1
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
2
|
Zhang X, Zheng H, Ni Z, Shen Y, Wang D, Li W, Zhao L, Li C, Gao H. Fibroblast growth factor 21 alleviates diabetes-induced cognitive decline. Cereb Cortex 2024; 34:bhad502. [PMID: 38220573 PMCID: PMC10839844 DOI: 10.1093/cercor/bhad502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 11/29/2023] [Accepted: 11/30/2023] [Indexed: 01/16/2024] Open
Abstract
Diabetes mellitus (DM) causes damage to the central nervous system, resulting in cognitive impairment. Fibroblast growth factor 21 (FGF21) exhibits the potential to alleviate neurodegeneration. However, the therapeutic effect of intracerebroventricular (i.c.v) FGF21 infusion on diabetes-induced cognitive decline (DICD) and its potential mechanisms remain unclear. In this study, the impact of FGF21 on DICD was explored, and 1H nuclear magnetic resonance (NMR)-based metabolomics plus 13C NMR spectroscopy in combine with intravenous [1-13C]-glucose infusion were used to investigate the underlying metabolic mechanism. Results revealed that i.c.v FGF21 infusion effectively improved learning and memory performance of DICD mice; neuron loss and apoptosis in hippocampus and cortex were significantly blocked, suggesting a potential neuroprotective role of FGF21 in DICD. Metabolomics results revealed that FGF21 modulated DICD metabolic alterations related to glucose and neurotransmitter metabolism, which are characterized by distinct recovered enrichment of [3-13C]-lactate, [3-13C]-aspartate, [4-13C]-glutamine, [3-13C]-glutamine, [4-13C]-glutamate, and [4-13C]- γ-aminobutyric acid (GABA) from [1-13C]-glucose. Moreover, diabetes-induced neuron injury and metabolic dysfunctions might be mediated by PI3K/AKT/GSK-3β signaling pathway inactivation in the hippocampus and cortex, which were activated by i.c.v injection of FGF21. These findings indicate that i.c.v FGF21 infusion exerts its neuroprotective effect on DICD by remodeling cerebral glucose and neurotransmitter metabolism by activating the PI3K/AKT/GSK-3β signaling pathway.
Collapse
Affiliation(s)
- Xi Zhang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hong Zheng
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zhitao Ni
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyin Shen
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Die Wang
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Wenqing Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Liangcai Zhao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Chen Li
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| | - Hongchang Gao
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Key Laboratory of Efficacy Evaluation of Traditional Chinese Medicine and Encephalopathy Research of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
- Institute of Aging, Key Laboratory of Alzheimer's Disease of Zhejiang Province, Wenzhou Medical University, Wenzhou 325035, China
| |
Collapse
|
3
|
Xu F, Chen Z, Xie L, Yang S, Li Y, Wu J, Wu Y, Li S, Zhang X, Ma Y, Liu Y, Zeng A, Xu Z. Lactobacillus plantarum ST-III culture supernatant protects against acute alcohol-induced liver and intestinal injury. Aging (Albany NY) 2023; 16:2077-2089. [PMID: 38126998 PMCID: PMC10911357 DOI: 10.18632/aging.205331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 11/06/2023] [Indexed: 12/23/2023]
Abstract
The beneficial effects of probiotics have been studied in inflammatory bowel disease, nonalcoholic steatohepatitis, and alcoholic liver disease (ALD). Probiotic supplements are safer and more effective; however, their potential mechanisms are unclear. An objective of the current study was to examine the effects of extracellular products of Lactobacillus plantarum on acute alcoholic liver injury. Mice on a standard chow diet were supplemented with Lactobacillus plantarum ST-III culture supernatant (LP-cs) for two weeks and administered alcohol at 6 g/kg body weight by gavage. Alcohol-induced liver injury was assessed by measuring plasma alanine aminotransferase activity levels and triglyceride content determined liver steatosis. Intestinal damage and tight junctions were assessed using histochemical staining. LP-cs significantly inhibited alcohol-induced fat accumulation, inflammation, and apoptosis by inhibiting oxidative stress and endoplasmic reticulum stress. LP-cs significantly inhibited alcohol-induced intestinal injury and endotoxemia. These findings suggest that LP-cs alleviates acute alcohol-induced liver damage by inhibiting oxidative stress and endoplasmic reticulum stress via one mechanism and suppressing alcohol-induced increased intestinal permeability and endotoxemia via another mechanism. LP-cs supplements are a novel strategy for ALD prevention and treatment.
Collapse
Affiliation(s)
- Feng Xu
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Zengqiang Chen
- Healthcare Center, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Longteng Xie
- Department of Infection Diseases, The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo 315700, China
| | - Shizhuo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou 325035, China
- Ruian People's Hospital, Wenzhou Medical College Affiliated Third Hospital, Wenzhou 325200, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanyan Ma
- Department of Gastroenterology, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou 325035, China
| | - Aibing Zeng
- School of Laboratory Medicine and Life Sciences, Wenzhou Medical University, Wenzhou 325035, China
| | - Zeping Xu
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo 315000, China
| |
Collapse
|
4
|
Ottomana AM, Presta M, O'Leary A, Sullivan M, Pisa E, Laviola G, Glennon JC, Zoratto F, Slattery DA, Macrì S. A systematic review of preclinical studies exploring the role of insulin signalling in executive function and memory. Neurosci Biobehav Rev 2023; 155:105435. [PMID: 37913873 DOI: 10.1016/j.neubiorev.2023.105435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 10/04/2023] [Accepted: 10/23/2023] [Indexed: 11/03/2023]
Abstract
Beside its involvement in somatic dysfunctions, altered insulin signalling constitutes a risk factor for the development of mental disorders like Alzheimer's disease and obsessive-compulsive disorder. While insulin-related somatic and mental disorders are often comorbid, the fundamental mechanisms underlying this association are still elusive. Studies conducted in rodent models appear well suited to help decipher these mechanisms. Specifically, these models are apt to prospective studies in which causative mechanisms can be manipulated via multiple tools (e.g., genetically engineered models and environmental interventions), and experimentally dissociated to control for potential confounding factors. Here, we provide a narrative synthesis of preclinical studies investigating the association between hyperglycaemia - as a proxy of insulin-related metabolic dysfunctions - and impairments in working and spatial memory, and attention. Ultimately, this review will advance our knowledge on the role of glucose metabolism in the comorbidity between somatic and mental illnesses.
Collapse
Affiliation(s)
- Angela Maria Ottomana
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Neuroscience Unit, Department of Medicine, University of Parma, 43100 Parma, Italy
| | - Martina Presta
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy; Department of Physiology and Pharmacology, Sapienza University of Rome, 00185 Rome, Italy
| | - Aet O'Leary
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany; Chair of Neuropsychopharmacology, Institute of Chemistry, University of Tartu, Tartu, Estonia
| | - Mairéad Sullivan
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Edoardo Pisa
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Giovanni Laviola
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Jeffrey C Glennon
- Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Ireland
| | - Francesca Zoratto
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - David A Slattery
- Department of Psychiatry, Psychosomatic Medicine and Psychotherapy, University Hospital Frankfurt, Frankfurt, Germany
| | - Simone Macrì
- Centre for Behavioural Sciences and Mental Health, Istituto Superiore di Sanità, 00161 Rome, Italy.
| |
Collapse
|
5
|
Zhang S, Zhang Y, Wen Z, Yang Y, Bu T, Bu X, Ni Q. Cognitive dysfunction in diabetes: abnormal glucose metabolic regulation in the brain. Front Endocrinol (Lausanne) 2023; 14:1192602. [PMID: 37396164 PMCID: PMC10312370 DOI: 10.3389/fendo.2023.1192602] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Accepted: 05/25/2023] [Indexed: 07/04/2023] Open
Abstract
Cognitive dysfunction is increasingly recognized as a complication and comorbidity of diabetes, supported by evidence of abnormal brain structure and function. Although few mechanistic metabolic studies have shown clear pathophysiological links between diabetes and cognitive dysfunction, there are several plausible ways in which this connection may occur. Since, brain functions require a constant supply of glucose as an energy source, the brain may be more susceptible to abnormalities in glucose metabolism. Glucose metabolic abnormalities under diabetic conditions may play an important role in cognitive dysfunction by affecting glucose transport and reducing glucose metabolism. These changes, along with oxidative stress, inflammation, mitochondrial dysfunction, and other factors, can affect synaptic transmission, neural plasticity, and ultimately lead to impaired neuronal and cognitive function. Insulin signal triggers intracellular signal transduction that regulates glucose transport and metabolism. Insulin resistance, one hallmark of diabetes, has also been linked with impaired cerebral glucose metabolism in the brain. In this review, we conclude that glucose metabolic abnormalities play a critical role in the pathophysiological alterations underlying diabetic cognitive dysfunction (DCD), which is associated with multiple pathogenic factors such as oxidative stress, mitochondrial dysfunction, inflammation, and others. Brain insulin resistance is highly emphasized and characterized as an important pathogenic mechanism in the DCD.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Qing Ni
- Department of Endocrinology, Guang’ anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| |
Collapse
|
6
|
Liu S, Zeng M, Wan W, Huang M, Li X, Xie Z, Wang S, Cai Y. The Health-Promoting Effects and the Mechanism of Intermittent Fasting. J Diabetes Res 2023; 2023:4038546. [PMID: 36911497 PMCID: PMC10005873 DOI: 10.1155/2023/4038546] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 01/15/2023] [Accepted: 01/23/2023] [Indexed: 03/06/2023] Open
Abstract
Intermittent fasting (IF) is an eating pattern in which individuals go extended periods with little or no energy intake after consuming regular food in intervening periods. IF has several health-promoting effects. It can effectively reduce weight, fasting insulin levels, and blood glucose levels. It can also increase the antitumor activity of medicines and cause improvement in the case of neurological diseases, such as memory deficit, to achieve enhanced metabolic function and prolonged longevity. Additionally, IF activates several biological pathways to induce autophagy, encourages cell renewal, prevents cancer cells from multiplying and spreading, and delays senescence. However, IF has specific adverse effects and limitations when it comes to people of a particular age and gender. Hence, a more systematic study on the health-promoting effects and safety of IF is needed. This article reviewed the research on the health-promoting effects of IF, providing a theoretical basis, direction for subsequent basic research, and information related to the clinical application of IF.
Collapse
Affiliation(s)
- Simin Liu
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Min Zeng
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Weixi Wan
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Ming Huang
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Xiang Li
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Zixian Xie
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Shang Wang
- College of Clinical Chinese Medicine, Hubei University of Chinese Medicine, Wuhan 430065, China
| | - Yu Cai
- College of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
| |
Collapse
|
7
|
Gu S, Zhou Z, Zhang S, Cai Y. Advances in Anti-Diabetic Cognitive Dysfunction Effect of Erigeron Breviscapus (Vaniot) Hand-Mazz. Pharmaceuticals (Basel) 2022; 16:ph16010050. [PMID: 36678547 PMCID: PMC9867432 DOI: 10.3390/ph16010050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/22/2022] [Accepted: 12/24/2022] [Indexed: 12/31/2022] Open
Abstract
Diabetic cognitive dysfunction (DCD) is the decline in memory, learning, and executive function caused by diabetes. Although its pathogenesis is unclear, molecular biologists have proposed various hypotheses, including insulin resistance, amyloid β hypothesis, tau protein hyperphosphorylation hypothesis, oxidative stress and neuroinflammation. DCD patients have no particular treatment options and current pharmacological regimens are suboptimal. In recent years, Chinese medicine research has shown that herbs with multi-component, multi-pathway and multi-target synergistic activities can prevent and treat DCD. Yunnan is home to the medicinal herb Erigeron breviscapus (Vant.) Hand-Mazz. (EBHM). Studies have shown that EBHM and its active components have a wide range of pharmacological effects and applications in cognitive disorders. EBHM's anti-DCD properties have been seldom reviewed. Through a literature study, we were able to evaluate the likely pathophysiology of DCD, prescribe anti-DCD medication and better grasp EBHM's therapeutic potential. EBHM's pharmacological mechanism and active components for DCD treatment were also summarized.
Collapse
Affiliation(s)
- Shanye Gu
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Ziyi Zhou
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Shijie Zhang
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
| | - Yefeng Cai
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
- Department of Neurology, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
- Guangdong Provincial Key Laboratory of Research on Emergency in Traditional Chinese Medicine, Guangzhou 510120, China
- Correspondence: ; Tel.: +86-136-3133-3842
| |
Collapse
|
8
|
Liu Y, Chen Q, Li Y, Bi L, He Z, Shao C, Jin L, Peng R, Zhang X. Advances in FGFs for diabetes care applications. Life Sci 2022; 310:121015. [PMID: 36179818 DOI: 10.1016/j.lfs.2022.121015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetes mellitus (DM) is an endocrine and metabolic disease caused by a variety of pathogenic factors, including genetic factors, environmental factors and behavior. In recent decades, the number of cases and the prevalence of diabetes have steadily increased, and it has become one of the most threatening diseases to human health in the world. Currently, insulin is the most effective and direct way to control hyperglycemia for diabetes treatment at a low cost. However, hypoglycemia is often a common complication of insulin treatment. Moreover, with the extension of treatment time, insulin resistance, considered the typical adverse symptom, can appear. Therefore, it is urgent to develop new targets and more effective and safer drugs for diabetes treatment to avoid adverse reactions and the insulin tolerance of traditional hypoglycemic drugs. SCOPE OF REVIEW In recent years, it has been found that some fibroblast growth factors (FGFs), including FGF1, FGF19 and FGF21, can safely and effectively reduce hyperglycemia and have the potential to be developed as new drugs for the treatment of diabetes. FGF23 is also closely related to diabetes and its complications, which provides a new approach for regulating blood glucose and solving the problem of insulin tolerance. MAJOR CONCLUSIONS This article reviews the research progress on the physiology and pharmacology of fibroblast growth factor in the treatment of diabetes. We focus on the application of FGFs in diabetes care and prevention.
Collapse
Affiliation(s)
- Yinai Liu
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Qianqian Chen
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Yaoqi Li
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Liuliu Bi
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Zhiying He
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China
| | - Chuxiao Shao
- Department of Hepatopancreatobiliary Surgery, Lishui Central Hospital, The Fifth Affiliated Hospital of Wenzhou Medical University, Lishui Hospital of Zhejiang University, Lishui 323000, China
| | - Libo Jin
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Renyi Peng
- Institute of Life Sciences & Biomedicine Collaborative Innovation Center of Zhejiang Province, College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China.
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Xu Z, Zhang J, Wu J, Yang S, Li Y, Wu Y, Li S, Zhang X, Zuo W, Lian X, Lin J, Jiang Y, Xie L, Liu Y, Wang P. Lactobacillus plantarum ST-III culture supernatant ameliorates alcohol-induced cognitive dysfunction by reducing endoplasmic reticulum stress and oxidative stress. Front Neurosci 2022; 16:976358. [PMID: 36188464 PMCID: PMC9515438 DOI: 10.3389/fnins.2022.976358] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 08/15/2022] [Indexed: 11/28/2022] Open
Abstract
Background Long-term alcohol exposure is associated with oxidative stress, endoplasmic reticulum (ER) stress, and neuroinflammation, which may impair cognitive function. Probiotics supplements can significantly improve cognitive function in neurodegenerative diseases such as Alzheimer’s disease. Nevertheless, the effect of Lactobacillus plantarum ST-III culture supernatant (LP-cs) on alcohol-induced cognitive dysfunction remains unclear. Methods A mouse model of cognitive dysfunction was established by intraperitoneal injection of alcohol (2 g/kg body weight) for 28 days. Mice were pre-treated with LP-cs, and cognitive function was evaluated using the Morris water maze test. Hippocampal tissues were collected for biochemical and molecular analysis. Results LP-cs significantly ameliorated alcohol-induced decline in learning and memory function and hippocampal morphology changes, neuronal apoptosis, and synaptic dysfunction. A mechanistic study showed that alcohol activated protein kinase R-like endoplasmic reticulum kinase (PERK) signaling and suppressed brain derived neurotrophic factor (BDNF) levels via ER stress in the hippocampus, which LP-cs reversed. Alcohol activated oxidative stress and inflammation responses in the hippocampus, which LP-cs reversed. Conclusion LP-cs significantly ameliorated alcohol-induced cognitive dysfunction and cellular stress. LP-cs might serve as an effective treatment for alcohol-induced cognitive dysfunction.
Collapse
Affiliation(s)
- Zeping Xu
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Jinjing Zhang
- Department of Pharmacy, Affiliated Cixi Hospital, Wenzhou Medical University, Wenzhou, China
| | - Junnan Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
| | - Shizhuo Yang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuying Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yuyu Wu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Siyuan Li
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
| | - Xie Zhang
- Department of Pharmacy, Ningbo Medical Center Li Huili Hospital, The Affiliated Hospital of Ningbo University, Ningbo, China
| | - Wei Zuo
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Xiang Lian
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Jianjun Lin
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Yongsheng Jiang
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
| | - Longteng Xie
- The Affiliated Xiangshan Hospital of Wenzhou Medical University, Ningbo, China
- Longteng Xie,
| | - Yanlong Liu
- School of Mental Health, Wenzhou Medical University, Wenzhou, China
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- *Correspondence: Yanlong Liu,
| | - Ping Wang
- The Affiliated Kangning Hospital, Wenzhou Medical University, Wenzhou, China
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Ping Wang,
| |
Collapse
|
10
|
Espasandín C, Rivero S, Bengoa L, Cal K, Romanelli G, Benech JC, Damián JP. CaMKIV/CREB/BDNF signaling pathway expression in prefrontal cortex, amygdala, hippocampus and hypothalamus in streptozotocin-induced diabetic mice with anxious-like behavior. Exp Brain Res 2022; 240:2687-2699. [PMID: 35984483 DOI: 10.1007/s00221-022-06446-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 08/14/2022] [Indexed: 11/04/2022]
Abstract
Individuals with diabetes mellitus (DM) tend to manifest anxiety and depression, which could be related to changes in the expression of calcium/calmodulin-dependent protein kinase IV (CaMKIV), transcription factor cyclic AMP-responsive element binding protein (CREB), phosphorylated CREB (pCREB) and brain-derived neurotrophic factor (BDNF) in different brain regions. The objective of this study was to determine whether mice with type 1 diabetes (T1DM) induced with streptozotocin show a profile of anxious-type behaviors and alterations in the expression/activity of CaMKIV, CREB, pCREB and BDNF in different regions of the brain (prefrontal cortex, amygdala, hippocampus and hypothalamus) in comparison to non-diabetic mice (NDB). Mice with 3 months of chronic DM showed an anxious-like behavioral profile in two anxiety tests (Open Field and Elevated Plus Maze), when compared to NDB. There were significant differences in the expression of cell signaling proteins: diabetic mice had a lower expression of CaMKIV in the hippocampus, a greater expression of CREB in the amygdala and hypothalamus, as well as a lower pCREB/CREB in hypothalamus than NDB mice (P < 0.05). This is the first study evaluating the expression of CaMKIV in the brain of animals with DM, who presented lower expression of this protein in the hippocampus. In addition, it is the first time that CREB was evaluated in amygdala and hypothalamus of animals with DM, who presented a higher expression. Further research is necessary to determine the possible link between expression of CaMKIV and CREB, and the behavioral profile of anxiety in diabetic animals.
Collapse
Affiliation(s)
- Camila Espasandín
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Sofía Rivero
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
| | - Laura Bengoa
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
| | - Karina Cal
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay
- Laboratorio de Patologías del Metabolismo y el Envejecimiento, Institut Pasteur Montevideo, Mataojo 2020, 11400, Montevideo, CP, Uruguay
| | - Gerardo Romanelli
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Juan Claudio Benech
- Laboratorio de Señalización Celular y Nanobiología, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, 11600, Montevideo, CP, Uruguay
| | - Juan Pablo Damián
- Departamento de Biociencias Veterinarias, Facultad de Veterinaria, Universidad de la República, Lasplaces 1550, 11600, Montevideo, CP, Uruguay.
| |
Collapse
|
11
|
Krzyscik MA, Opaliński Ł, Szymczyk J, Otlewski J. Cyclic and dimeric fibroblast growth factor 2 variants with high biomedical potential. Int J Biol Macromol 2022; 218:243-258. [PMID: 35878661 DOI: 10.1016/j.ijbiomac.2022.07.105] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 06/29/2022] [Accepted: 07/14/2022] [Indexed: 11/05/2022]
Abstract
Fibroblast growth factor 2 (FGF2) is a pleiotropic protein engaged in the regulation of key cellular processes in a wide spectrum of cells. FGF2 is an important object of basic research as well as a molecule used in regenerative medicine, in vitro cell culture maintenance, and as an anticancer drug carrier. However, the unsatisfactory stability and pleiotropic activities of the wild-type FGF2 largely limit its use as a medical product. To overcome these limitations, we have designed a set of FGF2-based macromolecules via sortase A-mediated cyclization and oligomerization. We obtained heparin-switchable FGF2 variants with enhanced stability and improved ability to stimulate cell proliferation and migration. We have shown that stimulation of glucose uptake by adipocytes is modulated by the architecture of FGF2 oligomers. Moreover, we used hyper-stable FGF2 variants for the construction of highly effective drug carriers for selective killing of FGFR1-overproducing cancer cells. The strategy for FGF2 engineering presented in this work provides novel insights into the design of growth factor variants for regenerative and anti-cancer precise medicine.
Collapse
Affiliation(s)
- Mateusz A Krzyscik
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Łukasz Opaliński
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jakub Szymczyk
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland
| | - Jacek Otlewski
- University of Wroclaw, Faculty of Biotechnology, Department of Protein Engineering, 50-383 Wroclaw, Poland.
| |
Collapse
|
12
|
Dordoe C, Wang X, Lin P, Wang Z, Hu J, Wang D, Fang Y, Liang F, Ye S, Chen J, Zhao Y, Xiong Y, Yang Y, Lin L, Li X. Non-mitogenic fibroblast growth factor 1 protects against ischemic stroke by regulating microglia/macrophage polarization through Nrf2 and NF-κB pathways. Neuropharmacology 2022; 212:109064. [PMID: 35452626 DOI: 10.1016/j.neuropharm.2022.109064] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 04/13/2022] [Accepted: 04/15/2022] [Indexed: 01/23/2023]
Abstract
Microglia are immune cells in the central nervous system (CNS) that participate in response to pathological process after ischemic injury. Non-mitogenic fibroblast growth factor 1 (nmFGF1) is an effective neuroprotective factor that is also known as a metabolic regulator. The present study aimed to investigate the effects and mechanism of the neuroprotective ability of nmFGF1 on microglia in mice after photothrombosis (PT) stroke model, to determine whether it could ameliorate ischemic injury in stroke experiment. We discovered that the intranasal administration of nmFGF1 reduced infarct size and ameliorated neurological deficits in behavioral assessment by regulating the secretion of proinflammatory and anti-inflammatory cytokines. Furthermore, in the in vitro experiments, we found that nmFGF1 regulated the expression levels of proinflammatory and anti-inflammatory cytokines in oxygen-glucose deprivation (OGD) and lipopolysaccharide (LPS) stimulation. Evidence have shown that when nuclear factor erythroid 2-related factor 2 (Nfr2) is activated, it inhibits nuclear factor-kappa B (NF-κB) activation to alleviate inflammation. Interestingly, nmFGF1 treatment in vivo remarkably inhibited NF-κB pathway activation and activated Nrf2 pathway. In addition, nmFGF1 and NF-κB inhibitor (BAY11-7082) inhibited NF-κB pathway in LPS-stimulated BV2 microglia. Moreover, in LPS-stimulated BV2 microglia, the anti-inflammatory effect produced by nmFGF1 was knocked down by Nrf2 siRNA. These results indicate that nmFGF1 promoted functional recovery in experimental stroke by modulating microglia/macrophage-mediated neuroinflammation via Nrf2 and NF-κB signaling pathways, making nmFGF1 a potential agent against ischemic stroke.
Collapse
Affiliation(s)
- Confidence Dordoe
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China; School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Xue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ping Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhengyi Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jian Hu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Dongxue Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; College of Pharmacy, Chonnam National University, Gwangju, 501-190, Republic of Korea
| | - Yani Fang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Fei Liang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Shasha Ye
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Jun Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Yeli Zhao
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Ye Xiong
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Yunjun Yang
- The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325015, China
| | - Li Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China; Research Units of Clinical Translation of Cell Growth Factors and Diseases Research, Chinese Academy of Medical Science, Wenzhou, Zhejiang, 325035, China.
| | - Xianfeng Li
- Pingyang Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, 325400, China.
| |
Collapse
|
13
|
Kong L, Liu Y, Zhang YM, Li Y, Gou LS, Ma TF, Liu YW. Sarsasapogenin ameliorates diabetes-associated memory impairment and neuroinflammation through down-regulation of PAR-1 receptor. Phytother Res 2021; 35:3167-3180. [PMID: 33885189 DOI: 10.1002/ptr.7005] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Revised: 12/08/2020] [Accepted: 12/15/2020] [Indexed: 12/15/2022]
Abstract
Sarsasapogenin (Sar), a natural steroidal compound, shows neuroprotection, cognition-enhancement, antiinflammation, antithrombosis effects, and so on. However, whether Sar has ameliorative effects on diabetes-associated cognitive impairment remains unknown. In this study, we found that Sar ameliorated diabetes-associated memory impairment in streptozotocin-induced diabetic rats, evidenced by increased numbers of crossing platform and percentage of time spent in the target quadrant in Morris water maze tests, and suppressed the nucleotide-binding domain and leucine-rich repeat containing protein 1 (NLRP1) inflammasome in hippocampus and cerebral cortex. Furthermore, Sar inhibited advanced glycation end-products and its receptor (AGEs/RAGE) axis and suppressed up-regulation of thrombin receptor protease-activated receptor 1 (PAR-1) in cerebral cortex. On the other hand, Sar mitigated high glucose-induced neuronal damages, NLRP1 inflammasome activation, and PAR-1 up-regulation in high glucose-cultured SH-SY5Y cells, but did not affect thrombin activity. Moreover, the effects of Sar were similar to those of a selective PAR-1 antagonist vorapaxar. Further studies indicated that activation of the NLRP1 inflammasome and NF-κB mediated the effect of PAR-1 up-regulation in high glucose condition by using PAR-1 knockdown assay. In summary, this study demonstrated that Sar prevented memory impairment caused by diabetes, which was achieved through suppressing neuroinflammation from activated NLRP1 inflammasome and NF-κB regulated by cerebral PAR-1. HIGHLIGHTS: Sarsasapogenin ameliorated memory impairment caused by diabetes in rats. Sarsasapogenin mitigated neuronal damages and neuroinflammation by down-regulating cerebral PAR-1. The NLRP1 inflammasome and NF-κB signaling mediated the pro-inflammatory effects of PAR-1. Sarsasapogenin was a pleiotropic neuroprotective agent and memory enhancer in diabetic rodents.
Collapse
Affiliation(s)
- Li Kong
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yue Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu-Meng Zhang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Yu Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| | - Ling-Shan Gou
- Center for Genetic Medicine, Xuzhou Maternity and Child Health Care Hospital, Xuzhou, Jiangsu, China
| | - Teng-Fei Ma
- Institute for Stem Cell and Neural Regeneration; Key Laboratory of Cardiovascular & Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing, China
| | - Yao-Wu Liu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China.,Department of Pharmacology, School of Pharmacy, Xuzhou Medical University, Xuzhou, Jiangsu, China
| |
Collapse
|
14
|
Zheng P, Tang Z, Xiong J, Wang B, Xu J, Chen L, Cai S, Wu C, Ye L, Xu K, Chen Z, Wu Y, Xiao J. RAGE: A potential therapeutic target during FGF1 treatment of diabetes-mediated liver injury. J Cell Mol Med 2021; 25:4776-4785. [PMID: 33788387 PMCID: PMC8107085 DOI: 10.1111/jcmm.16446] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 12/15/2022] Open
Abstract
As a serious metabolic disease, diabetes causes series of complications that seriously endanger human health. The liver is a key organ for metabolizing glucose and lipids, which substantially contributes to the development of insulin resistance and type 2 diabetes mellitus (T2DM). Exogenous fibroblast growth factor 1 (FGF1) has a great potential for the treatment of diabetes. Receptor of advanced glycation end products (RAGE) is a receptor for advanced glycation end products that involved in the development of diabetes‐triggered complications. Previous study has demonstrated that FGF1 significantly ameliorates diabetes‐mediated liver damage (DMLD). However, whether RAGE is involved in this process is still unknown. In this study, we intraperitoneally injected db/db mice with 0.5 mg/kg FGF1. We confirmed that FGF1 treatment not only significantly ameliorates diabetes‐induced elevated apoptosis in the liver, but also attenuates diabetes‐induced inflammation, then contributes to ameliorate liver dysfunction. Moreover, we found that diabetes triggers the elevated RAGE in hepatocytes, and FGF1 treatment blocks it, suggesting that RAGE may be a key target during FGF1 treatment of diabetes‐induced liver injury. Thus, we further confirmed the role of RAGE in FGF1 treatment of AML12 cells under high glucose condition. We found that D‐ribose, a RAGE agonist, reverses the protective role of FGF1 in AML12 cells. These findings suggest that FGF1 ameliorates diabetes‐induced hepatocyte apoptosis and elevated inflammation via suppressing RAGE pathway. These results suggest that RAGE may be a potential therapeutic target for the treatment of DMLD.
Collapse
Affiliation(s)
- Peipei Zheng
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China.,The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zonghao Tang
- Key Laboratory of Medical Electrophysiology of Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
| | - Jun Xiong
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Beini Wang
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Jingyu Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Lulu Chen
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Shufang Cai
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Chengbiao Wu
- Clinical Research Center, Affiliated Xiangshan Hospital, Wenzhou Medical University, Wenzhou, China
| | - Libing Ye
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Ke Xu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Zimiao Chen
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| | - Yanqing Wu
- The Institute of Life Sciences, Wenzhou University, Wenzhou, China
| | - Jian Xiao
- Department of Endocrinology, The First Affiliated Hospital and School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
15
|
Benchoula K, Parhar IS, Madhavan P, Hwa WE. CREB nuclear transcription activity as a targeting factor in the treatment of diabetes and diabetes complications. Biochem Pharmacol 2021; 188:114531. [PMID: 33773975 DOI: 10.1016/j.bcp.2021.114531] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/09/2021] [Accepted: 03/17/2021] [Indexed: 02/06/2023]
Abstract
Diabetes mellitus is a metabolic disorder diagnosed by elevated blood glucose levels and a defect in insulin production. Blood glucose, an energy source in the body, is regenerated by two fundamental processes: glycolysis and gluconeogenesis. These two processes are the main mechanisms used by humans and many other animals to maintain blood glucose levels, thereby avoiding hypoglycaemia. The released insulin from pancreatic β-cells activates glycolysis. However, the glucagon released from the pancreatic α-cells activates gluconeogenesis in the liver, leading to pyruvate conversion to glucose-6-phosphate by different enzymes such as fructose 1,6-bisphosphatase and glucose 6-phosphatase. These enzymes' expression is controlled by the glucagon/ cyclic adenosine 3',5'-monophosphate (cAMP)/ proteinkinase A (PKA) pathway. This pathway phosphorylates cAMP-response element-binding protein (CREB) in the nucleus to bind it to these enzyme promoters and activate their expression. During fasting, this process is activated to supply the body with glucose; however, it is overactivated in diabetes. Thus, the inhibition of this process by blocking the expression of the enzymes via CREB is an alternative strategy for the treatment of diabetes. This review was designed to investigate the association between CREB activity and the treatment of diabetes and diabetes complications. The phosphorylation of CREB is a crucial step in regulating the gene expression of the enzymes of gluconeogenesis. Many studies have proven that CREB is over-activated by glucagon and many other factors contributing to the elevation of fasting glucose levels in people with diabetes. The physiological function of CREB should be regarded in developing a therapeutic strategy for the treatment of diabetes mellitus and its complications. However, the accessible laboratory findings for CREB activity of the previous research still not strong enough for continuing to the clinical trial yet.
Collapse
Affiliation(s)
- Khaled Benchoula
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Ishwar S Parhar
- Monash University (Malaysia) BRIMS, Jeffrey Cheah School of Medicine & Health Sciences, Jalan Lagoon Selatan, Bandar Sunway, 47500 Subang Jaya, Selangor, Malaysia
| | - Priya Madhavan
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia
| | - Wong Eng Hwa
- School of Medicine, Faculty of Health and Medical Sciences, Taylor's University, 1, Jalan Taylors, 47500 Subang Jaya, Selangor, Malaysia.
| |
Collapse
|