1
|
Cui H, Yu Q, Xu Q, Lin C, Zhang L, Ye W, Yang Y, Tian S, Zhou Y, Sun R, Meng Y, Yao N, Wang H, Cao F, Liu M, Ma J, Liao C, Sun R. EGFR and MUC1 as dual-TAA drug targets for lung cancer and colorectal cancer. Front Oncol 2024; 14:1433033. [PMID: 39664199 PMCID: PMC11631732 DOI: 10.3389/fonc.2024.1433033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 10/23/2024] [Indexed: 12/13/2024] Open
Abstract
Background Epidermal growth factor receptor (EGFR) is a key protein in cellular signaling that is overexpressed in many human cancers, making it a compelling therapeutic target. On-target severe skin toxicity has limited its clinical application. Dual-targeting therapy represents a novel approach to overcome the challenges of EGFR-targeted therapies. Methods A single-cell tumor-normal RNA transcriptomic meta-atlas of lung adenocarcinoma (LUAD) and normal lung tissues was constructed from published data. Tumor associated antigens (TAAs) were screened from the genes which were expressed on cell surface and could distinguish cancer cells from normal cells. Expression of MUC1 and EGFR in tumors and normal tissues was detected by immunohistochemistry (IHC), bulk transcriptomic and single-cell transcriptomic analyses. RNA cut-off values were calculated using paired analysis of RNA sequencing and IHC in patient-derived tumor xenograft samples. They were used to estimate the abundance of EGFR- and MUC-positive subjects in The Cancer Genome Atlas Program (TCGA) database. Survival analysis of EGFR and MUC1 expression was carried out using the transcription and clinical data from TCGA. Results A candidate TAA target, transmembrane glycoprotein mucin 1 (MUC1), showed strong expression in cancer cells and low expression in normal cells. Single-cell analysis suggested EGFR and MUC1 together had better tumor specificity than the combination of EGFR with other drug targets. IHC data confirmed that EGFR and MUC1 were highly expressed on LUAD and colorectal cancer (CRC) clinical samples but not on various normal tissues. Notably, co-expression of EGFR and MUC1 was observed in 98.4% (n=64) of patients with LUAD and in 91.6% (n=83) of patients with CRC. It was estimated that EGFR and MUC1 were expressed in 97.5% of LUAD samples in the TCGA dataset. Besides, high expression of EGFR and MUC1 was significantly associated with poor prognosis of LUAD and CRC patients. Conclusions Single-cell RNA, bulk RNA and IHC data demonstrated the high expression levels and co-expression patterns of EGFR and MUC1 in tumors but not normal tissues. Therefore, it is a promising TAA combination for therapeutic targeting which could enhance on-tumor efficacy while reducing off-tumor toxicity.
Collapse
Affiliation(s)
- Huilin Cui
- Department of Histology and Embryology, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Qianqian Yu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Qumiao Xu
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Chen Lin
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Long Zhang
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Wei Ye
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Yifei Yang
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Sijia Tian
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Yilu Zhou
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Runzhe Sun
- School of Basic Medicine, Shanxi Medical University, Jinzhong, China
| | - Yongsheng Meng
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Ningning Yao
- Department of Radiobiology, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Haizhen Wang
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Feilin Cao
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Meilin Liu
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Jinfeng Ma
- Department of Hepatobiliary and Pancreatogastric Surgery, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| | - Cheng Liao
- Department of Translational Medicine, Shanghai Shengdi Medicine Co. Ltd., Shanghai, China
| | - Ruifang Sun
- Department of Tumor Biobank, Shanxi Province Cancer Hospital/Shanxi Hospital Affiliated to Cancer Hospital, Chinese Academy of Medical Sciences/Cancer Hospital Affiliated to Shanxi Medical University, Taiyuan, China
| |
Collapse
|
2
|
Mahmoudi M, Taghavi-Farahabadi M, Hashemi SM, Mousavizadeh K, Rezaei N, Mojtabavi N. Reprogramming tumor-associated macrophages using exosomes from M1 macrophages. Biochem Biophys Res Commun 2024; 733:150697. [PMID: 39288697 DOI: 10.1016/j.bbrc.2024.150697] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 08/02/2024] [Accepted: 09/12/2024] [Indexed: 09/19/2024]
Abstract
Macrophages, abundant in tumors, are classified as M1 or M2 types with M2 dominating the tumor microenvironment. Shifting macrophages from M2 to M1 using exosomes is a promising intervention. The properties of exosomes depend on their source cells. M1-exosomes are expected to polarize macrophages towards M1 phenotype. We compared M1-exosomes and M0-exosomes' effects on M2 macrophage polarization. The RAW264.7 cells were cultured and one group of them was exposed to LPS. The serum-free medium was collected and exosomes were extracted. Exosomes were analyzed by scanning and transmission electron microscopy, dynamic light scattering and Western blot. Subsequently, M1 or M0 exosomes were applied to M2 macrophages induced by IL4. The macrophages polarization, including M1 and M2 genes and surface markers expression, cytokines secretion, and phagocytosis ability were evaluated. It was demonstrated that M1-exosomes induced macrophage polarization toward the M1 phenotype, characterized by an upregulation of M1-specific markers and a downregulation of M2 markers. Furthermore, the secretion of TNF-α was increased, while the secretion of IL-10 was decreased. The phagocytosis ability of M1-exosome-treated macrophages was also augmented. This research suggested that M1-exosomes might be promising candidates for modulating immune response in situations marked by an overabundance of M2 polarization, like in cancer.
Collapse
Affiliation(s)
- Mohammad Mahmoudi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mahsa Taghavi-Farahabadi
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Hashemi
- Department of Immunology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Kazem Mousavizadeh
- Department of Pharmacology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Nima Rezaei
- Department of Immunology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran; Research Center for Immunodeficiencies, Children's Medical Center, Tehran University of Medical Sciences, Tehran, Iran; Network of Immunity in Infection, Malignancy and Autoimmunity (NIIMA), Universal Scientific Education Research Network (USERN), Tehran, Iran.
| | - Nazanin Mojtabavi
- Immunology Research Center, Institute of Immunology and Infectious Diseases, Iran University of Medical Sciences (IUMS), Tehran, Iran; Department of Immunology, School of Medicine, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Wang Y, Li J, Wang Z, Liu Y, Wang T, Zhang M, Xia C, Zhang F, Huang D, Zhang L, Zhao Y, Liu L, Zhu Y, Qi H, Zhu X, Qian W, Hu F, Wang J. Comparison of seven CD19 CAR designs in engineering NK cells for enhancing anti-tumour activity. Cell Prolif 2024; 57:e13683. [PMID: 38830795 PMCID: PMC11533075 DOI: 10.1111/cpr.13683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Revised: 05/13/2024] [Accepted: 05/20/2024] [Indexed: 06/05/2024] Open
Abstract
Chimeric antigen receptor-natural killer (CAR-NK) cell therapy is emerging as a promising cancer treatment, with notable safety and source diversity benefits over CAR-T cells. This study focused on optimizing CAR constructs for NK cells to maximize their therapeutic potential. We designed seven CD19 CAR constructs and expressed them in NK cells using a retroviral system, assessing their tumour-killing efficacy and persistence. Results showed all constructs enhanced tumour-killing and prolonged survival in tumour-bearing mice. In particular, CAR1 (CD8 TMD-CD3ζ SD)-NK cells showed superior efficacy in treating tumour-bearing animals and exhibited enhanced persistence when combined with OX40 co-stimulatory domain. Of note, CAR1-NK cells were most effective at lower effector-to-target ratios, while CAR4 (CD8 TMD-OX40 CD- FcεRIγ SD) compromised NK cell expansion ability. Superior survival rates were noted in mice treated with CAR1-, CAR2 (CD8 TMD- FcεRIγ SD)-, CAR3 (CD8 TMD-OX40 CD- CD3ζ SD)- and CAR4-NK cells over those treated with CAR5 (CD28 TMD- FcεRIγ SD)-, CAR6 (CD8 TMD-4-1BB CD-CD3ζ 1-ITAM SD)- and CAR7 (CD8 TMD-OX40 CD-CD3ζ 1-ITAM SD)-NK cells, with CAR5-NK cells showing the weakest anti-tumour activity. Increased expression of exhaustion markers, especially in CAR7-NK cells, suggests that combining CAR-NK cells with immune checkpoint inhibitors might improve anti-tumour outcomes. These findings provide crucial insights for developing CAR-NK cell products for clinical applications.
Collapse
Affiliation(s)
- Yao Wang
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Jianhuan Li
- Guangzhou Institutes of Biomedicine and Health, Chinese Academy of SciencesGuangzhouChina
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Zhiqian Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Yanhong Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Tongjie Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Mengyun Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Chengxiang Xia
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Fan Zhang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| | - Dehao Huang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Leqiang Zhang
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Yaoqin Zhao
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- GMU‐GIBH Joint School of Life SciencesGuangzhou Medical UniversityGuangzhouChina
| | - Lijuan Liu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Yanping Zhu
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
| | - Hanmeng Qi
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Xiaofan Zhu
- State Key Laboratory of Experimental Hematology & National Clinical Research Center for Blood DiseasesInstitute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
- Center for Stem Cell Medicine & Department of Stem Cell and Regenerative MedicineChinese Academy of Medical Sciences & Peking Union Medical CollegeTianjinChina
| | - Wenbin Qian
- Department of Hematology, the Second Affiliated Hospital, College of MedicineZhejiang UniversityZhejiangHangzhouChina
| | - Fangxiao Hu
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
| | - Jinyong Wang
- State Key Laboratory of Stem Cell and Reproductive BiologyInstitute for Stem Cell and Regeneration, Institute of Zoology, Chinese Academy of SciencesBeijingChina
- Beijing Institute for Stem Cell and Regenerative MedicineBeijingChina
- University of Chinese Academy of SciencesBeijingChina
| |
Collapse
|
4
|
Garg P, Pareek S, Kulkarni P, Horne D, Salgia R, Singhal SS. Next-Generation Immunotherapy: Advancing Clinical Applications in Cancer Treatment. J Clin Med 2024; 13:6537. [PMID: 39518676 PMCID: PMC11546714 DOI: 10.3390/jcm13216537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 10/28/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
Next-generation immunotherapies have revolutionized cancer treatment, offering hope for patients with hard-to-treat tumors. This review focuses on the clinical applications and advancements of key immune-based therapies, including immune checkpoint inhibitors, CAR-T cell therapy, and new cancer vaccines designed to harness the immune system to combat malignancies. A prime example is the success of pembrolizumab in the treatment of advanced melanoma, underscoring the transformative impact of these therapies. Combination treatments, integrating immunotherapy with chemotherapy, radiation, and targeted therapies, are demonstrating synergistic benefits and improving patient outcomes. This review also explores the evolving role of personalized immunotherapy, guided by biomarkers, genomic data, and the tumor environment, to better target individual tumors. Although significant progress has been made, challenges such as resistance, side effects, and high treatment costs persist. Technological innovations, including nanotechnology and artificial intelligence, are explored as future enablers of these therapies. The review evaluates key clinical trials, breakthroughs, and the emerging immune-modulating agents and advanced delivery systems that hold great promise for enhancing treatment efficacy, reducing toxicity, and expanding access to immunotherapy. In conclusion, this review highlights the ongoing advancements in immunotherapy that are reshaping cancer care, with future strategies poised to overcome current challenges and further extend therapeutic reach.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, Uttar Pradesh, India
| | - Siddhika Pareek
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Departments of Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center and National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
5
|
Oli AN, Adejumo SA, Rowaiye AB, Ogidigo JO, Hampton-Marcell J, Ibeanu GC. Tumour Immunotherapy and Applications of Immunological Products: A Review of Literature. J Immunol Res 2024; 2024:8481761. [PMID: 39483536 PMCID: PMC11527548 DOI: 10.1155/2024/8481761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/23/2024] [Accepted: 09/28/2024] [Indexed: 11/03/2024] Open
Abstract
Malignant tumors, characterized by uncontrolled cell proliferation, are a leading global health challenge, responsible for over 9.7 million deaths in 2022, with new cases expected to rise to 35 million annually by 2050. Immunotherapy is preferred to other cancer therapies, offering precise targeting of malignant cells while simultaneously strengthening the immune system's complex responses. Advances in this novel field of science have been closely linked to a deeper knowledge of tumor biology, particularly the intricate interplay between tumor cells, the immune system, and the tumor microenvironment (TME), which are central to cancer progression and immune evasion. This review offers a comprehensive analysis of the molecular mechanisms that govern these interactions, emphasizing their critical role in the development of effective immunotherapeutic products. We critically evaluate the current immunotherapy approaches, including cancer vaccines, adoptive T cell therapies, and cytokine-based treatments, highlighting their efficacy and safety. We also explore the latest advancements in combination therapies, which synergistically integrate multiple immunotherapeutic strategies to overcome resistance and enhance therapeutic outcomes. This review offers key insights into the future of cancer immunotherapy with a focus on advancing more effective and personalized treatment strategies.
Collapse
Affiliation(s)
- Angus Nnamdi Oli
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Nnamdi Azikiwe University, Awka 420211, Nigeria
| | - Samson Adedeji Adejumo
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
- Department of Pharmaceutical Microbiology and Biotechnology, Faculty of Pharmaceutical Sciences, Federal University Oye Ekiti, Oye, Ekiti State, Nigeria
| | - Adekunle Babajide Rowaiye
- National Biotechnology Development Agency, Abuja 900211, Nigeria
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| | | | - Jarrad Hampton-Marcell
- Department of Biological Sciences, University of Illinois, Chicago, 845 West Taylor, Chicago 60607, Illinois, USA
| | - Gordon C. Ibeanu
- Department of Pharmaceutical Science, North Carolina Central University, Durham 27707, North Carolina, USA
| |
Collapse
|
6
|
Kushwaha N, Panjwani D, Patel S, Ahlawat P, Yadav MR, Patel AS. Emerging advances in nano-biomaterial assisted amyloid beta chimeric antigen receptor macrophages (CAR-M) therapy: reducing plaque burden in Alzheimer's disease. J Drug Target 2024:1-21. [PMID: 39403775 DOI: 10.1080/1061186x.2024.2417012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2024] [Revised: 09/23/2024] [Accepted: 10/08/2024] [Indexed: 10/22/2024]
Abstract
Alzheimer's disease is the most common form, accounting for 60-70% of 55 million dementia cases. Even though the precise pathophysiology of AD is not completely understood, clinical trials focused on antibodies targeting aggregated forms of β amyloid (Aβ) have demonstrated that reducing amyloid plaques can arrest cognitive decline in patients in the early stages of AD. In this study, we provide an overview of current research and innovations for controlled release from nano-biomaterial-assisted chimeric antigen receptor macrophage (CAR-M) therapeutic strategies targeted at AD. Nano-bio materials, such as iron-oxide nanoparticles (IONPs), can be made selectively (Hp-Hb/mannose) to bind and take up Aβ plaques like CAR-M cells. By using nano-bio materials, both the delivery and stability of CAR-M cells in brain tissue can be improved to overcome the barriers of the BBB and enhance therapeutic effects. By enhancing the targeting capabilities and stability of CAR-M cells, mRNA-loaded nano-biomaterials can significantly improve the efficacy of immunotherapy for plaque reduction in AD. This novel strategy holds promise for translating preclinical successes into clinical applications, potentially revolutionising the management of AD.
Collapse
Affiliation(s)
- Nishabh Kushwaha
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Drishti Panjwani
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Shruti Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Priyanka Ahlawat
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| | - Mange Ram Yadav
- Research and Development Cell, Parul University, Vadodara, India
| | - Asha S Patel
- Department of Pharmaceutics, Parul Institute of Pharmacy, Parul University, Vadodara, India
| |
Collapse
|
7
|
Bloom MW, Vo JB, Rodgers JE, Ferrari AM, Nohria A, Deswal A, Cheng RK, Kittleson MM, Upshaw JN, Palaskas N, Blaes A, Brown SA, Ky B, Lenihan D, Maurer MS, Fadol A, Skurka K, Cambareri C, Chauhan C, Barac A. Cardio-Oncology and Heart Failure: a Scientific Statement From the Heart Failure Society of America. J Card Fail 2024:S1071-9164(24)00363-4. [PMID: 39419165 DOI: 10.1016/j.cardfail.2024.08.045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 08/27/2024] [Accepted: 08/28/2024] [Indexed: 10/19/2024]
Abstract
Heart failure and cancer remain 2 of the leading causes of morbidity and mortality, and the 2 disease entities are linked in a complex manner. Patients with cancer are at increased risk of cardiovascular complications related to the cancer therapies. The presence of cardiomyopathy or heart failure in a patient with new cancer diagnosis portends a high risk for adverse oncology and cardiovascular outcomes. With the rapid growth of cancer therapies, many of which interfere with cardiovascular homeostasis, heart failure practitioners need to be familiar with prevention, risk stratification, diagnosis, and management strategies in cardio-oncology. This Heart Failure Society of America statement addresses the complexities of heart failure care among patients with active cancer diagnoses and cancer survivors. Risk stratification, monitoring and management of cardiotoxicity are presented across stages A through D heart failure, with focused discussion on heart failure with preserved ejection fraction and special populations, such as survivors of childhood and young-adulthood cancers. We provide an overview of the shared risk factors between cancer and heart failure, highlighting heart failure as a form of cardiotoxicity associated with many different cancer therapeutics. Finally, we discuss disparities in the care of patients with cancer and cardiac disease and present a framework for a multidisciplinary-team approach and critical collaboration among heart failure, oncology, palliative care, pharmacy, and nursing teams in the management of these complex patients.
Collapse
Affiliation(s)
| | - Jacqueline B Vo
- Radiation Epidemiology Branch, Division of Cancer Epidemiology & Genetics, National Cancer Institute, Bethesda, MD
| | - Jo E Rodgers
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, Chapel Hill, NC
| | - Alana M Ferrari
- Division of Hematology/ Oncology, University of Virginia Health, Charlottesville, VA
| | - Anju Nohria
- Cardio-Oncology Program, Cardiovascular Division, Brigham and Women's Hospital, Boston, MA
| | - Anita Deswal
- Department of Cardiology, University of Texas MD Anderson Cancer Center, Houston, TX
| | - Richard K Cheng
- Division of Cardiology, University of Washington, Seattle, WA
| | - Michelle M Kittleson
- Department of Cardiology, Smidt Heart Institute, Cedars-Sinai Medical Center, Los Angeles, CA
| | | | - Nicolas Palaskas
- Department of Cardiology, Division of Internal Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX
| | - Anne Blaes
- Division of Hematology/Oncology/Transplantation, University of Minnesota, Minneapolis, MN
| | - Sherry-Ann Brown
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI; Research Collaborator, Mayo Clinic, Rochester, MN
| | - Bonnie Ky
- Division of Cardiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA; Thalheimer Center for Cardio-Oncology, Abramson Cancer Center and Division of Cardiovascular Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA
| | - Daniel Lenihan
- Saint Francis Healthcare, Cape Girardeau, MO and the International Cardio-Oncology Society, Tampa, FL
| | - Mathew S Maurer
- Division of Cardiology, Columbia University Irving Medical Center, New York, NY
| | | | | | - Christine Cambareri
- Clinical Oncology Pharmacist, Hospital of the University of Pennsylvania, Abramson Cancer Center, Philadelphia, PA
| | | | - Ana Barac
- Department of Cardiology, Inova Schar Heart and Vascular, Inova Schar Cancer, Falls Church, VA
| |
Collapse
|
8
|
Kandav G, Chandel A. Revolutionizing cancer treatment: an in-depth exploration of CAR-T cell therapies. Med Oncol 2024; 41:275. [PMID: 39400611 DOI: 10.1007/s12032-024-02491-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Accepted: 08/27/2024] [Indexed: 10/15/2024]
Abstract
Cancer is a leading cause of fatality worldwide. Due to the heterogeneity of cancer cells the effectiveness of various conventional cancer treatment techniques is constrained. Thus, researchers are diligently investigating therapeutic approaches like immunotherapy for effective tumor managements. Immunotherapy harnesses the inherent potential of patient's immune system to achieve desired outcomes. Within the realm of immunotherapy, CAR-T (Chimeric Antigen Receptor T) cells, emerges as a revolutionary innovation for cancer therapy. The process of CAR-T cell therapy entails extracting the patient's T cells, altering them with customized receptors designed to specifically recognize and eradicate the tumor cells, and then reinfusing the altered cells into the patient's body. Although there has been significant progress with CAR-T cell therapy in certain cases of specific B-cell leukemia and lymphoma, its effectiveness is hindered in hematological and solid tumors due to the challenges such as severe toxicities, restricted tumor infiltration, cytokine release syndrome and antigen escape. Overcoming these obstacles requires innovative approaches to design more effective CAR-T cells, which require a competent and diverse team to develop and implement. This comprehensive review addresses numerous therapeutic issues and provides a strategic solution while providing a deep understanding of the structural intricacies and production processes of CAR-T cells. In addition, this review explores the practical aspects of CAR-T cell therapy in clinical settings.
Collapse
Affiliation(s)
- Gurpreet Kandav
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India.
| | - Akash Chandel
- Chandigarh College of Pharmacy, Chandigarh Group of Colleges, Landran, Sahibzada Ajit Singh Nagar, Punjab, 140307, India
| |
Collapse
|
9
|
Hourani T, Sharma A, Luwor RB, Achuthan AA. Transforming growth factor-β in tumor microenvironment: Understanding its impact on monocytes and macrophages for its targeting. Int Rev Immunol 2024:1-16. [PMID: 39377520 DOI: 10.1080/08830185.2024.2411998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 08/28/2024] [Accepted: 09/25/2024] [Indexed: 10/09/2024]
Abstract
TGF-β is a pivotal cytokine that orchestrates various aspects of cancer progression, including tumor growth, metastasis, and immune evasion. In this review, we present a comprehensive overview of the multifaceted role of transforming growth factor β (TGF-β) in cancer biology, focusing on its intricate interactions with monocytes and macrophages within the tumor microenvironment (TME). We specifically discuss how TGF-β modulates monocyte and macrophage activities, leading to immunosuppression and tumor progression. We conclude with the current translational and clinical efforts targeting TGF-β, recognizing the promising role of this strategy in immunooncology.
Collapse
Affiliation(s)
- Tetiana Hourani
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| | - Amit Sharma
- Department of Integrated Oncology, Center for Integrated Oncology (CIO) Bonn, University Hospital Bonn, Bonn, Germany
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Rodney B Luwor
- Department of Surgery, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
- Fiona Elsey Cancer Research Institute, Ballarat, Australia
- Federation University, Ballarat, Australia
| | - Adrian A Achuthan
- Department of Medicine, Royal Melbourne Hospital, The University of Melbourne, Parkville, Australia
| |
Collapse
|
10
|
Gupta A, Dagar G, Rehmani MU, Prasad CP, Saini D, Singh M, Shankar A. CAR T-cell therapy in cancer: Integrating nursing perspectives for enhanced patient care. Asia Pac J Oncol Nurs 2024; 11:100579. [PMID: 39315365 PMCID: PMC11417177 DOI: 10.1016/j.apjon.2024.100579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 08/21/2024] [Indexed: 09/25/2024] Open
Abstract
Chimeric antigen receptor (CAR) T-cell therapy represents a significant advancement in cancer treatment, particularly for hematologic malignancies. Various cancer immunotherapy strategies are presently being explored, including cytokines, cancer vaccines, immune checkpoint inhibitors, immunomodulators monoclonal antibodies, etc. The therapy has shown impressive efficacy in treating conditions such as acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), and multiple myeloma, often leading to complete remission in refractory cases. However, the clinical application of CAR T-cell therapy is accompanied by challenges, notably severe side effects. Effective management of these adverse effects requires meticulous monitoring and prompt intervention, highlighting the critical role of nursing in this therapeutic process. Nurses play a crucial role in patient education, monitoring, symptom management, care coordination, and psychosocial support, ensuring safe and effective treatment. As research advances and new CAR T-cell therapies are developed, the role of nursing professionals remains pivotal in optimizing patient outcomes. The continued evolution of CAR T-cell therapy promises improved outcomes, with nursing professionals integral to its success.
Collapse
Affiliation(s)
- Ashna Gupta
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Gunjan Dagar
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Mohd Umar Rehmani
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Chandra Prakash Prasad
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Deepak Saini
- Indian Society of Clinical Oncology, Delhi, India
| | - Mayank Singh
- Department of Medical Oncology (Lab), Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| | - Abhishek Shankar
- Department of Radiation Oncology, Dr BR Ambedkar Institute Rotary Cancer Hospital, All India Institute of Medical Sciences, Delhi, India
| |
Collapse
|
11
|
Blud D, Rubio-Reyes P, Perret R, Weinkove R. Tuning CAR T-cell therapies for efficacy and reduced toxicity. Semin Hematol 2024; 61:333-344. [PMID: 39095226 DOI: 10.1053/j.seminhematol.2024.07.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2024] [Revised: 06/24/2024] [Accepted: 07/03/2024] [Indexed: 08/04/2024]
Abstract
Chimeric antigen receptor (CAR) T-cell therapies are a standard of care for certain relapsed or refractory B-cell cancers. However, many patients do not respond to CAR T-cell therapy or relapse later, short- and long-term toxicities are common, and current CAR T-cell therapies have limited efficacy for solid cancers. The gene engineering inherent in CAR T-cell manufacture offers an unprecedented opportunity to control cellular characteristics and design products that may overcome these limitations. This review summarises available methods to "tune" CAR T-cells for optimal efficacy and safety. The components of a typical CAR, and the modifications that can influence CAR T-cell function are discussed. Methods of engineering passive, inducible or autonomous control mechanisms into CAR T-cells, allowing selective limitation or enhancement of CAR T-cell activity are reviewed. The impact of manufacturing processes on CAR T-cell function are considered, including methods of limiting CAR T-cell terminal differentiation and exhaustion, and the use of specific T-cell subsets as the CAR T starting material. We discuss the use of multicistronic transgenes and multiplexed gene editing. Finally, we highlight the need for innovative clinical trial designs if we are to make the most of the opportunities offered by CAR T-cell therapies.
Collapse
Affiliation(s)
- Danielle Blud
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Patricia Rubio-Reyes
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Rachel Perret
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand
| | - Robert Weinkove
- Cancer Immunotherapy Programme, Malaghan Institute of Medical Research, Wellington, New Zealand; Wellington Blood & Cancer Centre, Te Whatu Ora Health New Zealand Capital Coast & Hutt Valley, Wellington, New Zealand; Department of Pathology and Molecular Medicine, University of Otago Wellington, Wellington, New Zealand; Maurice Wilkins Centre for Molecular Biodiscovery, Auckland, New Zealand.
| |
Collapse
|
12
|
Shil RK, Mohammed NBB, Dimitroff CJ. Galectin-9 - ligand axis: an emerging therapeutic target for multiple myeloma. Front Immunol 2024; 15:1469794. [PMID: 39386209 PMCID: PMC11461229 DOI: 10.3389/fimmu.2024.1469794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Accepted: 09/09/2024] [Indexed: 10/12/2024] Open
Abstract
Galectin-9 (Gal-9) is a tandem-repeat galectin with diverse roles in immune homeostasis, inflammation, malignancy, and autoimmune diseases. In cancer, Gal-9 displays variable expression patterns across different tumor types. Its interactions with multiple binding partners, both intracellularly and extracellularly, influence key cellular processes, including immune cell modulation and tumor microenvironment dynamics. Notably, Gal-9 binding to cell-specific glycoconjugate ligands has been implicated in both promoting and suppressing tumor progression. Here, we provide insights into Gal-9 and its involvement in immune homeostasis and cancer biology with an emphasis on multiple myeloma (MM) pathophysiology, highlighting its complex and context-dependent dual functions as a pro- and anti-tumorigenic molecule and its potential implications for therapy in MM patients.
Collapse
Affiliation(s)
- Rajib K. Shil
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| | - Norhan B. B. Mohammed
- The Ronald O. Perelman Department of Dermatology, NYU Grossman School of Medicine, New York, NY, United States
- Department of Medical Biochemistry, Faculty of Medicine, South Valley University, Qena, Egypt
| | - Charles J. Dimitroff
- Department of Cellular and Molecular Medicine, Herbert Wertheim College of Medicine, Florida International University, Miami, FL, United States
| |
Collapse
|
13
|
Benboubker V, Ramzy GM, Jacobs S, Nowak-Sliwinska P. Challenges in validation of combination treatment strategies for CRC using patient-derived organoids. J Exp Clin Cancer Res 2024; 43:259. [PMID: 39261955 PMCID: PMC11389238 DOI: 10.1186/s13046-024-03173-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 08/23/2024] [Indexed: 09/13/2024] Open
Abstract
Patient-derived organoids (PDOs) established from tissues from various tumor types gave the foundation of ex vivo models to screen and/or validate the activity of many cancer drug candidates. Due to their phenotypic and genotypic similarity to the tumor of which they were derived, PDOs offer results that effectively complement those obtained from more complex models. Yet, their potential for predicting sensitivity to combination therapy remains underexplored. In this review, we discuss the use of PDOs in both validation and optimization of multi-drug combinations for personalized treatment strategies in CRC. Moreover, we present recent advancements in enriching PDOs with diverse cell types, enhancing their ability to mimic the complexity of in vivo environments. Finally, we debate how such sophisticated models are narrowing the gap in personalized medicine, particularly through immunotherapy strategies and discuss the challenges and future direction in this promising field.
Collapse
Affiliation(s)
- Valentin Benboubker
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - George M Ramzy
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, Geneva, 1211, Switzerland
| | - Sacha Jacobs
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland
| | - Patrycja Nowak-Sliwinska
- Molecular Pharmacology Group, School of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel-Servet, Geneva, 4 1211, Switzerland.
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, Geneva, 1211, Switzerland.
- Translational Research Center in Oncohaematology, Geneva, 1211, Switzerland.
| |
Collapse
|
14
|
Vandecandelaere G, Ramapriyan R, Gaffey M, Richardson LG, Steuart SJ, Tazhibi M, Kalaw A, Grewal EP, Sun J, Curry WT, Choi BD. Pre-Clinical Models for CAR T-Cell Therapy for Glioma. Cells 2024; 13:1480. [PMID: 39273050 PMCID: PMC11394304 DOI: 10.3390/cells13171480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 08/28/2024] [Accepted: 09/01/2024] [Indexed: 09/15/2024] Open
Abstract
Immunotherapy represents a transformative shift in cancer treatment. Among myriad immune-based approaches, chimeric antigen receptor (CAR) T-cell therapy has shown promising results in treating hematological malignancies. Despite aggressive treatment options, the prognosis for patients with malignant brain tumors remains poor. Research leveraging CAR T-cell therapy for brain tumors has surged in recent years. Pre-clinical models are crucial in evaluating the safety and efficacy of these therapies before they advance to clinical trials. However, current models recapitulate the human tumor environment to varying degrees. Novel in vitro and in vivo techniques offer the opportunity to validate CAR T-cell therapies but also have limitations. By evaluating the strengths and weaknesses of various pre-clinical glioma models, this review aims to provide a roadmap for the development and pre-clinical testing of CAR T-cell therapies for brain tumors.
Collapse
Affiliation(s)
- Gust Vandecandelaere
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
- Faculty of Medicine, KU Leuven, 3000 Leuven, Belgium
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Matthew Gaffey
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Leland Geoffrey Richardson
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Samuel Jeffrey Steuart
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Masih Tazhibi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Adrian Kalaw
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Eric P. Grewal
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Jing Sun
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - William T. Curry
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| | - Bryan D. Choi
- Brain Tumor Immunotherapy Lab, Department of Neurosurgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (G.V.)
| |
Collapse
|
15
|
Ghosh S, Bhaskar R, Mishra R, Arockia Babu M, Abomughaid MM, Jha NK, Sinha JK. Neurological insights into brain-targeted cancer therapy and bioinspired microrobots. Drug Discov Today 2024; 29:104105. [PMID: 39029869 DOI: 10.1016/j.drudis.2024.104105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 07/03/2024] [Accepted: 07/12/2024] [Indexed: 07/21/2024]
Abstract
Cancer, a multifaceted and pernicious disease, continuously challenges medicine, requiring innovative treatments. Brain cancers pose unique and daunting challenges due to the intricacies of the central nervous system and the blood-brain barrier. In this era of precision medicine, the convergence of neurology, oncology, and cutting-edge technology has given birth to a promising avenue - targeted cancer therapy. Furthermore, bioinspired microrobots have emerged as an ingenious approach to drug delivery, enabling precision and control in cancer treatment. This Keynote review explores the intricate web of neurological insights into brain-targeted cancer therapy and the paradigm-shifting world of bioinspired microrobots. It serves as a critical and comprehensive overview of these evolving fields, aiming to underscore their integration and potential for revolutionary cancer treatments.
Collapse
Affiliation(s)
- Shampa Ghosh
- GloNeuro, Sector 107, Vishwakarma Road, Noida, Uttar Pradesh 201301, India
| | - Rakesh Bhaskar
- School of Chemical Engineering, Yeungnam University, Gyeonsang 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, Gyeonsang 38541, Republic of Korea
| | - Richa Mishra
- Department of Computer Science and Engineering, Parul University, Vadodara, Gujrat 391760, India
| | - M Arockia Babu
- Institute of Pharmaceutical Research, GLA University, Mathura, India
| | - Mosleh Mohammad Abomughaid
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, University of Bisha, Bisha 61922, Saudi Arabia
| | - Niraj Kumar Jha
- Centre of Research Impact and Outcome, Chitkara University, Rajpura 140401, Punjab, India; Centre for Global Health Research, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai, India; School of Bioengineering & Biosciences, Lovely Professional University, Phagwara 144411, India; Department of Biotechnology Engineering and Food Technology, Chandigarh University, Mohali, India.
| | | |
Collapse
|
16
|
Gharib E, Robichaud GA. From Crypts to Cancer: A Holistic Perspective on Colorectal Carcinogenesis and Therapeutic Strategies. Int J Mol Sci 2024; 25:9463. [PMID: 39273409 PMCID: PMC11395697 DOI: 10.3390/ijms25179463] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 08/19/2024] [Accepted: 08/24/2024] [Indexed: 09/15/2024] Open
Abstract
Colorectal cancer (CRC) represents a significant global health burden, with high incidence and mortality rates worldwide. Recent progress in research highlights the distinct clinical and molecular characteristics of colon versus rectal cancers, underscoring tumor location's importance in treatment approaches. This article provides a comprehensive review of our current understanding of CRC epidemiology, risk factors, molecular pathogenesis, and management strategies. We also present the intricate cellular architecture of colonic crypts and their roles in intestinal homeostasis. Colorectal carcinogenesis multistep processes are also described, covering the conventional adenoma-carcinoma sequence, alternative serrated pathways, and the influential Vogelstein model, which proposes sequential APC, KRAS, and TP53 alterations as drivers. The consensus molecular CRC subtypes (CMS1-CMS4) are examined, shedding light on disease heterogeneity and personalized therapy implications.
Collapse
Affiliation(s)
- Ehsan Gharib
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| | - Gilles A Robichaud
- Département de Chimie et Biochimie, Université de Moncton, Moncton, NB E1A 3E9, Canada
- Atlantic Cancer Research Institute, Moncton, NB E1C 8X3, Canada
| |
Collapse
|
17
|
Srivastava S, Tyagi A, Pawar VA, Khan NH, Arora K, Verma C, Kumar V. Revolutionizing Immunotherapy: Unveiling New Horizons, Confronting Challenges, and Navigating Therapeutic Frontiers in CAR-T Cell-Based Gene Therapies. Immunotargets Ther 2024; 13:413-433. [PMID: 39219644 PMCID: PMC11365499 DOI: 10.2147/itt.s474659] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Accepted: 08/20/2024] [Indexed: 09/04/2024] Open
Abstract
The CAR-T cell therapy has marked the dawn of new era in the cancer therapeutics and cell engineering techniques. The review emphasizes on the challenges that obstruct the therapeutic efficiency caused by cell toxicities, immunosuppressive tumor environment, and decreased T cell infiltration. In the interest of achieving the overall survival (OS) and event-free survival (EFS) of patients, the conceptual background of potential target selection and various CAR-T cell design techniques are described which can minimize the off-target effects, reduce toxicity, and thus increase the resilience of CAR-T cell treatment in the haematological malignancies as well as in solid tumors. Furthermore, it delves into cutting-edge technologies like gene editing and synthetic biology, providing new opportunities to enhance the functionality of CAR-T cells and overcome mechanisms of immune evasion. This review provides a comprehensive understanding of the complex and diverse aspects of CAR-T cell-based gene treatments, including both scientific and clinical aspects. By effectively addressing the obstacles and utilizing the capabilities of cutting-edge technology, CAR-T cell therapy shows potential in fundamentally changing immunotherapy and reshaping the approach to cancer treatment.
Collapse
Affiliation(s)
- Shivani Srivastava
- Department of Pathology, School of Medicine, Yale University, New Haven, CT, USA
| | - Anuradha Tyagi
- Department of cBRN, Institute of Nuclear Medicine and Allied Science, Delhi, India
| | | | - Nawaid Hussain Khan
- Faculty of Medicine, Ala-Too International University, Bishkek, Kyrgyz Republic
| | - Kavita Arora
- Advanced Instrumentation Research Facility, Jawaharlal Nehru University, New Delhi, India
- School of Computational & Integrative Sciences, Jawaharlal Nehru University, New Delhi, India
| | - Chaitenya Verma
- Department of Pathology, Wexner Medical Center, Ohio State University, Columbus, OH, USA
- Department of Biotechnology, SSET, Sharda University, Greater Noida, 201306, India
| | - Vinay Kumar
- Pennsylvania State University Hershey Medical Center, 500 University Dr, Heshey, PA, USA
| |
Collapse
|
18
|
Narayan S, Dalal R, Rizvi ZA, Awasthi A. Zinc dampens antitumor immunity by promoting Foxp3 + regulatory T cells. Front Immunol 2024; 15:1389387. [PMID: 39247196 PMCID: PMC11377231 DOI: 10.3389/fimmu.2024.1389387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 07/26/2024] [Indexed: 09/10/2024] Open
Abstract
Introduction The role of zinc (Zn) in tumor development and immune modulation has always been paradoxical. This study redefines our understanding of the impact of Zn on cancer progression and therapeutic strategies. Methods We investigated the effects of dietary Zn levels on tumor progression and immune responses. This included examining the impact of both high and deficient dietary Zn, as well as Zn chelation, on tumor growth and immune cell populations. Specifically, we analyzed the frequency of Foxp3+ regulatory T-cells (Tregs) and identified the role of FOXO1 in Zn-mediated effects on Tregs. Additionally, we explored the therapeutic potential of clioquinol (CQ) in enhancing α-PD-1 immunotherapy responses, particularly in melanoma. Results Our findings show that high dietary Zn promotes tumor progression by fostering a protumorigenic environment mediated by T cells. Increased Zn intake was found to facilitate tumor progression by increasing Foxp3+ Treg frequency. In contrast, deficiency in dietary Zn and chelation of tissue Zn emerged as potent drivers of antitumor immunity. We pinpointed FOXO1 as the master regulator governing the influence of Zn on Tregs. Discussion These results reveal a novel mechanistic insight into how Zn influences tumor progression and immune regulation. The identification of FOXO1 as a key regulator opens new avenues for understanding the role of Zn in cancer biology. Furthermore, we introduce a promising therapeutic approach by showing that administering clioquinol (CQ) significantly enhances α-PD-1 immunotherapy response, particularly in melanoma. These revelations transform our comprehension of the multifaceted role of Zn in tumorigenesis and immune regulation, highlighting innovative possibilities for cancer therapy.
Collapse
Affiliation(s)
- Sugandha Narayan
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Rajdeep Dalal
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Zaigham Abbas Rizvi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| | - Amit Awasthi
- Centre for Immunobiology and Immunotherapy, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
- Immunology Core Lab, Translational Health Science and Technology Institute, National Capital Region (NCR)-Biotech Science Cluster, Faridabad, Haryana, India
| |
Collapse
|
19
|
Chen Z, Hu Y, Mei H. Harmonizing the symphony of chimeric antigen receptor T cell immunotherapy with the elegance of biomaterials. Trends Biotechnol 2024:S0167-7799(24)00211-7. [PMID: 39181760 DOI: 10.1016/j.tibtech.2024.07.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2024] [Revised: 07/11/2024] [Accepted: 07/29/2024] [Indexed: 08/27/2024]
Abstract
Chimeric antigen receptor T cell (CAR-T) immunotherapy has become a heated field of cancer research, demonstrating revolutionary efficacy in refractory and relapsed hematologic malignancies. However, CAR-T therapy has still encountered tough challenges, including complicated and lengthy manufacturing procedures, mediocre targeted delivery, limited therapeutic effect against solid tumors and difficulties in real-time in vivo monitoring. To overcome these limitations, various versatile biomaterials have been used in the above aspects and have improved CAR-T therapy impressively. This review mainly summarizes the latest research progress of biomaterials promoting CAR-T therapy in manufacturing, enhancing targeted delivery and tumor infiltration, and dramatic in vivo tracking to provide new insights and inspiration for clinical treatment.
Collapse
Affiliation(s)
- Zhaozhao Chen
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Yu Hu
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China
| | - Heng Mei
- Institute of Hematology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan 430022, Hubei, China; Hubei Clinical Medical Center of Cell Therapy for Neoplastic Disease, Wuhan 430022, China.
| |
Collapse
|
20
|
Ramamurthy A, Tommasi A, Saha K. Advances in manufacturing chimeric antigen receptor immune cell therapies. Semin Immunopathol 2024; 46:12. [PMID: 39150566 DOI: 10.1007/s00281-024-01019-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Accepted: 07/20/2024] [Indexed: 08/17/2024]
Abstract
Biomedical research has witnessed significant strides in manufacturing chimeric antigen receptor T cell (CAR-T) therapies, marking a transformative era in cellular immunotherapy. Nevertheless, existing manufacturing methods for autologous cell therapies still pose several challenges related to cost, immune cell source, safety risks, and scalability. These challenges have motivated recent efforts to optimize process development and manufacturing for cell therapies using automated closed-system bioreactors and models created using artificial intelligence. Simultaneously, non-viral gene transfer methods like mRNA, CRISPR genome editing, and transposons are being applied to engineer T cells and other immune cells like macrophages and natural killer cells. Alternative sources of primary immune cells and stem cells are being developed to generate universal, allogeneic therapies, signaling a shift away from the current autologous paradigm. These multifaceted innovations in manufacturing underscore a collective effort to propel this therapeutic approach toward broader clinical adoption and improved patient outcomes in the evolving landscape of cancer treatment. Here, we review current CAR immune cell manufacturing strategies and highlight recent advancements in cell therapy scale-up, automation, process development, and engineering.
Collapse
Affiliation(s)
- Apoorva Ramamurthy
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Anna Tommasi
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA
| | - Krishanu Saha
- Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI, USA.
- Department of Biomedical Engineering, University of Wisconsin-Madison, Madison, WI, USA.
| |
Collapse
|
21
|
Hamadeh IS, Friend R, Mailankody S, Atrash S. Chimeric antigen receptor T-cells: a review on current status and future directions for relapsed/refractory multiple myeloma. Front Oncol 2024; 14:1455464. [PMID: 39175472 PMCID: PMC11338754 DOI: 10.3389/fonc.2024.1455464] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 07/25/2024] [Indexed: 08/24/2024] Open
Abstract
Although multiple myeloma is an incurable disease, the past decade has witnessed significant improvement in patient outcomes. This was brought about by the development of T-cell redirection therapies such as chimeric antigen receptor (CAR) T-cells, which can leverage the natural ability of the immune system to fight myeloma cells. The approval of the B-cell maturation antigen (BCMA)-directed CAR T, idecabtagene vicleucel (ide-cel), and ciltacabtagene autoleucel (cilta-cel) has resulted in a paradigm shift in the treatment of relapsed/refractory multiple myeloma. Overall response rates ranging from 73 to 97% are currently achievable. However, the limitations of KarMMa-1 and CARTITUDE-1 studies spurred the generation of real-world data to provide some insights into the effectiveness of ide-cel and cilta-cel among patients who were excluded from clinical trials, particularly those who received prior BCMA-targeted or other T-cell redirection therapies. Despite their unprecedented clinical efficacy in heavily pretreated patients, responses to CAR T remain non-durable. Although the underlying mechanisms of resistance to these agents haven't been fully elucidated, studies have suggested that resistance patterns could be multifaceted, implicating T-cell exhaustion and tumor intrinsic mechanisms such as BCMA target loss, upregulation of gamma-secretase, and others. Herein, we provide a succinct overview of the development of CAR T-cells, manufacturing process, and associated toxicities/complications. In this review, we also recapitulate the existing literature pertaining MM CAR-T as well as emerging data from some of the ongoing clinical trials designed to mitigate the shortcomings of these agents, and improve the clinical efficacy of CAR T, especially in the relapsed/refractory setting.
Collapse
Affiliation(s)
- Issam S. Hamadeh
- Clinical Pharmacy Services, Pharmacy Department, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Reed Friend
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| | - Sham Mailankody
- Myeloma Service, Division of Hematologic Oncology, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, NY, United States
| | - Shebli Atrash
- Plasma Cell Disorders Division, Department of Hematologic Oncology & Blood Disorders Levine Cancer Institute, Atrium Health, Charlotte, NC, United States
| |
Collapse
|
22
|
Li J, Chen P, Ma W. The next frontier in immunotherapy: potential and challenges of CAR-macrophages. Exp Hematol Oncol 2024; 13:76. [PMID: 39103972 DOI: 10.1186/s40164-024-00549-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 07/30/2024] [Indexed: 08/07/2024] Open
Abstract
Chimeric antigen receptor macrophage (CAR-MΦ) represents a significant advancement in immunotherapy, especially for treating solid tumors where traditional CAR-T therapies face limitations. CAR-MΦ offers a promising approach to target and eradicate tumor cells by utilizing macrophages' phagocytic and antigen-presenting abilities. However, challenges such as the complex tumor microenvironment (TME), variability in antigen expression, and immune suppression limit their efficacy. This review addresses these issues, exploring mechanisms of CAR-MΦ action, optimal construct designs, and interactions within the TME. It also delves into the ex vivo manufacturing challenges of CAR-MΦ, discussing autologous and allogeneic sources and the importance of stringent quality control. The potential synergies of integrating CAR-MΦ with existing cancer therapies like checkpoint inhibitors and conventional chemotherapeutics are examined to highlight possible enhanced treatment outcomes. Furthermore, regulatory pathways for CAR-MΦ therapies are scrutinized alongside established protocols for CAR-T cells, identifying unique considerations essential for clinical trials and market approval. Proposed safety monitoring frameworks aim to manage potential adverse events, such as cytokine release syndrome, crucial for patient safety. Consolidating current research and clinical insights, this review seeks to refine CAR-MΦ therapeutic applications, overcome barriers, and suggest future research directions to transition CAR-MΦ therapies from experimental platforms to standard cancer care options.
Collapse
Affiliation(s)
- Jing Li
- The Affiliated Hospital of Qingdao University, Qingdao, 266003, Shandong, China
| | - Ping Chen
- Fujian Institute of Hematology, Fujian Provincial Key Laboratory of Hematology, Union Hospital, Fujian Medical University Fuzhou, Fujian, 350001, China
| | - Wenxue Ma
- Sanford Stem Cell Institute, Moores Cancer Center, University of California San Diego, CA, 92093, La Jolla, USA.
| |
Collapse
|
23
|
Mohammad Taheri M, Javan F, Poudineh M, Athari SS. Beyond CAR-T: The rise of CAR-NK cell therapy in asthma immunotherapy. J Transl Med 2024; 22:736. [PMID: 39103889 PMCID: PMC11302387 DOI: 10.1186/s12967-024-05534-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Accepted: 07/23/2024] [Indexed: 08/07/2024] Open
Abstract
Asthma poses a major public health burden. While existing asthma drugs manage symptoms for many, some patients remain resistant. The lack of a cure, especially for severe asthma, compels exploration of novel therapies. Cancer immunotherapy successes with CAR-T cells suggest its potential for asthma treatment. Researchers are exploring various approaches for allergic diseases including membrane-bound IgE, IL-5, PD-L2, and CTLA-4 for asthma, and Dectin-1 for fungal asthma. NK cells offer several advantages over T cells for CAR-based immunotherapy. They offer key benefits: (1) HLA compatibility, meaning they can be used in a wider range of patients without the need for matching tissue types. (2) Minimal side effects (CRS and GVHD) due to their limited persistence and cytokine profile. (3) Scalability for "off-the-shelf" production from various sources. Several strategies have been introduced that highlight the superiority and challenges of CAR-NK cell therapy for asthma treatment including IL-10, IFN-γ, ADCC, perforin-granzyme, FASL, KIR, NCRs (NKP46), DAP, DNAM-1, TGF-β, TNF-α, CCL, NKG2A, TF, and EGFR. Furthermore, we advocate for incorporating AI for CAR design optimization and CRISPR-Cas9 gene editing technology for precise gene manipulation to generate highly effective CAR constructs. This review will delve into the evolution and production of CAR designs, explore pre-clinical and clinical studies of CAR-based therapies in asthma, analyze strategies to optimize CAR-NK cell function, conduct a comparative analysis of CAR-T and CAR-NK cell therapy with their respective challenges, and finally present established novel CAR designs with promising potential for asthma treatment.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyed Shamseddin Athari
- Cancer Gene Therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, Zanjan School of Medicine, Zanjan University of Medical Sciences, 12th Street, Shahrake Karmandan, Zanjan, 45139-561111, Iran.
| |
Collapse
|
24
|
Srivastava S, Singh S, Singh A. Augmenting the landscape of chimeric antigen receptor T-cell therapy. Expert Rev Anticancer Ther 2024; 24:755-773. [PMID: 38912754 DOI: 10.1080/14737140.2024.2372330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Accepted: 06/21/2024] [Indexed: 06/25/2024]
Abstract
INTRODUCTION The inception of recombinant DNA technology and live cell genomic alteration have paved the path for the excellence of cell and gene therapies and often provided the first curative treatment for many indications. The approval of the first Chimeric Antigen Receptor (CAR) T-cell therapy was one of the breakthrough innovations that became the headline in 2017. Currently, the therapy is primarily restricted to a few nations, and the market is growing at a CAGR (current annual growth rate) of 11.6% (2022-2032), as opposed to the established bio-therapeutic market at a CAGR of 15.9% (2023-2030). The limited technology democratization is attributed to its autologous nature, lack of awareness, therapy inclusion criteria, high infrastructure cost, trained personnel, complex manufacturing processes, regulatory challenges, recurrence of the disease, and long-term follow-ups. AREAS COVERED This review discusses the vision and strategies focusing on the CAR T-cell therapy democratization with mitigation plans. Further, it also covers the strategies to leverage the mRNA-based CAR T platform for building an ecosystem to ensure availability, accessibility, and affordability to the community. EXPERT OPINION mRNA-guided CAR T cell therapy is a rapidly growing area wherein a collaborative approach among the stakeholders is needed for its success.
Collapse
Affiliation(s)
| | - Sanjay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| | - Ajay Singh
- mRNA Department, Gennova Biopharmaceuticals Ltd. ITBT Park, Pune, India
| |
Collapse
|
25
|
Bui TA, Mei H, Sang R, Ortega DG, Deng W. Advancements and challenges in developing in vivo CAR T cell therapies for cancer treatment. EBioMedicine 2024; 106:105266. [PMID: 39094262 PMCID: PMC11345408 DOI: 10.1016/j.ebiom.2024.105266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 07/08/2024] [Accepted: 07/22/2024] [Indexed: 08/04/2024] Open
Abstract
The Chimeric Antigen Receptor (CAR) T cell therapy has emerged as a ground-breaking immunotherapeutic approach in cancer treatment. To overcome the complexity and high manufacturing cost associated with current ex vivo CAR T cell therapy products, alternative strategies to produce CAR T cells directly in the body have been developed in recent years. These strategies involve the direct infusion of CAR genes via engineered nanocarriers or viral vectors to generate CAR T cells in situ. This review offers a comprehensive overview of recent advancements in the development of T cell-targeted CAR generation in situ. Additionally, it identifies the challenges associated with in vivo CAR T method and potential strategies to overcome these issues.
Collapse
Affiliation(s)
- Thuy Anh Bui
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Whitlam Orthopaedic Research Centre, Ingham Institute for Applied Medical Research, Liverpool, NSW 2170, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Haoqi Mei
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia
| | - Rui Sang
- Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia
| | - David Gallego Ortega
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Garvan Institute of Medical Research, The Kinghorn Cancer Centre, Darlinghurst, NSW 2010, Australia; School of Clinical Medicine, Faculty of Medicine, University of New South Wales Sydney, Kensington, NSW 2052, Australia
| | - Wei Deng
- School of Biomedical Engineering, University of Technology Sydney, Ultimo, NSW 2007, Australia; Graduate School of Biomedical Engineering, ARC Centre of Excellence in Nanoscale Biophotonics, Faculty of Engineering, UNSW Sydney, NSW 2052, Australia.
| |
Collapse
|
26
|
Chen B, Deng Y, Ren X, Zhao J, Jiang C. CRISPR/Cas9 screening: unraveling cancer immunotherapy's 'Rosetta Stone'. Trends Mol Med 2024; 30:736-749. [PMID: 38763850 DOI: 10.1016/j.molmed.2024.04.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 04/10/2024] [Accepted: 04/19/2024] [Indexed: 05/21/2024]
Abstract
Clustered regularly interspaced palindromic repeats (CRISPR)-based technology, a powerful toolset for the unbiased functional genomic screening of biological processes, has facilitated several scientific breakthroughs in the biomedical field. Cancer immunotherapy has advanced the treatment of numerous malignancies that previously had restricted treatment options or unfavorable outcomes. In the realm of cancer immunotherapy, the application of CRISPR/CRISPR-associated protein 9 (Cas9)-based genetic perturbation screening has enabled the identification of genes, biomarkers, and signaling pathways that govern various cancer immunoreactivities, as well as the development of effective immunotherapeutic targets. In this review, we summarize the advances in CRISPR/Cas9-based screening for cancer immunotherapy and outline the immunotherapeutic targets identified via CRISPR screening based on cancer-type classification.
Collapse
Affiliation(s)
- Baoxiang Chen
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC H3G 0B1, Canada
| | - Yanrong Deng
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China
| | - Xianghai Ren
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Jianhong Zhao
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| | - Congqing Jiang
- Department of Colorectal and Anal Surgery, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Hubei Key Laboratory of Intestinal and Colorectal Diseases, Zhongnan Hospital of Wuhan University, Wuhan 430071, China; Clinical Center of Intestinal and Colorectal Diseases of Hubei Province, Zhongnan Hospital of Wuhan University, Wuhan 430071, China.
| |
Collapse
|
27
|
Luo Q, Yan X, Liu HX, Li H. Lyophilized lymph nodes: A paradigm shift in CAR T-cell delivery for solid tumor therapy. Acta Pharm Sin B 2024; 14:3774-3776. [PMID: 39220879 PMCID: PMC11365425 DOI: 10.1016/j.apsb.2024.05.023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 05/26/2024] [Accepted: 05/28/2024] [Indexed: 09/04/2024] Open
Affiliation(s)
- Qiuhua Luo
- Department of Pharmacy, the First Hospital of China Medical University, Shenyang 110001, China
- School of Pharmacy, China Medical University, Shenyang 110122, China
| | - Xiaojing Yan
- Department of Hematology, the First Hospital of China Medical University, Shenyang 110001, China
| | - Hong-Xu Liu
- Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, Shenyang 110042, China
| | - Heran Li
- School of Pharmacy, China Medical University, Shenyang 110122, China
| |
Collapse
|
28
|
Li G, Zhang W, Yang J. Time - The fourth dimension of immune cells. MedComm (Beijing) 2024; 5:e682. [PMID: 39105196 PMCID: PMC11298545 DOI: 10.1002/mco2.682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 07/03/2024] [Accepted: 07/16/2024] [Indexed: 08/07/2024] Open
Abstract
Deciphering the intricate cell-state transitions orchestrating immune adaptation over time stands as a cornerstone for advancing biological understanding. However, the lack of empirical in vivo genomic technologies capable of capturing cellular dynamics has posed a significant challenge. In response to this gap, a groundbreaking study introduces Zman-seq, a single-cell technology that records transcriptomic dynamics across time by incorporating time stamps into circulating immune cells, enabling their tracking in tissues for extended periods. The application of Zman-seq in glioblastoma research has successfully unraveled the cell state and molecular trajectories underlying the dysfunctional immune microenvironment. Understanding the temporal aspects of cell-state transitions during immune responses is pivotal for advancing our knowledge in biology. The emergence of Zman-seq addresses the current limitations in empirical in vivo genomic technologies, offering a revolutionary approach to studying the dynamics of immune cells over time. This highlight comprehensively explores the implications of Zman-seq in resolving cell-state transitions and molecular trajectories within the dysfunctional immune microenvironment in different types of immunotherapy. This technique has particular potential for chimeric antigen receptor T-cell therapy, overriding drug resistance, clinical medication optimization, and facilitating drug development. In particular, this article discusses potential strategies for improving the efficacy of clinical treatments.
Collapse
Affiliation(s)
- Guiming Li
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Wenjun Zhang
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| | - Jing Yang
- Department of HaematologyTongji HospitalShanghai Key Laboratory of Signaling and Disease ResearchFrontier Science Center for Stem Cell ResearchSchool of Life Sciences and TechnologyTongji UniversityShanghaiChina
| |
Collapse
|
29
|
Chota A, Abrahamse H, George BP. Green synthesis and characterization of AgNPs, liposomal loaded AgNPs and ZnPcS 4 photosensitizer for enhanced photodynamic therapy effects in MCF-7 breast cancer cells. Photodiagnosis Photodyn Ther 2024; 48:104252. [PMID: 38901719 DOI: 10.1016/j.pdpdt.2024.104252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/13/2024] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Breast cancer remains a formidable challenge in oncology despite significant advancements in treatment modalities. Conventional therapies such as surgery, chemotherapy, radiation therapy, and hormonal therapy have been the mainstay in managing breast cancer for decades. However, a subset of patient's experiences treatment failure, leading to disease recurrence and progression. Therefore, this study investigates the therapeutic potential of green-synthesized silver nanoparticles (AgNPs) using an African medicinal plant (Dicoma anomala methanol root extract) as a reducing agent for combating breast cancer. AgNPs were synthesized using the bottom-up approach and later modified with liposomes (Lip) loaded with photosensitizer (PS) zinc phthalocyanine tetrasulfonate (Lip@ZnPcS4) using thin film hydration method. The successful formation and Lip modification of AgNPs, alongside ZnPcS4, were confirmed through various analytical techniques including UV-Vis spectroscopy, Fourier-transform infrared spectroscopy (FT-IR), high-resolution transmission electron microscopy (HR-TEM), scanning electron microscopy (SEM) and energy dispersive X-ray spectroscopy (EDS). Following a 24 h treatment period, MCF-7 cells were assessed for viability using 3-[4,5-dimethylthiazol-2-yl]-2,5 diphenyl tetrazolium bromide (MTT viability assay), cell death analysis using mitochondrial membrane potential (MMP) (ΔΨm), Annexin V-fluorescein isothiocyanate (FITC)-propidium iodide (PI) kit, and caspase- 3, 8 and 9 activities. The experiments were repeated four times (n = 4), and the results were analyzed using SPSS statistical software version 27, with a confidence interval set at 0.95. The synthesized nanoparticles and nanocomplex, including AgNPs, AgNPs-Lip, Lip@ZnPcS4, and AgNPs-Lip@ZnPcS4, exhibited notable cytotoxicity and therapeutic efficacy against MCF-7 breast cancer cells. Notably, the induction of apoptosis, governed by the upregulation of apoptotic proteins i.e., caspase 8 and 9 activities. In addition, caspase 3 was not expressed by MCF-7 cells in both control and experimental groups. Given the challenging prognosis associated with breast cancer, the findings underscore the promise of liposomal nanoformulations in cancer photodynamic therapy (PDT), thus warranting further exploration in clinical settings.
Collapse
Affiliation(s)
- Alexander Chota
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Heidi Abrahamse
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa
| | - Blassan P George
- Laser Research Centre, Faculty of Health Sciences, University of Johannesburg, P.O. Box 17011, Doornfontein 2028, South Africa.
| |
Collapse
|
30
|
Qin JJ, Zhu XX, Chen X, Sang W, Jin YL. Comparison of Cox regression and generalized Cox regression models to machine learning in predicting survival of children with diffuse large B-cell lymphoma. Transl Cancer Res 2024; 13:3370-3381. [PMID: 39145065 PMCID: PMC11319973 DOI: 10.21037/tcr-23-2358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Accepted: 06/04/2024] [Indexed: 08/16/2024]
Abstract
Background The incidence of diffuse large B-cell lymphoma (DLBCL) in children is increasing globally. Due to the immature immune system in children, the prognosis of DLBCL is quite different from that of adults. We aim to use the multicenter large retrospective analysis for prognosis study of the disease. Methods For our retrospective analysis, we retrieved data from the Surveillance, Epidemiology and End Results (SEER) database that included 836 DLBCL patients under 18 years old who were treated at 22 central institutions between 2000 and 2019. The patients were randomly divided into a modeling group and a validation group based on the ratio of 7:3. Cox stepwise regression, generalized Cox regression and eXtreme Gradient Boosting (XGBoost) were used to screen all variables. The selected prognostic variables were used to construct a nomogram through Cox stepwise regression. The importance of variables was ranked using XGBoost. The predictive performance of the model was assessed by using C-index, area under the curve (AUC) of receiver operating characteristic (ROC) curve, sensitivity and specificity. The consistency of the model was evaluated by using a calibration curve. The clinical practicality of the model was verified through decision curve analysis (DCA). Results ROC curve demonstrated that all models except the non-proportional hazards and non-log linearity (NPHNLL) model, achieved AUC values above 0.7, indicating high accuracy. The calibration curve and DCA further confirmed strong predictive performance and clinical practicability. Conclusions In this study, we successfully constructed a machine learning model by combining XGBoost with Cox and generalized Cox regression models. This integrated approach accurately predicts the prognosis of children with DLBCL from multiple dimensions. These findings provide a scientific basis for accurate clinical prognosis prediction.
Collapse
Affiliation(s)
- Jia-Jia Qin
- Department of Medical Public Health, Center for Medical Statistics and Data Analysis of Xuzhou Medical University, Xuzhou, China
| | - Xiao-Xiao Zhu
- Department of Medical Public Health, Center for Medical Statistics and Data Analysis of Xuzhou Medical University, Xuzhou, China
| | - Xi Chen
- Department of Medical Public Health, Center for Medical Statistics and Data Analysis of Xuzhou Medical University, Xuzhou, China
| | - Wei Sang
- Department of Hematology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Ying-Liang Jin
- Department of Medical Public Health, Center for Medical Statistics and Data Analysis of Xuzhou Medical University, Xuzhou, China
| |
Collapse
|
31
|
Foulke JG, Chen L, Chang H, McManus CE, Tian F, Gu Z. Optimizing Ex Vivo CAR-T Cell-Mediated Cytotoxicity Assay through Multimodality Imaging. Cancers (Basel) 2024; 16:2497. [PMID: 39061136 PMCID: PMC11274748 DOI: 10.3390/cancers16142497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/02/2024] [Accepted: 07/06/2024] [Indexed: 07/28/2024] Open
Abstract
CAR-T cell-based therapies have demonstrated remarkable efficacy in treating malignant cancers, especially liquid tumors, and are increasingly being evaluated in clinical trials for solid tumors. With the FDA's initiative to advance alternative methods for drug discovery and development, full human ex vivo assays are increasingly essential for precision CAR-T development. However, prevailing ex vivo CAR-T cell-mediated cytotoxicity assays are limited by their use of radioactive materials, lack of real-time measurement, low throughput, and inability to automate, among others. To address these limitations, we optimized the assay using multimodality imaging methods, including bioluminescence, impedance tracking, phase contrast, and fluorescence, to track CAR-T cells co-cultured with CD19, CD20, and HER2 luciferase reporter cancer cells in real-time. Additionally, we varied the ratio of CAR-T cells to cancer cells to determine optimal cytotoxicity readouts. Our findings demonstrated that the CAR-T cell group effectively attacked cancer cells, and the optimized assay provided superior temporal and spatial precision measurements of ex vivo CAR-T killing of cancer cells, confirming the reliability, consistency, and high throughput of the optimized assay.
Collapse
Affiliation(s)
| | | | | | | | - Fang Tian
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| | - Zhizhan Gu
- American Type Culture Collection (ATCC), Manassas, VA 20110, USA
| |
Collapse
|
32
|
Deng T, Deng Y, Tsao ST, Xiong Q, Yao Y, Liu C, Gu MY, Huang F, Wang H. Rapidly-manufactured CD276 CAR-T cells exhibit enhanced persistence and efficacy in pancreatic cancer. J Transl Med 2024; 22:633. [PMID: 38978106 PMCID: PMC11229349 DOI: 10.1186/s12967-024-05462-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Accepted: 07/01/2024] [Indexed: 07/10/2024] Open
Abstract
BACKGROUND Pancreatic cancer is one of the most lethal malignancies and the lack of treatment options makes it more deadly. Chimeric Antigen Receptor T-cell (CAR-T) immunotherapy has revolutionized cancer treatment and made great breakthroughs in treating hematological malignancies, however its success in treating solid cancers remains limited mainly due to the lack of tumor-specific antigens. On the other hand, the prolonged traditional manufacturing process poses challenges, taking 2 to 6 weeks and impacting patient outcomes. CD276 has recently emerged as a potential therapeutic target for anti-solid cancer therapy. Here, we investigated the efficacy of CD276 CAR-T and rapidly-manufactured CAR-T against pancreatic cancer. METHODS In the present study, CD276 CAR-T was prepared by CAR structure carrying 376.96 scFv sequence, CD8 hinge and transmembrane domain, 4-1BB and CD3ζ intracellular domains. Additionally, CD276 rapidly-manufactured CAR-T (named CD276 Dash CAR-T) was innovatively developed by shortening the duration of ex vitro culture to reduce CAR-T manufacturing time. We evaluated the anti-tumor efficacy of CD276 CAR-T and further compared the functional assessment of Dash CAR-T and conventional CAR-T in vitro and in vivo by detecting the immunophenotypes, killing ability, expansion capacity and tumor-eradicating effect of CAR-T. RESULTS We found that CD276 was strongly expressed in multiple solid cancer cell lines and that CD276 CAR-T could efficiently kill these solid cancer cells. Moreover, Dash CAR-T was successfully manufactured within 48-72 h and the functional validation was carried out subsequently. In vitro, CD276 Dash CAR-T possessed a less-differentiated phenotype and robust proliferative ability compared to conventional CAR-T. In vivo xenograft mouse model, CD276 Dash CAR-T showed enhanced anti-pancreatic cancer efficacy and T cell expansion. Besides, except for the high-dose group, the body weight of mice was maintained stable, and the state of mice was normal. CONCLUSIONS In this study, we proved CD276 CAR-T exhibited powerful activity against pancreatic cancer cells in vitro and in vivo. More importantly, we demonstrated the manufacturing feasibility, acceptable safety and superior anti-tumor efficacy of CD276 Dash CAR-T generated with reduced time. The results of the above studies indicated that CD276 Dash CAR-T immunotherapy might be a novel and promising strategy for pancreatic cancer treatment.
Collapse
Affiliation(s)
- Tian Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yingzhi Deng
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Shih-Ting Tsao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Qinghui Xiong
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Yue Yao
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Cuicui Liu
- Regulatory Affairs Department, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Ming Yuan Gu
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China
| | - Fei Huang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| | - Haiying Wang
- Department of Research and Development, Hrain Biotechnology Co., Ltd., 1238 Zhangjiang Road, Pudong New District, Shanghai, China.
| |
Collapse
|
33
|
Garg P, Malhotra J, Kulkarni P, Horne D, Salgia R, Singhal SS. Emerging Therapeutic Strategies to Overcome Drug Resistance in Cancer Cells. Cancers (Basel) 2024; 16:2478. [PMID: 39001539 PMCID: PMC11240358 DOI: 10.3390/cancers16132478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Revised: 07/01/2024] [Accepted: 07/04/2024] [Indexed: 07/16/2024] Open
Abstract
The rise of drug resistance in cancer cells presents a formidable challenge in modern oncology, necessitating the exploration of innovative therapeutic strategies. This review investigates the latest advancements in overcoming drug resistance mechanisms employed by cancer cells, focusing on emerging therapeutic modalities. The intricate molecular insights into drug resistance, including genetic mutations, efflux pumps, altered signaling pathways, and microenvironmental influences, are discussed. Furthermore, the promising avenues offered by targeted therapies, combination treatments, immunotherapies, and precision medicine approaches are highlighted. Specifically, the synergistic effects of combining traditional cytotoxic agents with molecularly targeted inhibitors to circumvent resistance pathways are examined. Additionally, the evolving landscape of immunotherapeutic interventions, including immune checkpoint inhibitors and adoptive cell therapies, is explored in terms of bolstering anti-tumor immune responses and overcoming immune evasion mechanisms. Moreover, the significance of biomarker-driven strategies for predicting and monitoring treatment responses is underscored, thereby optimizing therapeutic outcomes. For insights into the future direction of cancer treatment paradigms, the current review focused on prevailing drug resistance challenges and improving patient outcomes, through an integrative analysis of these emerging therapeutic strategies.
Collapse
Affiliation(s)
- Pankaj Garg
- Department of Chemistry, GLA University, Mathura 281406, India
| | - Jyoti Malhotra
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Prakash Kulkarni
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - David Horne
- Molecular Medicine, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Ravi Salgia
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| | - Sharad S. Singhal
- Departments of Medical Oncology & Therapeutics Research, Beckman Research Institute of City of Hope, Comprehensive Cancer Center, National Medical Center, Duarte, CA 91010, USA
| |
Collapse
|
34
|
Boretti A. Improving chimeric antigen receptor T-cell therapies by using artificial intelligence and internet of things technologies: A narrative review. Eur J Pharmacol 2024; 974:176618. [PMID: 38679117 DOI: 10.1016/j.ejphar.2024.176618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 04/18/2024] [Accepted: 04/25/2024] [Indexed: 05/01/2024]
Abstract
Cancer poses a formidable challenge in the field of medical science, prompting the exploration of innovative and efficient treatment strategies. One revolutionary breakthrough in cancer therapy is Chimeric Antigen Receptor (CAR) T-cell therapy, an avant-garde method involving the customization of a patient's immune cells to combat cancer. Particularly successful in addressing blood cancers, CAR T-cell therapy introduces an unprecedented level of effectiveness, offering the prospect of sustained disease management. As ongoing research advances to overcome current challenges, CAR T-cell therapy stands poised to become an essential tool in the fight against cancer. Ongoing enhancements aim to improve its effectiveness and reduce time and cost, with the integration of Artificial Intelligence (AI) and Internet of Things (IoT) technologies. The synergy of AI and IoT could enable more precise tailoring of CAR T-cell therapy to individual patients, streamlining the therapeutic process. This holds the potential to elevate treatment efficacy, mitigate adverse effects, and expedite the overall progress of CAR T-cell therapies.
Collapse
Affiliation(s)
- Alberto Boretti
- Independent Scientist, Johnsonville, Wellington, New Zealand.
| |
Collapse
|
35
|
Shen J, Hu R, Lin A, Jiang A, Tang B, Liu Z, Cheng Q, Miao K, Zhang J, Luo P. Characterization of second primary malignancies post CAR T-cell therapy: real-world insights from the two global pharmacovigilance databases of FAERS and VigiBase. EClinicalMedicine 2024; 73:102684. [PMID: 39007060 PMCID: PMC11245995 DOI: 10.1016/j.eclinm.2024.102684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 05/08/2024] [Accepted: 05/29/2024] [Indexed: 07/16/2024] Open
Abstract
Background The FDA's alerts regarding the T-cell lymphoma risk post CAR-T therapy has garnered global attention, yet a comprehensive profile of second primary malignancies (SPMs) following CAR-T treatment is lacking. Methods We extracted adverse event reports of hematological malignancies (HMs) patients with clearly definable SPMs from the FAERS and VigiBase databases (2017-2023). Disproportionality analysis using reporting odds ratio (ROR) and adjusted ROR was performed to assess associations between SPMs and CAR-T therapy. Time-to-onset analysis explored factors affecting SPM manifestation. Findings SPMs post CAR T-cell therapy include HMs and solid tumors. T-cell lymphoma and myelodysplastic syndromes were consistently identified as positive signals across the overall and subgroup analyses. Hematological SPMs showed earlier onset with increasing annual incidence post CAR-T therapy, whereas solid tumors exhibit delayed manifestation. SPMs in CAR-T recipients had significantly earlier onset than non-recipients. Furthermore, age-specific characteristics reveal earlier SPM manifestations in pediatric, adolescent, and young adult populations compared to older populations post CAR-T therapy. Interpretation The current SPM profile highlights the necessity of long-term safety monitoring for all CAR-T recipients given the observed yearly increase of SPMs. Customizing long-term SPM screening across different age groups may enhance early detection and intervention strategies, ultimately improving patient outcomes in the follow-up of CAR-T recipients. Funding This work was supported by grants from the Natural Science Foundation of Guangdong Province (2018A030313846 and 2021A1515012593), the Science and Technology Planning Project of Guangdong Province (2019A030317020), the National Natural Science Foundation of China (81802257, 81871859, 81772457, 82172750, 82172811, and 82260546), the Guangdong Basic and Applied Basic Research Foundation (Guangdong-Guangzhou Joint Funds) (2022A1515111212), and the Science and Technology Program of Guangzhou (2023A04J1257).
Collapse
Affiliation(s)
- Junyi Shen
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Rong Hu
- Department of Pharmacy, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, 510623, China
| | - Anqi Lin
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Aimin Jiang
- Department of Urology, Changhai Hospital, Naval Medical University (Second Military Medical University), Shanghai, China
| | - Bufu Tang
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zaoqu Liu
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, China
| | - Quan Cheng
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Kai Miao
- Cancer Centre and Institute of Translational Medicine, Faculty of Health Sciences, University of Macau, Macau SAR, 999078, China
- MoE Frontiers Science Center for Precision Oncology, University of Macau, Macau SAR, 999078, China
| | - Jian Zhang
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Peng Luo
- Department of Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| |
Collapse
|
36
|
Koula G, Yakati V, Rachamalla HK, Bhamidipati K, Kathirvel M, Banerjee R, Puvvada N. Integrin receptor-targeted, doxorubicin-loaded cerium oxide nanoparticles delivery to combat glioblastoma. Nanomedicine (Lond) 2024; 19:1389-1406. [PMID: 38912661 PMCID: PMC11318704 DOI: 10.1080/17435889.2024.2350357] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/29/2024] [Indexed: 06/25/2024] Open
Abstract
Aim: To assess the chemo-immunomodulatory effects of doxorubicin-loaded cerium oxide nanoparticles coated with oleyl amine-linked cyclic RGDfK peptide (CeNP+Dox+RGD) to target both gliomas and its tumor microenvironment (TME) via integrin receptors. Materials & methods: CeNP+Dox+RGD nanoparticles are synthesized by the sequential addition of cerium III chloride heptahydrate, beta-cyclodextrin, oleic acid, and F127 micelle (CeNP). Doxorubicin was then loaded into CeNPs and coated with oleyl amine-linked cyclic RGDfK peptide to form stable CeNP+Dox+RGD nanoparticles. Results: CeNP+Dox+RGD nanoparticles crossed blood-brain barrier (BBB) effectively and demonstrated threefold enhanced survivability in glioma-bearing mice. The IHC profiling of glial tumor cross-sections showed increased CD80 expression (M1 TAMs) and decreased arginase-1 expression (M2 TAMs). Conclusion: CeNP+Dox+RGD can be an immunotherapeutic treatment option to combat glioblastoma.
Collapse
Affiliation(s)
- Gayathri Koula
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Venu Yakati
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Hari Krishnareddy Rachamalla
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Keerti Bhamidipati
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, Uttar Pradesh (U.P), India
| | - Muralidharan Kathirvel
- Applied Biology Division, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Rajkumar Banerjee
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| | - Nagaprasad Puvvada
- Department of Oils, Lipids Sciences & Technology, CSIR-Indian Institute of Chemical Technology, Hyderabad, 500007, India
| |
Collapse
|
37
|
Kuznetsova AV, Glukhova XA, Popova OP, Beletsky IP, Ivanov AA. Contemporary Approaches to Immunotherapy of Solid Tumors. Cancers (Basel) 2024; 16:2270. [PMID: 38927974 PMCID: PMC11201544 DOI: 10.3390/cancers16122270] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 06/11/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024] Open
Abstract
In recent years, the arrival of the immunotherapy industry has introduced the possibility of providing transformative, durable, and potentially curative outcomes for various forms of malignancies. However, further research has shown that there are a number of issues that significantly reduce the effectiveness of immunotherapy, especially in solid tumors. First of all, these problems are related to the protective mechanisms of the tumor and its microenvironment. Currently, major efforts are focused on overcoming protective mechanisms by using different adoptive cell therapy variants and modifications of genetically engineered constructs. In addition, a complex workforce is required to develop and implement these treatments. To overcome these significant challenges, innovative strategies and approaches are necessary to engineer more powerful variations of immunotherapy with improved antitumor activity and decreased toxicity. In this review, we discuss recent innovations in immunotherapy aimed at improving clinical efficacy in solid tumors, as well as strategies to overcome the limitations of various immunotherapies.
Collapse
Affiliation(s)
- Alla V. Kuznetsova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
- Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 26 Vavilov Street, 119334 Moscow, Russia
| | - Xenia A. Glukhova
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Olga P. Popova
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| | - Igor P. Beletsky
- Onni Biotechnologies Ltd., Aalto University Campus, Metallimiehenkuja 10, 02150 Espoo, Finland; (X.A.G.); (I.P.B.)
| | - Alexey A. Ivanov
- Laboratory of Molecular and Cellular Pathology, Russian University of Medicine (Formerly A.I. Evdokimov Moscow State University of Medicine and Dentistry), Ministry of Health of the Russian Federation, Bld 4, Dolgorukovskaya Str, 1127006 Moscow, Russia; (A.V.K.); (O.P.P.)
| |
Collapse
|
38
|
Taheri MM, Javan F, Poudineh M, Athari SS. CAR-NKT Cells in Asthma: Use of NKT as a Promising Cell for CAR Therapy. Clin Rev Allergy Immunol 2024; 66:328-362. [PMID: 38995478 DOI: 10.1007/s12016-024-08998-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/28/2024] [Indexed: 07/13/2024]
Abstract
NKT cells, unique lymphocytes bridging innate and adaptive immunity, offer significant potential for managing inflammatory disorders like asthma. Activating iNKT induces increasing IFN-γ, TGF-β, IL-2, and IL-10 potentially suppressing allergic asthma. However, their immunomodulatory effects, including granzyme-perforin-mediated cytotoxicity, and expression of TIM-3 and TRAIL warrant careful consideration and targeted approaches. Although CAR-T cell therapy has achieved remarkable success in treating certain cancers, its limitations necessitate exploring alternative approaches. In this context, CAR-NKT cells emerge as a promising approach for overcoming these challenges, potentially achieving safer and more effective immunotherapies. Strategies involve targeting distinct IgE-receptors and their interactions with CAR-NKT cells, potentially disrupting allergen-mast cell/basophil interactions and preventing inflammatory cytokine release. Additionally, targeting immune checkpoints like PDL-2, inducible ICOS, FASL, CTLA-4, and CD137 or dectin-1 for fungal asthma could further modulate immune responses. Furthermore, artificial intelligence and machine learning hold immense promise for revolutionizing NKT cell-based asthma therapy. AI can optimize CAR-NKT cell functionalities, design personalized treatment strategies, and unlock a future of precise and effective care. This review discusses various approaches to enhancing CAR-NKT cell efficacy and longevity, along with the challenges and opportunities they present in the treatment of allergic asthma.
Collapse
Affiliation(s)
| | - Fatemeh Javan
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Mohadeseh Poudineh
- Student Research Committee, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran
| | - Seyyed Shamsadin Athari
- Cancer Gene therapy Research Center, Zanjan University of Medical Sciences, Zanjan, Iran.
- Department of Immunology, School of Medicine, Zanjan University of Medical Sciences, Zanjan, Iran.
| |
Collapse
|
39
|
Li Y, Hu Z, Li Y, Wu X. Charting new paradigms for CAR-T cell therapy beyond current Achilles heels. Front Immunol 2024; 15:1409021. [PMID: 38751430 PMCID: PMC11094207 DOI: 10.3389/fimmu.2024.1409021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Accepted: 04/18/2024] [Indexed: 05/18/2024] Open
Abstract
Chimeric antigen receptor-T (CAR-T) cell therapy has made remarkable strides in treating hematological malignancies. However, the widespread adoption of CAR-T cell therapy is hindered by several challenges. These include concerns about the long-term and complex manufacturing process, as well as efficacy factors such as tumor antigen escape, CAR-T cell exhaustion, and the immunosuppressive tumor microenvironment. Additionally, safety issues like the risk of secondary cancers post-treatment, on-target off-tumor toxicity, and immune effector responses triggered by CAR-T cells are significant considerations. To address these obstacles, researchers have explored various strategies, including allogeneic universal CAR-T cell development, infusion of non-activated quiescent T cells within a 24-hour period, and in vivo induction of CAR-T cells. This review comprehensively examines the clinical challenges of CAR-T cell therapy and outlines strategies to overcome them, aiming to chart pathways beyond its current Achilles heels.
Collapse
Affiliation(s)
- Ying Li
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhenhua Hu
- Department of Health and Nursing, Nanfang College of Sun Yat-sen University, Guangzhou, China
| | - Yuanyuan Li
- Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Zhongshan, China
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Xiaoyan Wu
- Department of Pediatrics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
40
|
Knoedler L, Dean J, Diatta F, Thompson N, Knoedler S, Rhys R, Sherwani K, Ettl T, Mayer S, Falkner F, Kilian K, Panayi AC, Iske J, Safi AF, Tullius SG, Haykal S, Pomahac B, Kauke-Navarro M. Immune modulation in transplant medicine: a comprehensive review of cell therapy applications and future directions. Front Immunol 2024; 15:1372862. [PMID: 38650942 PMCID: PMC11033354 DOI: 10.3389/fimmu.2024.1372862] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Accepted: 03/22/2024] [Indexed: 04/25/2024] Open
Abstract
Balancing the immune response after solid organ transplantation (SOT) and vascularized composite allotransplantation (VCA) remains an ongoing clinical challenge. While immunosuppressants can effectively reduce acute rejection rates following transplant surgery, some patients still experience recurrent acute rejection episodes, which in turn may progress to chronic rejection. Furthermore, these immunosuppressive regimens are associated with an increased risk of malignancies and metabolic disorders. Despite significant advancements in the field, these IS related side effects persist as clinical hurdles, emphasizing the need for innovative therapeutic strategies to improve transplant survival and longevity. Cellular therapy, a novel therapeutic approach, has emerged as a potential pathway to promote immune tolerance while minimizing systemic side-effects of standard IS regiments. Various cell types, including chimeric antigen receptor T cells (CAR-T), mesenchymal stromal cells (MSCs), regulatory myeloid cells (RMCs) and regulatory T cells (Tregs), offer unique immunomodulatory properties that may help achieve improved outcomes in transplant patients. This review aims to elucidate the role of cellular therapies, particularly MSCs, T cells, Tregs, RMCs, macrophages, and dendritic cells in SOT and VCA. We explore the immunological features of each cell type, their capacity for immune regulation, and the prospective advantages and obstacles linked to their application in transplant patients. An in-depth outline of the current state of the technology may help SOT and VCA providers refine their perioperative treatment strategies while laying the foundation for further trials that investigate cellular therapeutics in transplantation surgery.
Collapse
Affiliation(s)
- Leonard Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Jillian Dean
- School of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Fortunay Diatta
- Division of Plastic Surgery, Department of Surgery, Yale New Haven Hospital, Yale School of Medicine, New Haven, CT, United States
| | - Noelle Thompson
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Samuel Knoedler
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Richmond Rhys
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Khalil Sherwani
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Tobias Ettl
- Department of Dental, Oral and Maxillofacial Surgery, Regensburg, Germany
| | - Simon Mayer
- University of Toledo College of Medicine and Life Sciences, Toledo, OH, United States
| | - Florian Falkner
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Katja Kilian
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Adriana C. Panayi
- Department of Hand, Plastic and Reconstructive Surgery, Burn Center, Berufsgenossenschaft (BG) Trauma Center Ludwigshafen, University of Heidelberg, Ludwigshafen, Germany
| | - Jasper Iske
- Department of Cardiothoracic and Vascular Surgery, Deutsches Herzzentrum der Charité, Berlin, Germany
- Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Ali-Farid Safi
- Faculty of Medicine, University of Bern, Bern, Switzerland
- Craniologicum, Center for Cranio-Maxillo-Facial Surgery, Bern, Switzerland
| | - Stefan G. Tullius
- Division of Transplant Surgery, Department of Surgery, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA, United States
| | - Siba Haykal
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Bohdan Pomahac
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| | - Martin Kauke-Navarro
- Department of Plastic, Hand and Reconstructive Surgery, University Hospital Regensburg, Regensburg, Germany
| |
Collapse
|
41
|
Gorczynski R. Translation of Data from Animal Models of Cancer to Immunotherapy of Breast Cancer and Chronic Lymphocytic Leukemia. Genes (Basel) 2024; 15:292. [PMID: 38540350 PMCID: PMC10970502 DOI: 10.3390/genes15030292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 02/18/2024] [Accepted: 02/23/2024] [Indexed: 06/14/2024] Open
Abstract
The field of clinical oncology has been revolutionized over the past decade with the introduction of many new immunotherapies the existence of which have depended to a large extent on experimentation with both in vitro analysis and the use of various animal models, including gene-modified mice. The discussion below will review my own laboratory's studies, along with those of others in the field, on cancer immunotherapy. Our own studies have predominantly dwelt on two models of malignancy, namely a solid tumor model (breast cancer) and lymphoma. The data from our own laboratory, and that of other scientists, highlights the novel information so obtained, and the evidence that application of such information has already had an impact on immunotherapy of human oncologic diseases.
Collapse
Affiliation(s)
- Reginald Gorczynski
- Institute of Medical Science, Department of Immunology and Surgery, University of Toronto, C/O 429 Drewry Avenue, Toronto, ON M2R 2K6, Canada
| |
Collapse
|
42
|
Cheng S, Wang H, Kang X, Zhang H. Immunotherapy Innovations in the Fight against Osteosarcoma: Emerging Strategies and Promising Progress. Pharmaceutics 2024; 16:251. [PMID: 38399305 PMCID: PMC10892906 DOI: 10.3390/pharmaceutics16020251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2023] [Revised: 01/20/2024] [Accepted: 01/31/2024] [Indexed: 02/25/2024] Open
Abstract
Immunosuppressive elements within the tumor microenvironment are the primary drivers of tumorigenesis and malignant advancement. The presence, as well as the crosstalk between myeloid-derived suppressor cells (MDSCs), osteosarcoma-associated macrophages (OS-Ms), regulatory T cells (Tregs), and endothelial cells (ECs) with osteosarcoma cells cause the poor prognosis of OS. In addition, the consequent immunosuppressive factors favor the loss of treatment potential. Nanoparticles offer a means to dynamically and locally manipulate immuno-nanoparticles, which present a promising strategy for transforming OS-TME. Additionally, chimeric antigen receptor (CAR) technology is effective in combating OS. This review summarizes the essential mechanisms of immunosuppressive cells in the OS-TME and the current immune-associated strategies. The last part highlights the limitations of existing therapies and offers insights into future research directions.
Collapse
Affiliation(s)
- Shigao Cheng
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Orthopedics, Hunan Loudi Central Hospital, Loudi 417000, China
| | - Huiyuan Wang
- Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 200031, China
| | - Xuejia Kang
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, Auburn, AL 36849, USA
| | - Hui Zhang
- Laboratory of Stem Cell and Tissue Engineering, Orthopedic Research Institute, Department of Orthopedics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
43
|
Devesa JM, Zbar AP, Pescatori M, Ballestero A. Whither the coloproctologist of the future? Returning to the kindred spirit of the barber-surgeon. Tech Coloproctol 2024; 28:26. [PMID: 38236438 DOI: 10.1007/s10151-023-02894-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2024]
Affiliation(s)
- J M Devesa
- Colorectal Unit, Hospital Ruber Internacional, C/La Maso, 38, 28034, Madrid, Spain.
| | - A P Zbar
- Department of Neuroscience and Anatomy, University of Melbourne Australia, Melbourne, Australia
| | - M Pescatori
- Coloproctology Units, Parioli Clinic Rome and Cobellis Clinic, Vallo Della Lucania, Italy
| | - A Ballestero
- Department of Surgery, Ramón y Cajal University Hospital Madrid, Madrid, Spain
| |
Collapse
|
44
|
Ali MB. Recent Advances in CAR-T Therapy. Cancer Control 2024; 31:10732748241263713. [PMID: 38910268 PMCID: PMC11265231 DOI: 10.1177/10732748241263713] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 05/26/2024] [Accepted: 06/05/2024] [Indexed: 06/25/2024] Open
Abstract
Chimeric antigen receptor T cell therapy is used to treat hematological malignancies which are refractory to standard therapy. It is a form of immunotherapy in which a patient's T cells are programmed to act against tumor cells. We discuss the process of manufacturing CAR-T cells, the common side effects of therapy, and the recent emerging risk of T-cell malignancies after treatment.
Collapse
|
45
|
Yuan Y, Fan J, Liang D, Wang S, Luo X, Zhu Y, Liu N, Xiang T, Zhao X. Cell surface GRP78-directed CAR-T cells are effective at treating human pancreatic cancer in preclinical models. Transl Oncol 2024; 39:101803. [PMID: 37897831 PMCID: PMC10630660 DOI: 10.1016/j.tranon.2023.101803] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 09/13/2023] [Accepted: 10/09/2023] [Indexed: 10/30/2023] Open
Abstract
Pancreatic cancer is a highly lethal solid malignancy with limited treatment options. Chimeric antigen receptor T (CAR-T) cell therapy has been successfully applied to treat hematological malignancies, but faces many challenges in solid tumors. One major challenge is the shortage of tumor-selective targets. Cell surface GRP78 (csGRP78) is highly expressed on various solid cancer cells including pancreatic cancer, but not normal cells, providing a potential target for CAR-T cell therapy in pancreatic cancer. Here, we demonstrated that csGRP78-directed CAR-T (GRP78-CAR-T) cells effectively killed the human pancreatic cancer cell lines Bxpc-3-luc, Aspc-1-luc and MIA PaCa-2-luc, and pancreatic cancer stem-like cells derived from Aspc-1-luc cells and MIA PaCa-2-luc cells in vitro by a luciferase-based cytotoxicity assay. Importantly, we showed that GRP78-CAR-T cells efficiently homed to and infiltrated Aspc-1-luc cell-derived xenografts and significantly inhibited pancreatic tumor growth in vivo by performing mouse xenograft experiments. Interestingly, we found that gemcitabine treatment increased csGRP78 expression in gemcitabine-resistant MIA PaCa-2-luc cells, and the coapplication of gemcitabine with GRP78-CAR-T cells led to a robust cytotoxic effect on these cells in vitro. Taken together, our study demonstrates that csGRP78-directed CAR-T cells, alone or in combination with chemotherapy, selectively and efficiently target csGRP78-expressing pancreatic cancer cells to suppress pancreatic tumor growth.
Collapse
Affiliation(s)
- Yuncang Yuan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jiawei Fan
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Dandan Liang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Shijie Wang
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xu Luo
- Development and Application of Human Major Disease Monkey Model Key Laboratory of Sichuan Province, Sichuan Hengshu Bio-Technology Co., Ltd., Yibin 644600, China
| | - Yongjie Zhu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Nan Liu
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Tingxiu Xiang
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing 400030, China.
| | - Xudong Zhao
- Laboratory of Animal Tumor Models, Frontiers Science Center for Disease-Related Molecular Network, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China.
| |
Collapse
|
46
|
Pessach I, Nagler A. Leukapheresis for CAR-T cell production and therapy. Transfus Apher Sci 2023; 62:103828. [PMID: 37838564 DOI: 10.1016/j.transci.2023.103828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2023]
Abstract
Chimeric antigen receptor (CAR) T-cell therapy is an effective, individualized immunotherapy, and novel treatment for hematologic malignancies. Six commercial CAR-T cell products are currently approved for lymphatic malignancies and multiple myeloma. In addition, an increasing number of clinical centres produce CAR-T cells on-site, which enable the administration of CAR-T cells on site. The CAR-T cell products are either fresh or cryopreserved. Manufacturing CAR-T cells is a complicated process that begins with leukapheresis to obtain T cells from the patient's peripheral blood. An optimal leukapheresis product is crucial step for a successful CAR-T cell therapy; therefore, it is imperative to understand the factors that may affect the quality or T cells. The leukapheresis for CAR-T cell production is well tolerated and safe for both paediatric and adult patients and CAR-Τ cell therapy presents high clinical response rate in many studies. CAR-T cell therapy is under continuous improvement, and it has transformed into an almost standard procedure in clinical haematology and stem cell transplantation facilities that provide both autologous and allogeneic stem cell transplantations. In patients suffering from advanced haematological malignancies, CAR-T cell therapy shows incredible antitumor efficacy. Even after a single infusion of autologous CD19-targeting CAR-T cells in patients with relapsed or refractory diffuse large B cell lymphoma (DLBCL) and acute lymphoblastic leukaemia (ALL), long lasting remission is observed, and a fraction of the patients are being cured. Future novel constructs are being developed with better T cell persistence and better expansion. New next-generation CAR-T cells are currently designed to avoid toxicities such as cytokine release syndrome and neurotoxicity.
Collapse
Affiliation(s)
- Ilias Pessach
- Hematology Department, Athens Medical Center, Athens, Greece
| | - Arnon Nagler
- Hematology Division, Chaim Sheba Medical Center, Israel.
| |
Collapse
|
47
|
Karsten H, Matrisch L, Cichutek S, Fiedler W, Alsdorf W, Block A. Broadening the horizon: potential applications of CAR-T cells beyond current indications. Front Immunol 2023; 14:1285406. [PMID: 38090582 PMCID: PMC10711079 DOI: 10.3389/fimmu.2023.1285406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 11/10/2023] [Indexed: 12/18/2023] Open
Abstract
Engineering immune cells to treat hematological malignancies has been a major focus of research since the first resounding successes of CAR-T-cell therapies in B-ALL. Several diseases can now be treated in highly therapy-refractory or relapsed conditions. Currently, a number of CD19- or BCMA-specific CAR-T-cell therapies are approved for acute lymphoblastic leukemia (ALL), diffuse large B-cell lymphoma (DLBCL), mantle cell lymphoma (MCL), multiple myeloma (MM), and follicular lymphoma (FL). The implementation of these therapies has significantly improved patient outcome and survival even in cases with previously very poor prognosis. In this comprehensive review, we present the current state of research, recent innovations, and the applications of CAR-T-cell therapy in a selected group of hematologic malignancies. We focus on B- and T-cell malignancies, including the entities of cutaneous and peripheral T-cell lymphoma (T-ALL, PTCL, CTCL), acute myeloid leukemia (AML), chronic myeloid leukemia (CML), chronic lymphocytic leukemia (CLL), classical Hodgkin-Lymphoma (HL), Burkitt-Lymphoma (BL), hairy cell leukemia (HCL), and Waldenström's macroglobulinemia (WM). While these diseases are highly heterogenous, we highlight several similarly used approaches (combination with established therapeutics, target depletion on healthy cells), targets used in multiple diseases (CD30, CD38, TRBC1/2), and unique features that require individualized approaches. Furthermore, we focus on current limitations of CAR-T-cell therapy in individual diseases and entities such as immunocompromising tumor microenvironment (TME), risk of on-target-off-tumor effects, and differences in the occurrence of adverse events. Finally, we present an outlook into novel innovations in CAR-T-cell engineering like the use of artificial intelligence and the future role of CAR-T cells in therapy regimens in everyday clinical practice.
Collapse
Affiliation(s)
- Hendrik Karsten
- Faculty of Medicine, University of Hamburg, Hamburg, Germany
| | - Ludwig Matrisch
- Department of Rheumatology and Clinical Immunology, University Medical Center Schleswig-Holstein, Lübeck, Germany
- Faculty of Medicine, University of Lübeck, Lübeck, Germany
| | - Sophia Cichutek
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Walter Fiedler
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Winfried Alsdorf
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| | - Andreas Block
- Department of Oncology, Hematology and Bone Marrow Transplantation with Division of Pneumology, University Medical Center Eppendorf, Hamburg, Germany
| |
Collapse
|
48
|
Varaprasad GL, Gupta VK, Prasad K, Kim E, Tej MB, Mohanty P, Verma HK, Raju GSR, Bhaskar L, Huh YS. Recent advances and future perspectives in the therapeutics of prostate cancer. Exp Hematol Oncol 2023; 12:80. [PMID: 37740236 PMCID: PMC10517568 DOI: 10.1186/s40164-023-00444-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Accepted: 09/10/2023] [Indexed: 09/24/2023] Open
Abstract
Prostate cancer (PC) is one of the most common cancers in males and the fifth leading reason of death. Age, ethnicity, family history, and genetic defects are major factors that determine the aggressiveness and lethality of PC. The African population is at the highest risk of developing high-grade PC. It can be challenging to distinguish between low-risk and high-risk patients due to the slow progression of PC. Prostate-specific antigen (PSA) is a revolutionary discovery for the identification of PC. However, it has led to an increase in over diagnosis and over treatment of PC in the past few decades. Even if modifications are made to the standard PSA testing, the specificity has not been found to be significant. Our understanding of PC genetics and proteomics has improved due to advances in different fields. New serum, urine, and tissue biomarkers, such as PC antigen 3 (PCA3), have led to various new diagnostic tests, such as the prostate health index, 4K score, and PCA3. These tests significantly reduce the number of unnecessary and repeat biopsies performed. Chemotherapy, radiotherapy, and prostatectomy are standard treatment options. However, newer novel hormone therapy drugs with a better response have been identified. Androgen deprivation and hormonal therapy are evolving as new and better options for managing hormone-sensitive and castration-resistant PC. This review aimed to highlight and discuss epidemiology, various risk factors, and developments in PC diagnosis and treatment regimens.
Collapse
Affiliation(s)
- Ganji Lakshmi Varaprasad
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Vivek Kumar Gupta
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Kiran Prasad
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Eunsu Kim
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea
| | - Mandava Bhuvan Tej
- Department of Health Care Informatics, Sacred Heart University, 5151 Park Avenue, Fair Fields, CT, 06825, USA
| | - Pratik Mohanty
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India
| | - Henu Kumar Verma
- Department of Immunopathology, Institute of Lungs Health and Immunity, Helmholtz Zentrum, 85764, Neuherberg, Munich, Germany
| | - Ganji Seeta Rama Raju
- Department of Energy and Materials Engineering, Dongguk University-Seoul, Seoul, 04620, Republic of Korea.
| | - Lvks Bhaskar
- Department of Zoology, Guru Ghasidas Vishwavidyalaya, Bilaspur, India.
| | - Yun Suk Huh
- Department of Biological Sciences and Bioengineering, Biohybrid Systems Research Center (BSRC), Inha University, Incheon, 22212, Republic of Korea.
| |
Collapse
|
49
|
Dagar G, Gupta A, Masoodi T, Nisar S, Merhi M, Hashem S, Chauhan R, Dagar M, Mirza S, Bagga P, Kumar R, Akil ASAS, Macha MA, Haris M, Uddin S, Singh M, Bhat AA. Correction: Harnessing the potential of CAR-T cell therapy: progress, challenges, and future directions in hematological and solid tumor treatments. J Transl Med 2023; 21:571. [PMID: 37626347 PMCID: PMC10463575 DOI: 10.1186/s12967-023-04404-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/27/2023] Open
Affiliation(s)
- Gunjan Dagar
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Ashna Gupta
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Tariq Masoodi
- Laboratory of Cancer Immunology and Genetics, Sidra Medicine, Doha, Qatar
| | - Sabah Nisar
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Maysaloun Merhi
- National Center for Cancer Care and Research, Hamad Medical Corporation, 3050, Doha, Qatar
| | - Sheema Hashem
- Department of Human Genetics, Sidra Medicine, Doha, Qatar
| | - Ravi Chauhan
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India
| | - Manisha Dagar
- Shiley Eye Institute, University of California San Diego, San Diego, CA, USA
| | - Sameer Mirza
- Department of Chemistry, College of Sciences, United Arab Emirates University, Al-Ain, United Arab Emirates
| | - Puneet Bagga
- Department of Diagnostic Imaging, St. Jude Children's Research Hospital, Memphis, TN, USA
| | - Rakesh Kumar
- School of Biotechnology, Shri Mata Vaishno Devi University, Katra, Jammu and Kashmir, 182320, India
| | - Ammira S Al-Shabeeb Akil
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar
| | - Muzafar A Macha
- Watson-Crick Centre for Molecular Medicine, Islamic University of Science and Technology, Pulwama, Jammu and Kashmir, India
| | - Mohammad Haris
- Center for Advanced Metabolic Imaging in Precision Medicine, Department of Radiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, USA
- Laboratory Animal Research Center, Qatar University, Doha, Qatar
| | - Shahab Uddin
- Laboratory Animal Research Center, Qatar University, Doha, Qatar.
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, P.O. Box 3050, Doha, Qatar.
| | - Mayank Singh
- Department of Medical Oncology (Lab.), Dr. BRAIRCH, All India Institute of Medical Sciences (AIIMS), New Delhi, Delhi, 110029, India.
| | - Ajaz A Bhat
- Department of Human Genetics-Precision Medicine in Diabetes, Obesity and Cancer Program, Sidra Medicine, P.O. Box 26999, Doha, Qatar.
| |
Collapse
|