoparticles for its antioxidant, anti-aging, and anti-biofilm activities. ENVIRONMENTAL RESEARCH 2023; 223:115421. [PMID: 36773634 DOI: 10.1016/j.envres.2023.115421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 01/18/2023] [Accepted: 02/02/2023] [Indexed: 06/18/2023]
Abstract
The Silk sericin protein was conjugated with magnesium oxide (MgO) nanoparticles to form SS-MgO-NPs . UV, XRD, FTIR, SEM, DLS, and EDX were used to confirm the formation of SS-MgO-NPs. The absorption band of SS-MgO-NPs using UV-visible spectra was observed at 310 nm, with an average size of the nanoparticles was 65-88 nm analyzed from DLS. The presence of alcohol, CN, and CC, alkanes, alkenes, and cis alkenes, in silk sericin, is confirmed by FT-IR and may act as a stabilizing agent. Later SS-MgO-NPs were evaluated for antioxidant, antibacterial, anti-biofilm, ,anti-aging, and anticancer properties. The SS-MgO-NPs inhibited the formation of biofilm of Pseudomonas aeruginosa and Bacillus cereus. The blood compatibility of SS-MgO-NPs, delaying coagulation was observed using human, blood, and goat blood samples. The SS-MgO-NPs exhibited significant anticancer activity on MCF-7 (IC50 207.6 μg/mL) cancer cell lines. Correspondingly, SS-MgO-NPs demonstrated dose-dependent inhibition of the enzymes in the following order collagenase > elastase > tyrosinase > hyaluronidase, with IC50 values of 75.3, 85.3, 133.6, and 156.3 μgmL-1, respectively. This exhibits the compoundposses anti-aging properties. So, in in vitro settings, SS-MgO-NPs can be used as an antibacterial, anti-aging, and anticancer agent. Additionally, in vivo research is necessary to validate its therapeutic applications.
Collapse
Affiliation(s)
- Sushmitha Shankar
- Institute of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - Anusha Narayana Murthy
- Institute of Excellence, Vijnana Bhavan, University of Mysore, Manasagangotri, Mysore, 570006, India
| | - P Rachitha
- Molecular Biology Department, S-Vyasa, Jigani, Bengaluru, 560105, India.
| | - Vinay B Raghavendra
- P.G. Department of Biotechnology, Teresian College, Siddarthanagar, Mysore, 570011, India.
| | - N Sunayana
- Microbiology and Cell Biology, Indian Institute of Science, Bangalore, 570012, India
| | - Arunachalam Chinnathambi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Sulaiman Ali Alharbi
- Department of Botany and Microbiology, College of Science, King Saud University, PO Box -2455, Riyadh, 11451, Saudi Arabia
| | - Nagaraj Basavegowda
- Department of Biotechnology, Yeungnam University, Gyeongsan, 712-749, Republic of Korea
| | - Kathirvel Brindhadevi
- Center for Transdisciplinary Research (CFTR), Department of Pharmacology, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India
| | - Arivalagan Pugazhendhi
- University Centre for Research & Development, Department of Civil Engineering, Chandigarh University, Mohali, India.
| |
Collapse
|
22
|
Mumtaz S, Ali S, Mumtaz S, Pervaiz A, Tahir HM, Farooq MA, Mughal TA. Advanced treatment strategies in breast cancer: A comprehensive mechanistic review. Sci Prog 2023; 106:368504231175331. [PMID: 37231668 PMCID: PMC10450270 DOI: 10.1177/00368504231175331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Breast cancer is a destructive lump type that affects women globally. Despite the availability of multi-directional therapeutic strategies, advanced stages of breast cancer are difficult to treat and impose major healthcare burdens. This situation reinforces the need to identify new potential therapeutic compounds with better clinical features. In this context, different treatment methods were included such as Endocrine therapy, chemotherapy, Radiation therapy, antimicrobial peptide-dependent growth inhibitor, liposome-based drug delivery, antibiotics used as a co-medication, photothermal, immunotherapy, and nano drug delivery systems such as Bombyx mori natural protein sericin and its mediated nanoparticles are promising biomedical agents. They have been tested as an anticancer agent against various malignancies in pre-clinical settings. The biocompatible and restricted breakdown properties of silk sericin and sericin-conjugated nanoparticles made them perfect contenders for a nanoscale drug-delivery system.
Collapse
Affiliation(s)
- Samaira Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shaukat Ali
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Shumaila Mumtaz
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Asim Pervaiz
- Biomedical and Allied Health Sciences, University of Health Sciences Lahore, Lahore, Pakistan
| | - Hafiz M Tahir
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Muhammad A Farooq
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| | - Tafail A Mughal
- Medical Toxicology and Entomology Laboratory, Department of Zoology, Government College University, Lahore, Pakistan
| |
Collapse
|
23
|
Wang C, Lu Q, Xiang Y, Yin Y, Li J, Liu Y, Wu X. Enhanced biocompatibility of silk sericin/caffeic acid nanoparticles by red blood cell membranes cloaking. Int J Biol Macromol 2023; 238:124133. [PMID: 36963548 DOI: 10.1016/j.ijbiomac.2023.124133] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 03/15/2023] [Accepted: 03/18/2023] [Indexed: 03/26/2023]
Abstract
Caffeic acid (CA) is an antioxidant phenolic compound that enriched in coffee beans, however, its administration often restrains by the instability and low solubility. Nanoparticle encapsulation is an effective approach to improve the therapeutic activity of CA. For example, silk sericin (SS), a natural biomaterial finds applications in food, cosmetics and biomedical fields, is proved here to be an appropriate encapsulation agent for CA, and a SS/CA composite nanoparticle has been fabricated. To further improve the biocompatibility of SS/CA, a red blood cell membranes (RM) cloaking strategy is adopted. The as-formed SS/CA/RM preserves the antioxidant activity of CA, and shows satisfactory biocompatibility especially under high concentration. Hope this can provide a potential appropriative strategy to adjust the chemical stability of insoluble drugs and to improve their biocompatibility.
Collapse
Affiliation(s)
- Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Qingyang Lu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yingjie Xiang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yulan Yin
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Yalu Liu
- Department of Ophthalmology, The Affiliated Xuzhou Municipal Hospital of Xuzhou Medical University, Daxue Road 269, Xuzhou 221002, China; Xuzhou First People's Hospital, Daxue Road 269, Xuzhou 221002, China.
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
24
|
Silk Sericin Protein Materials: Characteristics and Applications in Food-Sector Industries. Int J Mol Sci 2023; 24:ijms24054951. [PMID: 36902381 PMCID: PMC10003638 DOI: 10.3390/ijms24054951] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/13/2023] [Accepted: 02/21/2023] [Indexed: 03/08/2023] Open
Abstract
There is growing concern about the use of plastic in packaging for food materials, as this results in increased plastic waste materials in the environment. To counter this, alternative sources of packaging materials that are natural and based on eco-friendly materials and proteins have been widely investigated for their potential application in food packaging and other industries of the food sector. Sericin, a silk protein that is usually discarded in large quantities by the sericulture and textile industries during the degumming process of manufacturing silk from silk cocoons, can be explored for its application in food packaging and in other food sectors as a functional food and component of food items. Hence, its repurposing can result in reduced economic costs and environmental waste. Sericin extracted from silk cocoon possesses several useful amino acids, such as aspartic acid, glycine, and serine. Likewise, sericin is strongly hydrophilic, a property that confers effective biological and biocompatible characteristics, including antibacterial, antioxidant, anticancer, and anti-tyrosinase properties. When used in combination with other biomaterials, sericin has proved to be effective in the manufacture of films or coating or packaging materials. In this review, the characteristics of sericin materials and their potential application in food-sector industries are discussed in detail.
Collapse
|
25
|
Proteins and their functionalization for finding therapeutic avenues in cancer: Current status and future prospective. Biochim Biophys Acta Rev Cancer 2023; 1878:188862. [PMID: 36791920 DOI: 10.1016/j.bbcan.2023.188862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Revised: 01/13/2023] [Accepted: 01/13/2023] [Indexed: 02/15/2023]
Abstract
Despite the remarkable advancement in the health care sector, cancer remains the second most fatal disease globally. The existing conventional cancer treatments primarily include chemotherapy, which has been associated with little to severe side effects, and radiotherapy, which is usually expensive. To overcome these problems, target-specific nanocarriers have been explored for delivering chemo drugs. However, recent reports on using a few proteins having anticancer activity and further use of them as drug carriers have generated tremendous attention for furthering the research towards cancer therapy. Biomolecules, especially proteins, have emerged as suitable alternatives in cancer treatment due to multiple favourable properties including biocompatibility, biodegradability, and structural flexibility for easy surface functionalization. Several in vitro and in vivo studies have reported that various proteins derived from animal, plant, and bacterial species, demonstrated strong cytotoxic and antiproliferative properties against malignant cells in native and their different structural conformations. Moreover, surface tunable properties of these proteins help to bind a range of anticancer drugs and target ligands, thus making them efficient delivery agents in cancer therapy. Here, we discuss various proteins obtained from common exogenous sources and how they transform into effective anticancer agents. We also comprehensively discuss the tumor-killing mechanisms of different dietary proteins such as bovine α-lactalbumin, hen egg-white lysozyme, and their conjugates. We also articulate how protein nanostructures can be used as carriers for delivering cancer drugs and theranostics, and strategies to be adopted for improving their in vivo delivery and targeting. We further discuss the FDA-approved protein-based anticancer formulations along with those in different phases of clinical trials.
Collapse
|
26
|
Recent Progress in Proteins-Based Micelles as Drug Delivery Carriers. Polymers (Basel) 2023; 15:polym15040836. [PMID: 36850121 PMCID: PMC9964340 DOI: 10.3390/polym15040836] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/25/2023] [Accepted: 01/31/2023] [Indexed: 02/10/2023] Open
Abstract
Proteins-derived polymeric micelles have gained attention and revolutionized the biomedical field. Proteins are considered a favorable choice for developing micelles because of their biocompatibility, harmlessness, greater blood circulation and solubilization of poorly soluble drugs. They exhibit great potential in drug delivery systems as capable of controlled loading, distribution and function of loaded agents to the targeted sites within the body. Protein micelles successfully cross biological barriers and can be incorporated into various formulation designs employed in biomedical applications. This review emphasizes the recent advances of protein-based polymeric micelles for drug delivery to targeted sites of various diseases. Most studied protein-based micelles such as soy, gelatin, casein and collagen are discussed in detail, and their applications are highlighted. Finally, the future perspectives and forthcoming challenges for protein-based polymeric micelles have been reviewed with anticipated further advances.
Collapse
|
27
|
Ashraaf S, Tahir HM, Raza C, Awad EM, Ali S, Khan SY, Barisani-Asenbauer T. Synergistic Effect of Silk Sericin and Curcumin to Treat an Inflammatory Condition. J Burn Care Res 2023; 44:106-113. [PMID: 36269798 DOI: 10.1093/jbcr/irac157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2022] [Indexed: 01/11/2023]
Abstract
Inflammation-related diseases are recognized as the major cause of morbidity around the globe. In this study, the anti-inflammatory potential of sericin, curcumin, and their mixture was investigated in vivo and in vitro. Edema was induced via 1% carrageenan and then sericin (0.03, 0.06, 0.09 mg/ml), curcumin (1%, 2%, 3%), and their mixture doses were applied topically. The paw circumference and thickness were measured after 1-, 2-, 3-, 4-, 5-, and 6-hour post-carrageenan injection. The levels of IL-4 and IL-10 were measured from the serum. In mice fibroblast cells, sericin (20, 40, 60 μg/ml), curcumin (5, 10, 20 μM), and mixture concentrations were applied and then stimulated with lipopolysaccharide (LPS). Afterward, the cells were used for the analysis of gene expression, and the supernatant was collected for protein expression of IL-1β, IL-4, and IL-10. Our results demonstrated that sericin and curcumin caused a dose-dependent reduction in edema, whereas the mixture-treated group reduced the paw thickness and circumference most significantly (p = .0001). Furthermore, the mixture treatment of carrageenan-inflicted group increased the levels of anti-inflammatory cytokines, IL-4 (650.87 pg/ml) and IL-10 (183.14 pg/ml), in comparison to the carrageenan control. The in vitro data revealed that among all the treatment doses, the mixture-treated group has effectively reduced the gene (1.13-fold) and protein (51.9 pg/ml) expression of IL-1β in comparison to McCoy cells stimulated with LPS. Moreover, mixture treatment elevated the expression of IL-4 and IL-10 at genes (4.3-fold and 3.7-fold, respectively) and protein levels (169.33 and 141.83 pg/ml, respectively). The current study reports the enhanced anti-inflammatory effects of the mixture of curcumin and sericin through modulating expressions of interleukins in vitro and in vivo. Thus, natural products (curcumin and sericin)-based formulations have greater potential for clinical investigations.
Collapse
Affiliation(s)
- Sehrish Ashraaf
- Department of Zoology, Government College University, Lahore, Pakistan
| | | | - Chand Raza
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Ezzat M Awad
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| | - Shaukat Ali
- Department of Zoology, Government College University, Lahore, Pakistan
| | - Shafaat Yar Khan
- Department of Zoology, University of Sargodha, Sargodha, Pakistan
| | - Talin Barisani-Asenbauer
- Center of Ocular Inflammation and Infection, Laura Bassi Centres of Expertise (OCUVAC), Institute of Specific Prophylaxis and Tropical Medicine [ISPTM], Center for Pathophysiology, Infectiology and Immunology (CePII), Medical University of Vienna, Vienna, Austria
| |
Collapse
|
28
|
Zhang W, Li Z, Lan W, Guo H, Chen F, Wang F, Shen G, Xia Q, Zhao P. Bioengineered silkworm model for expressing human neurotrophin-4 with potential biomedical application. Front Physiol 2023; 13:1104929. [PMID: 36685209 PMCID: PMC9846172 DOI: 10.3389/fphys.2022.1104929] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023] Open
Abstract
Neurotrophin-4 (NT-4) is a neurotrophic factor that plays important roles in maintaining nerve cell survival, regulating neuronal differentiation and apoptosis, and promoting nerve injury repair. However, the source of sufficient NT-4 protein and efficient delivery of NT-4 remain a challenge. This study aims to express an activated human NT-4 protein in a large scale by genetically engineering silk gland bioreactor of silkworm as a host. We showed that the expression of human NT-4-functionalized silk material could promote proliferation of mouse HT22 cells when compared to the natural silk protein, and no obvious cytotoxicity was observed under the conditions of different silk materials. Importantly, this functional silk material was able to induce the potential differentiation of HT22 cells, promote peripheral neural cell migration and neurite outgrowth of chicken embryo dorsal root ganglion (DRG). All these results demonstrated a high bioactivity of human NT-4 protein produced in silk gland. Therefore, based on the silkworm model, the further fabrication of different silk materials-carrying active NT-4 protein with good mechanical properties and great biocompatibility will give promising applications in tissue engineering and neurons regeneration.
Collapse
Affiliation(s)
- Wenchang Zhang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Zhiqing Li
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Weiqun Lan
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Hao Guo
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Chen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Feng Wang
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Guanwang Shen
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Qingyou Xia
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China
| | - Ping Zhao
- State Key Laboratory of Silkworm Genome Biology, Biological Science Research Center, Southwest University, Chongqing, China,Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City & Southwest University, Chongqing, China,Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, China,*Correspondence: Ping Zhao,
| |
Collapse
|
29
|
Sherova ZU, Nasriddinov AS, Kholov SЕ, Usmanova SR, Muhidinov ZK. Molecular weight and molecular weight distribution of sericin protein extracted from cocoon waste of <i>Bombyx mori</i>. PROCEEDINGS OF UNIVERSITIES. APPLIED CHEMISTRY AND BIOTECHNOLOGY 2023. [DOI: 10.21285/2227-2925-2022-12-4-547-556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Silk sericin comprises a globular water-soluble protein that surrounds silk fibres, sticking them together and providing cocoon adhesion. Sericin was isolated from the extract solution in two ways: the first sample was obtained by concentrating the filtered extract at low pressure (SLP); the second sample was obtained by ultrafiltration (SUF) using a membrane. In this work, the size exclusion-high-performance liquid chromatography involving viscometry and refractive index detectors was used to determine the molecular weight and conformation of sericin polypeptides obtained from cocoons of the Bombyx mori silkworm. The aggregation processes of silk sericin protein under various isolation conditions from the solution were considered. It was shown that sericin macromolecules are present as a monodisperse polypeptide at low concentrations, which aggregates at concentrations greater than 1–2 mg/ml. The obtained data indicate that, along with the parameters of the extraction process, the conditions for its isolation from the solution, including temperature, pressure and degree of concentration, affect the molecular weight and aggregative behaviour of the protein. The results confirm and complement previously obtained data on the influence of various factors on the association of protein macromolecules in solution. The resulting sericin fractions can find many applications, including materials for tissue engineering, coatings for surface modification, cell culture media, cosmetics, as well as food additives and medical biomaterials.
Collapse
Affiliation(s)
- Z. U. Sherova
- V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
| | | | - Sh. Е. Kholov
- V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
| | - S. R. Usmanova
- V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
| | - Z. K. Muhidinov
- V.I. Nikitin Institute of Chemistry, NAS Republic of Tajikistan
| |
Collapse
|
30
|
Fu M, Li J, Liu M, Yang C, Wang Q, Wang H, Chen B, Fu Q, Sun G. Sericin/Nano-Hydroxyapatite Hydrogels Based on Graphene Oxide for Effective Bone Regeneration via Immunomodulation and Osteoinduction. Int J Nanomedicine 2023; 18:1875-1895. [PMID: 37051313 PMCID: PMC10084881 DOI: 10.2147/ijn.s399487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Accepted: 04/05/2023] [Indexed: 04/14/2023] Open
Abstract
Background Immune responses and osteogenesis differentiation induced by implants are crucial for bone tissue regeneration. Consideration of only one of those properties is not sufficient. To investigate the synergistic actions, we designed alginate/graphene oxide/sericin/nanohydroxyapatite (Alg/GO/Ser/nHAP) nanocomposite hydrogels with both osteoimmunomodulatory and osteoinductive activities. This study aimed to explore the effect of hydrogel with osteoimmunomodulatory properties on promoting osteogenesis of bone marrow stem cells (BMSCs). Methods Alg/GO/Ser/nHAP nanocomposite hydrogel was fabricated and was characterized by SEM, FTIR, XRD, stress-strain, rheology, swelling and degradation. After the impact of sericin on M2 macrophage polarization was identified, the BMSCs viability and adhesion were evaluated by CCK8 assay, live/dead staining, cytoskeleton staining. The cell osteogenic differentiation was observed by ALP/ARS staining, immunofluorescence staining, RT-PCR, and Western blotting, respectively. Rat cranial defect model was used to assess osteoimmunomodulatory effects of scaffolds in vivo by micro‑computed tomographic, histological, and immunohistochemical analyses after 8 weeks of healing. Results In vitro experiments revealed that the hydrogel presented desirable mechanical strength, stability, porosity, and biocompatibility. Significantly, sericin and nHAP appeared to exert synergistic effects on bone regeneration. Sericin was observed to inhibit the immune response by inducing macrophage M2-type polarization to create a positive osteoimmune microenvironment, contributing to improving osseointegration at the bone-implant interface to promote osteogenesis. However, the osteogenic differentiation in rat BMSCs was further enhanced by combining nHAP and sericin in the nanocomposite hydrogel. Eventually, the hydrogel was implanted into the rat cranial defect model, assisting in the reduction of local inflammation and efficient bone regeneration. Conclusion The nanocomposite hydrogel stimulated bone formation by the synergistic effects of immunomodulation of macrophage polarization by sericin and direct osteogenic induction by nHAP, demonstrating that such a scaffold that modulates the osteoimmune microenvironment to promote osteogenesis is a promising approach for the development of bone tissue engineering implants in the future.
Collapse
Affiliation(s)
- Mei Fu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Jun Li
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Mingchong Liu
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Chensong Yang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qidong Wang
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Hongrui Wang
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Bingdi Chen
- Institute for Regenerative Medicine, Shanghai East Hospital, The Institute for Biomedical Engineering & Nano Science, School of Medicine, Tongji University, Shanghai, People’s Republic of China
| | - Qingge Fu
- Department of Orthopedic Trauma, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, People’s Republic of China
| | - Guixin Sun
- Department of Traumatic Surgery, Shanghai East Hospital, School of Medicine, Tongji University, Shanghai, People’s Republic of China
- Correspondence: Guixin Sun; Qingge Fu, Email ;
| |
Collapse
|
31
|
Sericin-Based Poly(Vinyl) Alcohol Relieves Plaque and Epidermal Lesions in Psoriasis; a Chance for Dressing Development in a Specific Area. Int J Mol Sci 2022; 24:ijms24010145. [PMID: 36613589 PMCID: PMC9820396 DOI: 10.3390/ijms24010145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 12/16/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
The noncontagious immune-mediated skin disease known as psoriasis is regarded as a chronic skin condition with a 0.09-11.4% global prevalence. The main obstacle to the eradication of the disease continues to be insufficient treatment options. Sericin, a natural biopolymer from Bombyx mori cocoons, can improve skin conditions via its immunomodulatory effect. Many external therapeutic methods are currently used to treat psoriasis, but sericin-based hydrogel is not yet used to treat plaques of eczema. Through the use of an imiquimod rat model, this study sought to identify the physical and chemical characteristics of a silk sericin-based poly(vinyl) alcohol (SS/PVA) hydrogel and assess both its therapeutic and toxic effects on psoriasis. The cytokines, chemokines, and genes involved in the pathogenesis of psoriasis were investigated, focusing on the immuno-pathological relationships. We discovered that the SS/PVA had a stable fabrication and proper release. Additionally, the anti-inflammatory, antioxidant, and anti-apoptotic properties of SS/PVA reduced the severity of psoriasis in both gross and microscopic skin lesions. This was demonstrated by a decrease in the epidermal histopathology score, upregulation of nuclear factor erythroid 2-related factor 2 and interleukin (IL)-10, and a decrease in the expression of tumor necrosis factor (TNF)-α and IL-20. Moreover, the genes S100a7a and S100a14 were downregulated. Additionally, in rats given the SS/PVA treatment, blood urea nitrogen, creatinine, and serum glutamic oxaloacetic transaminase levels were within normal limits. Our findings indicate that SS/PVA is safe and may be potentiated to treat psoriasis in a variety of forms and locations of plaque because of its physical, chemical, and biological characteristics.
Collapse
|
32
|
Silva AS, Costa EC, Reis S, Spencer C, Calhelha RC, Miguel SP, Ribeiro MP, Barros L, Vaz JA, Coutinho P. Silk Sericin: A Promising Sustainable Biomaterial for Biomedical and Pharmaceutical Applications. Polymers (Basel) 2022; 14:polym14224931. [PMID: 36433058 PMCID: PMC9699483 DOI: 10.3390/polym14224931] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/01/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022] Open
Abstract
Silk is a natural composite fiber composed mainly of hydrophobic fibroin and hydrophilic sericin, produced by the silkworm Bombyx mori. In the textile industry, the cocoons of B. mori are processed into silk fabric, where the sericin is substantially removed and usually discarded in wastewater. This wastewater pollutes the environment and water sources. However, sericin has been recognized as a potential biomaterial due to its biocompatibility, immunocompatibility, biodegradability, anti-inflammatory, antibacterial, antioxidant and photoprotective properties. Moreover, sericin can produce hydrogels, films, sponges, foams, dressings, particles, fibers, etc., for various biomedical and pharmaceutical applications (e.g., tissue engineering, wound healing, drug delivery, cosmetics). Given the severe environmental pollution caused by the disposal of sericin and its beneficial properties, there has been growing interest in upcycling this biomaterial, which could have a strong and positive economic, social and environmental impact.
Collapse
Affiliation(s)
- Andreia S. Silva
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Elisabete C. Costa
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Sara Reis
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Carina Spencer
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
| | - Ricardo C. Calhelha
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Correspondence: (R.C.C.); (P.C.)
| | - Sónia P. Miguel
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Maximiano P. Ribeiro
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
| | - Lillian Barros
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Josiana A. Vaz
- Centro de Investigação da Montanha (CIMO), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
- Laboratório Associado para a Sustentabilidade e Tecnologia em Regiões de Montanha (SusTEC), Instituto Politécnico de Bragança, Campus de Santa Apolónia, 5300-253 Bragança, Portugal
| | - Paula Coutinho
- CPIRN-IPG—Center of Potential and Innovation of Natural Resources, Polytechnic Institute of Guarda, 6300-559 Guarda, Portugal
- CICS-UBI—Health Sciences Research Centre, University of Beira Interior, 6200-506 Covilhã, Portugal
- Correspondence: (R.C.C.); (P.C.)
| |
Collapse
|
33
|
Gagliardi A, Ambrosio N, Voci S, Salvatici MC, Fresta M, Cosco D. Easy preparation, characterization and cytotoxic investigation of 5-Fluorouracil-loaded zein/sericin nanoblends. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.120344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022]
|
34
|
Bhaskar S, Rai A, Ganesh KM, Reddy R, Reddy N, Ramamurthy SS. Sericin-Based Bio-Inspired Nano-Engineering of Heterometallic AgAu Nanocubes for Attomolar Mefenamic Acid Sensing in the Mobile Phone-Based Surface Plasmon-Coupled Interface. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:12035-12049. [PMID: 36122249 DOI: 10.1021/acs.langmuir.2c01894] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/27/2023]
Abstract
Engineering photo-plasmonic platforms with heterometallic nanohybrids are of paramount significance for realizing augmented sensitivity in fluorescence-based analytical detection. Although myriad nanomaterials with versatile functionalities have been explored in this regard in the surface plasmon-coupled emission (SPCE) interface, light harvesting using nano-antennas synthesized via sustainable bio-inspired routes still remains a high priority in current research. Our study provides a rational design for in situ fabrication of nanoparticles of silver, gold, and their plasmonic hybrids using biocompatible, non-hazardous sericin protein (obtained Bombyx mori) as the reducing and capping agent. The one-pot, user-eco-friendly technology demonstrated here utilizes UV irradiation to promote the photo-induced electron transfer mechanism, thereby yielding nanomaterials of tunable optoelectronic functionalities. The resulting homometallic and heterometallic nanohybrids with robust localized surface plasmon resonances (LSPR) showed strong light-confining attributes when interfaced with the propagating surface plasmon polaritons (SPPs) of the SPCE platform, thereby yielding tunable, highly directional, polarized, and amplified fluorescence emission. The experimentally obtained emission profiles displayed an excellent correlation with the theoretically obtained dispersion diagrams validating the spectro-plasmonic results. The abundant hotspots from AgAu nanocubes presented in excess of 1300-fold dequenched fluorescence enhancement and were utilized for cost-effective and real-time mobile phone-based sensing of biologically relevant mefenamic acid at an attomolar limit of detection. We believe that this superior biosensing performance accomplished using the frugal bioinspired nano-engineering at hybrid interfaces would open new doors for developing nanofabrication protocols with the quintessential awareness of the principles of green nanotechnology, consequently eliminating hazardous chemicals and solvents in the development of point-of-care diagnostic tools.
Collapse
Affiliation(s)
- Seemesh Bhaskar
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
- Department of Chemistry, Indian Institute of Technology Bombay, Powai, Mumbai 400076, India
| | - Aayush Rai
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Kalathur Mohan Ganesh
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| | - Roopa Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Narendra Reddy
- Center for Incubation Innovation Research and Consultancy, Jyothy Institute of Technology, Thathaguni Post, Bengaluru 560109, India
| | - Sai Sathish Ramamurthy
- STAR Laboratory, Department of Chemistry, Sri Sathya Sai Institute of Higher Learning, Prasanthi Nilayam, Puttaparthi 515134 Anantapur, Andhra Pradesh, India
| |
Collapse
|
35
|
Biganeh H, Kabiri M, Zeynalpourfattahi Y, Costa Brancalhão RM, Karimi M, Shams Ardekani MR, Rahimi R. Bombyx mori cocoon as a promising pharmacological agent: A review of ethnopharmacology, chemistry, and biological activities. Heliyon 2022; 8:e10496. [PMID: 36105465 PMCID: PMC9465338 DOI: 10.1016/j.heliyon.2022.e10496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2022] [Revised: 03/30/2022] [Accepted: 08/25/2022] [Indexed: 11/02/2022] Open
Abstract
Silk cocoon, naturally produced by silkworms scientifically named Bombyx mori L. (Lepidoptera, Bombycidae), is one of the well-known medicinal agents with several therapeutic activities. The present study aims to review the various aspects of the silk cocoon, including chemical composition, traditional uses, biological and biotechnological activities, and toxicological issues, to provide a scientific source for scholars. For this purpose, Electronic databases including PubMed, Scopus, Google Scholar, Web of Science, and traditional literature, were searched up to December 2021. According to the historical data, silk farming is acknowledged as one of the most ancient agricultural findings. The silk is generally composed of 75–83% fibroin, 17–25% sericin, and 1–5% non-sericin components, including secondary metabolites, wax, pigments, carbohydrates, and other impurities. Flavonoids, especially quercetin and kaempferol, alkaloids, coumarin derivatives, and phenolic acids, are among the secondary metabolites isolated from the silk cocoon. In recent years the biological properties of the silk cocoon, especially its major proteins, namely fibroin and sericin, have drawn special attention. Scientific literature has investigated several pharmacological effects of the silk cocoon and its ingredients, including cardioprotective, antioxidant, anticancer, antidiabetic, antihyperlipidemia, gastroprotective, as well as ameliorated skin health activities. In addition, it has been extensively taken into consideration in drug delivery and tissue engineering study fields. Furthermore, its toxicity is in acceptable range.
Collapse
|
36
|
Wang C, Li J, Han X, Liu S, Gao X, Guo C, Wu X. Silk sericin stabilized proanthocyanidins for synergetic alleviation of ulcerative colitis. Int J Biol Macromol 2022; 220:1021-1030. [PMID: 36007701 DOI: 10.1016/j.ijbiomac.2022.08.134] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 08/11/2022] [Accepted: 08/19/2022] [Indexed: 11/20/2022]
Abstract
Silk sericin (SS) has become a noticeable drug nanocarrier due to its excellent biocompatibility and bioactivity. To further extend the application of SS, a facile one-step process was constructed to fabricate SS-stabilized-drug composites. Various insoluble drugs can be encapsulated into SS with high loading amount, and showed good dispersity in aqueous solution. For example, proanthocyanidins (PAC), a natural polyphenol with initial antioxidant and anti-inflammatory effects, can be loaded on SS to form SS/PAC composites. The SS/PAC can disperse uniformly in aqueous solution with an average particle diameter of ~136 nm, and showed high drug loading amount of 1767 mg/g. The SS/PAC exhibited high antioxidant efficiency and excellent biocompatibility (non-irritant, non-hemolysis, and non-cytotoxicity), could remarkably alleviate the symptoms of dextran sulfate sodium-induced ulcerative colitis by decreasing the disease activity index scores, inhibiting the shortening of colon length, regulating oxidative stress, suppressing inflammation, and reversing the histopathological injuries. This work provides a simple method to fabricate SS-stabilized-drug composites, promises high potential in therapeutic and pharmaceutical applications.
Collapse
Affiliation(s)
- Chunru Wang
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Junyao Li
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiangsheng Han
- School of Agricultural Engineering and Food Science, Shandong University of Technology, Zibo 255000, China.
| | - Shuai Liu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xintao Gao
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Chuanlong Guo
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China
| | - Xiaochen Wu
- Department of Pharmacy, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, China.
| |
Collapse
|
37
|
Kara G, Arun B, Calin GA, Ozpolat B. miRacle of microRNA-Driven Cancer Nanotherapeutics. Cancers (Basel) 2022; 14:3818. [PMID: 35954481 PMCID: PMC9367393 DOI: 10.3390/cancers14153818] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 07/28/2022] [Accepted: 08/04/2022] [Indexed: 12/23/2022] Open
Abstract
MicroRNAs (miRNAs) are non-protein-coding RNA molecules 20-25 nucleotides in length that can suppress the expression of genes involved in numerous physiological processes in cells. Accumulating evidence has shown that dysregulation of miRNA expression is related to the pathogenesis of various human diseases and cancers. Thus, stragegies involving either restoring the expression of tumor suppressor miRNAs or inhibiting overexpressed oncogenic miRNAs hold potential for targeted cancer therapies. However, delivery of miRNAs to tumor tissues is a challenging task. Recent advances in nanotechnology have enabled successful tumor-targeted delivery of miRNA therapeutics through newly designed nanoparticle-based carrier systems. As a result, miRNA therapeutics have entered human clinical trials with promising results, and they are expected to accelerate the transition of miRNAs from the bench to the bedside in the next decade. Here, we present recent perspectives and the newest developments, describing several engineered natural and synthetic novel miRNA nanocarrier formulations and their key in vivo applications and clinical trials.
Collapse
Affiliation(s)
- Goknur Kara
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Department of Chemistry, Biochemistry Division, Ordu University, Ordu 52200, Turkey
| | - Banu Arun
- Department of Breast Medical Oncology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - George A. Calin
- Department of Translational Molecular Pathology, MD Anderson Cancer Center, The University of Texas, Houston, TX 77030, USA
| | - Bulent Ozpolat
- Department of Nanomedicine, Houston Methodist Research Institute, Houston, TX 77030, USA
- Houston Methodist Neal Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
38
|
Liu J, Shi L, Deng Y, Zou M, Cai B, Song Y, Wang Z, Wang L. Silk sericin-based materials for biomedical applications. Biomaterials 2022; 287:121638. [PMID: 35921729 DOI: 10.1016/j.biomaterials.2022.121638] [Citation(s) in RCA: 57] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 06/04/2022] [Accepted: 06/14/2022] [Indexed: 11/17/2022]
Abstract
Silk sericin, a natural protein extracted from silkworm cocoons, has been extensively studied and utilized in the biomedical field because of its superior biological activities and controllable chemical-physical properties. Sericin is biocompatible and naturally cell adhesive, enabling cell attachment, proliferation, and differentiation in sericin-based materials. Moreover, its abundant functional groups from variable amino acids composition allow sericin to be chemically modified and cross-linked to form versatile constructs serving as alternative matrixes for biomedical applications. Recently, sericin has been constructed into various types of biomaterials for tissue engineering and regenerative medicine, including various bulk constructions (films, hydrogels, scaffolds, conduits, and devices) and micro-nano formulations. In this review, we systemically summarize the properties of silk sericin, introduce its different forms, and demonstrate their newly-developed as well as potential biomedical applications.
Collapse
Affiliation(s)
- Jia Liu
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Lin Shi
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yan Deng
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Meizhen Zou
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Bo Cai
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Yu Song
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China
| | - Zheng Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Gastrointestinal Surgery, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| | - Lin Wang
- Research Center for Tissue Engineering and Regenerative Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China; Department of Clinical Laboratory, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, China.
| |
Collapse
|
39
|
Alcalá AC, Contreras MA, Cuevas-Juárez E, Ramírez OT, Palomares LA. Effect of sericin, a silk derived protein, on the amplification of Zika virus in insect and mammalian cell cultures. J Biotechnol 2022; 353:28-35. [PMID: 35623476 DOI: 10.1016/j.jbiotec.2022.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 04/15/2022] [Accepted: 05/13/2022] [Indexed: 02/07/2023]
Abstract
Sericin, a silk-derived non-immunogenic protein, has been used to improve cell culture performance by increasing viability, cell concentration, and promoting adherence of several cell lines. Here, we hypothesized that the properties of sericin can enhance the amplification of flaviviruses in cell cultures. The propagation of flavivirus is inefficient and limits scientific research. Zika virus (ZIKV) is an important human pathogen that has been widely studied because of its high impact on public health. There is a need to amplify Zika virus both for research and vaccine development. In this work, we show that sericin improves ZIKV amplification in insect (C6/36) and mammalian (Vero) cell cultures, and that it has a cryoprotectant capacity. Supplementation of cell culture media with sericin at 80 µg/mL resulted in a significant increase of 1 log in the concentration of ZIKV infectious particles produced from both cell lines. Furthermore, final virus yields increased between 5 and 10-fold in Vero cells and between 7 and 23-fold in C6/36 cells when sericin was supplemented, compared to control conditions. These results show that sericin is an effective supplement to increase ZIKV production by Vero and C6/36 cells. Additionally, sericin was a suitable cryoprotective agent, and hence an alternative to FBS and DMSO, for the cryopreservation of C6/36 cells but not for Vero cells.
Collapse
Affiliation(s)
- Ana C Alcalá
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Martha A Contreras
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Esmeralda Cuevas-Juárez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México
| | - Octavio T Ramírez
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| | - Laura A Palomares
- Departamento de Medicina Molecular y Bioprocesosō, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Cuernavaca, Morelos, México.
| |
Collapse
|
40
|
Xu S, Yang Q, Wang R, Tian C, Ji Y, Tan H, Zhao P, Kaplan DL, Wang F, Xia Q. Genetically engineered pH-responsive silk sericin nanospheres with efficient therapeutic effect on ulcerative colitis. Acta Biomater 2022; 144:81-95. [PMID: 35288310 DOI: 10.1016/j.actbio.2022.03.012] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 02/20/2022] [Accepted: 03/07/2022] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is one type of inflammatory bowel disease (IBD) and lactoferrin (LF) is a promising protein drug to treat UC. However, targeted LF delivery to optimize bioavailability, targeting and effectiveness remains a challenge. Here, we report an effective strategy to fabricate silk sericin nanospheres systems for the delivery of recombinant human lactoferrin (SS-NS-rhLF). The system is based on the use of optimized transgenic silkworms to generate genetically engineered silk fibers (rhLF-silks). The rhLF silks were used for fabricating SS-NS-rhLF by ethanol precipitation. The SS-NS-rhLF were stable with a spherical morphology with an average diameter of 123 nm. The negatively charged sericins in a pH ≥ 5.5 environment achieved specific targeting of the SS-NS-rhLF to positively charged colonic sites. The SS-NS-rhLF achieved efficient uptake by cells in the inflamed colon of mice when compared to free lactoferrin in solution (SOL-rhLF). Furthermore, oral administration of the SS-NS-rhLF with low dose of rhLF significantly relived symptoms of UC in mice and achieved comparable therapeutic effect to the high dose of SOL-rhLF by supporting the reformation of cell structure and length of colon tissue, reducing the release of inflammatory factors, inhibiting the activation of the NF-κB inflammatory pathway, and maintaining a stable intestinal microbial population in mice. These results showed that the SS-NS-rhLF is a promising system for colitis treatment. STATEMENT OF SIGNIFICANCE: Targeting and effective delivery of multiple biological functional protein human lactoferrin (rhLF) is a promising strategy to treat ulcerative colitis in the clinic. Here, rhLF-transgenic silk cocoons were used to fabricate a rhLF-sericin nanosphere delivery system (SS-NS-rhLF). The fabricated SS-NS-rhLF showed identical spherical morphology, stable structure, sustainable rhLF release, efficient cell uptake and negative charge in an environment of pH above 5.5, thus realized the specific targeting to the positively charged colonic sites to treat UC mice through oral administration. The therapeutic effect of SS-NS-rhLF with a low rhLF dose in the UC mice was comparable to the high dose of free rhLF treatment in solution form, suggesting that the SS-NS-rhLF is a promising system for colitis treatment.
Collapse
|
41
|
Fu Z, Li W, Wei J, Yao K, Wang Y, Yang P, Li G, Yang Y, Zhang L. Construction and Biocompatibility Evaluation of Fibroin/Sericin-Based Scaffolds. ACS Biomater Sci Eng 2022; 8:1494-1505. [PMID: 35230824 DOI: 10.1021/acsbiomaterials.1c01426] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Because tissue responses to implants determine the success or failure of tissue engineering products, fibroin/sericin-based scaffolds including bionic silk scaffolds, native silk fibers, fibroin fibers, and regenerated fibroin have been fabricated, and their biocompatibility was investigated. Fibroin/sericin-based scaffolds were characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Bionic silk scaffolds were beneficial to silk fiber formation through self-assembly. Histological and immunofluorescent staining analysis demonstrated that bionic silk scaffolds did not show significant inflammatory responses. Immunization analysis showed that soluble fibroin and sericin did not show obvious immunogenicity. This work supplied an effective approach to design fibroin/sericin-based scaffolds for tissue engineering and drug delivery.
Collapse
Affiliation(s)
- Zexi Fu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Wenhui Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Jingjing Wei
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Ke Yao
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yuqing Wang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Pengxiang Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Guicai Li
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Yumin Yang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| | - Luzhong Zhang
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong 226001, PR China
| |
Collapse
|
42
|
Apiwattanasiri P, Charoen R, Rittisak S, Phattayakorn K, Jantrasee S, Savedboworn W. Co-encapsulation efficiency of silk sericin-alginate-prebiotics and the effectiveness of silk sericin coating layer on the survival of probiotic Lactobacillus casei. FOOD BIOSCI 2022. [DOI: 10.1016/j.fbio.2022.101576] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
43
|
Sim GS, Shaji N, Santhoshkumar P, Park JW, Ho CW, Nanthagopal M, Kim HK, Lee CW. Silkworm Protein-Derived Nitrogen-Doped Carbon-Coated Li[Ni 0.8Co 0.15Al 0.05]O 2 for Lithium-Ion Batteries. NANOMATERIALS (BASEL, SWITZERLAND) 2022; 12:1166. [PMID: 35407283 PMCID: PMC9000685 DOI: 10.3390/nano12071166] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/26/2022]
Abstract
Li[Ni0.8Co0.15Al0.05]O2 (NCA) is a cathode material for lithium-ion batteries and has high power density and capacity. However, this material has disadvantages such as structural instability and short lifespan. To address these issues, herein, we explore the impact of N-doped carbon wrapping on NCA. Sericin, an easily obtained carbon- and nitrogen-rich component of silk cocoons, is utilized as the precursor material. The electrochemical performance evaluation of N-doped carbon-coated NCA shows that the capacity retention of 0.3 NC@NCA at 1C current density is 69.83% after 200 cycles, which is about 19% higher than the 50.65% capacity retention of bare NCA. The results reveal that the sericin-resultant N-doped carbon surface wrapping improves the cycling stability of NC@NCA.
Collapse
Affiliation(s)
- Gyu Sang Sim
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - Nitheesha Shaji
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - P. Santhoshkumar
- Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea;
| | - Jae Woo Park
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - Chang Won Ho
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - Murugan Nanthagopal
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - Hong Ki Kim
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
| | - Chang Woo Lee
- Department of Chemical Engineering (Integrated Engineering), College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea; (G.S.S.); (N.S.); (J.W.P.); (C.W.H.); (M.N.); (H.K.K.)
- Center for the SMART Energy Platform, College of Engineering, Kyung Hee University, 1732 Deogyeong-daero, Giheung, Yongin 17104, Gyeonggi, Korea;
| |
Collapse
|
44
|
Guan CY, Wang F, Zhang L, Sun XC, Zhang D, Wang H, Xia HF, Xia QY, Ma X. Genetically engineered FGF1-sericin hydrogel material treats intrauterine adhesion and restores fertility in rat. Regen Biomater 2022; 9:rbac016. [PMID: 35480860 PMCID: PMC9036899 DOI: 10.1093/rb/rbac016] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 02/14/2022] [Accepted: 02/28/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Endometrial injury can cause intrauterine adhesions (IUA) and induce the formation of endometrial fibrosis, leading to infertility and miscarriage. At present, there is no effective treatment method for severe IUA and uterine basal injury with adhesion area larger than 1/3 of the uterus. In this study, we prepared FGF1 silk sericin hydrogel material (FGF1-SS hydrogel) to treat endometrial injury and prevent endometrial fibrosis. Compared with the silk sericin hydrogel material (WT-SS hydrogel), FGF1-SS hydrogel significantly promotes the cell migration and infiltration ability of endometrial stromal cells (ESCs). More importantly, FGF1-SS hydrogel can release FGF1 stably for a long time and inhibit The ESCs injury model forms fibrosis through the TGF-β/Smad pathway. In the IUA rat model, FGF1-SS hydrogel treatment effectively restored the number of uterine glands and uterine wall thickness in rats, with a fertility rate of 65.1 ± 6.4%. The results show that FGF1-SS hydrogel is expected to be a candidate to prevent IUA.
Collapse
Affiliation(s)
- Chun-Yi Guan
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Feng Wang
- Biological Science Research Center, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Lu Zhang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Xue-Cheng Sun
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Dan Zhang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Hu Wang
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Hong-Fei Xia
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| | - Qing-You Xia
- Biological Science Research Center, Chongqing Key Laboratory of Sericultural Science, Chongqing Engineering and Technology Research Center for Novel Silk Materials, Southwest University, Chongqing, 400715, People’s Republic of China
| | - Xu Ma
- Reproductive and Genetic Center of National Research Institute for Family Planning, Beijing, 100081, People’s Republic of China
- Graduate School, Peking Union Medical College, Beijing, 100005, People’s Republic of China
| |
Collapse
|
45
|
The Potential Roles of Probiotics, Resistant Starch, and Resistant Proteins in Ameliorating Inflammation during Aging (Inflammaging). Nutrients 2022; 14:nu14040747. [PMID: 35215397 PMCID: PMC8879781 DOI: 10.3390/nu14040747] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2021] [Revised: 01/29/2022] [Accepted: 02/07/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is typically accompanied by biological and physiological changes that alter cellular functions. Two of the most predominant phenomena in aging include chronic low-grade inflammation (inflammaging) and changes in the gut microbiota composition (dysbiosis). Although a direct causal relationship has not been established, many studies have reported significant reductions in inflammation during aging through well-maintained gut health and microbial balance. Prebiotics and probiotics are known to support gut health and can be easily incorporated into the daily diet. Unfortunately, few studies specifically focus on their significance in reducing inflammation during aging. Therefore, this review summarizes the scientific evidence of the potential roles of probiotics and two types of prebiotics, resistant starch and resistant proteins, in later age. Studies have demonstrated that the oral consumption of bacteria that may contribute to anti-inflammatory response, such as Bifidobacterium spp., Akkermansia munichipilla, and Faecalis praunitzii, contributes significantly to the suppression of pro-inflammatory markers in elderly humans and aged animals. Colonic fermentation of resistant starch and proteins also demonstrates anti-inflammatory activity owing to the production of butyrate and an improvement in the gut microbiota composition. Collectively, probiotics, resistant starch, and resistant proteins have the potential to promote healthy aging.
Collapse
|
46
|
Dhilip Kumar SS, Abrahamse H. Sericin-based nanomaterials and their applications in drug delivery. BIO-BASED NANOMATERIALS 2022:211-229. [DOI: 10.1016/b978-0-323-85148-0.00008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
|
47
|
Niu Y, Galluzzi M, Deng F, Zhao Z, Fu M, Su L, Sun W, Jia W, Xia H. A biomimetic hyaluronic acid‐silk fibroin nanofiber scaffold promoting regeneration of transected urothelium. Bioeng Transl Med 2021; 7:e10268. [PMID: 35600655 PMCID: PMC9115696 DOI: 10.1002/btm2.10268] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/01/2021] [Accepted: 11/02/2021] [Indexed: 12/17/2022] Open
Abstract
This study was designed to investigate the regulatory effect of hyaluronic acid (HA)—coating silk fibroin (SF) nanofibers during epithelialization of urinary tract for urethral regeneration. The obtained electrospun biomimetic tubular HA‐SF nanofiber scaffold is composed of a dense inner layer and a porous outer layer in order to mimic adhesion and cavernous layers of the native tissue, respectively. A thin layer of HA‐gel coating was fixed in the inner wall to provide SF nanofibers with a dense and smooth surface nano‐topography and higher hydrophilicity. Compared with pure SF nanofibers, HA‐SF nanofibers significantly promoted the adhesion, growth, and proliferation of primary urothelial cells, and up‐regulate the expression of uroplakin‐3 (terminal differentiation keratin protein in urothelium). Using the New Zealand male rabbit urethral injury model, the scaffold composed of tubular HA‐SF nanofibers could recruit lumen and myoepithelial cells from the adjacent area of the host, rapidly reconstructing the urothelial barrier in the wound area in order to keep the urinary tract unobstructed, thereby promoting luminal epithelialization, smooth muscle bundle structural remodeling, and capillary formation. Overall, the synergistic effects of nano‐topography and biophysical cues in a biomimetic scaffold design for effective endogenous regeneration.
Collapse
Affiliation(s)
- Yuqing Niu
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Massimiliano Galluzzi
- Materials Interfaces Center, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences Shenzhen Guangdong China
| | - Fuming Deng
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Zhang Zhao
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Ming Fu
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Liang Su
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Weitang Sun
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Wei Jia
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| | - Huimin Xia
- Department of Pediatric Surgery Guangdong Provincial Key Laboratory of Research in Structural Birth Defect Disease, Guangzhou Women and Children's Medical Center, Guangzhou Medical University Guangzhou Guangdong China
| |
Collapse
|
48
|
Lee H, Ahn D, Jeon E, Hui Fam DW, Lee J, Lee WJ. Macroscopic Assembly of Sericin toward Self-Healable Silk. Biomacromolecules 2021; 22:4337-4346. [PMID: 34515486 DOI: 10.1021/acs.biomac.1c00881] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Silk contains an adhesive glycoprotein, silk sericin, in which silk fibroins can be enfolded and chemically stabilized. Silk sericin is gaining importance as the material for the creation of functional bioscaffolds. However, the assembly of silk sericin is generally limited to the blend of polymers or proteins due to its inherent poor mechanical strength. Here, we report a simple macroscopic controlled assembly of silk sericin fibers based on their secondary structure via wet-spinning. In addition, plasticization of silk sericin using glycerol immobilized with glutaraldehyde was found to induce dimensional stability, affording stable linear fibers with self-adhesion. Furthermore, cyclo-phenylalanine nanowires were incorporated into the silk sericin dope for a practical demonstration of their potential in artificial silk production with superstructure formation. The physicochemical characteristics of the spun fibers have also been elucidated using Fourier-transform infrared spectroscopy, electron microscopy, tensile test, differential scanning calorimetry, and 2D X-ray diffraction.
Collapse
Affiliation(s)
- Hoyoung Lee
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea
| | - Dowon Ahn
- Center for Advanced Specialty Chemicals, Korea Research Institute of Chemical Technology, Ulssan 44412, Republic of Korea
| | - Eunyoung Jeon
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Derrick Wen Hui Fam
- Institute of Materials Research and Engineering, A*STAR (Agency for Science, Technology and Research), 2 Fusionopolis Way, Innovis #08-03, Singapore 138634, Republic of Singapore
| | - Joonseok Lee
- Department of Chemistry, Hanyang University, Seoul 04763, Republic of Korea
| | - Won Jun Lee
- Department of Fiber System Engineering, Dankook University, Yongin 16890, Republic of Korea
| |
Collapse
|
49
|
Superior Technique for the Production of Agarose Dressing Containing Sericin and Its Wound Healing Property. Polymers (Basel) 2021; 13:polym13193370. [PMID: 34641182 PMCID: PMC8512865 DOI: 10.3390/polym13193370] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 12/28/2022] Open
Abstract
Finding a simple and eco-friendly production technique that matches to the natural agent and results in a truly valuable natural scaffold production is still limited amongst the intensively competitive natural scaffold development. Therefore, the purpose of this study was to develop natural scaffolds that were environmentally friendly, low cost, and easily produced, using natural agents and a physical crosslinking technique. These scaffolds were prepared from agarose and sericin using the freeze-drying method (D) or freeze-thawing together with the freeze-drying method (TD). Moreover, plasticizers were added into the scaffold to improve their properties. Their physical, mechanical, and biological properties were investigated. The results showed that scaffolds that were prepared using the TD method had stronger bonding between sericin and other compounds, leading to a low swelling ratio and low protein release of the scaffolds. This property may be applied in the development of further material as a controlled drug release scaffold. Adding plasticizers, especially glycerin, into the scaffolds significantly increased elongation properties, leading to an increase in elasticity of the scaffold. Moreover, all scaffolds could activate cell migration, which had an advantage on wound healing acceleration. Accordingly, this study was successful in developing natural scaffolds using natural agents and simple and green crosslinking methods.
Collapse
|
50
|
Naskar D, Sapru S, Ghosh AK, Reis RL, Dey T, Kundu SC. Nonmulberry silk proteins: multipurpose ingredient in bio-functional assembly. Biomed Mater 2021; 16. [PMID: 34428758 DOI: 10.1088/1748-605x/ac20a0] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 08/24/2021] [Indexed: 01/27/2023]
Abstract
The emerging field of tissue engineering and regenerative medicines utilising artificial polymers is facing many problems. Despite having mechanical stability, non-toxicity and biodegradability, most of them lack cytocompatibility and biocompatibility. Natural polymers (such as collagen, hyaluronic acid, fibrin, fibroin, and others), including blends, are introduced to the field to solve some of the relevant issues. Another natural biopolymer: silkworm silk gained special attention primarily due to its specific biophysical, biochemical, and material properties, worldwide availability, and cost-effectiveness. Silk proteins, namely fibroin and sericin extracted from domesticated mulberry silkwormBombyx mori, are studied extensively in the last few decades for tissue engineering. Wild nonmulberry silkworm species, originated from India and other parts of the world, also produce silk proteins with variations in their nature and properties. Among the nonmulberry silkworm species,Antheraea mylitta(Indian Tropical Tasar),A. assamensis/A. assama(Indian Muga), andSamia ricini/Philosamia ricini(Indian Eri), along withA. pernyi(Chinese temperate Oak Tasar/Tussah) andA. yamamai(Japanese Oak Tasar) exhibit inherent tripeptide motifs of arginyl glycyl aspartic acid in their fibroin amino acid sequences, which support their candidacy as the potential biomaterials. Similarly, sericin isolated from such wild species delivers unique properties and is used as anti-apoptotic and growth-inducing factors in regenerative medicines. Other characteristics such as biodegradability, biocompatibility, and non-inflammatory nature make it suitable for tissue engineering and regenerative medicine based applications. A diverse range of matrices, including but not limited to nano-micro scale structures, nanofibres, thin films, hydrogels, and porous scaffolds, are prepared from the silk proteins (fibroins and sericins) for biomedical and tissue engineering research. This review aims to represent the progress made in medical and non-medical applications in the last couple of years and depict the present status of the investigations on Indian nonmulberry silk-based matrices as a particular reference due to its remarkable potentiality of regeneration of different types of tissues. It also discusses the future perspective in tissue engineering and regenerative medicines in the context of developing cutting-edge techniques such as 3D printing/bioprinting, microfluidics, organ-on-a-chip, and other electronics, optical and thermal property-based applications.
Collapse
Affiliation(s)
- Deboki Naskar
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Cambridge Institute for Medical Research, School of Clinical Medicine, University of Cambridge, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - Sunaina Sapru
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,Present address: Robert H. Smith Faculty of Agriculture, Food and Environment, The Institute of Plant Sciences and Genetics in Agriculture, The Hebrew University of Jerusalem, Rehovot, IL, Israel
| | - Ananta K Ghosh
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India
| | - Rui L Reis
- 3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| | - Tuli Dey
- Institute of Bioinformatics and Biotechnology, Savitribai Phule Pune University, Pune, Maharashtra 411007, India
| | - Subhas C Kundu
- Department of Biotechnology, Indian Institute of Technology, Kharagpur, West Bengal 721302, India.,3Bs Research Group, I3Bs-Research Institute on Biomaterials, Biodegradables and Biomimetics, University of Minho, Headquarters of the European Institute of Excellence on Tissue Engineering and Regenerative Medicine, AvePark-4805-017 Barco, Guimaraes, Portugal
| |
Collapse
|