1
|
Chen Q, Zheng Y, Jiang X, Wang Y, Chen Z, Wu D. Nature's carriers: leveraging extracellular vesicles for targeted drug delivery. Drug Deliv 2024; 31:2361165. [PMID: 38832506 DOI: 10.1080/10717544.2024.2361165] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Accepted: 05/14/2024] [Indexed: 06/05/2024] Open
Abstract
With the rapid development of drug delivery systems, extracellular vesicles (EVs) have emerged as promising stars for improving targeting abilities and realizing effective delivery. Numerous studies have shown when compared to conventional strategies in targeted drug delivery (TDD), EVs-based strategies have several distinguished advantages besides targeting, such as participating in cell-to-cell communications and immune response, showing high biocompatibility and stability, penetrating through biological barriers, etc. In this review, we mainly focus on the mass production of EVs including the challenges and strategies for scaling up EVs production in a cost-effective and reproducible manner, the loading and active targeting methods, and examples of EVs as vehicles for TDD in consideration of potential safety and regulatory issues associated. We also conclude and discuss the rigor and reproducibility of EVs production, the current research status of the application of EVs-based strategies to targeted drug delivery, clinical conversion prospects, and existing chances and challenges.
Collapse
Affiliation(s)
- Qi Chen
- Interdisciplinary Institute for Medical Engineering, Fuzhou University, Fuzhou, P. R. China
| | - Yuyi Zheng
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xuhong Jiang
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Yi Wang
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Zhejiang Rehabilitation Medical Center, The Third Affiliated Hospital of Zhejiang, Chinese Medical University, Hangzhou, PR China
| | - Zhong Chen
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
- Epilepsy Center, Department of Neurology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, PR China
| | - Di Wu
- Key Laboratory of Neuropharmacology and Translational Medicine of Zhejiang Province, School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Wan Z, Liu T, Xu N, Zhu W, Zhang X, Liu Q, Wang H, Wang H. PKH Dyes Should Be Avoided in the EVs Biodistribution Study of the Brain: A Call for Caution. Int J Nanomedicine 2024; 19:10885-10898. [PMID: 39479172 PMCID: PMC11523927 DOI: 10.2147/ijn.s475060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 09/10/2024] [Indexed: 11/02/2024] Open
Abstract
Introduction Extracellular vesicles (EVs) are nanosized membrane vesicles that are naturally secreted by almost all cells and have gained considerable attention. Many studies have applied EVs to the treatment of brain diseases and validated their effectiveness. Although only a few EVs can penetrate the blood‒brain barrier (BBB) into the brain after administration, it has been proven that EVs and their cargos exert their effects by interacting with brain cells. PKH dyes are commonly used to stain EVs for distribution studies. However, systematic investigations of imaging characteristics of the PKH-labeled EVs distributed in the brain are still scarce. Methods We stained EVs derived from mesenchymal stem cells with PKH26 or PKH67. PKH26-labeled EVs and PKH67-labeled EVs were administered at the same time into each mouse while PKH26-labeled EVs were given through tail veins and PKH67-labeled EVs were given through intraperitoneal injection. Confocal microscopy was used to explore the distribution difference of two types of EVs given via different routes in the brain. Results The fluorescence of PKH26 and PKH67 had nearly identical distributions in brain slices after 1 h, 6 h, 12 h and 1 day of EV administration. Under the same confocal parameters, brain slices without EVs administration demonstrated the same result. However, liver slices from mice administered with labeled EVs showed obviously different distributions of two types PKH fluorescence. Discussion These findings raise questions about the ability of PKH dyes as labels for EVs when explore the EV brain distribution observed via confocal microscopy.
Collapse
Affiliation(s)
- Zheng Wan
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Tianyi Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Ning Xu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Wenhao Zhu
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Xiaoyu Zhang
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Qin Liu
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Haifeng Wang
- Department of Neurotrauma, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| | - Honglei Wang
- Department of Neurovascular Surgery, The First Hospital of Jilin University, Changchun, Jilin Province, People’s Republic of China
| |
Collapse
|
3
|
Wang W, Wang Y, Gao L. Stem Cells Treatment for Subarachnoid Hemorrhage. Neurologist 2024:00127893-990000000-00158. [PMID: 39450602 DOI: 10.1097/nrl.0000000000000589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2024]
Abstract
BACKGROUND Subarachnoid hemorrhage (SAH) refers to bleeding in the subarachnoid space, which is a serious neurologic emergency. However, the treatment effects of SAH are limited. In recent years, stem cell (SC) therapy has gradually become a very promising therapeutic method and advanced scientific research area for SAH. REVIEW SUMMARY The SCs used for SAH treatment are mainly bone marrow mesenchymal stem cells (BMSCs), umbilical cord mesenchymal stem cells (hUC-MSCs), dental pulp stem cells (DPSCs), neural stem cells (NSCs)/neural progenitor cell (NPC), and endothelial progenitor cell (EPC). The mechanisms mainly included differentiation and migration of SCs for tissue repair; alleviating neuronal apoptosis; anti-inflammatory effects; and blood-brain barrier (BBB) protection. The dosage of SCs was generally 106 orders of magnitude. The administration methods included intravenous injection, nasal, occipital foramen magnum, and intraventricular administration. The administration time is generally 1 hour after SAH modeling, but it may be as late as 24 hours or 6 days. Existing studies have confirmed the neuroprotective effect of SCs in the treatment of SAH. CONCLUSIONS SC has great potential application value in SAH treatment, a few case reports have provided support for this. However, the relevant research is still insufficient and there is still a lack of clinical research on the SC treatment for SAH to further evaluate the effectiveness and safety before it can go from experiment to clinical application.
Collapse
Affiliation(s)
| | | | - Liansheng Gao
- Department of Neurosurgery, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
4
|
Wang Y, Chang C, Wang R, Li X, Bao X. The advantages of multi-level omics research on stem cell-based therapies for ischemic stroke. Neural Regen Res 2024; 19:1998-2003. [PMID: 38227528 DOI: 10.4103/1673-5374.390959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Accepted: 10/11/2023] [Indexed: 01/17/2024] Open
Abstract
Stem cell transplantation is a potential therapeutic strategy for ischemic stroke. However, despite many years of preclinical research, the application of stem cells is still limited to the clinical trial stage. Although stem cell therapy can be highly beneficial in promoting functional recovery, the precise mechanisms of action that are responsible for this effect have yet to be fully elucidated. Omics analysis provides us with a new perspective to investigate the physiological mechanisms and multiple functions of stem cells in ischemic stroke. Transcriptomic, proteomic, and metabolomic analyses have become important tools for discovering biomarkers and analyzing molecular changes under pathological conditions. Omics analysis could help us to identify new pathways mediated by stem cells for the treatment of ischemic stroke via stem cell therapy, thereby facilitating the translation of stem cell therapies into clinical use. In this review, we summarize the pathophysiology of ischemic stroke and discuss recent progress in the development of stem cell therapies for the treatment of ischemic stroke by applying multi-level omics. We also discuss changes in RNAs, proteins, and metabolites in the cerebral tissues and body fluids under stroke conditions and following stem cell treatment, and summarize the regulatory factors that play a key role in stem cell therapy. The exploration of stem cell therapy at the molecular level will facilitate the clinical application of stem cells and provide new treatment possibilities for the complete recovery of neurological function in patients with ischemic stroke.
Collapse
Affiliation(s)
- Yiqing Wang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Chuheng Chang
- 4+4 Doctor Medical Program, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Renzhi Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| | - Xiaoguang Li
- Beijing Key Laboratory for Biomaterials and Neural Regeneration, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
- Department of Neurobiology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xinjie Bao
- Department of Neurosurgery, Peking Union Medical College Hospital, Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing, China
| |
Collapse
|
5
|
Saharkhiz N, Hajizadeh N, Alkhafaji JS, Mohammadi MH. Evaluation of the therapeutic effect of very small stem cells from peripheral blood on the treatment of Premature Ovarian Failure: A pilot study. JBRA Assist Reprod 2024; 28:424-429. [PMID: 38640352 PMCID: PMC11349254 DOI: 10.5935/1518-0557.20240021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/17/2024] [Indexed: 04/21/2024] Open
Abstract
OBJECTIVE Premature ovary failure (POF) is a severe health condition with multiple negative outcomes, which deteriorate a patient's life. The current study aimed to evaluate the therapeutic effect of mesenchymal stem cells (MSCs) derived from peripheral blood in the treatment of women with the POF background. METHODS The current study was a pilot study carried-out on women younger than 40 with premature ovarian failure. Study participants underwent 4-months cell therapy using Mesenchymal stem cells extracted from peripheral bloods. Serum level of Follicle-stimulating hormone (FSH), Estradiol (E2), Anti-mullerian hormone (AMH), and Antral follicle count (AFC) were the main investigated outcomes that were assessed at baseline, month two and month four of the very small stem cell intervention. RESULTS Average serum level of FSH was 45.0 (12.1) mIU/mL at baseline and continually decreased during the study and reached 33.2 (12.4) mIU/mL in the fourth month. The average AMH level was 0.10 ng/mL prior to the intervention and increased to 0.13 ng/mL in the 2nd month and 0.15 ng/mL in the fourth month. The level E2 was 85.7 (23.6) pg/ml on average at baseline, while the average E2 reduced to 77.2 (25.6) pg/ml in the fourth month. Average number of AFC was 2.0 (0.8) at baseline. We observed a gradual increase in the second month (Mean AFC=2.2) and after four months it increased to 3.1 (1.8) as the highest menstrual restoration and pregnancy was observed in 10% of our study participants. CONCLUSIONS MSCs could significantly improve hormone secretion in women with POF. Implantation of MSCs in women with POF background was associated with an increase in AMH and AFC, while it downed the serum level of E2 and FSH. MSCs could also lead to menstrual restoration and pregnancy in women with POF.
Collapse
Affiliation(s)
- Nasrin Saharkhiz
- Department of Obstetrics, Shahid Beheshti University, Tehran, Iran
| | | | | | | |
Collapse
|
6
|
Cha Z, Qiao Y, Lu Q, Wang Q, Lu X, Zhou H, Li T. Research progress and challenges of stem cell therapy for ischemic stroke. Front Cell Dev Biol 2024; 12:1410732. [PMID: 39040041 PMCID: PMC11260720 DOI: 10.3389/fcell.2024.1410732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Accepted: 06/17/2024] [Indexed: 07/24/2024] Open
Abstract
Ischemic stroke is a significant global cause of death and disability. Currently, treatment options for acute ischemic stroke are limited to intravenous thrombolysis and mechanical recanalization. Therefore, novel neuroprotective strategies are imperative. Stem cell transplantation possesses the capabilities of differentiation, proliferation, neuronal replacement, nerve pathway reconstruction, secretion of nerve growth factors, and enhancement of the microenvironment; thus, it is a potential therapeutic approach for ischemic stroke. In addition, the immunomodulatory function of stem cells and the combined treatment of stem cells and exosomes exhibit a favorable protective effect on brain injury and neurological dysfunction following stroke. Meanwhile, the theory of microbiota-gut-brain axis provides us with a novel perspective for comprehending and managing neurological diseases. Lastly, stem cell transplantation has demonstrated promising outcomes not only in treating ischemic stroke but also in dealing with other neurological disorders, such as brain tumors. Furthermore, challenges related to the tissue source, delivery method, immune response, and timing of transplantation still need to be addressed to optimize the treatment.
Collapse
Affiliation(s)
- Zaihong Cha
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Yisheng Qiao
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qixiong Lu
- The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Qiyang Wang
- Department of Orthopedics, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Xiaoyang Lu
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Hu Zhou
- Department of Neurosurgery, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| | - Tao Li
- Research Center for Clinical Medicine, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
- Institute of Neurosurgery and Neuroscience, The First People’s Hospital of Yunnan Province, The Affiliated Hospital of Kunming University of Science and Technology, Kunming, Yunnan, China
| |
Collapse
|
7
|
Kaur M, Fusco S, Van den Broek B, Aseervatham J, Rostami A, Iacovitti L, Grassi C, Lukomska B, Srivastava AK. Most recent advances and applications of extracellular vesicles in tackling neurological challenges. Med Res Rev 2024; 44:1923-1966. [PMID: 38500405 DOI: 10.1002/med.22035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2024] [Revised: 02/22/2024] [Accepted: 03/04/2024] [Indexed: 03/20/2024]
Abstract
Over the past few decades, there has been a notable increase in the global burden of central nervous system (CNS) diseases. Despite advances in technology and therapeutic options, neurological and neurodegenerative disorders persist as significant challenges in treatment and cure. Recently, there has been a remarkable surge of interest in extracellular vesicles (EVs) as pivotal mediators of intercellular communication. As carriers of molecular cargo, EVs demonstrate the ability to traverse the blood-brain barrier, enabling bidirectional communication. As a result, they have garnered attention as potential biomarkers and therapeutic agents, whether in their natural form or after being engineered for use in the CNS. This review article aims to provide a comprehensive introduction to EVs, encompassing various aspects such as their diverse isolation methods, characterization, handling, storage, and different routes for EV administration. Additionally, it underscores the recent advances in their potential applications in neurodegenerative disorder therapeutics. By exploring their unique capabilities, this study sheds light on the promising future of EVs in clinical research. It considers the inherent challenges and limitations of these emerging applications while incorporating the most recent updates in the field.
Collapse
Affiliation(s)
- Mandeep Kaur
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Salvatore Fusco
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Bram Van den Broek
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jaya Aseervatham
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Abdolmohamad Rostami
- Department of Neurology, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Lorraine Iacovitti
- Department of Neuroscience, Vickie and Jack Farber Institute for Neuroscience, Jefferson Stem Cell and Regenerative Neuroscience Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Claudio Grassi
- Department of Neuroscience, Università Cattolica del Sacro Cuore, Rome, Italy
- Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Barbara Lukomska
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Warsaw, Poland
| | - Amit K Srivastava
- Department of Medicine, Cardeza Foundation for Hematologic Research, Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| |
Collapse
|
8
|
Fujiwara S, Nakano-Doi A, Sawano T, Kubo S, Doe N, Nakagomi T. Administration of Human-Derived Mesenchymal Stem Cells Activates Locally Stimulated Endogenous Neural Progenitors and Reduces Neurological Dysfunction in Mice after Ischemic Stroke. Cells 2024; 13:939. [PMID: 38891071 PMCID: PMC11171641 DOI: 10.3390/cells13110939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 05/25/2024] [Accepted: 05/27/2024] [Indexed: 06/21/2024] Open
Abstract
Increasing evidence shows that the administration of mesenchymal stem cells (MSCs) is a promising option for various brain diseases, including ischemic stroke. Studies have demonstrated that MSC transplantation after ischemic stroke provides beneficial effects, such as neural regeneration, partially by activating endogenous neural stem/progenitor cells (NSPCs) in conventional neurogenic zones, such as the subventricular and subgranular zones. However, whether MSC transplantation regulates the fate of injury-induced NSPCs (iNSPCs) regionally activated at injured regions after ischemic stroke remains unclear. Therefore, mice were subjected to ischemic stroke, and mCherry-labeled human MSCs (h-MSCs) were transplanted around the injured sites of nestin-GFP transgenic mice. Immunohistochemistry of brain sections revealed that many GFP+ cells were observed around the grafted sites rather than in the regions in the subventricular zone, suggesting that transplanted mCherry+ h-MSCs stimulated GFP+ locally activated endogenous iNSPCs. In support of these findings, coculture studies have shown that h-MSCs promoted the proliferation and neural differentiation of iNSPCs extracted from ischemic areas. Furthermore, pathway analysis and gene ontology analysis using microarray data showed that the expression patterns of various genes related to self-renewal, neural differentiation, and synapse formation were changed in iNSPCs cocultured with h-MSCs. We also transplanted h-MSCs (5.0 × 104 cells/µL) transcranially into post-stroke mouse brains 6 weeks after middle cerebral artery occlusion. Compared with phosphate-buffered saline-injected controls, h-MSC transplantation displayed significantly improved neurological functions. These results suggest that h-MSC transplantation improves neurological function after ischemic stroke in part by regulating the fate of iNSPCs.
Collapse
Affiliation(s)
- Shuichi Fujiwara
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
| | - Akiko Nakano-Doi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| | - Toshinori Sawano
- Department of Biomedical Sciences, Ritsumeikan University, 1-1-1 Nojihigashi, Kusatsu 525-8577, Japan;
| | - Shuji Kubo
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
| | - Nobutaka Doe
- Department of Rehabilitation, Hyogo Medical University (Kobe Campus), 1-3-6 Minatojima, Chuo-ku, Kobe 650-8530, Japan;
| | - Takayuki Nakagomi
- Institute for Advanced Medical Sciences, Hyogo Medical University (Nishinomiya Campus), 1-1 Mukogawacho, Nishinomiya 663-8501, Japan; (S.F.); (A.N.-D.); (S.K.)
- Department of Therapeutic Progress in Brain Diseases, Hyogo Medical University, 1-1 Mukogawacho, Nishinomiya 663-8501, Japan
| |
Collapse
|
9
|
Dabrowska S, Turano E, Scambi I, Virla F, Nodari A, Pezzini F, Galiè M, Bonetti B, Mariotti R. A Cellular Model of Amyotrophic Lateral Sclerosis to Study the Therapeutic Effects of Extracellular Vesicles from Adipose Mesenchymal Stem Cells on Microglial Activation. Int J Mol Sci 2024; 25:5707. [PMID: 38891895 PMCID: PMC11171908 DOI: 10.3390/ijms25115707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 05/16/2024] [Accepted: 05/17/2024] [Indexed: 06/21/2024] Open
Abstract
Amyotrophic lateral sclerosis (ALS) is a fatal neurodegenerative disease characterized by the progressive degeneration of upper and lower motor neurons (MNs) in the brain and spinal cord, leading to progressive paralysis and death. Increasing evidence indicates that neuroinflammation plays an important role in ALS's pathogenesis and disease progression. Neuroinflammatory responses, primarily driven by activated microglia and astrocytes, and followed by infiltrating peripheral immune cells, contribute to exacerbate/accelerate MN death. In particular, the role of the microglia in ALS remains unclear, partly due to the lack of experimental models that can fully recapitulate the complexity of ALS's pathology. In this study, we developed and characterized a microglial cell line, SIM-A9-expressing human mutant protein Cu+/Zn+ superoxide dismutase_1 (SIM-A9hSOD1(G93A)), as a suitable model in vitro mimicking the microglia activity in ALS. The expression of hSOD1(G93A) in SIM-A9 cells induced a change in their metabolic activity, causing polarization into a pro-inflammatory phenotype and enhancing reactive oxygen species production, which is known to activate cell death processes and apoptosis. Afterward, we used our microglial model as an experimental set-up to investigate the therapeutic action of extracellular vesicles isolated from adipose mesenchymal stem cells (ASC-EVs). ASC-EVs represent a promising therapeutic treatment for ALS due to their neuroprotective and immunomodulatory properties. Here, we demonstrated that treatment with ASC-EVs is able to modulate activated ALS microglia, reducing their metabolic activity and polarizing their phenotype toward an anti-inflammatory one through a mechanism of reduction of reactive oxygen species.
Collapse
Affiliation(s)
- Sylwia Dabrowska
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
- NeuroRepair Department, Mossakowski Medical Research Institute, Polish Academy of Sciences, Pawinskiego Street 5, 02-106 Warsaw, Poland
| | - Ermanna Turano
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Ilaria Scambi
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Federica Virla
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Alice Nodari
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Francesco Pezzini
- Department of Surgery, Dentistry, Paediatrics and Gynaecology (Child Neurology and Psychiatry), University of Verona, 37134 Verona, Italy;
| | - Mirco Galiè
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| | - Bruno Bonetti
- Neurology Unit, Azienda Ospedaliera Universitaria Integrata, 37126 Verona, Italy;
| | - Raffaella Mariotti
- Department of Neurosciences, Biomedicine and Movement Sciences, University of Verona, Strada Le Grazie 8, 37134 Verona, Italy; (S.D.); (E.T.); (I.S.); (F.V.); (A.N.); (M.G.)
| |
Collapse
|
10
|
Chen W, Wu P, Jin C, Chen Y, Li C, Qian H. Advances in the application of extracellular vesicles derived from three-dimensional culture of stem cells. J Nanobiotechnology 2024; 22:215. [PMID: 38693585 PMCID: PMC11064407 DOI: 10.1186/s12951-024-02455-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 04/02/2024] [Indexed: 05/03/2024] Open
Abstract
Stem cells (SCs) have been used therapeutically for decades, yet their applications are limited by factors such as the risk of immune rejection and potential tumorigenicity. Extracellular vesicles (EVs), a key paracrine component of stem cell potency, overcome the drawbacks of stem cell applications as a cell-free therapeutic agent and play an important role in treating various diseases. However, EVs derived from two-dimensional (2D) planar culture of SCs have low yield and face challenges in large-scale production, which hinders the clinical translation of EVs. Three-dimensional (3D) culture, given its ability to more realistically simulate the in vivo environment, can not only expand SCs in large quantities, but also improve the yield and activity of EVs, changing the content of EVs and improving their therapeutic effects. In this review, we briefly describe the advantages of EVs and EV-related clinical applications, provide an overview of 3D cell culture, and finally focus on specific applications and future perspectives of EVs derived from 3D culture of different SCs.
Collapse
Affiliation(s)
- Wenya Chen
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Peipei Wu
- Department of Laboratory Medicine, The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, 230001, Anhui, China
| | - Can Jin
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Yinjie Chen
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China
| | - Chong Li
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
| | - Hui Qian
- Department of Orthopaedics, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, 215300, Jiangsu, China.
- Jiangsu Key Laboratory of Medical Science and Laboratory Medicine, Department of Laboratory Medicine, School of Medicine, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, China.
| |
Collapse
|
11
|
Pratiwi DIN, Alhajlah S, Alawadi A, Hjazi A, Alawsi T, Almalki SG, Alsalamy A, Kumar A. Mesenchymal stem cells and their extracellular vesicles as emerging therapeutic tools in the treatment of ischemic stroke. Tissue Cell 2024; 87:102320. [PMID: 38342071 DOI: 10.1016/j.tice.2024.102320] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/13/2024]
Abstract
Ischemic stroke (IS) is a neurological condition characterized by severe long-term consequences and an unfavorable prognosis for numerous patients. Despite advancements in stroke treatment, existing therapeutic approaches possess certain limitations. However, accumulating evidence suggests that mesenchymal stem/stromal cells (MSCs) hold promise as a potential therapy for various neurological disorders, including IS, owing to their advantageous properties, such as immunomodulation and tissue regeneration. Additionally, MSCs primarily exert their therapeutic effects through the release of extracellular vesicles (EVs), highlighting the significance of their paracrine activities. These EVs are small double-layered phospholipid membrane vesicles, carrying a diverse cargo of proteins, lipids, and miRNAs that enable effective cell-to-cell communication. Notably, EVs have emerged as attractive substitutes for stem cell therapy due to their reduced immunogenicity, lower tumorigenic potential, and ease of administration and handling. Hence, this review summarizes the current preclinical and clinical studies performed to investigate the safety and therapeutic potential of MSCs and their EVs derived from different sources, including bone marrow, adipose tissue, umbilical cord blood, and Wharton's jelly in IS.
Collapse
Affiliation(s)
| | - Sharif Alhajlah
- Department of Medical Laboratories, College of Applied Medical Sciences, Shaqra University, Shaqra 11961, Saudi Arabia
| | - Ahmed Alawadi
- College of technical engineering, the Islamic University, Najaf, Iraq; College of technical engineering, the Islamic University of Al Diwaniyah, Iraq; College of technical engineering, the Islamic University of Babylon, Iraq
| | - Ahmed Hjazi
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Prince Sattam bin Abdulaziz University, Al-Kharj 11942, Saudi Arabia.
| | - Taif Alawsi
- Department of Laser and Optoelectronics Engineering, University of Technology, Baghdad, Iraq
| | - Sami G Almalki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah 11952, Saudi Arabia
| | - Ali Alsalamy
- College of technical engineering, Imam Ja'afar Al-Sadiq University, Al-Muthanna 66002, Iraq
| | - Abhinav Kumar
- Department of Nuclear and Renewable Energy, Ural Federal University Named after the First President of Russia Boris Yeltsin, Ekaterinburg 620002, Russia
| |
Collapse
|
12
|
Poblano-Pérez LI, Castro-Manrreza ME, González-Alva P, Fajardo-Orduña GR, Montesinos JJ. Mesenchymal Stromal Cells Derived from Dental Tissues: Immunomodulatory Properties and Clinical Potential. Int J Mol Sci 2024; 25:1986. [PMID: 38396665 PMCID: PMC10888494 DOI: 10.3390/ijms25041986] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 01/30/2024] [Accepted: 02/05/2024] [Indexed: 02/25/2024] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells located in different areas of the human body. The oral cavity is considered a potential source of MSCs because they have been identified in several dental tissues (D-MSCs). Clinical trials in which cells from these sources were used have shown that they are effective and safe as treatments for tissue regeneration. Importantly, immunoregulatory capacity has been observed in all of these populations; however, this function may vary among the different types of MSCs. Since this property is of clinical interest for cell therapy protocols, it is relevant to analyze the differences in immunoregulatory capacity, as well as the mechanisms used by each type of MSC. Interestingly, D-MSCs are the most suitable source for regenerating mineralized tissues in the oral region. Furthermore, the clinical potential of D-MSCs is supported due to their adequate capacity for proliferation, migration, and differentiation. There is also evidence for their potential application in protocols against autoimmune diseases and other inflammatory conditions due to their immunosuppressive capacity. Therefore, in this review, the immunoregulatory mechanisms identified at the preclinical level in combination with the different types of MSCs found in dental tissues are described, in addition to a description of the clinical trials in which MSCs from these sources have been applied.
Collapse
Affiliation(s)
- Luis Ignacio Poblano-Pérez
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Marta Elena Castro-Manrreza
- Immunology and Stem Cells Laboratory, FES Zaragoza, National Autonomous University of Mexico (UNAM), Mexico City 09230, Mexico;
| | - Patricia González-Alva
- Tissue Bioengineering Laboratory, Postgraduate Studies, Research Division, Faculty of Dentistry, National Autonomous University of Mexico (UNAM), Mexico City 04510, Mexico;
| | - Guadalupe R. Fajardo-Orduña
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| | - Juan José Montesinos
- Mesenchymal Stem Cell Laboratory, Oncology Research Unit, Oncology Hospital, National Medical Center (IMSS), Mexico City 06720, Mexico; (L.I.P.-P.); (G.R.F.-O.)
| |
Collapse
|
13
|
Gao Y, Zhang TL, Zhang HJ, Gao J, Yang PF. A Promising Application of Injectable Hydrogels in Nerve Repair and Regeneration for Ischemic Stroke. Int J Nanomedicine 2024; 19:327-345. [PMID: 38229707 PMCID: PMC10790665 DOI: 10.2147/ijn.s442304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 12/13/2023] [Indexed: 01/18/2024] Open
Abstract
Ischemic stroke, a condition that often leads to severe nerve damage, induces complex pathological and physiological changes in nerve tissue. The mature central nervous system (CNS) lacks intrinsic regenerative capacity, resulting in a poor prognosis and long-term neurological impairments. There is no available therapy that can fully restore CNS functionality. However, the utilization of injectable hydrogels has emerged as a promising strategy for nerve repair and regeneration. Injectable hydrogels possess exceptional properties, such as biocompatibility, tunable mechanical properties, and the ability to provide a supportive environment for cell growth and tissue regeneration. Recently, various hydrogel-based tissue engineering approaches, including cell encapsulation, controlled release of therapeutic factors, and incorporation of bioactive molecules, have demonstrated great potential in the treatment of CNS injuries caused by ischemic stroke. This article aims to provide a comprehensive review of the application and development of injectable hydrogels for the treatment of ischemic stroke-induced CNS injuries, shedding light on their therapeutic prospects, challenges, recent advancements, and future directions. Additionally, it will discuss the underlying mechanisms involved in hydrogel-mediated nerve repair and regeneration, as well as the need for further preclinical and clinical studies to validate their efficacy and safety.
Collapse
Affiliation(s)
- Yuan Gao
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Ting-Lin Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Hong-Jian Zhang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| | - Peng-Fei Yang
- Oriental Pan-Vascular Devices Innovation College, University of Shanghai for Science and Technology, Shanghai, People's Republic of China
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai, People’s Republic of China
- Neurovascular Center, Changhai Hospital, Naval Medical University, Shanghai, People’s Republic of China
| |
Collapse
|
14
|
Izquierdo-Altarejos P, Moreno-Manzano V, Felipo V. Pathological and therapeutic effects of extracellular vesicles in neurological and neurodegenerative diseases. Neural Regen Res 2024; 19:55-61. [PMID: 37488844 PMCID: PMC10479838 DOI: 10.4103/1673-5374.375301] [Citation(s) in RCA: 11] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 04/08/2023] [Accepted: 04/20/2023] [Indexed: 07/26/2023] Open
Abstract
Extracellular vesicles are released by all cell types and contain proteins, microRNAs, mRNAs, and other bioactive molecules. Extracellular vesicles play an important role in intercellular communication and in the modulation of the immune system and neuroinflammation. The cargo of extracellular vesicles (e.g., proteins and microRNAs) is altered in pathological situations. Extracellular vesicles contribute to the pathogenesis of many pathologies associated with sustained inflammation and neuroinflammation, including cancer, diabetes, hyperammonemia and hepatic encephalopathy, and other neurological and neurodegenerative diseases. Extracellular vesicles may cross the blood-brain barrier and transfer pathological signals from the periphery to the brain. This contributes to inducing neuroinflammation and cognitive and motor impairment in hyperammonemia and hepatic encephalopathy and in neurodegenerative diseases. The mechanisms involved are beginning to be understood. For example, increased tumor necrosis factor α in extracellular vesicles from plasma of hyperammonemic rats induces neuroinflammation and motor impairment when injected into normal rats. Identifying the mechanisms by which extracellular vesicles contribute to the pathogenesis of these diseases will help to develop new treatments and diagnostic tools for their easy and early detection. In contrast, extracellular vesicles from mesenchymal stem cells have therapeutic utility in many of the above pathologies, by reducing inflammation and neuroinflammation and improving cognitive and motor function. These extracellular vesicles recapitulate the beneficial effects of mesenchymal stem cells and have advantages as therapeutic tools: they are less immunogenic, may not differentiate to malignant cells, cross the blood-brain barrier, and may reach more easily target organs. Extracellular vesicles from mesenchymal stem cells have beneficial effects in models of ischemic brain injury, Alzheimer's and Parkinson's diseases, hyperammonemia, and hepatic encephalopathy. Extracellular vesicles from mesenchymal stem cells modulate the immune system, promoting the shift from a pro-inflammatory to an anti-inflammatory state. For example, extracellular vesicles from mesenchymal stem cells modulate the Th17/Treg balance, promoting the anti-inflammatory Treg. Extracellular vesicles from mesenchymal stem cells may also act directly in the brain to modulate microglia activation, promoting a shift from a pro-inflammatory to an anti-inflammatory state. This reduces neuroinflammation and improves cognitive and motor function. Two main components of extracellular vesicles from mesenchymal stem cells which contribute to these beneficial effects are transforming growth factor-β and miR-124. Identifying the mechanisms by which extracellular vesicles from mesenchymal stem cells induce the beneficial effects and the main molecules (e.g., proteins and mRNAs) involved may help to improve their therapeutic utility. The aims of this review are to summarize the knowledge of the pathological effects of extracellular vesicles in different pathologies, the therapeutic potential of extracellular vesicles from mesenchymal stem cells to recover cognitive and motor function and the molecular mechanisms for these beneficial effects on neurological function.
Collapse
Affiliation(s)
| | - Victoria Moreno-Manzano
- Neuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- Laboratory of Neurobiology, Centro Investigación Príncipe Felipe, Valencia, Spain
| |
Collapse
|
15
|
Xiong Y, Mahmood A, Chopp M. Mesenchymal stem cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration. Neural Regen Res 2024; 19:49-54. [PMID: 37488843 PMCID: PMC10479856 DOI: 10.4103/1673-5374.374143] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/07/2023] [Accepted: 03/27/2023] [Indexed: 07/26/2023] Open
Abstract
Traumatic brain injury is a serious and complex neurological condition that affects millions of people worldwide. Despite significant advancements in the field of medicine, effective treatments for traumatic brain injury remain limited. Recently, extracellular vesicles released from mesenchymal stem/stromal cells have emerged as a promising novel therapy for traumatic brain injury. Extracellular vesicles are small membrane-bound vesicles that are naturally released by cells, including those in the brain, and can be engineered to contain therapeutic cargo, such as anti-inflammatory molecules, growth factors, and microRNAs. When administered intravenously, extracellular vesicles can cross the blood-brain barrier and deliver their cargos to the site of injury, where they can be taken up by recipient cells and modulate the inflammatory response, promote neuroregeneration, and improve functional outcomes. In preclinical studies, extracellular vesicle-based therapies have shown promising results in promoting recovery after traumatic brain injury, including reducing neuronal damage, improving cognitive function, and enhancing motor recovery. While further research is needed to establish the safety and efficacy of extracellular vesicle-based therapies in humans, extracellular vesicles represent a promising novel approach for the treatment of traumatic brain injury. In this review, we summarize mesenchymal stem/stromal cell-derived extracellular vesicles as a cell-free therapy for traumatic brain injury via neuroprotection and neurorestoration and brain-derived extracellular vesicles as potential biofluid biomarkers in small and large animal models of traumatic brain injury.
Collapse
Affiliation(s)
- Ye Xiong
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Asim Mahmood
- Department of Neurosurgery, Henry Ford Hospital, Detroit, MI, USA
| | - Michael Chopp
- Department of Neurology, Henry Ford Hospital, Detroit, MI, USA
- Department of Physics, Oakland University, Rochester, MI, USA
| |
Collapse
|
16
|
León-Moreno LC, Reza-Zaldívar EE, Hernández-Sapiéns MA, Villafaña-Estarrón E, García-Martin M, Ojeda-Hernández DD, Matias-Guiu JA, Gomez-Pinedo U, Matias-Guiu J, Canales-Aguirre AA. Mesenchymal Stem Cell-Based Therapies in the Post-Acute Neurological COVID Syndrome: Current Landscape and Opportunities. Biomolecules 2023; 14:8. [PMID: 38275749 PMCID: PMC10813738 DOI: 10.3390/biom14010008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/15/2023] [Accepted: 12/19/2023] [Indexed: 01/27/2024] Open
Abstract
One of the main concerns related to SARS-CoV-2 infection is the symptoms that could be developed by survivors, known as long COVID, a syndrome characterized by persistent symptoms beyond the acute phase of the infection. This syndrome has emerged as a complex and debilitating condition with a diverse range of manifestations affecting multiple organ systems. It is increasingly recognized for affecting the Central Nervous System, in which one of the most prevalent manifestations is cognitive impairment. The search for effective therapeutic interventions has led to growing interest in Mesenchymal Stem Cell (MSC)-based therapies due to their immunomodulatory, anti-inflammatory, and tissue regenerative properties. This review provides a comprehensive analysis of the current understanding and potential applications of MSC-based interventions in the context of post-acute neurological COVID-19 syndrome, exploring the underlying mechanisms by which MSCs exert their effects on neuroinflammation, neuroprotection, and neural tissue repair. Moreover, we discuss the challenges and considerations specific to employing MSC-based therapies, including optimal delivery methods, and functional treatment enhancements.
Collapse
Affiliation(s)
- Lilia Carolina León-Moreno
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | | | - Mercedes Azucena Hernández-Sapiéns
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Erika Villafaña-Estarrón
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| | - Marina García-Martin
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Doddy Denise Ojeda-Hernández
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jordi A. Matias-Guiu
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Ulises Gomez-Pinedo
- Laboratorio de Neurobiología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain; (M.G.-M.); (D.D.O.-H.); (J.A.M.-G.); (U.G.-P.)
| | - Jorge Matias-Guiu
- Departamento de Neurología, Instituto de Investigación Sanitaria, Hospital Clínico San Carlos, IdISSC, Universidad Complutense de Madrid, 28040 Madrid, Spain
| | - Alejandro Arturo Canales-Aguirre
- Unidad de Evaluación Preclínica, Biotecnología Médica Farmacéutica, CONACYT Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco (CIATEJ), Guadalajara 44270, Mexico; (L.C.L.-M.); (M.A.H.-S.); (E.V.-E.)
| |
Collapse
|
17
|
Xu CM, Karbasiafshar C, Brinck‐Teixeira R, Broadwin M, Sellke FW, Abid MR. Diabetic state of human coronary artery endothelial cells results in altered effects of bone mesenchymal stem cell-derived extracellular vesicles. Physiol Rep 2023; 11:e15866. [PMID: 38114067 PMCID: PMC10730301 DOI: 10.14814/phy2.15866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 12/21/2023] Open
Abstract
Human bone mesenchymal stem cell-derived extracellular vesicles (HBMSC-EV) have been used successfully in animal models of myocardial ischemia, yet have dampened effects in metabolic syndrome through unknown mechanisms. This study demonstrates the basal differences between non-diabetic human coronary artery endothelial cells (HCAEC) and diabetic HCAEC (DM-HCAEC), and how these cells respond to the treatment of HBMSC-EV. HCAEC and DM-HCAEC were treated with HBMSC-EV for 6 h. Proteomics, western blot analysis, and tube formation assays were performed. Key metabolic, growth, and stress/starvation cellular responses were significantly altered in DM-HCAEC in comparison to that of HCAEC at baseline. Proteomics demonstrated increased phosphorus metabolic process and immune pathways and decreased RNA processing and biosynthetic pathways in DM-HCAEC. Similar to previous in vivo findings, HCAEC responded to the HBMSC-EV with regenerative and anti-inflammatory effects through the upregulation of multiple RNA pathways and downregulation of immune cell activation pathways. In contrast, DM-HCAEC had a significantly diminished response to HBMSC-EV, likely due to the baseline abnormalities in DM-HCAEC. To achieve the full benefits of HBMSC-EV and for a successful transition of this potential therapeutic agent to clinical studies, the abnormalities found in DM-HCAEC will need to be further studied.
Collapse
Affiliation(s)
- Cynthia M. Xu
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | | | - Rayane Brinck‐Teixeira
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - Mark Broadwin
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - Frank W. Sellke
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| | - M. Ruhul Abid
- Cardiovascular Research Center, Rhode Island HospitalProvidenceRhode IslandUSA
- Division of Cardiothoracic SurgeryAlpert Medical School of Brown University and Rhode Island HospitalProvidenceRhode IslandUSA
| |
Collapse
|
18
|
Waseem A, Saudamini, Haque R, Janowski M, Raza SS. Mesenchymal stem cell-derived exosomes: Shaping the next era of stroke treatment. NEUROPROTECTION 2023; 1:99-116. [PMID: 38283953 PMCID: PMC10811806 DOI: 10.1002/nep3.30] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/05/2023] [Accepted: 11/10/2023] [Indexed: 01/30/2024]
Abstract
Exosome-based treatments are gaining traction as a viable approach to addressing the various issues faced by an ischemic stroke. These extracellular vesicles, mainly produced by Mesenchymal Stem Cells (MSCs), exhibit many properties with substantial therapeutic potential. Exosomes are particularly appealing for stroke therapy because of their low immunogenicity, effective cargo transport, and ability to cross the blood-brain barrier. Their diverse effects include neuroprotection, angiogenesis stimulation, inflammatory response modulation, and cell death pathway attenuation, synergistically promoting neuronal survival, tissue regeneration, and functional recovery. Exosomes also show potential as diagnostic indicators for early stroke identification and customized treatment options. Despite these promising qualities, current exosome-based therapeutics have some limitations. The heterogeneity of exosome release among cell types, difficulty in standardization and isolation techniques, and complications linked to dosage and targeted administration necessitates extensive investigation. It is critical to thoroughly understand exosomal processes and their complicated interactions within the cellular milieu. To improve the practicality and efficacy of exosome-based medicines, research efforts must focus on improving production processes, developing robust evaluation criteria, and developing large-scale isolation techniques. Altogether, exosomes' multifunctional properties offer a new route for transforming stroke treatment and significantly improving patient outcomes.
Collapse
Affiliation(s)
- Arshi Waseem
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| | - Saudamini
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Rizwanul Haque
- Department of BiotechnologyCentral University of South BiharGayaIndia
| | - Miroslaw Janowski
- Center for Advanced Imaging Research, Department of Diagnostic Radiology and Nuclear MedicineUniversity of MarylandBaltimoreMarylandUSA
| | - Syed S. Raza
- Laboratory for Stem Cell & Restorative Neurology, Department of Biotechnology, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
- Department of Stem Cell Biology and Regenerative Medicine, Era's Lucknow Medical College HospitalEra University, SarfarazganjLucknowIndia
| |
Collapse
|
19
|
Lin W, Zhao XY, Cheng JW, Li LT, Jiang Q, Zhang YX, Han F. Signaling pathways in brain ischemia: Mechanisms and therapeutic implications. Pharmacol Ther 2023; 251:108541. [PMID: 37783348 DOI: 10.1016/j.pharmthera.2023.108541] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Revised: 09/18/2023] [Accepted: 09/25/2023] [Indexed: 10/04/2023]
Abstract
Ischemic stroke occurs when the arteries supplying blood to the brain are narrowed or blocked, inducing damage to brain tissue due to a lack of blood supply. One effective way to reduce brain damage and alleviate symptoms is to reopen blocked blood vessels in a timely manner and reduce neuronal damage. To achieve this, researchers have focused on identifying key cellular signaling pathways that can be targeted with drugs. These pathways include oxidative/nitrosative stress, excitatory amino acids and their receptors, inflammatory signaling molecules, metabolic pathways, ion channels, and other molecular events involved in stroke pathology. However, evidence suggests that solely focusing on protecting neurons may not yield satisfactory clinical results. Instead, researchers should consider the multifactorial and complex mechanisms underlying stroke pathology, including the interactions between different components of the neurovascular unit. Such an approach is more representative of the actual pathological process observed in clinical settings. This review summarizes recent research on the multiple molecular mechanisms and drug targets in ischemic stroke, as well as recent advances in novel therapeutic strategies. Finally, we discuss the challenges and future prospects of new strategies based on the biological characteristics of stroke.
Collapse
Affiliation(s)
- Wen Lin
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Xiang-Yu Zhao
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China
| | - Jia-Wen Cheng
- Department of Physiology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing 211166, China
| | - Li-Tao Li
- Department of Neurology, Hebei General Hospital, Shijiazhuang 050051, Hebei, China
| | - Quan Jiang
- Meinig School of Biomedical Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yi-Xuan Zhang
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China.
| | - Feng Han
- Medical Basic Research Innovation Center for Cardiovascular and Cerebrovascular Diseases, Ministry of Education, China; International Joint Laboratory for Drug Target of Critical Illnesses, Key Laboratory of Cardiovascular and Cerebrovascular Medicine, School of Pharmacy, Nanjing Medical University, Nanjing 211166, China; Gusu School, Nanjing Medical University, Suzhou Municipal Hospital, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou 215002, China; Institute of Brain Science, the Affiliated Brain Hospital of Nanjing Medical University, Nanjing 211166, China.
| |
Collapse
|
20
|
Juárez EH, Wood CR, Davies R, Kehoe O, Johnson WEB, Merighi A, Ferrini F. ST2-Conditioned Medium Fosters Dorsal Horn Cell Excitability and Synaptic Transmission in Cultured Mouse Spinal Cord. Stem Cell Rev Rep 2023; 19:2918-2928. [PMID: 37674016 PMCID: PMC10661801 DOI: 10.1007/s12015-023-10618-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2023] [Indexed: 09/08/2023]
Abstract
Conditioned medium obtained from bone marrow-derived stem cells has been proposed as a novel cell-free therapy in spinal cord injury and neuropathic pain, yet the direct effect on spinal neuron function has never been investigated. Here, we adopted spinal cord organotypic cultures (SCOCs) as an experimental model to probe the effect of ST2 murine mesenchymal stem cells-conditioned medium (ST2-CM) on dorsal horn (DH) neuron functional properties. Three days of SCOC exposure to ST2-CM increased neuronal activity measured by Fos expression, as well as spontaneous or induced firing. We showed that the increase in neuronal excitability was associated with changes in both intrinsic membrane properties and an enhanced excitatory drive. The increased excitability at the single-cell level was substantiated at the network level by detecting synchronous bursts of calcium waves across DH neurons. Altogether, SCOCs represent a viable tool to probe mesenchymal cells' effect on intact neuronal networks. Our findings indicate that ST2-CM enhances neuronal activity and synaptic wiring in the spinal dorsal horn. Our data also support the trophic role of mesenchymal cells CM in maintaining network activity in spinal circuits.
Collapse
Affiliation(s)
- Esri H Juárez
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Chelsea R Wood
- Chester Medical School, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
- School of Life Sciences, Coventry University, Coventry, CV1 2DS, UK
| | - Rebecca Davies
- Centre for Regenerative Medicine Research, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - Oksana Kehoe
- Centre for Regenerative Medicine Research, School of Medicine, Keele University, Keele, Staffordshire, ST5 5BG, UK
- Robert Jones and Agnes Hunt Orthopaedic Hospital, Oswestry, Shropshire, SY10 7AG, UK
| | - William E B Johnson
- Chester Medical School, University of Chester, Parkgate Road, Chester, CH1 4BJ, UK
| | - Adalberto Merighi
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy
| | - Francesco Ferrini
- Department of Veterinary Sciences, University of Turin, Largo Paolo Braccini 2, I-10095, Grugliasco, TO, Italy.
- Department of Psychiatry and Neuroscience, Université Laval, Québec, G1K 7P4, Canada.
| |
Collapse
|
21
|
Nazari S, Pourmand SM, Motevaseli E, Hassanzadeh G. Mesenchymal stem cells (MSCs) and MSC-derived exosomes in animal models of central nervous system diseases: Targeting the NLRP3 inflammasome. IUBMB Life 2023; 75:794-810. [PMID: 37278718 DOI: 10.1002/iub.2759] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2023] [Accepted: 05/02/2023] [Indexed: 06/07/2023]
Abstract
The NLRP3 (NOD-, LRR-, and pyrin domain-containing protein 3) inflammasome is a multimeric protein complex that is engaged in the innate immune system and plays a vital role in inflammatory reactions. Activation of the NLRP3 inflammasome and subsequent release of proinflammatory cytokines can be triggered by microbial infection or cellular injury. The NLRP3 inflammasome has been implicated in the pathogenesis of many disorders affecting the central nervous system (CNS), ranging from stroke, traumatic brain injury, and spinal cord injury to Alzheimer's disease, Parkinson's disease, epilepsy, multiple sclerosis, and depression. Furthermore, emerging evidence has suggested that mesenchymal stem cells (MSCs) and their exosomes may modulate NLRP3 inflammasome activation in a way that might be promising for the therapeutic management of CNS diseases. In the present review, particular focus is placed on highlighting and discussing recent scientific evidence regarding the regulatory effects of MSC-based therapies on the NLRP3 inflammasome activation and their potential to counteract proinflammatory responses and pyroptotic cell death in the CNS, thereby achieving neuroprotective impacts and improvement in behavioral impairments.
Collapse
Affiliation(s)
- Shahrzad Nazari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Mahmoud Pourmand
- School of Allied Medical Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elahe Motevaseli
- Department of Molecular Medicine, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Gholamreza Hassanzadeh
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, Iran
- Department of Anatomy, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
22
|
Nguyen QT, Thanh LN, Hoang VT, Phan TTK, Heke M, Hoang DM. Bone Marrow-Derived Mononuclear Cells in the Treatment of Neurological Diseases: Knowns and Unknowns. Cell Mol Neurobiol 2023; 43:3211-3250. [PMID: 37356043 DOI: 10.1007/s10571-023-01377-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 06/14/2023] [Indexed: 06/27/2023]
Abstract
Bone marrow-derived mononuclear cells (BMMNCs) have been used for decades in preclinical and clinical studies to treat various neurological diseases. However, there is still a knowledge gap in the understanding of the underlying mechanisms of BMMNCs in the treatment of neurological diseases. In addition, prerequisite factors for the efficacy of BMMNC administration, such as the optimal route, dose, and number of administrations, remain unclear. In this review, we discuss known and unknown aspects of BMMNCs, including the cell harvesting, administration route and dose; mechanisms of action; and their applications in neurological diseases, including stroke, cerebral palsy, spinal cord injury, traumatic brain injury, amyotrophic lateral sclerosis, autism spectrum disorder, and epilepsy. Furthermore, recommendations on indications for BMMNC administration and the advantages and limitations of BMMNC applications for neurological diseases are discussed. BMMNCs in the treatment of neurological diseases. BMMNCs have been applied in several neurological diseases. Proposed mechanisms for the action of BMMNCs include homing, differentiation and paracrine effects (angiogenesis, neuroprotection, and anti-inflammation). Further studies should be performed to determine the optimal cell dose and administration route, the roles of BMMNC subtypes, and the indications for the use of BMMNCs in neurological conditions with and without genetic abnormalities.
Collapse
Affiliation(s)
- Quyen Thi Nguyen
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Liem Nguyen Thanh
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam.
- College of Health Science, Vin University, Vinhomes Ocean Park, Gia Lam District, Hanoi, 12400, Vietnam.
- Vinmec International Hospital-Times City, Vinmec Healthcare System, 458 Minh Khai, Hanoi, 11622, Vietnam.
| | - Van T Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Trang T K Phan
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| | - Michael Heke
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Duc M Hoang
- Vinmec Research Institute of Stem Cell and Gene Technology, Vinmec Healthcare System, 458 Minh Khai, Hai Ba Trung, Hanoi, 11622, Vietnam
| |
Collapse
|
23
|
Otsu Y, Hatakeyama M, Kanayama T, Akiyama N, Ninomiya I, Omae K, Kato T, Onodera O, Fukushima M, Shimohata T, Kanazawa M. Oxygen-Glucose Deprived Peripheral Blood Mononuclear Cells Protect Against Ischemic Stroke. Neurotherapeutics 2023; 20:1369-1387. [PMID: 37335500 PMCID: PMC10480381 DOI: 10.1007/s13311-023-01398-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/25/2023] [Indexed: 06/21/2023] Open
Abstract
Stroke is the leading cause of severe long-term disability. Cell therapy has recently emerged as an approach to facilitate functional recovery in stroke. Although administration of peripheral blood mononuclear cells preconditioned by oxygen-glucose deprivation (OGD-PBMCs) has been shown to be a therapeutic strategy for ischemic stroke, the recovery mechanisms remain largely unknown. We hypothesised that cell-cell communications within PBMCs and between PBMCs and resident cells are necessary for a polarising protective phenotype. Here, we investigated the therapeutic mechanisms underlying the effects of OGD-PBMCs through the secretome. We compared levels of transcriptomes, cytokines, and exosomal microRNA in human PBMCs by RNA sequences, Luminex assay, flow cytometric analysis, and western blotting under normoxic and OGD conditions. We also performed microscopic analyses to assess the identification of remodelling factor-positive cells and evaluate angiogenesis, axonal outgrowth, and functional recovery by blinded examination by administration of OGD-PBMCs after ischemic stroke in Sprague-Dawley rats. We found that the therapeutic potential of OGD-PBMCs was mediated by a polarised protective state through decreased levels of exosomal miR-155-5p, and upregulation of vascular endothelial growth factor and a pluripotent stem cell marker stage-specific embryonic antigen-3 through the hypoxia-inducible factor-1α axis. After administration of OGD-PBMCs, microenvironment changes in resident microglia by the secretome promoted angiogenesis and axonal outgrowth, resulting in functional recovery after cerebral ischemia. Our findings revealed the mechanisms underlying the refinement of the neurovascular unit by secretome-mediated cell-cell communications through reduction of miR-155-5p from OGD-PBMCs, highlighting the therapeutic potential carrier of this approach against ischemic stroke.
Collapse
Affiliation(s)
- Yutaka Otsu
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Masahiro Hatakeyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Takeshi Kanayama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Natsuki Akiyama
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Itaru Ninomiya
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Kaoru Omae
- Translational Research Center for Medical Innovation, Foundation for Biomedical Research and Innovation at Kobe, 1-5-4 Minatojima-Minamimachi, Kobe, 650-0047, Japan
| | - Taisuke Kato
- Department of System Pathology for Neurological Disorders, Brain Science Branch, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Osamu Onodera
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan
| | - Masanori Fukushima
- Foundation of Learning Health Society Institute, 8F, Nagoya Mitsui Bussan Bldg. 1-16-21 Meiekiminami, Nakamura-ku, Nagoya, 450-003, Japan
| | - Takayoshi Shimohata
- Department of Neurology, Gifu University Graduate School of Medicine, 1-1 Yanagido, Gifu, 501-1194, Japan
| | - Masato Kanazawa
- Department of Neurology, Brain Research Institute, Niigata University, 1-757 Asahimachi-Dori, Chuoku, Niigata, 951-8585, Japan.
| |
Collapse
|
24
|
Li K, Zhu Z, Sun X, Zhao L, Liu Z, Xing J. Harnessing the therapeutic potential of mesenchymal stem cell-derived exosomes in cardiac arrest: Current advances and future perspectives. Biomed Pharmacother 2023; 165:115201. [PMID: 37480828 DOI: 10.1016/j.biopha.2023.115201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 07/16/2023] [Accepted: 07/18/2023] [Indexed: 07/24/2023] Open
Abstract
BACKGROUND Cardiac arrest (CA), characterized by sudden onset and high mortality rates, is one of the leading causes of death globally, with a survival rate of approximately 6-24%. Studies suggest that the restoration of spontaneous circulation (ROSC) hardly improved the mortality rate and prognosis of patients diagnosed with CA, largely due to ischemia-reperfusion injury. MAIN BODY Mesenchymal stem cells (MSCs) exhibit self-renewal and strong potential for multilineage differentiation. Their effects are largely mediated by extracellular vesicles (EVs). Exosomes are the most extensively studied subgroup of EVs. EVs mainly mediate intercellular communication by transferring vesicular proteins, lipids, nucleic acids, and other substances to regulate multiple processes, such as cytokine production, cell proliferation, apoptosis, and metabolism. Thus, exosomes exhibit significant potential for therapeutic application in wound repair, tissue reconstruction, inflammatory reaction, and ischemic diseases. CONCLUSION Based on similar pathological mechanisms underlying post-cardiac arrest syndrome involving various tissues and organs in many diseases, the review summarizes the therapeutic effects of MSC-derived exosomes and explores the prospects for their application in the treatment of CA.
Collapse
Affiliation(s)
- Ke Li
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Zhu Zhu
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun 130021, China.
| | - Xiumei Sun
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Linhong Zhao
- Northeast Normal University, Changchun 130022, China.
| | - Zuolong Liu
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| | - Jihong Xing
- Department of Emergency Medicine, The First Hospital of Jilin University, Changchun 130021, China.
| |
Collapse
|
25
|
Zolfaghari Baghbadorani P, Rayati Damavandi A, Moradi S, Ahmadi M, Bemani P, Aria H, Mottedayyen H, Rayati Damavandi A, Eskandari N, Fathi F. Current advances in stem cell therapy in the treatment of multiple sclerosis. Rev Neurosci 2023; 34:613-633. [PMID: 36496351 DOI: 10.1515/revneuro-2022-0102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 11/18/2022] [Indexed: 08/04/2023]
Abstract
Multiple sclerosis (MS) is an inflammatory disease related to the central nervous system (CNS) with a significant global burden. In this illness, the immune system plays an essential role in its pathophysiology and progression. The currently available treatments are not recognized as curable options and, at best, might slow the progression of MS injuries to the CNS. However, stem cell treatment has provided a new avenue for treating MS. Stem cells may enhance CNS healing and regulate immunological responses. Likewise, stem cells can come from various sources, including adipose, neuronal, bone marrow, and embryonic tissues. Choosing the optimal cell source for stem cell therapy is still a difficult verdict. A type of stem cell known as mesenchymal stem cells (MSCs) is obtainable from different sources and has a strong immunomodulatory impact on the immune system. According to mounting data, the umbilical cord and adipose tissue may serve as appropriate sources for the isolation of MSCs. Human amniotic epithelial cells (hAECs), as novel stem cell sources with immune-regulatory effects, regenerative properties, and decreased antigenicity, can also be thought of as a new upcoming contender for MS treatment. Overall, the administration of stem cells in different sets of animal and clinical trials has shown immunomodulatory and neuroprotective results. Therefore, this review aims to discuss the different types of stem cells by focusing on MSCs and their mechanisms, which can be used to treat and improve the outcomes of MS disease.
Collapse
Affiliation(s)
| | - Amirmasoud Rayati Damavandi
- Students' Scientific Research Center, Exceptional Talents Development Center, Tehran University of Medical Sciences, Keshavarz Blvrd, Vesal Shirazi St., Tehran 1417613151, Iran
| | - Samira Moradi
- School of Medicine, Hormozgan University of Medical Sciences Chamran Blvrd., Hormozgan 7919693116, Bandar Abbass, Iran
| | - Meysam Ahmadi
- School of Medicine, Shiraz University of Medical Sciences, Fars, Zand St., Shiraz 7134814336, Iran
| | - Peyman Bemani
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Hamid Aria
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
- Noncommunicable Diseases Research Center, Fasa University of Medical Sciences, Fars, Ibn Sina Sq., Fasa 7461686688, Iran
| | - Hossein Mottedayyen
- Department of Immunology, School of Medicine, Kashan University of Medical Sciences, Ravandi Blvrd, Isfahan, Kashan 8715988141, Iran
| | - Amirhossein Rayati Damavandi
- Student's Research Committee, Pharmaceutical Sciences Branch, Islamic Azad University, Yakhchal St., Tehran 193951498, Iran
| | - Nahid Eskandari
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| | - Farshid Fathi
- Department of Immunology, School of Medicine, Isfahan University of Medical Sciences, Hezar Jerib St., Isfahan 8174673461, Iran
| |
Collapse
|
26
|
Ahmed W, Kuniyan MS, Jawed AM, Chen L. Engineered Extracellular Vesicles for Drug Delivery in Therapy of Stroke. Pharmaceutics 2023; 15:2173. [PMID: 37765144 PMCID: PMC10537154 DOI: 10.3390/pharmaceutics15092173] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 08/10/2023] [Accepted: 08/17/2023] [Indexed: 09/29/2023] Open
Abstract
Extracellular vesicles (EVs) are promising therapeutic modalities for treating neurological conditions. EVs facilitate intercellular communication among brain cells under normal and abnormal physiological conditions. The potential capability of EVs to pass through the blood-brain barrier (BBB) makes them highly promising as nanocarrier contenders for managing stroke. EVs possess several potential advantages compared to existing drug-delivery vehicles. These advantages include their capacity to surpass natural barriers, target specific cells, and stability within the circulatory system. This review explores the trafficking and cellular uptake of EVs and evaluates recent findings in the field of EVs research. Additionally, an overview is provided of the techniques researchers utilize to bioengineer EVs for stroke therapy, new results on EV-BBB interactions, and the limitations and prospects of clinically using EVs for brain therapies. The primary objective of this study is to provide a comprehensive analysis of the advantages and challenges related to engineered EVs drug delivery, specifically focusing on their application in the treatment of stroke.
Collapse
Affiliation(s)
- Waqas Ahmed
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | | | - Aqil Mohammad Jawed
- School of Medicine, Southeast University, Nanjing 210009, China; (M.S.K.); (A.M.J.)
| | - Lukui Chen
- Department of Neurosurgery, Neuroscience Center, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou 510310, China;
| |
Collapse
|
27
|
Chen N, Wang YL, Sun HF, Wang ZY, Zhang Q, Fan FY, Ma YC, Liu FX, Zhang YK. Potential regulatory effects of stem cell exosomes on inflammatory response in ischemic stroke treatment. World J Stem Cells 2023; 15:561-575. [PMID: 37424949 PMCID: PMC10324506 DOI: 10.4252/wjsc.v15.i6.561] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 04/22/2023] [Accepted: 05/16/2023] [Indexed: 06/26/2023] Open
Abstract
The high incidence and disability rates of stroke pose a heavy burden on society. Inflammation is a significant pathological reaction that occurs after an ischemic stroke. Currently, therapeutic methods, except for intravenous thrombolysis and vascular thrombectomy, have limited time windows. Mesenchymal stem cells (MSCs) can migrate, differentiate, and inhibit inflammatory immune responses. Exosomes (Exos), which are secretory vesicles, have the characteristics of the cells from which they are derived, making them attractive targets for research in recent years. MSC-derived exosomes can attenuate the inflammatory response caused by cerebral stroke by modulating damage-associated molecular patterns. In this review, research on the inflammatory response mechanisms associated with Exos therapy after an ischemic injury is discussed to provide a new approach to clinical treatment.
Collapse
Affiliation(s)
- Na Chen
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yan-Lin Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Hui-Fang Sun
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Zhuo-Ya Wang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Qi Zhang
- Department of Neurology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, Henan Province, China
| | - Fei-Yan Fan
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Yu-Cheng Ma
- First School of Clinical Medicine, Henan University of Chinese Medicine, Zhengzhou 450046, Henan Province, China
| | - Fei-Xiang Liu
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
| | - Yun-Ke Zhang
- Department of Neurology, The First Affiliated Hospital of Henan University of Chinese Medicine, Zhengzhou 450000, Henan Province, China
- School of Rehabilitation Medicine, Henan University of Chinese Medicine, Zhengzhou 450008, Henan Province, China
| |
Collapse
|
28
|
Li T, Su X, Lu P, Kang X, Hu M, Li C, Wang S, Lu D, Shen S, Huang H, Liu Y, Deng X, Cai W, Wei L, Lu Z. Bone Marrow Mesenchymal Stem Cell-Derived Dermcidin-Containing Migrasomes enhance LC3-Associated Phagocytosis of Pulmonary Macrophages and Protect against Post-Stroke Pneumonia. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023:e2206432. [PMID: 37246283 PMCID: PMC10401184 DOI: 10.1002/advs.202206432] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 04/29/2023] [Indexed: 05/30/2023]
Abstract
Pneumonia is one of the leading causes of death in patients with acute ischemic stroke (AIS). Antibiotics fail to improve prognosis of patients with post-stroke pneumonia, albeit suppressing infection, due to adverse impacts on the immune system. The current study reports that bone marrow mesenchymal stem cells (BM-MSC) downregulate bacterial load in the lungs of stroke mice models. RNA-sequencing of the lung from BM-MSC-treated stroke models indicates that BM-MSC modulates pulmonary macrophage activities after cerebral ischemia. Mechanistically, BM-MSC promotes the bacterial phagocytosis of pulmonary macrophages through releasing migrasomes, which are migration-dependent extracellular vesicles. With liquid chromatography-tandem mass spectrometry (LC-MS/MS), the result shows that BM-MSC are found to load the antibacterial peptide dermcidin (DCD) in migrasomes upon bacterial stimulation. Besides the antibiotic effect, DCD enhances LC3-associated phagocytosis (LAP) of macrophages, facilitating their bacterial clearance. The data demonstrate that BM-MSC is a promising therapeutic candidate against post-stroke pneumonia, with dual functions of anti-infection and immunol modulation, which is more than a match for antibiotics treatment.
Collapse
Affiliation(s)
- Tiemei Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaotao Su
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Pinglan Lu
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, 510630, China
| | - Xinmei Kang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Mengyan Hu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Surgical Intensive Care Unit, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Chunyi Li
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shisi Wang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Danli Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Shishi Shen
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Huipeng Huang
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Yuxin Liu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Xiaohui Deng
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Wei Cai
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Center of Clinical Immunology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
- Guangdong Provincial Key Laboratory of Brain Function and Disease, Zhongshan School of Medicine Sun Yat-sen University, Guangzhou, 510630, China
| | - Lei Wei
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| | - Zhengqi Lu
- Department of Neurology, Mental and Neurological Disease Research Center, the Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510630, China
| |
Collapse
|
29
|
Zhang E, Phan P, Zhao Z. Cellular nanovesicles for therapeutic immunomodulation: A perspective on engineering strategies and new advances. Acta Pharm Sin B 2023; 13:1789-1827. [PMID: 37250173 PMCID: PMC10213819 DOI: 10.1016/j.apsb.2022.08.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/11/2022] [Accepted: 07/28/2022] [Indexed: 02/08/2023] Open
Abstract
Cellular nanovesicles which are referred to as cell-derived, nanosized lipid bilayer structures, have emerged as a promising platform for regulating immune responses. Owing to their outstanding advantages such as high biocompatibility, prominent structural stability, and high loading capacity, cellular nanovesicles are suitable for delivering various immunomodulatory molecules, such as small molecules, nucleic acids, peptides, and proteins. Immunomodulation induced by cellular nanovesicles has been exploited to modulate immune cell behaviors, which is considered as a novel cell-free immunotherapeutic strategy for the prevention and treatment of diverse diseases. Here we review emerging concepts and new advances in leveraging cellular nanovesicles to activate or suppress immune responses, with the aim to explicate their applications for immunomodulation. We overview the general considerations and principles for the design of engineered cellular nanovesicles with tailored immunomodulatory activities. We also discuss new advances in engineering cellular nanovesicles as immunotherapies for treating major diseases.
Collapse
Affiliation(s)
- Endong Zhang
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Philana Phan
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
| | - Zongmin Zhao
- Department of Pharmaceutical Sciences, College of Pharmacy, University of Illinois Chicago, Chicago, IL 60612, USA
- Translational Oncology Program, University of Illinois Cancer Center, Chicago, IL 60612, USA
| |
Collapse
|
30
|
Xu Z, Zhang G, Zhang X, Lei Y, Sun Y, He Y, Yang F, Nan W, Xing X, Li Y, Lin J. Menstrual blood-derived endometrial stem cells inhibit neuroinflammation by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 pathway. Int J Biochem Cell Biol 2023; 157:106386. [PMID: 36754162 DOI: 10.1016/j.biocel.2023.106386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 12/28/2022] [Accepted: 02/03/2023] [Indexed: 02/09/2023]
Abstract
Neuroinflammation is a common response in various neurological disorders. Mesenchymal stem cell-based treatment has become a promising therapy for neuroinflammation-associated diseases. However, the effects of mesenchymal stem cells are controversial, and the underlying mechanism is incompletely understood. In the present study, menstrual blood-derived endometrial stem cells were intravenously transplanted into a mouse model of neuroinflammation established by peripheral injection of lipopolysaccharide. Microglial cells challenged with lipopolysaccharide were cultured with conditioned medium from endometrial stem cells. The levels of cytokines were detected by enzyme-linked immunosorbent assay. Cell proliferation and death were detected by Cell Counting Kit 8 and flow cytometry, respectively. The expression levels of Toll-like receptor 4 (TLR4), myeloid differentiation primary response gene 88 (MyD88), NLR family pyrin domain containing 3 (NLRP3) and caspase 1 (Casp1) were evaluated by western blotting. The results showed that intravenous transplantation of endometrial stem cells downregulated proinflammatory factors and upregulated anti-inflammatory factors in the brain of mice with neuroinflammation. Conditioned medium suppressed the inflammatory reaction and hyperactivation of microglial cells and protected microglial cells from cell death induced by lipopolysaccharide in vitro. The expression of TLR4, MyD88, NLRP3 and Casp1 in the brain of mice with neuroinflammation and in lipopolysaccharide-stimulated microglial cells was downregulated by endometrial stem cells and conditioned medium, respectively. These data suggested that menstrual blood-derived endometrial stem cells may suppress neuroinflammatory reactions partially by regulating microglia through the TLR4/MyD88/NLRP3/Casp1 signalling pathway. Our findings may be very useful for the development of an alternative stem cell-based therapy for neuroinflammation-associated disorders.
Collapse
Affiliation(s)
- Zhihao Xu
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China.
| | - Guoqing Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Xiaoyue Zhang
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Yu Lei
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Yuliang Sun
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Ya'nan He
- Zhongyuan Stem Cell Research Institute, Xinxiang 453003, Henan, PR China
| | - Fen Yang
- Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Wenbin Nan
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China
| | - Xuekun Xing
- College of Public Health, Guilin Medical University, Guilin 541199, Guangxi, PR China
| | - Yonghai Li
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China
| | - Juntang Lin
- School of Life Science and Technology, Xinxiang Medical University, Xinxiang 453003, Henan, PR China; Stem Cells and Biotherapy Engineering and Technology Research Center of Henan, Henan Joint International Research Laboratory of Stem Cell Medicine, National Joint Engineering Laboratory of Stem Cells and Biotherapy, Xinxiang 453003, Henan, PR China; School of Medical Engineering, Xinxiang Medical University, Xinxiang 453003, Henan, PR China.
| |
Collapse
|
31
|
Shan XQ, Luo YY, Chang J, Song JJ, Hao N, Zhao L. Immunomodulation: The next target of mesenchymal stem cell-derived exosomes in the context of ischemic stroke. World J Stem Cells 2023; 15:52-70. [PMID: 37007453 PMCID: PMC10052343 DOI: 10.4252/wjsc.v15.i3.52] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/26/2022] [Revised: 01/19/2023] [Accepted: 02/28/2023] [Indexed: 03/23/2023] Open
Abstract
Ischemic stroke (IS) is the most prevalent form of brain disease, characterized by high morbidity, disability, and mortality. However, there is still a lack of ideal prevention and treatment measures in clinical practice. Notably, the transplantation therapy of mesenchymal stem cells (MSCs) has been a hot research topic in stroke. Nevertheless, there are risks associated with this cell therapy, including tumor formation, coagulation dysfunction, and vascular occlusion. Also, a growing number of studies suggest that the therapeutic effect after transplantation of MSCs is mainly attributed to MSC-derived exosomes (MSC-Exos). And this cell-free mediated therapy appears to circumvent many risks and difficulties when compared to cell therapy, and it may be the most promising new strategy for treating stroke as stem cell replacement therapy. Studies suggest that suppressing inflammation via modulation of the immune response is an additional treatment option for IS. Intriguingly, MSC-Exos mediates the inflammatory immune response following IS by modulating the central nervous system, the peripheral immune system, and immunomodulatory molecules, thereby promoting neurofunctional recovery after stroke. Thus, this paper reviews the role, potential mechanisms, and therapeutic potential of MSC-Exos in post-IS inflammation in order to identify new research targets.
Collapse
Affiliation(s)
- Xiao-Qian Shan
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Yong-Yin Luo
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jun Chang
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Jing-Jing Song
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Nan Hao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| | - Lan Zhao
- First Teaching Hospital of Tianjin University of Traditional Chinese Medicine, Tianjin 300381, China
- National Clinical Research Center for Chinese Medicine Acupuncture and Moxibustion, Tianjin 300381, China
| |
Collapse
|
32
|
Zhang M, Zhang R, Chen H, Zhang X, Zhang Y, Liu H, Li C, Chen Y, Zeng Q, Huang G. Injectable Supramolecular Hybrid Hydrogel Delivers IL-1β-Stimulated Exosomes to Target Neuroinflammation. ACS APPLIED MATERIALS & INTERFACES 2023; 15:6486-6498. [PMID: 36716400 DOI: 10.1021/acsami.2c19997] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Long-term neuroinflammation is a major barrier to neurological recovery after cerebral ischemia-reperfusion injury (CIRI). Here, a thermosensitive injectable supramolecular hybrid hydrogel is developed to sustainably deliver exosomes derived from interleukin-1β-stimulated bone marrow stromal cells (BMSCs) (βExos) with improved exosome production and anti-inflammatory capacity for neuroinflammation inhibition and neurological recovery. The supramolecular hydrogel displays self-healing and injectable features, along with high biocompatibility and tissue-like softness. The βExos effectively reduce the lipopolysaccharide-induced inflammatory responses in the immortalized mouse microglia (BV2) cell line, and the in situ formed hydrogel improves the exosome retention in the ischemic core area. More remarkably, in the middle cerebral artery occlusion in vivo model, glial scar formation and neuronal loss are significantly reduced by regulating neuroinflammation using the released βExos. Therefore, the combination of interleukin-1β-stimulated exosomes with injectable supramolecular hydrogel provides an appealing strategy for treating central nervous system diseases.
Collapse
Affiliation(s)
- Meimei Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Runlin Zhang
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Hui Chen
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaofeng Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yilei Zhang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Neurorehabilitation Medicine, Xiangya Boai Rehabilitation Hospital, Changsha 410151, China
| | - Haining Liu
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Chen Li
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
- Department of Rehabilitation Medicine, Hunan Provincial People's Hospital, Hunan Normal University, Changsha 410016, China
| | - Yunhua Chen
- National Engineering Research Center for Tissue Restoration and Reconstruction, School of Materials Science and Engineering, South China University of Technology, Guangzhou, Guangdong 510641, China
| | - Qing Zeng
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guozhi Huang
- Department of Rehabilitation Medicine, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong 510280, China
- School of Rehabilitation Medicine, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
33
|
Seim RF, Willis ML, Wallet SM, Maile R, Coleman LG. EXTRACELLULAR VESICLES AS REGULATORS OF IMMUNE FUNCTION IN TRAUMATIC INJURIES AND SEPSIS. Shock 2023; 59:180-189. [PMID: 36516458 PMCID: PMC9940835 DOI: 10.1097/shk.0000000000002023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 09/20/2022] [Accepted: 10/20/2022] [Indexed: 12/15/2022]
Abstract
ABSTRACT Despite advancements in critical care and resuscitation, traumatic injuries are one of the leading causes of death around the world and can bring about long-term disabilities in survivors. One of the primary causes of death for trauma patients are secondary phase complications that can develop weeks or months after the initial insult. These secondary complications typically occur because of systemic immune dysfunction that develops in response to injury, which can lead to immunosuppression, coagulopathy, multiple organ failure, unregulated inflammation, and potentially sepsis in patients. Recently, extracellular vesicles (EVs) have been identified as mediators of these processes because their levels are increased in circulation after traumatic injury and they encapsulate cargo that can aggravate these secondary complications. In this review, we will discuss the role of EVs in the posttrauma pathologies that arise after burn injuries, trauma to the central nervous system, and infection. In addition, we will examine the use of EVs as biomarkers for predicting late-stage trauma outcomes and as therapeutics for reversing the pathological processes that develop after trauma. Overall, EVs have emerged as critical mediators of trauma-associated pathology and their use as a therapeutic agent represents an exciting new field of biomedicine.
Collapse
Affiliation(s)
- Roland F. Seim
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Micah L. Willis
- Curriculum in Toxicology and Environmental Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
- Department of Surgery, North Carolina Jaycee Burn Center, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Shannon M. Wallet
- Department of Oral Biology, College of Dentistry, University of Florida, Gainesville, Florida
| | - Robert Maile
- Department of Surgery, University of Florida, Gainesville, Florida
| | - Leon G. Coleman
- Department of Pharmacology, University of North Carolina at Chapel Hill, School of Medicine, Chapel Hill, North Carolina
| |
Collapse
|
34
|
Liu J, Zhou Y, Xie C, Li C, Ma L, Zhang Y. Anti-Ferroptotic Effects of bone Marrow Mesenchymal Stem Cell-Derived Extracellular Vesicles Loaded with Ferrostatin-1 in Cerebral ischemia-reperfusion Injury Associate with the GPX4/COX-2 Axis. Neurochem Res 2023; 48:502-518. [PMID: 36322371 DOI: 10.1007/s11064-022-03770-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 09/13/2022] [Accepted: 09/26/2022] [Indexed: 11/05/2022]
Abstract
Accumulating evidence of the critical role of Ferrostatin-1 (Fer-1, ferroptosis inhibitor) in cerebral ischemia has intrigued us to explore the molecular mechanistic actions of Fer-1 delivery by bone marrow mesenchymal stem cells-derived extracellular vesicles (MSCs-EVs) in cerebral ischemia-reperfusion (I/R) injury. In vivo middle cerebral artery occlusion (MCAO) in mice and in vitro oxygen-glucose deprivation/reperfusion (OGD/R) in hippocampal neurons were developed to simulate cerebral I/R injury. After Fer-1 was confirmed to be successfully delivered by MSCs-EVs to neurons, we found that MSCs-EVs loaded with Fer-1 (MSCs-EVs/Fer-1) reduced neuron apoptosis and enhanced viability, along with curtailed inflammation and ferroptosis. The regulation of Fer-1 on GPX4/COX2 axis was predicted by bioinformatics study and validated by functional experiments. The in vivo experiments further confirmed that MSCs-EVs/Fer-1 ameliorated cerebral I/R injury in mice. Furthermore, poor expression of GPX4 and high expression of COX-2 were witnessed in cerebral I/R injury models. MSCs-EVs/Fer-1 exerted its protective effects against cerebral I/R injury by upregulating GPX4 expression and inhibiting COX-2 expression. Taken together, our study indicates that MSCs-EVs/Fer-1 may be an attractive therapeutic target for the treatment of cerebral I/R injury due to its anti-ferroptotic properties.
Collapse
Affiliation(s)
- Junying Liu
- Key Laboratory of Clinical Genetics, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, 610081, Chengdu, Sichuan Province, P.R. China
| | - Yan Zhou
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University, 710032, Xi'an, P. R. China
| | - Chenchen Xie
- Department of Neurology, Affiliated Hospital & Clinical Medical College of Chengdu University, 610081, Chengdu, P.R. China
| | - Ci Li
- Department of Pathology, Affiliated Hospital & Clinical Medical College of Chengdu University, 610081, Chengdu, P. R. China
| | - Li Ma
- Institute of Blood Transfusion, Chinese Academy of Medical Sciences, No. 76, Huacai Road, Chenghua District, 610052, Chengdu, Sichuan Province, P. R. China.
| | - Yamei Zhang
- Key Laboratory of Clinical Genetics, Affiliated Hospital & Clinical Medical College of Chengdu University, No. 82, North Section 2, 2nd Ring Road, 610081, Chengdu, Sichuan Province, P.R. China.
| |
Collapse
|
35
|
Hao L, Yang Y, Xu X, Guo X, Zhan Q. Modulatory effects of mesenchymal stem cells on microglia in ischemic stroke. Front Neurol 2023; 13:1073958. [PMID: 36742051 PMCID: PMC9889551 DOI: 10.3389/fneur.2022.1073958] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 12/28/2022] [Indexed: 01/20/2023] Open
Abstract
Ischemic stroke accounts for 70-80% of all stroke cases. Immunity plays an important role in the pathophysiology of ischemic stroke. Microglia are the first line of defense in the central nervous system. Microglial functions are largely dependent on their pro-inflammatory (M1-like) or anti-inflammatory (M2-like) phenotype. Modulating neuroinflammation via targeting microglia polarization toward anti-inflammatory phenotype might be a novel treatment for ischemic stroke. Mesenchymal stem cells (MSC) and MSC-derived extracellular vesicles (MSC-EVs) have been demonstrated to modulate microglia activation and phenotype polarization. In this review, we summarize the physiological characteristics and functions of microglia in the healthy brain, the activation and polarization of microglia in stroke brain, the effects of MSC/MSC-EVs on the activation of MSC in vitro and in vivo, and possible underlying mechanisms, providing evidence for a possible novel therapeutics for the treatment of ischemic stroke.
Collapse
Affiliation(s)
- Lei Hao
- Department of Neurology, The First Branch of The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Yongtao Yang
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiaoli Xu
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China
| | - Xiuming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China,*Correspondence: Xiuming Guo ✉
| | - Qunling Zhan
- Department of Neurology, The Fifth People's Hospital of Chongqing, Chongqing, China,Qunling Zhan ✉
| |
Collapse
|
36
|
Li Q, Niu X, Yi Y, Chen Y, Yuan J, Zhang J, Li H, Xia Y, Wang Y, Deng Z. Inducible Pluripotent Stem Cell-Derived Small Extracellular Vesicles Rejuvenate Senescent Blood-Brain Barrier to Protect against Ischemic Stroke in Aged Mice. ACS NANO 2023; 17:775-789. [PMID: 36562422 DOI: 10.1021/acsnano.2c10824] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Blood-brain barrier (BBB) breakdown after ischemic stroke exacerbates brain injury and BBB senescence can cause severe neurological deficits in aged ischemic stroke population. Recent evidence reveals that inducible pluripotent stem cell-derived small extracellular vesicles (iPSC-sEVs) possess phenomenal antisenescence capability. However, whether iPSC-sEVs can rejuvenate BBB senescence to improve stroke outcomes in aged mice remains unknown. Here, we showed that long-term treatment with iPSC-sEVs alleviated aging-induced BBB senescence in aged mice. In aged stroke mice, iPSC-sEVs significantly mitigated BBB integrity damage, reduced the following infiltration of peripheral leukocytes, and decreased the release of pro-inflammatory factors from the leukocytes, which ultimately inhibited neuronal death and improved neurofunctional recovery. Mechanism studies showed that iPSC-sEVs could activate the endothelial nitric oxide synthase (eNOS) and up-regulate sirtuin 1 (Sirt1) in senescent endothelial cells. Blocking the activation of eNOS abolished iPSC-sEV-mediated rejuvenation of BBB senescence and the protection of BBB integrity. Proteomics results demonstrated that iPSC-sEVs were enriched with bioactive factors including AKT serine/threonine kinase 1 (AKT1) and calmodulin (CALM) to activate the eNOS-Sirt1 axis. Further investigation showed that AKT1 and CALM inhibitors blocked iPSC-sEV-afforded activation of the eNOS-Sirt1 axis in senescent endothelial cells. Taken together, iPSC-sEVs can protect against ischemic stroke in aged mice by rejuvenating BBB senescence, partially, through delivering AKT1 and CALM to activate eNOS-Sirt1 axis, which indicates that iPSC-sEVs treatment is an effective alternative to treat ischemic stroke in the aged population.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Haiyan Li
- Chemical and Environment Engineering Department, School of Engineering, RMIT University, Melbourne, VIC 3001, Australia
| | | | | | | |
Collapse
|
37
|
Izquierdo-Altarejos P, Cabrera-Pastor A, Martínez-García M, Sánchez-Huertas C, Hernández A, Moreno-Manzano V, Felipo V. Extracellular vesicles from mesenchymal stem cells reduce neuroinflammation in hippocampus and restore cognitive function in hyperammonemic rats. J Neuroinflammation 2023; 20:1. [PMID: 36593485 PMCID: PMC9806918 DOI: 10.1186/s12974-022-02688-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/25/2022] [Indexed: 01/03/2023] Open
Abstract
Chronic hyperammonemia, a main contributor to hepatic encephalopathy (HE), leads to neuroinflammation which alters neurotransmission leading to cognitive impairment. There are no specific treatments for the neurological alterations in HE. Extracellular vesicles (EVs) from mesenchymal stem cells (MSCs) reduce neuroinflammation in some pathological conditions. The aims were to assess if treatment of hyperammonemic rats with EVs from MSCs restores cognitive function and analyze the underlying mechanisms. EVs injected in vivo reach the hippocampus and restore performance of hyperammonemic rats in object location, object recognition, short-term memory in the Y-maze and reference memory in the radial maze. Hyperammonemic rats show reduced TGFβ levels and membrane expression of TGFβ receptors in hippocampus. This leads to microglia activation and reduced Smad7-IkB pathway, which induces NF-κB nuclear translocation in neurons, increasing IL-1β which alters AMPA and NMDA receptors membrane expression, leading to cognitive impairment. These effects are reversed by TGFβ in the EVs from MSCs, which activates TGFβ receptors, reducing microglia activation and NF-κB nuclear translocation in neurons by normalizing the Smad7-IkB pathway. This normalizes IL-1β, AMPA and NMDA receptors membrane expression and, therefore, cognitive function. EVs from MSCs may be useful to improve cognitive function in patients with hyperammonemia and minimal HE.
Collapse
Affiliation(s)
- Paula Izquierdo-Altarejos
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Andrea Cabrera-Pastor
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain ,grid.476458.c0000 0004 0427 8560Fundación Investigación Hospital Clínico, Instituto de Investigación Sanitaria, INCLIVA, Valencia, Spain
| | - Mar Martínez-García
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| | - Carlos Sánchez-Huertas
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain ,grid.466805.90000 0004 1759 6875Laboratory of Bilateral Neural Circuits, Instituto de Neurociencias (CSIC-UMH), Alicante, Spain
| | - Alberto Hernández
- grid.418274.c0000 0004 0399 600XOptical and Confocal Microscopy Service, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Victoria Moreno-Manzano
- grid.418274.c0000 0004 0399 600XNeuronal and Tissue Regeneration Laboratory, Centro Investigación Príncipe Felipe, Valencia, Spain
| | - Vicente Felipo
- grid.418274.c0000 0004 0399 600XLaboratory of Neurobiology, Centro Investigación Príncipe Felipe, Eduardo Primo-Yufera 3, 46012 Valencia, Spain
| |
Collapse
|
38
|
Norouzi-Barough L, Asgari Khosroshahi A, Gorji A, Zafari F, Shahverdi Shahraki M, Shirian S. COVID-19-Induced Stroke and the Potential of Using Mesenchymal Stem Cells-Derived Extracellular Vesicles in the Regulation of Neuroinflammation. Cell Mol Neurobiol 2023; 43:37-46. [PMID: 35025001 PMCID: PMC8755896 DOI: 10.1007/s10571-021-01169-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 11/09/2021] [Indexed: 02/07/2023]
Abstract
Ischemic stroke (IS) is a known neurological complication of COVID-19 infection, which is associated with high mortality and disability. Following IS, secondary neuroinflammation that occurs can play both harmful and beneficial roles and lead to further injury or repair of damaged neuronal tissue, respectively. Since inflammation plays a pivotal role in the pathogenesis of COVID-19-induced stroke, targeting neuroinflammation could be an effective strategy for modulating the immune responses following ischemic events. Numerous investigations have indicated that the application of mesenchymal stem cells-derived extracellular vesicles (MSC-EVs) improves functional recovery following stroke, mainly through reducing neuroinflammation as well as promoting neurogenesis and angiogenesis. Therefore, MSC-EVs can be applied for the regulation of SARS-CoV-2-mediated inflammation and the management of COVID-19- related ischemic events. In this study, we have first described the advantages and disadvantages of neuroinflammation in the pathological evolution after IS and summarized the characteristics of neuroinflammation in COVID-19-related stroke. Then, we have discussed the potential benefit of MSC-EVs in the regulation of inflammatory responses after COVID-19-induced ischemic events.
Collapse
Affiliation(s)
- Leyla Norouzi-Barough
- Acquired Immunodeficiency Research Center, Isfahan University of Medical Sciences, Isfahan, Iran
| | | | - Ali Gorji
- Epilepsy Research Center, Department of Neurosurgery, Westfälische Wilhelms-Universitat Münster, Munster, Germany
- Shefa Neuroscience Research Center, Khatam Alanbia Hospital, Tehran, Iran
| | - Fariba Zafari
- Cellular and Molecular Research Center, Research Institute for Prevention of Non- Communicable Disease, Qazvin University of Medical Sciences, Qazvin, Iran
| | | | - Sadegh Shirian
- Department of Pathology, School of Veterinary Medicine, Shahrekord University, Shahrekord, Iran.
- Shiraz Molecular Pathology Research Center, Dr. Daneshbod Pathol Lab, Shiraz, Iran.
| |
Collapse
|
39
|
Alberti G, Russo E, Corrao S, Anzalone R, Kruzliak P, Miceli V, Conaldi PG, Di Gaudio F, La Rocca G. Current Perspectives on Adult Mesenchymal Stromal Cell-Derived Extracellular Vesicles: Biological Features and Clinical Indications. Biomedicines 2022; 10:2822. [PMID: 36359342 PMCID: PMC9687875 DOI: 10.3390/biomedicines10112822] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/28/2022] [Indexed: 08/10/2023] Open
Abstract
Extracellular vesicles (EVs) constitute one of the main mechanisms by which cells communicate with the surrounding tissue or at distance. Vesicle secretion is featured by most cell types, and adult mesenchymal stromal cells (MSCs) of different tissue origins have shown the ability to produce them. In recent years, several reports disclosed the molecular composition and suggested clinical indications for EVs derived from adult MSCs. The parental cells were already known for their roles in different disease settings in regulating inflammation, immune modulation, or transdifferentiation to promote cell repopulation. Interestingly, most reports also suggested that part of the properties of parental cells were maintained by isolated EV populations. This review analyzes the recent development in the field of cell-free therapies, focusing on several adult tissues as a source of MSC-derived EVs and the available clinical data from in vivo models.
Collapse
Affiliation(s)
- Giusi Alberti
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Eleonora Russo
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Simona Corrao
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| | - Rita Anzalone
- Department of Surgical, Oncological and Stomatological Sciences (DICHIRONS), University of Palermo, 90127 Palermo, Italy
| | - Peter Kruzliak
- Department of Medical Biology, Jessenius Faculty of Medicine, Comenius University in Bratislava, 03601 Martin, Slovakia
| | - Vitale Miceli
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | - Pier Giulio Conaldi
- Research Department, IRCCS ISMETT (Istituto Mediterraneo per i Trapianti e Terapie ad Alta Specializzazione), 90127 Palermo, Italy
| | | | - Giampiero La Rocca
- Department of Biomedicine, Neurosciences and Advanced Diagnostics (BiND), University of Palermo, 90127 Palermo, Italy
| |
Collapse
|
40
|
Zhou L, Liang J, Xiong T. Research progress of mesenchymal stem cell-derived exosomes on inflammatory response after ischemic stroke. Zhejiang Da Xue Xue Bao Yi Xue Ban 2022; 51:500-506. [PMID: 37202091 PMCID: PMC10264999 DOI: 10.3724/zdxbyxb-2022-0077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 05/24/2022] [Indexed: 05/20/2023]
Abstract
Ischemic stroke is characterized by cute onset and high mortality. The suppression of neuroinflammation is crucial in the treatment of ischemic stroke. Exosomes derived from mesenchymal stem cell (MSC) have attracted extensive research attention due to their wide origin, small size, and containing large number of active components. Recent studies have shown that MSC-derived exosomes can inhibit the proinflammatory activity of microglia and astrocytes and stimulate their neuroprotective activity; also can inhibit neuroinflammation by regulating immune cells and inflammatory mediators. This article reviews the roles and related mechanism of MSC-derived exosomes in neuroinflammation after ischemic stroke, hoping to provide ideas and references for the development of a novel approach for the treatment of ischemic stroke diseases.
Collapse
Affiliation(s)
- Lujia Zhou
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
| | - Jingyan Liang
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
- 2. Jiangsu Provincial Key Laboratory of Geriatric Disease Prevention and Control, Yangzhou 225001, Jiangsu Province, China
| | - Tianqing Xiong
- 1. Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou 225001, Jiangsu Province, China
- 2. Jiangsu Provincial Key Laboratory of Geriatric Disease Prevention and Control, Yangzhou 225001, Jiangsu Province, China
| |
Collapse
|
41
|
Khadka A, Spiers JG, Cheng L, Hill AF. Extracellular vesicles with diagnostic and therapeutic potential for prion diseases. Cell Tissue Res 2022; 392:247-267. [PMID: 35394216 PMCID: PMC10113352 DOI: 10.1007/s00441-022-03621-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Accepted: 03/25/2022] [Indexed: 12/14/2022]
Abstract
Prion diseases (PrD) or transmissible spongiform encephalopathies (TSE) are invariably fatal and pathogenic neurodegenerative disorders caused by the self-propagated misfolding of cellular prion protein (PrPC) to the neurotoxic pathogenic form (PrPTSE) via a yet undefined but profoundly complex mechanism. Despite several decades of research on PrD, the basic understanding of where and how PrPC is transformed to the misfolded, aggregation-prone and pathogenic PrPTSE remains elusive. The primary clinical hallmarks of PrD include vacuolation-associated spongiform changes and PrPTSE accumulation in neural tissue together with astrogliosis. The difficulty in unravelling the disease mechanisms has been related to the rare occurrence and long incubation period (over decades) followed by a very short clinical phase (few months). Additional challenge in unravelling the disease is implicated to the unique nature of the agent, its complexity and strain diversity, resulting in the heterogeneity of the clinical manifestations and potentially diverse disease mechanisms. Recent advances in tissue isolation and processing techniques have identified novel means of intercellular communication through extracellular vesicles (EVs) that contribute to PrPTSE transmission in PrD. This review will comprehensively discuss PrPTSE transmission and neurotoxicity, focusing on the role of EVs in disease progression, biomarker discovery and potential therapeutic agents for the treatment of PrD.
Collapse
Affiliation(s)
- Arun Khadka
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Jereme G Spiers
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Lesley Cheng
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia
| | - Andrew F Hill
- Department of Biochemistry & Chemistry, La Trobe Institute for Molecular Science, La Trobe University, Bundoora, VIC, 3086, Australia. .,Institute for Health and Sport, Victoria University, Footscray, VIC, Australia.
| |
Collapse
|
42
|
Fu C, Zhou Y, Wang L. The Effect of Bone Marrow Mesenchymal Stem Cells (BMSCs) on Brain Injury Repair and Synapse Regeneration in Mice Under Different Conditions of Intrauterine Ischemia and Hypoxia Through Wnt Pathway. J BIOMATER TISS ENG 2022. [DOI: 10.1166/jbt.2022.2922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Bone marrow mesenchymal stem cells (BMSCs) can be differentiated into a variety of cells and repair damaged cells. We explore whether BMSCs can repair brain damage and synapses regeneration in mice under intrauterine ischemia and hypoxia. Twenty-five pregnant mice were assigned into
control group, 6% hypoxic injury group, 8% hypoxic injury group, 6% treatment group, 8% treatment group followed by analysis of the expression of MBP, MAG, CSPGs, IGF-1, NCAN, COLIV, SynD1G1, GFAP, GSK-3β, and β-actin by RT-PCR and Western blot. Our results showed that
the expression of MBP, MAG, COL IV, SynD1G1, IGF-1 in the treatment group were significantly higher than those in hypoxic injury group with significant differences between the 8% treatment group and 6% treatment group (P < 0.05). In conclusion, BMSCs can repair brain damage and synapse
regeneration in mice under different intrauterine ischemia and hypoxia conditions which might be through Wnt signaling pathway.
Collapse
Affiliation(s)
- Changtao Fu
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Youdong Zhou
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| | - Lei Wang
- Department of Neurosurgery, Yichang Central People’s Hospital, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, 443000, China
| |
Collapse
|
43
|
Muhammad SA, Abbas AY, Imam MU, Saidu Y, Bilbis LS. Efficacy of stem cell secretome in the treatment of traumatic brain injury: A systematic review and meta-analysis of preclinical studies. Mol Neurobiol 2022; 59:2894-2909. [PMID: 35230664 DOI: 10.1007/s12035-022-02759-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Accepted: 01/19/2022] [Indexed: 01/26/2023]
Abstract
Traumatic brain injury (TBI) remains a public health challenge and represents one of the major contributors to disability and mortality worldwide among all trauma-related injuries. This study aimed to determine a precise effect size of secretome intervention in TBI. We performed a systematic literature search through Cochrane, MEDLINE Complete, PubMed and Scopus databases for articles published until June 2021. The search terms used include cells OR stem cells OR mesenchymal stem cells AND secretome OR conditioned medium OR extracellular vesicles OR exosomes OR microvesicles AND traumatic brain injury OR head injury. Neurological deficits and neuroinflammation were the outcome measures assessed after the intervention. Thirty-one (31) studies involving mouse, rat and swine were enrolled for the meta-analysis. Secretome significantly improved structural and functional recovery when compared with control. The mean effect sizes were as follows: modified neurological severity score (mNSS) (-2.65, 95% CI: -3.42, -1.87, p < 0.00001), impact size (-3.02 mm3, 95% CI: -4.97, -1.08, p = 0.002) and latency to platform (-17.20 s, 95% CI: -23.91, -10.50, p < 0.00001). Similarly, intervention with secretome reduced neuroinflammation after TBI. The results of meta-regression showed that the source of secretome, TBI models and duration of follow-up did not influence the mNSS. Furthermore, the methodological quality of the studies was moderate as shown by the risk of bias assessment. Publication bias was observed for the mNSS. This meta-analysis provides preclinical evidence of secretome intervention in TBI, suggesting that it can be explored as a therapeutic agent for TBI and other neurological disorders in humans.
Collapse
Affiliation(s)
| | - Abdullahi Yahya Abbas
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Mustapha Umar Imam
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Yusuf Saidu
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| | - Lawal Suleiman Bilbis
- Department of Biochemistry and Molecular Biology, Usmanu Danfodiyo University, Sokoto, Nigeria
| |
Collapse
|
44
|
Kuramoto Y, Fujita M, Takagi T, Takeda Y, Doe N, Yamahara K, Yoshimura S. Early-phase administration of human amnion-derived stem cells ameliorates neurobehavioral deficits of intracerebral hemorrhage by suppressing local inflammation and apoptosis. J Neuroinflammation 2022; 19:48. [PMID: 35151317 PMCID: PMC8840774 DOI: 10.1186/s12974-022-02411-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Accepted: 02/05/2022] [Indexed: 12/27/2022] Open
Abstract
Background Intracerebral hemorrhage (ICH) is a significant cause of death and disabilities. Recently, cell therapies using mesenchymal stem cells have been shown to improve ICH-induced neurobehavioral deficits. Based on these findings, we designed this study to evaluate the therapeutic efficacy and underlying mechanisms by which human amnion-derived stem cells (hAMSCs) would ameliorate neurobehavioral deficits of ICH-bearing hosts. Methods hAMSCs were induced from amnia obtained by cesarean section and administered intravenously to ICH-bearing mice during the acute phase. The mice were then subject to multitask neurobehavioral tests at the subacute phase. We attempted to optimize the dosage and timing of the hAMSC administrations. In parallel with the hAMSCs, a tenfold higher dose of human adipose-derived stem cells (ADSCs) were used as an experimental control. Specimens were obtained from the ICH lesions to conduct immunostaining, flow cytometry, and Western blotting to elucidate the underlying mechanisms of the hAMSC treatment. Results The intravenous administration of hAMSCs to the ICH-bearing mice effectively improved their neurobehavioral deficits, particularly when the treatment was initiated at Day 1 after the ICH induction. Of note, the hAMSCs promoted clinical efficacy equivalent to or better than that of hADSCs at 1/10 the cell number. The systemically administered hAMSCs were found in the ICH lesions along with the local accumulation of macrophages/microglia. In detail, the hAMSC treatment decreased the number of CD11b+CD45+ and Ly6G+ cells in the ICH lesions, while splenocytes were not affected. Moreover, the hAMSC treatment decreased the number of apoptotic cells in the ICH lesions. These results were associated with suppression of the protein expression levels of macrophage-related factors iNOS and TNFα. Conclusions Intravenous hAMSC administration during the acute phase would improve ICH-induced neurobehavioral disorders. The underlying mechanism was suggested to be the suppression of subacute inflammation and apoptosis by suppressing macrophage/microglia cell numbers and macrophage functions (such as TNFα and iNOS). From a clinical point of view, hAMSC-based treatment may be a novel strategy for the treatment of ICH. Supplementary Information The online version contains supplementary material available at 10.1186/s12974-022-02411-3.
Collapse
|
45
|
Gelosa P, Castiglioni L, Rzemieniec J, Muluhie M, Camera M, Sironi L. Cerebral derailment after myocardial infarct: mechanisms and effects of the signaling from the ischemic heart to brain. J Mol Med (Berl) 2022; 100:23-41. [PMID: 34674004 PMCID: PMC8724191 DOI: 10.1007/s00109-021-02154-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 09/07/2021] [Accepted: 10/14/2021] [Indexed: 12/04/2022]
Abstract
Myocardial infarction (MI) is the leading cause of death among ischemic heart diseases and is associated with several long-term cardiovascular complications, such as angina, re-infarction, arrhythmias, and heart failure. However, MI is frequently accompanied by non-cardiovascular multiple comorbidities, including brain disorders such as stroke, anxiety, depression, and cognitive impairment. Accumulating experimental and clinical evidence suggests a causal relationship between MI and stroke, but the precise underlying mechanisms have not yet been elucidated. Indeed, the risk of stroke remains a current challenge in patients with MI, in spite of the improvement of medical treatment among this patient population has reduced the risk of stroke. In this review, the effects of the signaling from the ischemic heart to the brain, such as neuroinflammation, neuronal apoptosis, and neurogenesis, and the possible actors mediating these effects, such as systemic inflammation, immunoresponse, extracellular vesicles, and microRNAs, are discussed.
Collapse
Affiliation(s)
- Paolo Gelosa
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Laura Castiglioni
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Joanna Rzemieniec
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Majeda Muluhie
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
| | - Marina Camera
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy
- Centro Cardiologico Monzino, 20138, Milan, Italy
| | - Luigi Sironi
- Department of Pharmaceutical Sciences, University of Milan, 20133, Milan, Italy.
| |
Collapse
|
46
|
Ridzuan N, Widera D, Yahaya BH. Isolation and Characterization of Extracellular Vesicles Derived from Human Umbilical Cord Mesenchymal Stem Cells. Methods Mol Biol 2022; 2429:271-280. [PMID: 35507168 DOI: 10.1007/978-1-0716-1979-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The safety and efficacy of mesenchymal stem cells/marrow stromal cells (MSC) have been widely studied. Since they are hypoimmunogenic, MSC can escape immune recognition, thus making them an attractive tool in clinical settings beyond autologous cell-based therapy. Paracrine factors including extracellular vesicles (EVs) released by MSC play a significant role in exerting therapeutic effects of MSC. Since their first discovery, MSC-EVs have been widely studied in an attempt to tackle the mechanisms of their therapeutic effects in various disease models. However, currently there are no standard methods to isolate EVs. Here, we describe a differential centrifugation-based protocol for isolation of EVs derived from human umbilical cord MSC (huc-MSC). In addition, the protocol describes methods for characterization of the EVs using transmission electron microscope, Western blot, and nanoparticle tracking analysis.
Collapse
Affiliation(s)
- Noridzzaida Ridzuan
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia
| | - Darius Widera
- Stem Cell Biology and Regenerative Medicine Group, School of Pharmacy, University of Reading, Reading, UK
| | - Badrul Hisham Yahaya
- Lung Stem Cell and Gene Therapy Group, Regenerative Medicine Cluster, Advanced Medical and Dental Institute (IPPT), Universiti Sains Malaysia, Kepala Batas, Penang, Malaysia.
| |
Collapse
|
47
|
Ding H, Jia Y, Lv H, Chang W, Liu F, Wang D. Extracellular vesicles derived from bone marrow mesenchymal stem cells alleviate neuroinflammation after diabetic intracerebral hemorrhage via the miR-183-5p/PDCD4/NLRP3 pathway. J Endocrinol Invest 2021; 44:2685-2698. [PMID: 34024028 DOI: 10.1007/s40618-021-01583-8] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 04/20/2021] [Indexed: 12/17/2022]
Abstract
OBJECTIVES Intracerebral hemorrhage (ICH) induced by diabetes results in further brain injury and nerve cell death. Bone marrow mesenchymal stem cell (BMSC) transplantation contributes to attenuating neurological deficits after ICH. This study investigated the mechanism of extracellular vesicles (EVs) derived from BMSCs in reducing neuroinflammation after diabetic ICH. METHODS BMSC-EVs were isolated and identified. The rat model of db/db-ICH was established and the model rats were administered with EVs. miR-183-5p expression in brain tissues of db/db-ICH rats was detected. The brain injury of db/db-ICH rats was evaluated by measuring neurobehavioral score, brain water content and inflammatory factors. BV2 cells were cultured in vitro to establish high-glucose (HG)-Hemin-BV2 cell model. The levels of reactive oxygen species (ROS) and inflammatory factors in BV2 cells were measured, and BV2 cell viability and apoptosis were assessed. The targeting relationship between miR-183-5p and PDCD4 was predicted and verified. The activation of PDCD4/NLRP3 pathway in rat brain tissues and BV2 cells was detected. RESULTS miR-183-5p expression was reduced in db/db-ICH rats brain tissues. BMSC-EVs ameliorated cranial nerve function, decreased brain water content and repressed inflammatory response by carrying miR-183-5p. BMSC-EVs mitigated HG-Hemin-BV2 cell injury, reduced ROS level and suppressed inflammatory response. miR-183-5p targeted PDCD4. PDCD4 promoted BV2 cell inflammation by activating the NLRP3 pathway. BMSC-EVs inhibited HG-Hemin-BV2 cell inflammation through the miR-183-5p/PDCD4/NLRP3 pathway, and inhibition of miR-183-5p reversed the protective effect of EVs. CONCLUSION BMSC-EVs carried miR-183-5p into db/db-ICH rat brain tissues and repressed the NLRP3 pathway by targeting PDCD4, thus alleviating neuroinflammation after diabetic ICH.
Collapse
Affiliation(s)
- H Ding
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China.
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China.
| | - Y Jia
- Department of Ophthalmology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, Anhui, 233004, People's Republic of China
| | - H Lv
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China
- Department of Immunology, Bengbu Medical College, Anhui, 233030, People's Republic of China
| | - W Chang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China
| | - F Liu
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China
| | - D Wang
- Department of Orthopedics, The First Affiliated Hospital of Bengbu Medical College, No.287, Changhuai Road, Bengbu, 233004, Anhui, People's Republic of China
- Anhui Key Laboratory of Tissue Transplantation, The First Affiliated Hospital of Bengbu Medical College, Anhui, 233004, People's Republic of China
| |
Collapse
|
48
|
Nakano M, Fujimiya M. Potential effects of mesenchymal stem cell derived extracellular vesicles and exosomal miRNAs in neurological disorders. Neural Regen Res 2021; 16:2359-2366. [PMID: 33907007 PMCID: PMC8374551 DOI: 10.4103/1673-5374.313026] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2020] [Revised: 11/23/2020] [Accepted: 01/18/2021] [Indexed: 02/07/2023] Open
Abstract
Mesenchymal stem cells are multipotent cells that possess anti-inflammatory, anti-apoptotic and immunomodulatory properties. The effects of existing drugs for neurodegenerative disorders such as Alzheimer's disease are limited, thus mesenchymal stem cell therapy has been anticipated as a means of ameliorating neuronal dysfunction. Since mesenchymal stem cells are known to scarcely differentiate into neuronal cells in damaged brain after transplantation, paracrine factors secreted from mesenchymal stem cells have been suggested to exert therapeutic effects. Extracellular vesicles and exosomes are small vesicles released from mesenchymal stem cells that contain various molecules, including proteins, mRNAs and microRNAs. In recent years, administration of exosomes/extracellular vesicles in models of neurological disorders has been shown to improve neuronal dysfunctions, via exosomal transfer into damaged cells. In addition, various microRNAs derived from mesenchymal stem cells that regulate various genes and reduce neuropathological changes in various neurological disorders have been identified. This review summarizes the effects of exosomes/extracellular vesicles and exosomal microRNAs derived from mesenchymal stem cells on models of stroke, subarachnoid and intracerebral hemorrhage, traumatic brain injury, and cognitive impairments, including Alzheimer's disease.
Collapse
Affiliation(s)
- Masako Nakano
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| | - Mineko Fujimiya
- Department of Anatomy, Sapporo Medical University School of Medicine, Sapporo, Hokkaido, Japan
| |
Collapse
|
49
|
Rohden F, Teixeira LV, Bernardi LP, Ferreira PCL, Colombo M, Teixeira GR, de Oliveira FDS, Cirne Lima EO, Guma FCR, Souza DO. Functional Recovery Caused by Human Adipose Tissue Mesenchymal Stem Cell-Derived Extracellular Vesicles Administered 24 h after Stroke in Rats. Int J Mol Sci 2021; 22:12860. [PMID: 34884665 PMCID: PMC8657917 DOI: 10.3390/ijms222312860] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/12/2021] [Accepted: 11/16/2021] [Indexed: 12/11/2022] Open
Abstract
Ischemic stroke is a major cause of death and disability, intensely demanding innovative and accessible therapeutic strategies. Approaches presenting a prolonged period for therapeutic intervention and new treatment administration routes are promising tools for stroke treatment. Here, we evaluated the potential neuroprotective properties of nasally administered human adipose tissue mesenchymal stem cell (hAT-MSC)-derived extracellular vesicles (EVs) obtained from healthy individuals who underwent liposuction. After a single intranasal EV (200 µg/kg) administered 24 h after a focal permanent ischemic stroke in rats, a higher number of EVs, improvement of the blood-brain barrier, and re-stabilization of vascularization were observed in the recoverable peri-infarct zone, as well as a significant decrease in infarct volume. In addition, EV treatment recovered long-term motor (front paws symmetry) and behavioral impairment (short- and long-term memory and anxiety-like behavior) induced by ischemic stroke. In line with these findings, our work highlights hAT-MSC-derived EVs as a promising therapeutic strategy for stroke.
Collapse
Affiliation(s)
- Francieli Rohden
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
- Instituto de Cardiologia do Rio Grande do Sul Fundação Universitária de Cardiologia, Porto Alegre 90620-101, Brazil
| | - Luciele Varaschini Teixeira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
- Instituto de Cardiologia do Rio Grande do Sul Fundação Universitária de Cardiologia, Porto Alegre 90620-101, Brazil
| | - Luis Pedro Bernardi
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
- Faculty of Biomedicine, Universidade Federal de Ciências da Saúde de Porto Alegre—UFCSPA, Porto Alegre 90050-170, Brazil
| | - Pamela Cristina Lukasewicz Ferreira
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
| | - Mariana Colombo
- Faculty of Pharmacy, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil;
| | - Geciele Rodrigues Teixeira
- Experimental Research Center, Reproductive and Cellular Pharmacology Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; (G.R.T.); (F.d.S.d.O.); (E.O.C.L.)
| | - Fernanda dos Santos de Oliveira
- Experimental Research Center, Reproductive and Cellular Pharmacology Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; (G.R.T.); (F.d.S.d.O.); (E.O.C.L.)
| | - Elizabeth Obino Cirne Lima
- Experimental Research Center, Reproductive and Cellular Pharmacology Laboratory, Hospital de Clínicas de Porto Alegre, Porto Alegre 90035-903, Brazil; (G.R.T.); (F.d.S.d.O.); (E.O.C.L.)
| | - Fátima Costa Rodrigues Guma
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
| | - Diogo Onofre Souza
- Graduate Program in Biological Sciences: Biochemistry, Department of Biochemistry, Universidade Federal do Rio Grande do Sul—UFRGS, Porto Alegre 90040-60, Brazil; (L.V.T.); (L.P.B.); (P.C.L.F.); (F.C.R.G.)
| |
Collapse
|
50
|
Zhang L, Wei W, Ai X, Kilic E, Hermann DM, Venkataramani V, Bähr M, Doeppner TR. Extracellular vesicles from hypoxia-preconditioned microglia promote angiogenesis and repress apoptosis in stroke mice via the TGF-β/Smad2/3 pathway. Cell Death Dis 2021; 12:1068. [PMID: 34753919 PMCID: PMC8578653 DOI: 10.1038/s41419-021-04363-7] [Citation(s) in RCA: 72] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 09/15/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022]
Abstract
Systemic transplantation of oxygen-glucose deprivation (OGD)-preconditioned primary microglia enhances neurological recovery in rodent stroke models, albeit the underlying mechanisms have not been sufficiently addressed. Herein, we analyzed whether or not extracellular vesicles (EVs) derived from such microglia are the biological mediators of these observations and which signaling pathways are involved in the process. Exposing bEnd.3 endothelial cells (ECs) and primary cortical neurons to OGD, the impact of EVs from OGD-preconditioned microglia on angiogenesis and neuronal apoptosis by the tube formation assay and TUNEL staining was assessed. Under these conditions, EV treatment stimulated both angiogenesis and tube formation in ECs and repressed neuronal cell injury. Characterizing microglia EVs by means of Western blot analysis and other techniques revealed these EVs to be rich in TGF-β1. The latter turned out to be a key compound for the therapeutic potential of microglia EVs, affecting the Smad2/3 pathway in both ECs and neurons. EV infusion in stroke mice confirmed the aforementioned in vitro results, demonstrating an activation of the TGF-β/Smad2/3 signaling pathway within the ischemic brain. Furthermore, enriched TGF-β1 in EVs secreted from OGD-preconditioned microglia stimulated M2 polarization of residing microglia within the ischemic cerebral environment, which may contribute to a regulation of an early inflammatory response in postischemic hemispheres. These observations are not only interesting from the mechanistic point of view but have an immediate therapeutic implication as well, since stroke mice treated with such EVs displayed a better functional recovery in the behavioral test analyses. Hence, the present findings suggest a new way of action of EVs derived from OGD-preconditioned microglia by regulating the TGF-β/Smad2/3 pathway in order to promote tissue regeneration and neurological recovery in stroke mice.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Wei Wei
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Xiaoyu Ai
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Ertugrul Kilic
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey
| | - Dirk M Hermann
- Department of Neurology, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Vivek Venkataramani
- Department of Medicine II, University Hospital Frankfurt, Frankfurt, Germany
- Institute of Pathology, University Medical Center Göttingen, Göttingen, Germany
| | - Mathias Bähr
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany
| | - Thorsten R Doeppner
- Department of Neurology, University Medical Center Göttingen, Göttingen, Germany.
- Regenerative and Restorative Medical Research Center, Istanbul Medipol University, Istanbul, Turkey.
| |
Collapse
|