1
|
Cong M, Hu JJ, Yu Y, Li XL, Sun XT, Wang LT, Wu X, Zhu LJ, Yang XJ, He QR, Ding F, Shi HY. miRNA-21-5p is an important contributor to the promotion of injured peripheral nerve regeneration using hypoxia-pretreated bone marrow-derived neural crest cells. Neural Regen Res 2025; 20:277-290. [PMID: 38767492 PMCID: PMC11246143 DOI: 10.4103/1673-5374.390956] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/26/2023] [Indexed: 05/22/2024] Open
Abstract
JOURNAL/nrgr/04.03/01300535-202501000-00035/figure1/v/2024-05-14T021156Z/r/image-tiff Our previous study found that rat bone marrow-derived neural crest cells (acting as Schwann cell progenitors) have the potential to promote long-distance nerve repair. Cell-based therapy can enhance peripheral nerve repair and regeneration through paracrine bioactive factors and intercellular communication. Nevertheless, the complex contributions of various types of soluble cytokines and extracellular vesicle cargos to the secretome remain unclear. To investigate the role of the secretome and extracellular vesicles in repairing damaged peripheral nerves, we collected conditioned culture medium from hypoxia-pretreated neural crest cells, and found that it significantly promoted the repair of sensory neurons damaged by oxygen-glucose deprivation. The mRNA expression of trophic factors was highly expressed in hypoxia-pretreated neural crest cells. We performed RNA sequencing and bioinformatics analysis and found that miR-21-5p was enriched in hypoxia-pretreated extracellular vesicles of neural crest cells. Subsequently, to further clarify the role of hypoxia-pretreated neural crest cell extracellular vesicles rich in miR-21-5p in axonal growth and regeneration of sensory neurons, we used a microfluidic axonal dissociation model of sensory neurons in vitro, and found that hypoxia-pretreated neural crest cell extracellular vesicles promoted axonal growth and regeneration of sensory neurons, which was greatly dependent on loaded miR-21-5p. Finally, we constructed a miR-21-5p-loaded neural conduit to repair the sciatic nerve defect in rats and found that the motor and sensory functions of injured rat hind limb, as well as muscle tissue morphology of the hind limbs, were obviously restored. These findings suggest that hypoxia-pretreated neural crest extracellular vesicles are natural nanoparticles rich in miRNA-21-5p. miRNA-21-5p is one of the main contributors to promoting nerve regeneration by the neural crest cell secretome. This helps to explain the mechanism of action of the secretome and extracellular vesicles of neural crest cells in repairing damaged peripheral nerves, and also promotes the application of miR-21-5p in tissue engineering regeneration medicine.
Collapse
Affiliation(s)
- Meng Cong
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Jing-Jing Hu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Department of Physiology, Jiangsu Health Vocational College, Nanjing, Jiangsu Province, China
| | - Yan Yu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Li Li
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Ting Sun
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Li-Ting Wang
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xia Wu
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Ling-Jie Zhu
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Xiao-Jia Yang
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
| | - Qian-Ru He
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| | - Fei Ding
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
- Jiangsu Clinical Medicine Center of Tissue Engineering and Nerve Injury Repair, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Hai-Yan Shi
- School of Medicine, Nantong University, Nantong, Jiangsu Province, China
- Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education and Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu Province, China
| |
Collapse
|
2
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
3
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia morphological response to mesenchymal stromal cell extracellular vesicles demonstrates EV therapeutic potential for modulating neuroinflammation. J Biol Eng 2024; 18:58. [PMID: 39420399 PMCID: PMC11488223 DOI: 10.1186/s13036-024-00449-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024] Open
Abstract
BACKGROUND Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation- relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. RESULTS Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-α /IFN-γ stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. CONCLUSION This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphometric approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA.
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA.
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, 10903 New Hampshire Ave, Silver Spring, MD, 20903, USA.
| |
Collapse
|
4
|
Liu G, Wang D, Jia J, Hao C, Ge Q, Xu L, Zhang C, Li X, Mi Y, Wang H, Miao L, Chen Y, Zhou J, Xu X, Liu Y. Neuroprotection of Human Umbilical Cord-Derived Mesenchymal Stem Cells (hUC-MSCs) in Alleviating Ischemic Stroke-Induced Brain Injury by Regulating Inflammation and Oxidative Stress. Neurochem Res 2024; 49:2871-2887. [PMID: 39026086 DOI: 10.1007/s11064-024-04212-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 07/10/2024] [Accepted: 07/11/2024] [Indexed: 07/20/2024]
Abstract
Brain injury caused by stroke has a high rate of mortality and remains a major medical challenge worldwide. In recent years, there has been significant attention given to the use of human Umbilical cord-derived Mesenchymal Stem Cells (hUC-MSCs) for the treatment of stroke in different adult and neonate animal models of stroke. However, using hUC-MSCs by systemic administration to treat ischemic stroke has not been investigated sufficiently. In this study, we conducted various experiments to explore the neuroprotection of hUC-MSCs in rats. Our findings demonstrate that an intravenous injection of a high dose of hUC-MSCs at 2 × 10^7 cells/kg markedly ameliorated brain injury resulting from ischemic stroke. This improvement was observed one day after inducing transient middle cerebral artery occlusion (MCAO) and subsequent reperfusion in rats. Notably, the efficacy of this single administration of hUC-MSCs surpassed that of edaravone, even when the latter was used continuously over three days. Mechanistically, secretory factors derived from hUC-MSCs, such as HGF, BDNF, and TNFR1, ameliorated the levels of MDA and T-SOD to regulate oxidative stress. In particular, TNFR1 also improved the expression of NQO-1 and HO-1, important proteins associated with oxidative stress. More importantly, TNFR1 played a significant role in reducing inflammation by modulating IL-6 levels in the blood. Furthermore, TNFR1 was observed to influence the permeability of the blood-brain barrier (BBB) as demonstrated in the evan's blue experiment and protein expression of ZO-1. This study represented a breakthrough in traditional methods and provided a novel strategy for clinical medication and trials.
Collapse
Affiliation(s)
- Guangyang Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Daohui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jianru Jia
- Baoding People's Hospital, Baoding, China
| | - Chunhua Hao
- State Key Laboratory of Drug Delivery and Pharmacokinetics, Tianjin Institute of Pharmaceutical Research, Tianjin, China
| | - Qinggang Ge
- Department of Critical Care Medicine, Peking University Third Hospital, Beijing, China
| | - Liqiang Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Chenliang Zhang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xin Li
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yi Mi
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Herui Wang
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Li Miao
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yaoyao Chen
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Jingwen Zhou
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Xiaodan Xu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China
| | - Yongjun Liu
- Stem Cell Biology and Regenerative Medicine Institution, Beijing YiChuang Institute of Bio-Industry, Beijing, China.
| |
Collapse
|
5
|
Chen Q, Li X, Yang Y, Ni J, Chen J. Combined Analysis of Human and Experimental Rat Samples Identified Biomarkers for Ischemic Stroke. Mol Neurobiol 2024:10.1007/s12035-024-04512-x. [PMID: 39325100 DOI: 10.1007/s12035-024-04512-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 09/18/2024] [Indexed: 09/27/2024]
Abstract
The genetic transcription profile and underlying molecular mechanisms of ischemic stroke (IS) remain elusive. To address this issue, four mRNA and one miRNA expression profile of rats with middle cerebral artery occlusion (MCAO) were acquired from the Gene Expression Omnibus (GEO) database. A total of 780 differentially expressed genes (DEGs) and 56 miRNAs (DEMs) were screened. Gene set and functional enrichment analysis revealed that a substantial number of immune-inflammation-related pathways were abnormally activated in IS. Through weighted gene co-expression network analysis, the turquoise module was identified as meaningful. By taking the intersection of the turquoise module genes, DEM-target genes, and all DEGs, 354 genes were subsequently obtained as key IS-related genes. Among them, six characteristic genes were identified using the least absolute shrinkage and selection operator. After validation with three external datasets, transforming growth factor beta 1 (Tgfb1) was selected as the hub gene. This finding was further confirmed by gene expression pattern analysis in both the MCAO model rats and clinical IS patients. Moreover, the expression of the hub genes exhibited a negative correlation with the modified Rankin scale score (P < 0.05). Collectively, these results expand our knowledge of the genetic profile and molecular mechanisms involved in IS and suggest that the Tgfb1 gene is a potential biomarker of this disease.
Collapse
Affiliation(s)
- Qingfa Chen
- Department of Rehabilitation, Fujian Medical University Union Hospital, Fuzhou, 350001, Fujian, China
| | - Xiaolu Li
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Ye Yang
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530022, Guangxi, China
| | - Jun Ni
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| | - Jianmin Chen
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350004, Fujian, China.
| |
Collapse
|
6
|
Li S, Xu J, Qian Y, Zhang R. Hydrogel in the Treatment of Traumatic Brain Injury. Biomater Res 2024; 28:0085. [PMID: 39328790 PMCID: PMC11425593 DOI: 10.34133/bmr.0085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 09/28/2024] Open
Abstract
The high prevalence of traumatic brain injury (TBI) poses an important global public health challenge. Current treatment modalities for TBI primarily involve pharmaceutical interventions and surgical procedures; however, the efficacy of these approaches remains limited. In the field of regenerative medicine, hydrogels have garnered significant attention and research efforts. This review provides an overview of the existing landscape and pathological manifestations of TBI, with a specific emphasis on delineating the therapeutic potential of hydrogels incorporated with various bioactive agents for TBI management. Particularly, the review delves into the utilization and efficacy of hydrogels based on extracellular matrix (ECM), stem cell-loaded, drug-loaded, self-assembled peptide structures or conductive in the context of TBI treatment. These applications are shown to yield favorable outcomes such as tissue damage mitigation, anti-inflammatory effects, attenuation of oxidative stress, anti-apoptotic properties, promotion of neurogenesis, and facilitation of angiogenesis. Lastly, a comprehensive analysis of the merits and constraints associated with hydrogel utilization in TBI treatment is presented, aiming to steer and advance future research endeavors in this domain.
Collapse
Affiliation(s)
- Shanhe Li
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Jiajun Xu
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Yuqing Qian
- Institute of Medical Technology, Shanxi Medical University, Taiyuan 030001, China
| | - Ruiping Zhang
- The Radiology Department of Shanxi Provincial People' Hospital Affiliated to Shanxi Medical University, Taiyuan 030001, China
| |
Collapse
|
7
|
Liu L, Zhao B, Yu Y, Gao W, Liu W, Chen L, Xia Z, Cao Q. Vascular Aging in Ischemic Stroke. J Am Heart Assoc 2024; 13:e033341. [PMID: 39023057 DOI: 10.1161/jaha.123.033341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 07/20/2024]
Abstract
Cellular senescence, a permanent halt in cell division due to stress, spurs functional and structural changes, contributing to vascular aging characterized by endothelial dysfunction and vascular remodeling. This process raises the risk of ischemic stroke (IS) in older individuals, with its mechanisms still not completely understood despite ongoing research efforts. In this review, we have analyzed the impact of vascular aging on increasing susceptibility and exacerbating the pathology of IS. We have emphasized the detrimental effects of endothelial dysfunction and vascular remodeling influenced by oxidative stress and inflammatory response on vascular aging and IS. Our goal is to aid the understanding of vascular aging and IS pathogenesis, particularly benefiting older adults with high risk of IS.
Collapse
Affiliation(s)
- Lian Liu
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Bo Zhao
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Yueyang Yu
- Taikang Medical School, School of Basic Medical Sciences Wuhan University Wuhan China
| | - Wenwei Gao
- Department of Critical Care Medicine Renmin Hospital of Wuhan University Wuhan China
| | - Weitu Liu
- Department of Pathology Hubei Provincial Hospital of Traditional Chinese Medicine Wuhan China
| | - Lili Chen
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Zhongyuan Xia
- Department of Anesthesiology Renmin Hospital of Wuhan University Wuhan China
| | - Quan Cao
- Department of Nephrology Zhongnan Hospital of Wuhan University Wuhan China
| |
Collapse
|
8
|
Chen X, Qian W, Zhang Y, Zhao P, Lin X, Yang S, Zhuge Q, Ni H. Ginsenoside CK cooperates with bone mesenchymal stem cells to enhance angiogenesis post-stroke via GLUT1 and HIF-1α/VEGF pathway. Phytother Res 2024. [PMID: 38990183 DOI: 10.1002/ptr.8235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 04/08/2024] [Accepted: 04/23/2024] [Indexed: 07/12/2024]
Abstract
The transplantation of bone marrow mesenchymal stem cells (MSCs) in stroke is hindered by the restricted rates of survival and differentiation. Ginsenoside compound K (CK), is reported to have a neuroprotective effect and regulate energy metabolism. We applied CK to investigate if CK could promote the survival of MSCs and differentiation into brain microvascular endothelial-like cells (BMECs), thereby alleviating stroke symptoms. Therefore, transwell and middle cerebral artery occlusion (MCAO) models were used to mimic oxygen and glucose deprivation (OGD) in vitro and in vivo, respectively. Our results demonstrated that CK had a good affinity for GLUT1, which increased the expression of GLUT1 and the production of ATP, facilitated the proliferation and migration of MSCs, and activated the HIF-1α/VEGF signaling pathway to promote MSC differentiation. Moreover, CK cooperated with MSCs to protect BMECs, promote angiogenesis and vascular density, enhance neuronal and astrocytic proliferation, thereby reducing infarct volume and consequently improving neurobehavioral outcomes. These results suggest that the synergistic effects of CK and MSCs could potentially be a promising strategy for stroke.
Collapse
Affiliation(s)
- Xijun Chen
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Wenqi Qian
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Ying Zhang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Peiqi Zhao
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Xiangxiang Lin
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Su Yang
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Qichuan Zhuge
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| | - Haoqi Ni
- Zhejiang Provincial Key Laboratory of Aging and Neurological Disorder Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Zhejiang-US Joint Laboratory for Aging and Neurological Disease Research, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
- Department of Neurosurgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang, China
| |
Collapse
|
9
|
Cha Z, Qiao Y, Lu Q, Wang Q, Lu X, Zhou H, Li T. Research progress and challenges of stem cell therapy for ischemic stroke. Front Cell Dev Biol 2024; 12:1410732. [PMID: 39040041 PMCID: PMC11260720 DOI: 10.3389/fcell.2024.1410732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.
Collapse
Affiliation(s)
- Zaihong Cha
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yisheng Qiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiyang Wang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tao Li
- Research Center for Clinical Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Neurosurgery and Neuroscience, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
10
|
Li Y, Fan F, Liu Q. Cytisine-N-methylene-(5,7,4 '-trihydroxy)- isoflavone ameliorates ischemic stroke-induced brain injury in mouse by regulating the oxidative stress and BDNF-Trkb/Akt pathway. Eur J Pharmacol 2024; 974:176512. [PMID: 38493912 DOI: 10.1016/j.ejphar.2024.176512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2023] [Revised: 02/28/2024] [Accepted: 03/14/2024] [Indexed: 03/19/2024]
Abstract
BACKGROUND A novel compound Cytisine-N-methylene-(5,7,4'-trihydroxy)- isoflavone (LY01) found in the Sophora alopecuroides L is a neuroprotective agent. However, the effect and potential mechanism of LY01 treatment for ischemic stroke (IS) have not been fully elucidated. AIM OF THE STUDY The aim of this study is to demonstrate whether LY01 can rescue ischemic stroke-induced brain injury and oxygen-glucose deprivation/reperfusion (OGD/R). RESULTS Our results show that intragastric administration of LY01 improves ischemic stroke behaviors in mice, as demonstrated by neurological score, infarct volume, cerebral water content, rotarod test for activity. Compared with the model group, the ginkgo biloba extract (EGb) and LY01 reversed the neurological score, infarct volume, cerebral water content, rotarod test in model mice. Further analysis showed that the LY01 rescued oxidative stress in the model mice, which was reflected in the increased levels of catalase, superoxide dismutase, total antioxidant capacity and decreased levels of malondialdehyde in the serum of the model mice. Moreover, the expression of the brain-derived neurotrophic factor brain-derived neurotrophic factor (BDNF), phosphorylated protein kinase B (p-Akt), Bax, Bcl-2, (p)-tropomysin related kinase B (p-Trkb) was restored and the expression of Bax, glial fibrillary acidic protein (GFAP) in the brains of the model mice was inhibited through LY01 treatment. In the polymerase chain reaction (PCR) data, after giving LY01, the expression in the brains of model mice was that, IL-10 increased and IL-1β, Bax, Bcl-2 decreased. Furthermore, the results indicated that LY01 improved cell viability, reactive oxygen species content, and mitochondrial membrane potential dissipation induced by OGD/R in primary culture of rat cortical neurons. Bax and caspase-3 activity was upregulated compared to the before after treatment with LY01. CONCLUSIONS Our study suggests that LY01 reversed ischemic stroke by reducing oxidative stress and activating the BDNF-TrkB/Akt pathway and exerted a neuroprotective action against OGD/R injury via attenuation, a novel approach was suggested to treat ischemic stroke. Our observations justify the traditional use of LY01 for a treatment of IS in nervous system.
Collapse
Affiliation(s)
- Yongbiao Li
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Fangcheng Fan
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China
| | - Qingshan Liu
- Key Laboratory of Ethnomedicine of Ministry of Education, School of Pharmacy, Center on Translational Neuroscience, Minzu University of China, 100081, Beijing, China.
| |
Collapse
|
11
|
Daga KR, Larey AM, Morfin MG, Chen K, Bitarafan S, Carpenter JM, Hynds HM, Hines KM, Wood LB, Marklein RA. Microglia Morphological Response to Mesenchymal Stromal Cell Extracellular Vesicles Demonstrates EV Therapeutic Potential for Modulating Neuroinflammation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.01.601612. [PMID: 39005342 PMCID: PMC11245023 DOI: 10.1101/2024.07.01.601612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/16/2024]
Abstract
Background Mesenchymal stromal cell derived extracellular vesicles (MSC-EVs) are a promising therapeutic for neuroinflammation. MSC-EVs can interact with microglia, the resident immune cells of the brain, to exert their immunomodulatory effects. In response to inflammatory cues, such as cytokines, microglia undergo phenotypic changes indicative of their function e.g. morphology and secretion. However, these changes in response to MSC-EVs are not well understood. Additionally, no disease-relevant screening tools to assess MSC-EV bioactivity exist, which has further impeded clinical translation. Here, we developed a quantitative, high throughput morphological profiling approach to assess the response of microglia to neuroinflammation-relevant signals and whether this morphological response can be used to indicate the bioactivity of MSC-EVs. Results Using an immortalized human microglia cell-line, we observed increased size (perimeter, major axis length) and complexity (form factor) upon stimulation with interferon-gamma (IFN-γ) and tumor necrosis factor-alpha (TNF-α). Upon treatment with MSC-EVs, the overall morphological score (determined using principal component analysis) shifted towards the unstimulated morphology, indicating that MSC-EVs are bioactive and modulate microglia. The morphological effects of MSC-EVs in TNF-γ/IFN-α stimulated cells were concomitant with reduced secretion of 14 chemokines/cytokines (e.g. CXCL6, CXCL9) and increased secretion of 12 chemokines/cytokines (e.g. CXCL8, CXCL10). Proteomic analysis of cell lysates revealed significant increases in 192 proteins (e.g. HIBADH, MEAK7, LAMC1) and decreases in 257 proteins (e.g. PTEN, TOM1, MFF) with MSC-EV treatment. Of note, many of these proteins are involved in regulation of cell morphology and migration. Gene Set Variation Analysis revealed upregulation of pathways associated with immune response, such as regulation of cytokine production, immune cell infiltration (e.g. T cells, NK cells) and morphological changes (e.g. Semaphorin, RHO/Rac signaling). Additionally, changes in microglia mitochondrial morphology were measured suggesting that MSC-EV modulate mitochondrial metabolism. Conclusion This study comprehensively demonstrates the effects of MSC-EVs on human microglial morphology, cytokine secretion, cellular proteome, and mitochondrial content. Our high-throughput, rapid, low-cost morphological approach enables screening of MSC-EV batches and manufacturing conditions to enhance EV function and mitigate EV functional heterogeneity in a disease relevant manner. This approach is highly generalizable and can be further adapted and refined based on selection of the disease-relevant signal, target cell, and therapeutic product.
Collapse
Affiliation(s)
- Kanupriya R Daga
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Andrew M Larey
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
| | - Maria G Morfin
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
| | - Kailin Chen
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Franklin College of Arts and Sciences, University of Georgia, Athens, GA, USA
| | - Sara Bitarafan
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | | | - Hannah M Hynds
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Kelly M Hines
- Department of Chemistry, University of Georgia, Athens, GA, USA
| | - Levi B Wood
- George W. Woodruff School of Mechanical Engineering and Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
| | - Ross A Marklein
- School of Chemical, Materials, and Biomedical Engineering, University of Georgia, Athens, GA, USA
- Regenerative Bioscience Center, University of Georgia, Athens, GA, USA
- Center for Biologics Evaluation and Research, U.S. Food and Drug Administration, Silver Spring, MD, USA
| |
Collapse
|
12
|
Lan Z, Tan F, He J, Liu J, Lu M, Hu Z, Zhuo Y, Liu J, Tang X, Jiang Z, Lian A, Chen Y, Huang Y. Curcumin-primed olfactory mucosa-derived mesenchymal stem cells mitigate cerebral ischemia/reperfusion injury-induced neuronal PANoptosis by modulating microglial polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 129:155635. [PMID: 38701541 DOI: 10.1016/j.phymed.2024.155635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 03/06/2024] [Accepted: 04/11/2024] [Indexed: 05/05/2024]
Abstract
BACKGROUND Cerebral ischemia-reperfusion (I/R) injury often leads to neuronal death through persistent neuroinflammatory responses. Recent research has unveiled a unique inflammatory programmed cell death mode known as PANoptosis. However, direct evidence for PANoptosis in ischemic stroke-induced neuronal death has not been established. Although it is widely thought that modulating the balance of microglial phenotypic polarization in cerebral I/R could mitigate neuroinflammation-mediated neuronal death, it remains unknown whether microglial polarization influences PANoptotic neuronal death triggered by cerebral I/R. Our prior study demonstrated that curcumin (CUR) preconditioning could boost the neuroprotective properties of olfactory mucosa-derived mesenchymal stem cells (OM-MSCs) in intracerebral hemorrhage. Yet, the potential neuroprotective capacity of curcumin-pretreated OM-MSCs (CUR-OM-MSCs) on reducing PANoptotic neuronal death during cerebral I/R injury through modulating microglial polarization is uncertain. METHODS To mimic cerebral I/R injury, We established in vivo models of reversible middle cerebral artery occlusion (MCAO) in C57BL/6 mice and in vitro models of oxygen-glucose deprivation/reoxygenation (OGD/R) in HT22 neurons and BV2 microglia. RESULTS Our findings indicated that cerebral I/R injury caused PANoptotic neuronal death and triggered microglia to adopt an M1 (pro-inflammatory) phenotype both in vivo and in vitro. Curcumin pretreatment enhanced the proliferation and anti-inflammatory capacity of OM-MSCs. The CUR-OM-MSCs group experienced a more pronounced reduction in PANoptotic neuronal death and a better recovery of neurological function than the OM-MSCs group. Bioinformatic analysis revealed that microRNA-423-5p (miRNA-423-5p) expression was obviously upregulated in CUR-OM-MSCs compared to OM-MSCs. CUR-OM-MSCs treatment induced the switch to an M2 (anti-inflammatory) phenotype in microglia by releasing miRNA-423-5p, which targeted nucleotide-binding oligomerization domain 2 (NOD2), an upstream regulator of NF-kappaB (NF-κB) and Mitogen-Activated Protein Kinase (MAPK) signaling pathways, to attenuate PANoptotic neuronal death resulting from cerebral I/R. CONCLUSION This results provide the first demonstration of the existence of PANoptotic neuronal death in cerebral I/R conditions. Curcumin preconditioning enhanced the ameliorating effect of OM-MSCs on neuroinflammation mediated by microglia polarization via upregulating the abundance of miRNA-423-5p. This intervention effectively alleviates PANoptotic neuronal death resulting from cerebral I/R. The combination of curcumin with OM-MSCs holds promise as a potentially efficacious treatment for cerebral ischemic stroke in the future.
Collapse
Affiliation(s)
- Ziwei Lan
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Fengbo Tan
- Department of Gastrointestinal Surgery, Xiangya Hospital, Central South University, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Jialin He
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Jianyang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Ming Lu
- Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Department of Neurosurgery, the 921st Hospital of PLA (Second Affiliated Hospital of Hunan Normal University), Changsha 410081, Hunan, PR China
| | - Zhiping Hu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Yi Zhuo
- Department of Neurosurgery, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan 410000, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - JunJiang Liu
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China; Department of Geriatrics, Hunan Provincial People's Hospital(First Affiliated Hospital of Hunan Normal University), Changsha, Hunan 410011, PR China
| | - Xiangqi Tang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Zheng Jiang
- Department of Neurology, The Second Xiangya Hospital, Central South University, Changsha, Hunan 410011, PR China
| | - Aojie Lian
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yongheng Chen
- First Clinical Department, Changsha Medical University, Changsha, Hunan 410219, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China
| | - Yan Huang
- Hunan provincial maternal and child health care hospital, Changsha, Hunan 410008, PR China; Key laboratory of Protein Chemistry and Developmental Biology of Ministry of Education, College of Life Sciences, Hunan Normal University, Changsha, Hunan 410219, PR China; Hunan Provincial Key Laboratory of Neurorestoration, The Second Affiliated Hospital, Hunan Normal University, Changsha, Hunan 410081, PR China; Hunan Provincial University Key Laboratory of the Fundamental and Clinical Research on Neurodegenerative Diseases, Changsha Medical University, Changsha Hunan 410219, PR China.
| |
Collapse
|
13
|
Shi CL, Han XL, Chen JC, Pan QF, Gao YC, Guo PY, Min XL, Gao YJ. Single-nucleus transcriptome unveils the role of ferroptosis in ischemic stroke. Heliyon 2024; 10:e32727. [PMID: 38994078 PMCID: PMC11237950 DOI: 10.1016/j.heliyon.2024.e32727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 06/06/2024] [Accepted: 06/07/2024] [Indexed: 07/13/2024] Open
Abstract
Multiple cell death pathways are involved in neuronal death in ischemic stroke (IS). However, the role of different cell death pathways in different cell types has not been elucidated. By analyzing three single-nucleus RNA sequencing (snRNA-seq) data of IS, we first found that a variety of programmed cell death (PCD) -related genes were significantly changed in different cell types. Based on machine learning and virtual gene knockout, we found that ferroptosis related genes, ferritin heavy chain 1 (Fth1) and ferritin light chain (Ftl1), play a key role in IS. Ftl1 and Fth1 can promote microglia activation, as well as the production of inflammatory factors and chemokines. Cell communication analysis showed that activated microglia could enhance chemotactic peripheral leukocyte infiltration, such as macrophages and neutrophils, through Spp1-Cd44 and App-Cd74 signaling, thereby aggravating brain tissue damage. Furthermore, real-time quantitative polymerase chain reaction (RT-qPCR) showed that P2ry12 and Mef2c were significantly decreased in oxygen-glucose deprivation (OGD) group, while Ftl1, Fth1, Apoe, Ctsb, Cd44 and Cd74 were significantly increased in OGD group. Collectively, our findings suggested targeted therapy against microglia Ftl1 and Fth1 might improve the state of microglia, reduce the infiltration of peripheral immune cells and tissue inflammation, and then improve the ischemic brain injury in mouse.
Collapse
Affiliation(s)
- Cheng-Long Shi
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiu-Li Han
- Department of Stomatology, Kunming Children's Hospital, Kunming, 650100, China
| | - Jing-Ce Chen
- Department of Orthopedics, The First People's Hospital of Yunnan Province, Kunming, 650100, China
| | - Qian-Fan Pan
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Chao Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Peng-Yan Guo
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Xiao-Li Min
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| | - Yong-Jun Gao
- Department of Neurosurgery, The Second Affiliated Hospital of Kunming Medical University, Kunming, 650032, China
| |
Collapse
|
14
|
Wang L, Li X, Chen L, Mei S, Shen Q, Liu L, Liu X, Liao S, Zhao B, Chen Y, Hou J. Mitochondrial Uncoupling Protein-2 Ameliorates Ischemic Stroke by Inhibiting Ferroptosis-Induced Brain Injury and Neuroinflammation. Mol Neurobiol 2024:10.1007/s12035-024-04288-0. [PMID: 38874704 DOI: 10.1007/s12035-024-04288-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2023] [Accepted: 06/03/2024] [Indexed: 06/15/2024]
Abstract
Ischemic stroke is a devastating disease in which mitochondrial damage or dysfunction substantially contributes to brain injury. Mitochondrial uncoupling protein-2 (UCP2) is a member of the UCP family, which regulates production of mitochondrial superoxide anion. UCP2 is reported to be neuroprotective for ischemic stroke-induced brain injury. However, the molecular mechanisms of UCP2 in ischemic stroke remain incompletely understood. In this study, we investigated whether and how UCP2 modulates neuroinflammation and regulates neuronal ferroptosis following ischemic stroke in vitro and in vivo. Wild-type (WT) and UCP2 knockout (Ucp2-/-) mice were subjected to middle cerebral artery occlusion (MCAO). BV2 cells (mouse microglial cell line) and HT-22 cells (mouse hippocampal neuronal cell line) were transfected with small interfering (si)-RNA or overexpression plasmids to knockdown or overexpress UCP2 levels. Cells were then exposed to oxygen-glucose deprivation and reoxygenation (OGD/RX) to simulate hypoxic injury in vitro. We found that UCP2 expression was markedly reduced in a time-dependent manner in both in vitro and in vivo ischemic stroke models. In addition, UCP2 was mainly expressed in neurons. UCP2 deficiency significantly enlarged infarct volumes, aggravated neurological deficit scores, and exacerbated cerebral edema in mice after MCAO. In vitro knockdown of Ucp2 and in vivo genetic depletion of Ucp2 (Ucp2-/- mice) increased neuronal ferroptosis-related indicators, including Fe2+, malondialdehyde, glutathione, and lipid peroxidation. Overexpression of UCP2 in neuronal cells resulted in reduced ferroptosis. Moreover, knockdown of UCP2 exacerbated neuroinflammation in BV2 microglia and mouse ischemic stroke models, suggesting that endogenous UCP2 inhibits neuroinflammation following ischemic stroke. Upregulation of UCP2 expression in microglia appeared to decrease the release of pro-inflammatory factors and increase the levels of anti-inflammatory factors. Further investigation showed that UCP2 deletion inhibited expression of AMPKα/NRF1 pathway-related proteins, including p-AMPKα, t-AMPKα, NRF1, and TFAM. Thus, UCP2 protects the brain from ischemia-induced ferroptosis by activating AMPKα/NRF1 signaling. Activation of UCP2 represents an attractive strategy for the prevention and treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Wang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Xiaona Li
- Department of Pain Medicine, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Lili Chen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shenglan Mei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Qianni Shen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Lian Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Xuke Liu
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Shichong Liao
- Department of Thyroid and Breast Surgery, Renmin Hospital of Wuhan University, Wuhan, 430060, China
| | - Bo Zhao
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China
| | - Yannan Chen
- Department of Endocrinology, Wuhan Fourth Hospital, Wuhan, 430033, China
| | - Jiabao Hou
- Department of Anesthesiology, Renmin Hospital of Wuhan University, No. 238 Jiefang Road, P.O. Box 430060, Wuhan, 430060, China.
| |
Collapse
|
15
|
Dabrowska S, Turano E, Scambi I, Virla F, Nodari A, Pezzini F, Galiè M, Bonetti B, Mariotti R. A Cellular Model of Amyotrophic Lateral Sclerosis to Study the Therapeutic Effects of Extracellular Vesicles from Adipose Mesenchymal Stem Cells on Microglial Activation. Int J Mol Sci 2024; 25:5707. [PMID: 38891895 PMCID: PMC11171908 DOI: 10.3390/ijms25115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego Street 5, 02-106 Warsaw, Poland
| | - Ermanna Turano
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Federica Virla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134 Verona, Italy;
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| |
Collapse
|
16
|
Huang Y, Shi Y, Wang M, Liu B, Chang X, Xiao X, Yu H, Cui X, Bai Y. Pannexin1 Channel-Mediated Inflammation in Acute Ischemic Stroke. Aging Dis 2024; 15:1296-1307. [PMID: 37196132 PMCID: PMC11081155 DOI: 10.14336/ad.2023.0303] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/03/2023] [Indexed: 05/19/2023] Open
Abstract
Emerging evidence suggests that inflammation mediated by the pannexin1 channel contributes significantly to acute ischemic stroke. It is believed that the pannexin1 channel is key in initiating central system inflammation during the early stages of acute ischemic stroke. Moreover, the pannexin1 channel is involved in the inflammatory cascade to maintain the inflammation levels. Specifically, the interaction of pannexin1 channels with ATP-sensitive P2X7 purinoceptors or promotion of potassium efflux mediates the activation of the NLRP3 inflammasome, triggering the release of pro-inflammatory factors such as IL-1 and IL-18, exacerbating and sustaining inflammation of brain. Also, increased release of ATP induced by cerebrovascular injury activates pannexin1 in vascular endothelial cells. This signal directs peripheral leukocytes to migrate into ischemic brain tissue, leading to an expansion of the inflammatory zone. Intervention strategies targeting pannexin1 channels may greatly alleviate inflammation after acute ischemic stroke to improve this patient population's clinical outcomes. In this review, we sought to summarize relevant studies on inflammation mediated by the pannexin1 channel in acute ischemic stroke and discussed the possibility of using brain organoid-on-a-chip technology to screen miRNAs that exclusively target the pannexin1 channel to provide new therapeutic measures for targeted regulation of pannexin1 channel to reduce inflammation in acute ischemic stroke.
Collapse
Affiliation(s)
- Yubing Huang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Yutong Shi
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Mengmeng Wang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Medical College, Institute of Microanalysis, Dalian University, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Bingyi Liu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xueqin Chang
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xia Xiao
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Huihui Yu
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Xiaodie Cui
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
- Graduate School, Dalian University, Dalian, Liaoning, China
| | - Ying Bai
- Department of Neurology, Dalian University Affiliated Xinhua Hospital, Dalian, Liaoning, China
| |
Collapse
|
17
|
Rahmati S, Khazaei M, Abpeikar Z, Soleimanizadeh A, Rezakhani L. Exosome-loaded decellularized tissue: Opening a new window for regenerative medicine. J Tissue Viability 2024; 33:332-344. [PMID: 38594147 DOI: 10.1016/j.jtv.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Revised: 03/29/2024] [Accepted: 04/04/2024] [Indexed: 04/11/2024]
Abstract
Mesenchymal stem cell-derived exosomes (MSCs-EXO) have received a lot of interest recently as a potential therapeutic tool in regenerative medicine. Extracellular vesicles (EVs) known as exosomes (EXOs) are crucial for cell-cell communication throughout a variety of activities including stress response, aging, angiogenesis, and cell differentiation. Exploration of the potential use of EXOs as essential therapeutic effectors of MSCs to encourage tissue regeneration was motivated by success in the field of regenerative medicine. EXOs have been administered to target tissues using a variety of methods, including direct, intravenous, intraperitoneal injection, oral delivery, and hydrogel-based encapsulation, in various disease models. Despite the significant advances in EXO therapy, various methods are still being researched to optimize the therapeutic applications of these nanoparticles, and it is not completely clear which approach to EXO administration will have the greatest effects. Here, we will review emerging developments in the applications of EXOs loaded into decellularized tissues as therapeutic agents for use in regenerative medicine in various tissues.
Collapse
Affiliation(s)
- Shima Rahmati
- Cancer Research Center, Shahrekord University of Medical Sciences, Shahrekord, Iran
| | - Mozafar Khazaei
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Zahra Abpeikar
- Department of Tissue Engineering, School of Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Arghavan Soleimanizadeh
- Faculty of Medicine, Graduate School 'Molecular Medicine, University of Ulm, 89081, Ulm, Germany
| | - Leila Rezakhani
- Fertility and Infertility Research Center, Health Technology Institute, Kermanshah University of Medical Sciences, Kermanshah, Iran; Department of Tissue Engineering, School of Medicine, Kermanshah University of Medical Sciences, Kermanshah, Iran.
| |
Collapse
|
18
|
Tang Y, Wang Z, Teng H, Ni H, Chen H, Lu J, Chen Z, Wang Z. Safety and efficacy of bone marrow mononuclear cell therapy for ischemic stroke recovery: a systematic review and meta-analysis of randomized controlled trials. Neurol Sci 2024; 45:1885-1896. [PMID: 38172413 PMCID: PMC11021295 DOI: 10.1007/s10072-023-07274-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 12/16/2023] [Indexed: 01/05/2024]
Abstract
BACKGROUND Cell-based therapy represents a potential treatment for ischemic stroke (IS). Here, we performed a systematic review and meta-analysis to summarize the evidence provided by randomized controlled trials (RCTs) for the transplantation of bone marrow mononuclear cells (BMMNCs) in patients with IS in any phase after stroke. METHODS We searched several databases for relevant articles up to the 10th of March 2023, including MEDLINE, EMBASE, the Cochrane Library, and ClinicalTrials.gov. Subgroup analyses were implemented to evaluate the dose and route of BMMNC administration. Statistical data were analyzed by Review Manager version 5.3 software. RESULTS Six RCTs were included in this article, including 177 patients who were treated by the transplantation of BMMNCs and 166 patients who received medical treatment. The three-month National Institutes of Health Stroke Scale (NIHSS) score indicated a favorable outcome for the BMMNC transplantation group (standardized mean difference (SMD), - 0.34; 95% confidence interval (CI), - 0.57 to - 0.11; P = 0.004). There were no significant differences between the two groups at six months post-transplantation with regards to NIHSS score (SMD 0.00; 95% CI - 0.26 to 0.27; P = 0.97), modified Rankin Scale (risk ratio (RR) 1.10; 95% CI 0.75 to 1.63; P = 0.62), Barthel Index change (SMD 0.68; 95% CI - 0.59 to 1.95; P = 0.29), and infarct volume change (SMD - 0.08; 95% CI - 0.42 to 0.26; P = 0.64). In addition, there was no significant difference between the two groups in terms of safety outcome (RR 1.24; 95% CI 0.80 to 1.91; P = 0.33). CONCLUSION Our meta-analysis demonstrated that the transplantation of BMMNCs was safe; however, the efficacy of this procedure requires further validation in larger RTCs.
Collapse
Affiliation(s)
- Yanbing Tang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Zilan Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Haiying Teng
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Hanyu Ni
- Suzhou Medical College of Soochow University, Suzhou, 215002, Jiangsu Province, China
| | - Huiru Chen
- Department of Neurology, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Jiaye Lu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China
| | - Zhouqing Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| | - Zhong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, 188 Shizi Street, Suzhou, 215006, Jiangsu Province, China.
| |
Collapse
|
19
|
Machado FJDM, Marta-Enguita J, Gómez SU, Rodriguez JA, Páramo-Fernández JA, Herrera M, Zandio B, Aymerich N, Muñoz R, Bermejo R, Marta-Moreno J, López B, González A, Roncal C, Orbe J. Transcriptomic Analysis of Extracellular Vesicles in the Search for Novel Plasma and Thrombus Biomarkers of Ischemic Stroke Etiologies. Int J Mol Sci 2024; 25:4379. [PMID: 38673963 PMCID: PMC11050408 DOI: 10.3390/ijms25084379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 04/10/2024] [Accepted: 04/10/2024] [Indexed: 04/28/2024] Open
Abstract
Accurate etiologic diagnosis provides an appropriate secondary prevention and better prognosis in ischemic stroke (IS) patients; still, 45% of IS are cryptogenic, urging us to enhance diagnostic precision. We have studied the transcriptomic content of plasma extracellular vesicles (EVs) (n = 21) to identify potential biomarkers of IS etiologies. The proteins encoded by the selected genes were measured in the sera of IS patients (n = 114) and in hypertensive patients with (n = 78) and without atrial fibrillation (AF) (n = 20). IGFBP-2, the most promising candidate, was studied using immunohistochemistry in the IS thrombi (n = 23) and atrium of AF patients (n = 13). In vitro, the IGFBP-2 blockade was analyzed using thromboelastometry and endothelial cell cultures. We identified 745 differentially expressed genes among EVs of cardioembolic, atherothrombotic, and ESUS groups. From these, IGFBP-2 (cutoff > 247.6 ng/mL) emerged as a potential circulating biomarker of embolic IS [OR = 8.70 (1.84-41.13) p = 0.003], which was increased in patients with AF vs. controls (p < 0.001) and was augmented in cardioembolic vs. atherothrombotic thrombi (p < 0.01). Ex vivo, the blockage of IGFBP-2 reduced clot firmness (p < 0.01) and lysis time (p < 0.001) and in vitro, diminished endothelial permeability (p < 0.05) and transmigration (p = 0.06). IGFBP-2 could be a biomarker of embolic IS and a new therapeutic target involved in clot formation and endothelial dysfunction.
Collapse
Affiliation(s)
- Florencio J. D. M. Machado
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
| | - Juan Marta-Enguita
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| | - Susan U. Gómez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
| | - Jose A. Rodriguez
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - José Antonio Páramo-Fernández
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Hematology Department, Clinica Universidad de Navarra, 31008 Pamplona, Spain
| | - María Herrera
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Beatriz Zandio
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Nuria Aymerich
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Roberto Muñoz
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario de Navarra, 31008 Pamplona, Spain
| | - Rebeca Bermejo
- Neurointervencionist Radiology, Hospital Universitario de Navarra, 31008 Pamplona, Spain;
| | - Javier Marta-Moreno
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
- Neurology Department, Hospital Universitario Miguel Servet, Instituto de Investigación Sanitaria de Aragón (IIS-Aragon), 50009 Zaragoza, Spain
| | - Begoña López
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
| | - Arantxa González
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
- Cardiovascular Diseases Program, Cima Universidad de Navarra, 31008 Pamplona, Spain
- Department of Pathology, Anatomy and Physiology, Universidad de Navarra, 31008 Pamplona, Spain
| | - Carmen Roncal
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Centro de Investigación Biomédica en Red de Enfermedades Cardiovasculares (CIBERCV), Instituto de Salud Carlos III, 28029 Madrid, Spain
| | - Josune Orbe
- Laboratory of Atherothrombosis, Cima Universidad de Navarra, 31008 Pamplona, Spain; (F.J.D.M.M.); (J.M.-E.); (S.U.G.); (J.A.R.); (J.A.P.-F.); (C.R.)
- Instituto de Investigación Sanitaria de Navarra IdiSNA, 31008 Pamplona, Spain; (M.H.); (B.L.)
- Red de Investigación Cooperativa Orientada a Resultados en Salud (RICORS)-Ictus, Instituto Salud Carlos III, 28029 Madrid, Spain; (B.Z.); (N.A.); (R.M.); (J.M.-M.)
| |
Collapse
|
20
|
Gao Z, Lv S, Ran X, Wang Y, Xia M, Wang J, Qiu M, Wei Y, Shao Z, Zhao Z, Zhang Y, Zhou X, Yu Y. Influencing factors of corticomuscular coherence in stroke patients. Front Hum Neurosci 2024; 18:1354332. [PMID: 38562230 PMCID: PMC10982423 DOI: 10.3389/fnhum.2024.1354332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Accepted: 03/05/2024] [Indexed: 04/04/2024] Open
Abstract
Stroke, also known as cerebrovascular accident, is an acute cerebrovascular disease with a high incidence, disability rate, and mortality. It can disrupt the interaction between the cerebral cortex and external muscles. Corticomuscular coherence (CMC) is a common and useful method for studying how the cerebral cortex controls muscle activity. CMC can expose functional connections between the cortex and muscle, reflecting the information flow in the motor system. Afferent feedback related to CMC can reveal these functional connections. This paper aims to investigate the factors influencing CMC in stroke patients and provide a comprehensive summary and analysis of the current research in this area. This paper begins by discussing the impact of stroke and the significance of CMC in stroke patients. It then proceeds to elaborate on the mechanism of CMC and its defining formula. Next, the impacts of various factors on CMC in stroke patients were discussed individually. Lastly, this paper addresses current challenges and future prospects for CMC.
Collapse
Affiliation(s)
- Zhixian Gao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Shiyang Lv
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xiangying Ran
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yuxi Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengsheng Xia
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Junming Wang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Mengyue Qiu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yinping Wei
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zhenpeng Shao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Zongya Zhao
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Yehong Zhang
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| | - Xuezhi Zhou
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
| | - Yi Yu
- School of Medical Engineering, Xinxiang Medical University, Xinxiang, China
- Engineering Technology Research Center of Neurosense and Control of Henan Province, Xinxiang, China
- Henan International Joint Laboratory of Neural Information Analysis and Drug Intelligent Design, Xinxiang, China
| |
Collapse
|
21
|
Gao L, Peng L, Wang J, Zhang JH, Xia Y. Mitochondrial stress: a key role of neuroinflammation in stroke. J Neuroinflammation 2024; 21:44. [PMID: 38321473 PMCID: PMC10845693 DOI: 10.1186/s12974-024-03033-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/27/2024] [Indexed: 02/08/2024] Open
Abstract
Stroke is a clinical syndrome characterized by an acute, focal neurological deficit, primarily caused by the occlusion or rupture of cerebral blood vessels. In stroke, neuroinflammation emerges as a pivotal event contributing to neuronal cell death. The occurrence and progression of neuroinflammation entail intricate processes, prominently featuring mitochondrial dysfunction and adaptive responses. Mitochondria, a double membrane-bound organelle are recognized as the "energy workshop" of the body. Brain is particularly vulnerable to mitochondrial disturbances due to its high energy demands from mitochondria-related energy production. The interplay between mitochondria and neuroinflammation plays a significant role in the pathogenesis of stroke. The biological and pathological consequences resulting from mitochondrial stress have substantial implications for cerebral function. Mitochondrial stress serves as an adaptive mechanism aimed at mitigating the stress induced by the import of misfolded proteins, which occurs in response to stroke. This adaptive response involves a reduction in misfolded protein accumulation and overall protein synthesis. The influence of mitochondrial stress on the pathological state of stroke is underscored by its capacity to interact with neuroinflammation. The impact of mitochondrial stress on neuroinflammation varies according to its severity. Moderate mitochondrial stress can bolster cellular adaptive defenses, enabling cells to better withstand detrimental stressors. In contrast, sustained and excessive mitochondrial stress detrimentally affects cellular and tissue integrity. The relationship between neuroinflammation and mitochondrial stress depends on the degree of mitochondrial stress present. Understanding its role in stroke pathogenesis is instrumental in excavating the novel treatment of stroke. This review aims to provide the evaluation of the cross-talk between mitochondrial stress and neuroinflammation within the context of stroke. We aim to reveal how mitochondrial stress affects neuroinflammation environment in stroke.
Collapse
Affiliation(s)
- Ling Gao
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA
| | - Li Peng
- Department of Ophthalmology, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - Jian Wang
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China
| | - John H Zhang
- Department of Physiology and Pharmacology, School of Medicine, Loma Linda University, Loma Linda, CA, 92354, USA.
- Department of Neurosurgery and Anesthesiology, Loma Linda University Medical Center, Loma Linda, CA, 92354, USA.
| | - Ying Xia
- Department of Neurosurgery, Xiangya School of Medicine, Affiliated Haikou Hospital, Central South University, Haikou, 570208, China.
| |
Collapse
|
22
|
Bonzanino M, Riolo M, Battaglini I, Perna M, De Mattei M. PEALut in the Dietary Management of Patients with Acute Ischemic Stroke: A Prospective Randomized Controlled Clinical Trial. J Clin Med 2024; 13:509. [PMID: 38256644 PMCID: PMC10816980 DOI: 10.3390/jcm13020509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 01/03/2024] [Accepted: 01/12/2024] [Indexed: 01/24/2024] Open
Abstract
Acute ischemic stroke (AIS), which represents 87% of all strokes, is caused by reduced blood supply to the brain associated with a prolonged inflammatory process that exacerbates brain damage. The composite containing co-ultramicronized Palmitoylethanolamide and luteolin (PEALut) is known to promote the resolution of neuroinflammation, being a promising nutritional approach to contrast inflammatory processes occurring in AIS. This study included 60 patients affected by acute ischemic stroke and undergoing thrombolysis. PEALut 770 mg was administered to 30 patients, twice daily for 90 days, in addition to the standard therapy. Neurological deficit, independence in activities of daily living, disability and cognitive impairment were investigated. In all patients, the severity of AIS defined by the NIHSS score evolved from moderate to minor (p < 0.0001). Patients' independence in daily living activities and disability evaluated using BI and mRS showed a significant improvement over time, with a statistically significant difference in favor of PEALut-treated patients (p < 0.002 for BI, p < 0.0001 for mRS), who achieved also a marked improvement of cognitive function evaluated using MMSE and MoCA tests. PEALut proved to be a safe and effective treatment in addition to thrombolysis in the management of patients with acute ischemic stroke.
Collapse
Affiliation(s)
- Massimo Bonzanino
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marianna Riolo
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Iacopo Battaglini
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marilisa Perna
- S. S. Stoke Unit, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| | - Marco De Mattei
- S. C. Neurologia, Dipartimento Area Medica, Ospedale Santa Croce di Moncalieri, ASLTo5, 10024 Moncalieri, Turin, Italy
| |
Collapse
|
23
|
Gao Y, Zhang TL, Zhang HJ, Gao J, Yang PF. A Promising Application of Injectable Hydrogels in Nerve Repair and Regeneration for Ischemic Stroke. Int J Nanomedicine 2024; 19:327-345. [PMID: 38229707 PMCID: PMC10790665 DOI: 10.2147/ijn.s442304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Ischemic stroke, a condition that often leads to severe nerve damage, induces complex pathological and physiological changes in nerve tissue. The mature central nervous system (CNS) lacks intrinsic regenerative capacity, resulting in a poor prognosis and long-term neurological impairments. There is no available therapy that can fully restore CNS functionality. However, the utilization of injectable hydrogels has emerged as a promising strategy for nerve repair and regeneration. Injectable hydrogels possess exceptional properties, such as biocompatibility, tunable mechanical properties, and the ability to provide a supportive environment for cell growth and tissue regeneration. Recently, various hydrogel-based tissue engineering approaches, including cell encapsulation, controlled release of therapeutic factors, and incorporation of bioactive molecules, have demonstrated great potential in the treatment of CNS injuries caused by ischemic stroke. This article aims to provide a comprehensive review of the application and development of injectable hydrogels for the treatment of ischemic stroke-induced CNS injuries, shedding light on their therapeutic prospects, challenges, recent advancements, and future directions. Additionally, it will discuss the underlying mechanisms involved in hydrogel-mediated nerve repair and regeneration, as well as the need for further preclinical and clinical studies to validate their efficacy and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hong-Jian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Peng-Fei Yang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
24
|
Gao X, Su G, Chai M, Shen M, Hu Z, Chen W, Gao J, Li R, Ma T, An Y, Zhang Z. Research progress on mechanisms of ischemic stroke: Regulatory pathways involving Microglia. Neurochem Int 2024; 172:105656. [PMID: 38081419 DOI: 10.1016/j.neuint.2023.105656] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/19/2023] [Accepted: 12/04/2023] [Indexed: 12/17/2023]
Abstract
Microglia, as the intrinsic immune cells in the brain, are activated following ischemic stroke. Activated microglia participate in the pathological processes after stroke through polarization, autophagy, phagocytosis, pyroptosis, ferroptosis, apoptosis, and necrosis, thereby influencing the injury and repair following stroke. It has been established that polarized M1 and M2 microglia exhibit pro-inflammatory and anti-inflammatory effects, respectively. Autophagy and phagocytosis in microglia following ischemia are dynamic processes, where moderate levels promote cell survival, while excessive responses may exacerbate neurofunctional deficits following stroke. Additionally, pyroptosis and ferroptosis in microglia after ischemic stroke contribute to the release of harmful cytokines, further aggravating the damage to brain tissue due to ischemia. This article discusses the different functional states of microglia in ischemic stroke research, highlighting current research trends and gaps, and provides insights and guidance for further study of ischemic stroke.
Collapse
Affiliation(s)
- Xin Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Gang Su
- Institute of Genetics, School of Basic Medical Sciences, Lanzhou University, Lanzhou, Gansu, 730030, China
| | - Miao Chai
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Minghui Shen
- Medical Laboratories, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenzhen Hu
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Wei Chen
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Juan Gao
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Ruixin Li
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Tianfei Ma
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Yang An
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China
| | - Zhenchang Zhang
- Department of Neurology, Lanzhou University Second Hospital, Lanzhou, Gansu, 730030, China.
| |
Collapse
|
25
|
Wang LW, Chio CC, Chao CM, Chao PY, Lin MT, Chang CP, Lin HJ. Mesenchymal stem cells reduce long-term cognitive deficits and attenuate myelin disintegration and microglia activation following repetitive traumatic brain injury. Sci Prog 2024; 107:368504241231154. [PMID: 38425276 PMCID: PMC10908245 DOI: 10.1177/00368504241231154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/02/2024]
Abstract
The underlying mechanisms for the beneficial effects exerted by bone marrow-mesenchymal stem cells (BM-MSCs) in treating repetitive traumatic brain injury (rTBI)-induced long-term sensorimotor/cognitive impairments are not fully elucidated. Herein, we aimed to explore whether BM-MSCs therapy protects against rTBI-induced long-term neurobehavioral disorders in rats via normalizing white matter integrity and gray matter microglial response. Rats were subjected to repeated mild lateral fluid percussion on day 0 and day 3. On the fourth day post-surgery, MSCs groups received MSCs (4 × 106 cells/ml/kg, intravenously) and were assessed by the radial maze, Y maze, passive avoidance tests, and modified neurological severity scores. Hematoxylin & eosin, and Luxol fast blue stainings were used to examine the histopathology and white matter thickness. At the same time, immunofluorescence staining was used to investigate the numbers of tumor necrosis factor-alpha (TNF-α)-containing microglia in gray matter. Three to nine months after neurotrauma, rats displayed sensorimotor and cognitive impairments, reduced thickness in white matter, and over-accumulation of TNF-α-containing microglia and cellular damage in gray matter. Therapy with BM-MSCs significantly attenuated the rTBI-induced sensorimotor and cognitive impairments and all their complications. Mesenchymal stem cell therapy might accelerate the recovery of sensorimotor and cognitive impairments in rats with rTBI via normalizing myelin integrity and microglia response.
Collapse
Affiliation(s)
- Lan-Wan Wang
- Department of Pediatrics, Chi Mei Medical Center, Tainan 710, Taiwan
- Department of Biotechnology and Food Technology, Southern Taiwan University of Science and Technology, Tainan 710, Taiwan
| | - Chung-Ching Chio
- Division of Neurosurgery, Department of Surgery, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Chien-Ming Chao
- Department of Intensive Care Medicine, Chi Mei Medical Center, Liouying, Tainan, 73657, Taiwan
- Department of Dental Laboratory Technology, Min-Hwei College of Health Care Management, Tainan, 73657, Taiwan
| | - Pi-Yu Chao
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Mao-Tsun Lin
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Ching-Ping Chang
- Department of Medical Research, Chi Mei Medical Center, Tainan 710, Taiwan
| | - Hung-Jung Lin
- Department of Emergency Medicine, Chi Mei Medical Center, Tainan 710, Taiwan
- School of Medicine, Taipei Medical University, Taipei 110, Taiwan
| |
Collapse
|
26
|
Wang X, Yang J, You C, Bao X, Ma L. Efficacy and Safety of Bone Marrow Derived Stem Cell Therapy for Ischemic Stroke: Evidence from Network Meta-analysis. Curr Stem Cell Res Ther 2024; 19:1102-1110. [PMID: 37612871 DOI: 10.2174/1574888x18666230823094531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 06/26/2023] [Accepted: 07/19/2023] [Indexed: 08/25/2023]
Abstract
BACKGROUND Several types of stem cells are available for the treatment of stroke patients. However, the optimal type of stem cell remains unclear. OBJECTIVE To analyze the effects of bone marrow-derived stem cell therapy in patients with ischemic stroke by integrating all available direct and indirect evidence in network meta-analyses. METHODS We searched several databases to identify randomized clinical trials comparing clinical outcomes of bone marrow-derived stem cell therapy vs. conventional treatment in stroke patients. Pooled relative risks (RRs) and mean differences (MDs) were reported. The surface under the cumulative ranking (SUCRA) was used to rank the probabilities of each agent regarding different outcomes. RESULTS Overall, 11 trials with 576 patients were eligible for analysis. Three different therapies, including mesenchymal stem cells (MSCs), mononuclear stem cells (MNCs), and multipotent adult progenitor cells (MAPCs), were assessed. The direct analysis demonstrated that stem cell therapy was associated with significantly reduced all-cause mortality rates (RR 0.55, 95% CI 0.33 to 0.93; I2=0%). Network analysis demonstrated MSCs ranked first in reducing mortality (RR 0.42, 95% CrI 0.15 to 0.86) and improving modified Rankin Scale score (MD -0.59 95% CI -1.09 to -0.09), with SUCRA values 80%, and 98%, respectively. Subgroup analysis showed intravenous transplantation was superior to conventional therapy in reducing all-cause mortality (RR 0.53, 95% CrI 0.29 to 0.88). CONCLUSION Using stem cell transplantation was associated with reduced risk of death and improved functional outcomes in patients with ischemic stroke. Additional large trials are warranted to provide more conclusive evidence.
Collapse
Affiliation(s)
- Xing Wang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Jingguo Yang
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Chao You
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
- West China Brain Research Centre, Sichuan University, Chengdu, Sichuan, 610041, PR China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100730, PR China
| | - Lu Ma
- Department of Neurosurgery, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, PR China
| |
Collapse
|
27
|
Farzaneh M, Khoshnam SE. Functional Roles of Mesenchymal Stem Cell-derived Exosomes in Ischemic Stroke Treatment. Curr Stem Cell Res Ther 2024; 19:2-14. [PMID: 36567297 DOI: 10.2174/1574888x18666221222123818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Revised: 08/28/2022] [Accepted: 10/18/2022] [Indexed: 12/27/2022]
Abstract
Stroke is a life-threatening disease and one of the leading causes of death and physical disability worldwide. Currently, no drugs on the market promote neural recovery after stroke insult, and spontaneous remodeling processes are limited to induce recovery in the ischemic regions. Therefore, promoting a cell-based therapy has been needed to elevate the endogenous recovery process. Mesenchymal stem cells (MSCs) have been regarded as candidate cell sources for therapeutic purposes of ischemic stroke, and their therapeutic effects are mediated by exosomes. The microRNA cargo in these extracellular vesicles is mostly responsible for the positive effects. When it comes to the therapeutic viewpoint, MSCsderived exosomes could be a promising therapeutic strategy against ischemic stroke. The aim of this review is to discuss the current knowledge around the potential of MSCs-derived exosomes in the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Maryam Farzaneh
- Fertility, Infertility and Perinatology Research Center, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| | - Seyed Esmaeil Khoshnam
- Persian Gulf Physiology Research Center, Medical Basic Sciences Research Institute, Ahvaz Jundishapur University of Medical Sciences, Ahvaz, Iran
| |
Collapse
|
28
|
Lyu ZZ, Li M, Yang MY, Han MH, Yang Z. Exosome-mediated transfer of circRNA563 promoting hepatocellular carcinoma by targeting the microRNA148a-3p/metal-regulatory transcription factor-1 pathway. World J Gastroenterol 2023; 29:6060-6075. [PMID: 38130740 PMCID: PMC10731156 DOI: 10.3748/wjg.v29.i46.6060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2023] [Revised: 10/24/2023] [Accepted: 11/17/2023] [Indexed: 12/13/2023] Open
Abstract
BACKGROUND Mesenchymal stem cells (MSCs) exert anti-oncogenic effects via exosomes containing non-coding RNA (ncRNA), which play important roles in tumor biology. Our preliminary study identified the interaction of the ncRNA hsa_circ_0000563 (circ563) and the circ563-associated miR-148a-3p in exosomes, as miR-148a-3p and its target metal-regulatory transcription factor-1 (MTF-1) are implicated in hepatocellular carcinoma (HCC) progression. AIM To identify the clinical significance, functional implications, and mechanisms of circ563 in HCC. METHODS The expression levels of miR-148a-3p and MTF-1 in exosomes derived from MSC and HCC cells were compared, and their effects on HCC cells were assessed. Using a dual-luciferase reporter assay, miR-148a-3p was identified as an associated microRNA of circ563, whose role in HCC regulation was assessed in vitro and in vivo. RESULTS The silencing of circ563 blocked the HCC cell proliferation and invasion and induced apoptosis. Co-culturing of HCC cells with MSC-derived exosomes following circ563 overexpression promoted cell proliferation and metastasis and elicited changes in miR-148a-3p and MTF-1 expression. The tumor-promoting effects of circ563 were partially suppressed by miR-148a-3p overexpression or MTF-1 depletion. Xenograft experiments performed in nude mice confirmed that circ563-enriched exosomes facilitated tumor growth by upregulating the expression of MTF-1. In HCC tissues, circ563 expression was negatively correlated with miR-148a-3p expression but positively correlated with MTF-1 levels. CONCLUSION MSCs may exhibit anti-HCC activity through the exosomal circ563/miR-148a-3p/MTF-1 pathway, while exosomes can transmit circ563 to promote oncogenic behavior by competitively binding to miR-148a-3p to activate MTF-1.
Collapse
Affiliation(s)
- Zhuo-Zhen Lyu
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Meng Li
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Ming-Yu Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Mei-Hong Han
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| | - Zhen Yang
- Department of Infectious Diseases, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, Shandong Province, China
| |
Collapse
|
29
|
Bai Y, Wang L, Xu R, Cui Y. Mesenchymal stem cells with p38 mitogen-activated protein kinase interference ameliorate mouse ischemic stroke. Exp Biol Med (Maywood) 2023; 248:2481-2491. [PMID: 38158804 PMCID: PMC10903255 DOI: 10.1177/15353702231220663] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Accepted: 10/23/2023] [Indexed: 01/03/2024] Open
Abstract
Mesenchymal stem cells (MSCs) have been widely used in the treatment of ischemic stroke. However, factors such as high glucose, oxidative stress, and aging can lead to the reduced function of donor MSCs. The p38 mitogen-activated protein kinase (MAPK) signaling pathway is associated with various functions, such as cell proliferation, apoptosis, senescence, differentiation, and paracrine secretion. This study examined the hypothesis that the downregulation of p38 MAPK expression in MSCs improves the prognosis of mice with ischemic stroke. Lentiviral vector-mediated short hairpin RNA (shRNA) was constructed to downregulate the expression level of p38 MAPK in mouse bone marrow-derived MSCs. The growth cycle, apoptosis, and senescence of MSCs after infection were examined. A mouse model of ischemic stroke was constructed. After MSC transplantation, the recovery of neurological function in the mice was evaluated. Lentivirus-mediated shRNA significantly downregulated the mRNA and protein expression levels of p38 MAPK. The senescence of MSCs in the p38 MAPK downregulation group was significantly reduced, but the growth cycle and apoptosis did not significantly change. Compared with the control group, the infarct volume was reduced, and the neurological function and the axonal remodeling were improved in mice with ischemic stroke after transplantation of MSCs with downregulated p38 MAPK. Immunohistochemistry confirmed that in the p38 MAPK downregulation group, apoptotic cells were reduced, and the number of neuronal precursors and the formation of white matter myelin were increased. In conclusion, downregulation of p38 MAPK expression in MSCs improves the therapeutic effect in mice with ischemic stroke, an effect that may be related to a reduction in MSC senescence. This method is expected to improve the efficacy of MSCs in patients, especially in patients with underlying diseases such as diabetes, thus providing a basis for clinical individualized treatment for cerebral infarction.
Collapse
Affiliation(s)
- Yingying Bai
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Lishan Wang
- Department of General Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing 210009, China
| | - Rong Xu
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| | - Ying Cui
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing 210009, China
| |
Collapse
|
30
|
Ding N, Luo R, Zhang Q, Li H, Zhang S, Chen H, Hu R. Current Status and Progress in Stem Cell Therapy for Intracerebral Hemorrhage. Transl Stroke Res 2023:10.1007/s12975-023-01216-7. [PMID: 38001353 DOI: 10.1007/s12975-023-01216-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/23/2023] [Accepted: 11/02/2023] [Indexed: 11/26/2023]
Abstract
Intracerebral hemorrhage is a highly prevalent and prognostically poor disease, imposing immeasurable harm on human life and health. However, the treatment options for intracerebral hemorrhage are severely limited, particularly in terms of improving the microenvironment of the lesion, promoting neuronal cell survival, and enhancing neural function. This review comprehensively discussed the application of stem cell therapy for intracerebral hemorrhage, providing a systematic summary of its developmental history, types of transplants, transplantation routes, and transplantation timing. Moreover, this review presented the latest research progress in enhancing the efficacy of stem cell transplantation, including pretransplantation preconditioning, genetic modification, combined therapy, and other diverse strategies. Furthermore, this review pioneeringly elaborated on the barriers to clinical translation for stem cell therapy. These discussions were of significant importance for promoting stem cell therapy for intracerebral hemorrhage, facilitating its clinical translation, and improving patient prognosis.
Collapse
Affiliation(s)
- Ning Ding
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Ran Luo
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Qian Zhang
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanhuan Li
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
- Clinical Medical Research Center, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Shuixian Zhang
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Huanran Chen
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China
| | - Rong Hu
- Department of Neurosurgery and Key Laboratory of Neurotrauma, Southwest Hospital, Third Military Medical University (Army Medical University), Chongqing, 400038, China.
| |
Collapse
|
31
|
Fang M, Hou H, Feng B, Zhang T, Zhu X, Liu Z. The neuroprotective effect of dl-3-n-butylphthalide on the brain with experimental intracerebral hemorrhage. Eur J Pharmacol 2023; 959:176105. [PMID: 37802280 DOI: 10.1016/j.ejphar.2023.176105] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 09/14/2023] [Accepted: 10/04/2023] [Indexed: 10/08/2023]
Abstract
Intracerebral hemorrhage (ICH) is the most devastating subtype of stroke, nevertheless specific treatments with conclusive clinical benefit in improving outcomes of ICH remain lacking. The present study applied dl-3-n-butylphthalide (NBP), a compound approved for the treatment of ischemic stroke and rarely studied in ICH, to an experimental animal model of ICH, aiming to evaluate the therapeutic effects of NBP on ICH and the potential mechanisms. The results showed that rats receiving NBP administration exhibited a structural and functional restoration of brain after ICH mainly manifested as alleviation of neuronal apoptosis, suppression of neuroinflammation and oxidative stress, neurovascular remodeling, and eventually improvement of neurological deficits. In addition, several protein targets of NBP were revealed, which mainly play molecular functions of ribonucleoside triphosphate phosphatase activity, pyrophosphatase activity, hydrolase activity and GTPase activity, and participate in the biological process of brain development by regulating the formation of cellular components such as spindles, polymeric cytoskeletal fibers, microtubules and synapses, through mediating pathways such as VEGF signaling pathway, Fc epsilon RI signaling pathway, ECM-receptor interaction, Fc gamma R-mediated phagocytosis, peroxisome and so on, guiding the mechanism exploration of NBP therapy to some extent. Taken together, the study added some new evidence to the application of NBP in ICH treatment.
Collapse
Affiliation(s)
- Min Fang
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Hongling Hou
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Bo Feng
- Department of Pharmacy, Affiliated Hospital of Yangzhou University, Jiangsu, China
| | - Tianzhu Zhang
- College of Pharmacy, Chongqing Medical and Pharmaceutical College, Chongqing, China
| | - Xiaomei Zhu
- Department of Pharmacy, Beidahuang Industry Group General Hospital, Heilongjiang, China
| | - Zhen Liu
- Department of Neurology, Affiliated Hospital of Yangzhou University, Jiangsu, China.
| |
Collapse
|
32
|
Gao HM, Chen H, Cui GY, Hu JX. Damage mechanism and therapy progress of the blood-brain barrier after ischemic stroke. Cell Biosci 2023; 13:196. [PMID: 37915036 PMCID: PMC10619327 DOI: 10.1186/s13578-023-01126-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 09/04/2023] [Indexed: 11/03/2023] Open
Abstract
The blood-brain barrier (BBB) serves as a defensive line protecting the central nervous system, while also maintaining micro-environment homeostasis and inhibiting harmful materials from the peripheral blood. However, the BBB's unique physiological functions and properties make drug delivery challenging for patients with central nervous system diseases. In this article, we briefly describe the cell structure basis and mechanism of action of the BBB, as well as related functional proteins involved. Additionally, we discuss the various mechanisms of BBB damage following the onset of an ischemic stroke, and lastly, we mention several therapeutic strategies accounting for impairment mechanisms. We hope to provide innovative ideas for drug delivery research via the BBB.
Collapse
Affiliation(s)
- Hui-Min Gao
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
| | - Hao Chen
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Gui-Yun Cui
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China
| | - Jin-Xia Hu
- Institute of Stroke Research, Xuzhou Medical University, Jiangsu, China.
- Department of Neurology, The Affiliated Hospital of Xuzhou Medical University, Jiangsu, China.
- School of Chemical Engineering and Technology, China University of Mining and Technology, Xuzhou, 221116, China.
| |
Collapse
|
33
|
Shi Q, Li R, Qu Z, Lang Y, Sheng G, Ning J, Zhang W. Longitudinal change of six common inflammatory cytokines and their relationship to anxiety, depression, and cognitive impairment in acute ischemic stroke patients. Braz J Med Biol Res 2023; 56:e13025. [PMID: 37878890 PMCID: PMC10591487 DOI: 10.1590/1414-431x2023e13025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 08/10/2023] [Indexed: 10/27/2023] Open
Abstract
Inflammatory cytokines are known to be involved in acute ischemic stroke (AIS), while the relationship of multiple inflammatory cytokines with mental disorders in AIS is less reported. This research intended to explore the longitudinal variation of common inflammatory cytokines and their correlation with anxiety, depression, and cognitive impairment in AIS patients. Six inflammatory cytokines were detected by enzyme-linked immunosorbent assay among 175 AIS patients at admission (baseline) and on the day (D)1, D3, and D7 after admission. Anxiety, depression, and cognition were evaluated using the Hospital Anxiety and Depression Scale and Mini-Mental State Examination at discharge, respectively. Anxiety, depression, and cognitive impairment rates were 32.6, 39.4, and 19.4%, respectively. Tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, and IL-17A increased from baseline to D1, then decreased from D1 to D7 (all P<0.001), while IL-10 presented an opposite trend (P<0.001). Interestingly, TNF-α on D1 and D3, IL-6 on D3, IL-8 on D3 and D7, and IL-17A on D1, D3, and D7 correlated with higher anxiety rate (all P<0.05). TNF-α on D1, D3, and D7, IL-8 at baseline, D1, D3, and D7, IL-17A on D1 and D7 correlated with increased depression rate (all P<0.05). In addition, IL-1β on D1 and IL-17 at baseline, D1, D3, and D7 correlated with elevated cognitive-impairment rate (all P<0.05). Inflammatory cytokines were dysregulated after disease onset, and their longitudinal change correlated with psychological issues in AIS patients.
Collapse
Affiliation(s)
- Qun Shi
- Department of Endocrinology, Laizhou People's Hospital, Laizhou, China
| | - Ruorui Li
- Department of Respiratory Medicine, Laizhou People's Hospital, Laizhou, China
| | - Zhiling Qu
- Department of Obstetrics, Laizhou People's Hospital, Laizhou, China
| | - Yonghua Lang
- Department of Neurology, Laizhou People's Hospital, Laizhou, China
| | - Guiling Sheng
- Department of Obstetrics, Laizhou People's Hospital, Laizhou, China
| | - Jiajia Ning
- Department of Cardiology, Laizhou People's Hospital, Laizhou, China
| | - Wanli Zhang
- Department of Neurology, Laizhou People's Hospital, Laizhou, China
| |
Collapse
|
34
|
Gao Q, Zhao Y, Luo R, Su M, Zhang C, Li C, Liu B, Zhou X. Intrathecal umbilical cord mesenchymal stem cells injection alleviates neuroinflammation and oxidative stress in the cyclophosphamide-induced interstitial cystitis rats through the Sirt1/Nrf2/HO-1 pathway. Life Sci 2023; 331:122045. [PMID: 37634813 DOI: 10.1016/j.lfs.2023.122045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
AIMS Neuroinflammation in the spinal dorsal horn (SDH) region plays an important role in the pathogenesis of interstitial cystitis (IC)/bladder pain syndrome (BPS). Oxidative stress is an important etiological factor for inflammatory diseases. This study aimed to investigate the therapeutic effects of umbilical cord mesenchymal stem cells UMSCs on neuroinflammation and oxidative stress in IC and the underlying mechanisms. MATERIALS AND METHODS Rats were intraperitoneally injected with cyclophosphamide (50 mg/kg bodyweight) to establish the IC animal model. Additionally, rats were intrathecally injected with a Sirt1-specific agonist (SRT1720; 8 μg/rat) or inhibitor (EX527; 8 μg/rat). Furthermore, rats were intrathecally injected with human UMSCs (hUMSCS; 8 × 105 cells/rat). Rat behavior was examined using the mechanical allodynia test, novel object recognition test, sucrose preference test, and urodynamics analysis. Neuroinflammation and oxidative stress the SDH region were examined using western blotting, immunofluorescence, enzyme-linked immunosorbent assay, and commercial kits. KEY FINDINGS The Sirt1/Nrf2/HO-1 pathway was downregulated in IC rats. Sirt1 activation and inhibition differentially affected the behavior of IC rats. hUMSCs effectively mitigated the upregulation of oxidative stress, proinflammatory cytokines, and glial activation in the SDH region. Additionally, hUMSCs suppressed mechanical allodynia, dysregulated urodynamics, memory deficits, and depressive-like behavior in IC rats. hUMSCs exerted therapeutic effects through the Sirt1/Nrf2/HO-1 pathway. SIGNIFICANCE intrathecal hUMSCs injection alleviated behavioral deficits of IC rats by mitigating neuroinflammation and oxidative stress through the Sirt1/Nrf2/HO-1 pathway and can be potentially an effective therapeutic strategy for IC.
Collapse
Affiliation(s)
- Qiongqiong Gao
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Yun Zhao
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Sun Yat-sen University, 600 Tianhe Road, Guangzhou 510630, Guangdong, China
| | - Ruixiang Luo
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Minzhi Su
- Department of Rehabilitation, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Chi Zhang
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Cuiping Li
- Department of Biotherapy Center, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China
| | - Bolong Liu
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China.
| | - Xiangfu Zhou
- Department of Urology, The Third Affiliated Hospital and Lingnan Hospital of the Sun Yat-Sen University, 2693 Kaichuang Road, Guangzhou 510700, China.
| |
Collapse
|
35
|
Nagase T, Kin K, Yasuhara T. Targeting Neurogenesis in Seeking Novel Treatments for Ischemic Stroke. Biomedicines 2023; 11:2773. [PMID: 37893146 PMCID: PMC10604112 DOI: 10.3390/biomedicines11102773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 09/29/2023] [Accepted: 09/30/2023] [Indexed: 10/29/2023] Open
Abstract
The interruption of cerebral blood flow leads to ischemic cell death and results in ischemic stroke. Although ischemic stroke is one of the most important causes of long-term disability and mortality, limited treatments are available for functional recovery. Therefore, extensive research has been conducted to identify novel treatments. Neurogenesis is regarded as a fundamental mechanism of neural plasticity. Therefore, therapeutic strategies targeting neurogenesis are thought to be promising. Basic research has found that therapeutic intervention including cell therapy, rehabilitation, and pharmacotherapy increased neurogenesis and was accompanied by functional recovery after ischemic stroke. In this review, we consolidated the current knowledge of the relationship between neurogenesis and treatment for ischemic stroke. It revealed that many treatments for ischemic stroke, including clinical and preclinical ones, have enhanced brain repair and functional recovery post-stroke along with neurogenesis. However, the intricate mechanisms of neurogenesis and its impact on stroke recovery remain areas of extensive research, with numerous factors and pathways involved. Understanding neurogenesis will lead to more effective stroke treatments, benefiting not only stroke patients but also those with other neurological disorders. Further research is essential to bridge the gap between preclinical discoveries and clinical implementation.
Collapse
Affiliation(s)
- Takayuki Nagase
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Kyohei Kin
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| | - Takao Yasuhara
- Department of Neurological Surgery, Okayama University Graduate School of Medicine, Dentistry, and Pharmaceutical Sciences, Okayama 700-8558, Japan
| |
Collapse
|
36
|
Xia S, Xu C, Liu F, Chen G. Development of microRNA-based therapeutics for central nervous system diseases. Eur J Pharmacol 2023; 956:175956. [PMID: 37541374 DOI: 10.1016/j.ejphar.2023.175956] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 07/21/2023] [Accepted: 08/01/2023] [Indexed: 08/06/2023]
Abstract
MicroRNA (miRNA)-mediated gene silencing is a method of RNA interference in which a miRNA binds to messenger RNA sequences and regulates target gene expression. MiRNA-based therapeutics have shown promise in treating a variety of central nervous system diseases, as verified by results from diverse preclinical model organisms. Over the last decade, several miRNA-based therapeutics have entered clinical trials for various kinds of diseases, such as tumors, infections, and inherited diseases. However, such clinical trials for central nervous system diseases are scarce, and many central nervous system diseases, including hemorrhagic stroke, ischemic stroke, traumatic brain injury, intractable epilepsy, and Alzheimer's disease, lack effective treatment. Considering its effectiveness for central nervous system diseases in preclinical experiments, microRNA-based intervention may serve as a promising treatment for these kinds of diseases. This paper reviews basic principles and recent progress of miRNA-based therapeutics and summarizes general procedures to develop such therapeutics for treating central nervous system diseases. Then, the current obstacles in drug development are discussed. This review also provides a new perspective on possible solutions to these obstacles in the future.
Collapse
Affiliation(s)
- Siqi Xia
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Chaoran Xu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China; Department of Neurosurgery, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu, Zhejiang, China.
| | - Fuyi Liu
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| | - Gao Chen
- Department of Neurosurgery, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China; Key Laboratory of Precise Treatment and Clinical Translational Research of Neurological Diseases, Hangzhou, Zhejiang, China.
| |
Collapse
|
37
|
Yang LY, Chen YR, Lee JE, Chen KW, Luh HT, Chen YT, Wang KC, Hsieh ST. Dental Pulp Stem Cell-Derived Conditioned Medium Alleviates Subarachnoid Hemorrhage-Induced Microcirculation Impairment by Promoting M2 Microglia Polarization and Reducing Astrocyte Swelling. Transl Stroke Res 2023; 14:688-703. [PMID: 36181630 PMCID: PMC10444696 DOI: 10.1007/s12975-022-01083-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2022] [Revised: 07/23/2022] [Accepted: 09/12/2022] [Indexed: 10/07/2022]
Abstract
Aneurysmal subarachnoid hemorrhage (SAH) can cause severe neurological deficits and high mortality. Early brain edema following SAH contributes to the initiation of microcirculation impairment and may further lead to delayed ischemic neurologic deficit (DIND). This study aimed to investigate whether dental pulp stem cell conditioned medium (DPSC-CM) ameliorates SAH-induced microcirculation impairment and the underlying mechanisms. SAH was induced via intrathecal injection of fresh autologous blood in Wistar male adult rat. DPSC-CM or DPSC-CM + insulin growth factor-1 (IGF-1) antibody was randomly administered by intrathecal route 5 min after SAH induction. To evaluate the underlying mechanisms of DPSC-CM in the treatment of SAH, primary rat astrocyte and microglia co-cultures were challenged with hemolysate or SAH-patient CSF in the presence or absence of DPSC-CM. The results showed that in vivo, DPSC-CM treatment decreased the brain water content, improved microcirculation impairment and enhanced functional recovery at 24 h post-SAH. DPSC-CM treatment also alleviated the expressions of water channel protein aquaporin-4 (AQP4) and pro-inflammatory cytokines, and enhanced the expressions of anti-inflammatory factors in the cortical region. However, all the beneficial effects of DPSC-CM were abrogated after treatment with IGF-1 neutralizing antibody. The in vitro results further showed that DPSC-CM treatment reduced hemolysate/SAH-patient CSF-induced astrocyte swelling and promoted M2 microglia polarization, partially through IGF-1/AKT signaling. The data suggested that DPSC-CM significantly reduced brain edema and rescued microcirculation impairment with concomitant anti-inflammatory benefits after SAH, and may potentially be developed into a novel therapeutic strategy for SAH.
Collapse
Affiliation(s)
- Ling-Yu Yang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
| | - Yong-Ren Chen
- Non-Invasive Cancer Therapy Research Institute, Taipei, Taiwan
| | - Jing-Er Lee
- Department of Neurology, Taipei Medical University-Wan Fang Hospital, Taipei, Taiwan
| | - Kuo-Wei Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Hui-Tzung Luh
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital Hsin-Chu Branch, Hsin-Chu, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Tzu Chen
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan
- Graduate Institute of Clinical Medicine, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Kuo-Chuan Wang
- Division of Neurosurgery, Department of Surgery, National Taiwan University Hospital, Taipei, Taiwan.
| | - Sung-Tsang Hsieh
- Department of Anatomy and Cell Biology, College of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Neurology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
38
|
Tian X, Pan M, Zhou M, Tang Q, Chen M, Hong W, Zhao F, Liu K. Mitochondria Transplantation from Stem Cells for Mitigating Sarcopenia. Aging Dis 2023; 14:1700-1713. [PMID: 37196123 PMCID: PMC10529753 DOI: 10.14336/ad.2023.0210] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Accepted: 02/10/2023] [Indexed: 05/19/2023] Open
Abstract
Sarcopenia is defined as the age-related loss of muscle mass and function that can lead to prolonged hospital stays and decreased independence. It is a significant health and financial burden for individuals, families, and society as a whole. The accumulation of damaged mitochondria in skeletal muscle contributes to the degeneration of muscles with age. Currently, the treatment of sarcopenia is limited to improving nutrition and physical activity. Studying effective methods to alleviate and treat sarcopenia to improve the quality of life and lifespan of older people is a growing area of interest in geriatric medicine. Therapies targeting mitochondria and restoring mitochondrial function are promising treatment strategies. This article provides an overview of stem cell transplantation for sarcopenia, including the mitochondrial delivery pathway and the protective role of stem cells. It also highlights recent advances in preclinical and clinical research on sarcopenia and presents a new treatment method involving stem cell-derived mitochondrial transplantation, outlining its advantages and challenges.
Collapse
Affiliation(s)
- Xiulin Tian
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Mengxiong Pan
- Department of Neurology, First People’s Hospital of Huzhou, Huzhou, Zhejiang, China.
| | - Mengting Zhou
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Qiaomin Tang
- Department of Nursing, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China.
| | - Miao Chen
- Department of Neurology, Zhuji Affiliated Hospital of Shaoxing University, Zhuji, Zhejiang, China.
| | - Wenwu Hong
- Department of Neurology, Tiantai People’s Hospital of Zhejiang Province, Tiantai, Taizhou, Zhejiang, China.
| | - Fangling Zhao
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| | - Kaiming Liu
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
39
|
Fan PL, Wang SS, Chu SF, Chen NH. Time-dependent dual effect of microglia in ischemic stroke. Neurochem Int 2023; 169:105584. [PMID: 37454817 DOI: 10.1016/j.neuint.2023.105584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Revised: 07/07/2023] [Accepted: 07/10/2023] [Indexed: 07/18/2023]
Abstract
Stroke, the third leading cause of death and disability worldwide, is classified into ischemic or hemorrhagic, in which approximately 85% of strokes are ischemic. Ischemic stroke occurs as a result of arterial occlusion due to embolus or thrombus, with ischemia in the perfusion territory supplied by the occluded artery. The traditional concept that ischemic stroke is solely a vascular occlusion disorder has been expanded to include the dynamic interaction between microglia, astrocytes, neurons, vascular cells, and matrix components forming the "neurovascular unit." Acute ischemic stroke triggers a wide spectrum of neurovascular disturbances, glial activation, and secondary neuroinflammation that promotes further injury, ultimately resulting in neuronal death. Microglia, as the resident macrophages in the central nervous system, is one of the first responders to ischemic injury and plays a significant role in post-ischemic neuroinflammation. In this review, we reviewed the mechanisms of microglia in multiple stages of post-ischemic neuroinflammation development, including acute, sub-acute and chronic phases of stroke. A comprehensive understanding of the dynamic variation and the time-dependent role of microglia in post-stroke neuroinflammation could aid in the search for more effective therapeutics and diagnostic strategies for ischemic stroke.
Collapse
Affiliation(s)
- Ping-Long Fan
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Sha-Sha Wang
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China
| | - Shi-Feng Chu
- State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| | - Nai-Hong Chen
- Science and Technology Innovation Center, Guangzhou University of Chinese Medicine, Guangzhou, 510405, China; State Key Laboratory of Bioactive Substances and Functions of Natural Medicines, Institute of Materia Medica & Neuroscience Center, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100050, China.
| |
Collapse
|
40
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
41
|
Li C, Wu Y, Chen Q, Luo Y, Liu P, Zhou Z, Zhao Z, Zhang T, Su B, Sun T, Jiang C. Pleiotropic Microenvironment Remodeling Micelles for Cerebral Ischemia-Reperfusion Injury Therapy by Inhibiting Neuronal Ferroptosis and Glial Overactivation. ACS NANO 2023; 17:18164-18177. [PMID: 37703316 DOI: 10.1021/acsnano.3c05038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/15/2023]
Abstract
Reperfusion injury presents a significant obstacle to neuronal survival following successful recanalization in ischemic stroke, which is characterized by intricate pathophysiological processes comprising numerous interconnected pathways. Oxidative stress-induced neuronal ferroptosis and the overactivation of glial cells play important roles in this phenomenon. In this study, we developed a targeted cross-linked micelle loaded with idebenone to rescue the ischemic penumbra by inhibiting neuronal ferroptosis and glial overactivation. In rat models, the CREKA peptide-modified micelles accumulate in the damaged brain via binding to microthrombi in the ipsilateral microvessels. Upon reactive oxygen species (ROS) stimulation, diselenide bonds within the micelles are transformed to hydrophilic seleninic acids, enabling synchronized ROS consumption and responsive drug release. The released idebenone scavenges ROS, prevents oxidative stress-induced neuronal ferroptosis, attenuates glial overactivation, and suppresses pro-inflammatory factors secretion, thereby modulating the inflammatory microenvironment. Finally, this micelle significantly reinforces neuronal survival, reduces infarct volume, and improves behavioral function compared to the control groups. This pleiotropic therapeutic micelle provides a proof-of-concept of remodeling the lesion microenvironment by inhibiting neuronal ferroptosis and glial overactivation to treat cerebral ischemia-reperfusion injury.
Collapse
Affiliation(s)
- Chao Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yuxing Wu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Qinjun Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Yifan Luo
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Peixin Liu
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zheng Zhou
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Zhenhao Zhao
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tongyu Zhang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Boyu Su
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Tao Sun
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| | - Chen Jiang
- Department of Pharmaceutics, School of Pharmacy, Fudan University; Key Laboratory of Smart Drug Delivery, Ministry of Education; State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai 201203, People's Republic of China
| |
Collapse
|
42
|
Pastor JC, Pastor-Idoate S, López-Paniagua M, Para M, Blazquez F, Murgui E, García V, Coco-Martín RM. Intravitreal allogeneic mesenchymal stem cells: a non-randomized phase II clinical trial for acute non-arteritic optic neuropathy. Stem Cell Res Ther 2023; 14:261. [PMID: 37735668 PMCID: PMC10512539 DOI: 10.1186/s13287-023-03500-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND An effective treatment for acute non-arteritic ischemic optic neuropathy (NA-AION) has not been known or proven yet. Previous studies have suggested a neuroprotective effect of allogeneic bone marrow-derived mesenchymal stem cells. This study aims to report the results of a clinical trial on patients with acute non-arteritic optic neuropathy (NA-AION) treated with an intravitreal injection of allogeneic bone marrow-derived mesenchymal stem cells (BM-MSCs) (MSV®). METHODS We conducted a prospective, non-randomized, clinical phase-II study (Eudra CT number 2016-003029-40; ClinicalTrials.gov Registry NCT03173638) that included 5 patients with acute unilateral NA-AION diagnosed within 2 weeks after symptom onset and who received an intravitreal injection of allogeneic BM-MSCs (0.05 ml; cell concentration: 1.5 × 106cells/mL). The patients underwent regular ophthalmological examinations and were followed for one year. RESULTS In this trial, allogeneic BM-MSCs appeared to be safe as no patients developed signs of acute nor chronic intraocular inflammation or a significant change in intraocular pressure, although an epiretinal membrane was developed in one patient. A retrolental aggregate formed shortly after the injection spontaneously disappeared within a few weeks in another phakic patient, leaving a subcapsular cataract. Visual improvement was noted in 4 patients, and amplitudes of P100 on the visually evoked potentials recordings increased in three patients. The retinal nerve fiber layer and macular ganglion cell layer thicknesses significantly decreased during the follow-up. CONCLUSIONS Besides the development of an epiretinal membrane in one patient, the intravitreal application of allogeneic BM-MSCs appeared to be intraocularly well tolerated. Consequently, not only NA-AION but also BM-MSCs deserve more clinical investigational resources and a larger randomized multicenter trial that would provide stronger evidence both about safety and the potential therapeutic efficacy of intravitreally injected allogeneic BM-MSCs in acute NA-AION. TRIAL REGISTRATION Safety Assessment of Intravitreal Mesenchymal Stem Cells for Acute Non-Arteritic Anterior Ischemic Optic Neuropathy (NEUROSTEM). NCT03173638. Registered June 02, 2017 https://clinicaltrials.gov/ct2/show/NCT03173638 .
Collapse
Affiliation(s)
- Jose C Pastor
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Hospital Clínico Universitario, Valladolid, Spain
| | - Salvador Pastor-Idoate
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain.
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain.
- Hospital Clínico Universitario, Valladolid, Spain.
| | - Marina López-Paniagua
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Instituto de Salud Carlos III, Madrid, Spain
| | - Marta Para
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Francisco Blazquez
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| | - Esther Murgui
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
| | - Verónica García
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
- Unidad de Excelencia Instituto de Biología y Genética Molecular (IBGM), Universidad de Valladolid-CSIC, Valladolid, Spain
- Citospin S.L., Valladolid, Spain
| | - Rosa M Coco-Martín
- Instituto de Oftalmobiología Aplicada (IOBA), Universidad de Valladolid, Campus Miguel Delibes, Pº de Belén nº 17, 47011, Valladolid, Spain
- Centro en Red de Medicina Regenerativa y Terapia Celular de Castilla y León, Valladolid, Spain
- Redes de Investigación Cooperativa Orientadas a Resultados en Salud (RICORS), Instituto de Salud Carlos III, Madrid, Spain
| |
Collapse
|
43
|
Wei P, Jia M, Kong X, Lyu W, Feng H, Sun X, Li J, Yang JJ. Human umbilical cord-derived mesenchymal stem cells ameliorate perioperative neurocognitive disorder by inhibiting inflammatory responses and activating BDNF/TrkB/CREB signaling pathway in aged mice. Stem Cell Res Ther 2023; 14:263. [PMID: 37735415 PMCID: PMC10512658 DOI: 10.1186/s13287-023-03499-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 09/14/2023] [Indexed: 09/23/2023] Open
Abstract
BACKGROUND Perioperative neurocognitive disorder (PND) is a key complication affecting older individuals after anesthesia and surgery. Failure to translate multiple pharmacological therapies for PND from preclinical studies to clinical settings has necessitated the exploration of novel therapeutic strategies. Human umbilical cord-derived mesenchymal stem cells (hUC-MSCs) treatment has emerged as a promising therapeutic strategy for treating neurodegenerative diseases and has the potential to translate basic science into clinical practice. In this study, we investigated the effects and underlying mechanism of hUC-MSCs on PND in aged mice. METHODS hUC-MSCs were isolated from an infant umbilical cord and identified using flow cytometry and differentiation assays. We established PND model by undergoing aseptic laparotomy under isoflurane anesthesia maintaining spontaneous ventilation in eighteen-month-old male C57BL/6 mice. hUC-MSCs were slowly injected into mice by coccygeal vein before anesthesia. Cognitive function, systemic and neuroinflammatory responses, neuroplasticity, endogenous neurogenesis, and brain-derived neurotrophic factor (BDNF) were assessed. To determine the brain mechanisms underlying by which hUC-MSCs mediate their neuroprotective effects in PND, K252a, an antagonist of BDNF receptor, was administered intraperitoneally before surgery. Hippocampal BDNF/TrkB/CREB signaling pathway and metabolomic signatures were evaluated. RESULTS hUC-MSC treatment ameliorated the learning and memory impairment in aged mice with PND. The downstream effects were the suppression of systemic and hippocampal inflammation and restoration of neurogenesis and neuroplasticity dysregulation. Interestingly, the level of mature BDNF, but not that of proBDNF, was increased in the hippocampus after hUC-MSC treatment. Further analysis revealed that the improved cognitive recovery and the restoration of neurogenesis and neuroplasticity dysregulation elicited by exposure to hUC-MSCs were, at least partially, mediated by the activation of the BDNF/TrkB/CREB signaling pathway. Untargeted metabolomic further identified lipid metabolism dysfunction as potential downstream of the BDNF/TrkB/CREB signaling pathway in hUC-MSC-mediated neuroprotection for PND. CONCLUSIONS Our study highlights the beneficial effects of hUC-MSC treatment on PND and provides a justification to consider the potential use of hUC-MSCs in the perioperative period.
Collapse
Affiliation(s)
- Penghui Wei
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China
| | - Min Jia
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China
| | - Xiangyi Kong
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Wenyuan Lyu
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Hao Feng
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Xinyi Sun
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
| | - Jianjun Li
- Department of Anesthesiology, Qilu Hospital (Qingdao), Cheeloo College of Medicine, Shandong University, Qingdao, People's Republic of China
- Department of Anesthesiology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People's Republic of China
| | - Jian-Jun Yang
- Department of Anesthesiology, Pain and Perioperative Medicine, The First Affiliated Hospital of Zhengzhou University, No. 1 East Jianshe Road, Zhengzhou, 450052, People's Republic of China.
- Neuroscience Research Institute, Zhengzhou University Academy of Medical Sciences, Zhengzhou, People's Republic of China.
- Henan Province International Joint Laboratory of Pain, Cognition and Emotion, Zhengzhou, People's Republic of China.
| |
Collapse
|
44
|
Zhang X, Huang Y, Liu Y, Liu Y, He X, Ma X, Gan C, Zou X, Wang S, Shu K, Lei T, Zhang H. Local transplantation of mesenchymal stem cells improves encephalo-myo-synangiosis-mediated collateral neovascularization in chronic brain ischemia. Stem Cell Res Ther 2023; 14:233. [PMID: 37667370 PMCID: PMC10478472 DOI: 10.1186/s13287-023-03465-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 08/22/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND To explore whether local transplantation of mesenchymal stem cells (MSCs) in temporal muscle can promote collateral angiogenesis and to analyze its main mechanisms of promoting angiogenesis. METHODS Bilateral carotid artery stenosis (BCAS) treated mice were administrated with encephalo-myo-synangiosis (EMS), and bone marrow mesenchymal stem cells (BMSCs) were transplanted into the temporal muscle near the cerebral cortex. On the 30th day after EMS, the Morris water maze, immunofluorescence, laser speckle imaging, and light sheet microscopy were performed to evaluate angiogenesis; In addition, rats with bilateral common carotid artery occlusion were also followed by EMS surgery, and BMSCs from GFP reporter rats were transplanted into the temporal muscle to observe the survival time of BMSCs. Then, the concentrated BMSC-derived conditioned medium (BMSC-CM) was used to stimulate HUVECs and BMECs for ki-67 immunocytochemistry, CCK-8, transwell and chick chorioallantoic membrane assays. Finally, the cortical tissue near the temporal muscle was extracted after EMS, and proteome profiler (angiogenesis array) as well as RT-qPCR of mRNA or miRNA was performed. RESULTS The results of the Morris water maze 30 days after BMSC transplantation in BCAS mice during the EMS operation, showed that the cognitive impairment in the BCAS + EMS + BMSC group was alleviated (P < 0.05). The results of immunofluorescence, laser speckle imaging, and light sheet microscopy showed that the number of blood vessels, blood flow and astrocytes increased in the BCAS + EMS + BMSC group (P < 0.05). The BMSCs of GFP reporter rats were applied to EMS and showed that the transplanted BMSCs could survive for up to 14 days. Then, the results of ki-67 immunocytochemistry, CCK-8 and transwell assays showed that the concentrated BMSC-CM could promote the proliferation and migration of HUVECs and BMECs (P < 0.05). Finally, the results of proteome profiler (angiogenesis array) in the cerebral cortex showed that the several pro-angiogenesis factors (such as MMP-3, MMP-9, IGFBP-2 or IGFBP-3) were notably highly expressed in MSC transplantation group compared to others. CONCLUSIONS Local MSCs transplantation together with EMS surgery can promote angiogenesis and cognitive behavior in chronic brain ischemia mice. Our study illustrated that MSC local transplantation can be the potential therapeutical option for improving EMS treatment efficiency which might be translated into clinical application.
Collapse
Affiliation(s)
- Xincheng Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yimin Huang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yuan Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Yanchao Liu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xuejun He
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xiaopeng Ma
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Chao Gan
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Xin Zou
- Institute of Integrated Traditional Chinese and Western Medicine, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Sheng Wang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Ting Lei
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China
| | - Huaqiu Zhang
- Department of Neurosurgery, Tongji Hospital of Tongji Medical College of Huazhong University of Science and Technology, Jiefang Avenue 1095, Wuhan, 430030, Hubei Province, China.
| |
Collapse
|
45
|
Mu J, Hao P, Duan H, Zhao W, Wang Z, Yang Z, Li X. Non-human primate models of focal cortical ischemia for neuronal replacement therapy. J Cereb Blood Flow Metab 2023; 43:1456-1474. [PMID: 37254891 PMCID: PMC10414004 DOI: 10.1177/0271678x231179544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/13/2023] [Accepted: 04/26/2023] [Indexed: 06/01/2023]
Abstract
Despite the high prevalence, stroke remains incurable due to the limited regeneration capacity in the central nervous system. Neuronal replacement strategies are highly diverse biomedical fields that attempt to replace lost neurons by utilizing exogenous stem cell transplants, biomaterials, and direct neuronal reprogramming. Although these approaches have achieved encouraging outcomes mostly in the rodent stroke model, further preclinical validation in non-human primates (NHP) is still needed prior to clinical trials. In this paper, we briefly review the recent progress of promising neuronal replacement therapy in NHP stroke studies. Moreover, we summarize the key characteristics of the NHP as highly valuable translational tools and discuss (1) NHP species and their advantages in terms of genetics, physiology, neuroanatomy, immunology, and behavior; (2) various methods for establishing NHP focal ischemic models to study the regenerative and plastic changes associated with motor functional recovery; and (3) a comprehensive analysis of experimentally and clinically accessible outcomes and a potential adaptive mechanism. Our review specifically aims to facilitate the selection of the appropriate NHP cortical ischemic models and efficient prognostic evaluation methods in preclinical stroke research design of neuronal replacement strategies.
Collapse
Affiliation(s)
- Jiao Mu
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
| | - Peng Hao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Hongmei Duan
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Wen Zhao
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zijue Wang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zhaoyang Yang
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Engineering Medicine, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| |
Collapse
|
46
|
Gao X, Gao H, Yue K, Cao X, Yang E, Zhang Z, Huang Y, Li X, Ding D, Luo P, Jiang X. Observing Extracellular Vesicles Originating from Endothelial Cells in Vivo Demonstrates Improved Astrocyte Function Following Ischemic Stroke via Aggregation-Induced Emission Luminogens. ACS NANO 2023; 17:16174-16191. [PMID: 37535897 PMCID: PMC10448755 DOI: 10.1021/acsnano.3c05309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 07/27/2023] [Indexed: 08/05/2023]
Abstract
Extracellular vesicles (EVs) obtained from endothelial cells (ECs) have significant therapeutic potential in the clinical management of individuals with ischemic stroke (IS) because they effectively treat ischemic stroke in animal models. However, because molecular probes with both high labeling efficiency and tracer stability are lacking, monitoring the actions of EC-EVs in the brain remains difficult. The specific intracellular targets in the brain that EC-EVs act on to produce their protective effects are still unknown, greatly impeding their use in clinical settings. For this research, we created a probe that possessed aggregation-induced emission (AIE) traits (namely, TTCP), enabling the effective labeling of EC-EVs while preserving their physiological properties. In vitro, TTCP simultaneously had a higher EC-EV labeling efficiency and better tracer stability than the commercial EV tags PKH-67 and DiI. In vivo, TTCP precisely tracked the actions of EC-EVs in a mouse IS model without influencing their protective effects. Furthermore, through the utilization of TTCP, it was determined that astrocytes were the specific cells affected by EC-EVs and that EC-EVs exhibited a safeguarding impact on astrocytes following cerebral ischemia-reperfusion (I/R) injury. These protective effects encompassed the reduction of the inflammatory reaction and apoptosis as well as the enhancement of cell proliferation. Further analysis showed that miRNA-155-5p carried by EC-EVs is responsible for these protective effects via regulation of the c-Fos/AP-1 pathway; this information provided a strategy for IS therapy. In conclusion, TTCP has a high EC-EV labeling efficiency and favorable in vivo tracer stability during IS therapy. Moreover, EC-EVs are absorbed by astrocytes during cerebral I/R injury and promote the restoration of neurological function through the regulation of the c-Fos/AP-1 signaling pathway.
Collapse
Affiliation(s)
- Xiangyu Gao
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Heqi Gao
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
- Center
for AIE Research, Shenzhen Key Laboratory of Polymer Science and Technology,
Guangdong Research Center for Interfacial Engineering of Functional
Materials, College of Materials Science and Engineering, College of
Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518000, China
| | - Kangyi Yue
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiuli Cao
- Department
of Medical Genetics and Developmental Biology, Fourth Military Medical University Xi’an 710032, China
| | - Erwan Yang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Zhuoyuan Zhang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
- School
of Life Science, Northwest University, Xi’an 710032, China
| | - Yutao Huang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xin Li
- Department
of Anesthesiology, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Dan Ding
- The
Key Laboratory of Bioactive Materials, Ministry of Education, The
College of Life Sciences, Nankai University, Tianjin 300071, China
| | - Peng Luo
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| | - Xiaofan Jiang
- Department
of Neurosurgery, Xijing Hospital, Fourth
Military Medical University, Xi’an 710032, China
| |
Collapse
|
47
|
Shao H, Li S. A new perspective on HIV: effects of HIV on brain-heart axis. Front Cardiovasc Med 2023; 10:1226782. [PMID: 37600062 PMCID: PMC10436320 DOI: 10.3389/fcvm.2023.1226782] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/25/2023] [Indexed: 08/22/2023] Open
Abstract
The human immunodeficiency virus (HIV) infection can cause damage to multiple systems within the body, and the interaction among these various organ systems means that pathological changes in one system can have repercussions on the functions of other systems. However, the current focus of treatment and research on HIV predominantly centers around individual systems without considering the comprehensive relationship among them. The central nervous system (CNS) and cardiovascular system play crucial roles in supporting human life, and their functions are closely intertwined. In this review, we examine the effects of HIV on the CNS, the resulting impact on the cardiovascular system, and the direct damage caused by HIV to the cardiovascular system to provide new perspectives on HIV treatment.
Collapse
Affiliation(s)
| | - Sijun Li
- Department of Internal Medicine, The Fourth People's Hospital of Nanning, Nanning, China
| |
Collapse
|
48
|
Jashire Nezhad N, Safari A, Namavar MR, Nami M, Karimi-Haghighi S, Pandamooz S, Dianatpour M, Azarpira N, Khodabandeh Z, Zare S, Hooshmandi E, Bayat M, Owjfard M, Zafarmand SS, Fadakar N, Jaberi AR, Salehi MS, Borhani-Haghighi A. Short-term beneficial effects of human dental pulp stem cells and their secretome in a rat model of mild ischemic stroke. J Stroke Cerebrovasc Dis 2023; 32:107202. [PMID: 37354874 DOI: 10.1016/j.jstrokecerebrovasdis.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 05/01/2023] [Accepted: 05/29/2023] [Indexed: 06/26/2023] Open
Abstract
Although cell therapy has been applied in regenerative medicine for decades, recent years have seen greatly increased attention being given to the use of stem cell-based derivatives such as cell-free secretome. Dental pulp stem cells (DPSCs) are widely available, easily accessible, and have high neuroprotective and angiogenic properties. In addition, DPSC-derived secretome contains a rich mixture of trophic factors. The current investigation evaluated the short-term therapeutic effects of human DPSCs and their secretome in a rat model of mild ischemic stroke. Mild ischemic stroke was induced by 30 min middle cerebral artery occlusion, and hDPSCs or their secretome was administered intra-arterially and intranasally. Neurological function, infarct size, spatial working memory, and relative expression of seven target genes in two categories of neurotrophic and angiogenic factors were assessed three days after stroke. In the short-term, all treatments reduced the severity of neurological and histological deficits caused by ischemic stroke. Moreover, transient middle cerebral artery occlusion led to the striatal and cortical over-expression of BDNF, NT-3, and angiogenin, while NGF and VEGF expression was reduced. Almost all interventions were able to modulate the expression of target genes after stroke. The obtained data revealed that single intra-arterial administration of hDPSCs or their secretome, single intranasal transplantation of hDPSCs, or repeated intranasal administration of hDPSC-derived secretome was able to ameliorate the devastating effects of a mild stroke, at least in the short-term.
Collapse
Affiliation(s)
- Nahid Jashire Nezhad
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Anahid Safari
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Reza Namavar
- Histomorphometry & Stereology Research Centre, Shiraz University of Medical Sciences, Shiraz, Iran; Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Nami
- Department of Neuroscience, School of Advanced Medical Sciences and Technologies, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Sareh Pandamooz
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mehdi Dianatpour
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Negar Azarpira
- Transplant Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Zahra Khodabandeh
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Shahrokh Zare
- Stem Cells Technology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Etrat Hooshmandi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mahnaz Bayat
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Maryam Owjfard
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | | | - Nima Fadakar
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Abbas Rahimi Jaberi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Mohammad Saied Salehi
- Clinical Neurology Research Center, Shiraz University of Medical Sciences, Shiraz, Iran.
| | | |
Collapse
|
49
|
Das K, Paul S, Mukherjee T, Ghosh A, Sharma A, Shankar P, Gupta S, Keshava S, Parashar D. Beyond Macromolecules: Extracellular Vesicles as Regulators of Inflammatory Diseases. Cells 2023; 12:1963. [PMID: 37566042 PMCID: PMC10417494 DOI: 10.3390/cells12151963] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/26/2023] [Accepted: 07/27/2023] [Indexed: 08/12/2023] Open
Abstract
Inflammation is the defense mechanism of the immune system against harmful stimuli such as pathogens, toxic compounds, damaged cells, radiation, etc., and is characterized by tissue redness, swelling, heat generation, pain, and loss of tissue functions. Inflammation is essential in the recruitment of immune cells at the site of infection, which not only aids in the elimination of the cause, but also initiates the healing process. However, prolonged inflammation often brings about several chronic inflammatory disorders; hence, a balance between the pro- and anti-inflammatory responses is essential in order to eliminate the cause while producing the least damage to the host. A growing body of evidence indicates that extracellular vesicles (EVs) play a major role in cell-cell communication via the transfer of bioactive molecules in the form of proteins, lipids, DNA, RNAs, miRNAs, etc., between the cells. The present review provides a brief classification of the EVs followed by a detailed description of how EVs contribute to the pathogenesis of various inflammation-associated diseases and their implications as a therapeutic measure. The latter part of the review also highlights how EVs act as a bridging entity in blood coagulation disorders and associated inflammation. The findings illustrated in the present review may open a new therapeutic window to target EV-associated inflammatory responses, thereby minimizing the negative outcomes.
Collapse
Affiliation(s)
- Kaushik Das
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Subhojit Paul
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Tanmoy Mukherjee
- School of Medicine, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA;
| | - Arnab Ghosh
- School of Biological Sciences, Indian Association for the Cultivation of Science, Jadavpur, Kolkata 700032, India; (S.P.); (A.G.)
| | - Anshul Sharma
- Department of Molecular, Cell and Cancer Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA;
| | - Prem Shankar
- Department of Neurobiology, The University of Texas Medical Branch, 301 University Blvd, Galveston, TX 77555, USA;
| | - Saurabh Gupta
- Department of Biotechnology, GLA University, Mathura 281406, India;
| | - Shiva Keshava
- Department of Cellular and Molecular Biology, The University of Texas at Tyler Health Science Center, Tyler, TX 75708, USA
| | - Deepak Parashar
- Department of Medicine, Division of Hematology & Oncology, Medical College of Wisconsin, Milwaukee, WI 53226, USA
| |
Collapse
|
50
|
Donato L, Scimone C, Alibrandi S, Scalinci SZ, Mordà D, Rinaldi C, D'Angelo R, Sidoti A. Human retinal secretome: A cross-link between mesenchymal and retinal cells. World J Stem Cells 2023; 15:665-686. [PMID: 37545752 PMCID: PMC10401416 DOI: 10.4252/wjsc.v15.i7.665] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 03/17/2023] [Accepted: 04/10/2023] [Indexed: 07/25/2023] Open
Abstract
In recent years, mesenchymal stem cells (MSC) have been considered the most effective source for regenerative medicine, especially due to released soluble paracrine bioactive components and extracellular vesicles. These factors, collectively called the secretome, play crucial roles in immunomodulation and in improving survival and regeneration capabilities of injured tissue. Recently, there has been a growing interest in the secretome released by retinal cytotypes, especially retinal pigment epithelium and Müller glia cells. The latter trophic factors represent the key to preserving morphofunctional integrity of the retina, regulating biological pathways involved in survival, function and responding to injury. Furthermore, these factors can play a pivotal role in onset and progression of retinal diseases after damage of cell secretory function. In this review, we delineated the importance of cross-talk between MSCs and retinal cells, focusing on common/induced secreted factors, during experimental therapy for retinal diseases. The cross-link between the MSC and retinal cell secretomes suggests that the MSC secretome can modulate the retinal cell secretome and vice versa. For example, the MSC secretome can protect retinal cells from degeneration by reducing oxidative stress, autophagy and programmed cell death. Conversely, the retinal cell secretome can influence the MSC secretome by inducing changes in MSC gene expression and phenotype.
Collapse
Affiliation(s)
- Luigi Donato
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Concetta Scimone
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Simona Alibrandi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
- Department of Chemical, Biological, Pharmaceutical and Environmental Sciences, University of Messina, Messina 98125, Italy
| | | | - Domenico Mordà
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
- Department of Biomolecular Strategies, Genetics and Cutting-Edge Therapies, Euro-Mediterranean Institute of Science and Technology, Palermo 90139, Italy
| | - Carmela Rinaldi
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Rosalia D'Angelo
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| | - Antonina Sidoti
- Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina 98125, Italy
| |
Collapse
|