1
|
Zhao G, Liu Y, Yin S, Cao R, Zhao Q, Fu Y, Du Y. FOSL1 transcriptionally dictates the Warburg effect and enhances chemoresistance in triple-negative breast cancer. J Transl Med 2025; 23:1. [PMID: 39748430 PMCID: PMC11697476 DOI: 10.1186/s12967-024-06014-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/18/2024] [Indexed: 01/04/2025] Open
Abstract
BACKGROUND Dysregulated energy metabolism has emerged as a defining hallmark of cancer, particularly evident in triple-negative breast cancer (TNBC). Distinct from other breast cancer subtypes, TNBC exhibits heightened glycolysis and aggressiveness. However, the transcriptional mechanisms of aerobic glycolysis in TNBC remains poorly understood. METHODS The Cancer Genome Atlas (TCGA) cohort was utilized to identify genes associated with glycolysis. The role of FOSL1 in glycolysis and tumor growth in TNBC cells was confirmed through both loss-of-function and gain-of-function experiments. The subcutaneous xenograft model was established to evaluate the therapeutic potential of targeting FOSL1 in TNBC. Additionally, chromatin immunoprecipitation and luciferase reporter assays were employed to investigate the transcriptional regulation of glycolytic genes mediated by FOSL1. RESULTS FOSL1 is identified as a pivotal glycolysis-related transcription factor in TNBC. Functional verification shows that FOSL1 enhances the glycolytic metabolism of TNBC cells, as evidenced by glucose uptake, lactate production, and extracellular acidification rates. Notably, FOSL1 promotes tumor growth in TNBC in a glycolysis-dependent manner, as inhibiting glycolysis with 2-Deoxy-D-glucose markedly diminishes the oncogenic effects of FOSL1 in TNBC. Mechanistically, FOSL1 transcriptionally activates the expression of genes such as SLC2A1, ENO1, and LDHA, which further accelerate the glycolytic flux. Moreover, FOSL1 is highly expressed in doxorubicin (DOX)-resistant TNBC cells and clinical samples from cases of progressive disease following neoadjuvant chemotherapy. Targeting FOSL1 proves effective in overcoming chemoresistance in DOX-resistant MDA-MB-231 cells. CONCLUSION In summary, FOSL1 establishes a robust link between aerobic glycolysis and carcinogenesis, positioning it as a promising therapeutic target, especially in the context of TNBC chemotherapy.
Collapse
Affiliation(s)
- Gang Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yutong Liu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Shiqi Yin
- Anhui University of Science and Technology Affiliated Fengxian Hospital, Shanghai, China
| | - Runxiang Cao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Qian Zhao
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Yifan Fu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China
| | - Ye Du
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, No.71, Xinmin Street, Changchun City, Jilin Province, P.R. China.
| |
Collapse
|
2
|
Xu C, Jiang C, Tian Y, Liu Y, Zhang H, Xiang Z, Xue H, Gu L, Xu Q. Nervous system in colorectal cancer. Cancer Lett 2024; 611:217431. [PMID: 39725147 DOI: 10.1016/j.canlet.2024.217431] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 11/28/2024] [Accepted: 12/24/2024] [Indexed: 12/28/2024]
Abstract
A malignant tumor is a complex systemic disease involving the nervous system, which regulates nerve signals. Cancer neuroscience is a field that explores the interactions between tumors and the nervous system. The gastrointestinal tract is a typical peripheral organ with abundant neuroregulation and is regulated by the peripheral, enteric, and central nervous systems (PNS, ENS, and CNS, respectively). The physiological functions of the gastrointestinal tract are maintained via complex neuromodulation. Neuroregulatory imbalance is the primary cause of gastrointestinal diseases, including colorectal cancer (CRC). In CRC, there is a direct interaction between the nervous system and tumor cells. Moreover, this tumor-nerve interaction can indirectly regulate the tumor microenvironment, including the microbiota, immunity, and metabolism. In addition to the lower nerve centers, the stress response, emotion, and cognition represented by the higher nerve centers also participate in the occurrence and progression of CRC. Herein, we review some basic knowledge regarding cancer neuroscience and elucidate the mechanism underlying tumor-nerve interactions in CRC.
Collapse
Affiliation(s)
- Chunjie Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Chunhui Jiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Yuan Tian
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Ye Liu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hao Zhang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Zeyu Xiang
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China
| | - Hanbing Xue
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai Institute of Digestive Disease, 145 Middle Shandong Road, Shanghai, China.
| | - Lei Gu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| | - Qing Xu
- Department of Gastrointestinal Surgery, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 160 Pujian Road, Shanghai, China.
| |
Collapse
|
3
|
Chiang ST, Chen Q, Han T, Qian C, Shen X, Lin Y, Xu R, Cao Z, Zhou C, Lu H, Li R, Ai X. Biomimetic Nanovesicles Synergize with Short-Term Fasting for Enhanced Chemotherapy of Triple-Negative Breast Cancer. ACS NANO 2024; 18:33875-33889. [PMID: 39629661 DOI: 10.1021/acsnano.4c07074] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/18/2024]
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive and lethal subtype of breast cancer among women. Chemotherapy acts as the standard regimen for TNBC treatment but suffers from limited drug accumulation in tumor regions and undesired side effects. Herein, we developed a synergistic strategy by combining a red blood cell (RBC) membrane-liposome hybrid nanovesicle with short-term fasting (STF) for improved chemotherapy of TNBC. The biomimetic nanovesicles exhibited reduced phagocytosis by macrophages while displaying a significant increase in tumor cell uptake through caveolae/raft-mediated endocytosis under nutrient-deprivation conditions. Importantly, drug-loaded nanovesicles and STF treatment synergistically increased the cytotoxicity of tumor cells by inhibiting their cell cycles and aerobic glycolysis as well as amplifying the reactive oxygen species (ROS) and autophagosomes generation. In the STF-treated mice, biomimetic nanovesicles greatly improved the antitumor efficacy at a lower drug dosage and inhibited the undesired metastasis of TNBC. Overall, we demonstrated that biomimetic nanovesicles synergizing with STF therapy serve as a promising therapeutic strategy for enhanced chemotherapy of malignant TNBC.
Collapse
Affiliation(s)
- Seok Theng Chiang
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Qi Chen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Tianzhen Han
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Chunxi Qian
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoshuai Shen
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yijing Lin
- Department of Obstetrics and Gynecology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Rong Xu
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Zhongyu Cao
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cheng Zhou
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou 510640, China
| | - Haijiao Lu
- Department of Respiratory and Critical Care Medicine, Shanghai Chest Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200030, China
| | - Rongxiu Li
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiangzhao Ai
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
- Sheng Yushou Center of Cell Biology and Immunology, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
4
|
Dikeocha IJ, Wardill HR, Coller JK, Bowen JM. Dietary interventions and tumor response to chemotherapy in breast cancer: A comprehensive review of preclinical and clinical data. Clin Nutr ESPEN 2024; 63:462-475. [PMID: 39018241 DOI: 10.1016/j.clnesp.2024.06.048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/19/2024]
Abstract
BACKGROUND & AIMS Optimizing treatment efficacy is still a critical part in advancing the treatment of breast cancer. Dietary interventions have drawn significant attention for their potential to increase tumor sensitivity, with a plethora of strategies evaluated both preclinically and clinically. The aim of this paper is to explore these strategies, ranging from entire dietary programs to specific supplements, for their potential to directly enhance tumor sensitivity and chemotherapy adherence. METHODS PubMed, Scopus, Embase and Web of Science databases were searched up to September 2023. In this comprehensive review, preclinical and clinical research on dietary interventions used in conjunction with chemotherapy for breast cancer was examined and synthesized, to identify potential causal mechanisms. RESULTS 42 studies in total were identified and synthesized, 32 pre-clinical and 8 clinical studies. CONCLUSION Although a topic of intense interest, the heterogeneity in approaches has resulted in a large but minimally impactful evidence base, further complicated by a limited understanding of the mechanisms at play. This review highlights the areas for further research to increase opportunities for nutritional-based interventions as adjuvant to chemotherapy for breast cancer.
Collapse
Affiliation(s)
- Ifeoma J Dikeocha
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia.
| | - Hannah R Wardill
- Supportive Oncology Research Group, Precision Cancer Medicine, The South Australian Health and Medical Research Institute, Adelaide, Australia
| | - Janet K Coller
- Discipline of Pharmacology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| | - Joanne M Bowen
- Discipline of Physiology, School of Biomedicine, The University of Adelaide, Level 2 Helen Mayo South, North Terrace, Adelaide, SA 5000, Australia
| |
Collapse
|
5
|
Yang L, Shao Y, Gao T, Bajinka O, Yuan X. Current advances in cancer energy metabolism under dietary restriction: a mini review. Med Oncol 2024; 41:209. [PMID: 39060824 DOI: 10.1007/s12032-024-02452-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 07/13/2024] [Indexed: 07/28/2024]
Abstract
The manipulation of the energy or source of food for cancer cells has attracted significant attention in oncology research. Metabolic reprogramming of the immune system allows for a deeper understanding of cancer cell mechanisms, thereby impeding their progression. A more targeted approach is the restriction of cancer cells through dietary restriction (CR), which deprives cancer cells of the preferred energy sources within the tumor microenvironment, thereby enhancing immune cell efficacy. Although there is a plethora of CR strategies that can be employed to impede cancer progression, there is currently no comprehensive review that delineates the specific dietary restrictions that target the diverse metabolic pathways of cancer cells. This mini-review introduces amino acids as anti-cancer agents and discusses the role of dietary interventions in cancer prevention and treatment. It highlights the potential of a ketogenic diet as a therapeutic approach for cancer, elucidating its distinct mechanisms of action in tumor progression. Additionally, the potential of plant-based diets as anti-cancer agents and the role of polyphenols and vitamins in anti-cancer therapy were also discussed, along with some prospective interventions for CR as anti-tumor progression.
Collapse
Affiliation(s)
- Liuxin Yang
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China
| | - Yudian Shao
- Second Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, Heilongjiang, 150040, People's Republic of China
| | - Tingting Gao
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China
| | - Ousman Bajinka
- School of Medicine and Allied Health Sciences, University of The Gambia, Banjul, The Gambia
| | - Xingxing Yuan
- First Clinical Medical College, Heilongjiang University of Chinese Medicine, No. 24 Heping Street, Harbin, 150040, Heilongjiang Province, People's Republic of China.
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, No. 33 Xidazhi Street, Harbin, 150006, Heilongjiang, People's Republic of China.
| |
Collapse
|
6
|
Papulino C, Chianese U, Ali A, Favale G, Tuccillo C, Ciardiello F, Di Mauro A, Mignogna C, Ferrara G, Budillon A, Megchelenbrink WL, Del Gaudio N, Conte M, Merciai F, Campiglia P, Altucci L, Carafa V, Sommella E, Benedetti R. Inverse FASN and LDHA correlation drives metabolic resistance in breast cancer. J Transl Med 2024; 22:676. [PMID: 39044184 PMCID: PMC11267768 DOI: 10.1186/s12967-024-05517-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/18/2024] [Indexed: 07/25/2024] Open
Abstract
BACKGROUND Breast cancer manifests as a heterogeneous pathology marked by complex metabolic reprogramming essential to satisfy its energy demands. Oncogenic signals boost the metabolism, modifying fatty acid synthesis and glucose use from the onset to progression and therapy resistant-forms. However, the exact contribution of metabolic dependencies during tumor evolution remains unclear. METHODS In this study, we elucidate the connection between FASN and LDHA, pivotal metabolic genes, and their correlation with tumor grade and therapy response using datasets from public repositories. Subsequently, we evaluated the metabolic and proliferative functions upon FASN and LDHA inhibition in breast cancer models. Lastly, we integrated metabolomic and lipidomic analysis to define the contributions of metabolites, lipids, and precursors to the metabolic phenotypes. RESULTS Collectively, our findings indicate metabolic shifts during breast cancer progression, unvealling two distinct functional energy phenotypes associated with aggressiveness and therapy response. Specifically, FASN exhibits reduced expression in advance-grade tumors and therapy-resistant forms, whereas LDHA demonstrates higher expression. Additionally, the biological and metabolic impact of blocking the enzymatic activity of FASN and LDHA was correlated with resistant conditions. CONCLUSIONS These observations emphasize the intrinsic metabolic heterogeneity within breast cancer, thereby highlighting the relevance of metabolic interventions in the field of precision medicine.
Collapse
Affiliation(s)
- Chiara Papulino
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Ugo Chianese
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Ahmad Ali
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Gregorio Favale
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Concetta Tuccillo
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Fortunato Ciardiello
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Annabella Di Mauro
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Chiara Mignogna
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Gerardo Ferrara
- Pathology Unit, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | - Alfredo Budillon
- Scientific Directorate, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, 80131, Naples, Italy
| | | | - Nunzio Del Gaudio
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Mariarosaria Conte
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
| | - Fabrizio Merciai
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy
| | - Pietro Campiglia
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy
| | - Lucia Altucci
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy
- Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy
- Institute of Endocrinology and Oncology "Gaetano Salvatore" (IEOS), 80131, Naples, Italy
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy
| | - Vincenzo Carafa
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Biogem Institute of Molecular and Genetic Biology, 83031, Ariano Irpino, Italy.
| | - Eduardo Sommella
- Department of Pharmacy (DIFARMA), University of Salerno, 84084, Salerno, Italy.
| | - Rosaria Benedetti
- Department of Precision Medicine, University of Campania "Luigi Vanvitelli", 80138, Naples, Italy.
- Program of Medical Epigenetics, Vanvitelli Hospital, Naples, Italy.
| |
Collapse
|
7
|
Naglić DT, Mandić A, Milankov A, Pejaković S, Janičić S, Vuković N, Bajkin I, Ičin T, Manojlović M, Stokić E. Metabolic dysregulation in obese women and the carcinogenesis of gynecological tumors: A review. BIOMOLECULES & BIOMEDICINE 2024; 24:787-797. [PMID: 38768058 PMCID: PMC11293241 DOI: 10.17305/bb.2024.10508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 05/16/2024] [Accepted: 05/16/2024] [Indexed: 05/22/2024]
Abstract
Obesity is a significant health issue associated with increased cancer risks, including gynecological malignancies. The worldwide rise in obesity rates is significantly impacting both cancer development and treatment outcomes. Adipose tissue plays a crucial role in metabolism, secreting various substances that can influence cancer formation. In obese individuals, dysfunctional adipose tissue can contribute to cancer development through inflammation, insulin resistance, hormonal changes, and abnormal cholesterol metabolism. Studies have shown a strong correlation between obesity and gynecological cancers, particularly endometrial and breast cancers. Obesity not only increases the risk of developing these cancers but is also associated with poorer outcomes. Additionally, obesity affects the perioperative management of gynecological cancers, requiring specialized care due to increased complications and resistance to therapy. Treatment strategies for managing metabolic dysregulation in patients with gynecological cancers include weight management, statin therapy, and insulin-sensitizing medications. Emerging studies suggest that interventions like intermittent fasting and caloric restriction may enhance the effectiveness of cancer treatments. Furthermore, targeting cholesterol metabolism, such as with statins or proprotein convertase subtilisin/kexin type 9 (PCSK9) inhibitors, shows potential in cancer therapy. In conclusion, addressing metabolic issues, particularly obesity, is crucial in preventing and treating gynecological malignancies. Personalized approaches focusing on weight management and metabolic reprogramming may improve outcomes in these patients.
Collapse
Affiliation(s)
- Dragana Tomić Naglić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Aljoša Mandić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Institute of Oncology of Vojvodina, Sremska Kamenica, Serbia
| | - Andrijana Milankov
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Slađana Pejaković
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Stefan Janičić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Nikolina Vuković
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Ivana Bajkin
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Tijana Ičin
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Mia Manojlović
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| | - Edita Stokić
- University of Novi Sad, Faculty of Medicine in Novi Sad, Novi Sad, Serbia
- Diabetes and Metabolic Disorders, Clinic for Endocrinology, Clinical Center of Vojvodina, Novi Sad, Serbia
| |
Collapse
|
8
|
Li Sucholeiki R, Propst CL, Hong DS, George GC. Intermittent fasting and its impact on toxicities, symptoms and quality of life in patients on active cancer treatment. Cancer Treat Rev 2024; 126:102725. [PMID: 38574507 PMCID: PMC11614448 DOI: 10.1016/j.ctrv.2024.102725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024]
Abstract
Intermittent fasting is a dietary intervention that is increasingly being tested for positive outcomes in patients receiving cancer treatment. In this review, we examine the impact of intermittent fasting on symptoms, toxicities, and quality of life in patients undergoing cancer therapy and highlight unmet investigative areas to prompt future research. While current evidence is preliminary and conclusions mixed, some promising clinical studies suggest that intermittent fasting interventions may improve fatigue and reduce gastrointestinal toxicities in certain patients with cancer. Emerging clinical evidence also demonstrates that intermittent fasting may reduce off-target DNA damage, and induce favorable cellular-level immune remodeling. Furthermore, intermittent fasting has the potential to lower hyperglycemia and the ratio of fat to lean body mass, which may benefit patients at risk of hyperglycemia and weight-related adverse effects of some common pharmacological cancer treatments. Larger controlled studies are necessary to evaluate intermittent fasting in relation to these endpoints and determine the effectiveness of intermittent fasting as an adjunct intervention during cancer care. Future cancer trials should evaluate intermittent fasting diets in the context of multimodal diet, exercise, and nutrition strategies, and also evaluate the impact of intermittent fasting on other important areas such as the circadian system and the gut microbiome.
Collapse
Affiliation(s)
- Robert Li Sucholeiki
- University of Chicago, M. D. Anderson Cancer Center, United States; The University of Texas M. D. Anderson Cancer Center, United States
| | - Casey L Propst
- University of Chicago, M. D. Anderson Cancer Center, United States; The University of Texas M. D. Anderson Cancer Center, United States
| | - David S Hong
- The University of Texas M. D. Anderson Cancer Center, United States
| | - Goldy C George
- The University of Texas M. D. Anderson Cancer Center, United States.
| |
Collapse
|
9
|
Zhong J, Tang Y. Research progress on the role of reactive oxygen species in the initiation, development and treatment of breast cancer. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2024; 188:1-18. [PMID: 38387519 DOI: 10.1016/j.pbiomolbio.2024.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 02/06/2024] [Accepted: 02/19/2024] [Indexed: 02/24/2024]
Abstract
According to international cancer data, breast cancer (BC) is the leading type of cancer in women. Although significant progress has been made in treating BC, metastasis and drug resistance continue to be the primary causes of mortality for many patients. Reactive oxygen species (ROS) play a dual role in vivo: normal levels can maintain the body's normal physiological function; however, high levels of ROS below the toxicity threshold can lead to mtDNA damage, activation of proto-oncogenes, and inhibition of tumor suppressor genes, which are important causes of BC. Differences in the production and regulation of ROS in different BC subtypes have important implications for the development and treatment of BC. ROS can also serve as an important intracellular signal transduction factor by affecting the antioxidant system, activating MAPK and PI3K/AKT, and other signal pathways to regulate cell cycle and change the relationship between cells and the activity of metalloproteinases, which significantly impacts the metastasis of BC. Hypoxia in the BC microenvironment increases ROS production levels, thereby inducing the expression of hypoxia inducible factor-1α (HIF-1α) and forming "ROS- HIF-1α-ROS" cycle that exacerbates BC development. Many anti-BC therapies generate sufficient toxic ROS to promote cancer cell apoptosis, but because the basal level of ROS in BC cells exceeds that of normal cells, this leads to up-regulation of the antioxidant system, drug efflux, and apoptosis inhibition, rendering BC cells resistant to the drug. ROS crosstalks with tumor vessels and stromal cells in the microenvironment, increasing invasiveness and drug resistance in BC.
Collapse
Affiliation(s)
- Jing Zhong
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China
| | - Yan Tang
- School of Public Health, Southwest Medical University, No.1, Section 1, Xianglin Road, Longmatan District, Luzhou City, Sichuan Province, China.
| |
Collapse
|
10
|
Marrone L, Romano S, Malasomma C, Di Giacomo V, Cerullo A, Abate R, Vecchione MA, Fratantonio D, Romano MF. Metabolic vulnerability of cancer stem cells and their niche. Front Pharmacol 2024; 15:1375993. [PMID: 38659591 PMCID: PMC11039812 DOI: 10.3389/fphar.2024.1375993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 03/25/2024] [Indexed: 04/26/2024] Open
Abstract
Cancer stem cells (CSC) are the leading cause of the failure of anti-tumor treatments. These aggressive cancer cells are preserved and sustained by adjacent cells forming a specialized microenvironment, termed niche, among which tumor-associated macrophages (TAMs) are critical players. The cycle of tricarboxylic acids, fatty acid oxidation path, and electron transport chain have been proven to play central roles in the development and maintenance of CSCs and TAMs. By improving their oxidative metabolism, cancer cells are able to extract more energy from nutrients, which allows them to survive in nutritionally defective environments. Because mitochondria are crucial bioenergetic hubs and sites of these metabolic pathways, major hopes are posed for drugs targeting mitochondria. A wide range of medications targeting mitochondria, electron transport chain complexes, or oxidative enzymes are currently investigated in phase 1 and phase 2 clinical trials against hard-to-treat tumors. This review article aims to highlight recent literature on the metabolic adaptations of CSCs and their supporting macrophages. A focus is provided on the resistance and dormancy behaviors that give CSCs a selection advantage and quiescence capacity in particularly hostile microenvironments and the role of TAMs in supporting these attitudes. The article also describes medicaments that have demonstrated a robust ability to disrupt core oxidative metabolism in preclinical cancer studies and are currently being tested in clinical trials.
Collapse
Affiliation(s)
- Laura Marrone
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Simona Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Chiara Malasomma
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Valeria Di Giacomo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Andrea Cerullo
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | - Rosetta Abate
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| | | | - Deborah Fratantonio
- Department of Medicine and Surgery, LUM University Giuseppe Degennaro, Bari, Italy
| | - Maria Fiammetta Romano
- Department of Molecular Medicine and Medical Biotechnology, University of Naples Federico II, Naples, Italy
| |
Collapse
|
11
|
Jacques C, Marchand F, Chatelais M, Albinet V, Coustal C, Floris I. The Micro-Immunotherapy Medicine 2LPAPI ® Displays Immune-Modulatory Effects in a Model of Human Papillomavirus Type-16 L1-Protein Capsid-Treated Human Peripheral Blood Mononuclear Cells and Antiproliferative Effects in a Model of Cervical Cancer Cells. Cancers (Basel) 2024; 16:1421. [PMID: 38611099 PMCID: PMC11010933 DOI: 10.3390/cancers16071421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2024] [Revised: 03/28/2024] [Accepted: 04/03/2024] [Indexed: 04/14/2024] Open
Abstract
Human papillomavirus (HPV) is the second most common infectious agent causing cancer. Persistent infection with high-risk (HR)-HPV can lead to cervical intra-epithelial neoplasia and cervical carcinomas (CC). While host immune response is necessary for viral clearance, chronic immune activation contributes to a low-grade inflammation that can ultimately lead to carcinogenesis. The micro-immunotherapy medicine (MIM) 2LPAPI® could be a valuable tool to manage the clearance of the virus and reduce the risk of developing CC. In this in vitro study, we aimed to investigate its mode of action. We showed that actives from the MIM increased the IL-6, IFN-γ, and IP-10 secretion in human peripheral blood mononuclear cells (PBMCs) exposed to peptides derived from the HPV-16 capsid (HPV16(L1)). This could reflect an increase in the immune activity toward HPV-16. At the same time, some active substances reduced the lympho-proliferation and the expression of T-cell activation markers. Finally, some of the MIM actives displayed antiproliferative effects in CC-derived HeLa cells under serum-starvation conditions. Altogether, this body of data highlighted for the first time the dual effect of MIM in the framework of HR-HPV infections as a potential (i) immune modulator of HPV16(L1)-treated PBMCs and (ii) antiproliferative agent of HPV-positive CC cells.
Collapse
Affiliation(s)
- Camille Jacques
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| | - Flora Marchand
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Mathias Chatelais
- ProfileHIT, 7 rue du Buisson, 44680 Sainte-Pazanne, France; (F.M.); (M.C.)
| | - Virginie Albinet
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Claire Coustal
- Imavita S.A.S., Canal Biotech 1&2, 3 rue des Satellites, Parc Technologique du Canal, 31400 Toulouse, France; (V.A.); (C.C.)
| | - Ilaria Floris
- Preclinical Research Department, Labo’Life France, Pescalis-Les Magnys, 79320 Moncoutant-sur-Sevre, France;
| |
Collapse
|
12
|
Xiao YL, Gong Y, Qi YJ, Shao ZM, Jiang YZ. Effects of dietary intervention on human diseases: molecular mechanisms and therapeutic potential. Signal Transduct Target Ther 2024; 9:59. [PMID: 38462638 PMCID: PMC10925609 DOI: 10.1038/s41392-024-01771-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 02/05/2024] [Accepted: 02/18/2024] [Indexed: 03/12/2024] Open
Abstract
Diet, serving as a vital source of nutrients, exerts a profound influence on human health and disease progression. Recently, dietary interventions have emerged as promising adjunctive treatment strategies not only for cancer but also for neurodegenerative diseases, autoimmune diseases, cardiovascular diseases, and metabolic disorders. These interventions have demonstrated substantial potential in modulating metabolism, disease trajectory, and therapeutic responses. Metabolic reprogramming is a hallmark of malignant progression, and a deeper understanding of this phenomenon in tumors and its effects on immune regulation is a significant challenge that impedes cancer eradication. Dietary intake, as a key environmental factor, can influence tumor metabolism. Emerging evidence indicates that dietary interventions might affect the nutrient availability in tumors, thereby increasing the efficacy of cancer treatments. However, the intricate interplay between dietary interventions and the pathogenesis of cancer and other diseases is complex. Despite encouraging results, the mechanisms underlying diet-based therapeutic strategies remain largely unexplored, often resulting in underutilization in disease management. In this review, we aim to illuminate the potential effects of various dietary interventions, including calorie restriction, fasting-mimicking diet, ketogenic diet, protein restriction diet, high-salt diet, high-fat diet, and high-fiber diet, on cancer and the aforementioned diseases. We explore the multifaceted impacts of these dietary interventions, encompassing their immunomodulatory effects, other biological impacts, and underlying molecular mechanisms. This review offers valuable insights into the potential application of these dietary interventions as adjunctive therapies in disease management.
Collapse
Affiliation(s)
- Yu-Ling Xiao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yue Gong
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Ying-Jia Qi
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Zhi-Ming Shao
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yi-Zhou Jiang
- Key Laboratory of Breast Cancer in Shanghai, Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
13
|
Yaylim İ, Aru M, Farooqi AA, Hakan MT, Buttari B, Arese M, Saso L. Regulation of Nrf2/Keap1 signaling pathway in cancer drug resistance by galectin-1: cellular and molecular implications. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2024; 7:8. [PMID: 38434765 PMCID: PMC10905161 DOI: 10.20517/cdr.2023.79] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 02/22/2024] [Accepted: 02/26/2024] [Indexed: 03/05/2024]
Abstract
Oxidative stress is characterized by the deregulation of the redox state in the cells, which plays a role in the initiation of various types of cancers. The activity of galectin-1 (Gal-1) depends on the cell redox state and the redox state of the microenvironment. Gal-1 expression has been related to many different tumor types, as it plays important roles in several processes involved in cancer progression, such as apoptosis, cell migration, adhesion, and immune response. The erythroid-2-related factor 2 (Nrf2)/Kelch-like ECH-associated protein 1 (Keap1) signaling pathway is a crucial mechanism involved in both cell survival and cell defense against oxidative stress. In this review, we delve into the cellular and molecular roles played by Gal-1 in the context of oxidative stress onset in cancer cells, particularly focusing on its involvement in activating the Nrf2/Keap1 signaling pathway. The emerging evidence concerning the anti-apoptotic effect of Gal-1, together with its ability to sustain the activation of the Nrf2 pathway in counteracting oxidative stress, supports the role of Gal-1 in the promotion of tumor cells proliferation, immuno-suppression, and anti-tumor drug resistance, thus highlighting that the inhibition of Gal-1 emerges as a potential strategy for the restraint and regression of tumor progression. Overall, a deeper understanding of the multi-functionality and disease-specific expression profiling of Gal-1 will be crucial for the design and development of novel Gal-1 inhibitors as anticancer agents. Excitingly, although it is still understudied, the ever-growing knowledge of the sophisticated interplay between Gal-1 and Nrf2/Keap1 will enable researchers to gain valuable insights into the underlying causes of carcinogenesis and metastasis.
Collapse
Affiliation(s)
- İlhan Yaylim
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Melek Aru
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
- Department of Medical Education, Istinye University Faculty of Medicine, Istanbul 34396, Turkiye
| | - Ammad Ahmad Farooqi
- Institute of Biomedical and Genetic Engineering (IBGE), Islamabad 54000, Pakistan
| | - Mehmet Tolgahan Hakan
- Department of Molecular Medicine, Aziz Sancar Institute of Experimental Medicine, Istanbul University, Istanbul 34280, Turkiye
| | - Brigitta Buttari
- Department of Cardiovascular and Endocrine-Metabolic Diseases, and Aging, Italian National Institute of Health, Rome 00161, Italy
| | - Marzia Arese
- Department of Biochemical Sciences “A. Rossi Fanelli”, Sapienza University, Rome 00185, Italy
| | - Luciano Saso
- Department of Physiology and Pharmacology “Vittorio Erspamer”, Sapienza University, Rome 00185, Italy
| |
Collapse
|
14
|
Wang L, Wang YJ, Wang R, Gong FL, Shi YH, Li SN, Chen PP, Yuan YF. Fasting mimicking diet inhibits tumor-associated macrophage survival and pro-tumor function in hypoxia: implications for combination therapy with anti-angiogenic agent. J Transl Med 2023; 21:754. [PMID: 37884960 PMCID: PMC10601181 DOI: 10.1186/s12967-023-04577-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 09/28/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent research shows that tumor-associated macrophages (TAMs) are the primary consumers of glucose in tumor tissue, surpassing that of tumor cells. Our previous studies revealed that inhibiting glucose uptake impairs the survival and tumor-promoting function of hypoxic TAMs, suggesting that glucose reduction by energy restriction (calorie restriction or short-term fasting) may has a significant impact on TAMs. The purpose of this study is to verify the effect of fasting-mimicking diet (FMD) on TAMs, and to determine whether FMD synergizes with anti-angiogenic drug apatinib via TAMs. METHODS The effect of FMD on TAMs and its synergistic effects with apatinib were observed using an orthotopic mouse breast cancer model. An in vitro cell model, utilizing M2 macrophages derived from THP-1 cell line, was intended to assess the effects of low glucose on TAMs under hypoxic and normoxic conditions. Bioinformatics was used to screen for potential mechanisms of action, which were then validated both in vivo and in vitro. RESULTS FMD significantly inhibit the pro-tumor function of TAMs in vivo and in vitro, with the inhibitory effect being more pronounced under hypoxic conditions. Additionally, the combination of FMD-mediated TAMs inhibition with apatinib results in synergistic anti-tumor activity. This effect is partially mediated by the downregulation of CCL8 expression and secretion by the mTOR-HIF-1α signaling pathway. CONCLUSIONS These results support further clinical combination studies of FMD and anti-angiogenic therapy as potential anti-tumor strategies.
Collapse
Affiliation(s)
- Lei Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yu-Jie Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Rong Wang
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Fu-Lian Gong
- School of Medicine, National Children's Medical Center, Shanghai Children's Medical Center, Shanghai Jiao Tong University, No. 1678 Dongfang Road, Shanghai, 200127, China
| | - Yu-Huan Shi
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Sheng-Nan Li
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Pan-Pan Chen
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China
| | - Yong-Fang Yuan
- Department of Pharmacy, Shanghai 9th People's Hospital, Shanghai Jiao Tong University School of Medicine, No. 280 Mohe Road, Shanghai, 201999, China.
| |
Collapse
|
15
|
Barnes P, Agbo E, Wang J, Amoani B, Opoku YK, Okyere P, Saahene RO. Prognostic Worth of Nrf2/BACH1/HO-1 Protein Expression in the Development of Breast Cancer. Med Princ Pract 2023; 32:369-378. [PMID: 37827129 PMCID: PMC10727515 DOI: 10.1159/000534534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 10/08/2023] [Indexed: 10/14/2023] Open
Abstract
OBJECTIVES Nrf2/BACH1/HO-1 proteins have been implicated in the development and progression of tumors. However, their clinical relevance in breast cancer remains unclear and understudied. This study evaluated Nrf2/BACH1/HO-1 protein expression and its relationship with age, tumor grade, tumor stage, TNM, ER, PR, HER2, and histologic type. METHODS 114 female breast cancer and 30 noncancerous tissues were evaluated for Nrf2/BACH1/HO-1 protein expression using immunohistochemistry and Western blot. The relationships between the expression and clinicopathologic factors were assessed using the χ2 test. RESULTS 74% of the cancerous samples had high Nrf2 protein expression, and 26% of them had low Nrf2 protein expression. Regarding the non-cancer samples, 43% had high Nrf2 protein expression and 57% had low Nrf2 protein expression (p < 0.002). 39% of the cancerous samples had high BACH1 protein expression, and 61% had low BACH1 protein expression. For the non-cancer samples, 80% had high BACH1 protein expression and 20% had low BACH1 protein expression (p < 0.031). 67% of the cancerous samples had high HO-1 protein expression, and 33% had low HO-1 protein expression. However, for the non-cancer samples, 17% of them had high HO-1 protein expression and 83% had low HO-1 protein expression (p < 0.001). The expression of Nrf2 and HO-1 significantly correlated with tumor grade, while BACH1 was significantly associated with tumor stage (p < 0.05). CONCLUSION Nrf2, BACH1, and HO-1 could be explored as a biomarker for cancer stage, progression, and prognosis.
Collapse
Affiliation(s)
- Precious Barnes
- Department of Physician Assistant Studies, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Elvis Agbo
- Department of Human Anatomy, Histology and Embryology, College of Medicine, Jinggangshan University, Ji’an City, China
| | - Jianjie Wang
- Department of Immunology, College of Basic Medicine, Jiamusi University, Jiamusi, China
| | - Benjamin Amoani
- Department of Biomedical Sciences, School of Allied Health Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| | - Yeboah Kwaku Opoku
- Department of Biology Education, University of Education, Winneba, Ghana
| | - Perditer Okyere
- Department of Medicine, School of Medicine and Dentistry, Kwame Nkrumah University of Science and Technology, Kumasi, Ghana
| | - Roland Osei Saahene
- Department of Microbiology and Immunology, School of Medical Sciences, College of Health and Allied Sciences, University of Cape Coast, Cape Coast, Ghana
| |
Collapse
|
16
|
Mayor E. Neurotrophic effects of intermittent fasting, calorie restriction and exercise: a review and annotated bibliography. FRONTIERS IN AGING 2023; 4:1161814. [PMID: 37334045 PMCID: PMC10273285 DOI: 10.3389/fragi.2023.1161814] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2023] [Accepted: 05/09/2023] [Indexed: 06/20/2023]
Abstract
In the last decades, important progress has been achieved in the understanding of the neurotrophic effects of intermittent fasting (IF), calorie restriction (CR) and exercise. Improved neuroprotection, synaptic plasticity and adult neurogenesis (NSPAN) are essential examples of these neurotrophic effects. The importance in this respect of the metabolic switch from glucose to ketone bodies as cellular fuel has been highlighted. More recently, calorie restriction mimetics (CRMs; resveratrol and other polyphenols in particular) have been investigated thoroughly in relation to NSPAN. In the narrative review sections of this manuscript, recent findings on these essential functions are synthesized and the most important molecules involved are presented. The most researched signaling pathways (PI3K, Akt, mTOR, AMPK, GSK3β, ULK, MAPK, PGC-1α, NF-κB, sirtuins, Notch, Sonic hedgehog and Wnt) and processes (e.g., anti-inflammation, autophagy, apoptosis) that support or thwart neuroprotection, synaptic plasticity and neurogenesis are then briefly presented. This provides an accessible entry point to the literature. In the annotated bibliography section of this contribution, brief summaries are provided of about 30 literature reviews relating to the neurotrophic effects of interest in relation to IF, CR, CRMs and exercise. Most of the selected reviews address these essential functions from the perspective of healthier aging (sometimes discussing epigenetic factors) and the reduction of the risk for neurodegenerative diseases (Alzheimer's disease, Huntington's disease, Parkinson's disease) and depression or the improvement of cognitive function.
Collapse
|