1
|
Mijušković A, Wray S, Arrowsmith S. A hydrogen sulphide-releasing non-steroidal anti-inflammatory, ATB-346, significantly attenuates human myometrial contractions. Pharmacol Rep 2024:10.1007/s43440-024-00643-z. [PMID: 39231921 DOI: 10.1007/s43440-024-00643-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 08/09/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024]
Abstract
BACKGROUND Spontaneous preterm birth is the leading cause of perinatal morbidity and mortality. Tocolytics are drugs used to inhibit uterine contractions in cases of imminent preterm birth, however, few are effective in stopping labour once initiated and all have side effects. Combination approaches involving drugs that target multiple signalling pathways that regulate contractions may increase efficacy, reduce dosage and improve tolerability. Both non-steroidal anti-inflammatory drugs (NSAIDs) and hydrogen sulphide (H2S)-releasing compounds can reduce myometrial contractions. In a novel approach we evaluated the tocolytic properties of ATB-346-a H2S-releasing derivative of the NSAID naproxen, shown clinically to reduce pain and inflammation in arthritis. METHODS Using organ baths, paired strips of human myometrium were exposed to increasing concentrations of ATB-346, or equimolar concentrations (10µM and 30µM) of the parent drug, naproxen, or the H2S-releasing moiety, 4-hydroxy-thiobenzamide (TBZ), alone. The ability of ATB-346 versus the individual components of ATB-346 to decrease ex vivo spontaneous contractions was investigated, and the potency was compared to a known H2S donor, Na2S. RESULTS Acute application of Na2S produced a concentration-dependent decrease in force amplitude and force integral (area under the curve) of contraction. ATB-346 produced a more profound decrease in contraction compared to equimolar concentrations of naproxen or TZB alone and was more potent than the equivalent concentration of Na2S. CONCLUSIONS ATB-346 exhibits potent tocolytic properties in human myometrium. These exciting results call for further exploration of ATB-346, with a view to repurposing this or similar drugs as novel therapies for delaying preterm labour.
Collapse
Affiliation(s)
- Ana Mijušković
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
- Department of Physiology, Institute for Biological Research 'Siniša Stanković', University of Belgrade, Belgrade, Serbia
| | - Susan Wray
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Sarah Arrowsmith
- Harris-Wellbeing Research Centre, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK.
- Department of Life Sciences, Faculty of Science and Engineering, Manchester Metropolitan University, John Dalton Building, Chester Street, Manchester, M1 5GD, UK.
| |
Collapse
|
2
|
Liang XY, Wang Y, Zhu YW, Zhang YX, Yuan H, Liu YF, Jin YQ, Gao W, Ren ZG, Ji XY, Wu DD. Role of hydrogen sulfide in dermatological diseases. Nitric Oxide 2024; 150:18-26. [PMID: 38971520 DOI: 10.1016/j.niox.2024.07.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/30/2024] [Accepted: 07/04/2024] [Indexed: 07/08/2024]
Abstract
Hydrogen sulfide (H2S), together with carbon monoxide (CO) and nitric oxide (NO), is recognized as a vital gasotransmitter. H2S is biosynthesized by enzymatic pathways in the skin and exerts significant physiological effects on a variety of biological processes, such as apoptosis, modulation of inflammation, cellular proliferation, and regulation of vasodilation. As a major health problem, dermatological diseases affect a large proportion of the population every day. It is urgent to design and develop effective drugs to deal with dermatological diseases. Dermatological diseases can arise from a multitude of etiologies, including neoplastic growth, infectious agents, and inflammatory processes. The abnormal metabolism of H2S is associated with many dermatological diseases, such as melanoma, fibrotic diseases, and psoriasis, suggesting its therapeutic potential in the treatment of these diseases. In addition, therapies based on H2S donors are being developed to treat some of these conditions. In the review, we discuss recent advances in the function of H2S in normal skin, the role of altering H2S metabolism in dermatological diseases, and the therapeutic potential of diverse H2S donors for the treatment of dermatological diseases.
Collapse
Affiliation(s)
- Xiao-Yi Liang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yan Wang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yi-Wen Zhu
- School of Clinical Medicine, Henan University, Kaifeng, Henan, 475004, China
| | - Yan-Xia Zhang
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Hang Yuan
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Ya-Fang Liu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Yu-Qing Jin
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Wei Gao
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China
| | - Zhi-Guang Ren
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China.
| | - Xin-Ying Ji
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Faculty of Basic Medical Subjects, Shu-Qing Medical College of Zhengzhou, Zhengzhou, Henan 450064, China.
| | - Dong-Dong Wu
- Henan International Joint Laboratory for Nuclear Protein Regulation, School of Basic Medical Sciences, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China; Kaifeng Key Laboratory of Infectious Diseases and Biosafety, School of Basic Medical Sciences, Henan University, Kaifeng, Henan, 475004, China; Department of Stomatology, Huaihe Hospital of Henan University, School of Stomatology, Henan University, Kaifeng, Henan, 475004, China.
| |
Collapse
|
3
|
Campolo M, Esposito E, Ahmad A, Di Paola R, Paterniti I, Cordaro M, Bruschetta G, Wallace JL, Cuzzocrea S. Correction: Hydrogen sulfide-releasing cyclooxygenase inhibitor ATB-346 enhances motor function and reduces cortical lesion volume following traumatic brain injury in mice. J Neuroinflammation 2024; 21:139. [PMID: 38807141 PMCID: PMC11131295 DOI: 10.1186/s12974-024-03131-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/13/2024] [Indexed: 05/30/2024] Open
Affiliation(s)
- Michela Campolo
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Emanuela Esposito
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Akbar Ahmad
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Rosanna Di Paola
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Irene Paterniti
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Marika Cordaro
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - Giuseppe Bruschetta
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy
| | - John L Wallace
- Inflammation Research Network, University of Calgary, 3330 Hospital Drive NW, Calgary, AB, T2N 4 N1, Canada
| | - Salvatore Cuzzocrea
- Department of Biological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres, 31-98166, Messina, Italy.
- Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester, 29 Grafton Street Manchester, Manchester, M13 9WU, UK.
| |
Collapse
|
4
|
Slade L, Deane CS, Szewczyk NJ, Etheridge T, Whiteman M. Hydrogen sulfide supplementation as a potential treatment for primary mitochondrial diseases. Pharmacol Res 2024; 203:107180. [PMID: 38599468 DOI: 10.1016/j.phrs.2024.107180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 04/06/2024] [Accepted: 04/06/2024] [Indexed: 04/12/2024]
Abstract
Primary mitochondrial diseases (PMD) are amongst the most common inborn errors of metabolism causing fatal outcomes within the first decade of life. With marked heterogeneity in both inheritance patterns and physiological manifestations, these conditions present distinct challenges for targeted drug therapy, where effective therapeutic countermeasures remain elusive within the clinic. Hydrogen sulfide (H2S)-based therapeutics may offer a new option for patient treatment, having been proposed as a conserved mitochondrial substrate and post-translational regulator across species, displaying therapeutic effects in age-related mitochondrial dysfunction and neurodegenerative models of mitochondrial disease. H2S can stimulate mitochondrial respiration at sites downstream of common PMD-defective subunits, augmenting energy production, mitochondrial function and reducing cell death. Here, we highlight the primary signalling mechanisms of H2S in mitochondria relevant for PMD and outline key cytoprotective proteins/pathways amenable to post-translational restoration via H2S-mediated persulfidation. The mechanisms proposed here, combined with the advent of potent mitochondria-targeted sulfide delivery molecules, could provide a framework for H2S as a countermeasure for PMD disease progression.
Collapse
Affiliation(s)
- Luke Slade
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK; Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V, Dortmund, Germany
| | - Colleen S Deane
- Human Development & Health, Faculty of Medicine, University of Southampton, Southampton General Hospital, Southampton, UK
| | - Nathaniel J Szewczyk
- Medical Research Council Versus Arthritis Centre for Musculoskeletal Ageing Research, Royal Derby Hospital, University of Nottingham, Derby DE22 3DT, United Kingdom; Ohio Musculoskeletal and Neurologic Institute, Heritage College of Osteopathic Medicine, Ohio University, Athens, Ohio 45701, Greece
| | - Timothy Etheridge
- Public Health and Sport Sciences, Faculty of Health and Life Sciences, University of Exeter, Exeter EX1 2LU, United Kingdom.
| | - Matthew Whiteman
- University of Exeter Medical School, University of Exeter, St. Luke's Campus, Exeter EX1 2LU, UK.
| |
Collapse
|
5
|
Interdonato L, Marino Y, Impellizzeri D, D’Amico R, Siracusa R, Fusco R, Cammilleri G, Pantano L, Modafferi S, Abdelhameed AS, Fritsch T, Rashan LJ, Cuzzocrea S, Calabrese V, Cordaro M, Di Paola R. Autophagy machinery plays an essential role in traumatic brain injury-induced apoptosis and its related behavioral abnormalities in mice: focus on Boswellia Sacra gum resin. Front Physiol 2024; 14:1320960. [PMID: 38250661 PMCID: PMC10797063 DOI: 10.3389/fphys.2023.1320960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2023] [Accepted: 12/15/2023] [Indexed: 01/23/2024] Open
Abstract
Traumatic brain injury (TBI) is described as a structural damage or physiological disturbance of brain function that occurs after trauma and causes disability or death in people of all ages. New treatment targets for TBI are being explored because current medicines are frequently ineffectual and poorly tolerated. There is increasing evidence that following TBI, there are widespread changes in autophagy-related proteins in both experimental and clinical settings. The current study investigated if Boswellia Sacra Gum Resin (BSR) treatment (500 mg/kg) could modulate post-TBI neuronal autophagy and protein expression, as well as whether BSR could markedly improve functional recovery in a mouse model of TBI. Taken together our results shows for the first time that BSR limits histological alteration, lipid peroxidation, antioxidant, cytokines release and autophagic flux alteration induced by TBI.
Collapse
Affiliation(s)
- Livia Interdonato
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ylenia Marino
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D’Amico
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Gaetano Cammilleri
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Licia Pantano
- Chemistry Department, Istituto Zooprofilattico Sperimentale Della Sicilia, Palermo, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Ali S. Abdelhameed
- Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | | | - Luay J. Rashan
- Medicinal Plants Division, Research Center, Dhofar University, Salalah, Oman
| | - Salvatore Cuzzocrea
- Department of Chemical and Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
6
|
Impellizzeri D, Siracusa R, D'Amico R, Fusco R, Cordaro M, Cuzzocrea S, Di Paola R. Açaí berry ameliorates cognitive impairment by inhibiting NLRP3/ASC/CASP axis in STZ-induced diabetic neuropathy in mice. J Neurophysiol 2023; 130:671-683. [PMID: 37584088 DOI: 10.1152/jn.00239.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/07/2023] [Accepted: 08/07/2023] [Indexed: 08/17/2023] Open
Abstract
Diabetes complications such as diabetic peripheral neuropathy (DPN) are linked to morbidity and mortality. Peripheral nerve damages in DPN are accompanied by discomfort, weakness, and sensory loss. Some drugs may demonstrate their therapeutic promise by reducing neuroinflammation, but they have side effects. Based on these considerations, the objective of this study was to examine the beneficial properties of açaí berry in a mouse model of DPN generated by injection of streptozotocin (STZ). Açaí berry was given orally to diabetic and control mice every day beginning 2 wk after STZ injection. The animals were euthanized after 16 wk, and tissues from the spinal cord and sciatic nerve and urine were taken. Our findings showed that daily treatment of açaí berry at a dose of 500 mg/kg was able to prevent behavioral changes as well as mast cell activation and nerve deterioration via NOD-like receptor family pyrin-domain-containing-3 (NLRP3)/apoptosis-associated speck-like protein containing a card (ASC)/caspase (CASP) regulation after diabetes induction.NEW & NOTEWORTHY Our research shows that açaí berry reduces mast cells degranulation and histological damage in diabetic neuropathy, improves physiological defense against reactive oxygen species, modulates the NLRP3/ASC/CASP axis, and ameliorates inflammation and oxidative stress. Diet could help treatment for diabetic peripheral neuropathy.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, Messina, Italy
| |
Collapse
|
7
|
Rodkin S, Nwosu C, Sannikov A, Raevskaya M, Tushev A, Vasilieva I, Gasanov M. The Role of Hydrogen Sulfide in Regulation of Cell Death following Neurotrauma and Related Neurodegenerative and Psychiatric Diseases. Int J Mol Sci 2023; 24:10742. [PMID: 37445920 DOI: 10.3390/ijms241310742] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 06/15/2023] [Accepted: 06/22/2023] [Indexed: 07/15/2023] Open
Abstract
Injuries of the central (CNS) and peripheral nervous system (PNS) are a serious problem of the modern healthcare system. The situation is complicated by the lack of clinically effective neuroprotective drugs that can protect damaged neurons and glial cells from death. In addition, people who have undergone neurotrauma often develop mental disorders and neurodegenerative diseases that worsen the quality of life up to severe disability and death. Hydrogen sulfide (H2S) is a gaseous signaling molecule that performs various cellular functions in normal and pathological conditions. However, the role of H2S in neurotrauma and mental disorders remains unexplored and sometimes controversial. In this large-scale review study, we examined the various biological effects of H2S associated with survival and cell death in trauma to the brain, spinal cord, and PNS, and the signaling mechanisms underlying the pathogenesis of mental illnesses, such as cognitive impairment, encephalopathy, depression and anxiety disorders, epilepsy and chronic pain. We also studied the role of H2S in the pathogenesis of neurodegenerative diseases: Alzheimer's disease (AD) and Parkinson's disease (PD). In addition, we reviewed the current state of the art study of H2S donors as neuroprotectors and the possibility of their therapeutic uses in medicine. Our study showed that H2S has great neuroprotective potential. H2S reduces oxidative stress, lipid peroxidation, and neuroinflammation; inhibits processes associated with apoptosis, autophagy, ferroptosis and pyroptosis; prevents the destruction of the blood-brain barrier; increases the expression of neurotrophic factors; and models the activity of Ca2+ channels in neurotrauma. In addition, H2S activates neuroprotective signaling pathways in psychiatric and neurodegenerative diseases. However, high levels of H2S can cause cytotoxic effects. Thus, the development of H2S-associated neuroprotectors seems to be especially relevant. However, so far, all H2S modulators are at the stage of preclinical trials. Nevertheless, many of them show a high neuroprotective effect in various animal models of neurotrauma and related disorders. Despite the fact that our review is very extensive and detailed, it is well structured right down to the conclusions, which will allow researchers to quickly find the proper information they are interested in.
Collapse
Affiliation(s)
- Stanislav Rodkin
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Chizaram Nwosu
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Sannikov
- Department of Psychiatry, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| | - Margarita Raevskaya
- Department of Bioengineering, Faculty of Bioengineering and Veterinary Medicine, Don State Technical University, 344000 Rostov-on-Don, Russia
| | - Alexander Tushev
- Neurosurgical Department, Rostov State Medical University Clinic, 344022 Rostov-on-Don, Russia
| | - Inna Vasilieva
- N.V. Sklifosovsky Institute of Clinical Medicine, Department of Polyclinic Therapy, I.M. Sechenov First Moscow State Medical University, 119435 Moscow, Russia
| | - Mitkhat Gasanov
- Department of Internal Diseases #1, Rostov State Medical University, 344022 Rostov-on-Don, Russia
| |
Collapse
|
8
|
Spalloni A, de Stefano S, Gimenez J, Greco V, Mercuri NB, Chiurchiù V, Longone P. The Ying and Yang of Hydrogen Sulfide as a Paracrine/Autocrine Agent in Neurodegeneration: Focus on Amyotrophic Lateral Sclerosis. Cells 2023; 12:1691. [PMID: 37443723 PMCID: PMC10341301 DOI: 10.3390/cells12131691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/15/2023] Open
Abstract
Ever since its presence was reported in the brain, the nature and role of hydrogen sulfide (H2S) in the Central Nervous System (CNS) have changed. Consequently, H2S has been elected as the third gas transmitter, along with carbon monoxide and nitric oxide, and a number of studies have focused on its neuromodulatory and protectant functions in physiological conditions. The research on H2S has highlighted its many facets in the periphery and in the CNS, and its role as a double-faced compound, switching from protective to toxic depending on its concentration. In this review, we will focus on the bell-shaped nature of H2S as an angiogenic factor and as a molecule released by glial cells (mainly astrocytes) and non-neuronal cells acting on the surrounding environment (paracrine) or on the releasing cells themselves (autocrine). Finally, we will discuss its role in Amyotrophic Lateral Sclerosis, a paradigm of a neurodegenerative disease.
Collapse
Affiliation(s)
- Alida Spalloni
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Susanna de Stefano
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
| | - Juliette Gimenez
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| | - Viviana Greco
- Department of Basic Biotechnological Sciences, Intensivological and Perioperative Clinics, Università Cattolica del Sacro Cuore, 00168 Rome, Italy
- Unity of Chemistry, Biochemistry and Clinical Molecular Biology, Department of Diagnostic and Laboratory Medicine, Fondazione Policlinico Universitario A. Gemelli IRCCS, 00168 Rome, Italy
| | - Nicola B. Mercuri
- Department of Systems Medicine, Università di Roma Tor Vergata, 00133 Rome, Italy;
- Laboratory of Experimental Neurology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Valerio Chiurchiù
- Institute of Translational Pharmacology, National Research Council (CNR), 00185 Rome, Italy;
- Laboratory of Resolution of Neuroinflammation, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy
| | - Patrizia Longone
- Laboratory of Molecular Neurobiology, Experimental Neurosciences, IRCCS Fondazione Santa Lucia, 00179 Rome, Italy; (S.d.S.); (J.G.); (P.L.)
| |
Collapse
|
9
|
Tripathi SJ, Chakraborty S, Miller E, Pieper AA, Paul BD. Hydrogen sulfide signalling in neurodegenerative diseases. Br J Pharmacol 2023:10.1111/bph.16170. [PMID: 37338307 PMCID: PMC10730776 DOI: 10.1111/bph.16170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 06/05/2023] [Accepted: 06/09/2023] [Indexed: 06/21/2023] Open
Abstract
The gaseous neurotransmitter hydrogen sulfide (H2 S) exerts neuroprotective efficacy in the brain via post-translational modification of cysteine residues by sulfhydration, also known as persulfidation. This process is comparable in biological impact to phosphorylation and mediates a variety of signalling events. Unlike conventional neurotransmitters, H2 S cannot be stored in vesicles due to its gaseous nature. Instead, it is either locally synthesized or released from endogenous stores. Sulfhydration affords both specific and general neuroprotective effects and is critically diminished in several neurodegenerative disorders. Conversely, some forms of neurodegenerative disease are linked to excessive cellular H2 S. Here, we review the signalling roles of H2 S across the spectrum of neurodegenerative diseases, including Huntington's disease, Parkinson's disease, Alzheimer's disease, Down syndrome, traumatic brain injury, the ataxias, and amyotrophic lateral sclerosis, as well as neurodegeneration generally associated with ageing.
Collapse
Affiliation(s)
- Sunil Jamuna Tripathi
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Suwarna Chakraborty
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Emiko Miller
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center; Cleveland, Ohio, USA
- School of Medicine, Institute for Transformative Molecular Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Pathology, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Department of Neuroscience, School of Medicine, Case Western Reserve University, Cleveland, Ohio, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, Ohio, USA
| | - Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
- Lieber Institute for Brain Development, Baltimore, Maryland, USA
| |
Collapse
|
10
|
Genovese T, Duranti A, Monaco F, Siracusa R, Fusco R, Impellizzeri D, D’Amico R, Cordaro M, Cuzzocrea S, Di Paola R. Inhibition of Fatty Acid Amide Hydrolase (FAAH) Regulates NF-kb Pathways Reducing Bleomycin-Induced Chronic Lung Inflammation and Pulmonary Fibrosis. Int J Mol Sci 2023; 24:10125. [PMID: 37373275 PMCID: PMC10298572 DOI: 10.3390/ijms241210125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/09/2023] [Accepted: 06/10/2023] [Indexed: 06/29/2023] Open
Abstract
The deadly interstitial lung condition known as idiopathic pulmonary fibrosis (IPF) worsens over time and for no apparent reason. The traditional therapy approaches for IPF, which include corticosteroids and immunomodulatory drugs, are often ineffective and can have noticeable side effects. The endocannabinoids are hydrolyzed by a membrane protein called fatty acid amide hydrolase (FAAH). Increasing endogenous levels of endocannabinoid by pharmacologically inhibiting FAAH results in numerous analgesic advantages in a variety of experimental models for pre-clinical pain and inflammation. In our study, we mimicked IPF by administering intratracheal bleomycin, and we administered oral URB878 at a dose of 5 mg/kg. The histological changes, cell infiltration, pro-inflammatory cytokine production, inflammation, and nitrosative stress caused by bleomycin were all reduced by URB878. Our data clearly demonstrate for the first time that the inhibition of FAAH activity was able to counteract not only the histological alteration bleomycin-induced but also the cascade of related inflammatory events.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino Carlo Bo, Piazza del Rinascimento, 6, 61029 Urbino, Italy
| | - Francesco Monaco
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy (R.S.); (D.I.)
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy;
| |
Collapse
|
11
|
Paul BD, Pieper AA. Protective Roles of Hydrogen Sulfide in Alzheimer's Disease and Traumatic Brain Injury. Antioxidants (Basel) 2023; 12:antiox12051095. [PMID: 37237961 DOI: 10.3390/antiox12051095] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/06/2023] [Accepted: 05/09/2023] [Indexed: 05/28/2023] Open
Abstract
The gaseous signaling molecule hydrogen sulfide (H2S) critically modulates a plethora of physiological processes across evolutionary boundaries. These include responses to stress and other neuromodulatory effects that are typically dysregulated in aging, disease, and injury. H2S has a particularly prominent role in modulating neuronal health and survival under both normal and pathologic conditions. Although toxic and even fatal at very high concentrations, emerging evidence has also revealed a pronounced neuroprotective role for lower doses of endogenously generated or exogenously administered H2S. Unlike traditional neurotransmitters, H2S is a gas and, therefore, is unable to be stored in vesicles for targeted delivery. Instead, it exerts its physiologic effects through the persulfidation/sulfhydration of target proteins on reactive cysteine residues. Here, we review the latest discoveries on the neuroprotective roles of H2S in Alzheimer's disease (AD) and traumatic brain injury, which is one the greatest risk factors for AD.
Collapse
Affiliation(s)
- Bindu D Paul
- Department of Pharmacology and Molecular Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- The Solomon H. Snyder Department of Neuroscience, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Department of Psychiatry and Behavioral Sciences, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Lieber Institute for Brain Development, Baltimore, MD 21205, USA
| | - Andrew A Pieper
- Brain Health Medicines Center, Harrington Discovery Institute, University Hospitals Cleveland Medical Center, Cleveland, OH 44106, USA
- Department of Psychiatry, Case Western Reserve University, Cleveland, OH 44106, USA
- Geriatric Psychiatry, GRECC, Louis Stokes Cleveland VA Medical Center, Cleveland, OH 44106, USA
- Institute for Transformative Molecular Medicine, School of Medicine, Case Western Reserve University, Cleveland, OH 44106, USA
- Department of Pathology, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Department of Neuroscience, Case Western Reserve University, School of Medicine, Cleveland, OH 44106, USA
- Translational Therapeutics Core, Cleveland Alzheimer's Disease Research Center, Cleveland, OH 44106, USA
| |
Collapse
|
12
|
Huerta de la Cruz S, Santiago-Castañeda CL, Rodríguez-Palma EJ, Medina-Terol GJ, López-Preza FI, Rocha L, Sánchez-López A, Freeman K, Centurión D. Targeting hydrogen sulfide and nitric oxide to repair cardiovascular injury after trauma. Nitric Oxide 2022; 129:82-101. [PMID: 36280191 PMCID: PMC10644383 DOI: 10.1016/j.niox.2022.10.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/06/2022] [Accepted: 10/18/2022] [Indexed: 11/06/2022]
Abstract
The systemic cardiovascular effects of major trauma, especially neurotrauma, contribute to death and permanent disability in trauma patients and treatments are needed to improve outcomes. In some trauma patients, dysfunction of the autonomic nervous system produces a state of adrenergic overstimulation, causing either a sustained elevation in catecholamines (sympathetic storm) or oscillating bursts of paroxysmal sympathetic hyperactivity. Trauma can also activate innate immune responses that release cytokines and damage-associated molecular patterns into the circulation. This combination of altered autonomic nervous system function and widespread systemic inflammation produces secondary cardiovascular injury, including hypertension, damage to cardiac tissue, vascular endothelial dysfunction, coagulopathy and multiorgan failure. The gasotransmitters nitric oxide (NO) and hydrogen sulfide (H2S) are small gaseous molecules with potent effects on vascular tone regulation. Exogenous NO (inhaled) has potential therapeutic benefit in cardio-cerebrovascular diseases, but limited data suggests potential efficacy in traumatic brain injury (TBI). H2S is a modulator of NO signaling and autonomic nervous system function that has also been used as a drug for cardio-cerebrovascular diseases. The inhaled gases NO and H2S are potential treatments to restore cardio-cerebrovascular function in the post-trauma period.
Collapse
Affiliation(s)
- Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico; Department of Pharmacology, University of Vermont, Burlington, VT, USA.
| | | | - Erick J Rodríguez-Palma
- Neurobiology of Pain Laboratory, Departamento de Farmacobiología, Cinvestav, Sede Sur, Mexico City, Mexico.
| | | | | | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| | | | - Kalev Freeman
- Department of Emergency Medicine, University of Vermont, Burlington, VT, USA.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico.
| |
Collapse
|
13
|
Surface-fill H 2S-releasing silk fibroin hydrogel for brain repair through the repression of neuronal pyroptosis. Acta Biomater 2022; 154:259-274. [PMID: 36402296 DOI: 10.1016/j.actbio.2022.11.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 10/16/2022] [Accepted: 11/09/2022] [Indexed: 11/19/2022]
Abstract
Traumatic brain injury (TBI) remains the major cause of disability and mortality worldwide due to the persistent neuroinflammation and neuronal death induced by TBI. Among them, pyroptosis, a specific type of programmed cell death (PCD) triggered by inflammatory signals, plays a significant part in the pathological process after TBI. Inhibition of neuroinflammation and pyroptosis is considered a possible strategy for the treatment of TBI. In our previous study, exogenous hydrogen sulfide(H2S) exerted a neuroprotective effect after TBI. Here, we developed a surface-fill H2S-releasing silk fibroin (SF) hydrogel (H2S@SF hydrogel) to achieve small-dose local administration and avoid volatile and toxic side effects. We used a controlled cortical impact (CCI) to establish a mild TBI model in mice to examine the effect of H2S@SF hydrogel on TBI-induced pyroptosis. We found that H2S@SF hydrogel inhibited the expression of H2S synthase in neurons after TBI and significantly inhibited TBI-induced neuronal pyroptosis. In addition, immunofluorescence staining results showed that the necroptosis protein receptor-interacting serine/threonine-protein kinase 1 (RIPK1) partially colocalized with the pyroptosis protein Gasdermin D (GSDMD) in the same cells. H2S@SF hydrogel can also inhibit the expression of the necroptosis protein. Moreover, H2S@SF hydrogel also alleviates brain edema and the degree of neurodegeneration in the acute phase of TBI. The neuroprotective effect of H2S@SF hydrogel was further confirmed by wire-grip test, open field test, Morris water maze, beam balance test, radial arm maze, tail suspension, and forced swimming test. Lastly, we also measured spared tissue volume, reactive astrocytes and activated microglia to demonstrate H2S@SF hydrogel impacts on long-term prognosis in TBI. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel. STATEMENT OF SIGNIFICANCE: Silk fibroin (SF) hydrogel controls the release of hydrogen sulfide (H2S) to inhibit neuronal pyroptosis and neuroinflammation in injured brain tissue. In this study, we synthesized a surface-fill H2S-releasing silk fibroin hydrogel, which could slowly release H2S to reshape the homeostasis of endogenous H2S in injured neurons and inhibit neuronal pyroptosis in a mouse model of traumatic brain injury. Meanwhile, H2S@SF hydrogel could alleviate brain edema and the degree of neurodegeneration, improve motor dysfunction, anxious behavior and memory impairment caused by TBI, reduce tissue loss and ameliorate neuroinflammation. Our study provides a new theoretical basis for the treatment of H2S after TBI and the clinical application of H2S@SF hydrogel.
Collapse
|
14
|
López-Preza FI, Huerta de la Cruz S, Santiago-Castañeda C, Silva-Velasco DL, Beltran-Ornelas JH, Tapia-Martínez J, Sánchez-López A, Rocha L, Centurión D. Hydrogen sulfide prevents the vascular dysfunction induced by severe traumatic brain injury in rats by reducing reactive oxygen species and modulating eNOS and H 2S-synthesizing enzyme expression. Life Sci 2022; 312:121218. [PMID: 36427545 DOI: 10.1016/j.lfs.2022.121218] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 11/11/2022] [Accepted: 11/19/2022] [Indexed: 11/24/2022]
Abstract
AIM To assess the effects of subchronic administration with NaHS, an exogenous H2S donor, on TBI-induced hypertension and vascular impairments. MAIN METHODS Animals underweministration does not prevent the body weight loss but slightly imnt a lateral fluid percussion injury, and the hemodynamic variables were measured in vivo by plethysmograph method. The vascular function in vitro, the ROS levels by the DCFH-DA method and the expression of H2S-synthesizing enzymes and eNOS by Western blot were measured in isolated thoracic aortas at day 7 post-TBI. The effect of L-NAME on NaHS-induced effects in vascular function was evaluated. Brain water content was determined 7 days after trauma induction. Body weight was recorded throughout the experimental protocol, whereas the sensorimotor function was evaluated using the neuroscore test at days -1 (basal), 2, and 7 after the TBI induction. KEY FINDINGS TBI animals showed: 1) an increase in hemodynamic variables and ROS levels in aortas; 2) vascular dysfunction; 3) sensorimotor dysfunction; and 4) a decrease in body weight, the expression of H2S-synthesizing enzymes, and eNOS phosphorylation. Interestingly, NaHS subchronic administration (3.1 mg/kg; i.p.; every 24 h for six days) prevented the development of hypertension, vascular dysfunction, and oxidative stress. L-NAME abolished NaHS-induced effects. Furthermore, NaHS treatment restored H2S-synthesizing enzymes and eNOS phosphorylation with no effect on body weight, sensorimotor impairments, or brain water content. SIGNIFICANCE Taken together, these results demonstrate that H2S prevents TBI-induced hypertension by restoring vascular function and modulating ROS levels, H2S-synthesizing enzymes expression, and eNOS phosphorylation.
Collapse
Affiliation(s)
- Félix I López-Preza
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Saúl Huerta de la Cruz
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Cindy Santiago-Castañeda
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Diana L Silva-Velasco
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jesus H Beltran-Ornelas
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Jorge Tapia-Martínez
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Araceli Sánchez-López
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Czda. de los Tenorios 235, Col. Granjas-Coapa, Del. Tlalpan, C.P. 14330 Mexico City, Mexico.
| |
Collapse
|
15
|
Chronic Exposure to Endocrine Disruptor Vinclozolin Leads to Lung Damage Via Nrf2–Nf-kb Pathway Alterations. Int J Mol Sci 2022; 23:ijms231911320. [PMID: 36232623 PMCID: PMC9569619 DOI: 10.3390/ijms231911320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/16/2022] [Accepted: 09/21/2022] [Indexed: 11/24/2022] Open
Abstract
Endocrine-disrupting substances (EDS) are common and pervasive in our environment and pose a serious risk to both human and animal health. Endocrine-disrupting compounds (EDCs) have been associated with a variety of detrimental human health effects, including respiratory issues, as a result of their ability to disrupt cell physiology. Vinclozolin ((RS)-3-(3,5-Dichlorophenyl)-5-methyl-5-vinyloxazolidine-2,4-dione) is a common dicarboximide fungicide used to treat plant diseases. Several studies have analyzed the effects of vinclozolin exposure on the reproductive system, but less is known about its effect on other organs such as the lung. Mice were exposed for 28 days to orally administered vinclozolin at a dose of 100 mg/kg. Vinclozolin exposure induced histological alterations and collagen depositions in the lung. Additionally, vinclozolin induced inflammation and oxidative stress that led to lung apoptosis. Our study demonstrates for the first time that the toxicological effects of vinclozolin are not limited to the reproductive system but also involve other organs such as the lung.
Collapse
|
16
|
Siracusa R, Voltarelli VA, Trovato Salinaro A, Modafferi S, Cuzzocrea S, Calabrese EJ, Di Paola R, Otterbein LE, Calabrese V. NO, CO and H 2S: A Trinacrium of Bioactive Gases in the Brain. Biochem Pharmacol 2022; 202:115122. [PMID: 35679892 DOI: 10.1016/j.bcp.2022.115122] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 05/31/2022] [Accepted: 06/01/2022] [Indexed: 11/02/2022]
Abstract
Oxygen and carbon dioxide are time honored gases that have direct bearing on almost all life forms, but over the past thirty years, and in large part due to the Nobel Prize Award in Medicine for the elucidation of nitric oxide (NO) as a bioactive gas, the research and medical communities now recognize other gases as critical for survival. In addition to NO, hydrogen sulfide (H2S) and carbon monoxide (CO) have emerged as a triumvirate or Trinacrium of gases with analogous importance and that serve important homeostatic functions. Perhaps, one of the most intriguing aspects of these gases is the functional interaction between them, which is intimately linked by the enzyme systems that produce them. Despite the need to better understand NO, H2S and CO biology, the notion that these are environmental pollutants remains ever present. For this reason, incorporating the concept of hormesis becomes imperative and must be included in discussions when considering developing new therapeutics that involve these gases. While there is now an enormous literature base for each of these gasotransmitters, we provide here an overview of their respective physiologic roles in the brain.
Collapse
Affiliation(s)
- Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Vanessa A Voltarelli
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Sergio Modafferi
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Science, University of Messina, Messina, 98166, Italy
| | - Edward J Calabrese
- Department of Environmental Health Sciences, Morrill I, N344, University of Massachusetts, Amherst, MA 01003, USA
| | - Rosanna Di Paola
- Department of Veterinary Science, University of Messina, 98168, Messina, Italy
| | - Leo E Otterbein
- Department of Surgery, Harvard Medical School, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA.
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
| |
Collapse
|
17
|
Role of Bevacizumab on Vascular Endothelial Growth Factor in Apolipoprotein E Deficient Mice after Traumatic Brain Injury. Int J Mol Sci 2022; 23:ijms23084162. [PMID: 35456980 PMCID: PMC9024601 DOI: 10.3390/ijms23084162] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/06/2022] [Accepted: 04/08/2022] [Indexed: 02/01/2023] Open
Abstract
Traumatic brain injury (TBI) disrupts the blood–brain barrier (BBB). Vascular endothelial growth factor (VEGF) is believed to play a key role in TBI and to be overexpressed in the absence of apolipoprotein E (ApoE). Bevacizumab, a VEGF inhibitor, demonstrated neuroprotective activity in several models of TBI. However, the effects of bevacizumab on Apo-E deficient mice are not well studied. The present study aimed to evaluate VEGF expression and the effects of bevacizumab on BBB and neuroinflammation in ApoE−/− mice undergoing TBI. Furthermore, for the first time, this study evaluates the effects of bevacizumab on the long-term consequences of TBI, such as atherosclerosis. The results showed that motor deficits induced by controlled cortical impact (CCI) were accompanied by increased brain edema and VEGF expression. Treatment with bevacizumab significantly improved motor deficits and significantly decreased VEGF levels, as well as brain edema compared to the control group. Furthermore, the results showed that bevacizumab preserves the integrity of the BBB and reduces the neuroinflammation induced by TBI. Regarding the effects of bevacizumab on atherosclerosis, it was observed for the first time that its ability to modulate VEGF in the acute phase of head injury prevents the acceleration of atherosclerosis. Therefore, the present study demonstrates not only the neuroprotective activity of bevacizumab but also its action on the vascular consequences related to TBI.
Collapse
|
18
|
Gupta R, Sahu M, Tripathi R, Ambasta RK, Kumar P. Protein S-sulfhydration: Unraveling the prospective of hydrogen sulfide in the brain, vasculature and neurological manifestations. Ageing Res Rev 2022; 76:101579. [PMID: 35124235 DOI: 10.1016/j.arr.2022.101579] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 01/30/2022] [Accepted: 02/01/2022] [Indexed: 02/08/2023]
Abstract
Hydrogen sulfide (H2S) and hydrogen polysulfides (H2Sn) are essential regulatory signaling molecules generated by the entire body, including the central nervous system. Researchers have focused on the classical H2S signaling from the past several decades, whereas the last decade has shown the emergence of H2S-induced protein S-sulfhydration signaling as a potential therapeutic approach. Cysteine S-persulfidation is a critical paradigm of post-translational modification in the process of H2S signaling. Additionally, studies have shown the cross-relationship between S-sulfhydration and other cysteine-induced post-translational modifications, namely nitrosylation and carbonylation. In the central nervous system, S-sulfhydration is involved in the cytoprotection through various signaling pathways, viz. inflammatory response, oxidative stress, endoplasmic reticulum stress, atherosclerosis, thrombosis, and angiogenesis. Further, studies have demonstrated H2S-induced S-sulfhydration in regulating different biological processes, such as mitochondrial integrity, calcium homeostasis, blood-brain permeability, cerebral blood flow, and long-term potentiation. Thus, protein S-sulfhydration becomes a crucial regulatory molecule in cerebrovascular and neurodegenerative diseases. Herein, we first described the generation of intracellular H2S followed by the application of H2S in the regulation of cerebral blood flow and blood-brain permeability. Further, we described the involvement of S-sulfhydration in different biological and cellular functions, such as inflammatory response, mitochondrial integrity, calcium imbalance, and oxidative stress. Moreover, we highlighted the importance of S-sulfhydration in cerebrovascular and neurodegenerative diseases.
Collapse
|
19
|
Genovese T, Duranti A, D’Amico R, Fusco R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Cuzzocrea S, Di Paola R, Siracusa R, Cordaro M. Fatty Acid Amide Hydrolase (FAAH) Inhibition Plays a Key Role in Counteracting Acute Lung Injury. Int J Mol Sci 2022; 23:2781. [PMID: 35269926 PMCID: PMC8910911 DOI: 10.3390/ijms23052781] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Revised: 02/26/2022] [Accepted: 03/01/2022] [Indexed: 02/01/2023] Open
Abstract
Acute lung injury (ALI) is a group of lung illnesses characterized by severe inflammation, with no treatment. The fatty acid amide hydrolase (FAAH) enzyme is an integral membrane protein responsible for the hydrolysis of the main endocannabinoids, such as anandamide (AEA). In pre-clinical pain and inflammation models, increasing the endogenous levels of AEA and other bioactive fatty acid amides (FAAs) via genetic deletion or the pharmacological inhibition of FAAH produces many analgesic benefits in several different experimental models. To date, nobody has investigated the role of FAAH inhibition on an ALI mouse model. Mice were subjected to a carrageenan injection and treated orally 1 h after with the FAAH inhibitor URB878 dissolved in a vehicle consisting of 10% PEG-400, 10% Tween-80 and 80% saline at different doses: The inhibition of FAAH activity was able to counteract not only the CAR-induced histological alteration, but also the cascade of related inflammatory events. URB878 clears the way for further studies based on FAAH inhibition in acute lung pathologies.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Andrea Duranti
- Department of Biomolecular Sciences, University of Urbino, Carlo Bo Piazza del Rinascimento 6, 61029 Urbino, Italy;
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Roberta Fusco
- Department of Clinical and Experimental Medicine, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.D.); (D.I.); (A.F.P.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| |
Collapse
|
20
|
Campolo M, Crupi R, Cordaro M, Cardali SM, Ardizzone A, Casili G, Scuderi SA, Siracusa R, Esposito E, Conti A, Cuzzocrea S. Co-Ultra PEALut Enhances Endogenous Repair Response Following Moderate Traumatic Brain Injury. Int J Mol Sci 2021; 22:ijms22168717. [PMID: 34445417 PMCID: PMC8395716 DOI: 10.3390/ijms22168717] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 12/15/2022] Open
Abstract
This study aimed to assess the neuro-regenerative properties of co-ultramicronized PEALut (Glialia®), composed of palmitoylethanolamide (PEA) and the flavonoid luteolin (Lut), in an in vivo model of traumatic brain injury (TBI) and patients affected by moderate TBI. An increase in neurogenesis was seen in the mice at 72 h and 7 d after TBI. The co-ultra PEALut treatment helped the neuronal reconstitution process to restore the basal level of both novel and mature neurons; moreover, it induced a significant upregulation of the neurotrophic factors, which ultimately led to progress in terms of memory recall during behavioral testing. Moreover, our preliminary findings in a clinical trial suggested that Glialia® treatment facilitated neural recovery on working memory. Thus, co-ultra PEALut (Glialia®) could represent a valuable therapeutic agent for intensifying the endogenous repair response in order to better treat TBI.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | | | - Alessio Ardizzone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Sarah Adriana Scuderi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
| | - Alfredo Conti
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum University of Bologna, 40126 Bologna, Italy;
- IRCCS Istituto delle Scienze Neurologiche di Bologna, 40139 Bologna, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (M.C.); (R.C.); (M.C.); (A.A.); (G.C.); (S.A.S.); (R.S.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University, Saint Louis, MO 63104, USA
- Correspondence: ; Tel.: +39-090-6765208
| |
Collapse
|
21
|
Li M, Mao J, Zhu Y. New Therapeutic Approaches Using Hydrogen Sulfide Donors in Inflammation and Immune Response. Antioxid Redox Signal 2021; 35:341-356. [PMID: 33789440 DOI: 10.1089/ars.2020.8249] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Significance: Inflammation and immune response are associated with many pathological disorders, including rheumatoid arthritis, lupus, heart failure, and cancer(s). In recent times, important roles of hydrogen sulfide (H2S) have been evidenced by researchers in inflammatory responses, as well as immunomodulatory effects in several disease models. Recent Advances: Numerous biological targets, including cytochrome c oxidase, various kinases, enzymes involved in epigenetic changes, transcription factors, namely nuclear factor kappa B and nuclear factor erythroid 2-related factor 2, and several membrane ion channels, are shown to be sensitive to H2S and have been widely investigated in various preclinical models. Critical Issues: A complete understanding of the effects of H2S in inflammatory and immune response is vital in the development of novel H2S generating therapeutics. In this review, the biological effects and pharmacological properties of H2S in inflammation and immune response are addressed. The review also covers some of the novel H2S releasing prodrugs developed in recent years as tools to study this fascinating molecule. Future Directions: H2S plays important roles in inflammation and immunity-related processes. Future researches are needed to further assess the immunomodulatory effects of H2S and to assist in the design of more efficient H2S carrier systems, or drug formulations, for the management of immune-related conditions in humans. Antioxid. Redox Signal. 35, 341-356.
Collapse
Affiliation(s)
- Meng Li
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
| | - Jianchun Mao
- Department of Rheumatology, Longhua Hospital of Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yizhun Zhu
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicines, Macau University of Science and Technology, Macau, China
- School of Pharmacy, Macau University of Science and Technology, Macau, China
- Shanghai Key Laboratory of Bioactive Small Molecules, Department of Pharmacology, School of Pharmacy, Fudan University, Shanghai, China
| |
Collapse
|
22
|
Genovese T, Siracusa R, Fusco R, D’Amico R, Impellizzeri D, Peritore AF, Crupi R, Gugliandolo E, Morabito R, Cuzzocrea S, Trovato Salinaro A, Cordaro M, Di Paola R. Atrazine Inhalation Causes Neuroinflammation, Apoptosis and Accelerating Brain Aging. Int J Mol Sci 2021; 22:7938. [PMID: 34360708 PMCID: PMC8347547 DOI: 10.3390/ijms22157938] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2021] [Revised: 07/21/2021] [Accepted: 07/23/2021] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND exposure to environmental contaminants has been linked to an increased risk of neurological diseases and poor outcomes. Chemical name of Atrazine (ATR) is 6-chloro-N-ethyl-N'-(1-methylethyl)-1,3,5-triazine-2,4-diamine, and it is the most commonly used broad-spectrum herbicide in agricultural crops. Several studies have demonstrated that ATR has the potential to be harmful to the brain's neuronal circuits. Until today nobody has explored the effect of ATR inhalation on young and aged mice. METHODS young and aged mice were subject to 25 mg of ATR in a vehicle made with saline and 10% of Dimethyl sulfoxide (DMSO) every day for 28 days. At the end of experiment different behavioral test were made and brain was collected. RESULTS exposure to ATR induced the same response in terms of behavioral alterations and motor and memory impairment in mice but in aged group was more marked. Additionally, in both young and aged mice ATR inhalations induced oxidative stress with impairment in physiological antioxidant response, lipid peroxidation, nuclear factor kappa-light-chain-enhancer of activated B cells (nf-κb) pathways activation with consequences of pro-inflammatory cytokines release and apoptosis. However, the older group was shown to be more sensitive to ATR inhalation. CONCLUSIONS our results showed that aged mice were more susceptible compared to young mice to air pollutants exposure, put in place a minor physiologically response was seen when exposed to it.
Collapse
Affiliation(s)
- Tiziana Genovese
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Alessio Filippo Peritore
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Rosalia Crupi
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Enrico Gugliandolo
- Department of Veterinary Sciences, University of Messina, 98168 Messina, Italy; (R.C.); (E.G.)
| | - Rossana Morabito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95124 Catania, Italy
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’Alcontres 31, 98166 Messina, Italy; (T.G.); (R.S.); (R.F.); (R.D.); (D.I.); (A.F.P.); (R.M.); (R.D.P.)
| |
Collapse
|
23
|
D’Amico R, Trovato Salinaro A, Fusco R, Cordaro M, Impellizzeri D, Scuto M, Ontario ML, Lo Dico G, Cuzzocrea S, Di Paola R, Siracusa R, Calabrese V. Hericium erinaceus and Coriolus versicolor Modulate Molecular and Biochemical Changes after Traumatic Brain Injury. Antioxidants (Basel) 2021; 10:898. [PMID: 34199629 PMCID: PMC8228340 DOI: 10.3390/antiox10060898] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 05/21/2021] [Accepted: 05/29/2021] [Indexed: 01/30/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socioeconomic problem affecting the world. This condition results from the application of external physical force to the brain which leads to transient or permanent structural and functional impairments. TBI has been shown to be a risk factor for neurodegeneration which can lead to Parkinson's disease (PD) for example. In this study, we wanted to explore the development of PD-related pathology in the context of an experimental model of TBI and the potential ability of Coriolus versicolor and Hericium erinaceus to prevent neurodegenerative processes. Traumatic brain injury was induced in mice by controlled cortical impact. Behavioral tests were performed at various times: the animals were sacrificed 30 days after the impact and the brain was processed for Western blot and immunohistochemical analyzes. After the head injury, a significant decrease in the expression of tyrosine hydroxylase and the dopamine transporter in the substantia nigra was observed, as well as significant behavioral alterations that were instead restored following daily oral treatment with Hericium erinaceus and Coriolus versicolor. Furthermore, a strong increase in neuroinflammation and oxidative stress emerged in the vehicle groups. Treatment with Hericium erinaceus and Coriolus versicolor was able to prevent both the neuroinflammatory and oxidative processes typical of PD. This study suggests that PD-related molecular events may be triggered on TBI and that nutritional fungi such as Hericium erinaceus and Coriolus versicolor may be important in redox stress response mechanisms and neuroprotection, preventing the progression of neurodegenerative diseases such as PD.
Collapse
Affiliation(s)
- Ramona D’Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Angela Trovato Salinaro
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Marika Cordaro
- Department of Biomedical, Dental and Morphological and Functional Imaging University of Messina, Via Consolare Valeria, 98125 Messina, Italy;
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Maria Scuto
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Maria Laura Ontario
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Gianluigi Lo Dico
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, Saint Louis, MO 63104, USA
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, 98166 Messina, Italy; (R.D.); (R.F.); (D.I.); (R.S.)
| | - Vittorio Calabrese
- Department of Biomedical and Biotechnological Sciences, University of Catania, 95125 Catania, Italy; (A.T.S.); (M.S.); (M.L.O.); (G.L.D.); (V.C.)
| |
Collapse
|
24
|
Huerta de la Cruz S, Rocha L, Santiago-Castañeda C, Sánchez-López A, Pinedo-Rodríguez AD, Medina-Terol GJ, Centurión D. Hydrogen Sulfide Subchronic Treatment Improves Hypertension Induced by Traumatic Brain Injury in Rats through Vasopressor Sympathetic Outflow Inhibition. J Neurotrauma 2021; 39:181-195. [PMID: 33626966 DOI: 10.1089/neu.2020.7552] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Traumatic brain injury (TBI) represents a critical public health problem around the world. To date, there are no accurate therapeutic approaches for the management of cardiovascular impairments induce by TBI. In this regard, hydrogen sulfide (H2S), a novel gasotransmitter, has been proposed as a neuro- and cardioprotective molecule. This study was designed to determine the effect of subchronic management with sodium hydrosulfide (NaHS) on hemodynamic, vasopressor sympathetic outflow and sensorimotor alterations produced by TBI. Animals underwent a lateral fluid percussion injury, and changes in hemodynamic variables were measured by pletismographic methods. In addition, vasopressor sympathetic outflow was assessed by a pithed rat model. Last, sensorimotor impairments were evaluated by neuroscore test and beam-walking test. At seven, 14, 21, and 28 days after moderate-severe TBI, the animals showed: (1) a decrease on sensorimotor function in the neuroscore test and beam-walking test; (2) an increase in heart rate, systolic, diastolic, and mean blood pressure; (3) progressive sympathetic hyperactivity; and (4) a decrease in vasopressor responses induced by noradrenaline (α1/2-adrenoceptors agonist) and UK 14,304 (selective α2-adrenoceptor agonist). Interestingly, intraperitoneal daily injections of NaHS, an H2S donor (3.1 and 5.6 mg/kg), during seven days after TBI prevented the development of the impairments in hemodynamic variables, which were similar to those obtained in sham animals. Moreover, NaHS treatment prevented the sympathetic hyperactivity and decreased noradrenaline-induced vasopressor responses. No effects on sensorimotor dysfunction were observed, however. Taken together, our results suggest that H2S ameliorates the hemodynamic and sympathetic system impairments observed after TBI.
Collapse
Affiliation(s)
| | - Luisa Rocha
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| | | | | | | | | | - David Centurión
- Departamento de Farmacobiología, Cinvestav-Coapa, Mexico City, Mexico
| |
Collapse
|
25
|
Danielak A, Wallace JL, Brzozowski T, Magierowski M. Gaseous Mediators as a Key Molecular Targets for the Development of Gastrointestinal-Safe Anti-Inflammatory Pharmacology. Front Pharmacol 2021; 12:657457. [PMID: 33995080 PMCID: PMC8116801 DOI: 10.3389/fphar.2021.657457] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 03/23/2021] [Indexed: 12/14/2022] Open
Abstract
Non-steroidal anti-inflammatory drugs (NSAIDs) represent one of the most widely used classes of drugs and play a pivotal role in the therapy of numerous inflammatory diseases. However, the adverse effects of these drugs, especially when applied chronically, frequently affect gastrointestinal (GI) tract, resulting in ulceration and bleeding, which constitutes a significant limitation in clinical practice. On the other hand, it has been recently discovered that gaseous mediators nitric oxide (NO), hydrogen sulfide (H2S) and carbon monoxide (CO) contribute to many physiological processes in the GI tract, including the maintenance of GI mucosal barrier integrity. Therefore, based on the possible therapeutic properties of NO, H2S and CO, a novel NSAIDs with ability to release one or more of those gaseous messengers have been synthesized. Until now, both preclinical and clinical studies have shown promising effects with respect to the anti-inflammatory potency as well as GI-safety of these novel NSAIDs. This review provides an overview of the gaseous mediators-based NSAIDs along with their mechanisms of action, with special emphasis on possible implications for GI mucosal defense mechanisms.
Collapse
Affiliation(s)
- Aleksandra Danielak
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - John L Wallace
- Department of Physiology and Pharmacology, University of Calgary, Calgary, AB, Canada
| | - Tomasz Brzozowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| | - Marcin Magierowski
- Department of Physiology, Jagiellonian University Medical College, Cracow, Poland
| |
Collapse
|
26
|
Biologic Effect of Hydrogen Sulfide and Its Role in Traumatic Brain Injury. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2020:7301615. [PMID: 33425216 PMCID: PMC7773448 DOI: 10.1155/2020/7301615] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Revised: 11/27/2020] [Accepted: 12/05/2020] [Indexed: 12/21/2022]
Abstract
Ever since endogenous hydrogen sulfide (H2S) was found in mammals in 1989, accumulated evidence has demonstrated that H2S functions as a novel neurological gasotransmitter in brain tissues and may play a key role in traumatic brain injury. It has been proved that H2S has an antioxidant, anti-inflammatory, and antiapoptosis function in the neuron system and functions as a neuroprotective factor against secondary brain injury. In addition, H2S has other biologic effects such as regulating the intracellular concentration of Ca2+, facilitating hippocampal long-term potentiation (LTP), and activating ATP-sensitive K channels. Due to the toxic nature of H2S when exceeding the physiological dose in the human body, only a small amount of H2S-related therapies was applied to clinical treatment. Therefore, it has huge therapeutic potential and has great hope for recovering patients with traumatic brain injury.
Collapse
|
27
|
Farr SA, Cuzzocrea S, Esposito E, Campolo M, Niehoff ML, Doyle TM, Salvemini D. Adenosine A 3 receptor as a novel therapeutic target to reduce secondary events and improve neurocognitive functions following traumatic brain injury. J Neuroinflammation 2020; 17:339. [PMID: 33183330 PMCID: PMC7659122 DOI: 10.1186/s12974-020-02009-7] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Accepted: 10/22/2020] [Indexed: 12/17/2022] Open
Abstract
Background Traumatic brain injury (TBI) is a common pathological condition that presently lacks a specific pharmacological treatment. Adenosine levels rise following TBI, which is thought to be neuroprotective against secondary brain injury. Evidence from stroke and inflammatory disease models suggests that adenosine signaling through the G protein-coupled A3 adenosine receptor (A3AR) can provide antiinflammatory and neuroprotective effects. However, the role of A3AR in TBI has not been investigated. Methods Using the selective A3AR agonist, MRS5980, we evaluated the effects of A3AR activation on the pathological outcomes and cognitive function in CD1 male mouse models of TBI. Results When measured 24 h after controlled cortical impact (CCI) TBI, male mice treated with intraperitoneal injections of MRS5980 (1 mg/kg) had reduced secondary tissue injury and brain infarction than vehicle-treated mice with TBI. These effects were associated with attenuated neuroinflammation marked by reduced activation of nuclear factor of kappa light polypeptide gene enhancer in B cells (NFκB) and MAPK (p38 and extracellular signal-regulated kinase (ERK)) pathways and downstream NOD-like receptor pyrin domain-containing 3 inflammasome activation. MRS5980 also attenuated TBI-induced CD4+ and CD8+ T cell influx. Moreover, when measured 4–5 weeks after closed head weight-drop TBI, male mice treated with MRS5980 (1 mg/kg) performed significantly better in novel object-placement retention tests (NOPRT) and T maze trials than untreated mice with TBI without altered locomotor activity or increased anxiety. Conclusion Our results provide support for the beneficial effects of small molecule A3AR agonists to mitigate secondary tissue injury and cognitive impairment following TBI.
Collapse
Affiliation(s)
- Susan A Farr
- Veterans Affairs Medical Center, 915 N Grand Blvd, St. Louis, MO, 63106, USA.,Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Salvatore Cuzzocrea
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Emanuela Esposito
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michela Campolo
- Department of Clinical and Experimental Medicine and Pharmacology, University of Messina, 98122, Messina, Italy
| | - Michael L Niehoff
- Department of Internal Medicine, Division of Geriatric Medicine, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Timothy M Doyle
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA
| | - Daniela Salvemini
- Department of Pharmacology and Physiology, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA. .,Henry and Amelia Nasrallah Center for Neuroscience, Saint Louis University School of Medicine, 1402 S. Grand Blvd, St. Louis, MO, 63104, USA.
| |
Collapse
|
28
|
Rangasamy SB, Ghosh S, Pahan K. RNS60, a physically-modified saline, inhibits glial activation, suppresses neuronal apoptosis and protects memory in a mouse model of traumatic brain injury. Exp Neurol 2020; 328:113279. [PMID: 32151546 DOI: 10.1016/j.expneurol.2020.113279] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 03/03/2020] [Indexed: 10/24/2022]
Abstract
Traumatic brain injury (TBI) is a serious health issue that causes long-term neurological disability, particularly in young adults, athletes and war veterans. Despite the use of different medications or surgical procedures, no effective therapy is currently available to halt its pathogenesis. Here, we have undertaken a novel approach to reduce neuroinflammation and improve cognitive, social and locomotor behaviors in a mouse model of TBI. RNS60 is a physiologic saline solution containing oxygen nanobubbles that is generated by subjecting normal saline to Taylor-Couette-Poiseuille (TCP) flow under elevated oxygen pressure. Recently we have delineated that RNS60 inhibits the expression of proinflammatory molecules in glial cells via type 1A phosphatidylinositol-3 kinase (PI3K)-mediated upregulation of IκBα. In this study, we found that TBI decreased the level of IκBα and increased the activation of NF-κB in hippocampus and cortex as monitored by the upregulation of p-p65. However, intraperitoneal administration of RNS60 increased and/or restored the level of IκBα and inhibited the activation of NF-κB in hippocampus and cortex of TBI mice. Accordingly, RNS60 treatment decreased the activation of astrocytes and microglia and reduced neuronal apoptosis in the brain of TBI mice. RNS60 treatment also reduced vascular damage, attenuated blood-brain barrier leakage and decreased the size of lesion in the brain of TBI mice. Importantly, RNS60 treated mice showed significant improvements in memory, social behavior and locomotor activities while displaying reduction in depression-like behaviors. These results delineate a novel neuroprotective property of RNS60 and suggest its possible therapeutic use in TBI.
Collapse
Affiliation(s)
- Suresh B Rangasamy
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States of America; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America
| | - Supurna Ghosh
- Revalesio Corporation, 1202 East D Street, Tacoma, WA 98421, United States of America
| | - Kalipada Pahan
- Division of Research and Development, Jesse Brown Veterans Affairs Medical Center, Chicago, IL 60612, United States of America; Department of Neurological Sciences, Rush University Medical Center, Chicago, IL 60612, United States of America.
| |
Collapse
|
29
|
Kumar M, Sandhir R. Hydrogen sulfide suppresses homocysteine-induced glial activation and inflammatory response. Nitric Oxide 2019; 90:15-28. [DOI: 10.1016/j.niox.2019.05.008] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2018] [Revised: 04/30/2019] [Accepted: 05/26/2019] [Indexed: 11/26/2022]
|
30
|
Van Dingenen J, Pieters L, Vral A, Lefebvre RA. The H 2S-Releasing Naproxen Derivative ATB-346 and the Slow-Release H 2S Donor GYY4137 Reduce Intestinal Inflammation and Restore Transit in Postoperative Ileus. Front Pharmacol 2019; 10:116. [PMID: 30842737 PMCID: PMC6391894 DOI: 10.3389/fphar.2019.00116] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2018] [Accepted: 01/30/2019] [Indexed: 12/21/2022] Open
Abstract
Objective: Intestinal inflammation triggers postoperative ileus (POI), commonly seen after abdominal surgery and characterized by impaired gastrointestinal transit; when prolonged, this leads to increased morbidity. Hydrogen sulfide (H2S) is recognized as an important mediator of many (patho)physiological processes, including inflammation, and is now investigated for anti-inflammatory application. Therefore, the aim of this study was to investigate the effect of the H2S-releasing naproxen derivative ATB-346, developed to reduce gastrointestinal injury by naproxen, and the slow-release H2S donor GYY4137 on intestinal inflammation and delayed gastrointestinal transit in murine POI. Methods: C57Bl6J mice were fasted for 6 h, anesthetized and after laparotomy, POI was induced by compressing the small intestine with two cotton applicators for 5 min (intestinal manipulation; IM). GYY4137 (50 mg/kg, intraperitoneally), ATB-346 (16 mg/kg, intragastrically) or naproxen (10 mg/kg, intragastrically) were administered 1 h before IM. At 24 h postoperatively, gastrointestinal transit was assessed via fluorescent imaging, and mucosa-free muscularis segments were prepared for later analysis. Inflammatory parameters and activity of inducible nitric oxide synthase (iNOS) and cyclo-oxygenase (COX)-2 were measured. Histological examination of whole tissue sections was done on hematoxylin-eosin stained slides. Results: Pre-treatment with GYY4137 (geometric center; GC: 7.6 ± 0.5) and ATB-346 (GC: 8.4 ± 0.3) prevented the delayed transit induced by IM (GC: 3.6 ± 0.5 vs. 9.0 ± 0.4 in non-operated controls) while naproxen only partially did (GC: 5.9 ± 0.5; n = 8 for all groups). GYY4137 and ATB-346 significantly reduced the IM-induced increase in muscular myeloperoxidase (MPO) activity and protein levels of interleukin (IL)-6, IL-1β and monocyte chemotactic protein 1; the reduction by naproxen was less pronounced and only reached significance for MPO activity and IL-6 levels. All treatments significantly reduced the increase in COX-2 activity caused by IM, whereas only GYY4137 significantly reduced the increase in iNOS activity. Naproxen treatment caused significant histological damage of intestinal villi. Conclusion: The study shows that naproxen partially prevents POI, probably through its inhibitory effect on COX-2 activity. Both ATB-346 and GYY4137 were more effective, the result with GYY4137 showing that H2S per se can prevent POI.
Collapse
Affiliation(s)
- Jonas Van Dingenen
- Department of Basic and Applied Medical Sciences, Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Leen Pieters
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Anne Vral
- Department of Human Structure and Repair, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| | - Romain A. Lefebvre
- Department of Basic and Applied Medical Sciences, Heymans Institute of Pharmacology, Faculty of Medicine and Health Sciences, Ghent University, Ghent, Belgium
| |
Collapse
|
31
|
Impellizzeri D, Siracusa R, Cordaro M, Peritore AF, Gugliandolo E, Mancuso G, Midiri A, Di Paola R, Cuzzocrea S. Therapeutic potential of dinitrobenzene sulfonic acid (DNBS)-induced colitis in mice by targeting IL-1β and IL-18. Biochem Pharmacol 2018; 155:150-161. [PMID: 29963998 DOI: 10.1016/j.bcp.2018.06.029] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 06/27/2018] [Indexed: 01/01/2023]
Abstract
Interleukin (IL)-1 and IL-18 belong to the IL-1 family of ligands, and their receptors are members of the IL-1 receptor family. Both cytokines drive an extensive range of pro-inflammatory networks in many cell types using common signal transduction cascades. Anyway, differences in signaling pathways exist. With this aim in mind, we investigated by using transgenic mice the mechanisms through the simultaneous deficiency of both IL-1β and IL-18 could be more protective compared to blocking the single cytokine IL-1β or IL-18 during colitis. Colitis was provoked in mice by instillation of dinitrobenzene sulfonic acid (DNBS) in the colon. The results indicated that single knockout (KO) mice of IL-1β or IL-18, and double KO mice of both IL-1β and IL-18 were hyporesponsive to DNBS-induced colitis compared to wild type (WT) mice, in which double KO were less sensitive than single KO mice. Moreover, treatment with Anakinra (IL-1R antagonist) also ameliorated colitis, in views of macroscopic and histological alteration, infiltration of neutrophils or Th1 cells, oxidative and nitrosative stress. Anakinra more significantly reduced cyclooxygenase (COX-2) and nuclear factor (NF-κB) levels as well as IKB-α degradation compared to blocking IL-18. On the contrary, the absence of IL-18 reduced p-ERK and p-p38 mitogen-activated protein kinase (MAPKs) in a more significant way compared to blocking IL-1β. Thus, the double KO increased the protective effects against colon inflammation maybe because different converging inflammatory pathways are being inhibited. In conclusion, the blocking of both IL-1β and IL-18 function may be advantageous in the treatment of IBD or inflammatory diseases.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Marika Cordaro
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Alessio Filippo Peritore
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Enrico Gugliandolo
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Giuseppe Mancuso
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Angelina Midiri
- Department of Human Pathology, University of Messina, 98125 Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical Biological, Pharmaceutical and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D'Alcontres 31, 98166 Messina, Italy; Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester, Manchester, United Kingdom.
| |
Collapse
|
32
|
Gugliandolo E, D'Amico R, Cordaro M, Fusco R, Siracusa R, Crupi R, Impellizzeri D, Cuzzocrea S, Di Paola R. Neuroprotective Effect of Artesunate in Experimental Model of Traumatic Brain Injury. Front Neurol 2018; 9:590. [PMID: 30108544 PMCID: PMC6079305 DOI: 10.3389/fneur.2018.00590] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 07/02/2018] [Indexed: 01/21/2023] Open
Abstract
Traumatic brain injuries (TBI) are an important public health challenge. In addition, subsequent events at TBI can compromise the quality of life of these patients. In fact, TBI is associated with several complications for both long and short term, some evidence shows how TBI is associated with a decline in cognitive functions such as the risk of developing dementia, cerebral atrophy, and Parkinson disease. After the direct damage from TBI, a key role in TBI injury is played by the inflammatory response and oxidative stress, that contributes to tissue damage and to neurodegenerative processes, typical of secondary injury, after TBI. Given the complex series of events that are involved after TBI injury, a multitarget pharmacological approach is needed. Artesunate is a more stable derivative of its precursor artemisin, a sesquiterpene lactone obtained from a Chinese plant Artemisia annua, a plant used for centuries in traditional Chinese medicine. artesunate has been shown to be a pluripotent agent with different pharmacological actions. therefore, in this experimental model of TBI we evaluated whether the treatment with artesunate at the dose of 30 mg\Kg, had an efficacy in reducing the neuroinflammatory process after TBI injury, and in inhibiting the NLRP3 inflammasome pathway, which plays a key role in the inflammatory process. We also assessed whether treatment with artesunate was able to exert a neuroprotective action by modulating the release of neurotrophic factors. our results show that artesunate was able to reduce the TBI-induced lesion, it also showed an anti-inflammatory action through the inhibition of Nf-kb, release of proinflammatory cytokines IL-1β and TNF-α and through the inhibition NLRP3 inflammasome complex, furthermore was able to reduce the activation of astrocytes and microglia (GFAP, Iba-1). Finally, our results show that the protective effects of artesunate also occur through the modulation of neurotrophic factors (BDNF, GDNF, NT-3) that play a key role in neuronal survival.
Collapse
Affiliation(s)
- Enrico Gugliandolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Ramona D'Amico
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Roberta Fusco
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalba Siracusa
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.,Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, MO, United States
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
33
|
Casili G, Campolo M, Paterniti I, Lanza M, Filippone A, Cuzzocrea S, Esposito E. Dimethyl Fumarate Attenuates Neuroinflammation and Neurobehavioral Deficits Induced by Experimental Traumatic Brain Injury. J Neurotrauma 2018; 35:1437-1451. [DOI: 10.1089/neu.2017.5260] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Affiliation(s)
- Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Marika Lanza
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
- Department of Pharmacological and Physiological Science, Saint Louis University, St. Louis, Missouri
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| |
Collapse
|
34
|
Cuzzocrea S, Doyle T, Campolo M, Paterniti I, Esposito E, Farr SA, Salvemini D. Sphingosine 1-Phosphate Receptor Subtype 1 as a Therapeutic Target for Brain Trauma. J Neurotrauma 2018; 35:1452-1466. [PMID: 29310513 DOI: 10.1089/neu.2017.5391] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Traumatic brain injury (TBI) provokes secondary pathological mechanisms, including ischemic and inflammatory processes. The new research in sphingosine 1-phosphate (S1P) receptor modulators has opened the door for an effective mechanism of reducing central nervous system (CNS) inflammatory lesion activity. Thus, the aim of this study was to characterize the immunomodulatory effect of the functional S1PR1 antagonist, siponimod, in phase III clinical trials for autoimmune disorders and of the competitive sphingosine 1-phosphate receptor subtype 1 (S1PR1) antagonist, TASP0277308, in pre-clinical development in an in vivo model of TBI in mice. We used the well-characterized model of TBI caused by controlled cortical impact. Mice were injected intraperitoneally with siponimod or TASP0277308 (1 mg/kg) at 1 and 4 h post-trauma. Our results demonstrated that these agents exerted significant beneficial effects on TBI pre-clinical scores in term of anti-inflammatory and immunomodulatory effects, in particular, attenuation of astrocytes and microglia activation, cytokines release, and rescue of the reduction of adhesion molecules (i.e., occludin and zonula occludens-1). Moreover, these compounds were able to decrease T-cell activation visible by reduction of CD4+ and CD8+, reduce the lesioned area (measured by 2,3,5-triphenyltetrazolium chloride staining), and to preserve tissue architecture, microtubule stability, and neural plasticity. Moreover, our findings provide pre-clinical evidence for the use of low-dose oral S1PR1 antagonists as neuroprotective strategies for TBI and broaden our understanding of the underlying S1PR1-driven neuroinflammatory processes in the pathophysiology of TBI. Altogether, our results showed that blocking the S1PR1 axis is an effective therapeutic strategy to mitigate neuropathological effects engaged in the CNS by TBI.
Collapse
Affiliation(s)
- Salvatore Cuzzocrea
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy .,2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| | - Timothy Doyle
- 2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| | - Michela Campolo
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Irene Paterniti
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Emanuela Esposito
- 1 Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina , Viale Ferdinando Stagno D'Alcontres, Messina, Italy
| | - Susan A Farr
- 3 VA Medical Center Saint Louis , St. Louis, Missouri.,4 Division of Geriatric Medicine, Saint Louis University , St. Louis, Missouri
| | - Daniela Salvemini
- 2 Department of Pharmacology and Physiology Saint Louis University , St. Louis, Missouri
| |
Collapse
|
35
|
Campolo M, Esposito E, Cuzzocrea S. A Controlled Cortical Impact Preclinical Model of Traumatic Brain Injury. Methods Mol Biol 2018; 1727:385-391. [PMID: 29222798 DOI: 10.1007/978-1-4939-7571-6_30] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Over the past three decades, attempts at understanding the multifaceted mechanisms underlying the pathophysiology of traumatic brain injury (TBI) have seen the development of numerous animal models to investigate changes in molecular and cellular pathways and neurobehavioral outcomes. Until now, controlled cortical impact (CCI) represents the most frequently used mechanical model to induce TBI, given its accuracy, easy of control, and, most importantly, its ability to produce brain injuries similar to those seen in humans. The CCI model is based on the use of an impact system that delivers a physical impact to the exposed dura of an animal. This chapter will describe in detail the electromagnetic CCI model of TBI in mice.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina, Italy.
- Department of Pharmacology and Physiology, Saint Louis University, St. Louis, MO, USA.
| |
Collapse
|
36
|
Szabo C, Papapetropoulos A. International Union of Basic and Clinical Pharmacology. CII: Pharmacological Modulation of H 2S Levels: H 2S Donors and H 2S Biosynthesis Inhibitors. Pharmacol Rev 2017; 69:497-564. [PMID: 28978633 PMCID: PMC5629631 DOI: 10.1124/pr.117.014050] [Citation(s) in RCA: 278] [Impact Index Per Article: 39.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Over the last decade, hydrogen sulfide (H2S) has emerged as an important endogenous gasotransmitter in mammalian cells and tissues. Similar to the previously characterized gasotransmitters nitric oxide and carbon monoxide, H2S is produced by various enzymatic reactions and regulates a host of physiologic and pathophysiological processes in various cells and tissues. H2S levels are decreased in a number of conditions (e.g., diabetes mellitus, ischemia, and aging) and are increased in other states (e.g., inflammation, critical illness, and cancer). Over the last decades, multiple approaches have been identified for the therapeutic exploitation of H2S, either based on H2S donation or inhibition of H2S biosynthesis. H2S donation can be achieved through the inhalation of H2S gas and/or the parenteral or enteral administration of so-called fast-releasing H2S donors (salts of H2S such as NaHS and Na2S) or slow-releasing H2S donors (GYY4137 being the prototypical compound used in hundreds of studies in vitro and in vivo). Recent work also identifies various donors with regulated H2S release profiles, including oxidant-triggered donors, pH-dependent donors, esterase-activated donors, and organelle-targeted (e.g., mitochondrial) compounds. There are also approaches where existing, clinically approved drugs of various classes (e.g., nonsteroidal anti-inflammatories) are coupled with H2S-donating groups (the most advanced compound in clinical trials is ATB-346, an H2S-donating derivative of the non-steroidal anti-inflammatory compound naproxen). For pharmacological inhibition of H2S synthesis, there are now several small molecule compounds targeting each of the three H2S-producing enzymes cystathionine-β-synthase (CBS), cystathionine-γ-lyase, and 3-mercaptopyruvate sulfurtransferase. Although many of these compounds have their limitations (potency, selectivity), these molecules, especially in combination with genetic approaches, can be instrumental for the delineation of the biologic processes involving endogenous H2S production. Moreover, some of these compounds (e.g., cell-permeable prodrugs of the CBS inhibitor aminooxyacetate, or benserazide, a potentially repurposable CBS inhibitor) may serve as starting points for future clinical translation. The present article overviews the currently known H2S donors and H2S biosynthesis inhibitors, delineates their mode of action, and offers examples for their biologic effects and potential therapeutic utility.
Collapse
Affiliation(s)
- Csaba Szabo
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| | - Andreas Papapetropoulos
- Department of Anesthesiology, The University of Texas Medical Branch, Galveston, Texas (C.S.); Laboratory of Pharmacology, Faculty of Pharmacy, National and Kapodistrian University of Athens, Zografou, Greece (A.P.); and Clinical, Experimental Surgery and Translational Research Center, Biomedical Research Foundation of the Academy of Athens, Athens, Greece (A.P.)
| |
Collapse
|
37
|
Impellizzeri D, Cordaro M, Bruschetta G, Siracusa R, Crupi R, Esposito E, Cuzzocrea S. N-Palmitoylethanolamine-Oxazoline as a New Therapeutic Strategy to Control Neuroinflammation: Neuroprotective Effects in Experimental Models of Spinal Cord and Brain Injury. J Neurotrauma 2017; 34:2609-2623. [PMID: 28095731 DOI: 10.1089/neu.2016.4808] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Modulation of N-acylethanolamine-hydrolyzing acid amidase (NAAA) represents a potential alternative strategy in the treatment of neuroinflammation. Recent studies showed that pharmacological modulation of NAAA could be achieved with the oxazoline of palmitoylethanolamide (PEA; PEA-OXA). The aim of this study was to evaluate the neuroprotective effects of PEA-OXA in the secondary neuroinflammatory events induced by spinal and brain trauma in mice. Animals were subjected to spinal cord and brain injury models and PEA-OXA (10 mg/kg) was administered both intraperitoneally and orally 1 h and 6 h after trauma. PEA-OXA treatment markedly reduced the histological alterations induced by spinal cord injury (SCI) and traumatic brain injury (TBI) and ameliorated the motor function and behavioral deficits, as well. In addition, the expression of neurotrophic factors, such as glial cell line-derived neurotrophic factor, brain-derived neurotrophic factor, and neurotrophin-3 were increased by PEA-OXA treatment. Moreover, PEA-OXA also significantly decreased glial fibrillary acidic protein hyperexpression, the nuclear translocation of nuclear factor (NF)-κB, phosphorylation of Ser536 on the NF-κB subunit p65, and degradation of IκB-α, as well as diminished the expression of pro-inflammatory mediators such as cyclooxygenase-2 (COX-2), inducible nitric oxide synthase, tumor necrosis factor (TNF)-α and interleukin (IL)-1β. The modulation of intracellular NAAA by PEA-OXA treatment could thus represent a novel therapy to control neuroinflammatory conditions associated with SCI and TBI.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Marika Cordaro
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Giuseppe Bruschetta
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Rosalba Siracusa
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Rosalia Crupi
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Emanuela Esposito
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy
| | - Salvatore Cuzzocrea
- 1 Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina , Messina, Italy .,2 Manchester Biomedical Research Centre, Manchester Royal Infirmary, School of Medicine, University of Manchester , United Kingdom
| |
Collapse
|
38
|
Dyson A, Dal-Pizzol F, Sabbatini G, Lach AB, Galfo F, dos Santos Cardoso J, Pescador Mendonça B, Hargreaves I, Bollen Pinto B, Bromage DI, Martin JF, Moore KP, Feelisch M, Singer M. Ammonium tetrathiomolybdate following ischemia/reperfusion injury: Chemistry, pharmacology, and impact of a new class of sulfide donor in preclinical injury models. PLoS Med 2017; 14:e1002310. [PMID: 28678794 PMCID: PMC5497958 DOI: 10.1371/journal.pmed.1002310] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/25/2016] [Accepted: 04/26/2017] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Early revascularization of ischemic organs is key to improving outcomes, yet consequent reperfusion injury may be harmful. Reperfusion injury is largely attributed to excess mitochondrial production of reactive oxygen species (ROS). Sulfide inhibits mitochondria and reduces ROS production. Ammonium tetrathiomolybdate (ATTM), a copper chelator, releases sulfide in a controlled and novel manner, and may offer potential therapeutic utility. METHODS AND FINDINGS In vitro, ATTM releases sulfide in a time-, pH-, temperature-, and thiol-dependent manner. Controlled sulfide release from ATTM reduces metabolism (measured as oxygen consumption) both in vivo in awake rats and ex vivo in skeletal muscle tissue, with a superior safety profile compared to standard sulfide generators. Given intravenously at reperfusion/resuscitation to rats, ATTM significantly reduced infarct size following either myocardial or cerebral ischemia, and conferred survival benefit following severe hemorrhage. Mechanistic studies (in vitro anoxia/reoxygenation) demonstrated a mitochondrial site of action (decreased MitoSOX fluorescence), where the majority of damaging ROS is produced. CONCLUSIONS The inorganic thiometallate ATTM represents a new class of sulfide-releasing drugs. Our findings provide impetus for further investigation of this compound as a novel adjunct therapy for reperfusion injury.
Collapse
Affiliation(s)
- Alex Dyson
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Felipe Dal-Pizzol
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Giovanni Sabbatini
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Anna B. Lach
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Federica Galfo
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | | | - Bruna Pescador Mendonça
- Laboratory of Experimental Pathophysiology, University of Southern Santa Catarina, Criciúma, Brazil
| | - Iain Hargreaves
- Department of Molecular Neuroscience, Institute of Neurology, University College London, London, United Kingdom
| | - Bernardo Bollen Pinto
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
| | - Daniel I. Bromage
- Hatter Cardiovascular Institute, University College London, London, United Kingdom
| | - John F. Martin
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| | - Kevin P. Moore
- Institute for Liver and Digestive Health, University College London, London, United Kingdom
| | - Martin Feelisch
- Clinical and Experimental Sciences, Faculty of Medicine, Southampton General Hospital and Institute for Life Sciences, University of Southampton, Southampton, United Kingdom
| | - Mervyn Singer
- Bloomsbury Institute for Intensive Care Medicine, Division of Medicine, University College London, London, United Kingdom
- Magnus Oxygen, London, United Kingdom
| |
Collapse
|
39
|
Role of Gasotransmitters in Oxidative Stresses, Neuroinflammation, and Neuronal Repair. BIOMED RESEARCH INTERNATIONAL 2017; 2017:1689341. [PMID: 28386548 PMCID: PMC5366188 DOI: 10.1155/2017/1689341] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Revised: 01/12/2017] [Accepted: 02/07/2017] [Indexed: 12/21/2022]
Abstract
To date, three main gasotransmitters, that is, hydrogen sulfide (H2S), carbon monoxide (CO), and nitric oxide (NO), have been discovered to play major bodily physiological roles. These gasotransmitters have multiple functional roles in the body including physiologic and pathologic functions with respect to the cellular or tissue quantities of these gases. Gasotransmitters were originally known to have only detrimental and noxious effects in the body but that notion has much changed with years; vast studies demonstrated that these gasotransmitters are precisely involved in the normal physiological functioning of the body. From neuromodulation, oxidative stress subjugation, and cardiovascular tone regulation to immunomodulation, these gases perform critical roles, which, should they deviate from the norm, can trigger the genesis of a number of neurodegenerative diseases such as Alzheimer's disease (AD) and Parkinson's disease (PD). The purpose of this review is to discuss at great length physical and chemical properties and physiological actions of H2S, NO, and CO as well as shedding light on recently researched molecular targets. We particularly put emphasis on the roles in neuronal inflammation and neurodegeneration and neuronal repair.
Collapse
|
40
|
Bruschetta G, Impellizzeri D, Campolo M, Casili G, Di Paola R, Paterniti I, Esposito E, Cuzzocrea S. FeTPPS Reduces Secondary Damage and Improves Neurobehavioral Functions after Traumatic Brain Injury. Front Neurosci 2017; 11:6. [PMID: 28223911 PMCID: PMC5293762 DOI: 10.3389/fnins.2017.00006] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2016] [Accepted: 01/04/2017] [Indexed: 12/21/2022] Open
Abstract
Traumatic brain injury (TBI) determinate a cascade of events that rapidly lead to neuron's damage and death. We already reported that administration of FeTPPS, a 5,10,15,20-tetrakis (4-sulfonatophenyl) porphyrin iron III chloride peroxynitrite decomposition catalyst, possessed evident neuroprotective effects in a experimental model of spinal cord damage. The present study evaluated the neuroprotective property of FeTPPS in TBI, using a clinically validated model of TBI, the controlled cortical impact injury (CCI). We observe that treatment with FeTPPS (30 mg/kg, i.p.) reduced: the state of brain inflammation and the tissue hurt (histological score), myeloperoxidase activity, nitric oxide production, glial fibrillary acidic protein (GFAP) and pro-inflammatory cytokines expression and apoptosis process. Moreover, treatment with FeTPPS re-established motor-cognitive function after CCI and it resulted in a reduction of lesion volumes. Our results established that FeTPPS treatment decreases the growth of inflammatory process and the tissue injury associated with TBI. Thus our study confirmed the neuroprotective role of FeTPPS treatment on TBI.
Collapse
Affiliation(s)
- Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Rosanna Di Paola
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of MessinaMessina, Italy; Department of Pharmacological and Physiological Science, Saint Louis University School of MedicineSt. Louis. MO, USA
| |
Collapse
|
41
|
A novel slow-releasing hydrogen sulfide donor, FW1256, exerts anti-inflammatory effects in mouse macrophages and in vivo. Pharmacol Res 2016; 113:533-546. [DOI: 10.1016/j.phrs.2016.09.032] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Revised: 07/19/2016] [Accepted: 09/23/2016] [Indexed: 02/06/2023]
|
42
|
Impellizzeri D, Campolo M, Bruschetta G, Crupi R, Cordaro M, Paterniti I, Cuzzocrea S, Esposito E. Traumatic Brain Injury Leads to Development of Parkinson's Disease Related Pathology in Mice. Front Neurosci 2016; 10:458. [PMID: 27790086 PMCID: PMC5061819 DOI: 10.3389/fnins.2016.00458] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Accepted: 09/22/2016] [Indexed: 02/03/2023] Open
Abstract
Traumatic brain injury (TBI) is a major health and socio-economic problem that affects all societies. This condition results from the application of external physical strength to the brain that leads to transitory or permanent structural and functional impairments. Moreover, TBI is a risk factor for neurodegeneration and can e.g., increase the risk for Parkinson's disease (PD), a late-onset neurodegenerative disorder with loss of dopaminergic neurons in substantia nigra. In this study, we wanted to explore the possible development of PD-related pathology within the context of an experimental model of TBI. Traumatic brain injury was induced in mice by controlled cortical impact. At different time points behavioral tests (open field, elevated plus maze tests, and Barnes maze) were performed: The animals were sacrificed 30 days after the impact and the brains were processed for Western blot and immunohistochemical analyses. Following TBI there was a significant decrease in expression of tyrosine hydroxylase and dopamine transporter in the substantia nigra as well as significant behavioral alterations. In addition, a strong increase in neuroinflammation was evident, as shown by increased levels of cyclooxygenase-2 and inducible nitric oxide synthase as well as IκB-α degradation and nuclear-κB translocation. Moreover, neurotrophic factors such as brain-derived neurotrophic factor, neurotrophin-3, nerve growth factor, and glial cell line-derived neurotrophic factor were decreased 30 days post-TBI. Interestingly, we observed a significant accumulation of α-synuclein in microglia compared to astrocytes. This study suggests that PD-related molecular events can be triggered upon TBI. The biological mechanisms linking brain trauma and neurodegenerative diseases need to be further investigated.
Collapse
Affiliation(s)
- Daniela Impellizzeri
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Michela Campolo
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Giuseppe Bruschetta
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Rosalia Crupi
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Marika Cordaro
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of MessinaMessina, Italy; Department of Pharmacology and Physiology, Saint Louis UniversitySt. Louis, MO, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmaceutical, and Environmental Sciences, University of Messina Messina, Italy
| |
Collapse
|
43
|
Mostafa DK, El Azhary NM, Nasra RA. The hydrogen sulfide releasing compounds ATB-346 and diallyl trisulfide attenuate streptozotocin-induced cognitive impairment, neuroinflammation, and oxidative stress in rats: involvement of asymmetric dimethylarginine. Can J Physiol Pharmacol 2016; 94:699-708. [DOI: 10.1139/cjpp-2015-0316] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Hydrogen sulfide (H2S) has attracted interest as a gaseous mediator involved in diverse processes in the nervous system, particularly with respect to learning and memory. However, its therapeutic potential in Alzheimer disease (AD) is not fully explored. Therefore, the effects of H2S-releasing compounds against AD-like behavioural and biochemical abnormalities were investigated. Memory deficit was induced by intracerberoventicular injection of streptozotocin (STZ, 3 mg·kg−1). Animals were randomly assigned into 5 groups (12 rats each): normal control, STZ treated, and 3 drug-treated groups receiving naproxen, H2S-releasing naproxen (ATB-346), and diallyl trisulfide in 20, 32, 40 mg·kg−1·day−1, respectively. Memory function was assessed by passive avoidance and T-maze tasks. After 21 days, hippocampal IL-6, malondialdehyde, reduced glutathione (GSH), asymmetric dimethylarginine (ADMA), and acetylcholinestrase activity were determined. ATB-346 and diallyl trisulfide ameliorated behavioural performance and reduced malondialdehyde, ADMA, and acetylcholinestrase activity while increasing GSH. This study demonstrates the beneficial effects of H2S release in STZ-induced memory impairment by modulation of neuroinflammation, oxidative stress, and cholinergic function. It also delineates the implication of ADMA to the cognitive impairment induced by STZ. These findings draw the attention to H2S-releasing compounds as new candidates for treating neurodegenerative disorders that have prominent oxidative and inflammatory components such as AD.
Collapse
Affiliation(s)
- Dalia K. Mostafa
- Department of Clinical Pharmacology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Nesrine M. El Azhary
- Department of Physiology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Rasha A. Nasra
- Department of Biochemistry, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| |
Collapse
|
44
|
Tajiri N, De La Peña I, Acosta SA, Kaneko Y, Tamir S, Landesman Y, Carlson R, Shacham S, Borlongan CV. A Nuclear Attack on Traumatic Brain Injury: Sequestration of Cell Death in the Nucleus. CNS Neurosci Ther 2016; 22:306-15. [PMID: 26842647 PMCID: PMC5067638 DOI: 10.1111/cns.12501] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2015] [Revised: 11/25/2015] [Accepted: 11/27/2015] [Indexed: 11/28/2022] Open
Abstract
Background Exportin 1 (XPO1/CRM1) plays prominent roles in the regulation of nuclear protein export. Selective inhibitors of nuclear export (SINE) are small orally bioavailable molecules that serve as drug‐like inhibitors of XPO1, with potent anti‐cancer properties. Traumatic brain injury (TBI) presents with a secondary cell death characterized by neuroinflammation that is putatively regulated by nuclear receptors. Aims and Results Here, we report that the SINE compounds (KPT‐350 or KPT‐335) sequestered TBI‐induced neuroinflammation‐related proteins (NF‐kB, AKT, FOXP1) within the nucleus of cultured primary rat cortical neurons, which coincided with protection against TNF‐α (20 ng/mL)‐induced neurotoxicity as shown by at least 50% and 100% increments in preservation of cell viability and cellular enzymatic activity, respectively, compared to non‐treated neuronal cells (P's < 0.05). In parallel, using an in vivo controlled cortical impact (CCI) model of TBI, we demonstrate that adult Sprague‐Dawley rats treated post‐injury with SINE compounds exhibited significant reductions in TBI‐induced behavioral and histological deficits. Animals that received KPT‐350 orally starting at 2 h post‐TBI and once a day thereafter over the next 4 days exhibited significantly better motor coordination, and balance in the rotorod test and motor asymmetry test by 100–200% improvements, as early as 4 h after initial SINE compound injection that was sustained during subsequent KPT‐350 dosing, and throughout the 18‐day post‐TBI study period compared to vehicle treatment (P's < 0.05). Moreover, KPT‐350 reduced cortical core impact area and peri‐impact cell death compared to vehicle treatment (P's < 0.05). Conclusions Both in vitro and in vivo experiments revealed that KPT‐350 increased XPO1, AKT, and FOXP1 nuclear expression and relegated NF‐kB expression within the neuronal nuclei. Altogether, these findings advance the utility of SINE compounds to stop trafficking of cell death proteins within the nucleus as an efficacious treatment for TBI.
Collapse
Affiliation(s)
- Naoki Tajiri
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Ike De La Peña
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Sandra A Acosta
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | - Yuji Kaneko
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| | | | | | | | | | - Cesar V Borlongan
- Department of Neurosurgery and Brain Repair, University of South Florida Morsani College of Medicine, Tampa, FL, USA
| |
Collapse
|