1
|
Imayama I, Eccles JD, Ascoli C, Kudlaty E, Park GY. Body Weight and Allergic Asthma: A Narrative Review. J Clin Med 2024; 13:4801. [PMID: 39200943 PMCID: PMC11355285 DOI: 10.3390/jcm13164801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/04/2024] [Accepted: 08/12/2024] [Indexed: 09/02/2024] Open
Abstract
Obesity is a known risk factor for asthma development, progression, and exacerbation. Nevertheless, the underlying pathophysiological mechanisms explaining how obesity contributes to the development and progression of asthma have yet to be established. Here, we review human studies examining the associations between asthma and obesity, focusing on the literature from the past 10 years. Overall, current evidence suggests that while both asthma and obesity are complex diseases with significant heterogeneity, they both share various features of chronic inflammation. Furthermore, the interactions between asthma and obesity likely involve allergen-specific T helper type 2 (type 2) immune responses, as well as diverse non-type 2 inflammatory pathways. However, despite considerable progress, studies to date have not definitively elucidated the mechanisms that account for the observed association. A large-scale population-based study combined with translational immunological research, including targeted asthma therapies and pharmacological weight loss therapies, may be required to properly dissect the details of obesity-related asthma pathophysiology.
Collapse
Affiliation(s)
- Ikuyo Imayama
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
- StatCare, Knoxville, TN 37919, USA
| | - Jacob D. Eccles
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Christian Ascoli
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Elizabeth Kudlaty
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| | - Gye Young Park
- Division of Pulmonary, Critical Care, Sleep and Allergy, University of Illinois Chicago, Chicago, IL 60612, USA; (J.D.E.); (C.A.); (E.K.); (G.Y.P.)
| |
Collapse
|
2
|
Ertel A, Anderegg U, Franz S, Saalbach A. Dermal White Adipose Tissue-Derived Il-33 Regulates Il-4/13 Expression in Myeloid Cells during Inflammation. J Invest Dermatol 2024:S0022-202X(24)01862-1. [PMID: 38909842 DOI: 10.1016/j.jid.2024.05.026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Revised: 04/25/2024] [Accepted: 05/24/2024] [Indexed: 06/25/2024]
Abstract
Effective tissue response to infection and injury essentially relies on the fine-tuned induction and subsequent resolution of inflammation. Recent research highlighted multiple functions of dermal white adipose tissue (dWAT) beyond its traditional role as an energy reservoir. However, in contrast to other fat depots, there are only limited data about putative immune-regulatory functions of dWAT. Therefore, we investigated the impact of dWAT in the control of an acute skin inflammation. Skin inflammation triggers the activation of dWAT. In turn, soluble mediators of activated dWAT stimulate the expression of numerous genes controlling skin inflammation, including the T helper 2 cell cytokines Il4 and Il13, in myeloid cells in vitro. Consistently, myeloid cells isolated from inflamed skin showed a significant upregulation of Il-4/13 expression compared with those isolated from healthy skin. Mechanistically, we demonstrate that IL-33 released from activated dWAT is responsible for IL-4/13 stimulation in myeloid cells. Interestingly, obesity attenuates IL-33 secretion in dWAT during inflammation, resulting in decreased Il-4 and Il-13 expressions in myeloid cells. Our data reveal an IL-33-IL-4/13 signaling cascade initiated from dWAT in a T helper 2-independent context of inflammation that may contribute to limitation of inflammation. This cascade seems to be disturbed in individuals with obesity with prolonged inflammation.
Collapse
Affiliation(s)
- Anastasia Ertel
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Ulf Anderegg
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Sandra Franz
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany
| | - Anja Saalbach
- Department of Dermatology, Venereology and Allergology, University of Leipzig Medical Center, Leipzig, Germany.
| |
Collapse
|
3
|
Di X, Martinez-Tellez B, Krekels EHJ, Jurado-Fasoli L, Osuna-Prieto FJ, Ortiz-Alvarez L, Hankemeier T, Rensen PCN, Ruiz JR, Kohler I. Higher Plasma Levels of Endocannabinoids and Analogues Correlate With a Worse Cardiometabolic Profile in Young Adults. J Clin Endocrinol Metab 2024; 109:1351-1360. [PMID: 37967236 PMCID: PMC11031222 DOI: 10.1210/clinem/dgad668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 11/04/2023] [Accepted: 11/13/2023] [Indexed: 11/17/2023]
Abstract
CONTEXT The endocannabinoid system (ECS) is a signaling system composed of endocannabinoids (eCBs), their receptors, and the enzymes involved in their synthesis and metabolism. Alterations in the ECS are linked to the development of cardiometabolic diseases. OBJECTIVE Here, we investigated the relationship between plasma levels of eCBs and their analogues with body composition and cardiometabolic risk factors. METHODS The study included 133 young adults (age 22.1 ± 2.2 years, 67% women). Fasting plasma levels of eCBs and their analogues were measured using liquid chromatography-tandem mass spectrometry. Body composition, brown adipose tissue (BAT) volume, glucose uptake, and traditional cardiometabolic risk factors were measured. RESULTS Plasma levels of eCBs and several eCB analogues were positively correlated with adiposity and traditional cardiometabolic risk factors (eg, serum insulin and triacylglyceride levels, all r ≥ 0.17 and P ≤ .045). Plasma levels of 2-arachidonoyl glycerol and N-pentadecenoylethanolamine were negatively correlated with BAT volume and glucose uptake (all r ≤ -0.17 and P ≤ .047). We observed that the plasma levels of eCBs and their analogues were higher in metabolically unhealthy overweight-obese participants than in metabolically healthy overweight-obese participants. CONCLUSION Our findings show that the plasma levels of eCBs and their analogues are related to higher levels of adiposity and worse cardiometabolic profile.
Collapse
Affiliation(s)
- Xinyu Di
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Borja Martinez-Tellez
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- SPORT Research Group, CERNEP Research Center, University of Almería, 04120 Almería, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 18100 Granada, Spain
| | - Elke H J Krekels
- Division of Systems Pharmacology and Pharmacy, Leiden Academic Centre for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Lucas Jurado-Fasoli
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Francisco J Osuna-Prieto
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Lourdes Ortiz-Alvarez
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, School of Pharmacy, University of Granada, 18071 Granada, Spain
| | - Thomas Hankemeier
- Metabolomics and Analytics Centre, Leiden Academic Centre for Drug Research (LACDR), Leiden University, 2333 CC Leiden, The Netherlands
| | - Patrick C N Rensen
- Department of Medicine, Division of Endocrinology, and Einthoven Laboratory for Experimental Vascular Medicine, Leiden University Medical Center, 2333 ZA Leiden, The Netherlands
| | - Jonatan R Ruiz
- PROmoting FITness and Health through Physical Activity Research Group (PROFITH), Sport and Health University Research Institute (iMUDS), Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, 18071 Granada, Spain
- CIBER de Fisiopatología de la Obesidad y Nutrición (CIBEROBN), Instituto de Salud Carlos III, 18100 Granada, Spain
- Instituto de Investigación Biosanitaria, ibs.Granada, 18012 Granada, Spain
| | - Isabelle Kohler
- Division of BioAnalytical Chemistry, Amsterdam Institute of Molecular and Life Sciences (AIMMS), Vrije Universiteit Amsterdam, 1081 HZ Amsterdam, The Netherlands
- Center for Analytical Sciences Amsterdam, 1081 HZ Amsterdam, The Netherlands
| |
Collapse
|
4
|
Xu D, Zhuang S, Chen H, Jiang M, Jiang P, Wang Q, Wang X, Chen R, Tang H, Tang L. IL-33 regulates adipogenesis via Wnt/β-catenin/PPAR-γ signaling pathway in preadipocytes. J Transl Med 2024; 22:363. [PMID: 38632591 PMCID: PMC11022325 DOI: 10.1186/s12967-024-05180-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 04/05/2024] [Indexed: 04/19/2024] Open
Abstract
Interleukin-33 (IL-33), an emerging cytokine within the IL-1 family, assumes a pivotal function in the control of obesity. However, the specific mechanism of its regulation of obesity formation remains unclear. In this study, we found that the expression level of IL-33 increased in visceral adipose tissue in mice fed with a high-fat diet (HFD) compared with that in mice fed with a normal diet (ND). In vitro, we also found the expression level of IL-33 was upregulated during the adipogenesis of 3T3-L1 cells. Functional test results showed that knockdown of IL-33 in 3T3-L1 cells differentiation could promote the accumulation of lipid droplets, the content of triglyceride and the expression of adipogenic-related genes (i.e. PPAR-γ, C/EBPα, FABP4, LPL, Adipoq and CD36). In contrast, overexpression of IL-33 inhibits adipogenic differentiation. Meanwhile, the above tests were repeated after over-differentiation of 3T3-L1 cells induced by oleic acid, and the results showed that IL-33 played a more significant role in the regulation of adipogenesis. To explore the mechanism, transcriptome sequencing was performed and results showed that IL-33 regulated the PPAR signaling pathway in 3T3-L1 cells. Further, Western blot and confocal microscopy showed that the inhibition of IL-33 could promote PPAR-γ expression by inhibiting the Wnt/β-catenin signal in 3T3-L1 cells. This study demonstrated that IL-33 was an important regulator of preadipocyte differentiation and inhibited adipogenesis by regulating the Wnt/β-catenin/PPAR-γ signaling pathway, which provided a new insight for further research on IL-33 as a new intervention target for metabolic disorders.
Collapse
Affiliation(s)
- Danning Xu
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Siqi Zhuang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Hongzhi Chen
- National Clinical Research Center for Metabolic Disease, Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, and Department of Metabolism & Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengjie Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ping Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Qian Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Xuemei Wang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruohong Chen
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Haoneng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.
| |
Collapse
|
5
|
Amer OE, Sabico S, Khattak MNK, Alnaami AM, Saadawy GM, Al-Daghri NM. Circulating Interleukins-33 and -37 and Their Associations with Metabolic Syndrome in Arab Adults. Int J Mol Sci 2024; 25:699. [PMID: 38255771 PMCID: PMC10815042 DOI: 10.3390/ijms25020699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/27/2023] [Accepted: 01/04/2024] [Indexed: 01/24/2024] Open
Abstract
Interleukins (ILs) are a group of cytokines known to have immunomodulatory effects; they include ILs-33 and -37 whose emerging roles in the pathogenesis of metabolic syndrome (MetS) remain under investigated. In this study, we compared circulating IL-33 and IL-37 in Arab adults with and without MetS to determine its associations with MetS components. A total of 417 Saudi participants (151 males, 266 females; mean age ± SD 41.3 ± 9.0 years; mean body mass index ± SD 30.7 ± 6.3 kg/m2) were enrolled and screened for MetS using the ATP III criteria. Anthropometrics and fasting blood samples were taken for the assessment of fasting glucose and lipids. Circulating levels of IL-33 and IL-37 were measured using commercially available assays. The results showed higher levels of serum IL-33 and IL-37 in participants with MetS than those without (IL-33, 3.34 3.42 (2.3-3.9) vs. (1-3.9), p = 0.057; IL-37, 5.1 (2.2-8.3) vs. 2.9 (2.1-6.1), p = 0.01). Additionally, having elevated levels of IL-33 was a risk factor for hypertension, low HDL-c, and hypertriglyceridemia. A stratification of the participants according to sex showed that males had higher IL-33 levels than females [3.7 (3.0-4.1) vs. 3.15 (1.4-3.8), p < 0.001], while females had higher levels of IL-37 than males [3.01 (2.2-7.0) vs. 2.9 (2.1-5.6), p = 0.06]. In conclusion, the presence of MetS substantially alters the expression of ILs-33 and -37. IL-33 in particular can be potentially used as a therapeutic target to prevent MetS progression. Longitudinal and interventional studies are warranted to confirm present findings.
Collapse
Affiliation(s)
| | | | | | | | | | - Nasser M. Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| |
Collapse
|
6
|
Ye J, Gao C, Liang Y, Hou Z, Shi Y, Wang Y. Characteristic and fate determination of adipose precursors during adipose tissue remodeling. CELL REGENERATION (LONDON, ENGLAND) 2023; 12:13. [PMID: 37138165 PMCID: PMC10156890 DOI: 10.1186/s13619-023-00157-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 12/30/2022] [Indexed: 05/05/2023]
Abstract
Adipose tissues are essential for actively regulating systemic energy balance, glucose homeostasis, immune responses, reproduction, and longevity. Adipocytes maintain dynamic metabolic needs and possess heterogeneity in energy storage and supply. Overexpansion of adipose tissue, especially the visceral type, is a high risk for diabetes and other metabolic diseases. Changes in adipocytes, hypertrophy or hyperplasia, contribute to the remodeling of obese adipose tissues, accompanied by abundant immune cell accumulation, decreased angiogenesis, and aberrant extracellular matrix deposition. The process and mechanism of adipogenesis are well known, however, adipose precursors and their fate decision are only being defined with recent information available to decipher how adipose tissues generate, maintain, and remodel. Here, we discuss the key findings that identify adipose precursors phenotypically, with special emphasis on the intrinsic and extrinsic signals in instructing and regulating the fate of adipose precursors under pathophysiological conditions. We hope that the information in this review lead to novel therapeutic strategies to combat obesity and related metabolic diseases.
Collapse
Affiliation(s)
- Jiayin Ye
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Cheng Gao
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Yong Liang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China
| | - Zongliu Hou
- Key Laboratory of Tumor Immunological Prevention and Treatment of Yunnan Province, Kunming, 650000, Yunnan, China
| | - Yufang Shi
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
- The Third Affiliated Hospital of Soochow University and State Key Laboratory of Radiation Medicine and Protection, Institutes for Translational Medicine, Soochow University, 199 Renai Road, Suzhou, 215123, Jiangsu, China.
| | - Ying Wang
- CAS Key Laboratory of Tissue Microenvironment and Tumor, Shanghai Institute of Nutrition and Health, University of Chinese Academy of Sciences, Chinese Academy of Sciences, 320 Yueyang Road, Shanghai, 200031, China.
| |
Collapse
|
7
|
Alfadul H, Sabico S, Ansari MGA, Alnaami AM, Amer OE, Hussain SD, Wani K, Khattak MNK, Clerici M, Al-Daghri NM. Differences and Associations of NLRP3 Inflammasome Levels with Interleukins 1α, 1β, 33 and 37 in Adults with Prediabetes and Type 2 Diabetes Mellitus. Biomedicines 2023; 11:biomedicines11051315. [PMID: 37238986 DOI: 10.3390/biomedicines11051315] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 04/25/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Inflammasome activation of the nucleotide-binding domain, leucine-rich-containing family, and pyrin domain-containing-3 (NLRP3) has been observed to be involved in the pathogenesis of numerous inflammatory diseases, including prediabetes (PD) and type 2 diabetes mellitus (T2DM). Varying levels of glycemia can trigger inflammasome activation; yet, limited studies have reported the associations between NLRP3 levels or other circulating interleukins (ILs) and glycemic status. This study investigated the differences and associations between serum levels of NLRP3 and IL-1α, IL-1β, IL-33 and IL-37 in Arab adults with PD and T2DM. A total of 407 Saudi adults (151 males and 256 females) (mean age = 41.4 ± 9.1 years and mean BMI = 30.7 ± 6.4 kg/m2) were included. Overnight-fasting serum samples were collected. The participants were stratified according to T2DM status. Serum levels of NLRP3 and ILs of interest were assessed using commercially available assays. In all participants, age- and BMI-adjusted circulating levels of IL-37 were significantly higher in the T2DM group (p = 0.02) than in healthy controls (HC) and the PD group. A general linear model analysis revealed that NLRP3 levels were significantly influenced by T2DM status; age; and ILs 18, 1α and 33 (p-values 0.03, 0.04, 0.005, 0.004 and 0.007, respectively). IL-1α and triglycerides significantly predicted NLRP3 levels by as much as 46% of the variance perceived (p < 0.01). In conclusion, T2DM status significantly influenced NLRP3 expression and other IL levels in varying degrees. Whether these altered levels of inflammasome markers can be favorably reversed through lifestyle interventions needs to be investigated prospectively in the same population.
Collapse
Affiliation(s)
- Hend Alfadul
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Shaun Sabico
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| | - Mohammed G A Ansari
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Abdullah M Alnaami
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Osama E Amer
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Syed D Hussain
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Kaiser Wani
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Malak N K Khattak
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mario Clerici
- Department of Medical-Surgery Physiopathology and Transplantation, University of Milan, 20122 Milan, Italy
- Don C. Gnocchi Foundation ONLUS, IRCCS, 20122 Milan, Italy
| | - Nasser M Al-Daghri
- Chair for Biomarkers of Chronic Diseases, Biochemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
- Biochemistry Department, College of Science, King Saud University, Riyadh 13579, Saudi Arabia
| |
Collapse
|
8
|
Unveiling IL-33/ST2 Pathway Unbalance in Cardiac Remodeling Due to Obesity in Zucker Fatty Rats. Int J Mol Sci 2023; 24:ijms24031991. [PMID: 36768322 PMCID: PMC9916239 DOI: 10.3390/ijms24031991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/15/2023] [Accepted: 01/16/2023] [Indexed: 01/21/2023] Open
Abstract
Obesity is an epidemic condition linked to cardiovascular disease severity and mortality. Fat localization and type represent cardiovascular risk estimators. Importantly, visceral fat secretes adipokines known to promote low-grade inflammation that, in turn, modulate its secretome and cardiac metabolism. In this regard, IL-33 regulates the functions of various immune cells through ST2 binding and-following its role as an immune sensor to infection and stress-is involved in the pro-fibrotic remodeling of the myocardium. Here we further investigated the IL-33/ST2 effects on cardiac remodeling in obesity, focusing on molecular pathways linking adipose-derived IL-33 to the development of fibrosis or hypertrophy. We analyzed the Zucker Fatty rat model, and we developed in vitro models to mimic the adipose and myocardial relationship. We demonstrated a dysregulation of IL-33/ST2 signaling in both adipose and cardiac tissue, where they affected Epac proteins and myocardial gene expression, linked to pro-fibrotic signatures. In Zucker rats, pro-fibrotic effects were counteracted by ghrelin-induced IL-33 secretion, whose release influenced transcription factor expression and ST2 isoforms balance regulation. Finally, the effect of IL-33 signaling is dependent on several factors, such as cell types' origin and the balancing of ST2 isoforms. Noteworthy, it is reasonable to state that considering IL-33 to have a unique protective role should be considered over-simplistic.
Collapse
|
9
|
Interleukin-33 inhibits glucose uptake in human adipocytes and its expression in adipose tissue is elevated in insulin resistance and type 2 diabetes. Cytokine 2023; 161:156080. [PMID: 36368230 DOI: 10.1016/j.cyto.2022.156080] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 10/05/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022]
Abstract
OBJECTIVE Interleukin-33 (IL-33) is associated with obesity-related inflammation. We aim to investigate IL-33 expression in subcutaneous adipose tissue (SAT) in type 2 diabetes (T2D) subjects and its effects on human adipocyte glucose uptake. METHODS Expression of IL-33 was analysed in SAT from cohort studies including subjects with and without obesity and T2D and correlated with insulin resistance and obesity markers. Magnetic resonance imaging (MRI) of tissue fat volumes was performed. We investigated the effects of IL-33 treatment on ex vivo adipocyte glucose uptake. RESULTS T2D subjects had higher IL-33 gene and protein expression in SAT than the control subjects. IL-33 mRNA expression was positively correlated with markers of dysglycemia (e.g. HbA1c), insulin resistance (e.g. HOMA-IR) and adiposity (BMI, visceral adipose tissue volume, liver and pancreas fat %). In multiple linear regression analyses, insulin resistance and T2D status were the strongest predictors of IL-33, independent of BMI. IL-33 mRNA expression was negatively correlated with expression of genes regulating adipocyte glucose uptake, lipid storage, and adipogenesis (e.g.glucose transporter 1 and 4 (GLUT1/4), fatty acid binding protein 4 (FABP4), and PPARG). Additionally, incubation of SAT with IL-33 reduced adipocyte glucose uptake and GLUT4 gene and protein expression. CONCLUSIONS Our findings suggest that T2D subjects have higher IL-33 gene and protein expressionin SATthan control subjects, which is associated with insulin resistance and reduced gene expression of lipid storage and adipogenesis markers. IL-33 may reduce adipocyte glucose uptake. This opens up a potential pharmacological route for reversing insulin resistance in T2D and prediabetes.
Collapse
|
10
|
Factors of Obesity and Metabolically Healthy Obesity in Asia. Medicina (B Aires) 2022; 58:medicina58091271. [PMID: 36143948 PMCID: PMC9500686 DOI: 10.3390/medicina58091271] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 08/14/2022] [Accepted: 09/06/2022] [Indexed: 11/17/2022] Open
Abstract
The East Asian region (China, Japan, and South Korea) is comprised of almost 1.5 billion people and recent industrialization has brought with it a pandemic of rising obesity, even in children. As these countries are rapidly aging and functioning at sub-replacement birthrates, the burgeoning costs of obesity-related care may threaten socialized healthcare systems and quality of life. However, a condition called metabolically healthy obesity (MHO) has been found to be without immediate cardiopulmonary or diabetic risk. Thus, maintenance of the MHO condition for the obese in East Asia could buffer the burden of long-term obesity care on medical systems and knowledge of the biochemical, genetic, and physiological milieu associated with it could also provide new targets for intervention. Diverse physiological, psychological, environmental, and social factors play a role in obesogenesis and the transition of MHO to a metabolically unhealthy obesity. This review will give a broad survey of the various causes of obesity and MHO, with special emphasis on the East Asian population and studies from that region.
Collapse
|
11
|
Marzoog BA. Recent advances in molecular biology of metabolic syndrome pathophysiology: endothelial dysfunction as a potential therapeutic target. J Diabetes Metab Disord 2022; 21:1903-1911. [PMID: 36065330 PMCID: PMC9430013 DOI: 10.1007/s40200-022-01088-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 10/05/2021] [Accepted: 07/01/2022] [Indexed: 11/24/2022]
Abstract
Current advances in molecular pathobiology of endotheliocytes dysfunctions are promising in finding the pathogenetic links to the emergence of insulin resistance syndrome. Physiologically, human organism homeostasis is strictly controlled to maintain metabolic processes at the acquainted level. Many factors are involved in maintaining these physiological processes in the organism and any deviation is undoubtedly accompanied by specific pathologies related to the affected process. Fortunately, the body’s defense system can solve and compensate for the impaired function through its multi-level defense mechanisms. The endothelium is essential in maintaining this homeostasis through its ability to modulate the metabolic processes of the organism. Pathological activity or impairment of physiological endothelium function seems directly correlated to the emergence of metabolic syndrome. The most accepted hypothesis is that endothelium distribution is due to endoplasmic reticulum stress and unfolded protein response development, which includes inhibition of long non-coding RNAs expression, cytokines disbalance, Apelin dysregulation, glycocalyx degradation, and specific microparticles. Clinically, the enhancement or restoration of normal endothelial cells can be a target for novel therapeutic strategies since the distribution of its physiological activity impairs homeostasis and results in the progression of metabolic syndrome, and induction of its physiological activity can ameliorate insulin resistance syndrome. Novel insights on the molecular mechanisms of endothelial cell dysfunction are concisely represented in this paper to enhance the present therapeutic tactics and advance the research forward to find new therapeutic targets.
Collapse
Affiliation(s)
- Basheer Abdullah Marzoog
- Medical school student at National Research, Mordovia State University, Bolshevitskaya Street, 68, Saransk, Rep. Mordovia, Mordovia republic, Bolshevitskaya Street, 31, 430005 Saransk, Russia
| |
Collapse
|
12
|
Schmidt V, Hogan AE, Fallon PG, Schwartz C. Obesity-Mediated Immune Modulation: One Step Forward, (Th)2 Steps Back. Front Immunol 2022; 13:932893. [PMID: 35844529 PMCID: PMC9279727 DOI: 10.3389/fimmu.2022.932893] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 05/27/2022] [Indexed: 11/15/2022] Open
Abstract
Over the past decades, the relationship between the immune system and metabolism has become a major research focus. In this arena of immunometabolism the capacity of adipose tissue to secrete immunomodulatory molecules, including adipokines, within the underlying low-grade inflammation during obesity brought attention to the impact obesity has on the immune system. Adipokines, such as leptin and adiponectin, influence T cell differentiation into different T helper subsets and their activation during immune responses. Furthermore, within the cellular milieu of adipose tissue nutrient availability regulates differentiation and activation of T cells and changes in cellular metabolic pathways. Upon activation, T cells shift from oxidative phosphorylation to oxidative glycolysis, while the differential signaling of the kinase mammalian target of rapamycin (mTOR) and the nuclear receptor PPARγ, amongst others, drive the subsequent T cell differentiation. While the mechanisms leading to a shift from the typical type 2-dominated milieu in lean people to a Th1-biased pro-inflammatory environment during obesity are the subject of extensive research, insights on its impact on peripheral Th2-dominated immune responses become more evident. In this review, we will summarize recent findings of how Th2 cells are metabolically regulated during obesity and malnutrition, and how these states affect local and systemic Th2-biased immune responses.
Collapse
Affiliation(s)
- Viviane Schmidt
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Andrew E. Hogan
- Kathleen Lonsdale Human Health Institute, Maynooth University, Maynooth, Ireland
- Obesity Immunology Research, St. Vincent’s University Hospital and University College Dublin, Dublin, Ireland
| | - Padraic G. Fallon
- Trinity Biomedical Sciences Institute, School of Medicine, Trinity College Dublin, Dublin, Ireland
| | - Christian Schwartz
- Mikrobiologisches Institut - Klinische Mikrobiologie, Immunologie und Hygiene, Universitätsklinikum Erlangen and Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- Medical Immunology Campus Erlangen, Friedrich-Alexander-Universität (FAU) Erlangen-Nürnberg, Erlangen, Germany
- *Correspondence: Christian Schwartz,
| |
Collapse
|
13
|
Xu J, Xue Y, Chen Q, Han X, Cai M, Tian J, Jin S, Lu H. Identifying Distinct Risk Thresholds of Glycated Hemoglobin and Systolic Blood Pressure for Rapid Albuminuria Progression in Type 2 Diabetes From NHANES (1999–2018). Front Med (Lausanne) 2022; 9:928825. [PMID: 35795642 PMCID: PMC9251013 DOI: 10.3389/fmed.2022.928825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
BackgroundIt is widely recognized that glycated hemoglobin (HbA1c) and systolic blood pressure (SBP) are two key risk factors for albuminuria and renal function impairment in patients with type 2 diabetes mellitus (T2DM). Our study aimed to identify the specific numerical relationship of albumin/creatinine ratio (ACR) with HbA1c and SBP among a large population of adults with T2DM.MethodA total of 8,626 patients with T2DM were included in the data analysis from the National Health and Nutrition Examination Surveys (NHANES) (1999-2018). The multiple linear regressions were used to examine the associations of ACR with HbA1c and SBP. Generalized additive models with smooth functions were performed to identify the non-linear relations between variables and interactions were also tested.ResultsSignificantly threshold effects were observed between ACR and HbA1c or SBP after multivariable adjustment, with the risk threshold values HbA1c = 6.4% and SBP = 127 mmHg, respectively. Once above thresholds were exceeded, the lnACR increased dramatically with higher levels of HbA1c (β = 0.23, 95 CI%:0.14, 0.32, P < 0.001) and SBP (β = 0.03, 95 CI%:0.03, 0.04, P < 0.001). Subgroup analysis showed high protein diet was related to higher ACR. In addition, a higher risk of ACR progression was observed in central obesity participants with HbA1C ≥ 6.4% or hyperuricemia participants with SBP ≥ 127 mmHg among patients withT2DM.ConclusionWe identified thresholds of HbA1c and SBP to stratify patients with T2DM through rapid albuminuria progression. These might provide a clinical reference value for preventing and controlling diabetes kidney disease.
Collapse
Affiliation(s)
- Jiahui Xu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yan Xue
- Laboratory of Cellular Immunity, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Qingguang Chen
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xu Han
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengjie Cai
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Tian
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenyi Jin
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Hao Lu
- Department of Endocrinology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai, China
- *Correspondence: Hao Lu,
| |
Collapse
|
14
|
Feng X, Yang Y, Xie H, Zhuang S, Fang Y, Dai Y, Jiang P, Chen H, Tang H, Tang L. The Association Between Hyperuricemia and Obesity Metabolic Phenotypes in Chinese General Population: A Retrospective Analysis. Front Nutr 2022; 9:773220. [PMID: 35520285 PMCID: PMC9063096 DOI: 10.3389/fnut.2022.773220] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 02/24/2022] [Indexed: 01/18/2023] Open
Abstract
PurposeSerum uric acid (UA) not only affects the development of obesity but also alters the metabolic status in obese subjects; thus we investigated the relationship between serum UA and the overweight/obese metabolic phenotypes.MethodsThe demographic, biochemical, and hematological data were collected for 12,876 patients undergoing routine physical examination, and 6,912 participants were enrolled in our study. Participants were classified into four obesity metabolic phenotypes according to their BMI and the presence of metabolic syndrome: metabolically healthy overweight/obese (MHOO), metabolically healthy and normal weighted (MHNW), metabolically abnormal and overweight/obese (MAOO), and metabolically abnormal but normal weighted (MANW). Univariate and multivariate logistic regression analysis, stratified analysis, and also interaction analysis were conducted to analyze the relationship between serum UA and obesity metabolic phenotypes.ResultsMultivariable logistic regression analysis showed that hyperuricemia was positively associated with MHOO, MANW, and MAOO phenotypes relative to MHNW. After adjusting for the confounding factors, the odds ratios (OR) for individuals with hyperuricemia to be MHOO, MANW, and MAOO phenotypes were 1.86 (1.42–2.45), 2.30 (1.44–3.66), and 3.15 (2.34–4.24), respectively. The ORs for having MHOO, MANW, and MAOO increased 6% [OR: 1.06 (1.05–1.07), P < 0.0001], 5% [OR: 1.05 (1.03–1.07), P < 0.0001], and 11% [OR: 1.11 (1.10–1.13), P < 0.0001] for each 10 unit (μmol/L) of increase in serum UA level. Stratification analysis as well as an interaction test showed that sex and age did not interfere with the association of hyperuricemia with each metabolic phenotype. In terms of the components of the metabolic syndrome, after adjusting for other confounding factors including all of the metabolic indicators except itself, hyperuricemia was positively associated with increased BMI [OR: 1.66 (1.32–2.09), P < 0.0001], hypertriglyceridemia [OR: 1.56 (1.21–2.02), P = 0.0006], and hypertension [OR: 1.22 (1.03–1.46), P = 0.0233], while it had no significant association with hyperglycemia and low HDL-C (all P > 0.05).ConclusionIn our study, we discovered that hyperuricemia was positively associated with MHOO, MANW, and MAOO phenotypes, and this relationship was independent of sex and age.
Collapse
Affiliation(s)
- Xiaojing Feng
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yanyi Yang
- Health Management Center of the Second Xiangya Hospital, Central South University, Changsha, China
| | - Huiqi Xie
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Siqi Zhuang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yiyuan Fang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Yufeng Dai
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Ping Jiang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Hongzhi Chen
- National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Diabetes Immunology, Ministry of Education, Metabolic Syndrome Research Center, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Haoneng Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Metabolic Disease, The Second Xiangya Hospital, Central South University, Changsha, China
- Haoneng Tang,
| | - Lingli Tang
- Department of Laboratory Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Lingli Tang,
| |
Collapse
|
15
|
Mahmoud B, Abdel-Moneim A, Negeem Z, Nabil A. The relationship between B-cell lymphoma 2, interleukin-1β, interleukin-17, and interleukin-33 and the development of diabetic nephropathy. Mol Biol Rep 2022; 49:3803-3809. [PMID: 35277788 DOI: 10.1007/s11033-022-07221-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 12/20/2021] [Accepted: 02/02/2022] [Indexed: 11/26/2022]
Abstract
BACKGROUND Diabetic nephropathy (DN) is among the main complications of diabetes mellitus and has been a major factor of renal failure. This study was designed to address the association between beta-cell lymphoma-2 (Bcl-2), interleukin (IL)-1β, IL-17, and IL-33 and the development of DN. METHODS In this study, 20 healthy volunteers and 100 patients were enrolled. According to their biochemical markers, the patients were categorized into five groups: diabetic, chronic renal disease, diabetic chronic renal disease, end-stage renal disease, and diabetic end-stage renal disease. RESULTS Our results showed a noticeable elevation in IL-1β and IL-17 levels and a reduction in IL-33 and Bcl-2 levels in all investigated groups compared with those in the healthy group. Positive correlations were found between IL-1β and fasting blood sugar and between creatinine levels and IL-17, HbA1c%, and sodium levels. However, negative correlations were found between IL-33 and urea and sodium concentrations and between Bcl-2 and HbA1c% and creatinine levels. CONCLUSIONS The present data revealed a marked relationship between Bcl-2, IL-1β, IL-17, and IL-33 levels and the onset and progression of DN. Understanding the molecular pathways of these processes could be translated into the development of therapeutic strategies.
Collapse
Affiliation(s)
- Basant Mahmoud
- Biochemistry Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Adel Abdel-Moneim
- Molecular Physiology Division, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt
| | - Zinab Negeem
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt
| | - Ahmed Nabil
- Biotechnology and Life Sciences Department, Faculty of Postgraduate Studies for Advanced Sciences (PSAS), Beni-Suef University, Salah Salem St, 62511, Beni-Suef, Egypt.
| |
Collapse
|
16
|
Kurokawa A, Kondo M, Arimura K, Ashino S, Tagaya E. Less airway inflammation and goblet cell metaplasia in an IL-33-induced asthma model of leptin-deficient obese mice. Respir Res 2021; 22:166. [PMID: 34074279 PMCID: PMC8170793 DOI: 10.1186/s12931-021-01763-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 05/27/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Obesity-associated asthma is a phenotype of severe asthma. Late-onset, non-eosinophilic and female-dominant phenotype is highly symptomatic and difficult to treat. Leptin, an adipokine, exerts an immunomodulatory effect. IL-33 associated with innate immunity induces type 2 inflammation and is present in adipose tissue. The purpose of this study was to elucidate the pathogenesis of obesity-associated asthma by focusing on the interaction between leptin and IL-33. METHODS In leptin-deficient obese (ob/ob) and wild-type mice, IL-33 was instilled intranasally on three consecutive days. In part of the mice, leptin was injected intraperitoneally prior to IL-33 treatment. The mice were challenged with methacholine, and airway hyperresponsiveness (AHR) was assessed by resistance (Rrs) and elastance (Ers) of the respiratory system using the forced oscillation technique. Cell differentiation, IL-5, IL-13, eotaxin, keratinocyte-derived chemokine (KC) in bronchoalveolar lavage fluid (BALF) and histology of the lung were analyzed. For the in vitro study, NCI-H292 cells were stimulated with IL-33 in the presence or absence of leptin. Mucin-5AC (MUC5AC) levels were measured using an enzyme-linked immunosorbent assay. RESULTS Ob/ob mice showed greater Rrs and Ers than wild-type mice. IL-33 with leptin, but not IL-33 alone, enhanced Ers rather than Rrs challenged with methacholine in ob/ob mice, whereas it enhanced Rrs alone in wild-type mice. IL-33-induced eosinophil numbers, cytokine levels in BALF, eosinophilic infiltration around the bronchi, and goblet cell metaplasia were less in ob/ob mice than in wild-type mice. However, leptin pretreatment attenuated these changes in ob/ob mice. MUC5AC levels were increased by co-stimulation with IL-33 and leptin in vitro. CONCLUSIONS Ob/ob mice show innate AHR. IL-33 with leptin, but not IL-33 alone, induces airway inflammation and goblet cell metaplasia and enhances AHR involving peripheral airway closure. This is presumably accelerated by mucus in ob/ob mice. These results may explain some aspects of the pathogenesis of obesity-associated asthma.
Collapse
Affiliation(s)
- Atsushi Kurokawa
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Mitsuko Kondo
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan.
| | - Ken Arimura
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Shigeru Ashino
- Department of Microbiology and Immunology, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| | - Etsuko Tagaya
- Department of Respiratory Medicine, Tokyo Women's Medical University, Tokyo, 162-8666, Japan
| |
Collapse
|