1
|
Retinasamy T, Lee ALY, Lee HS, Lee VLL, Shaikh MF, Yeong KY. Repurposing Anakinra for Alzheimer's Disease: The In Vitro and In Vivo Effects of Anakinra on LPS- and AC-Induced Neuroinflammation. ACS Chem Neurosci 2024; 15:3298-3310. [PMID: 39213521 DOI: 10.1021/acschemneuro.4c00205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease is a significant global health issue, and studies suggest that neuroinflammation plays a vital role in the advancement of this disease. In this study, anakinra has been shown to display a time- and concentration-dependent antineuroinflammatory effect. In the in vitro studies, it diminished the gene expressions of tumor necrosis factor-alpha (TNF-α) and nitric oxide (NO) synthase 2 stimulated by lipopolysaccharide (LPS). Anakinra also reduced the LPS-induced production of NO and reactive oxygen species. Thus, the hypertrophic state of LPS-activated BV2 microglial cells was reversed by anakinra. Furthermore, acrylamide (ACR)-induced activation of nuclear transcription factor-κB, TNF-α, and interleukin-1β was downregulated, while cAMP response element binding protein and brain-derived neurotrophic factor expression levels were markedly enhanced in ACR-treated zebrafish larvae. It was also observed that anakinra improved the uncoordinated swimming behaviors in ACR-exposed zebrafish larvae. Overall, anakinra demonstrated potential antineuroinflammatory and antioxidative effects.
Collapse
Affiliation(s)
- Thaarvena Retinasamy
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Amber Lot Yee Lee
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| | - Hsien Siang Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Vanessa Lin Lin Lee
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
| | - Mohd Farooq Shaikh
- Neuropharmacology Research Laboratory, Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Bandar Sunway 47500, Selangor, Malaysia
- School of Dentistry and Medical Sciences, Charles Sturt University, Orange 2795, NSW, Australia
| | - Keng Yoon Yeong
- School of Science, Monash University Malaysia Campus, Jalan Lagoon Selatan, Bandar Sunway 47500, Selangor, Malaysia
| |
Collapse
|
2
|
Hatch K, Lischka F, Wang M, Xu X, Stimpson CD, Barvir T, Cramer NP, Perl DP, Yu G, Browne CA, Dickstein DL, Galdzicki Z. The role of microglia in neuronal and cognitive function during high altitude acclimatization. Sci Rep 2024; 14:18981. [PMID: 39152179 PMCID: PMC11329659 DOI: 10.1038/s41598-024-69694-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Accepted: 08/07/2024] [Indexed: 08/19/2024] Open
Abstract
Due to their interactions with the neurovasculature, microglia are implicated in maladaptive responses to hypobaric hypoxia at high altitude (HA). To explore these interactions at HA, pharmacological depletion of microglia with the colony-stimulating factor-1 receptor inhibitor, PLX5622, was employed in male C57BL/6J mice maintained at HA or sea level (SL) for 3-weeks, followed by assessment of ex-vivo hippocampal long-term potentiation (LTP), fear memory recall and microglial dynamics/physiology. Our findings revealed that microglia depletion decreased LTP and reduced glucose levels by 25% at SL but did not affect fear memory recall. At HA, the absence of microglia did not significantly alter HA associated deficits in fear memory or HA mediated decreases in peripheral glucose levels. In regard to microglial dynamics in the cortex, HA enhanced microglial surveillance activity, ablation of microglia resulted in increased chemotactic responses and decreased microglia tip proliferation during ball formation. In contrast, vessel ablation increased cortical microglia tip path tortuosity. In the hippocampus, changes in microglial dynamics were only observed in response to vessel ablation following HA. As the hippocampus is critical for learning and memory, poor hippocampal microglial context-dependent adaptation may be responsible for some of the enduring neurological deficits associated with HA.
Collapse
Affiliation(s)
- Kathleen Hatch
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Fritz Lischka
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Mengfan Wang
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Xiufen Xu
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Cheryl D Stimpson
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Tara Barvir
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Nathan P Cramer
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- Department of Anatomy and Neurobiology, University of Maryland School of Medicine, 655 W. Baltimore Street, Baltimore, MD, 21201, USA
| | - Daniel P Perl
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Guoqiang Yu
- Department of Electrical and Computer Engineering, Virginia Tech, Arlington, VA, USA
| | - Caroline A Browne
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pharmacology and Molecular Therapeutics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Dara L Dickstein
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
- The Henry M. Jackson Foundation for the Advancement of Military Medicine Inc. (HJF), 6720A Rockledge Drive, Bethesda, MD, 20817, USA
- Department of Pathology, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA
| | - Zygmunt Galdzicki
- Neuroscience Graduate Program, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
- Department of Anatomy, Physiology and Genetics, Uniformed Services University of the Health Sciences, Bethesda, MD, 20814, USA.
| |
Collapse
|
3
|
Khan T, McFall DJ, Hussain AI, Frayser LA, Casilli TP, Steck MC, Sanchez-Brualla I, Kuehn NM, Cho M, Barnes JA, Harris BT, Vicini S, Forcelli PA. Senescent cell clearance ameliorates temporal lobe epilepsy and associated spatial memory deficits in mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.30.605784. [PMID: 39211239 PMCID: PMC11360968 DOI: 10.1101/2024.07.30.605784] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
Current therapies for the epilepsies only treat the symptoms, but do not prevent epileptogenesis (the process in which epilepsy develops). Many cellular responses during epileptogenesis are also common hallmarks of cellular senescence , which halts proliferation of damaged cells. Clearing senescent cells (SCs) restores function in several age-associated and neurodegenerative disease models. It is unknown whether SC accumulation contributes to epileptogenesis and associated cognitive impairments. To address this question, we used a mouse model of temporal lobe epilepsy (TLE) and characterized the senescence phenotype throughout epileptogenesis. SCs accumulated 2 weeks after SE and were predominantly microglia. We ablated SCs and reduced (and in some cases prevented) the emergence of spontaneous seizures and normalized cognitive function in mice. Suggesting that this is a translationally-relevant target we also found SC accumulation in resected hippocampi from patients with TLE. These findings indicate that SC ablation after an epileptogenic insult is a potential anti-epileptogenic therapy.
Collapse
|
4
|
Brenet A, Somkhit J, Csaba Z, Ciura S, Kabashi E, Yanicostas C, Soussi-Yanicostas N. Microglia Mitigate Neuronal Activation in a Zebrafish Model of Dravet Syndrome. Cells 2024; 13:684. [PMID: 38667299 PMCID: PMC11049242 DOI: 10.3390/cells13080684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 04/05/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
It has been known for a long time that epileptic seizures provoke brain neuroinflammation involving the activation of microglial cells. However, the role of these cells in this disease context and the consequences of their inflammatory activation on subsequent neuron network activity remain poorly understood so far. To fill this gap of knowledge and gain a better understanding of the role of microglia in the pathophysiology of epilepsy, we used an established zebrafish Dravet syndrome epilepsy model based on Scn1Lab sodium channel loss-of-function, combined with live microglia and neuronal Ca2+ imaging, local field potential (LFP) recording, and genetic microglia ablation. Data showed that microglial cells in scn1Lab-deficient larvae experiencing epileptiform seizures displayed morphological and biochemical changes characteristic of M1-like pro-inflammatory activation; i.e., reduced branching, amoeboid-like morphology, and marked increase in the number of microglia expressing pro-inflammatory cytokine Il1β. More importantly, LFP recording, Ca2+ imaging, and swimming behavior analysis showed that microglia-depleted scn1Lab-KD larvae displayed an increase in epileptiform seizure-like neuron activation when compared to that seen in scn1Lab-KD individuals with microglia. These findings strongly suggest that despite microglia activation and the synthesis of pro-inflammatory cytokines, these cells provide neuroprotective activities to epileptic neuronal networks, making these cells a promising therapeutic target in epilepsy.
Collapse
Affiliation(s)
- Alexandre Brenet
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Julie Somkhit
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Zsolt Csaba
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
| | - Sorana Ciura
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Edor Kabashi
- Institut Imagine, University Paris Descartes, Necker-Enfants Malades Hospital, 75015 Paris, France
| | - Constantin Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| | - Nadia Soussi-Yanicostas
- NeuroDiderot, INSERM U1141, Université Paris Cité, Robert Debré Hospital, 75019 Paris, France (C.Y.)
- INSERM, T3S, Department of Biochemistry, Université Paris Cité, 75006 Paris, France
| |
Collapse
|
5
|
Wallis GJ, Bell LA, Wagner JN, Buxton L, Balachandar L, Wilcox KS. Reactive microglia fail to respond to environmental damage signals in a viral-induced mouse model of temporal lobe epilepsy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.06.583768. [PMID: 38558969 PMCID: PMC10979929 DOI: 10.1101/2024.03.06.583768] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
Microglia are highly adaptable innate immune cells that rapidly respond to damage signals in the brain through adoption of a reactive phenotype and production of defensive inflammatory cytokines. Microglia express a distinct transcriptome, encoding receptors that allow them to dynamically respond to pathogens, damage signals, and cellular debris. Expression of one such receptor, the microglia-specific purinergic receptor P2ry12, is known to be downregulated in reactive microglia. Here, we explore the microglial response to purinergic damage signals in reactive microglia in the TMEV mouse model of viral brain infection and temporal lobe epilepsy. Using two-photon calcium imaging in acute hippocampal brain slices, we found that the ability of microglia to detect damage signals, engage calcium signaling pathways, and chemoattract towards laser-induced tissue damage was dramatically reduced during the peak period of seizures, cytokine production, and infection. Using combined RNAscope in situ hybridization and immunohistochemistry, we found that during this same stage of heightened infection and seizures, microglial P2ry12 expression was reduced, while the pro-inflammatory cytokine TNF-a expression was upregulated in microglia, suggesting that the depressed ability of microglia to respond to new damage signals via P2ry12 occurs during the time when local elevated cytokine production contributes to seizure generation following infection. Therefore, changes in microglial purinergic receptors during infection likely limit the ability of reactive microglia to respond to new threats in the CNS and locally contain the scale of the innate immune response in the brain.
Collapse
Affiliation(s)
- Glenna J. Wallis
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Laura A. Bell
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| | - John N. Wagner
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lauren Buxton
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Lakshmini Balachandar
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
| | - Karen S. Wilcox
- Department of Pharmacology and Toxicology, University of Utah, Salt Lake City, UT 80904
- Interdepartmental Program in Neuroscience, University of Utah, Salt Lake City, UT, 80904
| |
Collapse
|
6
|
Kellogg CM, Pham K, Ko S, Cox JE, Machalinski AH, Stout MB, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Specificity and efficiency of tamoxifen-mediated Cre induction is equivalent regardless of age. iScience 2023; 26:108413. [PMID: 38058312 PMCID: PMC10696116 DOI: 10.1016/j.isci.2023.108413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 10/15/2023] [Accepted: 11/02/2023] [Indexed: 12/08/2023] Open
Abstract
Temporally controlling Cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report early post-natal/juvenile (<2 m.o.) Tam induction, but age-related neurodegeneration and aging studies can require Cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam-mediated Cre induction at early and late ages. Here, microglial-specific Cx3cr1creERT2 mice were crossed to a floxed NuTRAP reporter to compare Cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at early and late ages. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each Cre and flox mouse line should be independently validated, however, these findings demonstrate that Tam-mediated Cre induction can be performed even into older mouse ages and should be generalizable to other inducible Cre models.
Collapse
Affiliation(s)
- Collyn M. Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Kevin Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sunghwan Ko
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jillian E.J. Cox
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Adeline H. Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Michael B. Stout
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Amanda L. Sharpe
- Department of Pharmaceutical Sciences, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Michael J. Beckstead
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
| | - Ana J. Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Sarah R. Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Willard M. Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
- Department of Biochemistry & Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA
- Neuroscience Graduate Program, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
7
|
Kellogg CM, Pham K, Ko S, Cox JEJ, Machalinski AH, Stout MB, Sharpe AL, Beckstead MJ, Chucair-Elliott AJ, Ocañas SR, Freeman WM. Consistent specificity and efficiency of tamoxifen-mediated cre induction across ages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.19.558482. [PMID: 37781585 PMCID: PMC10541132 DOI: 10.1101/2023.09.19.558482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Temporally controlling cre recombination through tamoxifen (Tam) induction has many advantages for biomedical research. Most studies report Tam induction at early post-natal/juvenile (<2 m.o.) mouse ages, but age-related neurodegeneration and aging studies can require cre induction in older mice (>12 m.o.). While anecdotally reported as problematic, there are no published comparisons of Tam mediated cre induction at early and late ages. Here, microglial-specific Cx3cr1 creERT 2 mice were crossed to a floxed NuTRAP reporter to compare cre induction at early (3-6 m.o.) and late (20 m.o.) ages. Specificity and efficiency of microglial labeling at 21-22 m.o. were identical in mice induced with Tam at 3-6 m.o. or 20 m.o. of age. Age-related microglial translatomic changes were also similar regardless of Tam induction age. Each cre and flox mouse line should be validated independently, however, these findings demonstrate that Tam-mediated cre induction can be performed even into older mouse ages.
Collapse
|
8
|
Pan L, Cho KS, Wei X, Xu F, Lennikov A, Hu G, Tang J, Guo S, Chen J, Kriukov E, Kyle R, Elzaridi F, Jiang S, Dromel PA, Young M, Baranov P, Do CW, Williams RW, Chen J, Lu L, Chen DF. IGFBPL1 is a master driver of microglia homeostasis and resolution of neuroinflammation in glaucoma and brain tauopathy. Cell Rep 2023; 42:112889. [PMID: 37527036 PMCID: PMC10528709 DOI: 10.1016/j.celrep.2023.112889] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2022] [Revised: 03/08/2023] [Accepted: 07/12/2023] [Indexed: 08/03/2023] Open
Abstract
Microglia shift toward an inflammatory phenotype during aging that is thought to exacerbate age-related neurodegeneration. The molecular and cellular signals that resolve neuroinflammation post-injury are largely undefined. Here, we exploit systems genetics methods based on the extended BXD murine reference family and identify IGFBPL1 as an upstream cis-regulator of microglia-specific genes to switch off inflammation. IGFBPL1 is expressed by mouse and human microglia, and higher levels of its expression resolve lipopolysaccharide-induced neuroinflammation by resetting the transcriptome signature back to a homeostatic state via IGF1R signaling. Conversely, IGFBPL1 deficiency or selective deletion of IGF1R in microglia shifts these cells to an inflammatory landscape and induces early manifestation of brain tauopathy and retinal neurodegeneration. Therapeutic administration of IGFBPL1 drives pro-homeostatic microglia and prevents glaucomatous neurodegeneration and vision loss in mice. These results identify IGFBPL1 as a master driver of the counter-inflammatory microglial modulator that presents an endogenous resolution of neuroinflammation to prevent neurodegeneration in eye and brain.
Collapse
Affiliation(s)
- Li Pan
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Xin Wei
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Fuyi Xu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA; Shandong Technology Innovation Center of Molecular Targeting and Intelligent Diagnosis and Treatment, School of Pharmacy, Binzhou Medical University, Yantai, Shandong 264003, China
| | - Anton Lennikov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Guangan Hu
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Jing Tang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA; Department of Ophthalmology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041, China
| | - Shuai Guo
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Julie Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Robert Kyle
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Farris Elzaridi
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Shuhong Jiang
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Pierre A Dromel
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Michael Young
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA
| | - Chi-Wai Do
- School of Optometry, The Hong Kong Polytechnic University, Hong Kong 999077, China
| | - Robert W Williams
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Jianzhu Chen
- Koch Institute for Integrative Cancer Research and Department of Biology, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Lu Lu
- Department of Genetics, Genomics and Informatics, University of Tennessee Health Science Center, Memphis, TN 38163, USA.
| | - Dong Feng Chen
- Schepens Eye Research Institute of Massachusetts Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA 02114, USA.
| |
Collapse
|
9
|
Zhuo Z, Wang Y, Kong H, Fu T. GKLF, a transcriptional activator of Txnip, drives microglia activation in kainic acid-induced murine models of epileptic seizures. Int Immunopharmacol 2023; 121:110426. [PMID: 37295029 DOI: 10.1016/j.intimp.2023.110426] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2023] [Revised: 05/22/2023] [Accepted: 05/30/2023] [Indexed: 06/11/2023]
Abstract
Neuroinflammation is a major component of epilepsy. Gut-enriched Kruppel-like factor (GKLF), a transcription factor of Kruppel-like factor family, has been reported to promote microglia activation and mediate neuroinflammation. However, the role of GKLF in epilepsy remains poorly characterized. This study focused on the function of GKLF in neuron loss and neuroinflammation in epilepsy and the molecular mechanism underlying microglia activation induced by GKLF upon lipopolysaccharides (LPS) treatment. An experimental epileptic model was induced by an intraperitoneal injection of 25 mg/kg kainic acid (KA). Lentivirus vectors (Lv) carrying Gklf CDS or short hairpin RNA targeting Gklf (shGKLF) was injected into the hippocampus, resulting in Gklf overexpression or knockdown in the hippocampus. BV-2 cells were co-infected with Lv-shGKLF or/and Lv carrying thioredoxin interacting protein (Txnip) CDS for 48 h and treated with 1 μg/mL LPS for 24 h. Results showed that GKLF enhanced KA-induced neuronal loss, pro-inflammatory cytokine secretion, activation of NOD-like receptor protein-3 (NLRP3) inflammasomes and microglia, and TXNIP expression in the hippocampus. GKLF inhibition showed negative effects on LPS-induced microglia activation, as evidenced by reduced pro-inflammatory cytokine secretion and activation of NLRP3 inflammasomes. GKLF bound to Txnip promoter and increased TXNIP expression in LPS-activated microglia. Interestingly, Txnip overexpression reversed the inhibitory effect of Gklf knockdown on microglia activation. These findings indicated that GKLF was involved in microglia activation via TXNIP. This study demonstrates the underlying mechanism of GKLF in the pathogenesis of epilepsy and uncovers that GKLF inhibition may be a therapeutic strategy for epilepsy treatment.
Collapse
Affiliation(s)
- Zhihong Zhuo
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China.
| | - Yao Wang
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Huimin Kong
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| | - Tianjiao Fu
- Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan Province, China
| |
Collapse
|
10
|
Ocañas SR, Ansere VA, Kellogg CM, Isola JVV, Chucair-Elliott AJ, Freeman WM. Chromosomal and gonadal factors regulate microglial sex effects in the aging brain. Brain Res Bull 2023; 195:157-171. [PMID: 36804773 PMCID: PMC10810555 DOI: 10.1016/j.brainresbull.2023.02.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 02/10/2023] [Accepted: 02/14/2023] [Indexed: 02/17/2023]
Abstract
Biological sex contributes to phenotypic sex effects through genetic (sex chromosomal) and hormonal (gonadal) mechanisms. There are profound sex differences in the prevalence and progression of age-related brain diseases, including neurodegenerative diseases. Inflammation of neural tissue is one of the most consistent age-related phenotypes seen with healthy aging and disease. The pro-inflammatory environment of the aging brain has primarily been attributed to microglial reactivity and adoption of heterogeneous reactive states dependent upon intrinsic (i.e., sex) and extrinsic (i.e., age, disease state) factors. Here, we review sex effects in microglia across the lifespan, explore potential genetic and hormonal molecular mechanisms of microglial sex effects, and discuss currently available models and methods to study sex effects in the aging brain. Despite recent attention to this area, significant further research is needed to mechanistically understand the regulation of microglial sex effects across the lifespan, which may open new avenues for sex informed prevention and treatment strategies.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.
| | - Victor A Ansere
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Collyn M Kellogg
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Jose V V Isola
- Aging & Metabolism Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK, USA; Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK, USA; Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
11
|
The Pathological Activation of Microglia Is Modulated by Sexually Dimorphic Pathways. Int J Mol Sci 2023; 24:ijms24054739. [PMID: 36902168 PMCID: PMC10003784 DOI: 10.3390/ijms24054739] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/11/2023] [Accepted: 02/22/2023] [Indexed: 03/05/2023] Open
Abstract
Microglia are the primary immunocompetent cells of the central nervous system (CNS). Their ability to survey, assess and respond to perturbations in their local environment is critical in their role of maintaining CNS homeostasis in health and disease. Microglia also have the capability of functioning in a heterogeneous manner depending on the nature of their local cues, as they can become activated on a spectrum from pro-inflammatory neurotoxic responses to anti-inflammatory protective responses. This review seeks to define the developmental and environmental cues that support microglial polarization towards these phenotypes, as well as discuss sexually dimorphic factors that can influence this process. Further, we describe a variety of CNS disorders including autoimmune disease, infection, and cancer that demonstrate disparities in disease severity or diagnosis rates between males and females, and posit that microglial sexual dimorphism underlies these differences. Understanding the mechanism behind differential CNS disease outcomes between men and women is crucial in the development of more effective targeted therapies.
Collapse
|
12
|
Brandi E, Torres-Garcia L, Svanbergsson A, Haikal C, Liu D, Li W, Li JY. Brain region-specific microglial and astrocytic activation in response to systemic lipopolysaccharides exposure. Front Aging Neurosci 2022; 14:910988. [PMID: 36092814 PMCID: PMC9459169 DOI: 10.3389/fnagi.2022.910988] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Accepted: 07/26/2022] [Indexed: 11/24/2022] Open
Abstract
Microglia cells are the macrophage population within the central nervous system, which acts as the first line of the immune defense. These cells present a high level of heterogeneity among different brain regions regarding morphology, cell density, transcriptomes, and expression of different inflammatory mediators. This region-specific heterogeneity may lead to different neuroinflammatory responses, influencing the regional involvement in several neurodegenerative diseases. In this study, we aimed to evaluate microglial response in 16 brain regions. We compared different aspects of the microglial response, such as the extension of their morphological changes, sensitivity, and ability to convert an acute inflammatory response to a chronic one. Then, we investigated the synaptic alterations followed by acute and chronic inflammation in substantia nigra. Moreover, we estimated the effect of partial ablation of fractalkine CX3C receptor 1 (CX3CR1) on microglial response. In the end, we briefly investigated astrocytic heterogeneity and activation. To evaluate microglial response in different brain regions and under the same stimulus, we induced a systemic inflammatory reaction through a single intraperitoneal (i.p.) injection of lipopolysaccharides (LPS). We performed our study using C57BL6 and CX3CR1+/GFP mice to investigate microglial response in different regions and the impact of CX3CR1 partial ablation. We conducted a topographic study quantifying microglia alterations in 16 brain regions through immunohistochemical examination and computational image analysis. Assessing Iba1-immunopositive profiles and the density of the microglia cells, we have observed significant differences in region-specific responses of microglia populations in all parameters considered. Our results underline the peculiar microglial inflammation in the substantia nigra pars reticulata (SNpr). Here and in concomitance with the acute inflammatory response, we observed a transient decrease of dopaminergic dendrites and an alteration of the striato-nigral projections. Additionally, we found a significant decrease in microglia response and the absence of chronic inflammation in CX3CR1+/GFP mice compared to the wild-type ones, suggesting the CX3C axis as a possible pharmacological target against neuroinflammation induced by an increase of systemic tumor necrosis factor-alpha (TNFα) or/and LPS. Finally, we investigated astrocytic heterogeneity in this model. We observed different distribution and morphology of GFAP-positive astrocytes, a heterogeneous response under inflammatory conditions, and a decrease in their activation in CX3CR1 partially ablated mice compared with C57BL6 mice. Altogether, our data confirm that microglia and astrocytes heterogeneity lead to a region-specific inflammatory response in presence of a systemic TNFα or/and LPS treatment.
Collapse
Affiliation(s)
- Edoardo Brandi
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Laura Torres-Garcia
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Alexander Svanbergsson
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Caroline Haikal
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Di Liu
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Wen Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
| | - Jia-Yi Li
- Neural Plasticity and Repair Unit, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Health Sciences Institute, China Medical University, Shenyang, China
- *Correspondence: Jia-Yi Li, ,
| |
Collapse
|
13
|
San Martín Molina I, Salo RA, Gröhn O, Tohka J, Sierra A. Histopathological modeling of status epilepticus-induced brain damage based on in vivo diffusion tensor imaging in rats. Front Neurosci 2022; 16:944432. [PMID: 35968364 PMCID: PMC9372371 DOI: 10.3389/fnins.2022.944432] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Accepted: 07/07/2022] [Indexed: 11/13/2022] Open
Abstract
Non-invasive magnetic resonance imaging (MRI) methods have proved useful in the diagnosis and prognosis of neurodegenerative diseases. However, the interpretation of imaging outcomes in terms of tissue pathology is still challenging. This study goes beyond the current interpretation of in vivo diffusion tensor imaging (DTI) by constructing multivariate models of quantitative tissue microstructure in status epilepticus (SE)-induced brain damage. We performed in vivo DTI and histology in rats at 79 days after SE and control animals. The analyses focused on the corpus callosum, hippocampal subfield CA3b, and layers V and VI of the parietal cortex. Comparison between control and SE rats indicated that a combination of microstructural tissue changes occurring after SE, such as cellularity, organization of myelinated axons, and/or morphology of astrocytes, affect DTI parameters. Subsequently, we constructed a multivariate regression model for explaining and predicting histological parameters based on DTI. The model revealed that DTI predicted well the organization of myelinated axons (cross-validated R = 0.876) and astrocyte processes (cross-validated R = 0.909) and possessed a predictive value for cell density (CD) (cross-validated R = 0.489). However, the morphology of astrocytes (cross-validated R > 0.05) was not well predicted. The inclusion of parameters from CA3b was necessary for modeling histopathology. Moreover, the multivariate DTI model explained better histological parameters than any univariate model. In conclusion, we demonstrate that combining several analytical and statistical tools can help interpret imaging outcomes to microstructural tissue changes, opening new avenues to improve the non-invasive diagnosis and prognosis of brain tissue damage.
Collapse
|
14
|
Seizures in PPT1 Knock-In Mice Are Associated with Inflammatory Activation of Microglia. Int J Mol Sci 2022; 23:ijms23105586. [PMID: 35628400 PMCID: PMC9144763 DOI: 10.3390/ijms23105586] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 05/08/2022] [Accepted: 05/11/2022] [Indexed: 02/04/2023] Open
Abstract
Infantile neuronal ceroid lipofuscinosis (INCL), the most severe form of neuronal ceroid lipofuscinoses, is caused by mutations in the lysosomal enzyme palmitoyl protein thioesterase 1 (PPT1). Typical symptoms of this disease include progressive psychomotor developmental retardation, visual failure, seizures, and premature death. Here, we investigated seizure activity and relevant pathological changes in PPT1 knock-in mice (PPT1 KI). The behavior studies in this study demonstrated that PPT1 KI mice had no significant seizure activity until 7 months of age, and local field potentials also displayed epileptiform activity at the same age. The expression levels of Iba-1 and CD68 demonstrated, by Western blot analysis, the inflammatory cytokine TNF-α content measured with enzyme-linked immunosorbent assay, and the number of microglia demonstrated by immunohistochemistry (IHC) were significantly increased at age of 7 months, all of which indicate microglia activation at an age of seizure onset. The increased expression of GFAP were seen at an earlier age of 4 months, and such an increase reached its peak at age of 6 months, indicating that astrocyte activation precedes microglia. The purinergic P2X7 receptor (P2X7R) is an ATP-sensitive ionic channel that is highly expressed in microglia and is fundamental to microglial activation, proliferation, cytokines release and epilepsy. We show that the ATP concentration in hippocampal tissue in PPT1 KI mice was increased using an enhanced ATP assay kit and demonstrated that the antagonist of P2X7R, A-438079, significantly reduced seizures in PPT1 KI mice. In contrast to glial cell activation and proliferation, a significant reduction in synaptic proteins GABAAR was seen in PPT1 KI mice. These results indicate that seizure in PPT1 KI mice may be associated with microglial activation involved in ATP-sensitive P2X7R signaling and impaired inhibitory neurotransmission.
Collapse
|
15
|
Ocañas SR, Pham KD, Blankenship HE, Machalinski AH, Chucair-Elliott AJ, Freeman WM. Minimizing the Ex Vivo Confounds of Cell-Isolation Techniques on Transcriptomic and Translatomic Profiles of Purified Microglia. eNeuro 2022; 9:ENEURO.0348-21.2022. [PMID: 35228310 PMCID: PMC8970438 DOI: 10.1523/eneuro.0348-21.2022] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 12/10/2021] [Accepted: 01/25/2022] [Indexed: 01/21/2023] Open
Abstract
Modern molecular and biochemical neuroscience studies require analysis of specific cellular populations derived from brain tissue samples to disambiguate cell type-specific events. This is particularly true in the analysis of minority glial populations in the brain, such as microglia, which may be obscured in whole tissue analyses. Microglia have central functions in development, aging, and neurodegeneration and are a current focus of neuroscience research. A long-standing concern for glial biologists using in vivo models is whether cell isolation from CNS tissue could introduce ex vivo artifacts in microglia, which respond quickly to changes in the environment. Mouse microglia were purified by magnetic-activated cell sorting (MACS), as well as cytometer-based and cartridge-based fluorescence-activated cell sorting (FACS) approaches to compare and contrast performance. The Cx3cr1-NuTRAP mouse model was used to provide an endogenous fluorescent microglial marker and a microglial-specific translatome profile as a baseline comparison lacking cell isolation artifacts. All sorting methods performed similarly for microglial purity with main differences being in cell yield and time of isolation. Ex vivo activation signatures occurred principally during the initial tissue dissociation and cell preparation and not the cell sorting. The cell preparation-induced activational phenotype could be minimized by inclusion of transcriptional and translational inhibitors or non-enzymatic dissociation conducted entirely at low temperatures. These data demonstrate that a variety of microglial isolation approaches can be used, depending on experimental needs, and that inhibitor cocktails are effective at reducing cell preparation artifacts.
Collapse
Affiliation(s)
- Sarah R Ocañas
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Kevin D Pham
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Harris E Blankenship
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| | - Adeline H Machalinski
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Ana J Chucair-Elliott
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
| | - Willard M Freeman
- Genes & Human Disease Program, Oklahoma Medical Research Foundation, Oklahoma City, OK 73104
- Oklahoma City Veterans Affairs Medical Center, Oklahoma City, OK 73104
- Department of Biochemistry and Molecular Biology, University of Oklahoma Health Sciences Center, Oklahoma City, OK 73104
| |
Collapse
|
16
|
Dyne E, Cawood M, Suzelis M, Russell R, Kim MH. Ultrastructural analysis of the morphological phenotypes of microglia associated with neuroinflammatory cues. J Comp Neurol 2021; 530:1263-1275. [PMID: 34773250 DOI: 10.1002/cne.25274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 12/15/2022]
Abstract
Microglia are the primary resident immune cells of the central nervous system that are responsible for the maintenance of brain homeostasis. There is a plethora of evidence to suggest that microglia display distinct phenotypes that are associated with the alteration of cell morphology under varying environmental cues. However, it has not been fully explored how the varying states of microglial activation are linked to the alteration of microglia morphology, especially in the microdomain. The objective of this study was to quantitatively characterize the ultrastructural morphology of human microglia under neuroinflammatory cues. To address this, a human cell line of microglia was stimulated by antiinflammatory (IL-4), proinflammatory (TNF-α), and Alzheimer's disease (AD)-associated cues (Aβ, Aβ + TNF-α). The resulting effects on microglia morphology associated with changes in microdomain were analyzed using a high-resolution scanning electron microscopy. Our findings demonstrated that microglial activation under proinflammatory and AD-cues were closely linked to changes not only in cell shape but also in cell surface topography and higher-order branching of processes. Furthermore, our results revealed that microglia under proinflammatory cues exhibited unique morphological features involving cell-to-cell contact and the formation of vesicle-like structures. Our study provides insight into the fine details of microglia morphology associated with varying status of microglial activation.
Collapse
Affiliation(s)
- Eric Dyne
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA
| | - Meghan Cawood
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Matthew Suzelis
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Reagan Russell
- Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| | - Min-Ho Kim
- School of Biomedical Sciences, Kent State University, Kent, Ohio, USA.,Department of Biological Sciences, Kent State University, Kent, Ohio, USA
| |
Collapse
|
17
|
Siemsen BM, Landin JD, McFaddin JA, Hooker KN, Chandler LJ, Scofield MD. Chronic intermittent ethanol and lipopolysaccharide exposure differentially alter Iba1-derived microglia morphology in the prelimbic cortex and nucleus accumbens core of male Long-Evans rats. J Neurosci Res 2021; 99:1922-1939. [PMID: 32621337 PMCID: PMC7779701 DOI: 10.1002/jnr.24683] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2020] [Revised: 05/22/2020] [Accepted: 06/08/2020] [Indexed: 12/11/2022]
Abstract
Accumulating evidence has linked pathological changes associated with chronic alcohol exposure to neuroimmune signaling mediated by microglia. Prior characterization of the microglial structure-function relationship demonstrates that alterations in activity states occur concomitantly with reorganization of cellular architecture. Accordingly, gaining a better understanding of microglial morphological changes associated with ethanol exposure will provide valuable insight into how neuroimmune signaling may contribute to ethanol-induced reshaping of neuronal function. Here we have used Iba1-staining combined with high-resolution confocal imaging and 3D reconstruction to examine microglial structure in the prelimbic (PL) cortex and nucleus accumbens (NAc) in male Long-Evans rats. Rats were either sacrificed at peak withdrawal following 15 days of exposure to chronic intermittent ethanol (CIE) or 24 hr after two consecutive injections of the immune activator lipopolysaccharide (LPS), each separated by 24 hr. LPS exposure resulted in dramatic structural reorganization of microglia in the PL cortex, including increased soma volume, overall cellular volume, and branching complexity. In comparison, CIE exposure was associated with a subtle increase in somatic volume and differential effects on microglia processes, which were largely absent in the NAc. These data reveal that microglial activation following a neuroimmune challenge with LPS or exposure to chronic alcohol exhibits distinct morphometric profiles and brain region-dependent specificity.
Collapse
Affiliation(s)
- Benjamin M. Siemsen
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Justine D. Landin
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Jon A. McFaddin
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Kaylee N. Hooker
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Lawrence J. Chandler
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| | - Michael D. Scofield
- Department of Anesthesiology and Perioperative Medicine, Medical University of South Carolina, Charleston, SC, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, SC, USA
| |
Collapse
|
18
|
Engel T, Smith J, Alves M. Targeting Neuroinflammation via Purinergic P2 Receptors for Disease Modification in Drug-Refractory Epilepsy. J Inflamm Res 2021; 14:3367-3392. [PMID: 34305404 PMCID: PMC8298823 DOI: 10.2147/jir.s287740] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2021] [Accepted: 06/12/2021] [Indexed: 12/27/2022] Open
Abstract
Treatment of epilepsy remains a clinical challenge, with >30% of patients not responding to current antiseizure drugs (ASDs). Moreover, currently available ASDs are merely symptomatic without altering significantly the progression of the disease. Inflammation is increasingly recognized as playing an important role during the generation of hyperexcitable networks in the brain. Accordingly, the suppression of chronic inflammation has been suggested as a promising therapeutic strategy to prevent epileptogenesis and to treat drug-refractory epilepsy. As a consequence, a strong focus of ongoing research is identification of the mechanisms that contribute to sustained inflammation in the brain during epilepsy and whether these can be targeted. ATP is released in response to several pathological stimuli, including increased neuronal activity within the central nervous system, where it functions as a neuro- and gliotransmitter. Once released, ATP activates purinergic P2 receptors, which are divided into metabotropic P2Y and ionotropic P2X receptors, driving inflammatory processes. Evidence from experimental models and patients demonstrates widespread expression changes of both P2Y and P2X receptors during epilepsy, and critically, drugs targeting both receptor subtypes, in particular the P2Y1 and P2X7 subtypes, have been shown to possess both anticonvulsive and antiepileptic potential. This review provides a detailed summary of the current evidence suggesting ATP-gated receptors as novel drug targets for epilepsy and discusses how P2 receptor–driven inflammation may contribute to the generation of seizures and the development of epilepsy.
Collapse
Affiliation(s)
- Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland.,FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| | - Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin, D02 YN77, Ireland
| |
Collapse
|
19
|
Beamer E, Kuchukulla M, Boison D, Engel T. ATP and adenosine-Two players in the control of seizures and epilepsy development. Prog Neurobiol 2021; 204:102105. [PMID: 34144123 DOI: 10.1016/j.pneurobio.2021.102105] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Revised: 04/07/2021] [Accepted: 06/09/2021] [Indexed: 02/08/2023]
Abstract
Despite continuous advances in understanding the underlying pathogenesis of hyperexcitable networks and lowered seizure thresholds, the treatment of epilepsy remains a clinical challenge. Over one third of patients remain resistant to current pharmacological interventions. Moreover, even when effective in suppressing seizures, current medications are merely symptomatic without significantly altering the course of the disease. Much effort is therefore invested in identifying new treatments with novel mechanisms of action, effective in drug-refractory epilepsy patients, and with the potential to modify disease progression. Compelling evidence has demonstrated that the purines, ATP and adenosine, are key mediators of the epileptogenic process. Extracellular ATP concentrations increase dramatically under pathological conditions, where it functions as a ligand at a host of purinergic receptors. ATP, however, also forms a substrate pool for the production of adenosine, via the action of an array of extracellular ATP degrading enzymes. ATP and adenosine have assumed largely opposite roles in coupling neuronal excitability to energy homeostasis in the brain. This review integrates and critically discusses novel findings regarding how ATP and adenosine control seizures and the development of epilepsy. This includes purine receptor P1 and P2-dependent mechanisms, release and reuptake mechanisms, extracellular and intracellular purine metabolism, and emerging receptor-independent effects of purines. Finally, possible purine-based therapeutic strategies for seizure suppression and disease modification are discussed.
Collapse
Affiliation(s)
- Edward Beamer
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; Centre for Bioscience, Manchester Metropolitan University, John Dalton Building, All Saints Campus, Manchester M15 6BH, UK
| | - Manvitha Kuchukulla
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA
| | - Detlev Boison
- Department of Neurosurgery, Robert Wood Johnson & New Jersey Medical Schools, Rutgers University, Piscataway, NJ 08854, USA.
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland; FutureNeuro, Science Foundation Ireland Research Centre for Chronic and Rare Neurological Diseases, Royal College of Surgeons in Ireland, University of Medicine and Health Sciences, Dublin D02 YN77, Ireland.
| |
Collapse
|
20
|
Eyo UB, Haruwaka K, Mo M, Campos-Salazar AB, Wang L, Speros XS, Sabu S, Xu P, Wu LJ. Microglia provide structural resolution to injured dendrites after severe seizures. Cell Rep 2021; 35:109080. [PMID: 33951432 PMCID: PMC8164475 DOI: 10.1016/j.celrep.2021.109080] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 02/01/2021] [Accepted: 04/13/2021] [Indexed: 12/19/2022] Open
Abstract
Although an imbalance between neuronal excitation and inhibition underlies seizures, clinical approaches that target these mechanisms are insufficient in containing seizures in patients with epilepsy, raising the need for alternative approaches. Brain-resident microglia contribute to the development and stability of neuronal structure and functional networks that are perturbed during seizures. However, the extent of microglial contributions in response to seizures in vivo remain to be elucidated. Using two-photon in vivo imaging to visualize microglial dynamics, we show that severe seizures induce formation of microglial process pouches that target but rarely engulf beaded neuronal dendrites. Microglial process pouches are stable for hours, although they often shrink in size. We further find that microglial process pouches are associated with a better structural resolution of beaded dendrites. These findings provide evidence for the structural resolution of injured dendrites by microglia as a form of neuroprotection.
Collapse
Affiliation(s)
- Ukpong B Eyo
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA.
| | | | - Mingshu Mo
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Antony Brayan Campos-Salazar
- Brain Immunology and Glia Center, Department of Cell Biology and Neuroscience, University of Virginia, Charlottesville, VA 22908, USA
| | - Lingxiao Wang
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA
| | - Xenophon S Speros
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Sruchika Sabu
- Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA
| | - Pingyi Xu
- Department of Neurology, First Affiliated Hospital of Guangzhou Medical University, Guangdong 510120, China
| | - Long-Jun Wu
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA; Department of Cell Biology and Neuroscience, Rutgers University, Piscataway, NJ 08854, USA; Department of Neuroscience, Mayo Clinic, Jacksonville, FL 32224, USA; Department of Immunology, Mayo Clinic, Rochester, MN 55905, USA.
| |
Collapse
|
21
|
The Nrf2 inhibitor brusatol has a protective role in a rat model of oxygen-induced retinopathy of prematurity. Vis Neurosci 2021; 38:E002. [PMID: 33729121 DOI: 10.1017/s095252382100002x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Nuclear factor-erythroid 2-related factor 2 (Nrf2) has been testified to be involved in the development of retinopathy of prematurity (ROP), which can cause childhood visual impairment. Whether brusatol, an Nrf2 inhibitor, could be utilized to treat ROP was unknown. The oxygen-induced retinopathy rat model was established to mimic ROP, which was further intravitreal administrated with brusatol. Vessel morphology and microglial activation in the retina were assessed with histology analysis. The relative expression levels of angiogenesis and inflammation-related molecules were detected with Western blot and real-time polymerase chain reaction methods. Intravitreal brusatol administration could alleviate both angiogenesis and microgliosis induced by hyperoxia, along with down-regulation of vascular endothelial growth factor, vascular endothelial growth factor receptor (VEGFR)-1, VEGFR-2, cluster of differentiation molecule 11B, tumor necrosis factor alpha, inducible nitric oxide synthase, glial fibrillary acidic protein, and IBA-1 expression. It was further revealed that Nrf2 and heme oxygenease-1 were diminished by brusatol administration. The results demonstrate the potential of intravitreal brusatol deliver to treat ROP with down-regulation of angiogenesis and microgliosis.
Collapse
|
22
|
Andoh M, Koyama R. Assessing Microglial Dynamics by Live Imaging. Front Immunol 2021; 12:617564. [PMID: 33763064 PMCID: PMC7982483 DOI: 10.3389/fimmu.2021.617564] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 02/16/2021] [Indexed: 12/13/2022] Open
Abstract
Microglia are highly dynamic in the brain in terms of their ability to migrate, proliferate, and phagocytose over the course of an individual's life. Real-time imaging is a useful tool to examine how microglial behavior is regulated and how it affects the surrounding environment. However, microglia are sensitive to environmental stimuli, so they possibly change their state during live imaging in vivo, mainly due to surgical damage, and in vitro due to various effects associated with culture conditions. Therefore, it is difficult to perform live imaging without compromising the properties of the microglia under physiological conditions. To overcome this barrier, various experimental conditions have been developed; recently, it has become possible to perform live imaging of so-called surveillant microglia in vivo, ex vivo, and in vitro, although there are various limitations. Now, we can choose in vivo, ex vivo, or in vitro live imaging systems according to the research objective. In this review, we discuss the advantages and disadvantages of each experimental system and outline the physiological significance and molecular mechanisms of microglial behavior that have been elucidated by live imaging.
Collapse
Affiliation(s)
- Megumi Andoh
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
23
|
Gipson CD, Rawls S, Scofield MD, Siemsen BM, Bondy EO, Maher EE. Interactions of neuroimmune signaling and glutamate plasticity in addiction. J Neuroinflammation 2021; 18:56. [PMID: 33612110 PMCID: PMC7897396 DOI: 10.1186/s12974-021-02072-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Accepted: 01/05/2021] [Indexed: 02/28/2023] Open
Abstract
Chronic use of drugs of abuse affects neuroimmune signaling; however, there are still many open questions regarding the interactions between neuroimmune mechanisms and substance use disorders (SUDs). Further, chronic use of drugs of abuse can induce glutamatergic changes in the brain, but the relationship between the glutamate system and neuroimmune signaling in addiction is not well understood. Therefore, the purpose of this review is to bring into focus the role of neuroimmune signaling and its interactions with the glutamate system following chronic drug use, and how this may guide pharmacotherapeutic treatment strategies for SUDs. In this review, we first describe neuroimmune mechanisms that may be linked to aberrant glutamate signaling in addiction. We focus specifically on the nuclear factor-kappa B (NF-κB) pathway, a potentially important neuroimmune mechanism that may be a key player in driving drug-seeking behavior. We highlight the importance of astroglial-microglial crosstalk, and how this interacts with known glutamatergic dysregulations in addiction. Then, we describe the importance of studying non-neuronal cells with unprecedented precision because understanding structure-function relationships in these cells is critical in understanding their role in addiction neurobiology. Here we propose a working model of neuroimmune-glutamate interactions that underlie drug use motivation, which we argue may aid strategies for small molecule drug development to treat substance use disorders. Together, the synthesis of this review shows that interactions between glutamate and neuroimmune signaling may play an important and understudied role in addiction processes and may be critical in developing more efficacious pharmacotherapies to treat SUDs.
Collapse
Affiliation(s)
- Cassandra D Gipson
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA.
| | - Scott Rawls
- Department of Pharmacology, Lewis Katz School of Medicine, Temple University, Philadelphia, USA
| | - Michael D Scofield
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
- Department of Neuroscience, Medical University of South Carolina, Charleston, USA
| | - Benjamin M Siemsen
- Department of Anesthesiology, Medical University of South Carolina, Charleston, USA
| | - Emma O Bondy
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| | - Erin E Maher
- Department of Family and Community Medicine, University of Kentucky, 741 S. Limestone, BBSRB, Room 363, Lexington, KY, 40536-0509, USA
| |
Collapse
|
24
|
Spellicy SE, Scheulin KM, Baker EW, Jurgielewicz BJ, Kinder HA, Waters ES, Grimes JA, Stice SL, West FD. Semi-Automated Cell and Tissue Analyses Reveal Regionally Specific Morphological Alterations of Immune and Neural Cells in a Porcine Middle Cerebral Artery Occlusion Model of Stroke. Front Cell Neurosci 2021; 14:600441. [PMID: 33551749 PMCID: PMC7862775 DOI: 10.3389/fncel.2020.600441] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/21/2022] Open
Abstract
Histopathological analysis of cellular changes in the stroked brain provides critical information pertaining to inflammation, cell death, glial scarring, and other dynamic injury and recovery responses. However, commonly used manual approaches are hindered by limitations in speed, accuracy, bias, and the breadth of morphological information that can be obtained. Here, a semi-automated high-content imaging (HCI) and CellProfiler histological analysis method was developed and used in a Yucatan miniature pig permanent middle cerebral artery occlusion (pMCAO) model of ischemic stroke to overcome these limitations. Evaluation of 19 morphological parameters in IBA1+ microglia/macrophages, GFAP+ astrocytes, NeuN+ neuronal, FactorVIII+ vascular endothelial, and DCX+ neuroblast cell areas was conducted on porcine brain tissue 4 weeks post pMCAO. Out of 19 morphological parameters assessed in the stroke perilesional and ipsilateral hemisphere regions (38 parameters), a significant change in 3838 measured IBA1+ parameters, 3438 GFAP+ parameters, 3238 NeuN+ parameters, 3138 FactorVIII+ parameters, and 2838 DCX+ parameters were observed in stroked vs. non-stroked animals. Principal component analysis (PCA) and correlation analyses demonstrated that stroke-induced significant and predictable morphological changes that demonstrated strong relationships between IBA1+, GFAP+, and NeuN+ areas. Ultimately, this unbiased, semi-automated HCI and CellProfiler histopathological analysis approach revealed regional and cell specific morphological signatures of immune and neural cells after stroke in a highly translational porcine model. These identified features can provide information of disease pathogenesis and evolution with high resolution, as well as be used in therapeutic screening applications.
Collapse
Affiliation(s)
- Samantha E Spellicy
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Medical College of Georgia, University System of Georgia MD/Ph.D. Program, Augusta, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Kelly M Scheulin
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | | | - Brian J Jurgielewicz
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Holly A Kinder
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Elizabeth S Waters
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| | - Janet A Grimes
- Department of Small Animal Medicine and Surgery, College of Veterinary Medicine, University of Georgia, Athens, GA, United States
| | - Steven L Stice
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States.,Aruna Bio Inc., Athens, GA, United States
| | - Franklin D West
- Regenerative Bioscience Center, University of Georgia, Athens, GA, United States.,Biomedical and Health Sciences Institute, Neuroscience Program, University of Georgia, Athens, GA, United States.,Department of Animal and Dairy Sciences, University of Georgia, Athens, GA, United States
| |
Collapse
|
25
|
Etxeberria-Rekalde E, Alzola-Aldamizetxebarria S, Flunkert S, Hable I, Daurer M, Neddens J, Hutter-Paier B. Quantification of Huntington's Disease Related Markers in the R6/2 Mouse Model. Front Mol Neurosci 2021; 13:617229. [PMID: 33505246 PMCID: PMC7831778 DOI: 10.3389/fnmol.2020.617229] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 12/10/2020] [Indexed: 12/12/2022] Open
Abstract
Huntington’s disease (HD) is caused by an expansion of CAG triplets in the huntingtin gene, leading to severe neuropathological changes that result in a devasting and lethal phenotype. Neurodegeneration in HD begins in the striatum and spreads to other brain regions such as cortex and hippocampus, causing motor and cognitive dysfunctions. To understand the signaling pathways involved in HD, animal models that mimic the human pathology are used. The R6/2 mouse as model of HD was already shown to present major neuropathological changes in the caudate putamen and other brain regions, but recently established biomarkers in HD patients were yet not analyzed in these mice. We therefore performed an in-depth analysis of R6/2 mice to establish new and highly translational readouts focusing on Ctip2 as biological marker for motor system-related neurons and translocator protein (TSPO) as a promising readout for early neuroinflammation. Our results validate already shown pathologies like mutant huntingtin aggregates, ubiquitination, and brain atrophy, but also provide evidence for decreased tyrosine hydroxylase and Ctip2 levels as indicators of a disturbed motor system, while vesicular acetyl choline transporter levels as marker for the cholinergic system barely change. Additionally, increased astrocytosis and activated microglia were observed by GFAP, Iba1 and TSPO labeling, illustrating, that TSPO is a more sensitive marker for early neuroinflammation compared to GFAP and Iba1. Our results thus demonstrate a high sensitivity and translational value of Ctip2 and TSPO as new marker for the preclinical evaluation of new compounds in the R6/2 mouse model of HD.
Collapse
Affiliation(s)
| | | | | | - Isabella Hable
- QPS Austria GmbH, Grambach, Austria.,Department of Health Studies, FH Joanneum University of Applied Sciences, Graz, Austria
| | | | | | | |
Collapse
|
26
|
Onodera J, Nagata H, Nakashima A, Ikegaya Y, Koyama R. Neuronal brain-derived neurotrophic factor manipulates microglial dynamics. Glia 2020; 69:890-904. [PMID: 33119934 DOI: 10.1002/glia.23934] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 10/22/2020] [Accepted: 10/22/2020] [Indexed: 12/19/2022]
Abstract
Brain-derived neurotrophic factor (BDNF), a main member of the neurotrophin family that is active in the brain, supports neuronal survival and growth. Microglial BDNF affects both the structural and functional properties of neurons. In contrast, whether and how neuronal BDNF affects microglial dynamics remain largely undetermined. Here, we examined the effects of BDNF on the properties of microglia in the CA3 region of the hippocampus. We chose this site because the axonal boutons of hippocampal mossy fibers, which are mostly formed in the CA3 region, contain the highest levels of BDNF in the rodent brain. We transfected mouse dentate granule cells with an adeno-associated virus that encodes both a BDNF short hairpin RNA (shRNA) and red fluorescent protein to examine the effects of mossy fiber-derived BDNF on microglia. Based on immunohistochemistry, BDNF knockdown with an shRNA resulted in an increase in microglial density in the mossy fiber pathway and increased engulfment of mossy fiber axons by microglia. In addition, we performed time-lapse imaging of microglial processes in hippocampal slice cultures to examine the effects of BDNF on microglial motility. Time-lapse imaging revealed increases in the motility of microglial processes and the engulfment of mossy fiber synapses by microglia when BDNF signaling was pharmacologically blocked. Thus, neuronal BDNF prevents microglia from engulfing mossy fiber synapses in the hippocampus.
Collapse
Affiliation(s)
- Junya Onodera
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Hidetaka Nagata
- Platform Technology Research Unit, Sumitomo Dainippon Pharma Co., Ltd., Osaka, Japan
| | - Ai Nakashima
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
27
|
Purinergic signaling orchestrating neuron-glia communication. Pharmacol Res 2020; 162:105253. [PMID: 33080321 DOI: 10.1016/j.phrs.2020.105253] [Citation(s) in RCA: 50] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/06/2020] [Revised: 09/29/2020] [Accepted: 10/09/2020] [Indexed: 12/12/2022]
Abstract
This review discusses the evidence supporting a role for ATP signaling (operated by P2X and P2Y receptors) and adenosine signaling (mainly operated by A1 and A2A receptors) in the crosstalk between neurons, astrocytes, microglia and oligodendrocytes. An initial emphasis will be given to the cooperation between adenosine receptors to sharpen information salience encoding across synapses. The interplay between ATP and adenosine signaling in the communication between astrocytes and neurons will then be presented in context of the integrative properties of the astrocytic syncytium, allowing to implement heterosynaptic depression processes in neuronal networks. The process of microglia 'activation' and its control by astrocytes and neurons will then be analyzed under the perspective of an interplay between different P2 receptors and adenosine A2A receptors. In spite of these indications of a prominent role of purinergic signaling in the bidirectional communication between neurons and glia, its therapeutical exploitation still awaits obtaining an integrated view of the spatio-temporal action of ATP signaling and adenosine signaling, clearly distinguishing the involvement of both purinergic signaling systems in the regulation of physiological processes and in the control of pathogenic-like responses upon brain dysfunction or damage.
Collapse
|
28
|
Siddu A, David LS, Lauinger N, Chen X, Saint-Pierre M, Alpaugh M, Durcan T, Cicchetti F. Beneficial effects of cysteamine in Thy1-α-Syn mice and induced pluripotent stem cells with a SNCA gene triplication. Neurobiol Dis 2020; 145:105042. [PMID: 32798729 DOI: 10.1016/j.nbd.2020.105042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 06/29/2020] [Accepted: 08/08/2020] [Indexed: 12/15/2022] Open
Abstract
A number of publications have reported that cysteamine has significant therapeutic effects on several aspects of Parkinson's disease (PD)-related pathology but none of these studies have evaluated its impact on pathological forms of α-Synuclein (α-Syn), one of the main hallmarks of PD. We therefore tested the efficacy of cysteamine on the Thy1-α-Syn mouse model which over-expresses full-length human wild-type α-Syn. Two-month (early stage disease) and 6-month old (late stage disease) mice and littermate controls were treated daily with cysteamine (20 mg/kg, i.p.) to assess the protective and restorative properties of this compound. After 6 weeks of treatment, animals were tested using a battery of motor tests. Cysteamine-treated transgenic mice displayed significant improvements in motor performance as compared to saline-treated transgenic littermates. Post-mortem readouts revealed a reduction in fibrillation, phosphorylation and total levels of overexpresed human α-Syn. To determine if such outcomes extended to human cells, the benefits of cysteamine were additionally tested using 6-hydroxydopamine (6-OHDA) treated neurons differentiated from induced pluripotent stem cells (iPSCs) derived from a PD patient harbouring a triplication of the SNCA gene. SNCA neurons treated with cysteamine exhibited significantly more intact/healthy neurites than cells treated with 6-OHDA alone. Additionally, SNCA neurons treated with cysteamine in the absence of 6-OHDA showed a trend towards lower total α-Syn levels. Overall, our in vivo and in vitro findings suggest that cysteamine can act as a disease-modifying molecule by enhancing -the survival of dopaminergic neurons and reducing pathological forms of α-Syn.
Collapse
Affiliation(s)
- Alberto Siddu
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Linda Suzanne David
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Nadine Lauinger
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Xiuqing Chen
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Martine Saint-Pierre
- Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Melanie Alpaugh
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada
| | - Thomas Durcan
- Department of Neurology and Neurosurgery, McGill University, 3801 University Street, Montreal, QC H3A 2B4, Canada; Montreal Neurological Institute and Hospital, 3801 University Street, Montreal, QC H3A 2B4, Canada
| | - Francesca Cicchetti
- Centre de Recherche du CHU de Québec, Axe Neurosciences, 2705 Boulevard Laurier, Québec, QC G1V 4G2, Canada; Département de Psychiatrie & Neurosciences, Université Laval, 1050, avenue de la Médecine, Québec, QC G1V 0A6, Canada.
| |
Collapse
|
29
|
In vivo characterization of functional states of cortical microglia during peripheral inflammation. Brain Behav Immun 2020; 87:243-255. [PMID: 31837418 DOI: 10.1016/j.bbi.2019.12.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 12/05/2019] [Accepted: 12/09/2019] [Indexed: 12/11/2022] Open
Abstract
Peripheral inflammation is known to trigger a mirror inflammatory response in the brain, involving brain's innate immune cells - microglia. However, the functional phenotypes, which these cells adopt in the course of peripheral inflammation, remain obscure. In vivo two-photon imaging of microglial Ca2+ signaling as well as process motility reveals two distinct functional states of cortical microglia during a lipopolysaccharide-induced peripheral inflammation: an early "sensor state" characterized by dramatically increased intracellular Ca2+ signaling but ramified morphology and a later "effector state" characterized by slow normalization of intracellular Ca2+ signaling but hypertrophic morphology, substantial IL-1β production in a subset of cells as well as increased velocity of directed process extension and loss of coordination between individual processes. Thus, lipopolysaccharide-induced microglial Ca2+ signaling might represent the central element connecting receptive and executive functions of microglia.
Collapse
|
30
|
Hoyle C, Redondo-Castro E, Cook J, Tzeng TC, Allan SM, Brough D, Lemarchand E. Hallmarks of NLRP3 inflammasome activation are observed in organotypic hippocampal slice culture. Immunology 2020; 161:39-52. [PMID: 32445196 PMCID: PMC7450173 DOI: 10.1111/imm.13221] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2020] [Revised: 05/05/2020] [Accepted: 05/18/2020] [Indexed: 12/16/2022] Open
Abstract
Microglial inflammation driven by the NACHT, LRR and PYD domain-containing protein 3 (NLRP3) inflammasome contributes to brain disease and is a therapeutic target. Most mechanistic studies on NLRP3 activation use two-dimensional pure microglial cell culture systems. Here we studied the activation of the NLRP3 inflammasome in organotypic hippocampal slices, which allowed us to investigate microglial NLRP3 activation in a three-dimensional, complex tissue architecture. Toll-like receptor 2 and 4 activation primed microglial inflammasome responses in hippocampal slices by increasing NLRP3 and interleukin-1β expression. Nigericin-induced NLRP3 inflammasome activation was dynamically visualized in microglia through ASC speck formation. Downstream caspase-1 activation, gasdermin D cleavage, pyroptotic cell death and interleukin-1β release were also detected, and these findings were consistent when using different NLRP3 stimuli such as ATP and imiquimod. NLRP3 inflammasome pathway inhibitors were effective in organotypic hippocampal slices. Hence, we have highlighted organotypic hippocampal slice culture as a valuable ex vivo tool to allow the future study of NLRP3 inflammasomes in a representative tissue section, aiding the discovery of further mechanistic insights and drug development.
Collapse
Affiliation(s)
- Christopher Hoyle
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Elena Redondo-Castro
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - James Cook
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Te-Chen Tzeng
- Immunology and Inflammation, Bristol-Myers Squibb (Celgene Corporation), Cambridge, MA, USA
| | - Stuart M Allan
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - David Brough
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| | - Eloise Lemarchand
- Division of Neuroscience and Experimental Psychology, School of Biological Sciences, Faculty of Biology, Medicine and Health, Manchester Academic Health Science Centre, University of Manchester, Manchester, UK.,The Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, UK
| |
Collapse
|
31
|
Zhu J, Park S, Jeong KH, Kim WJ. Withanolide-A treatment exerts a neuroprotective effect via inhibiting neuroinflammation in the hippocampus after pilocarpine-induced status epilepticus. Epilepsy Res 2020; 165:106394. [PMID: 32540785 DOI: 10.1016/j.eplepsyres.2020.106394] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2020] [Revised: 06/01/2020] [Accepted: 06/09/2020] [Indexed: 10/24/2022]
Abstract
Status epilepticus (SE) is a medical emergency with high mortality and a risk factor for the development of chronic epilepsy. Given that effective treatments for the pathophysiology following SE are still lacking, suppressing pathophysiological mechanisms of SE may be important to inhibit epileptogenesis. Withanolide-A (WA), a major bioactive component of Withania somnifera, is a potential medicinal natural compound showing improvement of some neurological diseases, such as cerebral ischemia. In the present study, we examined whether administration of WA can exert the beneficial effects involved in neuroprotection and anti-inflammatory effects in a mouse model of pilocarpine-induced SE. Our results showed that WA treatment ameliorated SE-induced apoptotic neuronal cell death in the hippocampus. Moreover, WA treatment reduced immunoreactivity of both ionized calcium binding adapter molecule 1-positive microglia/macrophage and glial fibrillary acidic protein-positive reactive astrocytes, and the SE-induced increase in both interleukin-1 β and tumor necrosis factor in the hippocampus, suggesting that inhibiting pro-inflammatory factors by WA treatment might induce neuroprotection after SE. These results suggest that WA may be useful in improving the treatment efficacy for pathophysiology following SE.
Collapse
Affiliation(s)
- Jing Zhu
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Soojin Park
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea
| | - Kyoung Hoon Jeong
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea.
| | - Won-Joo Kim
- Department of Neurology, Yonsei University College of Medicine, Seoul, Republic of Korea; Brain Korea 21 Plus Project for Medical Science, Yonsei University, Seoul, Republic of Korea; Department of Neurology, Gangnam Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
32
|
Deshpande T, Li T, Henning L, Wu Z, Müller J, Seifert G, Steinhäuser C, Bedner P. Constitutive deletion of astrocytic connexins aggravates kainate-induced epilepsy. Glia 2020; 68:2136-2147. [PMID: 32240558 DOI: 10.1002/glia.23832] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 03/17/2020] [Accepted: 03/17/2020] [Indexed: 01/08/2023]
Abstract
The astroglial gap junctional network formed by connexin (Cx) channels plays a central role in regulating neuronal activity and network synchronization. However, its involvement in the development and progression of epilepsy is not yet understood. Loss of interastrocytic gap junction (GJ) coupling has been observed in the sclerotic hippocampus of patients with mesial temporal lobe epilepsy (MTLE) and in mouse models of MTLE, leading to the suggestion that it plays a causative role in the pathogenesis. To further elucidate this clinically relevant question, we investigated consequences of astrocyte disconnection on the time course and severity of kainate-induced MTLE with hippocampal sclerosis (HS) by comparing mice deficient for astrocytic Cx proteins with wild-type mice (WT). Continuous telemetric EEG recordings and video monitoring performed over a period of 4 weeks after epilepsy induction revealed substantially higher seizure and interictal spike activity during the chronic phase in Cx deficient versus WT mice, while the severity of status epilepticus was not different. Immunohistochemical analysis showed that, despite the elevated chronic seizure activity, astrocyte disconnection did not aggravate the severity of HS. Indeed, the extent of CA1 pyramidal cell loss was similar between the experimental groups, while astrogliosis, granule cell dispersion, angiogenesis, and microglia activation were even reduced in Cx deficient as compared to WT mice. Interestingly, seizure-induced neurogenesis in the adult dentate gyrus was also independent of astrocytic Cxs. Together, our data indicate that constitutive loss of GJ coupling between astrocytes promotes neuronal hyperexcitability and attenuates seizure-induced histopathological outcomes.
Collapse
Affiliation(s)
- Tushar Deshpande
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Tingsong Li
- Department of Neurology, Children's Hospital of Chongqing Medical University, Chongqing, China
| | - Lukas Henning
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Zhou Wu
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Julia Müller
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Gerald Seifert
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Christian Steinhäuser
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| | - Peter Bedner
- Institute of Cellular Neurosciences, Medical Faculty, University of Bonn, Bonn, Germany
| |
Collapse
|
33
|
Alves M, Smith J, Engel T. Differential Expression of the Metabotropic P2Y Receptor Family in the Cortex Following Status Epilepticus and Neuroprotection via P2Y 1 Antagonism in Mice. Front Pharmacol 2020; 10:1558. [PMID: 32009961 PMCID: PMC6976538 DOI: 10.3389/fphar.2019.01558] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 12/03/2019] [Indexed: 12/18/2022] Open
Abstract
Purinergic signaling via P2 receptors is now widely accepted to play a critical role during increased states of hyperexcitability and seizure-induced pathology. In the setting of seizures and epilepsy, most attention has been paid to investigating the fast-acting ATP-gated P2X receptor family. More recent evidence has now also provided compelling evidence of an involvement of the slower-acting P2Y receptor family during seizures. This includes data demonstrating expression changes of P2Y receptors in the hippocampus following acute seizures and during epilepsy and anticonvulsive properties of P2Y-targeting drugs; in particular drugs targeting the P2Y1 subtype. Seizures, however, also involve damage to extra-hippocampal brain regions such as the cortex, which is thought to contribute to the epileptic phenotype. To analyze expressional changes of the P2Y receptor family in the cortex following status epilepticus and to determine the impact of drugs interfering with P2Y1 signaling on cortical damage, we used a unilateral mouse model of intraamygdala kainic acid-induced status epilepticus. Analysis of cortical tissue showed that status epilepticus leads to a global up-regulation of the P2Y receptor family in the cortex including P2Y1, P2Y2, P2Y4, and P2Y6, with the P2Y1 and P2Y4 receptor subtypes showing the strongest increase. Supporting a detrimental role of P2Y1 activation during status epilepticus, treatment with the P2Y1 agonist MRS2365 exacerbated high frequency high amplitude spiking, synonymous with injury-causing electrographic activity, and treatment with the P2Y1 antagonists MRS2500 protected against seizure-induced cortical damage. Suggesting P2Y1-mediated effects are predominantly due to increased microglia activation, treatment with the broad-spectrum anti-inflammatory drug minocycline abolished the observed neuroprotective effects of P2Y1 antagonism. In conclusion, our results further support a role for P2Y1-mediated signaling during seizure generation and seizure-induced neurodegeneration, suggesting P2Y1-targeting therapies as novel treatment for drug-refractory status epilepticus.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Jonathon Smith
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland.,FutureNeuro SFI Research Centre, Dublin, Ireland
| |
Collapse
|
34
|
Distinct P2Y Receptors Mediate Extension and Retraction of Microglial Processes in Epileptic and Peritumoral Human Tissue. J Neurosci 2020; 40:1373-1388. [PMID: 31896671 DOI: 10.1523/jneurosci.0218-19.2019] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 09/27/2019] [Accepted: 09/30/2019] [Indexed: 12/12/2022] Open
Abstract
Microglia exhibit multiple, phenotype-dependent motility patterns often triggered by purinergic stimuli. However, little data exist on motility of human microglia in pathological situations. Here we examine motility of microglia stained with a fluorescent lectin in tissue slices from female and male epileptic patients diagnosed with mesial temporal lobe epilepsy or cortical glioma (peritumoral cortex). Microglial shape varied from ramified to amoeboid cells predominantly in regions of high neuronal loss or closer to a tumor. Live imaging revealed unstimulated or purine-induced microglial motilities, including surveillance movements, membrane ruffling, and process extension or retraction. At different concentrations, ADP triggered opposing motilities. Low doses triggered process extension. It was suppressed by P2Y12 receptor antagonists, which also reduced process length and surveillance movements. Higher purine doses caused process retraction and membrane ruffling, which were blocked by joint application of P2Y1 and P2Y13 receptor antagonists. Purinergic effects on motility were similar for all microglia tested. Both amoeboid and ramified cells from mesial temporal lobe epilepsy or peritumoral cortex tissue expressed P2Y12 receptors. A minority of microglia expressed the adenosine A2A receptor, which has been linked with process withdrawal of rodent cells. Laser-mediated tissue damage let us test the functional significance of these effects. Moderate damage induced microglial process extension, which was blocked by P2Y12 receptor antagonists. Overall, the purine-induced motility of human microglia in epileptic tissue is similar to that of rodent microglia in that the P2Y12 receptor initiates process extension. It differs in that retraction is triggered by joint activation of P2Y1/P2Y13 receptors.SIGNIFICANCE STATEMENT Microglial cells are brain-resident immune cells with multiple functions in healthy or diseased brains. These diverse functions are associated with distinct phenotypes, including different microglial shapes. In the rodent, purinergic signaling is associated with changes in cell shape, such as process extension toward tissue damage. However, there are little data on living human microglia, especially in diseased states. We developed a reliable technique to stain microglia from epileptic and glioma patients to examine responses to purines. Low-intensity purinergic stimuli induced process extension, as in rodents. In contrast, high-intensity stimuli triggered a process withdrawal mediated by both P2Y1 and P2Y13 receptors. P2Y1/P2Y13 receptor activation has not previously been linked to microglial morphological changes.
Collapse
|
35
|
Kolos EA, Korzhevskii DE. Spinal Cord Microglia in Health and Disease. Acta Naturae 2020; 12:4-17. [PMID: 32477594 PMCID: PMC7245960 DOI: 10.32607/actanaturae.10934] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2019] [Accepted: 11/09/2019] [Indexed: 12/11/2022] Open
Abstract
The review summarizes data of recent experimental studies on spinal microglia, the least explored cells of the spinal cord. It focuses on the origin and function of microglia in mammalian spinal cord embryogenesis. The main approaches to the classification of microgliocytes based on their structure, function, and immunophenotypic characteristics are analyzed. We discuss the results of studies conducted on experimental models of spinal cord diseases such as multiple sclerosis, amyotrophic lateral sclerosis, systemic inflammation, and some others, with special emphasis on the key role of microglia in the pathogenesis of these diseases. The review highlights the need to detect the new microglia-specific marker proteins expressed at all stages of ontogeny. New sensitive and selective microglial markers are necessary in order to improve identification of spinal cord microgliocytes in normal and pathological conditions. Possible morphometric methods to assess the functional activity of microglial cells are presented.
Collapse
Affiliation(s)
- E. A. Kolos
- Institute of Experimental Medicine, St. Petersburg, 197376 Russia
| | | |
Collapse
|
36
|
Smolek T, Cubinkova V, Brezovakova V, Valachova B, Szalay P, Zilka N, Jadhav S. Genetic Background Influences the Propagation of Tau Pathology in Transgenic Rodent Models of Tauopathy. Front Aging Neurosci 2019; 11:343. [PMID: 31920624 PMCID: PMC6917578 DOI: 10.3389/fnagi.2019.00343] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 11/26/2019] [Indexed: 12/14/2022] Open
Abstract
Alzheimer’s disease (AD), the most common tauopathy, is an age-dependent, progressive neurodegenerative disease. Epidemiological studies implicate the role of genetic background in the onset and progression of AD. Despite mutations in familial AD, several risk factors have been implicated in sporadic AD, of which the onset is unknown. In AD, there is a sequential and hierarchical spread of tau pathology to other brain areas. Studies have strived to understand the factors that influence this characteristic spread. Using transgenic rat models with different genetic backgrounds, we reported that the genetic background may influence the manifestation of neurofibrillary pathology. In this study we investigated whether genetic background has an influence in the spread of tau pathology, using hippocampal inoculations of insoluble tau from AD brains in rodent models of tauopathy with either a spontaneously hypertensive (SHR72) or Wistar-Kyoto (WKY72) genetic background. We observed that insoluble tau from human AD induced AT8-positive neurofibrillary structures in the hippocampus of both lines. However, there was no significant difference in the amount of neurofibrillary structures, but the extent of spread was prominent in the W72 line. On the other hand, we observed significantly higher levels of AT8-positive structures in the parietal and frontal cortical areas in W72 when compared to SHR72. Interestingly, we also observed that the microglia in these brain areas in W72 were predominantly phagocytic in morphology (62.4% in parietal and 47.3% in frontal), while in SHR72 the microglia were either reactive or ramified (67.2% in parietal and 84.7% in frontal). The microglia in the hippocampus and occipital cortex in both lines were reactive or ramified structures. Factors such as gender or age are not responsible for the differences observed in these animals. Put together, our results, for the first time, show that the immune response modulating genetic variability is one of the factors that influences the propagation of tau neurofibrillary pathology.
Collapse
Affiliation(s)
- Tomas Smolek
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Veronika Cubinkova
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | | | | | - Peter Szalay
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Norbert Zilka
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| | - Santosh Jadhav
- Institute of Neuroimmunology, Slovak Academy of Sciences, Bratislava, Slovakia.,Axon Neuroscience R&D Services SE, Bratislava, Slovakia
| |
Collapse
|
37
|
Kluge MG, Abdolhoseini M, Zalewska K, Ong LK, Johnson SJ, Nilsson M, Walker FR. Spatiotemporal analysis of impaired microglia process movement at sites of secondary neurodegeneration post-stroke. J Cereb Blood Flow Metab 2019; 39:2456-2470. [PMID: 30204044 PMCID: PMC6893987 DOI: 10.1177/0271678x18797346] [Citation(s) in RCA: 51] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
It has recently been identified that after motor cortex stroke, the ability of microglia processes to respond to local damage cues is lost from the thalamus, a major site of secondary neurodegeneration (SND). In this study, we combine a photothrombotic stroke model in mice, acute slice and fluorescent imaging to analyse the loss of microglia process responsiveness. The peri-infarct territories and thalamic areas of SND were investigated at time-points 3, 7, 14, 28 and 56 days after stroke. We confirmed the highly specific nature of non-responsive microglia processes to sites of SND. Non-responsiveness was at no time observed at the peri-infarct but started in the thalamus seven days post-stroke and persisted for 56 days. Loss of directed process extension is not a reflection of general functional paralysis as phagocytic function continued to increase over time. Additionally, we identified that somal P2Y12 was present on non-responsive microglia in the first two weeks after stroke but not at later time points. Finally, both classical microglia activation and loss of process extension are highly correlated with neuronal damage. Our findings highlight the importance of microglia, specifically microglia dynamic functions, to the progression of SND post-stroke, and their potential relevance as modulators or therapeutic targets during stroke recovery.
Collapse
Affiliation(s)
- Murielle G Kluge
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Mahmoud Abdolhoseini
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Katarzyna Zalewska
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia
| | - Lin Kooi Ong
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Sarah J Johnson
- School of Electrical Engineering and Computer Science, University of Newcastle, Callaghan, NSW, Australia
| | - Michael Nilsson
- Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| | - Frederick R Walker
- School of Biomedical Sciences and Pharmacy and the Priority Research Centre for Stroke and Brain Injury, University of Newcastle, Callaghan, NSW, Australia.,Hunter Medical Research Institute, Newcastle, NSW, Australia.,NHMRC Centre of Research Excellence Stroke Rehabilitation and Brain Recovery, Heidelberg, VIC, Australia
| |
Collapse
|
38
|
Trzeciak A, Lerman YV, Kim TH, Kim MR, Mai N, Halterman MW, Kim M. Long-Term Microgliosis Driven by Acute Systemic Inflammation. THE JOURNAL OF IMMUNOLOGY 2019; 203:2979-2989. [PMID: 31619539 DOI: 10.4049/jimmunol.1900317] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 09/19/2019] [Indexed: 12/20/2022]
Abstract
Severe sepsis, a systemic inflammatory response to infection, is an increasing cause of morbidity in intensive care units. During sepsis, the vasculature is profoundly altered, leading to release of microbial virulence factors and proinflammatory mediators to surrounding tissue, causing severe systemic inflammatory responses and hypoxic injury of multiple organs. To date, multiple studies have explored pathologic conditions in many vital organs, including lungs, liver, and kidneys. Although data suggest that sepsis is emerging as a key driver of chronic brain dysfunction, the immunological consequence of severe inflammatory responses in the brain remain poorly understood. In this study, we used C57BL/6 sepsis mouse models to establish a disease phenotype in which septic mice with various degrees of severity recover. In the early phases of sepsis, monocytes infiltrate the brain with significantly elevated proinflammatory cytokine levels. In recovered animals, monocytes return to vehicle levels, but the number of brain-resident microglia is significantly increased in the cortex, the majority of which remain activated. The increase in microglia number is mainly due to self-proliferation, which is completely abolished in CCR2 knockout mice. Collectively our data suggest that early monocyte infiltration causes permanent changes to microglia during sepsis, which may ultimately dictate the outcome of future infections and neuropathological diseases.
Collapse
Affiliation(s)
- Alissa Trzeciak
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Yelena V Lerman
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Tae-Hyoun Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642
| | - Ma Rie Kim
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627
| | - Nguyen Mai
- Department of Neurology, University of Rochester, Rochester, NY 14642; and
| | - Marc W Halterman
- Department of Neurology, University of Rochester, Rochester, NY 14642; and.,Center for Neurotherapeutics Discovery, University of Rochester, Rochester, NY 14642
| | - Minsoo Kim
- Department of Microbiology and Immunology, David H. Smith Center for Vaccine Biology and Immunology, University of Rochester, Rochester, NY 14642;
| |
Collapse
|
39
|
Morin-Brureau M, Milior G, Royer J, Chali F, Le Duigou C, Savary E, Blugeon C, Jourdren L, Akbar D, Dupont S, Navarro V, Baulac M, Bielle F, Mathon B, Clemenceau S, Miles R. Microglial phenotypes in the human epileptic temporal lobe. Brain 2019; 141:3343-3360. [PMID: 30462183 DOI: 10.1093/brain/awy276] [Citation(s) in RCA: 88] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2018] [Accepted: 09/12/2018] [Indexed: 12/11/2022] Open
Abstract
Microglia, the immune cells of the brain, are highly plastic and possess multiple functional phenotypes. Differences in phenotype in different regions and different states of epileptic human brain have been little studied. Here we use transcriptomics, anatomy, imaging of living cells and ELISA measurements of cytokine release to examine microglia from patients with temporal lobe epilepsies. Two distinct microglial phenotypes were explored. First we asked how microglial phenotype differs between regions of high and low neuronal loss in the same brain. Second, we asked how microglial phenotype is changed by a recent seizure. In sclerotic areas with few neurons, microglia have an amoeboid rather than ramified shape, express activation markers and respond faster to purinergic stimuli. The repairing interleukin, IL-10, regulates the basal phenotype of microglia in the CA1 and CA3 regions with neuronal loss and gliosis. To understand changes in phenotype induced by a seizure, we estimated the delay from the last seizure until tissue collection from changes in reads for immediate early gene transcripts. Pseudotime ordering of these data was validated by comparison with results from kainate-treated mice. It revealed a local and transient phenotype in which microglia secrete the human interleukin CXCL8, IL-1B and other cytokines. This secretory response is mediated in part via the NRLP3 inflammasome.
Collapse
Affiliation(s)
- Mélanie Morin-Brureau
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Giampaolo Milior
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Juliette Royer
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Farah Chali
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Caroline Le Duigou
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Etienne Savary
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Corinne Blugeon
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, Paris, France
| | - Laurent Jourdren
- École normale supérieure, PSL Research University, CNRS, Inserm, Institut de Biologie de l'École normale supérieure (IBENS), Plateforme Génomique, Paris, France
| | - David Akbar
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| | - Sophie Dupont
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Vincent Navarro
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Michel Baulac
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Franck Bielle
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Bertrand Mathon
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Stéphane Clemenceau
- AP-HP, GH Pitie-Salpêtrière-Charles Foix, Epilepsy Unit (VN, MB, SD), Neuropathologie (FB), Neurochirurgie (BM, SC), Paris, France
| | - Richard Miles
- Inserm U1127, CNRS UMR7225, Sorbonne Universités, UPMC Univ Paris 6 UMR S1127, Institut du Cerveau et de la Moelle épinière, Paris, France
| |
Collapse
|
40
|
Feng L, Murugan M, Bosco DB, Liu Y, Peng J, Worrell GA, Wang HL, Ta LE, Richardson JR, Shen Y, Wu LJ. Microglial proliferation and monocyte infiltration contribute to microgliosis following status epilepticus. Glia 2019; 67:1434-1448. [PMID: 31179602 DOI: 10.1002/glia.23616] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2018] [Revised: 03/18/2019] [Accepted: 03/19/2019] [Indexed: 12/15/2022]
Abstract
Microglial activation has been recognized as a major contributor to inflammation of the epileptic brain. Seizures are commonly accompanied by remarkable microgliosis and loss of neurons. In this study, we utilize the CX3CR1GFP/+ CCR2RFP/+ genetic mouse model, in which CX3CR1+ resident microglia and CCR2+ monocytes are labeled with GFP and RFP, respectively. Using a combination of time-lapse two-photon imaging and whole-cell patch clamp recording, we determined the distinct morphological, dynamic, and electrophysiological characteristics of infiltrated monocytes and resident microglia, and the evolution of their behavior at different time points following kainic acid-induced seizures. Seizure activated microglia presented enlarged somas with less ramified processes, whereas, infiltrated monocytes were smaller, highly motile cells that lacked processes. Moreover, resident microglia, but not infiltrated monocytes, proliferate locally in the hippocampus after seizure. Microglial proliferation was dependent on the colony-stimulating factor 1 receptor (CSF-1R) pathway. Pharmacological inhibition of CSF-1R reduced seizure-induced microglial proliferation, which correlated with attenuation of neuronal death without altering acute seizure behaviors. Taken together, we demonstrated that proliferation of activated resident microglia contributes to neuronal death in the hippocampus via CSF-1R after status epilepticus, providing potential therapeutic targets for neuroprotection in epilepsy.
Collapse
Affiliation(s)
- Lijie Feng
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China.,Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey
| | - Madhuvika Murugan
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Dale B Bosco
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Yong Liu
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jiyun Peng
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | | | - Hai-Long Wang
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Lauren E Ta
- Department of Neurology, Mayo Clinic, Rochester, Minnesota
| | - Jason R Richardson
- Department of Environmental Health Sciences, Robert Stempel School of Public Health and Social Work, Florida International University, Miami, Florida
| | - Yuxian Shen
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Long-Jun Wu
- Department of Cell Biology and Neuroscience, School of Arts and Sciences, Rutgers University, Piscataway, New Jersey.,Department of Neurology, Mayo Clinic, Rochester, Minnesota.,Department of Neuroscience, Mayo Clinic, Jacksonville, Florida.,Department of Immunology, Mayo Clinic, Rochester, Minnesota
| |
Collapse
|
41
|
Sepulveda-Rodriguez A, Li P, Khan T, Ma JD, Carlone CA, Bozzelli PL, Conant KE, Forcelli PA, Vicini S. Electroconvulsive Shock Enhances Responsive Motility and Purinergic Currents in Microglia in the Mouse Hippocampus. eNeuro 2019; 6:ENEURO.0056-19.2019. [PMID: 31058213 PMCID: PMC6498419 DOI: 10.1523/eneuro.0056-19.2019] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Accepted: 04/09/2019] [Indexed: 12/24/2022] Open
Abstract
Microglia are in a privileged position to both affect and be affected by neuroinflammation, neuronal activity and injury, which are all hallmarks of seizures and the epilepsies. Hippocampal microglia become activated after prolonged, damaging seizures known as status epilepticus (SE). However, since SE causes both hyperactivity and injury of neurons, the mechanisms triggering this activation remain unclear, as does the relevance of the microglial activation to the ensuing epileptogenic processes. In this study, we use electroconvulsive shock (ECS) to study the effect of neuronal hyperactivity without neuronal degeneration on mouse hippocampal microglia. Unlike SE, ECS did not alter hippocampal CA1 microglial density, morphology, or baseline motility. In contrast, both ECS and SE produced a similar increase in ATP-directed microglial process motility in acute slices, and similarly upregulated expression of the chemokine C-C motif chemokine ligand 2 (CCL2). Whole-cell patch-clamp recordings of hippocampal CA1sr microglia showed that ECS enhanced purinergic currents mediated by P2X7 receptors in the absence of changes in passive properties or voltage-gated currents, or changes in receptor expression. This differs from previously described alterations in intrinsic characteristics which coincided with enhanced purinergic currents following SE. These ECS-induced effects point to a "seizure signature" in hippocampal microglia characterized by altered purinergic signaling. These data demonstrate that ictal activity per se can drive alterations in microglial physiology without neuronal injury. These physiological changes, which up until now have been associated with prolonged and damaging seizures, are of added interest as they may be relevant to electroconvulsive therapy (ECT), which remains a gold-standard treatment for depression.
Collapse
Affiliation(s)
- Alberto Sepulveda-Rodriguez
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Pinggan Li
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Department of Pediatrics, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Tahiyana Khan
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - James D Ma
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - Colby A Carlone
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
| | - P Lorenzo Bozzelli
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Katherine E Conant
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
- Department of Neuroscience, Georgetown University, Washington, DC 20007
| | - Patrick A Forcelli
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| | - Stefano Vicini
- Department of Pharmacology and Physiology, Georgetown University, Washington, DC 20007
- Interdisciplinary Program in Neuroscience, Georgetown University, Washington, DC 20007
| |
Collapse
|
42
|
In Vitro Priming and Hyper-Activation of Brain Microglia: an Assessment of Phenotypes. Mol Neurobiol 2019; 56:6409-6425. [DOI: 10.1007/s12035-019-1529-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Accepted: 02/15/2019] [Indexed: 12/27/2022]
|
43
|
Bisicchia E, Sasso V, Molinari M, Viscomi MT. Plasticity of microglia in remote regions after focal brain injury. Semin Cell Dev Biol 2019; 94:104-111. [PMID: 30703556 DOI: 10.1016/j.semcdb.2019.01.011] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Revised: 01/22/2019] [Accepted: 01/22/2019] [Indexed: 02/06/2023]
Abstract
The CNS is endowed with an intrinsic ability to recover from and adapt secondary compensatory mechanisms to injury. The basis of recovery stems from brain plasticity, defined as the brain's ability to make adaptive changes on structural and functional levels, ranging from molecular, synaptic, and cellular changes in response to alterations in their environment. In this multitude of responses, microglia have an active role and contribute to brain plasticity through their dynamic responses. This review will provide an overview of microglial responses in the context of acute CNS injury and their function in post-traumatic repair and assess the changes that are induced by damage in remote areas from, but functionally connected to, the primary site of injury. In the second section, we highlight the effects of several therapeutic approaches, with particular interest paid to specialized pro-resolving lipid mediators, in modulating microglial responses in remote regions and enhancing long-term functional recovery via suppression of neurodegenerative cascades that are induced by damage, which may contribute to a translational bridge from bench to bedside.
Collapse
Affiliation(s)
- Elisa Bisicchia
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Valeria Sasso
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Marco Molinari
- Laboratory of Experimental Neurorehabilitation, IRCCS Santa Lucia Foundation, Rome, Italy
| | - Maria Teresa Viscomi
- Fondazione Policlinico Universitario A. Gemelli, Università Cattolica del S. Cuore, Rome, Italy.
| |
Collapse
|
44
|
Izquierdo P, Attwell D, Madry C. Ion Channels and Receptors as Determinants of Microglial Function. Trends Neurosci 2019; 42:278-292. [PMID: 30678990 DOI: 10.1016/j.tins.2018.12.007] [Citation(s) in RCA: 63] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2018] [Revised: 12/17/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022]
Abstract
Microglia provide immune surveillance of the CNS. They display diverse behaviors, including nondirectional and directed motility of their processes, phagocytosis of targets such as dying neurons or superfluous synapses, and generation of reactive oxygen species (ROS) and cytokines. Many of these functions are mediated by ion channels and cell surface receptors, the expression of which varies with the many morphological and functional states that microglial cells can adopt. Recent progress in understanding microglial function has been facilitated by applying classical cell physiological techniques in situ, such as patch-clamping and live imaging, and cell-specific transcriptomic analyses. Here, we review the contribution of microglial ion channels and receptors to microglial and brain function.
Collapse
Affiliation(s)
- Pablo Izquierdo
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St, London, WC1E 6BT, UK
| | - David Attwell
- Department of Neuroscience, Physiology & Pharmacology, University College London, Gower St, London, WC1E 6BT, UK.
| | - Christian Madry
- Institute of Neurophysiology, Charité - Universitätsmedizin, 10117 Berlin, Germany.
| |
Collapse
|
45
|
Kyrargyri V, Attwell D, Jolivet RB, Madry C. Analysis of Signaling Mechanisms Regulating Microglial Process Movement. Methods Mol Biol 2019; 2034:191-205. [PMID: 31392686 DOI: 10.1007/978-1-4939-9658-2_14] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microglia, the brain's innate immune cells, are extremely motile cells, continuously surveying the central nervous system (CNS) to serve homeostatic functions and to respond to pathological events. In the healthy brain, microglia exhibit a small cell body with long, branched, and highly motile processes, which constantly extend and retract, effectively "patrolling" the brain parenchyma. Over the last decade, methodological advances in microscopy and the availability of genetically encoded reporter mice have allowed us to probe microglial physiology in situ. Beyond their classical immunological roles, unexpected functions of microglia have been revealed, both in the developing and the adult brain: microglia regulate the generation of newborn neurons, control the formation and elimination of synapses, and modulate neuronal activity. Many of these newly ascribed functions depend directly on microglial process movement. Thus, elucidating the mechanisms underlying microglial motility is of great importance to understand their role in brain physiology and pathophysiology. Two-photon imaging of fluorescently labeled microglia, either in vivo or ex vivo in acute brain slices, has emerged as an indispensable tool for investigating microglial movements and their functional consequences. This chapter aims to provide a detailed description of the experimental data acquisition and analysis needed to address these questions, with a special focus on key dynamic and morphological metrics such as surveillance, directed motility, and ramification.
Collapse
Affiliation(s)
- Vasiliki Kyrargyri
- Department of Immunology, Laboratory of Molecular Genetics, Hellenic Pasteur Institute, Athens, Greece
| | - David Attwell
- Department of Neuroscience, Physiology and Pharmacology, University College London, London, UK
| | - Renaud Blaise Jolivet
- Département de Physique Nucléaire et Corpusculaire, University of Geneva, Geneva, Switzerland
- CERN, Geneva, Switzerland
| | - Christian Madry
- Institute of Neurophysiology, Charité-Universitätsmedizin, Berlin, Germany.
| |
Collapse
|
46
|
Potentiation of antiseizure and neuroprotective efficacy of standard nerve agent treatment by addition of tariquidar. Neurotoxicology 2018; 68:167-176. [DOI: 10.1016/j.neuro.2018.08.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Revised: 08/08/2018] [Accepted: 08/15/2018] [Indexed: 12/25/2022]
|
47
|
Gasparotto J, Ribeiro CT, da Rosa-Silva HT, Bortolin RC, Rabelo TK, Peixoto DO, Moreira JCF, Gelain DP. Systemic Inflammation Changes the Site of RAGE Expression from Endothelial Cells to Neurons in Different Brain Areas. Mol Neurobiol 2018; 56:3079-3089. [DOI: 10.1007/s12035-018-1291-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Accepted: 07/31/2018] [Indexed: 12/21/2022]
|
48
|
Hiragi T, Ikegaya Y, Koyama R. Microglia after Seizures and in Epilepsy. Cells 2018; 7:cells7040026. [PMID: 29597334 PMCID: PMC5946103 DOI: 10.3390/cells7040026] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Revised: 03/24/2018] [Accepted: 03/26/2018] [Indexed: 01/23/2023] Open
Abstract
Microglia are the resident immune cells in the brain that constitute the brain’s innate immune system. Recent studies have revealed various functions of microglia in the development and maintenance of the central nervous system (CNS) in both health and disease. However, the role of microglia in epilepsy remains largely undiscovered, partly because of the complex phenotypes of activated microglia. Activated microglia likely exert different effects on brain function depending on the phase of epileptogenesis. In this review, we mainly focus on the animal models of temporal lobe epilepsy (TLE) and discuss the proepileptic and antiepileptic roles of activated microglia in the epileptic brain. Specifically, we focus on the roles of microglia in the production of inflammatory cytokines, regulation of neurogenesis, and surveillance of the surrounding environment in epilepsy.
Collapse
Affiliation(s)
- Toshimitsu Hiragi
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Yuji Ikegaya
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| | - Ryuta Koyama
- Laboratory of Chemical Pharmacology, Graduate School of Pharmaceutical Sciences, The University of Tokyo, Bunkyo-ku, Tokyo 113-8654, Japan.
| |
Collapse
|
49
|
Alves M, Beamer E, Engel T. The Metabotropic Purinergic P2Y Receptor Family as Novel Drug Target in Epilepsy. Front Pharmacol 2018; 9:193. [PMID: 29563872 PMCID: PMC5851315 DOI: 10.3389/fphar.2018.00193] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 02/20/2018] [Indexed: 12/21/2022] Open
Abstract
Epilepsy encompasses a heterogeneous group of neurological syndromes which are characterized by recurrent seizures affecting over 60 million people worldwide. Current anti-epileptic drugs (AEDs) are mainly designed to target ion channels and/or GABA or glutamate receptors. Despite recent advances in drug development, however, pharmacoresistance in epilepsy remains as high as 30%, suggesting the need for the development of new AEDs with a non-classical mechanism of action. Neuroinflammation is increasingly recognized as one of the key players in seizure generation and in the maintenance of the epileptic phenotype. Consequently, targeting signaling molecules involved in inflammatory processes may represent new avenues to improve treatment in epilepsy. Nucleotides such as adenosine-5′-triphosphate (ATP) and uridine-5′-triphosphate (UTP) are released in the brain into the extracellular space during pathological conditions such as increased neuronal firing or cell death. Once released, these nucleotides bind to and activate specific purinergic receptors termed P2 receptors where they mediate the release of gliotransmitters and drive neuronal hyperexcitation and neuroinflammatory processes. This includes the fast acting ionotropic P2X channels and slower-acting G-protein-coupled P2Y receptors. While the expression and function of P2X receptors has been well-established in experimental models of epilepsy, emerging evidence is now also suggesting a prominent role for the P2Y receptor subfamily in seizure generation and the maintenance of epilepsy. In this review we discuss data supporting a role for the P2Y receptor family in epilepsy and the most recent finding demonstrating their involvement during seizure-induced pathology and in epilepsy.
Collapse
Affiliation(s)
- Mariana Alves
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Edward Beamer
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Tobias Engel
- Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| |
Collapse
|
50
|
Chi B, Wang S, Bi S, Qin W, Wu D, Luo Z, Gui S, Wang D, Yin X, Wang F. Effects of ganoderic acid A on lipopolysaccharide-induced proinflammatory cytokine release from primary mouse microglia cultures. Exp Ther Med 2017; 15:847-853. [PMID: 29399089 PMCID: PMC5772755 DOI: 10.3892/etm.2017.5472] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2016] [Accepted: 08/24/2017] [Indexed: 01/13/2023] Open
Abstract
For several thousand years, Ganoderma lucidum (Ling-Zhi in Chinese and Reishi in Japanese) has been widely used as a traditional medication for the prevention and treatment of various diseases in Asia. Its major biologically active components, ganoderic acids (GAs), exhibit significant medicinal value due to their anti-inflammatory effects. Dysregulation of microglial function may cause seizures or promote epileptogenesis through release of proinflammatory cytokines, including interleukin (IL)-1β, IL-6 and tumor necrosis factor (TNF)-α. At present, only little information is available on the effects of GAs on microglia-mediated inflammation in vitro and/or in vivo. The present study aimed to investigate the role of GA-A on microglia-mediated inflammation in vitro. In addition, the effect of GA-A on lipopolysaccharide (LPS)-evoked alterations in mitochondrial metabolic activity of microglia was evaluated. The results of the present study demonstrated that GA-A significantly decreased LPS-induced IL-1β, IL-6 and TNF-α release from mouse-derived primary cortical microglial cells in a concentration-dependent manner. GA-A treatment reduced LPS-induced expression of nuclear factor (NF)-κB (p65) and its inhibitor, demonstrating that non-toxic suppression of IL-1β, IL-6 and TNF-α production by GA-A is, at least in part, due to suppression of the NF-κB signaling pathway. In addition, the LPS-induced stimulation of mitochondrial activity of microglial cells was abolished by co-treatment with GA-A. Thus, GA-A treatment may be a potential therapeutic strategy for epilepsy prevention by suppressing microglia-derived proinflammatory mediators.
Collapse
Affiliation(s)
- Baojin Chi
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China.,Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shuqiu Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Sheng Bi
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Wenbo Qin
- Department of Urology, The Second Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154002, P.R. China
| | - Dongmei Wu
- Material College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Zhenguo Luo
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Shiliang Gui
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Dongwei Wang
- Department of Urology, The First Affiliated Hospital of Jiamusi University, Jiamusi, Heilongjiang 154003, P.R. China
| | - Xingzhong Yin
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| | - Fangfang Wang
- Basic Medical College, Jiamusi University, Jiamusi, Heilongjiang 154007, P.R. China
| |
Collapse
|