1
|
Carney RP, Mizenko RR, Bozkurt BT, Lowe N, Henson T, Arizzi A, Wang A, Tan C, George SC. Harnessing extracellular vesicle heterogeneity for diagnostic and therapeutic applications. NATURE NANOTECHNOLOGY 2024:10.1038/s41565-024-01774-3. [PMID: 39468355 DOI: 10.1038/s41565-024-01774-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 07/11/2024] [Indexed: 10/30/2024]
Abstract
Extracellular vesicles (EVs) are diverse nanoparticles with large heterogeneity in size and molecular composition. Although this heterogeneity provides high diagnostic value for liquid biopsy and confers many exploitable functions for therapeutic applications in cancer detection, wound healing and neurodegenerative and cardiovascular diseases, it has also impeded their clinical translation-hence heterogeneity acts as a double-edged sword. Here we review the impact of subpopulation heterogeneity on EV function and identify key cornerstones for addressing heterogeneity in the context of modern analytical platforms with single-particle resolution. We outline concrete steps towards the identification of key active biomolecules that determine EV mechanisms of action across different EV subtypes. We describe how such knowledge could accelerate EV-based therapies and engineering approaches for mimetic artificial nanovesicle formulations. This approach blunts one edge of the sword, leaving only a single razor-sharp edge on which EV heterogeneity can be exploited for therapeutic applications across many diseases.
Collapse
Affiliation(s)
- Randy P Carney
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
| | - Rachel R Mizenko
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Batuhan T Bozkurt
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Neona Lowe
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Tanner Henson
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Alessandra Arizzi
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Aijun Wang
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA
| | - Cheemeng Tan
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA
| | - Steven C George
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, USA.
- Center for Surgical Bioengineering, Department of Surgery, University of California, Davis, School of Medicine, Sacramento, CA, USA.
| |
Collapse
|
2
|
Liu Z, Ng M, Srivastava S, Li T, Liu J, Phu TA, Mateescu B, Wang YT, Tsai CF, Liu T, Raffai RL, Xie YH. Label-free single-vesicle based surface enhanced Raman spectroscopy: A robust approach for investigating the biomolecular composition of small extracellular vesicles. PLoS One 2024; 19:e0305418. [PMID: 38889139 PMCID: PMC11185487 DOI: 10.1371/journal.pone.0305418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2023] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
Small extracellular vesicles (sEVs) are cell-released vesicles ranging from 30-150nm in size. They have garnered increasing attention because of their potential for both the diagnosis and treatment of disease. The diversity of sEVs derives from their biological composition and cargo content. Currently, the isolation of sEV subpopulations is primarily based on bio-physical and affinity-based approaches. Since a standardized definition for sEV subpopulations is yet to be fully established, it is important to further investigate the correlation between the biomolecular composition of sEVs and their physical properties. In this study, we employed a platform combining single-vesicle surface-enhanced Raman spectroscopy (SERS) and machine learning to examine individual sEVs isolated by size-exclusion chromatography (SEC). The biomolecular composition of each vesicle examined was reflected by its corresponding SERS spectral features (biomolecular "fingerprints"), with their roots in the composition of their collective Raman-active bonds. Origins of the SERS spectral features were validated through a comparative analysis between SERS and mass spectrometry (MS). SERS fingerprinting of individual vesicles was effective in overcoming the challenges posed by EV population averaging, allowing for the possibility of analyzing the variations in biomolecular composition between the vesicles of similar and/or different sizes. Using this approach, we uncovered that each of the size-based fractions of sEVs contained particles with predominantly similar SERS spectral features. Indeed, more than 84% of the vesicles residing within a particular group were clearly distinguishable from that of the other EV sub-populations, despite some spectral variations within each sub-population. Our results suggest the possibility that size-based EV fractionation methods produce samples where similarly eluted sEVs are correlated with their respective biochemical contents, as reflected by their SERS spectra. Our findings therefore highlight the possibility that the biogenesis and respective biological functionalities of the various sEV fractions may be inherently different.
Collapse
Affiliation(s)
- Zirui Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Martin Ng
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Siddharth Srivastava
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tieyi Li
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Jun Liu
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
| | - Tuan Anh Phu
- Northern California Institute for Research and Education, San Francisco, California, United States of America
| | - Bogdan Mateescu
- Brain Research Institute, University of Zürich, Zürich, Switzerland
- Institute for Chemical and Bioengineering, ETH Zürich, Zürich, Switzerland
| | - Yi-Ting Wang
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Chia-Feng Tsai
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Tao Liu
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Robert L. Raffai
- Division of Vascular and Endovascular Surgery, Department of Surgery, University of California San Francisco, San Francisco, California, United States of America
- Department of Veterans Affairs, Surgical Service (112G), San Francisco VA Medical Center, San Francisco, California, United States of America
| | - Ya-Hong Xie
- Department of Materials Science and Engineering, University of California Los Angeles, Los Angeles, California, United States of America
- UCLA Jonsson Comprehensive Cancer Center, University of California, Los Angeles, Los Angeles, California, United States of America
| |
Collapse
|
3
|
White KE, Bailey HL, Shaw BS, Geiszler PC, Mesquita-Ribeiro R, Scott D, Layfield R, Serres S. A convenient model of serum-induced reactivity of human astrocytes to investigate astrocyte-derived extracellular vesicles. Front Cell Neurosci 2024; 18:1414142. [PMID: 38915876 PMCID: PMC11195030 DOI: 10.3389/fncel.2024.1414142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Accepted: 05/17/2024] [Indexed: 06/26/2024] Open
Abstract
Extracellular vesicles (EVs) are secreted by all cells in the CNS, including neurons and astrocytes. EVs are lipid membrane enclosed particles loaded with various bioactive cargoes reflecting the dynamic activities of cells of origin. In contrast to neurons, the specific role of EVs released by astrocytes is less well understood, partly due to the difficulty in maintaining primary astrocyte cultures in a quiescent state. The aim of this study was to establish a human serum-free astrocyte culture system that maintains primary astrocytes in a quiescent state to study the morphology, function, and protein cargoes of astrocyte-derived EVs. Serum-free medium with G5 supplement and serum-supplemented medium with 2% FBS were compared for the culture of commercially available human primary fetal astrocytes. Serum-free astrocytes displayed morphologies similar to in vivo astrocytes, and surprisingly, higher levels of astrocyte markers compared to astrocytes chronically cultured in FBS. In contrast, astrocyte and inflammatory markers in serum-free astrocytes were upregulated 24 h after either acute 2% FBS or cytokine exposure, confirming their capacity to become reactive. Importantly, this suggests that distinct signaling pathways are involved in acute and chronic astrocyte reactivity. Despite having a similar morphology, chronically serum-cultured astrocyte-derived EVs (ADEVs) were smaller in size compared to serum-free ADEVs and could reactivate serum-free astrocytes. Proteomic analysis identified distinct protein datasets for both types of ADEVs with enrichment of complement and coagulation cascades for chronically serum-cultured astrocyte-derived EVs, offering insights into their roles in the CNS. Collectively, these results suggest that human primary astrocytes cultured in serum-free medium bear similarities with in vivo quiescent astrocytes and the addition of serum induces multiple morphological and transcriptional changes that are specific to human reactive astrocytes and their ADEVs. Thus, more emphasis should be made on using multiple structural, molecular, and functional parameters when evaluating ADEVs as biomarkers of astrocyte health.
Collapse
Affiliation(s)
- Katherine E. White
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Hannah L. Bailey
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Barry S. Shaw
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | | | | | - Daniel Scott
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Robert Layfield
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
| | - Sébastien Serres
- School of Life Sciences, University of Nottingham, Nottingham, United Kingdom
- The David Greenfield Human Physiology Unit, University of Nottingham, Nottingham, United Kingdom
| |
Collapse
|
4
|
Malle M, Song P, Löffler PMG, Kalisi N, Yan Y, Valero J, Vogel S, Kjems J. Programmable RNA Loading of Extracellular Vesicles with Toehold-Release Purification. J Am Chem Soc 2024; 146:12410-12422. [PMID: 38669207 PMCID: PMC11082903 DOI: 10.1021/jacs.3c13123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 02/28/2024] [Accepted: 02/28/2024] [Indexed: 04/28/2024]
Abstract
Synthetic nanoparticles as lipid nanoparticles (LNPs) are widely used as drug delivery vesicles. However, they hold several drawbacks, including low biocompatibility and unfavorable immune responses. Naturally occurring extracellular vesicles (EVs) hold the potential as native, safe, and multifunctional nanovesicle carriers. However, loading of EVs with large biomolecules remains a challenge. Here, we present a controlled loading methodology using DNA-mediated and programmed fusion between EVs and messenger RNA (mRNA)-loaded liposomes. The fusion efficiency is characterized at the single-particle level by real-time microscopy through EV surface immobilization via lipidated biotin-DNA handles. Subsequently, fused EV-liposome particles (EVLs) can be collected by employing a DNA strand-replacement reaction. Transferring the fusion reaction to magnetic beads enables us to scale up the production of EVLs one million times. Finally, we demonstrated encapsulation of mCherry mRNA, transfection, and improved translation using the EVLs compared to liposomes or LNPs in HEK293-H cells. We envision this as an important tool for the EV-mediated delivery of RNA therapeutics.
Collapse
Affiliation(s)
| | - Ping Song
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
| | - Philipp M. G. Löffler
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Nazmie Kalisi
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Yan Yan
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Omiics
ApS, 8200 Aarhus N, Denmark
| | - Julián Valero
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| | - Stefan Vogel
- Department
of Physics, Chemistry and Pharmacy, University
of Southern Denmark, 5230 Odense M, Denmark
| | - Jørgen Kjems
- Interdiscilinary
Nanoscience Center, Aarhus University, 8000 Aarhus C, Denmark
- Department
of Molecular Biology and Genetics, Aarhus
University, 8000 Aarhus C, Denmark
| |
Collapse
|
5
|
Gorai PK, Rastogi S, Bharti PS, Agarwal S, Pal S, Sharma MC, Kumar R, Nikolajeff F, Kumar S, Rani N. Deciphering pancreatic neuroendocrine tumors: Unveiling through circulating small extracellular vesicles. Heliyon 2024; 10:e29079. [PMID: 38596136 PMCID: PMC11002672 DOI: 10.1016/j.heliyon.2024.e29079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 03/27/2024] [Accepted: 03/29/2024] [Indexed: 04/11/2024] Open
Abstract
The survival rate over a five-year period for rare pancreatic neuroendocrine tumors (PanNET) is notably lower compared to other neuroendocrine tumors due to late-stage detection, which is a consequence of the absence of suitable diagnostic markers; therefore, there exists a critical need for an early-stage biomarker-specific to PanNETs. This study introduces a novel approach, investigating the impact of small extracellular vesicles (sEV) in PanNET growth and metastasis. As proof of concept, this study shows a correlation between sEV concentration in controls and PanNET. Notably, higher sEV concentrations were observed in PanNETs than in controls (p < 0.0001) with a sensitivity of 100%. Further, apparent differences were observed in the sEV concentrations between controls and grades 1 PanNET (p = 0.005). The expression of sEV markers was confirmed using CD63, TSG101, CD9, Flotillin-1, and GAD65 antibodies. Additionally, the expression of cancer marker BIRC2/cIAP1 (p = 0.002) and autophagy marker Beclin-1 (p = 0.02) were observed in plasma-derived sEVs and PanNET tissue. This study represents the first to indicate the increased secretion of sEV in PanNET patients' blood plasma, proposing potential function of sEV as a new biomarker for early-stage PanNET detection.
Collapse
Affiliation(s)
- Priya Kumari Gorai
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| | - Simran Rastogi
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
| | | | - Shipra Agarwal
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Sujoy Pal
- Department of GI Surgery, All India Institute of Medical Sciences, New Delhi, India
| | - Mehar Chand Sharma
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Rakesh Kumar
- Department of Nuclear Medicine, All India Institute of Medical Sciences, New Delhi, India
| | | | - Saroj Kumar
- Department of Biophysics, All India Institute of Medical Sciences, New Delhi, India
- Department of Health Science, Lulea University of Technology, Sweden
| | - Neerja Rani
- Department of Anatomy, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
6
|
Wu L, van Heugten MH, van den Bosch TPP, Duimel H, López-Iglesias C, Hesselink DA, Baan CC, Boer K. Polarized HLA Class I Expression on Renal Tubules Hinders the Detection of Donor-Specific Urinary Extracellular Vesicles. Int J Nanomedicine 2024; 19:3497-3511. [PMID: 38628433 PMCID: PMC11020244 DOI: 10.2147/ijn.s446525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 03/27/2024] [Indexed: 04/19/2024] Open
Abstract
Purpose Kidney transplantation is the optimal treatment for patients with end-stage kidney disease. Donor-specific urinary extracellular vesicles (uEVs) hold potential as biomarkers for assessing allograft status. We aimed to develop a method for identifying donor-specific uEVs based on human leukocyte antigen (HLA) mismatching with the kidney transplant recipients (KTRs). Patients and Methods Urine and plasma were obtained from HLA-A2+ donors and HLA-A2- KTRs pre-transplant. CD9 (tetraspanin, EV marker) and HLA-A2 double-positive (CD9+ HLA-A2+) EVs were quantified using isolation-free imaging flow cytometry (IFCM). Healthy individuals' urine was used to investigate CD9+ HLA-class-I+ uEV quantification using IFCM, time-resolved fluoroimmunoassay (TR-FIA), and immunogold staining cryo-electron microscopy (cryo-EM). Culture-derived CD9+ HLA-class-I+ EVs were spiked into the urine to investigate urine matrix effects on uEV HLA detection. Deceased donor kidneys and peritumoral kidney tissue were used for HLA class I detection with histochemistry. Results The concentrations of CD9+ HLA-A2+ EVs in both donor and recipient urine approached the negative (detergent-treated) control levels for IFCM and were significantly lower than those observed in donor plasma. In parallel, universal HLA class I+ uEVs were similarly undetectable in the urine and uEV isolates compared with plasma, as verified by IFCM, TR-FIA, and cryogenic electron microscopy. Culture supernatant containing HLA class I+ vesicles from B, T, and human proximal tubule cells were spiked into the urine, and these EVs remained stable at 37°C for 8 hours. Immunohistochemistry revealed that HLA class I was predominantly expressed on the basolateral side of renal tubules, with limited expression on their urine/apical side. Conclusion The detection of donor-specific uEVs is hindered by the limited release of HLA class I+ EVs from the kidney into the urine, primarily due to the polarized HLA class I expression on renal tubules. Identifying donor-specific uEVs requires further advancements in recognizing transplant-specific uEVs and urine-associated markers.
Collapse
Affiliation(s)
- Liang Wu
- Department of Nephrology, the First Affiliated Hospital of Shaoyang University, Shaoyang, Hunan, People’s Republic of China
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Martijn H van Heugten
- University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | | | - Hans Duimel
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Carmen López-Iglesias
- The Microscopy CORE Laboratory at the Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, the Netherlands
| | - Dennis A Hesselink
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Carla C Baan
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| | - Karin Boer
- Erasmus MC Transplant Institute, University Medical Center Rotterdam, Department of Internal Medicine, Division of Nephrology and Transplantation, Rotterdam, the Netherlands
| |
Collapse
|
7
|
Park S, Patel SA, Torr EE, Dureke AGN, McIntyre AM, Skop AR. A protocol for isolating and imaging large extracellular vesicles or midbody remnants from mammalian cell culture. STAR Protoc 2023; 4:102562. [PMID: 37690025 PMCID: PMC10500451 DOI: 10.1016/j.xpro.2023.102562] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 07/14/2023] [Accepted: 08/16/2023] [Indexed: 09/12/2023] Open
Abstract
Traditionally, midbody remnants (MBRs) are isolated from cell culture medium using ultracentrifugation, which is expensive and time consuming. Here, we present a protocol for isolating MBRs or large extracellular vesicles (EVs) from mammalian cell culture using either 1.5% polyethylene glycol 6000 (PEG6000) or PEG5000-coated gold nanoparticles. We describe steps for growing cells, collecting media, and precipitating MBRs and EVs from cell culture medium. We then detail characterization of MBRs through immunofluorescent antibody staining and immunofluorescent imaging.
Collapse
Affiliation(s)
- Sungjin Park
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Smit A Patel
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Elizabeth E Torr
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | | | - Alina M McIntyre
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA
| | - Ahna R Skop
- Department of Genetics, University of Wisconsin, Madison, WI 53706, USA.
| |
Collapse
|
8
|
Makarova J, Maltseva D, Tonevitsky A. Challenges in characterization of transcriptomes of extracellular vesicles and non-vesicular extracellular RNA carriers. Front Mol Biosci 2023; 10:1327985. [PMID: 38116380 PMCID: PMC10729812 DOI: 10.3389/fmolb.2023.1327985] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Accepted: 11/20/2023] [Indexed: 12/21/2023] Open
Abstract
Since its original discovery over a decade ago, extracellular RNA (exRNA) has been found in all biological fluids. Furthermore, extracellular microRNA has been shown to be involved in communication between various cell types. Importantly, the exRNA is protected from RNases degradation by certain carriers including membrane vesicles and non-vesicular protein nanoparticles. Each type of carrier has its unique exRNA profile, which may vary depending on cell type and physiological conditions. To clarify putative mechanisms of intercellular communication mediated by exRNA, the RNA profile of each carrier has to be characterized. While current methods of biofluids fractionation are continuously improving, they fail to completely separate exRNA carriers. Likewise, most popular library preparation approaches for RNA sequencing do not allow obtaining exhaustive and unbiased data on exRNA transcriptome. In this mini review we discuss ongoing progress in the field of exRNA, with the focus on exRNA carriers, analyze the key methodological challenges and provide recommendations on how the latter could be overcome.
Collapse
Affiliation(s)
- Julia Makarova
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
| | - Diana Maltseva
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Hertsen Moscow Oncology Research Center, Moscow, Russia
| | - Alexander Tonevitsky
- Faculty of Biology and Biotechnology, HSE University, Moscow, Russia
- Shemyakin-Ovchinnikov Institute of Bioorganic Chemistry RAS, Moscow, Russia
- Art Photonics GmbH, Berlin, Germany
| |
Collapse
|
9
|
Zuppone S, Zarovni N, Vago R. The cell type dependent sorting of CD9- and CD81 to extracellular vesicles can be exploited to convey tumor sensitive cargo to target cells. Drug Deliv 2023; 30:2162161. [PMID: 36579638 PMCID: PMC9809379 DOI: 10.1080/10717544.2022.2162161] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Extracellular vesicles (EVs) are lipid membrane-bound particles involved in cell-to-cell communication through a delivery of regulatory molecules essential for physiological processes. Since EVs efficiently vectorize specific cargo molecules, they have been proposed as suitable vehicles for therapeutic agents. Drug loading into EVs can be achieved by active, exogenous strategies or by genetic modifications of vesicle-producing cells. With the aim to produce EVs conveying therapeutic proteins, we genetically engineered and compared HEK293 to tumor cells. Tetraspanin-based RFP fusions were found to be more stable and preferentially sorted into EVs in HEK293. EVs isolated from genetically modified HEK293 cells media were captured by cancer cells, efficiently delivering their cargo. Cathepsin B cleavage site introduced between CD9/CD81 and RFP was recognized by tumor specific proteases allowing the release of the reporter protein. Our results indicate HEK293 cells as a preferential system for the production of EVs and pave the way to the development of nano-platforms for the efficient delivery of therapeutic proteins and prodrugs to tumor cells.
Collapse
Affiliation(s)
- Stefania Zuppone
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy
| | | | - Riccardo Vago
- Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, Milano, Italy,Faculty of Medicine and Surgery, Università Vita-Salute San Raffaele, Milano, Italy,CONTACT Riccardo Vago Urological Research Institute, Division of Experimental Oncology, IRCCS San Raffaele Scientific Institute, 20132Milano, Italy
| |
Collapse
|
10
|
Weiskirchen R, Schröder SK, Weiskirchen S, Buhl EM, Melnik B. Isolation of Bovine and Human Milk Extracellular Vesicles. Biomedicines 2023; 11:2715. [PMID: 37893089 PMCID: PMC10603983 DOI: 10.3390/biomedicines11102715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Revised: 09/25/2023] [Accepted: 10/03/2023] [Indexed: 10/29/2023] Open
Abstract
Extracellular vesicles such as exosomes are small-sized, bilayered extracellular biovesicles generated by almost every cell and released into the surrounding body fluids upon the fusion of multivesicular bodies and the plasma membrane. Based on their origin, they are enriched with a variety of biologically active components including proteins, lipids, nucleic acids, cellular metabolites, and many other constituents. They can either attach or fuse with the membrane of a target cell, or alternatively be taking up via endocytosis by a recipient cell. In particular, milk exosomes have been recently shown to be a fundamental factor supporting infant growth, health, and development. In addition, exosomes derived from different cell types have been shown to possess regenerative, immunomodulatory, and anti-inflammatory properties, suggesting that they are a potential therapeutic tool in modulating the pathogenesis of diverse diseases. Therefore, efficient protocols for the isolation of milk exosomes in a high quantity and purity are the basis for establishing clinical applications. Here, we present an easy-to-follow protocol for exosome isolation from bovine and human milk. Electron microscopic analysis and nanoparticle tracking analysis reveal that the protocols allow the isolation of highly enriched fractions of exosomes. The purified exosomes express the typical exosomal protein markers, CD81 and ALIX.
Collapse
Affiliation(s)
- Ralf Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sarah K. Schröder
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Sabine Weiskirchen
- Institute of Molecular Pathobiochemistry, Experimental Gene Therapy and Clinical Chemistry (IFMPEGKC), Rheinisch-Westfälische Technische Hochschule (RWTH) University Hospital Aachen, D-52074 Aachen, Germany; (S.K.S.); (S.W.)
| | - Eva Miriam Buhl
- Electron Microscopy Facility, Institute of Pathology, Rheinisch-Westfälische Technische Hochschule (RWTH) Aachen University Hospital, D-52074 Aachen, Germany;
| | - Bodo Melnik
- Department of Dermatology, Environmental Medicine and Health Theory, University of Osnabrück, D-49076 Osnabrück, Germany;
| |
Collapse
|
11
|
González MI, Gallardo B, Cerón C, Aguilera-Jiménez E, Cortes-Canteli M, Peinado H, Desco M, Salinas B. Isolation of goat milk small extracellular vesicles by novel combined bio-physical methodology. Front Bioeng Biotechnol 2023; 11:1197780. [PMID: 37829562 PMCID: PMC10564981 DOI: 10.3389/fbioe.2023.1197780] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 09/15/2023] [Indexed: 10/14/2023] Open
Abstract
Introduction: Goat milk is notable as a cost-effective source of exosomes, also known as small extracellular vesicles (sEVs). These nanoparticle-like structures are naturally secreted by cells and have emerged as potential diagnostic agents and drug delivery systems, also supported by their proven therapeutic effects. However, the complexity of goat milk and the lack of standardized protocols make it difficult to isolate pure sEVs. This work presents an optimized approach that combines well-established physical isolation methods with the biological treatment of milk with rennet. Methods: sEVs derived from goat milk were purified using a methodology that combines differential ultracentrifugation, rennet, and size-exclusion chromatography. This novel strategy was compared with two of the main methodologies developed for isolating extracellular vesicles from bovine and human milk by means of physico-chemical characterization of collected vesicles using Transmission Electron Microscopy, Western blot, Bradford Coomassie assay, Dynamic Light Scattering, Nanoparticle Tracking Analysis and Zeta Potential. Results: Vesicles isolated with the optimized protocol had sEV-like characteristics and high homogeneity, while samples obtained with the previous methods were highly aggregated, with significant residual protein content. Discussion: This work provides a novel biophysical methodology for isolating highly enriched goat milk sEVs samples with high stability and homogeneity, for their further evaluation in biomedical applications as diagnostic tools or drug delivery systems.
Collapse
Affiliation(s)
- María Isabel González
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Begoña Gallardo
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Madrid, Spain
| | - Carlos Cerón
- Cardiovascular Risk Factors and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
| | - Elena Aguilera-Jiménez
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Madrid, Spain
| | - Marta Cortes-Canteli
- Cardiovascular Risk Factors and Brain Function Programme, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Instituto de Investigación Sanitaria Fundación Jiménez Díaz (IIS-FJD), Madrid, Spain
| | - Héctor Peinado
- Laboratorio de Microambiente y Metástasis, Departamento de Oncología Molecular, Centro Nacional de Investigaciones Oncológicas (CNIO) Carlos III, Madrid, Spain
| | - Manuel Desco
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| | - Beatriz Salinas
- Unidad de Medicina y Cirugía Experimental, Instituto de Investigación Sanitaria Gregorio Marañón, IiSGM, Madrid, Spain
- Unidad de Imagen Avanzada, Centro Nacional de Investigaciones Cardiovasculares (CNIC) Carlos III, Madrid, Spain
- Departamento de Bioingeniería, Universidad Carlos III de Madrid, Madrid, Spain
- CIBER de Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
12
|
Maugrion E, Shedova EN, Uzbekov R, Teixeira-Gomes AP, Labas V, Tomas D, Banliat C, Singina GN, Uzbekova S. Extracellular Vesicles Contribute to the Difference in Lipid Composition between Ovarian Follicles of Different Size Revealed by Mass Spectrometry Imaging. Metabolites 2023; 13:1001. [PMID: 37755281 PMCID: PMC10538054 DOI: 10.3390/metabo13091001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/01/2023] [Accepted: 09/07/2023] [Indexed: 09/28/2023] Open
Abstract
Follicular fluid (FF) ensures a safe environment for oocyte growth and maturation inside the ovarian follicle in mammals. In each cycle, the large dominant follicle (LF) contains the oocyte designated to be ovulated, whereas the small subordinate follicles (SFs) of the same wave will die through atresia. In cows, the oocytes from the SF, being 2 mm in size, are suitable for in vitro reproduction biotechnologies, and their competence in developing an embryo depends on the size of the follicles. FF contains proteins, metabolites, fatty acids, and a multitude of extracellular vesicles (ffEVs) of different origins, which may influence oocyte competence through bidirectional exchanges of specific molecular cargo between follicular cells and enclosed oocytes. FF composition evolves along with follicle growth, and the abundance of different lipids varies between the LF and SF. Here, significant differences in FF lipid content between the LFs and SFs within the same ovary were demonstrated by MALD-TOF mass spectrometry imaging on bovine ovarian sections. We then aimed to enlighten the lipid composition of FF, and MALDI-TOF lipid profiling was performed on cellular, vesicular, and liquid fractions of FF. Differential analyses on the abundance of detected lipid features revealed specific enrichment of phospholipids in different ffEV types, such as microvesicles (MVs) and exosomes (Exo), compared to depleted FF. MALDI-TOF lipid profiling on MVs and Exo from the LF and SF samples (n = 24) revealed that more than 40% of detected features were differentially abundant between the groups of MVs and Exo from the different follicles (p < 0.01, fold change > 2). Glycerophospholipid and sphingolipid features were more abundant in ffEVs from the SFs, whereas different lysophospholipids, including phosphatidylinositols, were more abundant in the LFs. As determined by functional analysis, the specific lipid composition of ffEVs suggested the involvement of vesicular lipids in cell signaling pathways and largely contributed to the differentiation of the dominant and subordinate follicles.
Collapse
Affiliation(s)
- Emilie Maugrion
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | | | - Rustem Uzbekov
- Laboratory of Cell Biology and Electron Microscopy, Medical Faculty, University of Tours, 37032 Tours, France
- Faculty of Bioengineering and Bioinformatics, Moscow State University, 119992 Moscow, Russia
| | - Ana-Paula Teixeira-Gomes
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Valerie Labas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Daniel Tomas
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
| | - Charles Banliat
- PIXANIM, INRAE, University of Tours, CHU of Tours, 37380 Nouzilly, France
- Ecole Supérieure d’Agricultures (ESA), 49007 Angers, France
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, 142132 Podolsk, Russia
| | - Svetlana Uzbekova
- CNRS, INRAE, University of Tours, PRC, 37380 Nouzilly, France (A.-P.T.-G.); (V.L.); (D.T.)
| |
Collapse
|
13
|
Jang J, Yeo S, Baek S, Jung HJ, Lee MS, Choi SH, Choe Y. Abnormal accumulation of extracellular vesicles in hippocampal dystrophic axons and regulation by the primary cilia in Alzheimer's disease. Acta Neuropathol Commun 2023; 11:142. [PMID: 37667395 PMCID: PMC10478284 DOI: 10.1186/s40478-023-01637-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/15/2023] [Indexed: 09/06/2023] Open
Abstract
Dystrophic neurites (DNs) are abnormal axons and dendrites that are swollen or deformed in various neuropathological conditions. In Alzheimer's disease (AD), DNs play a crucial role in impairing neuronal communication and function, and they may also contribute to the accumulation and spread of amyloid beta (Aβ) in the brain of AD patients. However, it is still a challenge to understand the DNs of specific neurons that are vulnerable to Aβ in the pathogenesis of AD. To shed light on the development of radiating DNs, we examined enriched dystrophic hippocampal axons in a mouse model of AD using a three-dimensional rendering of projecting neurons. We employed the anterograde spread of adeno-associated virus (AAV)1 and conducted proteomic analysis of synaptic compartments obtained from hippocampo-septal regions. Our findings revealed that DNs were formed due to synaptic loss at the axon terminals caused by the accumulation of extracellular vesicle (EV). Abnormal EV-mediated transport and exocytosis were identified in association with primary cilia, indicating their involvement in the accumulation of EVs at presynaptic terminals. To further address the regulation of DNs by primary cilia, we conducted knockdown of the Ift88 gene in hippocampal neurons, which impaired EV-mediated secretion of Aβ and promoted accumulation of axonal spheroids. Using single-cell RNA sequencing, we identified the septal projecting hippocampal somatostatin neurons (SOM) as selectively vulnerable to Aβ with primary cilia dysfunction and vesicle accumulation. Our study suggests that DNs in AD are initiated by the ectopic accumulation of EVs at the neuronal axon terminals, which is affected by neuronal primary cilia.
Collapse
Affiliation(s)
| | - Seungeun Yeo
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | | | - Mi Suk Lee
- Korea Brain Research Institute, Daegu, 41068, Korea
| | | | - Youngshik Choe
- Korea Brain Research Institute, Daegu, 41068, Korea.
- , Daegu, Korea.
| |
Collapse
|
14
|
van de Wakker SI, Meijers FM, Sluijter JPG, Vader P. Extracellular Vesicle Heterogeneity and Its Impact for Regenerative Medicine Applications. Pharmacol Rev 2023; 75:1043-1061. [PMID: 37280097 DOI: 10.1124/pharmrev.123.000841] [Citation(s) in RCA: 27] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Revised: 04/20/2023] [Accepted: 05/01/2023] [Indexed: 06/08/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane-enclosed particles that are involved in physiologic and pathologic processes. EVs are increasingly being studied for therapeutic applications in the field of regenerative medicine. Therapeutic application of stem cell-derived EVs has shown great potential to stimulate tissue repair. However, the exact mechanisms through which they induce this effect have not been fully clarified. This may to a large extent be attributed to a lack of knowledge on EV heterogeneity. Recent studies suggest that EVs represent a heterogeneous population of vesicles with distinct functions. The heterogeneity of EVs can be attributed to differences in their biogenesis, and as such, they can be classified into distinct populations that can then be further subcategorized into various subpopulations. A better understanding of EV heterogeneity is crucial for elucidating their mechanisms of action in tissue regeneration. This review provides an overview of the latest insights on EV heterogeneity related to tissue repair, including the different characteristics that contribute to such heterogeneity and the functional differences among EV subtypes. It also sheds light on the challenges that hinder clinical translation of EVs. Additionally, innovative EV isolation techniques for studying EV heterogeneity are discussed. Improved knowledge of active EV subtypes would promote the development of tailored EV therapies and aid researchers in the translation of EV-based therapeutics to the clinic. SIGNIFICANCE STATEMENT: Within this review we discuss the differences in regenerative properties of extracellular vesicle (EV) subpopulations and implications of EV heterogeneity for development of EV-based therapeutics. We aim to provide new insights into which aspects are leading to heterogeneity in EV preparations and stress the importance of EV heterogeneity studies for clinical applications.
Collapse
Affiliation(s)
- Simonides Immanuel van de Wakker
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Fleur Michelle Meijers
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Joost Petrus Gerardus Sluijter
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| | - Pieter Vader
- Department of Experimental Cardiology, University Medical Center Utrecht, Utrecht University, The Netherlands (S.I.V.D.W., F.M.M., J.P.G.S., P.V.) and CDL Research, University Medical Center Utrecht, The Netherlands (P.V.)
| |
Collapse
|
15
|
Mahgoub EO, Abdella GM. Improved exosome isolation methods from non-small lung cancer cells (NC1975) and their characterization using morphological and surface protein biomarker methods. J Cancer Res Clin Oncol 2023; 149:7505-7514. [PMID: 36964779 PMCID: PMC10374817 DOI: 10.1007/s00432-023-04682-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/05/2023] [Indexed: 03/26/2023]
Abstract
This study has demonstrated improved methods for isolating exosomes from non-small lung cancer cells, which address the problems characterized by exosome morphological and chemical methods. To improve the isolation methods, cells from the NCI 1975 cell line were used as the source for exosomes. The isolation processes were carried out using serial isolation techniques in addition to specific preservation tools. The isolated exosomes were characterized using transmission electron microscopy (TEM), and scanning electron microscopy (SEM) was added for further assurance of the investigation results. The statistical analysis results showed that the size distributions of apoptotic vesicles (APV) 450 nm and necrotic bodies (NCB) 280 nm (extracellular vesicles) were significantly different from exosomes (P < 0.001). In contrast, the exosome size distribution was not significantly different from the published exosome sizes, as demonstrated by statistical analysis tools. This study confirmed the improved methods for isolating exosomes that make exosomes accessible for use in the diagnosis and prognosis of non-small cell lung cancer (NSCLC).
Collapse
Affiliation(s)
- Elham O Mahgoub
- Science and Engineering Department, Hamad Bin Khalifa University, P. O. Box 34110, Doha, Qatar.
| | - Galal M Abdella
- Mechanical and Industrial Engineering Department, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
16
|
Qazi REM, Sajid Z, Zhao C, Hussain I, Iftikhar F, Jameel M, Rehman FU, Mian AA. Lyophilization Based Isolation of Exosomes. Int J Mol Sci 2023; 24:10477. [PMID: 37445655 DOI: 10.3390/ijms241310477] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/27/2023] [Accepted: 01/30/2023] [Indexed: 07/15/2023] Open
Abstract
Exosomes are nanoscale extracellular vesicles which regulate intercellular communication. They have great potential for application in nanomedicine. However, techniques for their isolation are limited by requirements for advanced instruments and costly reagents. In this study, we developed a lyophilization-based method for isolating exosomes from cultured cells. The isolated exosomes were characterized for protein content using Bradford assay, and for size distribution and shape using scanning electron microscopy (SEM) and nanoparticles tracking analysis (NTA). In addition, CD63, CD9, CD81, HSP70 and TSG101 were evaluated as essential exosomal surface markers using Western blot. Drug loading and release studies were performed to confirm their drug delivery properties using an in vitro model. Exosomes were also loaded with commercial dyes (Cy5, Eosin) for the evaluation of their drug delivery properties. All these characterizations confirmed successful exosome isolation with measurements of less than 150 nm, having a typical shape, and by expressing the known exosome surface protein markers. Finally, tyrosine kinase inhibitors (dasatinib and ponatinib) were loaded on the exosomes to evaluate their anticancer effects on leukemia cells (K562 and engineered Ba/F3-BCR-ABL) using MTT and Annexin-PI assays. The expression of MUC1 protein on the exosomes isolated from MCF-7 cells also indicated that their potential diagnostic properties were intact. In conclusion, we developed a new method for exosome isolation from cultured cells. These exosomes met all the essential requirements in terms of characterization, drug loading and release ability, and inhibition of proliferation and apoptosis induction in Ph+ leukemia cells. Based on these results, we are confident in presenting the lyophilization-based exosome isolation method as an alternative to traditional techniques for exosome isolation from cultured cells.
Collapse
Affiliation(s)
- Rida E Maria Qazi
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Zahra Sajid
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Chunqiu Zhao
- State Key Lab of Bioelectronics, Southeast University, Sipailou 2, Nanjing 210096, China
| | - Irfan Hussain
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Fizza Iftikhar
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Muhammad Jameel
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Fawad Ur Rehman
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| | - Afsar Ali Mian
- Centre for Regenerative Medicine and Stem Cells Research, The Aga Khan University, 1st Flour, Juma Building, Stadium Road, Karachi 74800, Sindh, Pakistan
| |
Collapse
|
17
|
Giovanazzi A, van Herwijnen MJC, Kleinjan M, van der Meulen GN, Wauben MHM. Surface protein profiling of milk and serum extracellular vesicles unveils body fluid-specific signatures. Sci Rep 2023; 13:8758. [PMID: 37253799 DOI: 10.1038/s41598-023-35799-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Accepted: 05/24/2023] [Indexed: 06/01/2023] Open
Abstract
Cell-derived extracellular vesicles (EVs) are currently in the limelight as potential disease biomarkers. The promise of EV-based liquid biopsy resides in the identification of specific disease-associated EV signatures. Knowing the reference EV profile of a body fluid can facilitate the identification of such disease-associated EV-biomarkers. With this aim, we purified EVs from paired human milk and serum samples and used the MACSPlex bead-based flow-cytometry assay to capture EVs on bead-bound antibodies specific for a certain surface protein, followed by EV detection by the tetraspanins CD9, CD63, and CD81. Using this approach we identified body fluid-specific EV signatures, e.g. breast epithelial cell signatures in milk EVs and platelet signatures in serum EVs, as well as body fluid-specific markers associated to immune cells and stem cells. Interestingly, comparison of pan-tetraspanin detection (simultaneous CD9, CD63 and CD81 detection) and single tetraspanin detection (detection by CD9, CD63 or CD81) also unveiled body fluid-specific tetraspanin distributions on EVs. Moreover, certain EV surface proteins were associated with a specific tetraspanin distribution, which could be indicative of the biogenesis route of this EV subset. Altogether, the identified body fluid-specific EV profiles can contribute to study EV profile deviations in these fluids during disease processes.
Collapse
Affiliation(s)
- Alberta Giovanazzi
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
- TRAIN-EV Marie Skłodowska-Curie Action-ITN, Utrecht, The Netherlands
| | - Martijn J C van Herwijnen
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | - Marije Kleinjan
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands
| | | | - Marca H M Wauben
- Department of Biomolecular Health Sciences, Faculty of Veterinary Medicine, Utrecht University, Utrecht, The Netherlands.
- TRAIN-EV Marie Skłodowska-Curie Action-ITN, Utrecht, The Netherlands.
| |
Collapse
|
18
|
Alternative biological sources for extracellular vesicles production and purification strategies for process scale-up. Biotechnol Adv 2023; 63:108092. [PMID: 36608746 DOI: 10.1016/j.biotechadv.2022.108092] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/05/2023]
Abstract
Extracellular vesicles (EVs) are phospholipidic bi-layer enclosed nanoparticles secreted naturally by all cell types. They are attracting increasing attention in the fields of nanomedicine, nutraceutics and cosmetics as biocompatible carriers for drug delivery, with intrinsic properties beneficial to human health. Scientific work now focuses on developing techniques for isolating EVs that can translate into industrial-scale production and meet rigorous clinical requirements. The science of EVs is ongoing, and many pitfalls must be addressed, such as the requirement for standard, reproducible, inexpensive, and Good Manufacturing Practices (GMP) adherent EV processing techniques. Researchers are exploring the use of alternative sources to EVs derived from mammalian cultures, such as plant EVs, as well as the use of bacteria, algae and milk. Regarding the downstream processing of EVs, many alternative techniques to the ultracentrifugation (UC) protocols most commonly used in the laboratory are emerging. In the context of process scale-up, membrane-based processes for isolation and purification of EVs are the most promising, either as stand-alone processes or in combination with chromatographic techniques. This review discusses current trends on EVs source selection and EVs downstream processing techniques, with a focus on plant-derived EVs and membrane-based techniques for EVs enrichment.
Collapse
|
19
|
Cryo-electron microscopy of adipose tissue extracellular vesicles in obesity and type 2 diabetes mellitus. PLoS One 2023; 18:e0279652. [PMID: 36827314 PMCID: PMC10045588 DOI: 10.1371/journal.pone.0279652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/12/2022] [Indexed: 02/25/2023] Open
Abstract
Extracellular vesicles (EVs) are cell-derived membrane vesicles which play an important role in cell-to-cell communication and physiology. EVs deliver biological information from producing to recipient cells by transport of different cargo such as proteins, mRNAs, microRNAs, non-coding RNAs and lipids. Adipose tissue EVs could regulate metabolic and inflammatory interactions inside adipose tissue depots as well as distal tissues. Thus, adipose tissue EVs are assumed to be implicated in obesity-associated pathologies, notably in insulin resistance and type 2 diabetes mellitus (T2DM). In this study we for the first time characterize EVs secreted by visceral (VAT) and subcutaneous adipose tissue (SAT) of patients with obesity and T2DM with standard methods as well as analyze their morphology with cryo-electron microscopy. Cryo-electron microscopy allowed us to visualize heterogeneous population of EVs of various size and morphology including single EVs and EVs with internal membrane structures in samples from obese patients as well from the control group. Single vesicles prevailed (up to 85% for SAT, up to 75% for VAT) and higher proportion of EVs with internal membrane structures compared to SAT was typical for VAT. Decreased size of single and double SAT EVs compared to VAT EVs, large proportion of multilayered EVs and all EVs with internal membrane structures secreted by VAT distinguished obese patients with/without T2DM from the control group. These findings could support the idea of modified biogenesis of EVs during obesity and T2DM.
Collapse
|
20
|
Lucci C, De Groef L. On the other end of the line: Extracellular vesicle-mediated communication in glaucoma. Front Neuroanat 2023; 17:1148956. [PMID: 37113676 PMCID: PMC10126352 DOI: 10.3389/fnana.2023.1148956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Accepted: 03/27/2023] [Indexed: 04/29/2023] Open
Abstract
In the last decade, extracellular vesicles (EVs) have emerged as a promising field of research due to their ability to participate in cell-to-cell communication via the transfer of their very diverse and complex cargo. The latter reflects the nature and physiological state of the cell of origin and, as such, EVs may not only play a pivotal role in the cellular events that culminate into disease, but also hold great potential as drug delivery vehicles and biomarkers. Yet, their role in glaucoma, the leading cause of irreversible blindness worldwide, has not been fully studied. Here, we provide an overview of the different EV subtypes along with their biogenesis and content. We elaborate on how EVs released by different cell types can exert a specific function in the context of glaucoma. Finally, we discuss how these EVs provide opportunities to be used as biomarkers for diagnosis and monitoring of disease.
Collapse
|
21
|
Kanao E, Wada S, Nishida H, Kubo T, Tanigawa T, Imami K, Shimoda A, Umezaki K, Sasaki Y, Akiyoshi K, Adachi J, Otsuka K, Ishihama Y. Classification of Extracellular Vesicles Based on Surface Glycan Structures by Spongy-like Separation Media. Anal Chem 2022; 94:18025-18033. [PMID: 36511577 DOI: 10.1021/acs.analchem.2c04391] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are lipid bilayer vesicles that enclose various biomolecules. EVs hold promise as sensitive biomarkers to detect and monitor various diseases. However, they have heterogeneous molecular compositions. The compositions of EVs from identical donor cells obtained using the same purification methods may differ, which is a significant obstacle for elucidating objective biological functions. Herein, the potential of a novel lectin-based affinity chromatography (LAC) method to classify EVs based on their glycan structures is demonstrated. The proposed method utilizes a spongy-like monolithic polymer (spongy monolith, SPM), which consists of poly(ethylene-co-glycidyl methacrylate) with continuous micropores and allows an efficient in situ protein reaction with epoxy groups. Two distinct lectins with different specificities, Sambucus sieboldiana agglutinin and concanavalin A, are effectively immobilized on SPM without impacting the binding activity. Moreover, high recovery rates of liposomal nanoparticles as a model of EVs are achieved due to the large flow-through pores (>10 μm) of SPM compared to a typical agarose gel. Finally, lectin-immobilized SPMs are employed to classify EVs based on the surface glycan structures and demonstrate different subpopulations by proteome profiling. This is the first approach to clarify the variation of protein contents in EVs by the difference of surface glycans via lectin immobilized media.
Collapse
Affiliation(s)
- Eisuke Kanao
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Shuntaro Wada
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Hiroshi Nishida
- National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Takuya Kubo
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Tetsuya Tanigawa
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Koshi Imami
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,Precursory Research for Embryonic Science and Technology (PRESTO), Japan Science and Technology Agency (JST), 4-1-8 Honcho, Kawaguchi, Saitama332-0012, Japan
| | - Asako Shimoda
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kaori Umezaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yoshihiro Sasaki
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Kazunari Akiyoshi
- Department of Polymer Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Jun Adachi
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| | - Koji Otsuka
- Department of Material Chemistry, Graduate School of Engineering, Kyoto University, Katsura, Nishikyo-ku, Kyoto615-8510, Japan
| | - Yasushi Ishihama
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto606-8501, Japan.,National Institutes of Biomedical Innovation, Health and Nutrition, Ibaraki, Osaka567-0085, Japan
| |
Collapse
|
22
|
Alptekin A, Parvin M, Chowdhury HI, Rashid MH, Arbab AS. Engineered exosomes for studies in tumor immunology. Immunol Rev 2022; 312:76-102. [PMID: 35808839 DOI: 10.1111/imr.13107] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/27/2022] [Indexed: 12/14/2022]
Abstract
Exosomes are a type of extracellular vesicle (EV) with diameters of 30-150 nm secreted by most of the cells into the extracellular spaces and can alter the microenvironment through cell-to-cell interactions by fusion with the plasma membrane and subsequent endocytosis and release of the cargo. Because of their biocompatibility, low toxicity and immunogenicity, permeability (even through the blood-brain barrier (BBB)), stability in biological fluids, and ability to accumulate in the lesions with higher specificity, investigators have started making designer's exosomes or engineered exosomes to carry biologically active protein on the surface or inside the exosomes as well as using exosomes to carry drugs, micro RNA, and other products to the site of interest. In this review, we have discussed biogenesis, markers, and contents of various exosomes including exosomes of immune cells. We have also discussed the current methods of making engineered and designer's exosomes as well as the use of engineered exosomes targeting different immune cells in the tumors, stroke, as well as at peripheral blood. Genetic engineering and customizing exosomes create an unlimited opportunity to use in diagnosis and treatment. Very little use has been discovered, and we are far away to reach its limits.
Collapse
Affiliation(s)
- Ahmet Alptekin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | - Mahrima Parvin
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| | | | | | - Ali S Arbab
- Georgia Cancer Center, Augusta University, Augusta, Georgia, USA
| |
Collapse
|
23
|
Jahangiri L, Ishola T. Exosomes in Neuroblastoma Biology, Diagnosis, and Treatment. Life (Basel) 2022; 12:1714. [PMID: 36362869 PMCID: PMC9694311 DOI: 10.3390/life12111714] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 10/28/2023] Open
Abstract
Neuroblastoma is an extracranial solid tumour of the developing sympathetic nervous system accounting for circa 15% of deaths due to cancer in paediatric patients. The clinical course of this cancer may be variable, ranging from aggressive progression to regression, while the amplification of MYCN in this cancer is linked to poor patient prognosis. Extracellular vesicles are a double membrane encapsulating various cellular components including proteins and nucleic acids and comprise exosomes, apoptotic bodies, and microvesicles. The former can act as mediators between cancer, stromal and immune cells and thereby influence the tumour microenvironment by the delivery of their molecular cargo. In this study, the contribution of extracellular vesicles including exosomes to the biology, prognosis, diagnosis and treatment of neuroblastoma was catalogued, summarised and discussed. The understanding of these processes may facilitate the in-depth dissection of the complexity of neuroblastoma biology, mechanisms of regression or progression, and potential diagnostic and treatment options for this paediatric cancer which will ultimately improve the quality of life of neuroblastoma patients.
Collapse
Affiliation(s)
- Leila Jahangiri
- Division of Cellular and Molecular Pathology, Department of Pathology, Addenbrookes Hospital, University of Cambridge, Cambridge CB2 0QQ, UK
- School of Science and Technology, Nottingham Trent University, Clifton Site, Nottingham NG11 8NS, UK
| | - Tala Ishola
- Department of Life Sciences, Birmingham City University, Birmingham B15 3TN, UK
| |
Collapse
|
24
|
Exosome Release by Glucose Deprivation Is Important for the Viability of TSC-Null Cells. Cells 2022; 11:cells11182862. [PMID: 36139445 PMCID: PMC9497210 DOI: 10.3390/cells11182862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 09/05/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
The control of exosome release is associated with numerous physiological and pathological activities, and that release is often indicative of health, disease, and environmental nutrient stress. Tuberous sclerosis complex (TSC) regulates the cell viability via the negative regulation of the mammalian target of rapamycin complex (mTORC1) during glucose deprivation. However, the mechanism by which viability of TSC-null cells is regulated by mTORC1 inhibition under glucose deprivation remains unclear. Here, we demonstrated that exosome release regulates cell death induced by glucose deprivation in TSC-null cells. The mTORC1 inhibition by rapamycin significantly increased the exosome biogenesis, exosome secretion, and cell viability in TSC-null cells. In addition, the increase in cell viability by mTORC1 inhibition was attenuated by two different types of inhibitors of exosome release under glucose deprivation. Taken together, we suggest that exosome release inhibition might be a novel way for regression of cell growth in TSC-null cells showing lack of cell death by mTORC1 inhibition.
Collapse
|
25
|
Myosins and MyomiR Network in Patients with Obstructive Hypertrophic Cardiomyopathy. Biomedicines 2022; 10:biomedicines10092180. [PMID: 36140281 PMCID: PMC9496008 DOI: 10.3390/biomedicines10092180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 08/30/2022] [Accepted: 09/01/2022] [Indexed: 11/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is the most common genetic cardiomyopathy. The molecular mechanisms determining HCM phenotypes are incompletely understood. Myocardial biopsies were obtained from a group of patients with obstructive HCM (n = 23) selected for surgical myectomy and from 9 unused donor hearts (controls). A subset of tissue-abundant myectomy samples from HCM (n = 10) and controls (n = 6) was submitted to laser-capture microdissection to isolate cardiomyocytes. We investigated the relationship among clinical phenotype, cardiac myosin proteins (MyHC6, MyHC7, and MyHC7b) measured by optimized label-free mass spectrometry, the relative genes (MYH7, MYH7B and MYLC2), and the MyomiR network (myosin-encoded microRNA (miRs) and long-noncoding RNAs (Mhrt)) measured using RNA sequencing and RT-qPCR. MyHC6 was lower in HCM vs. controls, whilst MyHC7, MyHC7b, and MyLC2 were comparable. MYH7, MYH7B, and MYLC2 were higher in HCM whilst MYH6, miR-208a, miR-208b, miR-499 were comparable in HCM and controls. These results are compatible with defective transcription by active genes in HCM. Mhrt and two miR-499-target genes, SOX6 and PTBP3, were upregulated in HCM. The presence of HCM-associated mutations correlated with PTBP3 in myectomies and with SOX6 in cardiomyocytes. Additionally, iPSC-derived cardiomyocytes, transiently transfected with either miR-208a or miR-499, demonstrated a time-dependent relationship between MyomiRs and myosin genes. The transfection end-stage pattern was at least in part similar to findings in HCM myectomies. These data support uncoupling between myosin protein/genes and a modulatory role for the myosin/MyomiR network in the HCM myocardium, possibly contributing to phenotypic diversity and providing putative therapeutic targets.
Collapse
|
26
|
Eustes AS, Dayal S. The Role of Platelet-Derived Extracellular Vesicles in Immune-Mediated Thrombosis. Int J Mol Sci 2022; 23:7837. [PMID: 35887184 PMCID: PMC9320310 DOI: 10.3390/ijms23147837] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/12/2022] [Accepted: 07/13/2022] [Indexed: 12/14/2022] Open
Abstract
Platelet-derived extracellular vesicles (PEVs) play important roles in hemostasis and thrombosis. There are three major types of PEVs described based on their size and characteristics, but newer types may continue to emerge owing to the ongoing improvement in the methodologies and terms used to define various types of EVs. As the literature on EVs is growing, there are continuing attempts to standardize protocols for EV isolation and reach consensus in the field. This review provides information on mechanisms of PEV production, characteristics, cellular interaction, and their pathological role, especially in autoimmune and infectious diseases. We also highlight the mechanisms through which PEVs can activate parent cells in a feedback loop.
Collapse
Affiliation(s)
- Alicia S. Eustes
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
| | - Sanjana Dayal
- Department of Internal Medicine, Carver College of Medicine, University of Iowa, Iowa City, IA 52242, USA;
- Iowa City VA Healthcare System, Iowa City, IA 52246, USA
| |
Collapse
|
27
|
Novel Gold Nanoparticle-Based Quick Small-Exosome Isolation Technique from Serum Sample at a Low Centrifugal Force. NANOMATERIALS 2022; 12:nano12101660. [PMID: 35630882 PMCID: PMC9147093 DOI: 10.3390/nano12101660] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 04/18/2022] [Accepted: 04/22/2022] [Indexed: 02/04/2023]
Abstract
Exosomes are cell-secreted vesicles secreted by a majority of cells and, hence, populating most of the biological fluids, namely blood, tears, sweat, swab, urine, breast milk, etc. They vary vastly in size and density and are influenced by age, gender and diseases. The composition of exosomes includes lipids, DNA, proteins, and coding and noncoding RNA. There is a significant interest in selectively isolating small exosomes (≤50 nm) from human serum to investigate their role in different diseases and regeneration. However, current techniques for small exosome isolation/purification are time-consuming and highly instrument-dependent, with limited specificity and recovery. Thus, rapid and efficient methods to isolate them from bio fluids are strongly needed for both basic research and clinical applications. In the present work, we explored the application of a bench-top centrifuge for isolating mostly the small exosomes (≤50 nm). This can be achieved at low g-force by adding additional weight to the exosomes by conjugating them with citrate-capped gold nanoparticles (CGNP). CGNPs were functionalized with polyethylene glycol (PEG) to form PEGylated GNP (PGNP). EDC/SNHS chemistry is used to activate the –COOH group of the PEG to make it suitable for conjugation with antibodies corresponding to exosomal surface proteins. These antibody-conjugated PGNPs were incubated with the serum to form PGNP-exosome complexes which were separated directly by centrifugation at a low g-force of 7000× g. This makes this technique efficient compared to that of standard ultracentrifugation exosome isolation (which uses approximately 100,000× g). Using the technique, the exosome isolation from serum was achieved successfully in less than two hours. The purification of small exosomes, characterized by the presence of CD63, CD9 and CD81, and sized between 20 nm to 50 nm, was confirmed by western blot, dynamic light scattering (DLS), transmission electron microscopy (TEM) and nanoparticle tracking analyser (NTA).
Collapse
|
28
|
Bazzoni R, Tanasi I, Turazzi N, Krampera M. Update on the role and utility of extracellular vesicles in hematological malignancies. Stem Cells 2022; 40:619-629. [PMID: 35442447 DOI: 10.1093/stmcls/sxac032] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 04/12/2022] [Indexed: 11/12/2022]
Abstract
Extracellular vesicles (EVs) are membrane-surrounded cellular particles released by virtually any cell type, containing numerous bioactive molecules, including lipids, proteins, and nucleic acids. EVs act as a very efficient intercellular communication system by releasing their content into target cells, thus affecting their fate and influencing several biological processes. EVs are released both in physiological and pathological conditions, including several types of cancers. In hematological malignancies (HM), EVs have emerged as new critical players, contributing to tumor-to-stroma, stroma-to-tumor, and tumor-to-tumor cell communication. Therefore, EVs have been shown to play a crucial role in the pathogenesis and clinical course of several HM, contributing to tumor development, progression, and drug resistance. Furthermore, tumor EVs can reprogram the bone marrow (BM) microenvironment and turn it into a sanctuary, in which cancer cells suppress both the normal hematopoiesis and the immunological anti-tumor activity, conferring a therapy-resistant phenotype. Due to their physicochemical characteristics and pro-tumor properties, EVs have been suggested as new diagnostic biomarkers, therapeutic targets, and pharmacological nanocarriers. This review aims to provide an update on the pathogenetic contribution and the putative therapeutic utility of EVs in hematological diseases.
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Nice Turazzi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, P. le Scuro 10, 37134 Verona, Italy
| |
Collapse
|
29
|
Kim S, Kang JH, Nguyen Cao TG, Kang SJ, Jeong K, Kang HC, Kwon YJ, Rhee WJ, Ko YT, Shim MS. Extracellular vesicles with high dual drug loading for safe and efficient combination chemo-phototherapy. Biomater Sci 2022; 10:2817-2830. [PMID: 35384946 DOI: 10.1039/d1bm02005f] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Extracellular vesicles (EVs) have emerged as biocompatible nanocarriers for efficient delivery of various therapeutic agents, with intrinsic long-term blood circulatory capability and low immunogenicity. Here, indocyanine green (ICG)- and paclitaxel (PTX)-loaded EVs [EV(ICG/PTX)] were developed as a biocompatible nanoplatform for safe and efficient cancer treatment through near-infrared (NIR) light-triggered combination chemo/photothermal/photodynamic therapy. High dual drug encapsulation in EVs was achieved for both the hydrophilic ICG and hydrophobic PTX by simple incubation. The EVs substantially improved the photostability and cellular internalization of ICG, thereby augmenting the photothermal effects and reactive oxygen species production in breast cancer cells upon NIR light irradiation. Hence, ICG-loaded EVs activated by NIR light irradiation showed greater cytotoxic effects than free ICG. EV(ICG/PTX) showed the highest anticancer activity owing to the simultaneous chemo/photothermal/photodynamic therapy when compared with EV(ICG) and free ICG. In vivo study revealed that EV(ICG/PTX) had higher accumulation in tumors and improved pharmacokinetics compared to free ICG and PTX. In addition, a single intravenous administration of EV(ICG/PTX) exhibited a considerable inhibition of tumor proliferation with negligible systemic toxicity. Thus, this study demonstrates the potential of EV(ICG/PTX) for clinical translation of combination chemo-phototherapy.
Collapse
Affiliation(s)
- Sumin Kim
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Ji Hee Kang
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Thuy Giang Nguyen Cao
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Su Jin Kang
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Kyeongsoo Jeong
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| | - Han Chang Kang
- Department of Pharmacy, Integrated Research Institute of Pharmaceutical Sciences, and BK21 PLUS Team for Creative Leader Program for Pharmacomics-based Future Pharmacy, College of Pharmacy, The Catholic University of Korea, Gyeonggi-do 14662, Republic of Korea
| | - Young Jik Kwon
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA.,Department of Chemical and Biomolecular Engineering, University of California, Irvine, CA 92697, USA.,Department of Molecular Biology and Biochemistry, University of California, Irvine, CA 92697, USA.,Department of Biomedical Engineering, University of California, Irvine, CA 92697, USA.
| | - Won Jong Rhee
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea. .,Research Center for Bio Materials & Process Development, Incheon National University, 119 Academy-ro, Yeonsu-gu, Incheon 22012, Republic of Korea.
| | - Young Tag Ko
- College of Pharmacy, Gachon University, Incheon 21936, Republic of Korea.
| | - Min Suk Shim
- Division of Bioengineering, Incheon National University, Incheon 22012, Republic of Korea.
| |
Collapse
|
30
|
Raman spectroscopy combined with comprehensive gas chromatography for label-free characterization of plasma-derived extracellular vesicle subpopulations. Anal Biochem 2022; 647:114672. [PMID: 35395223 DOI: 10.1016/j.ab.2022.114672] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Revised: 03/12/2022] [Accepted: 03/22/2022] [Indexed: 11/22/2022]
Abstract
Raman spectroscopy together with comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry (GCxGC-TOFMS) was employed to characterize exomere- (<50 nm) and exosome-sized (50-80 nm) EVs isolated from human plasma by the novel on-line immunoaffinity chromatography - asymmetric flow field-flow fractionation method. CD9+, CD63+, and CD81+ EVs were selected to represent general EV subpopulations secreted into plasma, while CD61+EVs represented the specific EV subset derived from platelets. Raman spectroscopy could distinguish EVs from non-EV particles, including apolipoprotein B-100-containing lipoproteins, signifying its potential in EV purity assessment. Moreover, platelet-derived (CD61+) EVs of both exomere and exosome sizes were discriminated from other EV subpopulations due to different biochemical compositions. Further investigations demonstrated composition differences between exomere- and exosome-sized EVs, confirming the applicability of Raman spectroscopy in distinguishing EVs, not only from different origins but also sizes. In addition, fatty acids that act as building blocks for lipids and membranes in EVs were studied by GCxGC-TOF-MS. The results achieved highlighted differences in EV fatty acid compositions in both esterified (membrane lipids) and non-esterified (free fatty acids) fractions, indicating possible differences in membrane structures, biological functions, and roles in cell-to-cell communications of EV subpopulations.
Collapse
|
31
|
James V, Nizamudeen ZA, Lea D, Dottorini T, Holmes TL, Johnson BB, Arkill KP, Denning C, Smith JGW. Transcriptomic Analysis of Cardiomyocyte Extracellular Vesicles in Hypertrophic Cardiomyopathy Reveals Differential snoRNA Cargo. Stem Cells Dev 2021; 30:1215-1227. [PMID: 34806414 PMCID: PMC8742282 DOI: 10.1089/scd.2021.0202] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Hypertrophic cardiomyopathy (HCM) is characterized by increased left ventricular wall thickness that can lead to devastating conditions such as heart failure and sudden cardiac death. Despite extensive study, the mechanisms mediating many of the associated clinical manifestations remain unknown and human models are required. To address this, human-induced pluripotent stem cell (hiPSC) lines were generated from patients with a HCM-associated mutation (c.ACTC1G301A) and isogenic controls created by correcting the mutation using CRISPR/Cas9 gene editing technology. Cardiomyocytes (hiPSC-CMs) were differentiated from these hiPSCs and analyzed at baseline, and at increased contractile workload (2 Hz electrical stimulation). Released extracellular vesicles (EVs) were isolated and characterized after a 24-h culture period and transcriptomic analysis performed on both hiPSC-CMs and released EVs. Transcriptomic analysis of cellular mRNA showed the HCM mutation caused differential splicing within known HCM pathways, and disrupted metabolic pathways. Analysis at increasing contraction frequency showed further disruption of metabolic gene expression, with an additive effect in the HCM background. Intriguingly, we observed differences in snoRNA cargo within HCM released EVs that specifically altered when HCM hiPSC-CMs were subjected to increased workload. These snoRNAs were predicted to have roles in post-translational modifications and alternative splicing, processes differentially regulated in HCM. As such, the snoRNAs identified in this study may unveil mechanistic insight into unexplained HCM phenotypes and offer potential future use as HCM biomarkers or as targets in future RNA-targeting therapies.
Collapse
Affiliation(s)
- Victoria James
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Zubair A Nizamudeen
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Daniel Lea
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Tania Dottorini
- School of Veterinary Medicine and Science, University of Nottingham, Nottingham, United Kingdom
| | - Terri L Holmes
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Benjamin B Johnson
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| | - Kenton P Arkill
- School of Medicine, University of Nottingham, Nottingham, United Kingdom
| | - Chris Denning
- Biodiscovery Institute, University of Nottingham, Nottingham, United Kingdom
| | - James G W Smith
- Faculty of Medicine and Health Sciences, Norwich Medical School, University of East Anglia, Norwich, United Kingdom
| |
Collapse
|
32
|
Cheng YC, Chang YA, Chen YJ, Sung HM, Bogeski I, Su HL, Hsu YL, Wang HMD. The Roles of Extracellular Vesicles in Malignant Melanoma. Cells 2021; 10:2740. [PMID: 34685720 PMCID: PMC8535053 DOI: 10.3390/cells10102740] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/13/2021] [Accepted: 09/22/2021] [Indexed: 12/21/2022] Open
Abstract
Different types of cells, such as endothelial cells, tumor-associated fibroblasts, pericytes, and immune cells, release extracellular vesicles (EVs) in the tumor microenvironment. The components of EVs include proteins, DNA, RNA, and microRNA. One of the most important functions of EVs is the transfer of aforementioned bioactive molecules, which in cancer cells may affect tumor growth, progression, angiogenesis, and metastatic spread. Furthermore, EVs affect the presentation of antigens to immune cells via the transfer of nucleic acids, peptides, and proteins to recipient cells. Recent studies have also explored the potential application of EVs in cancer treatment. This review summarizes the mechanisms by which EVs regulate melanoma development, progression, and their potentials to be applied in therapy. We initially describe vesicle components; discuss their effects on proliferation, anti-melanoma immunity, and drug resistance; and finally focus on the effects of EV-derived microRNAs on melanoma pathobiology. This work aims to facilitate our understanding of the influence of EVs on melanoma biology and initiate ideas for the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Ying-Chen Cheng
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-A.C.)
| | - Yu-An Chang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-A.C.)
| | - Yi-Jen Chen
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-J.C.); (Y.-L.H.)
- Department of Physical Medicine and Rehabilitation, School of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Municipal Siaogang Hospital, Kaohsiung 807, Taiwan
- Department of Physical Medicine and Rehabilitation, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| | - Hsu-Min Sung
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.-M.S.); (I.B.)
| | - Ivan Bogeski
- Molecular Physiology, Institute of Cardiovascular Physiology, University Medical Center, Georg August University, 37073 Göttingen, Germany; (H.-M.S.); (I.B.)
| | - Hong-Lin Su
- Department of Life Sciences, National Chung Hsing University, Taichung 402, Taiwan;
| | - Ya-Ling Hsu
- Graduate Institute of Clinical Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan; (Y.-J.C.); (Y.-L.H.)
- Drug Development and Value Creation Research Center, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| | - Hui-Min David Wang
- Graduate Institute of Biomedical Engineering, National Chung Hsing University, Taichung 402, Taiwan; (Y.-C.C.); (Y.-A.C.)
- Department of Medical Laboratory Science and Biotechnology, China Medical University, Taichung City 404, Taiwan
- Graduate Institute of Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan
| |
Collapse
|
33
|
Biadglegne F, Rademacher P, De Sulbaran YGJ, König B, Rodloff AC, Zedler U, Dorhoi A, Sack U. Exosomes in serum‑free cultures of THP‑1 macrophages infected with Mycobacterium tuberculosis. Mol Med Rep 2021; 24:815. [PMID: 34558650 PMCID: PMC8477185 DOI: 10.3892/mmr.2021.12455] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 08/19/2021] [Indexed: 12/15/2022] Open
Abstract
It has been shown from the isolation and characterization of exosomes from cell culture media supplemented with fetal bovine serum that both their quality and purity are affected. The high abundance of serum proteins, including bovine cell derived exosomes, is also a potential source of contaminants, which may result in appreciable yields of impure exosomes, thereby leading to artifacts. Isolation and characterization of exosomes from cells maintained under serum-free conditions should therefore ensure the high quality necessary for medical applications. To meet this end, the present study aimed to characterize exosomes released from THP-1 macrophages cultured in serum-free, ultra-centrifuged medium upon infection with the human pathogen Mycobacterium tuberculosis (Mtb). Macrophages differentiated from the human cell line THP-1 were infected at a multiplicity of infection (MOI) of 5. Macrophages were cultivated in CellGenix® GMP DC serum-free ultra-centrifuged medium for 4, 24 and 48 h at 37°C in a humidified atmosphere with 5% CO2. Total exosome isolation reagent was used to extract the exosomes from the cell culture supernatants of naïve and Mtb-infected THP-1 macrophages. The size and purity of the exosomes isolated were subsequently assessed by various methods, including nanoparticle tracking analysis, flow cytometry, MACSPlex exosome analysis, and western blotting. The serum-free, ultra-centrifuged medium was found to support the proliferation of the THP-1 cells successfully. The nanoparticle tracking analysis data revealed that the majority of the isolated particles were within the size range of exosomes (i.e., 30–150 nM). The MACSPlex exosome analysis confirmed the expression of the exosomal markers, CD9, CD63 and CD81. Furthermore, western blot analysis of the isolated exosomes indicated the presence of CD9, CD63, CD81 and lysosomal associated membrane protein-1 (LAMP-1), and also confirmed the absence of Mtb proteins. Taken together, these data provide evidence that serum-free, ultra-centrifuged CellGenix® GMP DC medium is suitable for application in exosome research, and may significantly advance such studies. Therefore, the use of serum-free medium for exosome isolation purposes could offer considerable advantages, and constitute a significant improvement in the growing field of extracellular vesicle research. The use of more sensitive methods represents an advance that will enable researchers to rule out the presence of Mtb pathogenic proteins in exosomes isolated from infected serum-free cell cultures.
Collapse
Affiliation(s)
- Fantahun Biadglegne
- Department of Medical Laboratory Science, College of Medicine and Health Sciences, Bahir Dar University, 79 Bahir Dar, Ethiopia
| | - Phil Rademacher
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| | | | - Brigitte König
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Arne C Rodloff
- Institute of Medical Microbiology and Epidemiology of Infectious Diseases, University of Leipzig, D‑04103 Leipzig, Germany
| | - Ulrike Zedler
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Anca Dorhoi
- Institute of Immunology, Friedrich Loeffler Institut, D‑17493 Greifswald Insel Riems, Germany
| | - Ulrich Sack
- Institute of Clinical Immunology, Medical Faculty, University of Leipzig, D‑04103 Leipzig, Germany
| |
Collapse
|
34
|
Identifying extracellular vesicle populations from single cells. Proc Natl Acad Sci U S A 2021; 118:2106630118. [PMID: 34518226 PMCID: PMC8463870 DOI: 10.1073/pnas.2106630118] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/29/2021] [Indexed: 12/13/2022] Open
Abstract
Extracellular vesicles (EVs) are constantly secreted from both eukaryotic and prokaryotic cells. EVs, including those referred to as exosomes, may have an impact on cell signaling and an incidence in diseased cells. In this manuscript, a platform to capture, quantify, and phenotypically classify the EVs secreted from single cells is introduced. Microfluidic chambers of about 300 pL are employed to trap and isolate individual cells. The EVs secreted within these chambers are then captured by surface-immobilized monoclonal antibodies (mAbs), irrespective of their intracellular origin. Immunostaining against both plasma membrane and cytosolic proteins was combined with highly sensitive, multicolor total internal reflection fluorescence microscopy to characterize the immobilized vesicles. The data analysis of high-resolution images allowed the assignment of each detected EV to one of 15 unique populations and demonstrated the presence of highly heterogeneous phenotypes even at the single-cell level. The analysis also revealed that each mAb isolates phenotypically different EVs and that more vesicles were effectively immobilized when CD63 was targeted instead of CD81. Finally, we demonstrate how a heterogeneous suppression in the secreted vesicles is obtained when the enzyme neutral sphingomyelinase is inhibited.
Collapse
|
35
|
Pham CV, Midge S, Barua H, Zhang Y, Ngoc-Gia Nguyen T, Barrero RA, Duan A, Yin W, Jiang G, Hou Y, Zhou S, Wang Y, Xie X, Tran PHL, Xiang D, Duan W. Bovine extracellular vesicles contaminate human extracellular vesicles produced in cell culture conditioned medium when 'exosome-depleted serum' is utilised. Arch Biochem Biophys 2021; 708:108963. [PMID: 34126088 DOI: 10.1016/j.abb.2021.108963] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Revised: 06/03/2021] [Accepted: 06/06/2021] [Indexed: 12/30/2022]
Abstract
Extracellular vesicles (EVs) are important intercellular communication messengers. Half of the published studies in the field are in vitro cell culture based in which bovine serum in various concentrations and forms is used to facilitate the production of extracellular vesicles. 'Exosome depleted serum' is the type of bovine serum most widely used in the production of human EVs. Herein, we demonstrate that, despite the initial caution raised in 2014 about the persistence of bovine EVs, 'exosome depleted serum' was still used in 46% of publications on human or rodent EVs between 2015 and 2019. Using nanoparticle tracking analysis combined with detergent lysis of vesicles as well as bovine CD9 ELISA, we show that there were approximately 5.33 x 107/mL of bovine EVs remaining in the 'exosome depleted serum'. Importantly, the 'exosome depleted serum' was relatively enriched in small EVs by approximately 2.7-fold relative to the large EVs compared to that in the original serum. Specifically, the percentage of small EVs in total vesicles had increased from the original 48% in the serum before ultracentrifugation to 92% in the 'exosome depleted serum'. Furthermore, the pervasive bovine EVs carried over by the 'exosome depleted serum', even when the lowest concentration (0.5%) was used in cell culture, resulted in a significant contamination of human EVs in cell culture conditioned medium. Our findings indicate that the use 'exosome depleted serum' in cell culture-based studies may introduce artefacts into research examining the function of human and rodent EVs, in particular those involving EV miRNA. Thus, we appeal to the researchers in the EV field to seriously reconsider the practice of using 'exosome depleted serum' in the production of human and other mammalian EVs in vitro.
Collapse
Affiliation(s)
- Cuong Viet Pham
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Snehal Midge
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Hridika Barua
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Yumei Zhang
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Tuong Ngoc-Gia Nguyen
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Roberto A Barrero
- eResearch, Division of Research and Innovation, Queensland University of Technology, 2 George Street, Brisbane City, QLD, 4000, Australia
| | - Andrew Duan
- School of Medicine, Faculty of Medicine, Nursing and Health Sciences, Monash University 27 Rainforest Walk, Clayton, VIC, 3800, Australia
| | - Wang Yin
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia
| | - Guoqin Jiang
- Department of General Surgery, Second Affiliated Hospital of Soochow University, 1055 Sanxiang Road, Suzhou, 215004, PR China
| | - Yingchun Hou
- Laboratory of Tumor Molecular and Cellular Biology, College of Life Sciences, Shaanxi Normal University, 620 West Chang'an Avenue, Xi'an, Shaanxi, 710119, China
| | - Shufeng Zhou
- Department of Chemical Engineering & Pharmaceutical Engineering, College of Chemical Engineering, Huaqiao University, Xiamen, 361021, China
| | - Yiming Wang
- Shanghai OneTar Biomedicine, Shanghai, 201203, China
| | - Xiaoqing Xie
- Shanghai OneTar Biomedicine, Shanghai, 201203, China
| | - Phuong H L Tran
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia.
| | - Dongxi Xiang
- State Key Laboratory of Oncogenes and Related Genes, Shanghai, 200127, China; Department of Biliary-Pancreatic Surgery, Renji Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China; Shanghai Key Laboratory of Biliary Tract Disease Research, Shanghai, 200092, China.
| | - Wei Duan
- Deakin University, School of Medicine, IMPACT, Institute for Innovation in Physical and Mental Health and Clinical Translation, Geelong, Victoria, 3216, Australia; Shanghai OneTar-Deakin Joint Laboratory of Personalized Precision Medicine, Shanghai, 201203, China.
| |
Collapse
|
36
|
Melo-Báez B, Mellisho EA, Cabezas J, Velásquez AE, Veraguas D, Escobar DAC, Castro FO, Rodríguez-Álvarez L. Nanoparticles from culture media are internalized by in vitro-produced bovine embryos and its depletion affect expression of pluripotency genes. Anim Reprod 2021; 18:e20200028. [PMID: 34122648 PMCID: PMC8189351 DOI: 10.1590/1984-3143-ar2020-0028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Extracellular vesicles are nanoparticles secreted by cell and have been proposed as suitable markers to identify competent embryos produced in vitro. Characterizing EVs secreted by individual embryos is challenging because culture medium itself contributes to the pool of nanoparticles that are co-isolated. To avoid this, culture medium must be depleted of nanoparticles that are present in natural protein source. The aim of this study was to evaluate if the culture medium subjected to nanoparticle depletion can support the proper in vitro development of bovine embryos. Zygotes were cultured in groups on depleted or control medium for 8 days. Nanoparticles from the medium were characterized by their morphology, size and expression of EVs surface markers. Isolated nanoparticles were labelled and added to depleted medium containing embryos at different developmental stages and evaluated after 24 hours at 2, 8-16 cells, morula and blastocyst stages. There were no statistical differences on blastocyst rate at day 7 and 8, total cell count neither blastocyst diameter between groups. However, morphological quality was better in blastocysts cultured in non-depleted medium and the expression of SOX2 was significantly lower whereas NANOG expression was significantly higher. Few nanoparticles from medium had a typical morphology of EVs but were positive to specific surface markers. Punctuated green fluorescence near the nuclei of embryonic cells was observed in embryos from all developmental stages. In summary, nanoparticles from culture medium are internalized by in vitro cultured bovine embryos and their depletion affects the capacity of medium to support the proper embryo development.
Collapse
Affiliation(s)
- Bárbara Melo-Báez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Edwin A Mellisho
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile.,Centro de investigación en Tecnología de Embriones, Facultad de Zootecnia, Universidad Nacional Agraria La Molina, Lima, Perú
| | - Joel Cabezas
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Alejandra E Velásquez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Daniel Veraguas
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Diego Andrés Caamaño Escobar
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Fidel O Castro
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| | - Lleretny Rodríguez-Álvarez
- Laboratorio de Biotecnología Animal, Facultad de Ciencias Veterinarias, Universidad de Concepción, Chillán, Chile
| |
Collapse
|
37
|
Recent advances on protein-based quantification of extracellular vesicles. Anal Biochem 2021; 622:114168. [PMID: 33741309 DOI: 10.1016/j.ab.2021.114168] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2020] [Revised: 02/27/2021] [Accepted: 03/06/2021] [Indexed: 02/06/2023]
Abstract
Extracellular vesicles (EVs) are secreted by almost all cells into the circulatory system and have the important function of intercellular communication. Ranging in size from 50 to 1000 nm, they are further classified based on origin, size, physical properties and function. EVs have shown the potential for studying various physiological and pathological processes, such as characterizing their parent cells with molecular markers that could further signify diseases. Proteins within EVs are the building blocks for the vesicles to function within a biological system. Isolation and proteomic profiling of EVs can advance the understanding of their biogenesis and functions, which can give further insight of how they can be used in clinical settings. However, the nanoscale size of EVs, which is much smaller than that of cells, comprises a major challenge for EV isolation and the characterization of their protein cargos. With the recent advances of bioanalytical techniques such as lab-on-a-chip devices and innovated flow cytometry, the quantification of EV proteins from a small number of vesicles down to the single vesicle level has been achieved, shining light on the promising applications of these small vesicles for early disease diagnosis and treatment monitoring. In this article, we first briefly review conventional EV protein determination technologies and their limitations, followed by detailed description and analysis of emerging technologies used for EV protein quantification, including optical, non-optical, microfluidic, and single vesicle detection methods. The pros and cons of these technologies are compared and the current challenges are outlined. Future perspectives and potential research directions of the EV protein analysis methods are discussed.
Collapse
|
38
|
Schubert A, Boutros M. Extracellular vesicles and oncogenic signaling. Mol Oncol 2021; 15:3-26. [PMID: 33207034 PMCID: PMC7782092 DOI: 10.1002/1878-0261.12855] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 10/17/2020] [Accepted: 10/30/2020] [Indexed: 12/19/2022] Open
Abstract
In recent years, extracellular vesicles (EVs) emerged as potential diagnostic and prognostic markers for cancer therapy. While the field of EV research is rapidly developing and their application as vehicles for therapeutic cargo is being tested, little is still known about the exact mechanisms of signaling specificity and cargo transfer by EVs, especially in vivo. Several signaling cascades have been found to use EVs for signaling in the tumor-stroma interaction. These include potentially oncogenic, verbatim transforming, signaling cascades such as Wnt and TGF-β signaling, and other signaling cascades that have been tightly associated with tumor progression and metastasis, such as PD-L1 and VEGF signaling. Multiple mechanisms of how these signaling cascades and EVs interplay to mediate these complex processes have been described, such as direct signal activation through pathway components on or in EVs or indirectly by influencing vesicle biogenesis, cargo sorting, or uptake dynamics. In this review, we summarize the current knowledge of EVs, their biogenesis, and our understanding of EV interactions with recipient cells with a focus on selected oncogenic and cancer-associated signaling pathways. After an in-depth look at how EVs mediate and influence signaling, we discuss potentially translatable EV functions and existing knowledge gaps.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
- Clinic for Hematology and Medical OncologyUniversity Medical Center GöttingenGermany
| | - Michael Boutros
- Division Signaling and Functional GenomicsGerman Cancer Research Center (DKFZ) and Heidelberg UniversityGermany
| |
Collapse
|
39
|
Abstract
In recent years, extracellular vesicles (EVs) emerged as potential diagnostic and prognostic markers for cancer therapy. While the field of EV research is rapidly developing and their application as vehicles for therapeutic cargo is being tested, little is still known about the exact mechanisms of signaling specificity and cargo transfer by EVs, especially in vivo. Several signaling cascades have been found to use EVs for signaling in the tumor-stroma interaction. These include potentially oncogenic, verbatim transforming, signaling cascades such as Wnt and TGF-β signaling, and other signaling cascades that have been tightly associated with tumor progression and metastasis, such as PD-L1 and VEGF signaling. Multiple mechanisms of how these signaling cascades and EVs interplay to mediate these complex processes have been described, such as direct signal activation through pathway components on or in EVs or indirectly by influencing vesicle biogenesis, cargo sorting, or uptake dynamics. In this review, we summarize the current knowledge of EVs, their biogenesis, and our understanding of EV interactions with recipient cells with a focus on selected oncogenic and cancer-associated signaling pathways. After an in-depth look at how EVs mediate and influence signaling, we discuss potentially translatable EV functions and existing knowledge gaps.
Collapse
Affiliation(s)
- Antonia Schubert
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Germany.,Clinic for Hematology and Medical Oncology, University Medical Center Göttingen, Germany
| | - Michael Boutros
- Division Signaling and Functional Genomics, German Cancer Research Center (DKFZ) and Heidelberg University, Germany
| |
Collapse
|
40
|
Roballo KCS, Ambrosio CE, da Silveira JC. Protocol to Study the Role of Extracellular Vesicles During Induced Stem Cell Differentiation. Methods Mol Biol 2021; 2273:63-73. [PMID: 33604844 DOI: 10.1007/978-1-0716-1246-0_3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Extracellular vesicles (EVs) are vesicles released by cells, which due to their cargo and cell membrane proteins induce changes in the recipient cells. These vesicles can be a novel option to induce stem cell differentiation. Here we described a method to induce mesenchymal stem cell differentiation (MSC) into neuron-like cells using small EVs from neurons. First, we will describe a method based on neurons to induce adipocyte derived stem cells differentiation, a type of MSC, by coculturing both using inserts. Secondly, we will describe a follow-up method by using only isolated neuron-derived small EVs to directly induce ADSC differentiation in neuron-like cells. Importantly, in both methods it is possible to avoid the direct cell-to-cell contact, thus allowing for the study of soluble factors role during stem cell differentiation.
Collapse
Affiliation(s)
- Kelly C S Roballo
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil.,College of Health Sciences, School of Pharmacy, University of Wyoming, Laramie, WY, USA
| | - Carlos E Ambrosio
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil
| | - Juliano C da Silveira
- Department of Veterinary Medicine, Faculty of Animal Science and Food Engineering, University of Sao Paulo, São Paulo, Brazil.
| |
Collapse
|
41
|
Burnie J, Tang VA, Welsh JA, Persaud AT, Thaya L, Jones JC, Guzzo C. Flow Virometry Quantification of Host Proteins on the Surface of HIV-1 Pseudovirus Particles. Viruses 2020; 12:v12111296. [PMID: 33198254 PMCID: PMC7697180 DOI: 10.3390/v12111296] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 11/04/2020] [Accepted: 11/09/2020] [Indexed: 12/20/2022] Open
Abstract
The HIV-1 glycoprotein spike (gp120) is typically the first viral antigen that cells encounter before initiating immune responses, and is often the sole target in vaccine designs. Thus, characterizing the presence of cellular antigens on the surfaces of HIV particles may help identify new antiviral targets or impact targeting of gp120. Despite the importance of characterizing proteins on the virion surface, current techniques available for this purpose do not support high-throughput analysis of viruses, and typically only offer a semi-quantitative assessment of virus-associated proteins. Traditional bulk techniques often assess averages of viral preparations, which may mask subtle but important differences in viral subsets. On the other hand, microscopy techniques, which provide detail on individual virions, are difficult to use in a high-throughput manner and have low levels of sensitivity for antigen detection. Flow cytometry is a technique that traditionally has been used for rapid, high-sensitivity characterization of single cells, with limited use in detecting viruses, since the small size of viral particles hinders their detection. Herein, we report the detection and surface antigen characterization of HIV-1 pseudovirus particles by light scattering and fluorescence with flow cytometry, termed flow virometry for its specific application to viruses. We quantified three cellular proteins (integrin α4β7, CD14, and CD162/PSGL-1) in the viral envelope by directly staining virion-containing cell supernatants without the requirement of additional processing steps to distinguish virus particles or specific virus purification techniques. We also show that two antigens can be simultaneously detected on the surface of individual HIV virions, probing for the tetraspanin marker, CD81, in addition to α4β7, CD14, and CD162/PSGL-1. This study demonstrates new advances in calibrated flow virometry as a tool to provide sensitive, high-throughput characterization of the viral envelope in a more efficient, quantitative manner than previously reported techniques.
Collapse
Affiliation(s)
- Jonathan Burnie
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Vera A. Tang
- Department of Biochemistry, Microbiology, and Immunology, Faculty of Medicine, University of Ottawa, Flow Cytometry and Virometry Core Facility, Ottawa, ON K1H 8M5, Canada;
| | - Joshua A. Welsh
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Arvin T. Persaud
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
| | - Laxshaginee Thaya
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
| | - Jennifer C. Jones
- Translational Nanobiology Section, Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA; (J.A.W.); (J.C.J.)
| | - Christina Guzzo
- Department of Biological Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, ON M1C 1A4, Canada; (J.B.); (A.T.P.); (L.T.)
- Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto, ON M5S 3G5, Canada
- Correspondence: ; Tel.: +1-(416)-287-7436
| |
Collapse
|
42
|
Bazzoni R, Takam Kamga P, Tanasi I, Krampera M. Extracellular Vesicle-Dependent Communication Between Mesenchymal Stromal Cells and Immune Effector Cells. Front Cell Dev Biol 2020; 8:596079. [PMID: 33240892 PMCID: PMC7677193 DOI: 10.3389/fcell.2020.596079] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2020] [Accepted: 10/20/2020] [Indexed: 12/13/2022] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells residing in the stromal tissues of the body and capable of promoting tissue repair and attenuating inflammatory processes through their immunomodulatory properties. Preclinical and clinical observations revealed that not only direct intercellular communication mediates MSC properties; in fact, a pivotal role is also played by the release of soluble and bioactive factors, such as cytokines, growth factor and extracellular vesicles (EVs). EVs are membrane-coated vesicles containing a large variety of bioactive molecules, including lipids, proteins, and nucleic acids, such as RNA. EVs release their contents into target cells, thus influencing cell fate through the control of intracellular processes. In addition, MSC-derived EVs can mediate modulatory effects toward different effector cells belonging to both innate and adaptive immunity. In this review, we will discuss the literature data concerning MSC-derived EVs, including the current standardized methods for their isolation and characterization, the mechanisms supporting their immunoregulatory properties, and their potential clinical application as alternative to MSC-based therapy for inflammatory reactions, such as graft-versus-host disease (GvHD).
Collapse
Affiliation(s)
- Riccardo Bazzoni
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Paul Takam Kamga
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
- EA4340-BCOH, Biomarker in Cancerology and Onco-Haematology, UVSQ, Université Paris Saclay, Boulogne-Billancourt, France
| | - Ilaria Tanasi
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| | - Mauro Krampera
- Stem Cell Research Laboratory, Section of Hematology, Department of Medicine, University of Verona, Verona, Italy
| |
Collapse
|
43
|
Exosomal arrow (Arr)/lipoprotein receptor protein 6 (LRP6) in Drosophila melanogaster increases the extracellular level of Sol narae (Sona) in a Wnt-independent manner. Cell Death Dis 2020; 11:944. [PMID: 33139721 PMCID: PMC7608652 DOI: 10.1038/s41419-020-02850-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Accepted: 07/30/2020] [Indexed: 12/28/2022]
Abstract
Wg/Wnt as a signaling protein binds to Frizzled (Fz) and Arrow (Arr), two Wg co-receptors essential for Wg signaling for cell proliferation, differentiation, and cell survival. Arr has a long extracellular region, a single transmembrane domain and an intracellular region. Here, we report that a new arrm7 mutant is identified in a genetic screen as a suppressor of lethality induced by overexpression of Sol narae (Sona), a secreted metalloprotease in ADAMTS family involved in Wg signaling. arrm7 allele has a premature stop codon, which encodes Arrm7 protein missing the intracellular region. arrm7 clones show cell death phenotype and overexpression of Arrm7 protein also induces cell death. Levels of extracellular Sona were decreased in both arrm7 and arr2 null clones, demonstrating that Arr increases the level of extracellular Sona. Indeed, Arr but not Arrm7, increased levels of Sona in cytoplasm and exosome fraction by inhibiting the lysosomal degradation pathway. Interestingly, Arr itself was identified in the exosome fraction, demonstrating that Arr is secreted to extracellular space. When Sona-expressing S2 cells were treated with exosomal Arr, the extracellular level of active Sona was increased. These results show that exosomal Arr dictates Sona-expressing cells to increase the level of extracellular Sona. This new function of Arr occurred in the absence of Wg because S2 cells do not express Wg. We propose that Arr plays two distinct roles, one as an exosomal protein to increase the level of extracellular Sona in a Wnt-independent manner and the other as a Wg co-receptor in a Wnt-dependent manner.
Collapse
|
44
|
Won JH, Cho KO. Wg secreted by conventional Golgi transport diffuses and forms Wg gradient whereas Wg tethered to extracellular vesicles do not diffuse. Cell Death Differ 2020; 28:1013-1025. [PMID: 33028960 DOI: 10.1038/s41418-020-00632-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2020] [Revised: 09/21/2020] [Accepted: 09/24/2020] [Indexed: 02/06/2023] Open
Abstract
Wingless (Wg)/Wnt family proteins are essential for animal development and adult homeostasis. Drosophila Wg secreted from the dorsal-ventral (DV) midline in wing discs forms a concentration gradient that is shaped by diffusion rate and stability of Wg. To understand how the gradient of extracellular Wg is generated, we compared the secretion route of NRT-Wg, an artificial membrane-tethered form of Wg that is supposedly not secreted but still supports fly development, to that of wild-type Wg. We found that wild-type Wg is secreted by both conventional Golgi transport and via extracellular vesicles (EVs), and NRT-Wg can be also secreted via EVs. Furthermore, wild-type Wg secreted by Golgi transport diffused and formed Wg gradient but Wg-containing EVs did not diffuse at all. In case of Wg stability, Sol narae (Sona), a metalloprotease that cleaves Wg, contributes to generate a steep Wg gradient. Interestingly, Wg was also produced in the presumptive wing blade region, which indicates that NRT-Wg on EVs expressed in the blade allows the blade cells to proliferate and differentiate without Wg diffused from the DV midline. We propose that EV-associated Wg induces Wg signaling in autocrine and juxtaposed manners whereas Wg secreted by Golgi transport forms gradient and acts in the long-range signaling, and different organs differentially utilize these two types of Wg signaling for their own development.
Collapse
Affiliation(s)
- Jong-Hoon Won
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea
| | - Kyung-Ok Cho
- Department of Biological Sciences, Korea Advanced Institute of Science and Technology, 291 Daehak-ro, Yuseong-gu, Daejeon, Korea.
| |
Collapse
|
45
|
Development of a non-viral platform for rapid virus-like particle production in Sf9 cells. J Biotechnol 2020; 322:43-53. [DOI: 10.1016/j.jbiotec.2020.07.009] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2020] [Revised: 05/31/2020] [Accepted: 07/11/2020] [Indexed: 11/21/2022]
|
46
|
Extracellular Vesicles as an Efficient and Versatile System for Drug Delivery. Cells 2020; 9:cells9102191. [PMID: 33003285 PMCID: PMC7600121 DOI: 10.3390/cells9102191] [Citation(s) in RCA: 57] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 05/24/2020] [Accepted: 05/30/2020] [Indexed: 12/12/2022] Open
Abstract
Despite the recent advances in drug development, the majority of novel therapeutics have not been successfully translated into clinical applications. One of the major factors hindering their clinical translation is the lack of a safe, non-immunogenic delivery system with high target specificity upon systemic administration. In this respect, extracellular vesicles (EVs), as natural carriers of bioactive cargo, have emerged as a promising solution and can be further modified to improve their therapeutic efficacy. In this review, we provide an overview of the biogenesis pathways, biochemical features, and isolation methods of EVs with an emphasis on their many intrinsic properties that make them desirable as drug carriers. We then describe in detail the current advances in EV therapeutics, focusing on how EVs can be engineered to achieve improved target specificity, better circulation kinetics, and efficient encapsulation of therapeutic payloads. We also identify the challenges and obstacles ahead for clinical translation and provide an outlook on the future perspective of EV-based therapeutics.
Collapse
|
47
|
Park G, Kim BS, Kim E. A novel function of FAF1, which induces dopaminergic neuronal death through cell-to-cell transmission. Cell Commun Signal 2020; 18:133. [PMID: 32831099 PMCID: PMC7444258 DOI: 10.1186/s12964-020-00632-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Accepted: 07/23/2020] [Indexed: 12/21/2022] Open
Abstract
Background Fas-associated factor 1 (FAF1) has been implicated in Parkinson’s disease (PD) and activates the cell death machinery in the cytosol. However, the presence of extracellular FAF1 has not been studied. Methods Serum-free conditioned medium (CM) from FAF1-transfected SH-SY5Y cells was concentrated and analyzed by western blotting. Exosomes were isolated from CM by ultracentrifugation and analyzed by western blotting, electron microscopy and nanoparticle tracking analysis. Soluble FAF1 from CM was immunodepleted using anti-FAF1 antibody. Transmission of secreted FAF1 was examined by transwell assay under a confocal microscope. CM-induced cell death was determined by measuring propidium iodide (PI) uptake using a flow cytometer. Results FAF1 was secreted from SH-SY5Y cells via exocytosis and brefeldin A (BFA)-resistant secretory pathways. Furthermore, FAF1 was secreted as a vesicle-free form and a genuine exosome cargo in the lumen of exosomes. In addition, FAF1 increased the number of exosomes, suggesting a regulatory role in exosome biogenesis. Extracellular FAF1 was transmitted via endocytosis to neighboring cells, where it induced cell death through apoptotic and necrotic pathways. Conclusions This study presents a novel route by which FAF1 induces neuronal death through cell-to-cell transmission. Video Abstract
Collapse
Affiliation(s)
- Gyeongrin Park
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Bok-Seok Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea
| | - Eunhee Kim
- Department of Biological Sciences, Chungnam National University, 99 Daehak-ro, Yuseong-gu, Daejeon, 34134, South Korea.
| |
Collapse
|
48
|
Menck K, Sivaloganathan S, Bleckmann A, Binder C. Microvesicles in Cancer: Small Size, Large Potential. Int J Mol Sci 2020; 21:E5373. [PMID: 32731639 PMCID: PMC7432491 DOI: 10.3390/ijms21155373] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 07/23/2020] [Accepted: 07/27/2020] [Indexed: 02/07/2023] Open
Abstract
Extracellular vesicles (EV) are secreted by all cell types in a tumor and its microenvironment (TME), playing an essential role in intercellular communication and the establishment of a TME favorable for tumor invasion and metastasis. They encompass a variety of vesicle populations, among them the well-known endosomal-derived small exosomes (Exo), but also larger vesicles (diameter > 100 nm) that are shed directly from the plasma membrane, the so-called microvesicles (MV). Increasing evidence suggests that MV, although biologically different, share the tumor-promoting features of Exo in the TME. Due to their larger size, they can be readily harvested from patients' blood and characterized by routine methods such as conventional flow cytometry, exploiting the plethora of molecules expressed on their surface. In this review, we summarize the current knowledge about the biology and the composition of MV, as well as their role within the TME. We highlight not only the challenges and potential of MV as novel biomarkers for cancer, but also discuss their possible use for therapeutic intervention.
Collapse
Affiliation(s)
- Kerstin Menck
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Suganja Sivaloganathan
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
| | - Annalen Bleckmann
- Department of Medicine A, Hematology, Oncology, and Pneumology, University Hospital Münster, 48149 Münster, Germany; (K.M.); (S.S.); (A.B.)
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| | - Claudia Binder
- Department of Hematology/Medical Oncology, University Medical Center Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
49
|
Tu YK, Hsueh YH. Extracellular vesicles isolated from human olfactory ensheathing cells enhance the viability of neural progenitor cells. Neurol Res 2020; 42:959-967. [PMID: 32700620 DOI: 10.1080/01616412.2020.1794371] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
OBJECTIVE Acquired neurological diseases such as severe traumatic brain or spinal cord injury (SCI) cause irreversible disability. Olfactory ensheathing cell (OEC) transplantation has been trialed as a promising SCI treatment. Extracellular vesicles (EVs), which regulate cell-cell interactions, have recently garnered extensive research interests and emerged as a non-cell-based therapy in neurological disorders, including in SCI animal models. However, there have been no reports of human OEC-EVs and their beneficial effects on neuron regeneration. Here, we investigated the effects of EVs isolated from human OEC on the viability of neuronal cells. METHODS EVs were isolated from primary human OECs (hOECs) by serial ultracentrifugation. The hOEC-EVs were characterized by transmission electron microscopy, western blotting, and nanoparticle tracking analyses. We conducted CCK8 and lactate dehydrogenase assays to assess the cell proliferation and cytotoxicity of neural progenitor cells (NPCs) exposed to hOEC-EVs. Tert-butyl hydroperoxide (t-BHP) was utilized to mimic oxidative stress-induced cytotoxicity in NPCs. RESULTS The modal diameter of hOEC-derived EVs was 113.2 nm. Expressions of EV markers such as CD9, CD63, and CD81 were detected by western blotting. hOEC-derived EVs enhanced the proliferation of NPCs and ameliorated cell cytotoxicity mediated by t-BHP. DISCUSSION Our findings reveal a role for hOEC-derived EVs in NPC proliferation and oxidative stress-induced neuronal toxicity model. These results may be useful for developing non-cell therapy OEC-EV-based treatment in acquired nervous system disease.
Collapse
Affiliation(s)
- Yuan-Kun Tu
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University , Kaohsiung City, Taiwan (R.O.C.)
| | - Yu-Huan Hsueh
- Department of Orthopedic Surgery, E-Da Hospital/I-Shou University , Kaohsiung City, Taiwan (R.O.C.)
| |
Collapse
|
50
|
Huang G, Lin G, Zhu Y, Duan W, Jin D. Emerging technologies for profiling extracellular vesicle heterogeneity. LAB ON A CHIP 2020; 20:2423-2437. [PMID: 32537618 DOI: 10.1039/d0lc00431f] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/18/2023]
Abstract
Extracellular vesicles (EVs) are membrane-bound vesicles secreted by most cell types and exist in virtually all bodily fluids. They carry on a wealth of proteomic and genetic information including proteins, lipids, miRNAs, mRNA, non-coding RNA and other molecules from parental cells. Increasing evidence shows that within populations of EVs, their biogenesis, physical characteristics (e.g. size, density, morphology) and cargos (e.g. protein, lipid content, nucleic acids) may vary substantially, which accordingly change their biological properties. To fully exploit the potential of EVs, it requires qualified methods to profile EV heterogeneity. In this review, we survey recent approaches for EV isolation with innovative discoveries in heterogeneity. The main challenges in EV heterogeneity research are identified, and the roles of single cell EV profiling and single EV imaging are highlighted. We further discuss promising opportunities for resolving the underlying complexity of EV heterogeneity.
Collapse
Affiliation(s)
- Guan Huang
- Institute for Biomedical Materials and Devices, Faculty of Science, The University of Technology Sydney, Ultimo, New South Wales 2007, Australia.
| | | | | | | | | |
Collapse
|