1
|
Wyatt-Johnson SK, Afify R, Brutkiewicz RR. The immune system in neurological diseases: What innate-like T cells have to say. J Allergy Clin Immunol 2024; 153:913-923. [PMID: 38365015 PMCID: PMC10999338 DOI: 10.1016/j.jaci.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 01/26/2024] [Accepted: 02/13/2024] [Indexed: 02/18/2024]
Abstract
The immune system classically consists of 2 lines of defense, innate and adaptive, both of which interact with one another effectively to protect us against any pathogenic threats. Importantly, there is a diverse subset of cells known as innate-like T cells that act as a bridge between the innate and adaptive immune systems and are pivotal players in eliciting inflammatory immune responses. A growing body of evidence has demonstrated the regulatory impact of these innate-like T cells in central nervous system (CNS) diseases and that such immune cells can traffic into the brain in multiple pathological conditions, which can be typically attributed to the breakdown of the blood-brain barrier. However, until now, it has been poorly understood whether innate-like T cells have direct protective or causative properties, particularly in CNS diseases. Therefore, in this review, our attention is focused on discussing the critical roles of 3 unique subsets of unconventional T cells, namely, natural killer T cells, γδ T cells, and mucosal-associated invariant T cells, in the context of CNS diseases, disorders, and injuries and how the interplay of these immune cells modulates CNS pathology, in an attempt to gain a better understanding of their complex functions.
Collapse
Affiliation(s)
- Season K Wyatt-Johnson
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Reham Afify
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind
| | - Randy R Brutkiewicz
- Department of Microbiology and Immunology, Stark Neurosciences Research Institute, Indiana University School of Medicine, Indianapolis, Ind.
| |
Collapse
|
2
|
Park JH, Kang I, Lee HK. γδ T Cells in Brain Homeostasis and Diseases. Front Immunol 2022; 13:886397. [PMID: 35693762 PMCID: PMC9181321 DOI: 10.3389/fimmu.2022.886397] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 04/25/2022] [Indexed: 11/30/2022] Open
Abstract
γδ T cells are a distinct subset of T cells expressing γδ T cell receptor (TCR) rather than αβTCR. Since their discovery, the critical roles of γδ T cells in multiple physiological systems and diseases have been investigated. γδ T cells are preferentially located at mucosal surfaces, such as the gut, although a small subset of γδ T cells can circulate the blood. Additionally, a subset of γδ T cells reside in the meninges in the central nervous system. Recent findings suggest γδ T cells in the meninges have critical roles in brain function and homeostasis. In addition, several lines of evidence have shown γδ T cells can infiltrate the brain parenchyma and regulate inflammatory responses in multiple diseases, including neurodegenerative diseases. Although the importance of γδ T cells in the brain is well established, their roles are still incompletely understood due to the complexity of their biology. Because γδ T cells rapidly respond to changes in brain status and regulate disease progression, understanding the role of γδ T cells in the brain will provide critical information that is essential for interpreting neuroimmune modulation. In this review, we summarize the complex role of γδ T cells in the brain and discuss future directions for research.
Collapse
|
3
|
Rasmussen's encephalitis: Early diagnostic criteria in children. Rev Neurol (Paris) 2022; 178:666-674. [PMID: 35568516 DOI: 10.1016/j.neurol.2022.03.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/23/2022] [Accepted: 03/10/2022] [Indexed: 11/21/2022]
Abstract
Rasmussen's encephalitis (RE) is a rare chronic inflammatory brain disorder resulting in progressive neurodegeneration in one cerebral hemisphere. The inflammatory process is accompanied by progressive loss of function of the affected hemisphere, associated with drug-resistant partial epilepsy. The diagnosis is based on a range of clinical, electroencephalographic, radiological and biochemical arguments, without any specific formal marker, which makes the diagnosis of the disease complex, especially in its initial phase. Seizures are refractory to anti-seizures medication (ASM) and to classical immunomodulatory treatments. These treatments are also ineffective to stop the degenerative process. Only surgical treatment with hemispherotomy (surgical disconnection of a cerebral hemisphere) allows definitive cessation of seizures but this leads to definitive motor and cognitive deficits. The etiology of RE is not known, but there is strong evidence for an immunopathogenic mechanism involving T-cell mediated immunity. The emergence of biotherapies targeting against various cytokines offers potential therapeutic perspectives. This disease is currently a real challenge in terms of: (i) early diagnosis, before the constitution of marked hemispheric atrophy and the appearance of neurological and cognitive consequences; (ii) recognition of incomplete form; (iii) therapeutic management due to advances in the field of targeted treatment of inflammation; (iv) surgery and recovery possibilities.
Collapse
|
4
|
Mu X, Zhang X, Gao H, Gao L, Li Q, Zhao C. Crosstalk between peripheral and the brain-resident immune components in epilepsy. J Integr Neurosci 2022; 21:9. [PMID: 35164445 DOI: 10.31083/j.jin2101009] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Revised: 03/30/2021] [Accepted: 05/31/2021] [Indexed: 01/05/2025] Open
Abstract
Epilepsy is one of the most common neurology diseases. It is characterized by recurrent, spontaneous seizures and accompanied by various comorbidities which can significantly affect a person's life. Accumulating evidence indicates an essential pathophysiological role for neuroinflammation in epilepsy, which involves activation of microglia and astrocytes, recruitment of peripheral leukocytes into the central nervous system, and release of some inflammatory mediators, including pro-inflammatory factors and anti-inflammatory cytokines. There is complex crosstalk between the central nervous system and peripheral immune responses associated with the progression of epilepsy. This review provides an update of current knowledge about the contribution of this crosstalk associated with epilepsy. Additionally, how gut microbiota is involved in epilepsy and its possible influence on crosstalk is also discussed. Such recent advances in understanding suggest innovative methods for targeting the molecules correlated with the crosstalk and may provide a better prognosis for patients diagnosed with epilepsy.
Collapse
Affiliation(s)
- Xiaopeng Mu
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Xiuchun Zhang
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Honghua Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Lianbo Gao
- Neurology, The Fourth Hospital of China Medical University, 110032 Shenyang, Liaoning, China
| | - Qingchang Li
- Department of Pathology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| | - Chuansheng Zhao
- Neurology, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
- Stroke Center, The First Hospital of China Medical University, 110001 Shenyang, Liaoning, China
| |
Collapse
|
5
|
Wiendl H, Gross CC, Bauer J, Merkler D, Prat A, Liblau R. Fundamental mechanistic insights from rare but paradigmatic neuroimmunological diseases. Nat Rev Neurol 2021; 17:433-447. [PMID: 34050331 DOI: 10.1038/s41582-021-00496-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/13/2021] [Indexed: 02/04/2023]
Abstract
The pathophysiology of complex neuroimmunological diseases, such as multiple sclerosis and autoimmune encephalitis, remains puzzling - various mechanisms that are difficult to dissect seem to contribute, hampering the understanding of the processes involved. Some rare neuroimmunological diseases are easier to study because their presentation and pathogenesis are more homogeneous. The investigation of these diseases can provide fundamental insights into neuroimmunological pathomechanisms that can in turn be applied to more complex diseases. In this Review, we summarize key mechanistic insights into three such rare but paradigmatic neuroimmunological diseases - Susac syndrome, Rasmussen encephalitis and narcolepsy type 1 - and consider the implications of these insights for the study of other neuroimmunological diseases. In these diseases, the combination of findings in humans, different modalities of investigation and animal models has enabled the triangulation of evidence to validate and consolidate the pathomechanistic features and to develop diagnostic and therapeutic strategies; this approach has provided insights that are directly relevant to other neuroimmunological diseases and applicable in other contexts. We also outline how next-generation technologies and refined animal models can further improve our understanding of pathomechanisms, including cell-specific and antigen-specific CNS immune responses, thereby paving the way for the development of targeted therapeutic approaches.
Collapse
Affiliation(s)
- Heinz Wiendl
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany.
| | - Catharina C Gross
- Department of Neurology with Institute of Translational Neurology, University and University Hospital Münster, Münster, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Doron Merkler
- Department of Pathology and Immunology, Division of Clinical Pathology, University and University Hospitals of Geneva, Geneva, Switzerland
| | - Alexandre Prat
- Department of Neuroscience, University of Montreal, Montreal, Canada
| | - Roland Liblau
- Infinity, Université Toulouse, CNRS, Inserm, Toulouse, France
- CHU Toulouse, Hôpital Purpan, Immunology Department, Toulouse, France
| |
Collapse
|
6
|
Sambaturu N, Pusadkar V, Hannenhalli S, Chandra N. PathExt: a general framework for path-based mining of omics-integrated biological networks. Bioinformatics 2021; 37:1254-1262. [PMID: 33305329 PMCID: PMC8599850 DOI: 10.1093/bioinformatics/btaa941] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2020] [Revised: 09/24/2020] [Accepted: 10/27/2020] [Indexed: 11/12/2022] Open
Abstract
MOTIVATION Transcriptomes are routinely used to prioritize genes underlying specific phenotypes. Current approaches largely focus on differentially expressed genes (DEGs), despite the recognition that phenotypes emerge via a network of interactions between genes and proteins, many of which may not be differentially expressed. Furthermore, many practical applications lack sufficient samples or an appropriate control to robustly identify statistically significant DEGs. RESULTS We provide a computational tool-PathExt, which, in contrast to differential genes, identifies differentially active paths when a control is available, and most active paths otherwise, in an omics-integrated biological network. The sub-network comprising such paths, referred to as the TopNet, captures the most relevant genes and processes underlying the specific biological context. The TopNet forms a well-connected graph, reflecting the tight orchestration in biological systems. Two key advantages of PathExt are (i) it can extract characteristic genes and pathways even when only a single sample is available, and (ii) it can be used to study a system even in the absence of an appropriate control. We demonstrate the utility of PathExt via two diverse sets of case studies, to characterize (i) Mycobacterium tuberculosis response upon exposure to 18 antibacterial drugs where only one transcriptomic sample is available for each exposure; and (ii) tissue-relevant genes and processes using transcriptomic data for 39 human tissues. Overall, PathExt is a general tool for prioritizing context-relevant genes in any omics-integrated biological network for any condition(s) of interest, even with a single sample or in the absence of appropriate controls. AVAILABILITYAND IMPLEMENTATION The source code for PathExt is available at https://github.com/NarmadaSambaturu/PathExt. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Narmada Sambaturu
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Vaidehi Pusadkar
- Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| | - Sridhar Hannenhalli
- Cancer Data Science Laboratory, National Cancer Institute, National Institutes of Health, Bethesda, MD 20892, USA
| | - Nagasuma Chandra
- IISc Mathematics Initiative, Indian Institute of Science, Bangalore, Karnataka 560012, India.,Department of Biochemistry, Indian Institute of Science, Bangalore, Karnataka 560012, India
| |
Collapse
|
7
|
Tröscher AR, Sakaraki E, Mair KM, Köck U, Racz A, Borger V, Cloppenborg T, Becker AJ, Bien CG, Bauer J. T cell numbers correlate with neuronal loss rather than with seizure activity in medial temporal lobe epilepsy. Epilepsia 2021; 62:1343-1353. [PMID: 33954995 DOI: 10.1111/epi.16914] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 04/08/2021] [Accepted: 04/08/2021] [Indexed: 11/26/2022]
Abstract
OBJECTIVE Medial temporal lobe epilepsy (MTLE) is a drug-resistant focal epilepsy that can be caused by a broad spectrum of different inciting events, including tumors, febrile seizures, and viral infections. In human epilepsy surgical resections as well as in animal models, an involvement of the adaptive immune system was observed. We here analyzed the presence of T cells in various subgroups of MTLE. We aimed to answer the question of how much inflammation was present and whether the presence of T cells was associated with seizures or associated with hippocampal neurodegeneration. METHODS We quantified the numbers of CD3+ T cells and CD8+ cytotoxic T cells in the hippocampus of patients with gangliogliomas (GGs; intrahippocampal and extrahippocampal, with and without sclerosis), febrile seizures, and postinfectious encephalitic epilepsy and compared this with Rasmussen encephalitis, Alzheimer disease, and normal controls. RESULTS We could show that T cell numbers were significantly elevated in MTLE compared to healthy controls. CD3+ as well as CD8+ T cell numbers, however, varied highly among MTLE subgroups. By comparing GG patients with and without hippocampal sclerosis (HS), we were able to show that T-cell numbers were increased in extrahippocampal GG patients with hippocampal neuronal loss and HS, whereas extrahippocampal GG cases without hippocampal neuronal loss (i.e., absence of HS) did not differ from healthy controls. Importantly, T cell numbers in MTLE correlated with the degree of neuronal loss, whereas no correlation with seizure frequency or disease duration was found. Finally, we found that in nearly all MTLE groups, T cell numbers remained elevated even years after the inciting event. SIGNIFICANCE We here provide a detailed histopathological investigation of the involvement of T cells in various subgroups of MTLE, which suggests that T cell influx correlates to neuronal loss rather than seizure activity.
Collapse
Affiliation(s)
- Anna R Tröscher
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Eirini Sakaraki
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Katharina M Mair
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Ulrike Köck
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| | - Attila Racz
- Department of Epileptology, University Hospital Bonn, Bonn, Germany
| | - Valeri Borger
- Department of Neurosurgery, University Hospital Bonn, Bonn, Germany
| | - Thomas Cloppenborg
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Albert J Becker
- Department of Neuropathology, University Hospital Bonn, Bonn, Germany
| | - Christian G Bien
- Department of Epileptology (Krankenhaus Mara), Medical School, Campus Bielefeld-Bethel Bielefeld, Bielefeld University, Bielefeld, Germany
| | - Jan Bauer
- Department of Neuroimmunology, Center for Brain Research, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
8
|
Chang JW, Reyes SD, Faure-Kumar E, Lam SK, Lawlor MW, Leventer RJ, Lew SM, Lockhart PJ, Pope K, Weiner HL, Salamon N, Vinters HV, Mathern GW, Fallah A, Owens GC. Clonally Focused Public and Private T Cells in Resected Brain Tissue From Surgeries to Treat Children With Intractable Seizures. Front Immunol 2021; 12:664344. [PMID: 33889159 PMCID: PMC8056262 DOI: 10.3389/fimmu.2021.664344] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2021] [Accepted: 03/16/2021] [Indexed: 12/23/2022] Open
Abstract
Using a targeted transcriptomics approach, we have analyzed resected brain tissue from a cohort of 53 pediatric epilepsy surgery cases, and have found that there is a spectrum of involvement of both the innate and adaptive immune systems as evidenced by the differential expression of immune-specific genes in the affected brain tissue. The specimens with the highest expression of immune-specific genes were from two Rasmussen encephalitis cases, which is known to be a neuro-immunological disease, but also from tuberous sclerosis complex (TSC), focal cortical dysplasia, and hemimegalencephaly surgery cases. We obtained T cell receptor (TCR) Vβ chain sequence data from brain tissue and blood from patients with the highest levels of T cell transcripts. The clonality indices and the frequency of the top 50 Vβ clonotypes indicated that T cells in the brain were clonally restricted. The top 50 Vβ clonotypes comprised both public and private (patient specific) clonotypes, and the TCR Vβ chain third complementarity region (CDR3) of the most abundant public Vβ clonotype in each brain sample was strikingly similar to a CDR3 that recognizes an immunodominant epitope in either human cytomegalovirus or Epstein Barr virus, or influenza virus A. We found that the frequency of 14 of the top 50 brain Vβ clonotypes from a TSC surgery case had significantly increased in brain tissue removed to control recurrent seizures 11 months after the first surgery. Conversely, we found that the frequency in the blood of 18 of the top 50 brain clonotypes from a second TSC patient, who was seizure free, had significantly decreased 5 months after surgery indicating that T cell clones found in the brain had contracted in the periphery after removal of the brain area associated with seizure activity and inflammation. However, the frequency of a public and a private clonotype significantly increased in the brain after seizures recurred and the patient underwent a second surgery. Combined single cell gene expression and TCR sequencing of brain-infiltrating leukocytes from the second surgery showed that the two clones were CD8 effector T cells, indicating that they are likely to be pathologically relevant.
Collapse
Affiliation(s)
- Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Samuel D Reyes
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Emmanuelle Faure-Kumar
- Department of Medicine: Division of Digestive Diseases, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Sandi K Lam
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Ann & Robert H. Lurie Children's Hospital, Chicago, IL, United States
| | - Michael W Lawlor
- Department of Pathology, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Richard J Leventer
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Sean M Lew
- Department of Neurosurgery, Medical College of Wisconsin, Children's Hospital of Wisconsin, Milwaukee, WI, United States
| | - Paul J Lockhart
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Kathryn Pope
- Murdoch Children's Research Institute, Royal Children's Hospital, Parkville, VIC, Australia
| | - Howard L Weiner
- Department of Pediatric Neurosurgery, Baylor College of Medicine, Texas Children's Hospital, Houston, TX, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Harry V Vinters
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States.,Mattel Children's Hospital, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California, Los Angeles, CA, United States
| |
Collapse
|
9
|
Li Y, Zhang Y, Zeng X. γδ T Cells Participating in Nervous Systems: A Story of Jekyll and Hyde. Front Immunol 2021; 12:656097. [PMID: 33868300 PMCID: PMC8044362 DOI: 10.3389/fimmu.2021.656097] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 03/15/2021] [Indexed: 11/18/2022] Open
Abstract
γδ T cells are distributed in various lymphoid and nonlymphoid tissues, and act as early responders in many conditions. Previous studies have proven their significant roles in infection, cancer, autoimmune diseases and tissue maintenance. Recently, accumulating researches have highlighted the crosstalk between γδ T cells and nervous systems. In these reports, γδ T cells maintain some physiological functions of central nervous system by secreting interleukin (IL) 17, and neurons like nociceptors can in turn regulate the activity of γδ T cells. Moreover, γδ T cells are involved in neuroinflammation such as stroke and multiple sclerosis. This review illustrates the relationship between γδ T cells and nervous systems in physiological and pathological conditions.
Collapse
Affiliation(s)
| | | | - Xun Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
10
|
Tang C, Luan G, Li T. Rasmussen's encephalitis: mechanisms update and potential therapy target. Ther Adv Chronic Dis 2020; 11:2040622320971413. [PMID: 33294146 PMCID: PMC7705182 DOI: 10.1177/2040622320971413] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 10/15/2020] [Indexed: 12/11/2022] Open
Abstract
Rasmussen’s encephalitis (RE) is rare neurological diseases characterized as epilepsia partialis continua, invariably hemiparesis, and cognitive impairment. This disease is encountered frequently in childhood and presents with progressive atrophy of the unilateral hemisphere, and there are also sustained neurological complications. Owing to uncertain pathogenesis, the most effective way to limit the influence of seizures currently is cerebral hemispherectomy. In this review, we focus on four main lines of pathogenesis: virus infection, antibody-mediated, cell-mediated immunity, and microglia activation. Although one or more antigenic epitopes may give rise to infiltrating T cell responses in RE brain tissue, no exact antigen was confirmed as the definite cause of the disease. On the other hand, the appearance of antibodies related with RE seem to be a secondary pathological process. Synthetic studies have suggested an adaptive immune mechanism mediated by CD8+ T cells and an innate immune mechanism mediated by activated microglia and neuroglia. Accordingly, opinions have been raised that immunomodulatory treatments aimed at initial damage to the brain that are induced by cytotoxic CD8+ T cell lymphocytes and microglia in the early stage of RE slow down disease progression. However, systematic exploration of the theory behind these therapeutic effects based on multicenter and large sample studies are needed. In addition, dysfunction of the adenosine system, including the main adenosine removing enzyme adenosine kinase and adenosine receptors, has been demonstrated in RE, which might provide a novel therapeutic target for treatment of RE in future.
Collapse
Affiliation(s)
- Chongyang Tang
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Guoming Luan
- Department of Neurosurgery, SanBo Brain Hospital, Capital Medical University, Beijing, China
| | - Tianfu Li
- Department of Neurology, SanBo Brain Hospital, Capital Medical University No. 50 Xiangshanyikesong Road, Haidian District, Beijing, 100093, China
| |
Collapse
|
11
|
Wo J, Zhang F, Li Z, Sun C, Zhang W, Sun G. The Role of Gamma-Delta T Cells in Diseases of the Central Nervous System. Front Immunol 2020; 11:580304. [PMID: 33193380 PMCID: PMC7644879 DOI: 10.3389/fimmu.2020.580304] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/30/2020] [Indexed: 01/08/2023] Open
Abstract
Gamma-delta (γδ) T cells are a subset of T cells that promote the inflammatory responses of lymphoid and myeloid lineages, and are especially vital to the initial inflammatory and immune responses. Given the capability to connect crux inflammations of adaptive and innate immunity, γδ T cells are responsive to multiple molecular cues and can acquire the capacity to induce various cytokines, such as GM-CSF, IL-4, IL-17, IL-21, IL-22, and IFN-γ. Nevertheless, the exact mechanisms responsible for γδ T cell proinflammatory functions remain poorly understood, particularly in the context of the central nervous system (CNS) diseases. CNS disease, usually leading to irreversible cognitive and physical disability, is becoming a worldwide public health problem. Here, we offer a review of the neuro-inflammatory and immune functions of γδ T cells, intending to understand their roles in CNS diseases, which may be crucial for the development of novel clinical applications.
Collapse
Affiliation(s)
- Jin Wo
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Feng Zhang
- Intensive Care Unit, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Zhizhong Li
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Chenghong Sun
- State Key Laboratory of Generic Manufacture Technology of Chinese Traditional Medicine, Linyi, China
| | - Wencai Zhang
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| | - Guodong Sun
- Department of Orthopedics, First Affiliated Hospital, Jinan University, Guangzhou, China
| |
Collapse
|
12
|
Antagonism of Macrophage Migration Inhibitory Factory (MIF) after Traumatic Brain Injury Ameliorates Astrocytosis and Peripheral Lymphocyte Activation and Expansion. Int J Mol Sci 2020; 21:ijms21207448. [PMID: 33050322 PMCID: PMC7589344 DOI: 10.3390/ijms21207448] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Revised: 09/10/2020] [Accepted: 09/23/2020] [Indexed: 12/22/2022] Open
Abstract
Traumatic brain injury (TBI) precedes the onset of epilepsy in up to 15–20% of symptomatic epilepsies and up to 5% of all epilepsy. Treatment of acquired epilepsies, including post-traumatic epilepsy (PTE), presents clinical challenges, including frequent resistance to anti-epileptic therapies. Considering that over 1.6 million Americans present with a TBI each year, PTE is an urgent clinical problem. Neuroinflammation is thought to play a major causative role in many of the post-traumatic syndromes, including PTE. Increasing evidence suggests that neuroinflammation facilitates and potentially contributes to seizure induction and propagation. The inflammatory cytokine, macrophage migration inhibitory factor (MIF), is elevated after TBI and higher levels of MIF correlate with worse post-traumatic outcomes. MIF was recently demonstrated to directly alter the firing dynamics of CA1 pyramidal neurons in the hippocampus, a structure critically involved in many types of seizures. We hypothesized that antagonizing MIF after TBI would be anti-inflammatory, anti-neuroinflammatory and neuroprotective. The results show that administering the MIF antagonist ISO1 at 30 min after TBI prevented astrocytosis but was not neuroprotective in the peri-lesion cortex. The results also show that ISO1 inhibited the TBI-induced increase in γδT cells in the gut, and the percent of B cells infiltrating into the brain. The ISO1 treatment also increased this population of B cells in the spleen. These findings are discussed with an eye towards their therapeutic potential for post-traumatic syndromes, including PTE.
Collapse
|
13
|
Bellamkonda N, Phillips HW, Chen JS, Tucker AM, Maniquis C, Mathern GW, Fallah A. Epilepsy surgery for Rasmussen encephalitis: the UCLA experience. J Neurosurg Pediatr 2020; 26:389-397. [PMID: 32679562 DOI: 10.3171/2020.4.peds2098] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Accepted: 04/21/2020] [Indexed: 11/06/2022]
Abstract
OBJECTIVE Rasmussen encephalitis (RE) is a rare inflammatory neurological disorder typically involving one hemisphere and resulting in drug-resistant epilepsy and progressive neurological decline. Here, the authors present seizure outcomes in children who underwent epilepsy surgery for RE at a single institution. METHODS The records of consecutive patients who had undergone epilepsy surgery for RE at the UCLA Mattel Children's Hospital between 1982 and 2018 were retrospectively reviewed. Basic demographic information, seizure history, procedural notes, and postoperative seizure and functional outcome data were analyzed. RESULTS The cohort included 44 patients, 41 of whom had sufficient data for analysis. Seizure freedom was achieved in 68%, 48%, and 22% of the patients at 1, 5, and 10 years, respectively. The median time to the first seizure for those who experienced seizure recurrence after surgery was 39 weeks (IQR 11-355 weeks). Anatomical hemispherectomy, as compared to functional hemispherectomy, was independently associated with a longer time to postoperative seizure recurrence (HR 0.078, p = 0.03). There was no statistically significant difference in postoperative seizure recurrence between patients with complete hemispherectomy and those who had less-than-hemispheric surgery. Following surgery, 68% of the patients could ambulate and 84% could speak regardless of operative intervention. CONCLUSIONS A large proportion of RE patients will have seizure relapse after surgery, though patients with anatomical hemispherectomies may have a longer time to postoperative seizure recurrence. Overall, the long-term data in this study suggest that hemispheric surgery can be seen as palliative treatment for seizures rather than a cure for RE.
Collapse
Affiliation(s)
| | | | - Jia-Shu Chen
- Departments of1Neurosurgery
- 4Department of Neuroscience, Brown University, Providence, Rhode Island; and
| | - Alexander M Tucker
- 5Department of Neurosurgery, Children's Hospital of Philadelphia, Pennsylvania
| | | | - Gary W Mathern
- Departments of1Neurosurgery
- 3Psychiatry and Biobehavioral Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California
| | | |
Collapse
|
14
|
Aliseychik M, Patrikeev A, Gusev F, Grigorenko A, Andreeva T, Biragyn A, Rogaev E. Dissection of the Human T-Cell Receptor γ Gene Repertoire in the Brain and Peripheral Blood Identifies Age- and Alzheimer's Disease-Associated Clonotype Profiles. Front Immunol 2020; 11:12. [PMID: 32117220 PMCID: PMC7025544 DOI: 10.3389/fimmu.2020.00012] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 01/06/2020] [Indexed: 01/08/2023] Open
Abstract
The immune system contributes to neurodegenerative pathologies. However, the roles of γδ T cells in Alzheimer's disease (AD) are poorly understood. Here, we evaluated somatic variability of T-cell receptor γ genes (TRGs) in patients with AD. We performed deep sequencing of the CDR3 region of TRGs in patients with AD and control patients without dementia. TRG clones were clearly detectable in peripheral blood (PB) and non-neuronal cell populations in human brains. TRG repertoire diversity was reduced during aging. Compared with the PB, the brain showed reduced TRGV9 clonotypes but was enriched in TRGV2/4/8 clonotypes. AD-associated TRG profiles were found in both the PB and brain. Moreover, some groups of clonotypes were more specific for the brain or blood in patients with AD compared to those in controls. Our pilot deep analysis of T-cell receptor diversities in AD revealed putative brain and AD-associated immunogenic markers.
Collapse
Affiliation(s)
- Maria Aliseychik
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Anton Patrikeev
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Fedor Gusev
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Anastasia Grigorenko
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia
| | - Tatiana Andreeva
- Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Arya Biragyn
- Immunoregulation Section, National Institute on Aging, Baltimore, MD, United States
| | - Evgeny Rogaev
- Department of Psychiatry, University of Massachusetts Medical School, Worcester, MA, United States.,Department of Human Genetics and Genomics, Vavilov Institute of General Genetics, Russian Academy of Sciences, Moscow, Russia.,Center for Genetics and Genetic Technologies, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
15
|
Owens GC, Garcia AJ, Mochizuki AY, Chang JW, Reyes SD, Salamon N, Prins RM, Mathern GW, Fallah A. Evidence for Innate and Adaptive Immune Responses in a Cohort of Intractable Pediatric Epilepsy Surgery Patients. Front Immunol 2019; 10:121. [PMID: 30761153 PMCID: PMC6362260 DOI: 10.3389/fimmu.2019.00121] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2018] [Accepted: 01/15/2019] [Indexed: 12/31/2022] Open
Abstract
Brain-infiltrating lymphocytes (BILs) were isolated from resected brain tissue from 10 pediatric epilepsy patients who had undergone surgery for Hemimegalencephaly (HME) (n = 1), Tuberous sclerosis complex (TSC) (n = 2), Focal cortical dysplasia (FCD) (n = 4), and Rasmussen encephalitis (RE) (n = 3). Peripheral blood mononuclear cells (PBMCs) were also isolated from blood collected at the time of the surgery. Cells were immunostained with a panel of 20 antibody markers, and analyzed by mass cytometry. To identify and quantify the immune cell types in the samples, an unbiased clustering method was applied to the entire data set. More than 85 percent of the CD45+ cells isolated from resected RE brain tissue comprised T cells; by contrast NK cells and myeloid cells constituted 80-95 percent of the CD45+ cells isolated from the TSC and the FCD brain specimens. Three populations of myeloid cells made up >50 percent of all of the myeloid cells in all of the samples of which a population of HLA-DR+ CD11b+ CD4- cells comprised the vast majority of myeloid cells in the BIL fractions from the FCD and TSC cases. CD45RA+ HLA-DR- CD11b+ CD16+ NK cells constituted the major population of NK cells in the blood from all of the cases. This subset also comprised the majority of NK cells in BILs from the resected RE and HME brain tissue, whereas NK cells defined as CD45RA- HLA-DR+ CD11b- CD16- cells comprised 86-96 percent of the NK cells isolated from the FCD and TSC brain tissue. Thirteen different subsets of CD4 and CD8 αβ T cells and γδ T cells accounted for over 80% of the CD3+ T cells in all of the BIL and PBMC samples. At least 90 percent of the T cells in the RE BILs, 80 percent of the T cells in the HME BILs and 40-66 percent in the TSC and FCD BILs comprised activated antigen-experienced (CD45RO+ HLA-DR+ CD69+) T cells. We conclude that even in cases where there is no evidence for an infection or an immune disorder, activated peripheral immune cells may be present in epileptogenic areas of the brain, possibly in response to seizure-driven brain inflammation.
Collapse
Affiliation(s)
- Geoffrey C. Owens
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Alejandro J. Garcia
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aaron Y. Mochizuki
- Division of Hematology Oncology, Department of Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Pediatrics, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Julia W. Chang
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Samuel D. Reyes
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Noriko Salamon
- Department of Radiological Sciences, David Geffen School of Medicine at the University of California, Los Angeles, Los Angeles, CA, United States
| | - Robert M. Prins
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Parker Institute for Cancer Immunotherapy, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Gary W. Mathern
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| | - Aria Fallah
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Brain Research Institute, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
- Mattel Children's Hospital, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, United States
| |
Collapse
|
16
|
Xu D, Robinson AP, Ishii T, Duncan DS, Alden TD, Goings GE, Ifergan I, Podojil JR, Penaloza-MacMaster P, Kearney JA, Swanson GT, Miller SD, Koh S. Peripherally derived T regulatory and γδ T cells have opposing roles in the pathogenesis of intractable pediatric epilepsy. J Exp Med 2018; 215:1169-1186. [PMID: 29487082 PMCID: PMC5881465 DOI: 10.1084/jem.20171285] [Citation(s) in RCA: 79] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2017] [Revised: 11/08/2017] [Accepted: 01/26/2018] [Indexed: 12/14/2022] Open
Abstract
The pathophysiology of drug-resistant pediatric epilepsy is unknown. Flow cytometric analysis of inflammatory leukocytes in resected brain tissues from 29 pediatric patients with genetic (focal cortical dysplasia) or acquired (encephalomalacia) epilepsy demonstrated significant brain infiltration of blood-borne inflammatory myeloid cells and memory CD4+ and CD8+ T cells. Significantly, proinflammatory (IL-17- and GM-CSF-producing) γδ T cells were concentrated in epileptogenic lesions, and their numbers positively correlated with disease severity. Conversely, numbers of regulatory T (T reg) cells inversely correlated with disease severity. Correspondingly, using the kainic acid model of status epilepticus, we show ameliorated seizure activity in both γδ T cell- and IL-17RA-deficient mice and in recipients of T reg cells, whereas T reg cell depletion heightened seizure severity. Moreover, both IL-17 and GM-CSF induced neuronal hyperexcitability in brain slice cultures. These studies support a major pathological role for peripherally derived innate and adaptive proinflammatory immune responses in the pathogenesis of intractable epilepsy and suggest testing of immunomodulatory therapies.
Collapse
Affiliation(s)
- Dan Xu
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Andrew P Robinson
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Toshiyuki Ishii
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Physiology, Nippon Medical School, Tokyo, Japan
| | - D'Anne S Duncan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Tord D Alden
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Gwendolyn E Goings
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Igal Ifergan
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Joseph R Podojil
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Pablo Penaloza-MacMaster
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Jennifer A Kearney
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Geoffrey T Swanson
- Department of Pharmacology, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Stephen D Miller
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, IL
- Department of Interdepartmental Immunobiology Center, Feinberg School of Medicine, Northwestern University, Chicago, IL
| | - Sookyong Koh
- Department of Pediatrics, Feinberg School of Medicine, Northwestern University, Chicago, IL
| |
Collapse
|
17
|
Pranzatelli MR, Allison TJ, McGee NR, Tate ED. Cerebrospinal fluid γδ T cell frequency is age-related: a case-control study of 435 children with inflammatory and non-inflammatory neurological disorders. Clin Exp Immunol 2018; 193:103-112. [PMID: 29485697 DOI: 10.1111/cei.13122] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/26/2018] [Indexed: 11/29/2022] Open
Abstract
Studies of cerebrospinal fluid (CSF) γδ T cells in children are limited, due especially to the lack of control data. In adults, gamma/delta T cells (TCR-γδ) residing in the intrathecal space are sometimes involved in neuroinflammation. To evaluate the possible role of γδ T cells in paediatric neuroinflammation, we immunophenotyped cerebrospinal fluid (CSF) and blood lymphocytes using flow cytometry in a case-control study of 100 children with non-inflammatory neurological disorders (NIND), 312 with opsoclonus-myoclonus (OMS) and 23 with other inflammatory neurological disorders (OIND). In NIND, the negative correlation between CSF γδ T cell frequency and patient age was striking: median frequency of 27% in infants and 3·3% in teens. Interindividual variations were largest in the youngest. There was no gender effect. In all OMS, after correcting for age, only a small effect of OMS severity remained. Measurement of markers for γδ T cell activation [human leucocyte antigen D-related (HLA-DR)], maturation (CD45RA, CD45RO) or intracellular cytokine staining [interleukin (IL)-4, interferon (IFN)-γ] failed to discriminate OMS and NIND groups. Of seven OMS immunotherapies/combinations, none altered the frequency of total CSF γδ T cells or subsets significantly. In OIND, the CSF γδ T cell frequency was < 10% for single samples of other paraneoplastic disorders [anti-neuronal nuclear antibody (ANNA)-1, PCA-1, teratoma-associated syndrome], cerebellar ataxia (post-infectious, ataxia-telangiectasia), acute disseminated encephalomyelitis, neuroborreliosis and encephalitis. This study provides new insights into CSF γδ T cells in the paediatric population. Although their role in CSF remains elusive, the negative age correlation, resistance to immunotherapy and our age cut-off references for NIND are important findings for the design of future paediatric studies.
Collapse
Affiliation(s)
- M R Pranzatelli
- National Pediatric Myoclonus Center, Orlando, FL, USA.,National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, USA
| | - T J Allison
- National Pediatric Myoclonus Center, Orlando, FL, USA
| | - N R McGee
- National Pediatric Myoclonus Center, Orlando, FL, USA
| | - E D Tate
- National Pediatric Myoclonus Center, Orlando, FL, USA.,National Pediatric Neuroinflammation Organization, Inc., Orlando, FL, USA
| |
Collapse
|
18
|
Al Nimer F, Jelcic I, Kempf C, Pieper T, Budka H, Sospedra M, Martin R. Phenotypic and functional complexity of brain-infiltrating T cells in Rasmussen encephalitis. NEUROLOGY-NEUROIMMUNOLOGY & NEUROINFLAMMATION 2017; 5:e419. [PMID: 29259996 PMCID: PMC5733246 DOI: 10.1212/nxi.0000000000000419] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/26/2017] [Accepted: 10/04/2017] [Indexed: 11/15/2022]
Abstract
Objective: To characterize the brain-infiltrating immune cell repertoire in Rasmussen encephalitis (RE) with special focus on the subsets, clonality, and their cytokine profile. Methods: The immune cell infiltrate of freshly isolated brain tissue from RE was phenotypically and functionally characterized using immunohistology, flow cytometry, and T-cell receptor (TCR) deep sequencing. Identification of clonally expanded T-cell clones (TCCs) was achieved by combining flow cytometry sorting of CD4+ and CD8+ T cells and high-throughput TCR Vβ-chain sequencing. The most abundant brain-infiltrating TCCs were isolated and functionally characterized. Results: We found that CD4+, CD8+, and also γδ T cells infiltrate the brain tissue in RE. Further analysis surprisingly revealed that not only brain-infiltrating CD8+ but also CD4+ T cells are clonally expanded in RE. All 3 subsets exhibited a Tc1/Th1 phenotype characterized by the production of interferon (IFN)-γ and TNF. Broad cytokine profiling at the clonal level showed strong production of IFN-γ and TNF and also secretion of interleukin (IL)-5, IL-13, and granzyme B, both in CD4+ and CD8+ T cells. Conclusions: CD8+ T cells were until now considered the central players in the immunopathogenesis of RE. Our study adds to previous findings and highlights that CD4+ TCCs and γδ T cells that secrete IFN-γ and TNF are also involved. These findings underline the complexity of T-cell immunity in RE and suggest a specific role for CD4+ T cells in orchestrating the CD8+ T-cell effector immune response.
Collapse
Affiliation(s)
- Faiez Al Nimer
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Ivan Jelcic
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Christian Kempf
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Tom Pieper
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Herbert Budka
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Mireia Sospedra
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| | - Roland Martin
- Neuroimmunology and Multiple Sclerosis Research Section (F.A.N., I.J., C.K., M.S., R.M.), Department of Neurology, University Hospital Zurich, Switzerland; Neuropediatric Clinic and Clinic for Neurorehabilitation (T.P.), Epilepsy Center for Children and Adolescents, Schoen Klinik Vogtareuth, Germany; and Institute of Neuropathology (H.B.), University Hospital Zurich, Switzerland
| |
Collapse
|
19
|
Castellano JF, Meyer JA, Lado FA. A Case Series of Adult-Onset Rasmussen's Encephalitis: Diagnostic and Therapeutic Challenges. Front Neurol 2017; 8:564. [PMID: 29118737 PMCID: PMC5660978 DOI: 10.3389/fneur.2017.00564] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Accepted: 10/09/2017] [Indexed: 12/22/2022] Open
Abstract
Rasmussen’s encephalitis (RE) is a rare neurologic disorder characterized by progressive cerebral hemiatrophy and medically refractory epilepsy. The majority of current literature on this topic is focused on the pediatric population. In this case series, we will review three cases of adult-onset RE, as defined by fulfillment of the 2005 Bien criteria. The diagnostic challenge of characterizing this rare disease will be highlighted by the extensive serum, CSF, and pathologic sampling in all three patients. MR imaging and EEG data will be examined over time to characterize hallmark findings as well as progression. In addition, we will review the various forms of therapy attempted in these three patients, namely anti-epileptic drug therapy and immunomodulatory therapy. We will also utilize this case series to critically evaluate the broader context of atypical presentations of this disease and the value of current diagnostic criteria.
Collapse
Affiliation(s)
| | - Jenny A Meyer
- Saul Korey Department of Neurology, Montefiore Medical Center, Bronx, NY, United States
| | | |
Collapse
|
20
|
Promise, Progress, and Pitfalls in the Search for Central Nervous System Biomarkers in Neuroimmunological Diseases: A Role for Cerebrospinal Fluid Immunophenotyping. Semin Pediatr Neurol 2017; 24:229-239. [PMID: 29103430 PMCID: PMC5697729 DOI: 10.1016/j.spen.2017.08.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Biomarkers are central to the translational medicine strategic focus, though strict criteria need to be applied to their designation and utility. They are one of the most promising areas of medical research, but the "biomarker life-cycle" must be understood to avoid false-positive and false-negative results. Molecular biomarkers will revolutionize the treatment of neurological diseases, but the rate of progress depends on a bold, visionary stance by neurologists, as well as scientists, biotech and pharmaceutical industries, funding agencies, and regulators. One important tool in studying cell-specific biomarkers is multiparameter flow cytometry. Cerebrospinal fluid immunophenotyping, or immune phenotypic subsets, captures the biology of intrathecal inflammatory processes, and has the potential to guide personalized immunotherapeutic selection and monitor treatment efficacy. Though data exist for some disorders, they are surprisingly lacking in many others, identifying a serious deficit to be overcome. Flow cytometric immunophenotyping provides a valuable, available, and feasible "window" into both adaptive and innate components of neuroinflammation that is currently underutilized.
Collapse
|
21
|
Dandekar S, Wijesuriya H, Geiger T, Hamm D, Mathern GW, Owens GC. Shared HLA Class I and II Alleles and Clonally Restricted Public and Private Brain-Infiltrating αβ T Cells in a Cohort of Rasmussen Encephalitis Surgery Patients. Front Immunol 2016; 7:608. [PMID: 28066418 PMCID: PMC5165278 DOI: 10.3389/fimmu.2016.00608] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 12/01/2016] [Indexed: 11/26/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease characterized by intractable seizures and unilateral brain atrophy. T cell infiltrates in affected brain tissue and the presence of circulating autoantibodies in some RE patients have indicated that RE may be an autoimmune disease. The strongest genetic links to autoimmunity reside in the MHC locus, therefore, we determined the human leukocyte antigen (HLA) class I and class II alleles carried by a cohort of 24 RE surgery cases by targeted in-depth genomic sequencing. Compared with a reference population the allelic frequency of three alleles, DQA1*04:01:01, DQB1*04:02:01, and HLA-C*07:02:01:01 indicated that they might confer susceptibility to the disease. It has been reported that HLA-C*07:02 is a risk factor for Graves disease. Further, eight patients in the study cohort carried HLA-A*03:01:01:01, which has been linked to susceptibility to multiple sclerosis. Four patients carried a combination of three HLA class II alleles that has been linked to type 1 diabetes (DQA1*05:01:01:01~DQB1*02:01:01~DRB1*03:01:01:01), and five patients carried a combination of HLA class II alleles that has been linked to the risk of contracting multiple sclerosis (DQA1*01:02:01:01, DQB1*06:02:01, DRB1*15:01:01:01). We also analyzed the diversity of αβ T cells in brain and blood specimens from 14 of these RE surgery cases by sequencing the third complementarity regions (CDR3s) of rearranged T cell receptor β genes. A total of 31 unique CDR3 sequences accounted for the top 5% of all CDR3 sequences in the 14 brain specimens. Thirteen of these sequences were found in sequencing data from healthy blood donors; the remaining 18 sequences were patient specific. These observations provide evidence for the clonal expansion of public and private T cells in the brain, which might be influenced by the RE patient’s HLA haplotype.
Collapse
Affiliation(s)
- Sugandha Dandekar
- Department of Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Hemani Wijesuriya
- Pathology and Laboratory Medicine, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| | - Tim Geiger
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - David Hamm
- Adaptive Biotechnologies Inc. , Seattle, WA , USA
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at the University of California Los Angeles, Los Angeles, CA, USA; Mattel Children's Hospital, Los Angeles, CA, USA
| | - Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at the University of California Los Angeles , Los Angeles, CA , USA
| |
Collapse
|
22
|
CD8(+) T-cell pathogenicity in Rasmussen encephalitis elucidated by large-scale T-cell receptor sequencing. Nat Commun 2016; 7:11153. [PMID: 27040081 PMCID: PMC4822013 DOI: 10.1038/ncomms11153] [Citation(s) in RCA: 77] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Accepted: 02/25/2016] [Indexed: 11/29/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare paediatric epilepsy with uni-hemispheric inflammation and progressive neurological deficits. To elucidate RE immunopathology, we applied T-cell receptor (TCR) sequencing to blood (n=23), cerebrospinal fluid (n=2) and brain biopsies (n=5) of RE patients, and paediatric controls. RE patients present with peripheral CD8+ T-cell expansion and its strength correlates with disease severity. In addition, RE is the only paediatric epilepsy with prominent T-cell expansions in the CNS. Consistently, common clones are shared between RE patients, who also share MHC-I alleles. Public RE clones share Vβ genes and length of the CDR3. Rituximab/natalizumab/basiliximab treatment does not change TCR diversity, stem cell transplantation replaces the TCR repertoire with minimal overlap between donor and recipient, as observed in individual cases. Our study supports the hypothesis of an antigen-specific attack of peripherally expanded CD8+ lymphocytes against CNS structures in RE, which might be ameliorated by restricting access to the CNS. Rasmussen Encephalitis is a rare neurological disease accompanied by inflammation and T cell infiltration in the brain. Here the authors show that the severity of this disease correlates with clonal CD8 T cell expansion.
Collapse
|
23
|
Owens GC, Chang JW, Huynh MN, Chirwa T, Vinters HV, Mathern GW. Evidence for Resident Memory T Cells in Rasmussen Encephalitis. Front Immunol 2016; 7:64. [PMID: 26941743 PMCID: PMC4763066 DOI: 10.3389/fimmu.2016.00064] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/09/2016] [Indexed: 12/19/2022] Open
Abstract
Rasmussen encephalitis (RE) is a rare pediatric neuroinflammatory disease of unknown etiology characterized by intractable seizures, and progressive atrophy usually confined to one cerebral hemisphere. Surgical removal or disconnection of the affected cerebral hemisphere is currently the only intervention that effectively stops the seizures. Histopathological evaluation of resected brain tissue has shown that activated brain resident macrophages (microglia) and infiltrating T cells are involved in the inflammatory reaction. Here, we report that T cells isolated from seven RE brain surgery specimens express the resident memory T cell (TRM) marker CD103. CD103 was expressed by >50% of CD8+ αβ T cells and γδ T cells irrespective of the length of time from seizure onset to surgery, which ranged from 0.3 to 8.4 years. Only ~10% of CD4+ αβ were CD103+, which was consistent with the observation that few CD4+ T cells are found in RE brain parenchyma. Clusters of T cells in brain parenchyma, which are a characteristic of RE histopathology, stained for CD103. Less than 10% of T cells isolated from brain specimens from eight surgical cases of focal cortical dysplasia (FCD), a condition that is also characterized by intractable seizures, were CD103+. In contrast to the RE cases, the percent of CD103+ T cells increased with the length of time from seizure onset to surgery. In sections of brain tissue from the FCD cases, T cells were predominantly found around blood vessels, and did not stain for CD103. The presence of significant numbers of TRM cells in RE brain irrespective of the length of time between clinical presentation and surgical intervention supports the conclusion that a cellular immune response to an as yet unidentified antigen(s) occurs at an early stage of the disease. Reactivated TRM cells may contribute to disease progression.
Collapse
Affiliation(s)
- Geoffrey C Owens
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Julia W Chang
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - My N Huynh
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Thabiso Chirwa
- Department of Neurosurgery, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Harry V Vinters
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Pathology and Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Department of Neurology, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | - Gary W Mathern
- Department of Neurosurgery, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Brain Research Institute, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA; Mattel Children's Hospital, Los Angeles, CA, USA
| |
Collapse
|